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Abstract Pyrrolizidine alkaloids (PAs) are a large
group of highly toxic chemical compounds, which
are found as cross-contaminants in numerous food
products (e.g., honey), dietary supplements, herbal
teas, and pharmaceutical herbal medicines. PA con-
taminations are responsible for serious hepatotoxic-
ity and hepatocarcinogenesis. Health authorities
have to set legal limit values to guarantee the safe
consumption of plant-based nutritional and medical
products without harmful health. Toxicological and
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chemical analytical methods are conventionally ap-
plied to determine legally permitted limit values for
PAs. In the present investigation, we applied a high-
ly sensitive transcriptomic approach to investigate
the effect of low concentrations of five PAs (lasio-
carpine, riddelliine, lycopsamine, echimidine, and
monocrotaline) on human cytochrome P450 3A4-
overexpressing HepG2 clone 9 hepatocytes. The
transcriptomic profiling of deregulated gene expres-
sion indicated that the PAs disrupted important sig-
naling pathways related to cell cycle regulation and
DNA damage repair in the transfected hepatocytes,
which may explain the carcinogenic PA effects. As
PAs affected the expression of genes that involved
in cell cycle regulation, we applied flow cytometric
cell cycle analyses to verify the transcriptomic data.
Interestingly, PA treatment led to an arrest in the S
phase of the cell cycle, and this effect was more
pronounced with more toxic PAs (i.e., lasiocarpine
and riddelliine) than with the less toxic monocrota-
line. Using immunofluorescence, high fractions of
cells were detected with chromosome congression
defects upon PA treatment, indicating mitotic fail-
ure. In conclusion, the tested PAs revealed threshold
concentrations, above which crucial signaling path-
ways were deregulated resulting in cell damage and
carcinogenesis. Cell cycle arrest and DNA damage
repair point to the mutagenicity of PAs. The distur-
bance of chromosome congression is a novel mech-
anism of Pas, which may also contribute to PA-
mediated carcinogenesis. Transcriptomic, cell cycle,
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and immunofluorescence analyses should supple-
ment the standard techniques in toxicology to un-
ravel the biological effects of PA exposure in liver
cells as the primary target during metabolization of
PAs.

Keywords Herbal products - Food safety -
Pyrrolizidine alkaloids - Systems biology -
Transcriptomics - Toxicology

Introduction

Phytochemicals from vegetable diet and pharmaceutical
products are usually considered safe. However, the gen-
eral assumption about the safety of natural products is a
misconception. Nutritional products and herbal medi-
cines can be contaminated with highly toxic com-
pounds, including pyrrolizidine alkaloids (PAs). They
are hepatotoxic and carcinogenic even at very low
doses, and their intake has to be minimized (Bode and
Dong 2015; Schrenk et al. 2020). This is a large class of
more than 600 natural compounds, occurring in estimat-
ed 6000 plant species, representing 2% of all flowering
plants. They can be found in species of various plant
families, e.g., Apocyanaceae, Asteraceae (Compositae),
Boraginaceae, Fabaceae, Leguminosae, Ranunculaceae,
and Scophulariaceae (Tasca et al. 2018). PAs include a
wide variety of chemical structures. The basic structure
consists of a necine base coupled with one or two
necine acids by ester linkages. They are classified
based on the necine saturation either as fully satu-
rated or 1,2-unsaturated PAs (Schrenk et al. 2020).
PAs play a major role as plant defense mechanisms
against fungal or bacterial infections and against
attacks by mammalian herbivores and insects
(Hartmann, 1994; Hartmann 1999).

Importantly, PAs were detected in several food prod-
ucts (e.g., honey, black tea, green tea, baby teas, and
herbal infusions) as well as in medicinal tea products
(e.g., peppermint, chamomile, or fennels). Most plant
preparations are contaminated with minor amounts of
PAs as cross-contamination during harvest (Bodi et al.
2014; Schulz et al. 2015). Considerable health problems
arise due to the occurrence of PAs in herbal teas for
infants and pregnant or lactating women. In Germany, a
recent study showed that 86% of tested herbal tea sam-
pled intended for babies or mothers were contaminated
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with PAs (Miadge et al. 2015). In principle, PAs can get
into meat, milk, or eggs through contaminated feedstuffs
(de Nijs et al. 2017; Mulder et al. 2016). There is no
doubt that precautions have to guarantee that herbal
products usually consumed by babies or lactating
mothers do not exhibit harmful toxicities to babies
(BfR Bundesinstitut flir Risikobewertung 2020)

PAs cause acute liver failure by veno-occlusive
disease (VOD) as result of hepatic endothelial dam-
age (Stegelmeier et al. 1999; Chojkier 2003; Rubbia-
Brandt 2010). Toxicity related to accidental con-
sumption of 1,2-unsaturated PA-containing food has
been documented in several countries. Severe food
poisoning is accompanied by hepatic sinusoidal, rap-
id liver failure, and hemorrhagic necrosis. PAs also
exert chronic toxicity due to long-term consumption,
and PA accumulation in the body leads to hepatic
cirrhosis, pulmonary hypertension, congenital abnor-
malities, and hepatic cancer (Edgar et al. 2015). PAs
activate several signaling pathways that are related to
hepatocarcinogenesis (Fu 2017). Complications
caused by liver toxicity can be limited by monitoring
long-term use of PA-containing products, and even-
tually immediate discontinuation of their intake
(Neuman et al. 2015). Toxicity studies should con-
sider the differences between PAs. Special experi-
mental models using physiologically based kinetic
(PBK) modeling approaches were applied to convert
the in vitro toxicity results in primary hepatocytes
into in vivo dose response curves (Chen et al. 2018).

Bioactivation of PAs by cytochrome P450
monooxygenases (especially the CYP3A4 isoenzyme)
into toxic metabolites is responsible for their hepatotox-
ic effects, and cells lacking CYP activity did not reveal
genotoxic PA effects (Ruan et al. 2014; Ebmeyer et al.
2019; Hessel-Pras et al. 2020). In cultured primary
human hepatocytes, the activity of CYP enzymes
was reduced by up to 90% compared to human liver
(Morel et al. 1990; Rodriguez-Antona et al. 2002; Elaut
et al. 2006).

Therefore, we used CYP3 A4-overexpressing HepG2
clone 9 cells (Herzog et al. 2015) in the present study
and exposed them with five PAs (lasiocarpine,
riddelliine, lycopsamine, echimidine, and monocrota-
line). We aimed to determine at which threshold PAs
exert biological activity at the molecular level. For this
reason, we applied highly sensitive transcriptomic anal-
yses to identify affected signaling pathways depending
on the dose applied. Our analyses add to the chemical-
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analytical determination of PA concentration in plant-
derived products by using transcriptomic analyses to
unravel biological mechanisms responsible for the tox-
icity of PAs.

Material and methods
Cell line and culture conditions

CYP3A4-overexpressing HepG2 clone 9 cells are
established as previously described (Herzog et al.
2015). Cells were grown in DMEM medium (Life
Technologies, Schwerte, Germany) at 37 °C and 5%
CO;, in a humidified incubator. DMEM media were
supplemented with heat-inactivated 10% fetal bovine
serum (FBS), 100 U/mL penicillin, and 100 pg/mL
streptomycin (Invitrogen, Darmstadt, Germany). Treat-
ment with 3 pg/mL blasticidin was performed to main-
tain the selection of transfected CYP3A4-overexpressing
HepG2 clone 9 cells.

Chemicals

Lasiocarpine (purity > 95.0%, HPLC), riddelliine (puri-
ty > 90.0%, HPLC), lycopsamine (purity > 95.0%,
HPLC), echimide (purity > 90.0%, HPLC), and mono-
crotaline (purity > 95.0%, HPLC) were purchased from
Phytolab (Vestenbergsgreuth, Germany) (Fig. 1).

Cell treatment with PAs for transcriptomic analyses

Cytochrome P450 3A4-overexpressing HepG2 clone 9
cells were seeded on a culture plate (60 mm) at a density
0f700,000 cells/plate. Medium was changed every 24 h.
At day 6, medium was removed and cells were
trypsinized and washed with PBS. Cells were treated
with lasiocarpine, riddelliine, lycopsamine, echimide, or
monocrotaline at different concentrations for 24 h.
Treatment doses were chosen according to a previous
study on the toxicity of these PAs (Gao et al. 2020).
DMSO treatment was used as negative control. Dupli-
cates were used for RNA extraction.

RNA extraction
Total RNA was extracted using InviTrap spin Universal

RNA Mini kit (STRATEC Molecular, Berlin, Germany)
according to the manufacturer’s instructions.

Measurement of RNA concentrations was done using
the nanodrop spectrophotometer (Nanodrop Technolo-
gies, Thermo Fisher, Dreieich, Germany). The Ge-
nomics and Proteomics Core Facility at the Ger-
man Cancer Research Center (DKFZ, Heidelberg,
Germany) performed quality control of RNA,
probe labeling, and microarray hybridization of
treated and control samples. Each sample was
assessed in duplicate. A detailed protocol has been
previously described (Zhao et al. 2015).

Briefly, 1 pug total RNA was used for complementary
DNA (cDNA) synthesis. Then, MessageAmp™ II
aRNA Amplification kit (Ambion, Inc., Austin, TX,
USA) was used for amplification/labeling to synthesize
biotin-labeled cRNA. Illumina’s recommended sample
labeling procedure based on the modified Eberwine
protocol was used for preparation of Biotin labeled
cRNA samples for hybridization on Illumina Human
HT-12 BeadChip arrays.

Then, TotalPrep™ RNA Amplification Kit (Life
Technologies, Darmstadt, Germany) was used to purify
the cRNA. Hybridization was done following manufac-
turer instructions. Microarray scanning was performed
using Illumina® BeadStation array scanner (Illumina,
San Diego, CA, USA). Setting adjusted to a scaling
factor of 1 and PMT settings at 430. Data of each sample
were extracted, and outliers were removed followed by
calculation of mean average signal and standard devia-
tion of each probe. Data were normalized using quantile
normalization algorithm.

Differential gene expression analysis

Chipster software (http://chipster.csc.fi/) was used for
differential gene expression analysis between sample
and control group. First, data normalization was done
using RMA normalization method. Then, genes were
filtered on the basis of their standard deviation from the
gene mean (percentage to filter out 0.5). All genes with
at least one missing value were removed. Differential
gene expression analysis between sample and control
group was done with two group tests using empirical
Bayes t-test with a p-value threshold 0.05.

Pathway analysis
Ingenuity Pathway Analysis software (IPA)

(http://www.ingenuity.com/) was used for
determination of most significantly enriched pathways
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Lycopsamine

in each dataset. We also applied an important feature of
IPA, the compare analysis which allows analysis from
different experimental groups, in order to identify
similarities, differences, and trends among the test
samples. We compared different concentration effects
of each of PAs tested and generated heatmaps of
canonical pathways and upstream regulators. We also
visualized gene heatmaps for a complete insight into
deregulated gene expressions (upregulation or
downregulation) in our tested samples. GraphPad
Prism software (GraphPad Software, Inc., La Jolla,
CA, USA) was used to illustrate gene expression fold
changes.

Cell cycle analysis

HepG2 clone 9 cells were treated with different concen-
trations of the 5 PAs for 24 h. Then, cells were fixed
using 80% cold ethanol and incubated overnight at —20
°C. Cells were then washed twice with PBS and resus-
pended in 500 pL PBS and stained with propidium
iodide (50 pg/mL, Sigma-Aldrich, Taufkirchen, Germa-
ny). After 15 min incubation, the measurements were
performed using a BD Accuri™ C6 flow cytometer

@ Springer

Riddelliine

Echimide

Fig. 1 Chemical structures of PAs used in this study: lasiocarpine, riddelliinee, monocrotaline, lycopsamine, and echimidine

(Becton-Dickinson, Heidelberg, Germany). DMSO-
treated cells were used as negative control.

Immunofluorescence microscopy

HepG2 clone 9 cells were seeded and treated with
lasiocarpine (2.5 or 5 uM), riddelliine (15 or 25 uM),
monocrotaline (75 or 150 uM), lycopsamine (75 or 150
uM), and echimide (12.5 or 25 uM) for 24 h. DMSO-
treated cells were used as negative control. Cells were
fixed using 3.7% paraformaldehyde for 30 min at room
temperature and washed with PBS. Then, blocking was
performed using 5% FBS and 0.3% Triton X-100 in
PBS for 1 h. This was followed by staining with primary
antibody rabbit «-tubulin antibody (ab52866, Abcam)
for 2 h. Cells were washed with PBS, and then a sec-
ondary antibody (goat anti-rabbit I[gG H&L, Alexa
Fluora 488) was added for 1 h. Finally, cells were
stained with 2 mg/mL 40,6-diamidino- 2-phenylindole
(DAPI) (Sigma-Aldrich). Mounting medium
Fluoromount-Gs (SouthernBiotech, Birmingham, AL,
USA) was added before microscopy detection. For fluo-
rescent imaging, we used an EVOS SL digital inverted
microscope (Life Technologies).
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Results
Transcriptomic analyses

We tested five PAs (lasiocarpine, riddelliine, lycopsa-
mine, echimidine, and monocrotaline) on CYP3A4-
overexpressing HepG2 clone 9 cells and used tran-
scriptomics, in order to detect the pathways that were
significantly dysregulated at different concentrations
compared to the untreated control. We performed anal-
yses of transcriptomic data using IPA tool for compar-
ing different datasets represented as different concentra-
tions. The canonical pathway analyses showed that the
affected pathways significantly varied between different
concentrations (Fig. 2). For lasiocarpine, we used the
following concentrations: 0.01, 0.025, 0.05, 0.1, 0.25,
0.5, 1, 2.5, 5, and 25 uM. We observed a significant
increase in canonical pathways responsible for DNA
damage repair and cell cycle regulation at concentra-
tions above 2.5 uM in a dose-dependent manner as
represented with dark purple color in Fig. 2a. High
doses also significantly altered the expression of the
cholesterol biosynthesis signaling pathway as the
transcriptomic analysis of the canonical pathways upon
riddelliine treatment is shown in Fig. 2b. Signaling
pathways of DNA damage repair and cell cycle regula-
tion were also significantly altered by riddelliine treat-
ment, and the effect was significant at the two highest
concentrations (25 and 50 uM).

We performed transcriptomics on samples treated
with monocrotaline at different concentrations (1, 5,
25, 75, 150, and 300 uM). Two signaling pathways
were significantly expressed across all different concen-
trations (Fig. 2¢): (1) DNA methylation and transcrip-
tional repression signaling and (2) transcriptional regu-
latory network in embryonic stem cells. Signaling path-
ways responsible for DNA damage repair and cell cycle
regulation were only significant at a very high, toxic
concentration of 300 M.

The IPA signaling pathway analysis of lycopsamine-
treated cells showed significant effects on the sirtuin
signaling pathway, DNA methylation and transcription-
al repression signaling, and PXR/RXR activation path-
way (Fig. 2d). Significant effects on cell cycle signaling
pathways were not found at any of the concentrations
used.

Echimidine was tested at concentrations of 1, 2.5, 5,
12.5, and 37.5 uM, respectively. As shown in Fig. 2e,
only the highest concentration exhibited significant

activation of cell cycle signaling pathways, while simi-
lar effects were not seen at lower concentrations. DNA
methylation and transcriptional repression signaling was
significantly altered across the whole concentration
range compared to untreated control.

According to these results, different PAs revealed
various effects either depending on their molecule struc-
ture itself or the concentration that could exert cytotoxic
and carcinogenic effects.

Expression of DNA damage and cell cycle genes

Upon lasiocarpine treatment, changes in gene expres-
sion ere mainly observed in signaling pathways re-
lated to cell cycle regulation and DNA damage
repair as represented by heatmap analyses. The
heatmap analyses highlighted overexpressed genes
(red-labeled symbols) and downregulated genes
(green-labeled symbols), where the intensity of the
color represented the degree of significance (Fig. 3).
Most genes were significantly altered at high con-
centrations (2.5, 10, or 25 uM), unlike lower con-
centrations, where no significant differences in gene
expression were observed.

For further analysis, we selected 12 genes involved in
the regulation of cell cycle and DNA damage repair, i.e.,
PLKI, CCNBI, CCNB2, CDKNIA, CDKI, CHEKI,
CDK2, BRCAI, CDC25C, AURKA, BORA, and
TOP2A. The fold-change expression of these genes
was compared to untreated control across different la-
siocarpine concentrations. As displayed in Fig. 4, the
genes were 1-to 3-fold downregulated at 5 and 25 uM,
which reflected a role of lasiocarpine in the downregu-
lation of cell cycle signaling.

Gene expression analyses were also performed for
signal transduction pathways upon treatment with vari-
ous concentrations of riddelliine. Most genes were only
significantly up- or downregulated at the high doses (25
and 50 uM, Fig. 5). The expression ratios of the selected
genes showed 1- to 2-fold downregulation at 25 and
50 uM riddelliine (Fig. 6).

The altered gene expression in cells treated with
monocrotaline is shown in Fig. 7. A significantly
changed expression of cell cycle regulating genes was
only recorded at the highest concentration tested (300
uM, Fig. 7). The expression ratios of the selected set of
genes showed 1.5- to 2-fold downregulation at this
concentration (Fig. 8). These results imply fewer toxic
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Fig. 2 Canonical pathway enrichment analysis. Heatmaps pro-
duced by IPA visualize enriched canonical pathways significantly
affected in HepG2 clone 9 cells treated with PAs. Compare anal-
ysis of different concentrations of: a lasiocarpine, 0.01, 0.025,
0.05,0.1,0.25,0.5, 1, 2.5, 5, and 25 uM; b riddelliine, 0.25, 0.5,
1,2.5,5,7.5, 15, 25, and 50 uM; ¢ monocrotaline, 1, 5, 25, 75,

effects of monocrotaline compared to lasiocarpine and
riddelliine.

Cells treated with echimidine showed significantly
changed expression of cell cycle regulating genes at a
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150, and 300 uM; d lycopsamine, 1, 5,25, 75, 150, and 300 uM; e
echimidine, 1,2.5, 5, 12.5, and 37.5 uM. Purple blocks indicate p-
value scores (Fisher’s exact test) that measure the significance of
the pathway’s association with the dataset; white blocks indicate
no significant correlation. -Log10 (p-value) > 5

concentration of 37.5 uM, but no significant effects
were noticed at lower concentrations (Fig. 9). The
fold-change of expression of these genes was in a range
of 1 compared to untreated control (Fig. 10).
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Fig. 3 Heatmaps created from compare analysis represent gene
expression levels in different pathways of HepG2 clone 9 cells
treated with lasiocarpine. a Mitotic roles of Polo-like kinase path-
way; b role of BRCA1 in DNA damage response pathway; ¢ role

We inspected the list of top up- and down-expressed
genes shared among high doses of the 5 PAs with a
special concern to lasiocarpine and riddelliine. We
found an increase in the expression of genes coding
for vanin 1 (VNNI), matrix metallopeptidase 7
(MMP7?), cathepsin E (CTSE), laminin subunit «3 (LA-
MA3), cytoglobin (CYGB), sulfatase 2 (SULF2), and
keratin 23 (KR723) as well as a downregulation of the
gene coding for H2B clustered histone 14
(HISTIH2BM). These genes are not involved in the
significantly regulated pathways we found (i.e., cell
cycle and DNA damage), but their expression pattern
indicated that they might be potential targets for the
PAs’ activity. Interestingly, PLK1 was shared by

of CHK proteins in cell cycle pathway. Red blocks, upregulated
genes; green blocks, downregulated genes; white blocks, not pres-
ent in the data set

samples treated with each of the five PAs as one of the
most downregulated genes, indicating that PLK1 may
be a driver target for the subsequent disruption of cell
cycle and DNA damage repair signaling cascades.

Cell cycle analysis

The results of cell cycle analyses are shown in Fig. 11.
Treatment with lasiocarpine revealed a significant in-
crease in the S phase population at 2.5 pM to 28.4 +
4.1%, at a concentration of 5 uM to 25.6 £0.9% and
with 25 uM to 14.8+ 2.5%. The latter decease was
explained by an increase of the sub-G1 population (that
represent dead cells) to 23.7 + 5.2%. A similar effect
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Fig. 5 Heatmaps created from compare analysis represent gene
expression levels from different pathways of HepG2 clone 9 cells
treated with riddelliine. a Mitotic roles of Polo-like kinase path-
way; b role of BRCA1 in DNA damage response pathway; ¢ role

was observed with cells treated with riddelliine. At a
concentration of 15 uM, a significant increase of S
phase to 27.3 £ 4.5%, and almost similar percentages
were noticed at higher concentrations 25 and 50 puM.
Treatment with monocrotaline or lycopsamine caused
increased S phase fractions for cells treated with 150 or
300 uM and also considerable increases in the G2/M
phase. Echimidine also revealed a considerable increase
in the S phase population to 25 + 3% upon treatment

of CHK proteins in cell cycle pathway. Red blocks, upregulated
genes; green blocks, downregulated genes; white blocks, not pres-
ent in the data set

with 12.5 uM, and similar effects were found at 25 and
37.5 uM. These results validate the transcriptomic data,
which showed changes in the expression of cell cycle
regulatory genes.

Immunofluorescence microscopy

Normal HepG2 clone 9 exhibited normal mitotic stages,
i.e., interphase, prophase, metaphase, anaphase,
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Fig. 7 Heatmaps created from compare analysis represent gene
expression levels from different pathways of HepG2 clone 9 cells
treated with monocrotaline. a Mitotic roles of Polo-kike kinase
pathway; b role of BRCA1 in DNA damage response pathway; ¢

telophase, and cytokinesis (Fig. 12a). Based on the im-
munofluorescence results, treatment with PAs induced
chromosome congression defects. As illustrated in Fig.
12b, the five PAs caused a failure of proper alignment of
chromosome at the prometaphase and metaphase. Mono-
crotaline revealed up to 40% chromosome congression
defects of mitotic cells at 75 and 150 uM. Treatment with

role of CHK proteins in cell cycle pathway. Red blocks, upregu-
lated genes; green blocks, downregulated genes; white blocks, not
present in the data set

25 uM riddelliine resulted in 32% defect of chromosome
congression.

Another observation on mitotic HepG2 cells clone 9
cells treated with lycopsamine or echimidine was the
formation of multipolar spindles (7-8%), where cells
failed to form bipolar spindles that mediated proper cell
division (Fig. 12c¢).
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Fig. 8 Graphs showing Log2 fold changes of significantly regulated genes of HepG2 clone 9 cells treated with different concentrations of

monocrotaline

Discussion

The consumption of PA-contaminated foodstuffs and
herbal products poses a serious health problem. The
main toxic effects are related to liver failure and
hepatocarcinogenesis. PAs are mutagenic: they cause
mutations in the 7P53 and the oncogene K-RAS, and
they induce DNA adducts, DNA breaks, and chromo-
somal damage in vivo and in vitro (Chen et al. 2010).
PA contamination has attracted the attention of regu-
latory authorities, and legally binding limit values for PAs
in different plant-based products were defined to mini-
mize health risks for consumers. Nevertheless, the debate
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continues both in the scientific community and in the
public, whether the limit values for Pas, which have been
politically agreed upon and legally fixed by governments,
really provide sufficient safety margins in medical terms.

Although it remains difficult to completely remove
PAs from food and herbal products, yet their occurrence
should be kept to a minimum (BfR 2020). Analytical
methods of high sensitivity are required to reliably
quantify even small trace amounts of PAs in food prod-
ucts and medicinal herbs (EFSA 2017). As of yet, the
gold standard in chemical analytics is high-performance
liquid chromatography coupled to mass spectrometry
(HPLC-MS), which shows high sensitivity and
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Fig. 9 Heatmap represents gene expression of HepG2 clone 9
cells treated with echimidine. Compare analysis showing levels for
genes in mitotic roles of Polo-like kinase pathway. Red blocks,
upregulated genes; green blocks, downregulated genes; white
blocks, not present in the data set

selectivity (Mulder et al. 2017). However, the disadvan-
tage of this method is that the chemical detection of trace
amounts of PAs alone may not sufficiently reflect all
relevant biological effects on cells, organs, and whole
organisms. Therefore, it remains difficult to draw reli-
able conclusions about the toxic effects of minimal
amounts of toxic substances in contaminated samples.

By contrast, the “-omics” technologies allow the identi-
fication and quantification of even tiny molecular
changes in cells and tissues. This systematic and com-
prehensive approach allows to also distinguish changes
under different conditions, such as disease condition,
stress conditions, and seasonal variations. Cell biologi-
cal changes of even the smallest traces of toxic sub-
stances can thus be proven. The “-omics” technologies
are therefore basic methods for the new discipline of
systemic toxicology (Canzler et al. 2020; Simdes et al.
2018).

In this project, we applied transcriptomic analyses for
cytochrome P450 3A4-overexpressing HepG2 clone 9
cells treated with five PAs that belong to different PA
classes: lasiocarpine, riddelliine, lycopsamine, echimi-
dine, and monocrotaline.

HepG2 clone 9 are stably transfected with CYP3A4
(Herzog et al. 2015). CYP enzymes (and specifically
CYP 3A4) are Phase I detoxification enzymes for many
xenobiotic compounds. On the other hand, there are
numerous examples, where CYP enzymes (including
the isoenzyme 3A4) act not as detoxifiers but as activa-
tors; i.e., less toxic compounds get activated by
CYP3A4. 1t is a well-known pharmacological principle
that inactive prodrugs get activated to fully active drugs
by CYP catalysis (de Montellano 2013). Unfortunately,
the same can be true for toxic compounds, where CYP
enzymes amplify the toxicity (Rendic and Guengerich
2021). It has been previously published that this is also
the case for pyrrolizidine alkaloids. It is widely accepted
that CYP enzymes in the liver toxify PAs and that PAs
are less harmful without CYP-mediated metabolic acti-
vation in the liver (Li et al. 2011; Rutz et al. 2020). This
is also true for the CYP3A4 as a major pharmacologi-
cally and toxicologically important CYP isoenzyme. It
is reported in literature as the main enzyme responsible
for metabolization and activation of PAs (Hessel-Pras
et al. 2020; Ruan et al. 2014; Ebmeyer et al. 2019).
While the human liver expresses CYP enzymes (includ-
ing CYP3A4) in excessive amounts, primary liver he-
patocyte drops down their CYP activity by 90% after
24 h culturing (Elaut et al. 2006; Morel et al. 1990;
Rodriguez-Antona et al. 2002). Also, many hepatocyte
lines (including HepG2) largely lost the expression of
CYP enzymes during the immortalization process. It has
been documented that HepG2 cells contain only little
CYP activity (Ogino et al. 2002; Wilkening et al. 2003).
Therefore wild-type HepG2 cells are not suitable as cell
models to investigate the harmful effects of PAs. This
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disadvantage has been overcome by HepG2 cell lines
transfected with CYP genes that have been generated
and are widely used to study the effects of metabolic
activation of xenobiotic compounds. For this reason, we
used CYP 3 A4-transfected HepG?2 cells instead of wild-
type HepG2 cells in the present investigation.

Advanced molecular techniques such as transcripto-
mics provide high sensitivity and hold great promise for
the determination of concentration limits of PAs in food
products, dietary supplements, and pharmaceutical
herbal products. The perturbation of signaling pathways
due to deregulated gene expression as consequence of
PA exposure adds a new and important dimension in
toxicology beyond the conventional chemical detection
technology for poison monitoring.

Signaling pathway analyses showed an unambiguous
dysregulation of circuits related to DNA damage repair
and cell cycle regulation: this included a role of BRCAL1
in DNA damage response, G2/M DNA damage check-
point regulation, cell cycle checkpoint control, a role of
Polo-like kinase in mitosis, and a role of CHK proteins
in cell cycle and ATM signaling. There is a direct
interplay between DNA damage responses and cell
cycle regulation mechanisms. Both pathways share
common upstream regulators such as p53 and ATM
signaling. This link is important to maintain genome
stability and to allow cells to undergo prolonged mitotic
arrest and thereby to initiate DNA repair upon DNA
damage (Shaltiel et al. 2015).

PA treatment significantly inhibited Polo-like kinase
1 (PLK1) expression. PLK1 is an important regulator of
the M phase of the cell cycle. It activates the mitotic
entry through activation of the cyclin-dependent kinase
1 (CDK1)—cyclin B complex and mediates spindle and
centromere formation. PLK1 also stabilizes mitotic di-
vision and mitotic exit (Jackman et al. 2003; Sanhaji
et al. 2014). Transcriptomic analyses also showed a
downregulation of BORA and AUKRA. The proteins
encoded by both genes function as complex that regu-
late PLK1 activation and mitotic entry (Seki et al. 2008).

Another major player in response to DNA damage
and regulation of cell cycle progression is checkpoint
kinase 1 (CHEK1). CHEKI is activated by phosphory-
lation and inhibits the activity of cyclin-dependent ki-
nase (CDK). It stabilizes stalled replication forks and
suppresses replication origin firing. The function of
CHEKI1 is well known in cancer cells with defective
DNA synthesis machinery (Smits and Gillespie 2015).
In our investigation, CHEK 1 signaling was significantly

inhibited upon treatment with high doses of lasiocar-
pine, riddelliine, and monocrotaline.

Moreover, the BRCA1 signaling pathway showed a
significant response to PA treatment. BRCAI is a well-
known tumor suppressor gene, which is frequently mu-
tated in breast and ovarian cancers. BRCA1 contributes
to genomic stability and mediates responses to DNA
damage. It localizes to the DNA breakage site and
interacts with chromatin remodeling proteins, which
modulate the mending of breakage sites. It is also re-
quired for the activity of the cell cycle checkpoint in S
and G2/M phases. The function of BRCA1 is regulated
by upstream effectors such as ATM, ATR, and Chk2
(Wu et al. 2010).

The dysregulation of DNA damage and cell cycle
signaling pathways explains the carcinogenic effects of
PAs. This is in accord with the fact that the effects on
gene expression were more pronounced upon treatment
with the more toxic PAs lasiocarpine and riddelliine
compared to the less toxic monocrotaline. On the other
hand, lycopsamine did not significantly affect cell cycle
or DNA damage regulation circuits. DNA damage and
genotoxicity by lasiocarpine and riddelliine have been
previously investigated in primary rat hepatocytes and
human HepaRG cells as detected by phosphorylation of
histone protein H2AX (Chen et al. 2019).

In our investigation, the expression profiles of genes
involved in cell cycle and DNA damage repair showed
that the carcinogenic effects of PAs were dependent on
the concentration. This implicates a toxicity limit of
1 uM for lasiocarpine and 15 uM for riddelliine. The
limit value for monocrotaline was much higher (above
150 pM). Our results are corroborated by a previous
study on toxicity levels of PAs, where lasiocarpine was
the most potent cytotoxic PA among 14 PAs tested in rat
hepatocytes (Merz and Schrenk 2016). Cytotoxicity
assays reported higher toxicity levels of lasiocarpine
and dicyclic esters (except monocrotaline) compared to
monoesters on HepG2 clone 9 cells and rat hepatocytes.
The latter were more sensitive because of variations in
CYP expression (Rutz et al. 2020).

We confirmed the results of transcriptomic analyses
by applying cell cycle analyses. Here, the PAs exerted S
phase arrest in HepG2 clone 9 cells, which was in line
with the results obtained by our transcriptomic experi-
ments. We also investigated the behavior of cells during
mitosis by immunofluorescence staining. PA treatment
resulted in the abnormal alignment of chromosomes
during metaphase. This phenomenon is known as a
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defect of chromosome congression (Maiato et al. 2017).
Besides, multipolar spindle formation was reported up-
on treatment with lycopsamine (retronecine-type
monoester pyrrolizidine alkaloid) and echimidine (ret-
ronecine-type open diester PA). Multipolar spindles are
responsible for mitosis arrest and failure of cell cycle
progression (Bhakta-Guha et al. 2015; Sertel et al.
2011). This reflects that different chemical classes may
have different carcinogenic mechanisms.

Gene expression profiling gave a clear input of mech-
anisms of PAs’ toxicity. Cell cycle distribution and chro-
mosomal alignment defect occurred as result of PA treat-
ment, which further validated the transcriptomic results.

DNA lesions lead to cell cycle arrest, which provide
damaged cells sufficient time to activate the DNA repair
machinery or to induce apoptotic cell death. The inter-
play between cyclins, cyclin-dependent kinases
(CDKs), and CDK inhibitors enables the cell not only
cell cycle arrest but also the continuation of cell cycle
progression after DNA damage has been repaired. Our
analyses show that chromosomal alignment defects also
occurred upon PA exposure. Correct chromosome
congression is necessary for proper chromosome segre-
gation during mitosis. PA-induced defects in chromo-
some congression may imply that the completion of the
mitotic process and the continuation of cell cycle pro-
gression is hindered. As molecular regulators of chro-
mosome congression (e.g., Kifl8A) are involved in
carcinogenesis (Zhang et al. 2010), it is well possible
that disturbances of chromosomal congression contrib-
ute to the carcinogenic effects of PAs in addition to the
mutagenicity of PAs in DNA. To the best of our knowl-
edge, PA-induced defects in chromosome congression
are described here for the first time.

Our investigation contributes to the ongoing risk assess-
ment discussion, whether or not the current limit values
should be decreased, since contamination of herbal medi-
cines and food products with PAs continues to be a serious
issue regarding safety of these products. Hundreds of PAs
have been detected in foods (NTP 2003; EFSA 2017). The
European Food Safety Authority (EFSA) Panel on Con-
taminants in the Food Chain (EFSA CONTAM Panel)
proposed 17 PAs to be monitored in food products togeth-
er with the recommendation to further increase PA testing
(EFSA 2017). The European Union generally recom-
mends that the exposure to genotoxic and carcinogenic
substances should be as low as reasonably achievable
(ALARA principle). The German Federal Institute for Risk
Assessment (BfR) assessed the toxicity and health risk of
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PAs in food products and concluded that doses of daily
intake of 1,2-unsaturated PAs has to be kept as low as
possible (BfR 2020). Health authorities are concerned to
define legally binding limit values for daily PA intake.
According to the German drug law-based monographs
(AMG, §5, 7), the daily exposure of 1,2 unsaturated Pas
must not exceed 100 pg/person for external and 1 pg/
person for internal application for maximal 6 weeks/year.
In 2016, the Public Statement of the Committee on Herbal
Medicinal Products (HMPC) has recommended a thresh-
old of 1.0 pg/day of PAs as transitional measure for a
period of 3 years, after which the threshold should be set to
0.35 pg/day, a level that was originally addressed by the
European Food Safety Authority (EFSA). These recom-
mendations have been approved by the German Medicines
Agency (BfArM) and report to improve the usual Good
Agricultural and Collection Practices (GACP). In 2019,
the transitional period for products with levels up to 1.0 ug
PAs/day was prolonged for another 2 years (EFSA 2017;
HMPC 2016; HMPC 2019). The International Agency for
Research on Cancer (IARC) of the World Health Organi-
zation (WHO) also classified various PAs as “possibly
carcinogenic to humans” (IARC 2002).

The PA contents in plant-based food have been consid-
erably decreased during the past years, which decreased
the total PA exposure and thereby health risk of con-
sumers. The PA exposure via herbal medicines, spices,
and dietary supplements is less well documented yet.

We think application of transcriptomic analyses in the
field of toxicology provides enormous possibilities. The
majority of toxic xenobiotics cause mutations or alteration
in gene expression levels. Using standard methods, it
remains difficult to get a comprehensive insight into the
mechanistic processes of toxicity and the affected genes.
The power of transcriptomics led to a rapid distribution in
many different areas of life science and biomedicine. Tran-
scriptomics is also a core technology, which constituted to
the field of toxicogenomics. This new discipline enables to
investigate the molecular mechanisms of toxic compounds
in its entirety (Waring and Halbert 2002; Waters et al.
2003; de Longueville et al. 2004). It has also been
discussed to use toxicogenomic tools for risk assessment
in regulatory affairs (Pennie et al. 2004; Chan and Theilade
2005). In herbal medicine, transcriptomics is widely used
for the detection of pharmacological mechanisms as well
as of safety issues related to the intake of medicinal and
nutritional herb preparations. Herbs and herbal prepara-
tions consist of complex mixtures of compounds which are
frequently difficult to dissect in their biological activity in



Cell Biol Toxicol (2022) 38:325-345

343

the human body. Transcriptomics provide a practical ap-
proach to generate hypothesis on the multiple modes of
action and also to pinpoint the activities of toxic com-
pounds and to elucidate mechanisms leading to the toxicity
of herbal products (Tong et al. 2003; Guo et al. 2010;
Thompson 2010). There are also some examples where
toxicogenomics has been applied in the context of pyr-
rolizidine alkaloids. A carcinogenesis-related gene expres-
sion profile was detected upon treatment with a comfrey
extract (Symphytum officinale L.) (Guo et al. 2007). Com-
parable results have been obtained in experiments with
isolated pyrrolizidine alkaloids. Genes were differentially
regulated in riddelliine-treated rats, which have been
assigned by Ingenuity pathway analysis to generally
tumor-related mechanisms such as cell death, cellular
movement, cell-to-cell signaling and cellular growth and
proliferation (Guo et al. 2007; Mei et al. 2007). Treatment
of primary human hepatocytes with echimidine, heliotrine,
senecione, or senkirkine led to a set of commonly
deregulated genes involved in cell cycle regulation, cell
death, and cancer development as well as the activation of
transcription factors, e.g., TP53, MYC, NF-kB, and
NUPRI (Luckert et al. 2015). Although the results are
partly heterogeneous, these studies are in accordance with
our investigation that cancer-related mechanisms are acti-
vated by pyrrolizidine.

As yet, chemical analytical methods routinely used to
monitor PA contaminations (multiple reaction monitor-
ing transition (MRM) technique, LC-MS/MS). There-
fore, we highly propose to implement transcriptomic
analyses for the analysis of herbal products, baby teas,
and dietary supplements. They represent a convenient
and reliable technology to directly determine the bio-
logically relevant PA concentrations in suitable experi-
mental models. Therefore, the safety of plant-based
products should not only be governed by chemical-
analytical methods, but also by sensitive biological
techniques such as transcriptomics to monitor the bio-
logical hazards of PAs on liver cells.
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