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Summary 
 

Niche differentiation is thought to be one of the main mechanisms how species avoid 

competitive exclusion. However, to assess differentiation in several niches, a multifactorial 

approach enabling several niche dimensions to be measured simultaneously is necessary. In this 

way, the relative effects of several factors can be quantitatively compared in a single ecological 

context. Tropical ecosystems represent an especially interesting study system where 

invertebrates in general show high species density and diversity, and consequently high 

interspecific competition. This is particularly the case in ants where a few dominant species 

usually displace others from food resources. In view of these factors, we used a new sampling 

method to simultaneously assess dietary and temporal specialisation of all common ants in a 

community. We assessed niche position as well as niche breadth (degree of specialisation), for 

food and for differences between night and day in the paleotropics and neotropics in forests with 

differing status.  

In chapter 1, we were able to show how temporal and dietary specialisation can significantly 

contribute to local ant coexistence.  

Although ecology in the past decades has focused much attention on phenotypic plasticity, its 

consequences for the biodiversity-ecosystem functioning (BEF) relationship have largely been 

neglected. Community ecology has often tended to assume that traits of interacting species are 

uniform within species and do not change over short periods of time. Only recently, theory has 

raised the question of how phenotypic variation among individuals alters the ecological functions 

of a community. However, to our knowledge, little empirical data has been collected 

demonstrating how niche plasticity may affect functional traits.  

In chapter 2, we first demonstrate that these functional traits may shift drastically between 

conspecifics, to the extent where their niches are closer to those of other species than to 

conspecifics. Secondly, numerically dominant and competitive species were those with lowest 

niche plasticity. Even though the two most dominant species did show temporal and dietary 

shifts, which may render the use of functional categories misleading. In contrast, qualitative 

traits of certain subordinate species did not change, but their overall niche plasticity was higher 

than for dominant species.  
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Determinants of ecosystem stability have been under intense scrutiny during the last decades. 

Among these, temporal asynchrony is now recognised as one important factor enhancing 

stability and has been thoroughly studied on large scales such as seasons or years. However, in 

order to evaluate the merits of functional asynchrony, it seems fundamental to investigate its role 

across heteroclite temporal scales in order to properly assess its explanatory power on the 

diversity-stability relationship. 

In chapter 3, we studied circadian dynamics with multifunctional redundancy of tropical ant 

communities. Our goal was to determine how redundancy was influenced by circadian 

asynchrony in relation to species richness, numerical dominance and functional performance.  

Circadian asynchrony positively influenced overall functional redundancy, but the effect sizes 

varied between sites and tropical regions. Interestingly, the two neotropical sites showed 

systematic day/night differences, with lower species richness and functional redundancy at night 

but overall higher increase in circadian functional redundancy than in the paleoptropics where 

day and night were similar. Species richness invariably had a positive effect on functional 

redundancy, but the effect size depended on the overall functional performance of the local ant 

communities and on the presence of highly performing species. Finally we demonstrated the 

stabilizing effect of temporal specialization in numerically dominant high performing species, 

and that the “sampling effect” is genuine but depended on the site or time period. 

 

Fig.2 Certain ants forage feaces such as Trachymyrmex in 

America Source (Joe A. MacGown). 
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General Introduction 
 

The ecological niche 
 

The concept of niche is central to ecology; were it not for the fact that it has been used 

and defined in so various ways; the niche concept could have been considered as the backbone of 

ecology, much as DNA is for genetics. It therefore seems necessary to clarify the historical 

scientific path of the ecological niche concept.  

Among the first to use the term was Grinnell (Grinnell 1917), where it was established as the 

“functional role and position of an organism in its community”. This novel definition was 

actually narrower then it seems, as this work focused mainly on habitat requirements and 

behaviours that allow a species to persist and produce offspring. It was only ten years later that 

Elton (Elton 1927) added that the concept of niche also depends on “its relation to food and 

enemies”, supporting the notion that the niche of an animal can be defined to a large extent by its 

size and food habits. Basically, all organisms multiply until an element of the habitat or 

functional niche prevents it from doing so. These abiotic and biotic factors may be density 

dependent (e.g. resource depletion, predation, competition…) or density independent (e.g. 

temperature, humidity…) and are the main regulating factors of a population. Most theory built 

on these factors are based on the Lotka-Volterra competition equations that tend to deal only 

with populations at equilibrium for which population growth (r) oscillates around 0 (Lotka 

1920). However, real ecological systems may often be partially unsaturated in some “niches”, 

which in itself could allow coexistence of otherwise competitively intolerant populations, 

consequently maintaining population dynamics in perpetual non-equilibrium. 

The 1950’s saw the most advances made in this field compared to previous decades. Dice in 

1952 referred to niches as a subdivision of habitat where no ecological functions were directly 

taken in account. Clark in 1954 concurred with the initial “ecological equivalents” concept, first 

brought forward by Grinnell in 1924, whereby the same functional niche can be filled by 

different species in different geographical regions. He distinguished two separate meanings, 

“habitat niche” and the “functional niche”. The former corresponds to the abiotic conditions like, 

for instance, temperature, wind speed, salinity, etc., that a species requires for its population to 

persist through time. The latter (the main focus of this thesis) corresponds to the interaction a 



General introduction - 7 - 

 

Mickal  Yann  Isani  HOUADRIA 
Department of Evolutionary Biology, Johannes Gütenberg University, Mainz, Germany 

October 2015 

species has with its environment such as trophic functions, nutrient cycling and competition 

(Fig.1). 

 

 

 

Species coexistence 
 

 In 1957 Hutchinson introduced the n-dimensional hyper volume niche concept, where n refers 

to the total range of conditions under which the individual (or population) lives and replaces 

itself. He introduces the fundamental and realized niche concept whereby an animal’s niche is 

seldom utilized to its full range of viable conditions, as Connell later demonstrated with 

barnacles (Connell 1961). This was an important step in underpinning possible mechanisms of 

coexistences between species. However, this was challenged by the “neutral theory” (Caswell 

1976), which postulates that differences between members of ecologically equivalent species are 

“neutral” with respect to their ecological success. Stephen Hubbell’s work on the neutral theory 

was the most impactful (Hubbell 2001). He explained coexistence of species, on a regional 

(continental) scale, as a stochastic equilibrium between origination of species (speciation) and 

Fig.1 Examples of trophic functions which are part 

of functional niches (Kathiresan and Alikunhi 2011) 
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disappearance of species (extinction), and on a local scale as a stochastic equilibrium between 

immigration and local extinction where species have the same probability of colonizing empty 

sites depending on their dispersion capacity.  This theory was heavily criticized which lead to a 

recent study (McGill et al. 2006b) which offered a general overview of the ongoing critics and 

found overwhelming evidence against the “neutral theory”. However, in spite of such reserves, 

Hubbell’s work did enable the inference of stochasticity as an important aspect of species 

coexistence (Andersen 2008). 

The fundamental niche tends to be a hypothetical niche where no exterior forces restrict an 

organism, whereas the realized niche takes into account various interacting factors such as 

competition but also predation, parasitism and mutualism. These familiar interactions can be 

split into several groups, the natural enemy–victim interactions (predatory-prey, host-pathogen), 

the beneficial interactions (commensalism, mutualism and positive allelopathy) and competition 

(also negative allelopathy). Even though enemy–victim interactions are well studied interactions, 

competition is by far the one that has received the most attention. This is understandable in a 

broader ecological context, where competition concerns a vaster number of living entities, 

especially if intraspecific competition is taken into consideration. However, our research focuses 

mainly on interspecific competition in view of enlightening our understanding of species 

coexistence. Several different types of interactions have been demonstrated involving different 

interspecific competition processes from which two main categories may be established: 

interference competition which occurs through territoriality, and exploitative competition which 

occurs through resource depletion. 

According to the principle of competitive exclusion, different species using the same resource 

cannot coexist at constant population values, if all other ecological factors remain constant 

(Gause 1934, Levin and Anderson 1970, May et al. 1981). In other words, coexisting species 

must differ in certain niche aspects, enabling them to exploit different resources (or in differing 

ways) or behaviourally subordinate species would become extinct. Four classes of mechanisms 

promoting species coexistence of potentially competing species have been suggested. 

 

Species may coexist: 

— If they experience different limiting resources at the spatial scale of the local community 

(resource partitioning: Turnbull, Levine, Loreau, & Hector, 2013). 
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— Despite the fact they experience the same limiting resources, if they are temporally or 

spatially separated (spatial and temporal asynchrony: Albrecht & Gotelli, 2001). 

— If tradeoffs exist between competing species (discovery rate, foraging efficiency, 

thermal/humidity tolerance: Kneitel & Chase, 2004). 

— If species adapt their ecological niche to the local community (niche plasticity: Ashton, 

Miller, Bowman, & Suding, 2010). 

In general the conditions that promote species coexistence within communities also promote the 

long term stabilizing effect of biodiversity on ecosystem functioning. 

 

Ecosystem stability 
 

The biodiversity stability relationship (BSR) has been established over the past 60 years 

through the beneficial merging of community ecology and ecosystem ecology in understanding 

the role of biodiversity in ecosystem functioning (BEF). This relation also finds its roots in the 

1950s, when renowned ecologists such as Odum (1953), MacArthur (1955) and Elton (1958) 

established the theoretical framework of the stability-complexity relationship (that only later 

shifted to the BSR). The main theoretical view put forward was that diverse ecosystems are 

inherently more stable than more simple ones, by implying that the more pathways there are for 

energy to reach a consumer the less consequential will  the failure of any one pathway be, and 

hence the more stable the ecosystem. 

 

 

 

 

Fig.2 The relation between the complexity and stability of an ecosystem (Naeem 1995). Filled 

circles indicate species in all communities; grey circles indicate species only in high and 

medium diversity and open circles indicate species only in high diversity communities. Lines 

indicate biotic interactions among the species. 
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However, in the early 1970’s this established and, by then, traditional view, was challenged 

by several ecologists (Levins, Garner, May and Ashby) and led to a strongly opposed theoretical 

view. By applying a dynamic community linearized model, in 1972 May demonstrated that the 

probability of stability drops abruptly after passing a certain threshold of complexity (May and 

Arthur 1972). One of the reasons why such opposed theoretical views were capable of 

prevailing, is that stability is really a metaconcept that covers a wide range of different properties 

as illustrated in the following Table (Loreau 2010). 

 

Table 1. Different components of stability 

Stability property Definition 

 

Qualitative 

stability 

 

Property of a system that returns to its original state after a 

perturbation. Generally used for an equilibrium state. 

Resilience A measure of the speed at which a system returns to its 

original state. 

Resistance A measure of the ability of a system to maintain its original 

state in the face of an external disruptive force  

Robustness A measure of the amount of perturbation that a system can 

tolerate before switching to another state. 

Amplification 

envelope 

Describes how an initial perturbation from an equilibrium 

state is amplified within a system 

Variability  A measure of the magnitude of temporal changes in a system 

property.  

Persistence A measure of the ability of a system to maintain itself 

through time.  

 

Nevertheless, the general mechanism that generates stabilization of ecosystems properties in 

diverse communities is simple in principle: Different species respond differently to their biotic 

and abiotic environment because of differences in their fundamental niche. This consequently 
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conveys differences in the realized niche, thus enabling the functional asynchrony of species 

(Loreau 2010). For example, if the populations of different species fluctuate asynchronously 

through time, the sum of their populations, and thereby their total functional contributions, varies 

less over time than that of any single species (Doak et al. 1998, Yachi and Loreau 1999, Loreau 

2010, Garibaldi et al. 2011). 

Temporal asynchrony can be manifested on multiple scales, e.g. as inter-annual variation, 

seasonal, and circadian cycles. As most work was conducted on plants, for which seasonal and 

inter-annual changes are most important (Isbell et al. 2011), only a few studies have investigated 

the role of circadian cycles for ecosystem functioning (but see Andresen 2002). Many animal 

taxa, however, show pronounced temporal specialisation (Fellers 1989, Albrecht and Gotelli 

2001, Andresen 2002, Viljanen et al. 2010, Castillo-Rivera et al. 2011, Devoto et al. 2011, 

Harvey et al. 2012). Such circadian dynamics are important for ecosystem functioning. First a 

temporally specialised species contributes less to overall ecosystem functioning than a species 

active day and night. Second, if functions are taken over by different species during different 

time periods, the stability of the whole system increases since the functions rest on more species. 

Hence, these ecosystems will be more robust to extinctions of single species. Through this thesis 

we will investigate functional circadian asynchrony and its stabilizing effect on ecosystem 

functioning based on functional traits. 

 

Functional traits 
 

Initially species richness was used as a measure of ecosystem stability (Naeem 1995, Chapin 

III et al. 1997), but this research was conducted on relatively simple, species-poor assemblages. 

More recently, studies have shown that ecosystem functions are dependent not on the number of 

species itself but on the functional traits of these species ( Hooper 1997). This gave rise to the 

emergence of the term “functional diversity” which was defined “as the value and range of 

functional traits of the organisms in a given ecosystem” (Tilman 2001). An increasing number of 

experiments were conducted on varying scales in order to further understand the role of 

functional diversity in relation to the BEF and BSR: from small algae cultivation (Steudel et al. 

2012) to grassland monocultures (Walker et al. 1999), larger scale experiments like Biodepth in 

Europe (1999), long term plots like Cedar Creek in Minesota (Tilman et al. 1997) and finally the 
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Jena experiment which surpasses all others in terms of plot size and replication level (Roscher et 

al. 2005). But certain theories and results were thought biased. The “sampling effect” was 

brought forward as a possible bias in models that randomly picked species out of a pool to 

assemble communities (Tilman et al. 1997). In some experiments species were excluded but not 

enough time was left to enable species to overcome that loss through functional compensation 

(May 1974, Patten 1975). This phenomenon also called ‘response diversity’, describes the 

variation of responses to disturbance among species of a specific community (Mori et al. 2013), 

and can be particularly important for ecosystem renewal and restructuring, following an 

environmental change (Elmqvist and Folke 2003). 

In parallel to functional diversity the concept of functional redundancy emerged, based on the 

observation that some species perform similar roles in communities and ecosystems and may, 

therefore, be substitutable with little impact on ecosystem processes (Walker 1992). This 

functional redundancy is controversial on several aspects; on the one hand it enables 

prioritization of conservation of “key” species in order to maintain ecosystem functions, and, on 

the other, it implies that some species are “expendable” (Rosenfeld 2002a). Additionally, the 

notion that species perform the same functions is faulty in view of the principle of limiting 

similarity, where exclusion should prevent the co-occurrence of species with identical niches 

(Gause 1934). In the past years new indexes have emerged that base functional diversity on 

measured traits such as abundance, biomass and spatial distribution but are mostly based on 

primary producers (Mason and MacGillivray 2003, Mason et al. 2005).  

The higher feasibility in defining functional traits and experimenting on non-mobile 

organisms such as plants, and the economic benefits of further understanding functional 

performance for agricultural purposes, may explain why most studies until now are limited to 

them, and studies at higher trophic levels of functionally important organisms such as ants, are 

scarce (Lewis 2009). Additionally, probably because of overwhelming diversity of species in the 

tropics, there is still a lack of work based on these ecosystems. Yet forest clearance for intensive 

agriculture or timber is a major component of tropical forest degradation, with approximately 5.8 

million hectares of tropical forests converted to pasture and plantation globally per year (Mayaux 

et al. 2005). Hence tropical ecosystems are the most vulnerable to degradation and urgently need 

a clear understanding of their ecosystem functions with regard to biodiversity (Lewis 2009).  
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Researchers have started tackling these issues and have studied the ecosystem processes in the 

tropics on higher trophic levels of certain invertebrates (Bihn et al. 2010, Schuldt et al. 2014). 

But actual functional traits still need to be measured and field data commonly include only vague 

proxies for very few functional parameters, where it remains unclear which of the traits are 

actually relevant for ecosystem functioning (Hodapp et al. 2013). This renders the use of 

functional diversity and response diversity crude measures for most invertebrates. Measuring 

accurately the stability of an ecosystem through its biodiversity still remains a crucial and 

problematic point in ecology.  

Understanding how changing biodiversity influences the broad suite of processes that 

ecosystems perform is not simple. The field of biodiversity and ecosystem multifunctionality is 

still relatively data poor compared with explorations of biodiversity effects on single ecosystem 

functions. Even today our understanding of how diversity affects ecosystem functioning may be 

limited or even biased by the current single functional approach. It is essential to develop a 

mechanistic understanding of why diversity does or does not affect ecosystem on a 

multifunctional bases (Byrnes et al. 2014). Even if considering a maximum of parameters, it 

nevertheless remains expected that some species are more alike in their functional traits than 

others. This is where the paradigm of functional niche lies, defining similarity of species niche 

based on defining their functional traits (Walker 1995, Rosenfeld 2002b), knowing that discrete 

traits can shift two species from similar to complimentary (e.g. thermal tolerance). Therefore the 

level of scrutiny with which is analyzed a species traits in a community, can have direct 

consequences on the species functional niche, hence is subjective to the type of study. This 

implies that the conventional measures of functional trait diversity may mean that we are 

overlooking ecological important changes to communities.  

In view of this, we therefore introduce a reversed approach where, instead of analyzing how 

many specific functional traits a given species presents, we study seven a priori defined 

ecosystem functions performed by tropical ants and assess each species’ contribution to them. 

 

Tropical ants 
 

 Ants are important as primary and secondary consumers in most terrestrial habitats. They 

represent one of the most diverse and abundant animal taxa in tropical rainforests (Hölldobler 
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and Wilson 1990). Additionally, patterns of ant species richness and composition in degraded 

habitats have been shown to reflect recolonization by other invertebrate groups (Majer 1983), 

and are considered good soil bioindicators (Folgarait 1998). Certain ant species affect the 

ecosystems by moving soil (‘ecosystem engineers’) or hollowing out wood cavities (Folgarait 

1998). However, due to their high biomass, probably their most important effect on ecosystem 

processes and nutrient cycles happens through their consumption of resources (trophic 

functions).  

Previous studies on tropical ecosystem processes on ants (Bihn et al. 2010, Woodcock et al. 

2013) represent a big step towards understanding the functions underlined in invertebrates. 

However, they are mostly based on indirect, unclear measures of a species’ functional relevance 

such as morphological traits or stable isotope signatures. For instance, relative eye size is 

considered to correlate with the main foraging period (diurnal or nocturnal: Bihn et al. 2010). 

Even though relative eye size may be a suitable measure of nocturnal versus diurnal species, this 

does not elucidate the morphological trait of a species active both day and night.  Besides, the 

same trait has also been used (depending on the subfamily) in distinguishing predatory and 

omnivore species (Weiser and Kaspari 2006). Albeit stable isotope analysis (SIA) has proven to 

be a useful tool in reconstructing diets, characterizing trophic relationships, and constructing 

“food webs isotopes”, this method fails to account for specific dietary preferences due to 

multiple sources of variation in isotopic signatures (Boecklen et al 2011) and mostly provides 

information on the type of consumer (e.g. predator, herbivore). Additionally a switch of diets 

during a species development may cloud SIA results especially in holometabolous species such 

as ants.  

 

Methodological aspect 
 

 With regard to the issues mentioned above, we thought a more direct approach through the 

quantification of species foraging specific resources would enable a more suitable analysis of the 

trophic traits of species foraging. We therefore preferred using a range of complimentary baits 

reflecting natural resources that could be related to trophic functions. During this thesis, we 

attached particular attention to the novel aspect of our methodological functions as this was the 

base line measure of our trophic functions. 
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Several studies have used baits as a focus for analysing ecological aspects of ants related to 

food resources (Fourcassié and Traniello 1994, McGlynn and Kirksey 2000, Lebrun 2005, 

Wiescher et al. 2011, Menzel et al. 2012). However two main issues arise regarding this 

traditional sampling technique called “cafeteria experiment”. A majority of studies have been 

using cards for displaying baits for monitoring (Bestelmeyer 2000, Morrison 2000, Fellers and 

Fellers 2012, Parr and Gibb 2012). This has little effect on the ants’ foraging behavior (Fellers 

1989). However this display of the bait meant to facilitate observation limits the accuracy of 

identification and quantification of small morphospecies especially at night time and renders 

their retrieval hazardous. Other displays as Eppendorf tubes (Kaspari et al. 2008) with a narrow 

access may facilitate ant sampling but also defence against other species attracted. The issue here 

is to allow an efficient retrieval of the device with all the ants on the bait without facilitating 

monopolization. The compromise was found as in the following device (Fig.3) with slits on both 

sides.   

 

 

The box was placed 1 cm deep in the ground to have the openings level with the ground and 

were quickly retrieved by encasing in a box without side openings A small hole was made in the 

middle of the lid to squirt a killing solution at trap retrieval. As some ants may be more sensitive 

to plastic, the base of the box was covered with paper towel to facilitate their entry in the device. 

Typically the baits consist of highly nutrient rich resources ranging from peanut butter, tuna 

and ham to even more processed foods such as cookies and hotdogs (Human and Gordon 1996, 

Retana and Cerdá 2000, Le Breton et al. 2006, Wriedt and Mezger 2008, Arnan et al. 2012). 

These baits rapidly attract dominant species (Bestelmeyer 2000) that forage for better quality 

Fig.3 The plastic box device in use 
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resources (Kay 2004) but commonly limit the foraging successes of subordinate species (Fellers 

1987, Andersen 1992). Cafeteria experiments have often been conducted by displaying a 

simultaneous range of bait types (Vepsäläinen and Savolainen 1990, Human and Gordon 1996, 

Völkl et al. 1999). If this does provide information on the preferences of species, it does not do 

so regarding the actual dietary range capacity of a species (in the absence of the preferred 

resource).  

In the present research, we introduce a method to investigate niche partitioning and ant 

community structure in ground-dwelling forest ants. On each grid point, we presented eight types 

of baits (separately) which were not highly attractive, but reflected different natural resources. 

This reduces the monopolization of ecological dominant species and the foraging is limited to 

the single resource displayed. 

Ants are known to be attracted to a whole range of natural resources. From the classic 

carbohydrates fruits/sugars, extra floral nectars to the more subtle ones such as melezitose, a 

trisaccharide found in trophobiont aphids, or through the starch found in seeds. Fungi is also 

known as source of carbohydrates indirectly foraged in Attini and also directly foraged with 

Euprenolepis procera that has been found eating Pleurotus (Witte and Maschwitz 2008). 

Nitrogen has been known to be one of the limiting resources in rainforest (Feldhaar et al. 2010) 

and is mainly found through scavenging or preying on live insects but also through coprophagy 

(Menzel et al. 2012). To attract predatory ants, two types of live baits were selected. One 

concerned a small abundant prey with no evading strategy. This would allow any predacious ant 

to recruit, opposed to the other type, a larger prey (grass hoppers) which could only be captured 

when encountered with no recruitment because it can, in theory escape, thus favoring large 

predatory ants (Cerdá et al. 1998). Preliminary tests were run to select the most suitable baits, 

each type being tested with at least four replicates. The objective was to have a complementary 

range of baits where ants are found recruiting and which reflect natural resources available in 

rainforest areas.  

This resulted in the following selection: sucrose (20%; 3ml), melecitose (20%, 3ml), crushed-

meal worms (4-5mg), chicken excrement (4-5mg), seed mixture (4-5mg), oleique acid (3ml) 

termites (small prey) and crickets (big prey). The liquid solutions were poured directly on the 

paper towel that served as support and the solid baits were displayed on the center of the boxes. 
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Baiting with live baits being something fairly scarce in ant sampling (Santamaria et al. 2009), we 

have detailed this particular type of baiting accordingly.  

  

 

 

 

Concerning the larger type of prey, the advantage of grass hoppers is that no breeding was 

required as they are highly abundant in the required size (between 1.5 up to 2 cm) and relatively 

easy to sample. The difficulty lay in maintaining the cricket’s ability to jump on the one hand 

while, on the other, restraining it to the device. A compromise was found by tying adult 

grasshopper wings to a fine 5cm long string pinned to the base of the boxes, the height of the 

device enabling the grasshopper to still jump but not escape. Moreover this slowed down the 

ant’s capacities to retrieve the grasshopper which was thought to increase the likelihood of 

retrieving the predatory ants. A similar method was elaborated for the termites: approximately 

ten were maintained free and were naturally kept to the small piece of termite mound which was 

added while around 5 others were glued live on to a 2cm stick to avoid having all the termites 

being captured before the end of the sampling.  

The sampling method was employed on a total off four sites in the neo and paleotropics on 

secondary and primary forest (Fig.5). The first two chapters on mechanisms of coexistence 

involve respectively the secondary forest site in French Guyana and both sites in Borneo. Only 

the final chapter on ecosystem stability is based on all sites. In the first chapter, with regard to 

Fig.4 The 8 different baits displayed for one usual sampling session. 
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the principle of limiting similarity, we look if species with similar dietary and temporal 

preferences co-occur less than species further apart. In the second chapter we investigate to what 

extent functional traits are fixed and the role of niche plasticity in the face of competition. 

Finally, the third chapter deals with importance of circadian asynchrony for ecosystem stability 

in relation to trophic performance and functional redundancy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Neotropics 
Paleotropics 

Fig.5 Location of different tropical regions studied. 
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This chapter is based on an original research article published in Biotropica in March 2015. 
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Abstract 

 

How species with similar ecological requirements avoid competitive exclusion remains 

contentious, especially in the species-rich tropics. Niche differentiation has been proposed as a 

major mechanism for species coexistence. However, different niche dimensions must be studied 

simultaneously to assess their combined effects on diversity and composition of a community. In 

most terrestrial ecosystems, ants are among the most abundant and ubiquitous animals. Since 

they display direct, aggressive competition and often competitively displace subordinate species 

from resources, niche differentiation may be especially relevant among ants.  

In a forest fragment in French Guiana, we studied temporal and trophic niche differentiation 

in a ground ant community. Various baits were presented during day and night to assess the 

temporal and dietary niches of the local species. They represented natural food resources such as 

sugars, carrion, excrements, seeds, and live prey. In addition, pitfalls provided a background 

measure of ant diversity. The communities attracted to the different baits significantly differed 

from each other, and even less attractive baits yielded additional species. We detected species 

specialised on living grasshoppers, sucrose, seeds or dead insects. Community differences 

between day and night were larger than those between baits, and many species were temporally 

specialised. In contrast to commonness, foraging efficiency of species was correlated to food 

specialisation. We conclude that many ant species occupy different temporal or dietary niches. 

However, for many generalised species, the dietary and temporal niche differentiation brought 

forward through our sampling effort, cannot alone explain their coexistence. 
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Introduction 
 

Even though challenged by the neutral theory of biodiversity (Hubbell 2001), which 

claims that much of the diversity we observe can be explained without invoking species’ 

differences, niche differentiation is still broadly seen as the central mechanism explaining 

species coexistence and diversity (Chase and Leibold 2003). Indeed, the principle of limiting 

similarity states that competitive exclusion should prevent the stable coexistence of species with 

identical niches (Gause 1934, Morrison 1996, Sanders and Gordon 2003). As a consequence, 

local species richness may be limited when there is little niche diversification and specialisation 

(Stephens and Wiens 2003). Nevertheless, in the tropics where species richness is among the 

highest, it is essential to understand, “how identical is ’identical‘?” (May and Arthur 1972). As 

Agrawal and Ackerly state, community ecology should move from mere lists of community-

structuring factors (such as species-specific niche traits) to a predictive framework for where, 

when, and how multiple factors may work, both individually and in combination, to structure 

communities (Agrawal and Ackerly 2007). 

Competition and exclusion have been considered a ‘hallmark in ant ecology’ (Parr and Gibb 

2010, Cerdá et al. 2013). Many ant species effectively displace others from high-quality 

resources through direct interference, and some species can even displace others from their 

territories (Hölldobler 1983). Because ants are among the most abundant animals in tropical 

rainforests (Hölldobler and Wilson 1990), we should expect strong competition among ant 

species. Thus, the high local ant diversity in the tropics awaits explanation. 

Several mechanisms have been shown to enhance ant species coexistence. Firstly, stochastic 

factors such as nest proximity to a resource, or the distance to nests of competing species greatly 

affect the chances of an ant colony to discover and/or monopolise a resource. A high variation in 

the success rate of colony establishment can result in a patchy distribution of dominant ant 

colonies with multiple gaps between their territories (Andersen 2008, Andersen et al. 2013). 

Secondly, trade-offs should prevent dominant species from monopolising all resources. Trade-

offs, i.e. negative correlations, have been reported between behavioural dominance and resource 

discovery (Fellers 1987), dominance and thermal vulnerability (Cerdá et al. 1998; Bestelmeyer 

2000) or dominance and parasite vulnerability (Lebrun and Feener 2007).  
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A third mechanism is niche differentiation in one or more dimensions (Hutchinson 1959). It 

can be temporal (seasons: Albrecht & Gotelli 2001; time of day: Fellers 1989; Santini et al. 

2007; Segev and Ziv 2012), spatial (vertical, ecologically different strata: Tanaka et al. 2010), 

and/or linked to diet. Ants forage on a large range of food resources (Feldhaar et al. 2010). They 

are important arthropod predators (Floren et al. 2002; Philpott and Armbrecht 2006), but also 

utilize plant saps (Davidson et al. 2003; Hunt 2003) and seeds (Carroll and Janzen 1973). 

Nitrogen, which is often limited in rainforests, is usually obtained from live or dead animals, but 

also from faeces (Menzel et al. 2012). Besides, ants engage in mutualisms with plants and plant-

sucking insects (Ness et al. 2010). Certain ants occupy highly specialised food niches, such as 

collembola, or even fungi (Weber 1966, Carroll and Janzen 1973, Johnson et al. 2001, Santamaria et al. 

2009). Thus, dietary niche differentiation is a potentially important mechanism for local species 

coexistence. However, apart from studies on specific species, the relative contribution of 

different food types to most ant diets is unknown (Bihn et al. 2010). Moreover, the question 

remains how niche differentiation in the trophic, temporal or other dimensions interact. To 

answer this, it is crucial to simultaneously consider multiple niche aspects and measure their 

relative importance for species coexistence.  

The high species diversity in tropical forests, concomitant with a relative rarity of most 

species, makes it hardly possible to study every species' niche in detail. Rather, it requires a 

community approach where species-specific niches are assessed simultaneously. Because of the 

principle of limiting similarity, dietary composition and temporal specialisation are essential 

functional traits in defining a species’ niche. In the present study, we analysed food and temporal 

niches of a tropical ant community, and additionally assessed spatial commonness of the 

participating species. We hypothesized that temporal and trophic niche breadth and optima 

should vary between different species, especially among locally co-occurring species. Moreover, 

we predicted that common species should have a broader food niche. In turn, specialised species 

that have a narrower food niche may compensate this by a broader temporal niche, and/or should 

be proportionally more efficient in finding their preferred resources than generalised species. 
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Materials and Methods 
 

Study site 

The study was conducted on the Campus Agronomique in Kourou, French Guiana 

(5°09′35″N 52°39′01″W - 5.1597°N 52.6503°W). The climate is equatorial, has a mean 

precipitation of 3000 mm and mean humidity of 80%-90%. The study area is a continuous 16 ha 

forest fragment, bordered by urban grass and surrounded by residential areas. The forest type 

belongs to the facies Cesalpinaceae, Chrysobalanaceae, Lecythidaceae, of the Coastal part of 

French Guiana. These types of forests are characterized by high plant diversity. All sampling 

took place from February to March 2012 and was performed only in absence of rain, and in dry 

soil to avoid any bias linked to field conditions. 

 

Choice of baits 

We aimed for a complementary range of baits which reflected natural resources available 

to ants in a rainforest, and used the following set of baits: sucrose (20 vol.%; 3ml; the most 

common disaccharide in extrafloral nectar), melezitose (20 vol.%, 3ml; a trisaccharide 

commonly produced by trophobionts), crushed mealworms and grasshoppers (2-3g), chicken 

excrement (2-3g), a seed mixture (2-3g composed of ground corn and sunflower, millet, lin, 

soya, barley, dari, phalaris and grass seed), oleic acid (3ml; common in both dead insects and 

elaiosomes), living termites and living grasshoppers. Live baits have been rarely used up to now 

(Santamaria et al. 2009), but they may represent an important part of an ant community's diet. 

We selected Anoplotermes termites, which do not have a soldier caste and represent a small prey 

without chemical or morphological defences. As a second prey type, we selected grasshoppers 

(Caelifera: Acrididae) representing a prey which was larger (1.5-2.5 cm), more mobile and had a 

harder integument than termites. Overall in terms of bait attractiveness, sucrose and crushed 

insects are considered most attractive as they present easy foraging and highly nutrient resources 

(Blüthgen and Fiedler 2004a), followed by melezitose, termites and grasshoppers, still very 

nutrient but harder to assimilate. Finally seeds, oleic acid and chicken excrement were assumed 

to be the least attractive because of low nutrient content. 



Chapter I: Dietary and temporal niche differentiation in tropical ants - can they explain local 
ant coexistence? 

- 24 - 

 

Mickal  Yann  Isani  HOUADRIA 
Department of Evolutionary Biology, Johannes Gütenberg University, Mainz, Germany 

October 2015 

Sampling design 

 We established four plots of 4 x 4 grid points each (16 points per square plot), i.e. a total 

number of 64 grid points. The grid points in the plots were separated by 10 m each; all plots 

were less than 100 m from one another. At each grid point, we presented in total eight different 

baits, both during day and at night, and placed pitfalls during day and at night. However, to avoid 

interference between multiple baits, only one bait or one pitfall was presented at each grid point 

at a given time. We took care that, during each sampling session, all eight baits were presented 

evenly (at different grid points), in order to avoid any bias due to fluctuating weather conditions. 

Pitfalls were only placed when no baiting was performed on the same plot.  

All ants collected were preserved in 75% ethanol. They were counted and sorted to 

morphospecies by Mickal Houadria and Alex Salas-Lopez, based on Bolton (1997). Voucher 

specimens of all species are deposited at the Institute of Zoology, University of Mainz.  

Pitfalls 

The pitfall traps (Ø 4cm, depth 6cm) were buried in level with the surrounding soil 

surface and replaced after each sampling session (into the same hole) to reduce the digging-in 

effect (Greenslade 1973). They were opened for 10 hours between 20h30 to 6h30 for the 

nocturnal traps and between 7h00 to 17h00 for the diurnal ones. For each grid point, we obtained 

three 10-hour replicates day and night, yielding a total of 60 sampling hours. To kill and preserve 

the ants, the traps were filled ca. 1.5 cm high with a 50% propylene glycol solution. This 

preservative is non-toxic to vertebrates at these quantities and neither attracts nor repels ants 

(Boonzaaier et al. 2007).  

Displaying the bait 

 Many studies use some sort of card to expose baits (Pearce-Duvet et al. 2011, Gibb and Parr 

2013). This has little effect on the ants' foraging behaviour (Fellers 1989), but makes it difficult 

to retrieve them. Narrow access to baits, in contrast, facilitates ant sampling, but hinders 

recruitment and possibly promotes bait monopolisation of one ant species against others. 

Therefore, we presented baits in circular plastic boxes with lids. Access to the bait was 

maintained as wide as possible to hamper bait monopolisation. The boxes were placed 1 cm deep 

in the ground and had, 6 mm above the bottom, two slit-like openings (1 cm wide and 8 cm 

long), level with the ground. They could be quickly retrieved by encasing into a similar box 

without side openings. As plastic is potentially avoided by some ants, the base of the box were 
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covered with paper towel. A hole in the lid allowed squirting the killing solution (propylene 

glycol solution 70%) right after retrieval.  

The liquid solutions were pipetted directly onto the paper towel in the baiting device while the 

solid baits were put into the centre of the devices. Live baits were harder to display. 

Approximately ten termites were maintained free on the paper towel and usually stayed at a 

small piece of termite mound which was added. To avoid that all termites would be captured 

before the end of the sampling  approximately five further individuals were glued live on a 2 cm 

stick with odourless rat glue (Greenleaf Ltd., Beijing, China). For grasshoppers, in order to partly 

maintain their ability to jump but restrain it to the baiting device, we tethered it to a fine, 3 cm 

long string which was pinned to the base of the boxes. 

The baits were presented for 90min during the day (between 10h00 and 15h00) and at night 

(between 20h00 and 23h00). Preliminary tests had shown that this time was sufficient to allow at 

least partial recruitment on all baits, but was not long enough to have dominant ants saturating 

the majority of the most attractive baits. 

Data analysis 

In our analyses, we used frequency and incidence data. 'Frequency' is defined here as the 

number of occurrences, i.e. the number of times an ant species occurred at baits (regardless of 

the actual number of individuals). 'Incidence', in contrast, denotes the spatial commonness, i.e. 

the number of grid points (out of 64) where a species was captured at all. For example, a species 

caught at two different baits at the same grid point will have a frequency of two, but an incidence 

of one. 

Comparison of sampling methods and baiting efficiency  

 Exhaustiveness of the different sampling methods (eight bait types, total baits, and pitfalls) 

was estimated by calculating Cole's rarefaction curves. Furthermore, we estimated the expected 

species richness with the Chao2 species richness estimator, using EstimateS 8.20 (Colwell 2013). 

The respective data were pooled according to the 64 grid points. For the eight bait types, each 

data point (grid point) thus represents two baits (day and night, 2x90min); for total baits, it is 16 

baits of 90 min each, and for the pitfall samples each data point represents six nocturnal and 

diurnal pitfall replicates (6 x 10 hours). Comparison between the ant communities sampled with 
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baits and pitfalls was calculated using Bray-Curtis method where the relative abundances of the 

species on each sampling technique was standardised. 

The ant communities at different baits and times of day (based on presence absence ) were 

analysed using PERMANOVA (Clarke and Gorley 2006), with 'bait type' and 'time of day' as 

fixed factors and 'grid point' as random factor; furthermore, we tested for day/night differences 

for each bait type separately using PERMANOVA. Similar analyses were conducted to test for 

temporal differences on ant communities sampled with pitfalls. Further analysis was conducted 

with PERMANOVA for grid-point-wise presence/absence data to compare pitfall and bait data, 

with 'time of day' and 'capturing method' as fixed and 'grid point' as random factors. 

Food specialisation  

Food specialisation was assessed based on Simpson's diversity index. Incidence was 

chosen over frequency to be sure that all the food choices were not from only one or two grid 

points, which could limit the species capacity in foraging several times the preferred resource. 

We chose 10 as a cut-off value for there to be a clear possibility for the species to have gone to 

the other seven resources. For each species n (with a frequency ≥ 10), we calculated its total 

frequency on each  bait, and calculated its food specialisation as , where pi is the 

frequency of ant n on bait i divided by its total frequency.. A common species, however, is more 

likely to encounter different baits just by chance. Therefore, we calculated fsn for each species 

1000 times, each time based on a total frequency of species n rarefied to 10 occurrences.  

Food preferences and foraging ratio 

 As used here, 'food specialisation' looks at the relative exclusiveness of a species for any 

resource (i.e. a measure between 0 and 1), whereas 'food preferences' provide information if, and 

which, resources are significantly preferred. A species specialised in one resource will prefer it, 

but a species with one or several preferences may or may not be highly specialised overall (Fig. 

4). For each species, we conducted 1000 permutations per species to assess on which bait the 

incidence was higher than expected from random (preferred bait). This was done by randomly 

assigning the summed incidences per bait to the five different baits; we then calculated the 

quantile of the real value against these null distributions, and deemed them significant if they fell 

outside the 95% confidence interval.  

² in pfs
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The foraging ratio (fr) of a species was calculated as the ratio of a species’ frequency on its 

most preferred bait (highest frequency) divided by its overall frequency in pitfalls. A high 

foraging ratio implies that few scout ants (as measured by pitfall frequency) suffice to efficiently 

find baits, i.e. they suffice for a relatively high frequency on their favoured bait. 

Temporal niche and specialisation 

For each species n with a frequency ≥ 10, we calculated its temporal niche tnn by 

comparing its total frequency during day and at night. tnn was calculated as  

 

Where tnn is the temporal niche position, frday,n and frnight,n are the total number of occurrences 

during day and night, respectively tn ranges from -1 (purely nocturnal) to +1 (purely diurnal). 

This metric was calculated twice for each species, once based on pitfall frequencies and once 

based on bait frequencies. We interpret the pitfall-based tn as a measure of the ant's foraging 

activity (when the ants is actively scouting for food resources). In contrast, the bait-based tn 

measures when the ant actually succeeds in foraging and recruiting. Significance of a species' 

temporal specialisation was assessed with a paired Wilcoxon test for grid point-wise frequency at 

night and during day. Temporal specialisation was calculated as , and ranges from 0 (no 

specialisation) to 1 (purely nocturnal or purely diurnal). Wilcoxon signed-ranks test was used for 

evaluating if a species temporal distribution significantly diverged from no specialisation, i.e if it 

was significantly more present at day or night. Correlations between different functional traits 

(tn, fs, fr) were done using Spearman rank correlations.  

Niche differentiation and co-occurrence 

Finally, we assessed the impact of temporal and trophic niche differentiation on co-

occurrence. For each pair of species, we calculated the 'absolute co-occurrence' as the number of 

grid points where both species had been found. We constrained this analysis to the 13 most 

common species, such that we included all species that co-occurred at least 10 times, since rarely 

co-occurring species would not require niche differentiation. 'Relative co-occurrence' was 

calculated by absolute co-occurrence divided by the average incidence of both species. Temporal 

niche differentiation was obtained as the difference between tn values; and dietary niche 
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differences was calculated as the Bray-Curtis distance between the incidences of the two species 

on each of the eight baits. If niche differentiation explained co-occurrence, then locally co-

occurring species should have higher niche differences than species that did not co-occur. We 

used a partial Mantel test (command mantel.partial) to analyse the correlation of absolute or 

relative co-occurrence with temporal and trophic niche distance. All analyses (if not mentioned 

otherwise) were conducted using R version 2.15.2 (R Development Core Team 2012). 

 

Results 
 

Table 1: Total abundances, occurrences, and total species richness at 

each bait, and totals for diurnal and nocturnal baits. Estimated species 

richness is given as the mean of Chao2 estimator values. *For baits with 

high variation in abundance, the uncorrected Chao1 estimator was higher 

than Chao2, and therefore used as recommended by Anne Chao.  

bait type abundance occurrences 
total species 

richness 

estimated 

richness  

Sucrose 6403 218 23 25.95 

Melezitose 4365 188 23 32* 

Crushed insects 2382 162 25 38.78 

Grasshoppers 1900 97 19 19.49 

Oleic acid 1371 90 16 32* 

Seeds 651 95 22 47* 

Termites 321 92 19 21.95 

Chicken faeces 170 60 18 21* 

Day  9635 517 32 - 

Night 7906 485 25 - 

Ant communities in baits and pitfalls 

A total of 34 species were captured on baits and 47 in pitfalls. This yielded a total of 52 

species (including 10 singletons), with 29 species captured both with baits and pitfalls. Species 

richness at the site was estimated as 38 species (mean Chao2 estimate; range: 35-56) captured 

with all baits, while 52 species could have been sampled with pitfalls (range: 48-67) (Table 1, 

Fig. 1). Thus, mean species estimates were close to the actual numbers we captured with all baits 
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pooled and with pitfalls. Ant communities on baits and pitfalls were significantly different 

(PERMANOVA with presence/absence data: pseudo-F = 18.9, df = 1, p = 0.001), both overall 

and when analysed separately for day and night data (each p ≤ 0.001). Bray Curtis distance of ant 

assemblages between pooled baits and pitfalls was 0.717 (standardised abundance).  

 

Fig. 1 Rarefaction curves for the eight bait types, for pitfalls and all baits pooled. In each case, 

samples were pooled according to grid point, such that each rarefaction curve is based on 64 

samples. 

 

In total, 21 species were caught on at least 10 grid points using baits or pitfalls (Table 2). 

Ten of these were much more often caught at baits. Their incidences at baits were more than 

twice the incidences on pitfalls, while the opposite was only true for two species (Fig. 2). After 

correction for the total incidences on baits and in pitfalls, three species were caught significantly 

more often on baits (Camponotus sp. 2, Crematogaster limata, Pheidole zeteki), and three 

species in pitfalls (Pachycondyla crassinoda, Sericomyrmex sp. 1, Trachymyrmex sp. 1) (² tests: 

all ² > 5.6; p ≤ 0.018).  

0

5

10

15

20

25

30

35

40

45

50

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61

Sp
e

ci
e

s 
ri

ch
n

e
ss

 

Number of Grid points 
Grasshopper Bird faeces
Termites Seeds
Sucrose Crushed insects
Melezitose Oleic acid



Chapter I: Dietary and temporal niche differentiation in tropical ants - can they explain local 
ant coexistence? 

- 30 - 

 

Mickal  Yann  Isani  HOUADRIA 
Department of Evolutionary Biology, Johannes Gütenberg University, Mainz, Germany 

October 2015 

Table 2. The more common species (total incidence ≥ 4) with abundance, incidence, food and temporal specialisation. fs: food 

specialisation based on unrarefied frequency data. Significant food preferences were determined with randomization tests; the 

temporal niche was tested against an equal day-night distribution using chi² tests. ‘Gra’: live grasshoppers; ‘Cru’: crushed 

insects; ‘See’: seeds; ‘Suc’: sucrose. 'n/a': Frequencies too low (<10) for analysis. 'ns': not significant. Significant food 

preference, and significant temporal niches (i.e. different from an equal day-night distribution) are denoted with asterisks (*p < 

0.05; **p < 0.01; ***p < 0.001). Significant differences between temporal niche from pitfalls and from baits (according to chi² 

test) are denoted with superscripts. 1p < 0.05; 2p < 0.01; 3p < 0.001. ‘ns’: not significant; ‘n/a’: too few data for estimation. 

Species 
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p
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Food specialisation Temporal specialisation 

fs 
 preferred 

baits 

temporal 

niche pitfall 

temporal niche 

bait 

Anochetus diegensis Ano1 0 0 5 n/a n/a n/a n/a 

Atta cephalotes Att1 0 0 5 n/a n/a n/a n/a 

Camponotus sp.1 Cam1 75 11 2 0.58 Cru *** n/a ns 

Camponotus sp.2 Cam2 962 51 17 0.34 Suc *** ns3 night***3 

Camponotus sp.3 Cam3 93 12 4 0.44 Cru *** ns1 night***1 

Crematogaster limata  Crem1 702 14 2 0.42 Cru *** n/a ns 

Crematogaster levior 

complex 
Crem2 556 10 11 0.28 ns ns day** 

Cyphomyrmex minutus Cyp1 1 1 4 n/a n/a n/a n/a 

Diplorhoptrum sp.1 Dip1 157 33 15 0.31 ns day**1 ns1 

Diplorhoptrum sp.2 Dip2 199 26 9 0.29 ns ns ns 

Labidus sp.1 Lab1 0 0 4 n/a n/a n/a n/a 

Nylanderia sp.1 Nyl1 474 23 8 0.58 Suc *** ns ns 

Odontomachus 

haematodus 
Odo1 33 19 17 0.34 Gra ** ns ns 

Pachycondyla 

crassinoda 
Pac1 6 3 29 n/a n/a ns n/a 

Paratrechina sp.1 Par1 150 6 1 n/a ns n/a ns 

Pheidole sp.1 Phe1 758 16 10 0.31 ns day** day* 

Pheidole zeteki  Phe10 199 25 6 0.42 Suc ** ns day*** 

Pheidole pugnax Phe11 3294 40 33 0.33 Suc ** ns day* 

Pheidole sp.12 Phe12 73 15 7 n/a ns ns ns 

Pheidole cf. texticeps Phe16 235 15 12 0.41 ns day** ns 

Pheidole sp.17 Phe17 61 3 4 n/a ns n/a n/a 

Pheidole sp.18 Phe18 24 5 2 n/a n/a n/a n/a 

Pheidole sp.21 Phe21 60 10 7 0.32 ns ns day* 

Pheidole subarmata Phe3 5234 45 38 0.27 Suc * ns ns 

Pheidole aripoensis Phe5 249 14 14 0.32 ns day**2 ns2 

Sericomyrmex sp.1 Ser1 83 5 24 n/a ns ns ns 

Solenopsis sp.1 Sol1 3354 18 13 0.27 ns ns ns 

Trachymyrmex sp.1 Tra1 22 10 19 0.53 See *** ns night* 
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Ant communities at different baits 

The baits varied strongly in the number of individuals and occurrences but less so in total 

number of species attracted. The most attractive bait in terms of individuals (sucrose) attracted 

37.7 times more individuals than the least attractive one (chicken faeces). However, the total 

number of attracted species on sucrose and chicken faeces was 23 vs. 18, respectively (Table 1). 

The highest number of species (25) was found on crushed insects (Table 1). Although oleic acid, 

chicken faeces and seeds were less attractive (as measured in number of occurrences), they 

attracted additional species not present at other baits. Chao’s species estimations and rarefaction 

suggested that baiting was rather exhaustive for sucrose, grasshoppers, termites, and chicken 

faeces, whereas more species could have been captured with further baiting of melezitose, 

crushed insects, seeds, and oleic acid (Table 1, Fig.1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 The slope of the dotted line equals the ratio of the summed incidences at baits and in 

pitfalls, to correct for different capture rate of baits and pitfalls. Species abbreviations are given 

in Table 2. 

 

Species composition on the different baits differed greatly (PERMANOVA on 

presence/absence data: pseudo-F = 9.5; df = 7; p = 0.001); but the differentiation between day 
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and night was even higher (pseudo-F = 25.8; df = 1; p = 0.001) (Fig. 3). The interaction between 

bait type and time of day was significant (pseudo-F = 2.9; df = 7; p = 0.001). When ant 

assemblages were analysed for each bait type separately, we found significant temporal 

differentiation for seven bait types (each p ≤0.016) but not for oleic acid (p = 0.062). Ant 

assemblages in pitfalls were also significantly different between day and night (pseudo-F = 5.9; 

df = 1; p = 0.001). Ant assemblages on melezitose and sucrose (PERMANOVA: p = 0.061) did 

not differ significantly in pair-wise presence/absence comparisons, nor did those recorded on 

termites and grasshoppers (PERMANOVA: p = 0.625) or those between oleic acid and seeds 

(PERMANOVA: p = 0.085). Consequently, melezitose, termites and oleic acid were omitted 

from the analysis of food specialisation, and only sucrose, grasshoppers, and seeds were retained, 

for yielding more occurrences (Table 1). Pooling similar baits would have resulted in unequal 

sample numbers and thus biased further analysis. All other baits significantly differed from one 

another in the ant communities they attracted, even after correction for false discovery rate 

(Benjamini and Hochberg 1995) (all p < 0.05). 
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Fig. 3 NMDS ordination, based on presence/absence data, for the ant assemblages attracted to 

the eight food baits and the two time periods. Cru: crushed insects; See: seeds; Suc: sucrose; 

Mel: melezitose; Gra: live grasshoppers; Ter: live termites; Chi: chicken faeces; Ole: oleic 

acid. Full circles represent nocturnal and empty circles diurnal baits. 
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Food specialisation and preferences 

 
 

 

Fig. 4 Rarefied food specialisation fs plotted against incidence at baits. This index can range 

from fsn = 5* (1/5)
2
 = 0.2 if all five bait types are used equally (with each pi = 1/5), to fsn = 1.0 in 

the case that only a single bait type is used. For species with significant food preferences, the 

preferred baits are given: Cru (crushed insects), Gra (grasshopper), Suc (sucrose), See (seeds). 

Species abbreviations are given in Table 2. 

We calculated fs for 18 species with an incidence ≥ 10 at the five baits (omitting the baits 

melezitose, termites and oleic acid). Our results showed that no species were fully specialised or 

absolute omnivores, instead, that a full gradient of species with varying dietary habits existed. 

Among the 18 species we analysed, only ten showed significant food preferences (Fig. 4, Table 

2). Five species, including the three most abundant ones, significantly preferred sucrose over the 

other baits. Camponotus sp.1 and 3, and Crematogaster limata preferred crushed insects. In 

contrast, among the eight Pheidole species, none preferred crushed insects, but three of them 

(Pheidole subarmata, Ph. zeteki and Ph. pugnax) had a preference for sucrose. Odontomachus 

haematodus was found to prefer grass hoppers than other resources, and Trachymyrmex sp.1 

preferred seeds. 
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Temporal specialisation  

 
Fig. 5 Temporal specialization at baits and in pitfalls, based on species frequencies. Significant 

temporal specialization (according to ² test) is indicated with asterisks: *p < 0.05; **p < 0.01; 

***p < 0.001. Full circles indicate a temporal niche of zero. The numbers in brackets give the 

incidences at baits and in pitfalls, respectively. 

 

Overall, nocturnal and diurnal ant communities differed markedly (Fig. 3), and this effect was 

consistent for pitfalls and baits. Total species richness at night was slightly lower (Table 1). At 

baits, 32 species were captured during the day and 25 at night (total species number: 34). In the 

pitfalls, we obtained 43 species during the day and 31 at night (total species number: 47). The 

species only captured at night were two Pachycondyla and two Camponotus species, and several 

singletons. All other species were found both at day and night although not always evenly. 
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One-fourth to one-third of the species showed significant temporal specialisation (4 out of 19 in 

pitfalls; 8 out of 21 at baits) (Fig. 5). In the pitfalls, four species were frequently more sampled 

during the day, but no species were primarily nocturnal. At baits, we found three significantly 

nocturnal and five diurnal species. Interestingly, four species showed a significant difference in 

their day/night distribution between pitfalls and baits (Fig. 5; Table 2): from pitfalls to baits, two 

shifted from no specialisation to night (Camponotus sp. 1 and 2), and two shifted from day 

specialisation to no specialisation (Diplorhoptrum sp. 1; Pheidole sp. 5). Only one species 

(Pheidole sp.1) was significantly more abundant during the day in both baits and pitfalls.  

 

Combining functional traits and commonness 

Overall, the degree of food specialisation was not related to commonness. The food 

specialisation index was not correlated to incidence at baits (Spearman’s rho= -0.28, p = 0.26; 

Fig. 4). However, although three common species significantly preferred baits, there were no 

species with an fs value > 0.35 and an incidence above 25. Note that two species common in 

pitfalls (Pachycondyla sp. 1 and Sericomyrmex sp. 1) were too rare on baits to adequately 

estimate their food niche. Similarly, the degree of temporal specialisation did not correlate to 

incidence (for baits: Spearman’s rho = -0.32, p = 0.19; pitfalls: rho = -0.07, p = 0.78). Temporal 

and food specialisation were not correlated (Spearman rank correlation; temporal specialisation 

at baits vs. fs: rho = 0.021, p = 0.93; temporal specialisation at pitfalls vs. fs: rho = -0.46; p = 

0.052). The two species with highest fs (Fig. 4) showed no temporal preferences for baits or for 

pitfalls. Finally, fs was positively correlated to the foraging ratio fr (Spearman’s rho = 0.65, p = 

0.0037), implying that specialised species had a lower incidence in pitfalls compared to their 

incidence at baits than generalised species. 

Local co-occurrence could not be explained by niche differences. For co-occurring pairs of 

species, the absolute or relative number of grid point-wise co-occurrences was not correlated to 

the temporal or trophic niche differences (absolute co-occurrences: partial Mantel test: r = -

0.089; p = 0.69; relative co-occurrences: r = -0.043; p = 0.62). 
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Discussion 

Temporal and trophic niche differentiation in ant communities 

 The aim of this study was to simultaneously assess trophic and temporal niches of an ant 

community and investigate whether these functional traits explain ant coexistence. Both niche 

dimensions were found to influence community composition. Ant communities differed between 

bait types for five of our eight baits (sucrose, living grasshoppers, chicken faeces, seeds, and 

dead insects), the ant communities varied significantly for each pair-wise comparison. However, 

the difference between diurnal and nocturnal communities was greater than that between 

communities at different bait types (Fig. 3). Temporal segregation hence seems to facilitate 

species coexistence more than the limited range of food resources our baits represented. The 

significant interaction between time and food type was probably related to oleic acid, which was 

the only resource to not differ between diurnal and nocturnal ant communities. This may be due 

to Camponotus sp. 2, which was frequent on most baits but never foraged on oleic acid. Being 

nocturnal and numerically dominant, this species therefore had consequences on the temporal 

segregation of this resource. This result matches a study on temperate ant communities, where 

day/night segregation among species was high and represented an important coexistence 

mechanism (Stuble et al. 2011, 2013). Temporal niche partitioning of dominant and subordinate 

ants has also been shown in Mediterranean ant communities (Santini et al. 2007, Segev and Ziv 

2012) but in most cases it is difficult to show that this is an effect of competition (Andersen 

1992).  

The high temporal differentiation found on community level was also detectable on species 

level. One-third of the ant species showed temporal specialisation in pitfalls or baits. Notably, 

temporal segregation was high between two of the three most common species, with 

Camponotus sp. 2 being nocturnal and Pheidole pugnax being diurnal. This concurs with 

previous findings on competition between dominant species which can regulate their distribution 

and temporal partitioning (Andersen and Patel 1994). Two results about species-level temporal 

niches were unexpected: Firstly, there were more exclusively diurnal than nocturnal species, 

both in the pitfall and the bait samples, although one could expect a similar number of nocturnal 

species which avoid diurnal competitors. The pattern coincides with a slightly higher overall 

abundance and frequency of ants during the day, but this cannot fully explain the rarity of 
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nocturnal specialists. Secondly, temporal specialisation in pitfalls and baits often differed. 

Temporal specialisation that remained the same in both sampling methods was only found for 

one species (Pheidole sp. 1). One explanation may be that pitfalls mostly capture scouts, i.e. 

individuals that forage on their own. Since no food resources are involved, there should be little 

effects of interspecific competition on the temporal niche in pitfalls. In contrast, baits reflect the 

ability of species to recruit to a resource and potentially withstand competing species. We 

therefore tentatively interpret the temporal niche at pitfalls as unaffected by competition, 

whereas the temporal bait niche could be influenced by competitors. Notably, from pitfalls to 

baits, the temporal niche either shifted from 'diurnal' to 'unspecialised', or from 'unspecialised' to 

'nocturnal', but not towards diurnal. Thus, it seems possible that some species manage to evade 

competitors by recruiting more heavily at night. In order to clarify these temporal shifts, in 

addition sampling should be performed at crepuscular times, where ant communities could differ 

from both day and night. 

Beside temporal differentiation, communities differed between different food resources. Food 

resources varied greatly in their attractiveness, but even less attractive items yielded additional 

species. Five of the eight baits attracted ant communities that differed significantly from one 

another. For example, living termites and grasshoppers were much less attractive than insect 

carcasses, but attracted a significantly different community, including a species that significantly 

preferred live grasshoppers to dead insects (O. haematodus). This emphasizes the need to include 

live baits in further studies, especially since they have been scarcely used up to now (Santamaria 

et al. 2009), and the consumption of living or dead matter cannot be distinguished by studies 

based on stable isotopes. Such a differentiation, and the fact that all baits together attracted more 

species than any single bait type (Fig. 1), shows that there is trophic niche differentiation on 

community level. On species level, this was reflected in species that preferred certain food items 

to others. For four bait types (grasshoppers, crushed insects, sucrose, and seeds), species showed 

significant preferences. Remarkably, the three most numerically dominant species with highest 

frequency and incidence (Fig. 2 and 4), significantly preferred sucrose over crushed insects. This 

concords with the fact that carbohydrates and proteins meet different colony needs and that 

colonies spend more time foraging their limiting nutrient (Kay 2002) from which we can 

extrapolate that numerically dominant species may have a greater need for carbohydrates and 

may show 'high tempo foraging' (Davidson 1997). 



Chapter I: Dietary and temporal niche differentiation in tropical ants - can they explain local 
ant coexistence? 

- 38 - 

 

Mickal  Yann  Isani  HOUADRIA 
Department of Evolutionary Biology, Johannes Gütenberg University, Mainz, Germany 

October 2015 

Interestingly, ant communities at sucrose (a disaccharide) did not differ from those at 

melezitose, which is a trisaccharide common in honeydew (Völkl et al. 1999). This suggests that 

all species in our study that use sucrose are also able to digest melezitose. Hence, the regular 

consumption of melezitose-containing honeydew may not represent an option to evade 

competition by sucrose-foraging species. In other, mostly arboreal ant communities, however, 

several ant species avoid feeding on melezitose and are thus unable to effectively utilize some of 

the honeydew sources (Blüthgen and Fiedler 2004b). Furthermore, we had expected to find 

different predatory ant species at grasshoppers and termites. Apparently, the same ant species 

could overwhelm the two prey items regardless of their size.  

None of the species preferred oleic acid, only omnivore species (mostly Pheidole) capable of 

consuming pure lipids were attracted. We had not expected this since elaiosomes are assumed to 

contain oleic acid as attractant (Boulay et al. 2005, Bronstein et al. 2006), but see (Reifenrath et 

al. 2012), and the presence of a chemical food cue alone often suffices to attract specialised 

species (Schmitt et al. 2004). However, no information could be obtained on the diversity of 

elaiosome-bearing plants at the site. 

To assess food niche differentiation in ants, most studies to date applied one of the two 

approaches: multiple artificial baits (Le Breton et al. 2006, Cerdá et al. 2011, Arnan et al. 2012) 

or stable isotope analyses (Bihn et al. 2010). Artificial, highly attractive baits such as tuna or 

honey have often been used as a rough guide to a species’ preference between carbohydrates or 

proteins. Our data confirmed (Table 2) that several species preferred either carbohydrates or 

proteins (Cerdá et al. 1989), but in many species, the food specialisation was more gradual than a 

crude classification would suggest (Fig. 4). Stable isotopes are a useful tool to assess the trophic 

position of an ant and allow to gather data for whole ant communities (Blüthgen et al. 2003), but 

do not allow discrimination between dietary items of the same trophic level (that is, with a 

similar 
15

N signature). Stable isotope studies therefore often classify species with intermediate 

signature or with high intraspecific variation as omnivorous (Pfeiffer et al. 2013) but it is hardly 

possible to further distinguish among such species. 

 

Despite high differentiation on community level, and the detection of species that were 

trophically or temporally specialised, local ant co-occurrence could not be explained by niche 

differences alone (as shown by partial Mantel tests). Hence, it seems likely that a finer resolution 
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is needed to determine the niches of species that occur at the same grid points. This may include 

specialisation on further food items, a finer temporal differentiation, or differing seasonal 

foraging peaks (Albrecht and Gotelli 2001). To our knowledge, little is known about ant 

seasonality in the tropics, but a recent study has found flooding during the wet season and high 

desiccation risk during the dry season as possibly responsible for reducing abundance in ants 

(Baccaro et al. 2012). 

 

Ants attracted to baits vs. background diversity 

Baits generally attract less species than other methods like pitfalls or winkler traps 

(Andersen 1991, Groc et al. 2007, Tista and Fiedler 2010). However, they present the advantage 

of being the fastest way to capture ants, and they can be used to obtain ecological and 

behavioural data. Baits have been used to assess dominance hierarchies, temporal differences of 

ant activity between periods and seasons (Delsinne et al. 2007, Arnan et al. 2012) and also 

trophic and microhabitat differences (Kaspari and Yanoviak 2000). In our study, the baits 

attracted 19 out of the 22 more common species with comparable or higher incidence (Bray-

Curtis distance: 0.717), and 29 out of 47 species caught with pitfalls in total. For four of the eight 

baits, rarefaction and Chao species richness estimators suggested that additional species may still 

have been sampled (Table 1). Most of the species that were captured in pitfalls, but absent or rare 

at baits, were predators according to literature (genus Pachycondyla and Anochetus; Dejean et al. 

1999) or fungus growers (Atta, Cyphomyrmex; Mikheyev et al. 2010), other species were with 

very few occurrences limiting their chances in occurring on the baits. We therefore suggest that 

their primary food sources were absent from the set of baits or inappropriately displayed. Many 

ant predators are solitary foragers, specialised on certain prey types, do not recruit, and 

immediately retrieve the whole food item to their nest instead of feeding directly at the spot 

(Dornhaus and Powell 2010). Thus, the chances of capturing such species without constant bait 

observation are smaller compared to species that recruit massively and do not retrieve large 

pieces of bait. Pachycondyla crassinoda for instance was only found twice on crickets and once 

on crushed insects but had a high pitfall incidence (Fig. 2). Therefore presenting suitable live 

prey species in an appropriate manner may prove difficult. For future studies, the set of baits 

should be continuously extended or amended with complementary baits and/or specific displays, 

aiming to cover as many species as possible. 
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Are specialisation, commonness and foraging efficiency interrelated? 

             The relationship between food specialisation and commonness has been explored in 

many taxa. Commonness can be defined in terms of geographic range, local abundance, or a 

combination of both (Kunin and Gaston 1993, Slatyer et al. 2013). Often, specialists are less 

abundant than generalists (Harcourt et al. 2002, Goulson et al. 2008), but specialisation can also 

be positively linked to local abundance (Blüthgen et al. 2007, Boulangeat et al. 2012). Here, we 

reasoned that species with a broader food niche should have a greater incidence than more 

specialized ones. In turn, more specialized species should be more efficient foraging for their 

required resources. The first prediction was rejected - commonness (measured as incidence) was 

not related to the degree of food or temporal specialisation. There were no common food 

specialists, as had been expected, but rare species included generalised and specialised ones (Fig. 

4). Finally, we could show that specialised species tend to be more efficient foragers, as 

evidenced by the correlation between foraging efficiency (fr) and food specialization (fs).  

 

Conclusions 

 The present study demonstrates that ant communities show temporal and trophic niche 

differentiation. Diurnal and nocturnal assemblages differed strongly, and assemblages at five 

different food items were significantly different from one another, although this difference was 

smaller than the temporal differentiation. On species level, in our range of baits, no correlation 

was found between species co-occurrence and niche specialisation. Significant preferences for 

food items and time periods were found for one-fourth to half of the species, and this would 

probably increase if sampling effort is intensified, including more different baits and additional 

time periods. However, while many species did have temporal and/or food preferences, no 

species showed strict temporal or dietary exclusiveness: the niches were broad enough to allow a 

certain variation in food resources and temporal activity. Such variation may be especially 

important for subordinate species, which can modify their dietary habits in presence of dominant 

species (Sanders and Gordon 2003). This niche 'plasticity' may be an important mechanism to 

reduce competition, and we interpret the temporal niche difference of species caught in pitfalls 

and at baits as evidence of such plasticity. 
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Future studies should aim at assessing niche differentiation in more detail. This could include 

different strata complimentary to ground sampling (subterranean; shrubs, tree trunks, canopy). It 

is likely that ants differ in further niche dimensions which are more difficult to assess, e.g. 

activity under different weather conditions. The community-based approach presented here may 

also be complemented by single-species assays in order to exclude the impact of competitors. 

We should bear in mind that niche differentiation is but one possible mechanism of species co-

existence, and that the role of other factors, such as stochasticity in colony establishment success, 

dispersal and habitat disturbance must not be neglected (Andersen 2008, Arnan et al. 2011). 
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Abstract 

 Functional diversity is defined as “the value and range of the functional traits of the organisms 

in a given ecosystem”. The definition is sound but there has been confusion concerning the 

interpretation of the value and range of functional traits. Many studies implicitly assume that 

functional traits within a species are constant. However, intraspecific variance has been 

increasingly recognized as an important aspect of community ecology. Here, we studied dietary 

and temporal niches of ant species in a primary and a secondary tropical rainforest in Borneo. 

We tested whether dietary and temporal niches vary less within a species than across species, but 

predicted that competitively inferior (subordinate) species show higher niche plasticity than 

dominant ones, since they respond to the presence of competitors. 

In each forest, we assessed the dietary and temporal niches of the species common to both 

sites. To this end, we offered seven different bait types (oleic was not considered in this 

manuscript) that reflected natural resources during day and at night. The competitive ability of 

each species was estimated using co-occurrence analyses. 

Our results show that traits such as temporal and food preferences can shift drastically 

between two sites, to the extent where a species’ niche may be closer to that of another species 

than to its conspecific. Even dominant species showed different food or temporal preferences in 

the two sites. However, numerically dominant species displayed a lower overall niche plasticity 

than subordinates. We interpret this as a trade-off between the capacity to compete and the need 

to adapt.  

Categorical functional traits should therefore be interpreted with caution. In contrast, 

multifactorial approaches based on continuous trait values permit a thorough quantification of a 

species’ niche plasticity that combines multiple functional traits. Knowledge about the niche 

plasticity of species within a community is important to predict their ability to cope with 

changing environmental conditions. 
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Introduction 
 

 An essential part of community ecology is to understand the processes that explain patterns of 

abundance and distribution of species (May and Arthur 1972). One of the main approaches to 

explain patterns of co-existence is the principle of limiting similarity. It states that competitive 

exclusion prevents the co-occurrence of species with too similar niches (Gause 1934; Morrison 

1996), and that niche partitioning is a prerequisite for the coexistence of different species. 

However, many of the studies on this issue implicitly or explicitly assumed that species-specific 

traits are fixed and constant. Species coexistence should be enabled through differentiation in 

these traits (MacArthur and Levins 1967). Accordingly, many community ecologists have 

focused on average trait values per species, and considered differences in these values as the 

promoter of species diversity As such, average trait values are regularly used to assess functional 

diversity and to model ecosystem processes (Walker, Kinzig & Langridge 1999; Dı́az & Cabido 

2001; Bihn, Gebauer & Brandl 2010; Woodcock et al. 2013, Loreau 2010). However functional  

traits may vary more between than within species (McGill et al. 2006a, Cadotte et al. 2011). 

Organisms can adapt their individual niche according to the presence of competing species. 

Some species may show less niche plasticity than others – either because they do not need to 

change their niche, or because they cannot. Hence, functional trait values cannot be considered 

as fixed characteristics of a species, and it is necessary to consider the effect of trait evolution 

and plasticity in ecological studies (Berg and Ellers 2010).  

Ants have diversified into tens of thousands of species, colonized most of the world’s 

terrestrial ecosystems, and acquired multifarious ecological roles (Ward 2013) and competition 

is considered as the “hallmark” of ant ecology (but see Cerdá, Arnan & Retana 2013).  As such 

ants are an appropriate model system to investigate niche differentiation and competitive 

exclusion. As in many other taxa, they can be classified into dominant and subordinate species, 

where the dominant ones can exclude subordinates from their territory or resources (Cerdá et al. 

2013). Some subordinate species avoid competition with dominant ants by reducing the temporal 

overlap (Human and Gordon 1996, Holway 1998), while others coexist temporally but limit their 

interactions (Human et al. 1998), as with resource partitioning. However, it is still largely 

unknown whether the degree of niche plasticity varies with competitive ability, i.e. whether 

competitively inferior species show higher plasticity than superior ones (but see Sanders & 
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Gordon 2003). Recent research even indicated that niches within species may vary as much as 

between species (Cadotte et al. 2011). Thus, community ecology needs to fully understand 

species niche plasticity and the potential consequences of the variation of traits in order to 

predict community response to change and the degree of stability of an ecosystem (Bolnick et al. 

2011, Violle et al. 2012). 

Here, we investigated how species shift their dietary and temporal niches between two 

different sites with high species overlap. We hypothesized that dominant species should be able 

to retain their traits, while subordinate species must adapt to the presence of dominants and 

change their traits accordingly. By applying the exact same sampling method on the two sites, 

we were able to measure temporal and dietary preferences among the ant species common to 

both sites. We analysed how consistent are qualitative ecological traits across sites. Furthermore, 

we tested whether traits varied more between than within species (McGill et al. 2006a), and 

expected the “ecological distance” (i.e. distance between niches) between conspecifics to be 

smaller than between species. Finally, we examined whether subordinate species alter their niche 

in order to coexist with highly competitive ones that can displace other species and thus retain 

their “optimal” niche.  

 

Materials and Methods 

 

Study sites and species studied 

  Niche plasticity was investigated in two paleotropical sites with differing ecological status. 

Sampling was performed in a primary forest of the Danum Valley Conservation Area (Sabah, 

Malaysian Borneo; 4°55′N-117°40′E). The site is part of a 438 km² primary forest dominated by 

Dipterocarpaceae trees. The second site was the Malua Forest Reserve (4º24′N-118°14′E) and is 

22.6 km away from Danum Valley. It comprises 35 km² of production forest, which was 

selectively logged in the 1980s. We chose close by and similar forest habitats with different 

ecological status in order to have similar ant assemblages, but at the same time enhance the 

likelihood of having different niches for each species. Indeed, species composition was largely 

similar, with 50% of the species shared by both sites, but the ecological stability differed 

markedly (Houadria et al. 2015a). On each site, we established four plots (90 m²) of 4 x 4 grid 

points, i.e. a total number of 64 grid points. We presented seven baits at every grid point during 
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day and at night, but only one bait at a given time. We used seven complementary food baits 

which reflected natural resources available to ants in a rainforest: sucrose, melezitose, crushed 

insects, bird faeces, a seed mixture, living termites and living grasshoppers (Houadria et al. 

2015c).  

Altogether, we captured 81 species, out of which 32 occurred in both sites. Since our analyses 

were based on species frequencies (i.e. the number of times a species was captured at any bait), 

we included only species with a frequency ≥ 7 in both sites. This criterion was fulfilled by eight 

species (Table 1). 

 

Data analysis 

Ecological traits across sites 

For each species n with a frequency ≥ 7, food preferences and temporal niche were 

calculated separately for the two sites. Food preferences were calculated based on the total 

number of occurrences of every species on each of the seven baits. Then, the occurrences were 

randomly permuted 1000 times to assess on which bait the realized frequency was higher than 

expected from random (preferred bait). We calculated the quantile of the realized value against 

the null distributions, and deemed them significant if they fell outside the 95% confidence 

interval.  

Temporal niche, tnn , was calculated by comparing its total frequency during day and at night 

and was calculated as : 12 




nnightnday

nday

n
frfr

fr
tn , 

where tnn is the temporal niche position, frday,n and frnight,n are the total number of occurrences 

during day and night, respectively; tn ranges from -1 (purely nocturnal) to +1 (purely diurnal). 

Using ² tests, we tested whether a species’ temporal distribution significantly differed from 

random, i.e if it was significantly more present at day or night.  

Niche plasticity 

For each species and each site, we created a vector containing its relative frequencies on 

the 14 bait (7 night and day), such that the summed relative frequencies per site equaled 1. The 

niche plasticity of a species was then calculated as the Euclidean distance between its vectors for 

the two sites. Euclidean distance was considered more appropriate as it incorporates quantitative 
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standardized values and joint absences whereas Bray-Curtis distance is more suitable for actual 

abundances.  

Co-occurrence analyses 

These analyses test for non-random patterns of species co-occurrence among the sampled 

ant communities (Gotelli 2000). We analysed co-occurrence separately for each bait type, time 

of day, and site, i.e. conducted 28 separate analyses. Each analysis was based on a 

presence/absence matrix where each grid point is a row (i.e. n=64) and each column is an ant 

species. For each ant species, we calculated the number of real associations as the number of 

times it co-occurred with any other species on the same bait. The occurrences of each species 

were then randomly assigned to the different grid points, such that the total number of 

occurrences per species is equal to those in the original matrix, but each grid point has the same 

probability of being assigned an ant occurrence (i.e. the fixed-equiprobable algorithm sensu 

Gotelli, 2000). We performed 1000 randomizations per analysis, and compared the real number 

of associations to the distribution of randomized values we had obtained. For each species, the 

segregation quantile was calculated as the proportion of randomized matrices where it had fewer 

co-occurrences with any other species than in the real dataset. We interpret these values as a 

measure of a species’ ability to exclude other species. We calculated species-specific segregation 

values ( kRS ) for each of the 28 matrices and considered segregation significant when the p-

value was below 0.025. The overall species-specific segregation value iS  was calculated as the 

weighted mean of these 28 values, based on the idea that the higher the relative frequencies on a 

resource, the more relevant are these segregation values for this species.   

 



 


kR

kRkR

i
N

NS

S




 

Where iS  is the overall segregation values for species i, kRS the quantile value and kRN  the 

frequency of species i for a given resource R, time and site k. The relation between a species’ 

segregation value and its niche plasticity was tested using Spearman correlation. Temporal 

specialisation ranges from -1 (purely nocturnal), 0 (no specialisation) to 1 (purely diurnal). 

Wilcoxon signed-ranks test was used to evaluate if a species’ temporal distribution significantly 

diverged from no specialisation, i.e if it was significantly more present at day or night. 

 
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Furthermore, we assessed whether a species significantly preferred a certain bait type. To this 

end, we randomly assigned a species’ the summed frequencies to the seven different baits; we 

then calculated the quantile of the real value against these null distributions, and deemed them 

significant if they fell outside the 95% confidence interval. Numerically dominant species were 

defined as those with significantly higher incidence than the others (one tailed t-test). All 

computations were performed using R version 2.15.2 (R Development Core Team 2012).  

 

Results 

Table 1: Morphospecies included in this study, and their 

incidence (number of grid points where they were 

captured) in the two sites. Species in bold had higher 

incidence than other species in Danum and Malua, 

respectively (one-tailed t tests: Carebara sp.1: t = -3.812, 

p = 0.003 and t=-2,08,  p=0,038; Lophomyrmex sp.1: t=-

4,765,p=0,001 and t=-6,139, p < 0,001) 

Subfamily Morphospecies 
Incidence 

Danum Malua 

Formicinae Camponotus sp.1 18 15 

Euprenolepis sp.1 15 11 

Dolichoderinae Technomyrmex sp.2 5 20 

Myrmicinae Carebara sp.1 50** 35* 

Lophomyrmex sp.1 56** 62*** 

Lophomyrmex sp.2 27 9 

Pheidole sp.6 20 6 

Recurvidris sp.2 17 11 

 

 

 

Qualitative trait differentiation across sites 

Food preferences 

The most numerically dominant species, Lophomyrmex sp.1, showed the same dietary 

characteristics for both sites with preferences for crushed insects, melezitose and sucrose (Fig. 

1). Most of the other species only showed significant food preferences in Danum. The second 
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most dominant species, Carebara sp.1, preferred seeds; Eupronolepis sp.1 preferred sucrose and 

Pheidole sp.6 melezitose. Only Technomyrmex sp.1 had a preference for both carbohydrates in 

Malua but not in Danum. Neither Camponotus sp.1 nor Pheidole sp.6 showed any food or 

temporal preferences regardless of the site. 

 

Fig. 1 Total frequencies per species on all bait types for Danum (green) and Malua (red). For 

species with significant food preferences, the preferred baits are given: Cru (crushed insects), 

Suc (sucrose), See (seeds) and Mel (melezitose).  

 

 

Temporal preferences 

Although none of the species showed opposite temporal specialisation in the two sites, 

the temporal niche often differed between Danum and Malua (Fig. 2). Carebara sp.1 and 

Technomyrmex sp.2 were marginally nocturnal in Danum, but unspecialised in Malua, and the 
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reverse scenario was found for Eupronolepis sp.1. Lophomyrmex sp.1 was significantly diurnal 

in Danum, but temporally unspecialised in Malua. Only Recurvidris sp.2 showed the same 

diurnal specialisation in both sites (albeit marginal in Malua).  

 

Fig. 2 Temporal niche (tn), separately calculated for Danum (green) and Malua (red). Significant 

temporal specialization (according to ² test) is indicated with asterisks: *p < 0.05; **p < 0.01; 

***p < 0.001. Full circles indicate a temporal niche of zero. 

 

Niche plasticity  

 Fig. 3 illustrates the Euclidean distance of conspecific and interspecific niches between 

different sites. The two numerically dominant species, Lophomyrmex sp.1 and Carebara sp.1, 

showed the lowest niche plasticity (Fig.3), followed by Lophomyrmex sp.2. In these two species, 

conspecific niche distance between Danum and Malua was smaller than the distance to any other 

species (Table S1). In contrast, the species with highest niche differences between sites were 

Euprenolepis sp.1, followed by Pheidole sp.6 and Technomyrmex sp.2.  
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Camponotus sp.1, Recurvidris sp.2, Lophomyrmex sp.1, sp.2, Carebara sp.1 and 

Technomyrmex sp.2 (but marginal) were closer to their conspecific than other species and 

Eupronolepis sp.1 and Pheidole sp.6 were not (Table S1). We notice that Technomyrmex sp.2 in 

Malua is more similar to 5 species in Danum than to its conspecific. Euprenolepis sp.1 and 

Pheidole sp.6 in Danum are respectively more similar to six and five species in Malua than to 

their conspecific. Only the two most numerically dominant species, Lophomyrmex sp.1 and 

Carebara sp.1 are never more similar to other species niches.  

 

 

 

Fig. 3 NMDS ordination (stress: 0.11) of niche positions in the two sites. The ordination is based 

on the frequency of each species at the seven baits during the two time periods. Each shape 

represents one species; green and red refer to the niche in Danum and Malua, respectively. The 

two most common species are shown in bold. Lop: Lophomyrmex; Cam: Camponotus; Car: 

Carebara; Rec: Recurvidris; Eup: Euprenolepis; Tec: Technomyrmex; Phe: Pheidole.  
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Segregation species level 

 

Table 2: Number of times when a species showed significant segregation 

according to co-occurrence analysis at a given bait and time of day. NRA: 

number of realized associations, p values represent the percentage of 

randomized associations smaller or equal to those of the real matrix 

(significant if < 0.025). Cru: crushed insects, Mel: melezitose, Suc: sucrose, 

See: seeds, Ter: termite. Lopho: Lophomyrmex, Careb: Carebara. 

 

Site Time Bait Species Occurrences NRA p 

D
an

u
m

 

Day Cru Lopho sp.1 33 8 <0.001 

Day Cru Lopho sp.2 11 2 <0.001 

Day Mel Lopho sp.1 31 9 <0.001 

Day Mel Lopho sp.2 5 1 0.014 

Day See Lopho sp.2 4 0 0.025 

Day Suc Lopho sp.1 32 16 <0.001 

Day Suc Careb sp.1 8 4 0.012 

Day Suc Lopho sp.2 7 3 0.021 

Day Ter Lopho sp.1 22 6 0.020 

Day Ter Lopho sp.2 7 2 0.021 

Night Cru Lopho sp.1 22 4 <0.001 

Night Cru Careb sp.1 13 2 0.001 

Night Mel Lopho sp.1 19 10 0.001 

M
al

u
a 

Day Cru Lopho sp.1 44 5 <0.001 

Day Cru Lopho sp.1 44 5 <0.001 

Day Mel Lopho sp.2 2 0 0.015 

Day Mel Lopho sp.1 45 15 0.020 

Day Suc Lopho sp.1 39 11 <0.001 

Night Cru Lopho sp.1 40 11 <0.001 

 

iS  was positively correlated to niche plasticity (Spearman correlation: = 0.81, S = 16, p = 

0.022), indicating that species with low niche plasticity have a high segregation capacity (Fig. 4). 
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Danum and Malua had respectively 13 and 6 cases where kRS  was significant, i.e a species co-

occurred with other species less often than expected (Table 2). Overall more cases were found 

for day time (chi² test: chi² = 6.37, df = 1, p = 0.012) and the majority of the resources concerned 

were crushed insects (37%), melezitose (26%) and sucrose (21%). Among the selected species, 

only three showed segregation, of which 11 cases were represented by Lophomyrmex sp.1, 6 

cases by Lophomyrmex sp.2, and two cases by Carebara sp.1 (only in Danum). 

 

 

Discussion 
 

 Functional diversity is defined as “the value and range of the functional traits of the organisms 

in a given ecosystem” (Loreau et al. 2001). The definition is sound, but there has been much 

confusion concerning the interpretation of the value and range of functional traits. One of the 

main reasons is the lack of information on functional parameters (Hodapp et al. 2013) which 

ecological indexes are based on, and where generalizations on ecosystem functioning are still 

employed (Mouillot et al. 2005). As a consequence of these approaches, a general ecological 

Fig. 4 Species-specific segregation value (Si) plotted against niche plasticity 

(Euclidean distance between the niche in Danum and Malua). The correlation is 

significant (S = 16, p-value = 0.02 Spearman’s rho = 0.81). 
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understanding of trait variation across ecologically relevant spatial and temporal scales is lacking 

(Messier et al. 2010). 

This study establishes that traits such as temporal and food preferences can shift considerably 

between sites, to the extent where a species’ niche may be closer to another species than to its 

conspecific on another site. Additionally, we demonstrate that numerically dominant species 

displayed the lowest niche plasticity but do not necessarily show the same level of competitive 

exclusion depending on the site. Finally, our results demonstrate that species with high 

segregation capacity showed low niche plasticity.  

 

Trait values across sites 

Most species which showed food preferences were not consistent for both sites. This 

questions the categorization of food preferences as a trait (McGill et al. 2006a). Among the 

numerically dominant Carebara sp.1 did show a preference for seeds in Danum, but only 

Lophomyrmex sp.1 showed similar dietary preferences in both sites. This is consistent with 

previous research, where mostly subordinate species tend to shift their dietary preferences in the 

presence of dominant species (Wisheu 1998, Sanders and Gordon 2003). Nevertheless, the two 

dominant species did show temporal shifts, while two subordinate species (Pheidole sp.6 and 

Camponotus sp.1) did not display significant shifts in their food or temporal preferences, despite 

which their overall niche plasticity (combining time and diet) was higher than certain species 

which did. This highlights the importance of multifactorial approaches based on continuous 

values which permits quantification of the relative effect of several factors in a single ecological 

value (Agrawal and Ackerly 2007). Moreover Carebara sp.1, only showed segregation capacity, 

in one site. Hence, grouping species according to their competitive ability (Savolainen and 

Vepsäläinen 1989, Hölldobler and Wilson 1990, Andersen 1995) may be misleading as it can 

differ depending on the ecological context (Wiescher et al. 2011). The fact that the more 

competitive species showed less niche plasticity (Sanders and Gordon 2003) evokes a 

hierarchical relation between the capacity to compete and the need to adapt.  

Dominant versus subordinate 

The stronger segregation by dominants for day time in Malua could explain that the only 

temporal preferences found for any subordinate species was for night time (Euprenolepis sp.1). 

This corresponds to the one-side preferences concept where some species modify their 
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preferences in order to coexist with dominant species which do not (Wisheu 1998). In the same 

line of thought we would expect there to be no species with similar food preferences as the 

dominant species. Only the dominant Lophomyrmex sp.1 showed a significant preference for 

crushed insects, whereas carbohydrates were preferred by dominant as well as subordinate 

species. This is concordant with the fact that nitrogen sources are often scarcer than 

carbohydrates (Davidson 1998), hence a resource worth more competing for. This may also 

explain why most segregation was found on crushed insects. The most dominant species, 

Lophomyrmex sp.1, was the only one to show the same food preferences in both sites, which 

concurs with our prediction that competitive dominance and observed niche plasticity, are 

negatively related.  

 

Dominant versus dominant 

 Among the competitors in Danum, we found evidence for “competing and adapting”: 

species segregation was stronger than in Malua, and species showed stronger niche partitioning. 

In Danum, the two most dominant species showed opposite temporal specialisation, different 

food preferences, and strong segregation (Fig. 1-2; Table 2). This evokes centrifugal 

organization of a community (Wasserberg and Kotler 2006), where increased competition 

creates a standoff, niche preferences are split and each species occupies the portion where it is 

the superior competitor. However, in Malua the same species were temporally generalized and 

showed fewer cases of segregation. Similarly, Lophomyrmex sp.2 was significantly diurnal in 

Danum but temporally generalised in Malua, and showed segregation on more resources in 

Danum than in Malua.  

 

The use of functional traits in conservation 

To be useful to community ecology traits should vary more between than within species 

and preferably be measured on continuous scales. The fact that certain species show more 

similarity to other species than conspecifics highlights the importance of niche plasticity in 

defining functional traits, whereby the niche plasticity of a species can alter its ecological 

function in a given community. Numerically dominant species are often central in the stability of 

an ecosystem (Cardinale et al. 2006). In our study, they were the species with low niche 

plasticity, but nevertheless varied in temporal preference, segregation capacity, and, to a lower 
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degree, food preference. This, in spite of the fact that Malua and Danum were only 22.6 km 

away from each other and were originally connected through a contiguous habitat.  

 

Conclusion 
 

 This experimental study supports the theory that numerically dominant species tend to 

compete whereas subordinate species tend to adapt by shifting their ecological niche (Sanders 

and Gordon 2003). However, among highly competitive species, the strategy shifts to niche 

partitioning and points towards a centrifugal organization. 

Based on the three ecological aspects, i.e. resource preferences, temporal breadth and 

segregation capacity, we have shown that trait plasticity can affect the functional trait of species. 

This, in turn may have a preponderant role in ecosystem stability as for instance, functional 

redundancy an aspect which will be further discussed in the next chapter. However, our study 

only considered a limited number of traits. Research in the past has demonstrated that traits such 

as thermal tolerance (Bestelmeyer 2000), desiccation resistance (Arnan et al. 2012) may also 

play and important role in species coexistence. Community ecology needs to fully understand – 

and quantify – niche plasticity and the potential consequences of intraspecific trait variation 

(Bolnick et al. 2011, Violle et al. 2012). More empirical studies are required that focus on the 

factors that determine shifts in the realised niches, as to fully understand the influence of 

interspecific interactions on niche plasticity. In order to incorporate trait plasticity to theoretical 

models which predict ecosystem stability and community responses to environmental change. 
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Abstract 

The diversity-stability relationship has been under intense scrutiny for the past decades, 

and temporal asynchrony is recognized as an important aspect of ecosystem stability. In contrast 

to relatively well-studied inter-annual and seasonal asynchrony, few studies investigate the role 

of circadian cycles for ecosystem stability. Here, we studied multifunctional redundancy of 

diurnal and nocturnal ant communities in four tropical rainforest sites. We analyzed how it was 

influenced by species richness, functional performance, and circadian asynchrony. In two 

neotropical sites, species richness and functional redundancy were lower at night. In contrast, 

these parameters did not differ in the two paleotropical sites we studied. Circadian asynchrony 

between species was pronounced in the neotropical sites, and increased circadian functional 

redundancy. In general, species richness positively affected functional redundancy, but the effect 

size depended on the temporal and spatial breadth of the species with highest functional 

performance. Our analysis shows that high levels of trophic performance were only reached 

through the presence of such high-performing species, but not by even contributions of multiple, 

less efficient species. Thus, these species can increase current functional performance, but reduce 

overall functional redundancy. Our study highlights that diurnal and nocturnal ecosystem 

properties of the very same habitat can markedly differ in terms of species richness and 

functional redundancy. Consequently, like the need to study multiple ecosystem functions, 

multiple periods of the circadian cycle need to be assessed in order to fully understand the 

diversity-stability-relationship in an ecosystem.  
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Introduction 
 

 The stability of ecosystems has been defined as low fluctuations over time (temporal 

stability), recovery speed after disturbance (resilience), a system’s ability to maintain its original 

state after disturbance (resistance) and finally, as its ability to buffer the loss of species 

(functional redundancy, which is the focus of this study) (Loreau 2010). It has become an area of 

intense research since anthropogenic loss of diversity started to threaten ecosystem services 

important to humans (Schwartz et al. 2000, Balmford et al. 2003). Whether biodiversity loss will 

inevitably result in loss of stability has been addressed by a wide range of studies across different 

ecosystems (Walker et al. 1999, Loreau et al. 2001, Steudel et al. 2012). Generally, species 

richness has a positive effect on ecosystem stability (Naeem 1995), and this effect is especially 

strong if multiple ecosystem functions are considered simultaneously (Hector and Bagchi 2007, 

Gamfeldt et al. 2008, Isbell et al. 2011).  

Biodiversity can stabilize ecosystem functioning by making it less vulnerable to varying 

population sizes of individual species (Thibaut and Connolly 2013). If the populations of 

different species fluctuate asynchronously through time, the sum of their populations, and 

thereby their total functional contributions, varies less over time than that of any single species 

(Doak et al. 1998, Yachi and Loreau 1999, Loreau 2010, Garibaldi et al. 2011). Such temporal 

asynchrony can be manifested on multiple scales, e.g. as inter-annual variation, seasonal, and 

circadian cycles. As most work was conducted on plants, for which seasonal and inter-annual 

changes are most important (Isbell et al. 2011), few studies have investigated the role of 

circadian cycles for ecosystem functioning (but see Andresen 2002, Boulay et al. 2007). 

However, in taxa which include diurnal, nocturnal and diel species, their activity distribution 

over the circadian cycle influences the overall contribution of the taxon to ecosystem 

functioning. If functions are taken over by different species during different time periods, the 

stability of the whole system increases since the functions rest on more species.  

A key aspect of the diversity-stability relationship is the concept of functional redundancy 

(FR). It is defined as the number of species contributing to an ecosystem function (Lawton et al. 

1993), and implies that the presence of multiple, functionally similar species can compensate for 

the decline or extinction of functionally relevant species after environmental change (Rosenfeld 

2002a, 2002b). Hence, high functional redundancy increases the overall stability of ecosystem 
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function since the functions rest on more species (Walker et al. 1999). How similar do species 

have to be for being considered functionally similar? Functional redundancy can vary depending 

on the number of functions or functional traits distinguished by the researcher (Petchey and 

Gaston 2002, Rosenfeld 2002a). Many studies therefore measured functional diversity rather 

than functional redundancy. Such metrics are based on functional groups, morphological 

characters, phenology, life-history traits and food web complexity (Walker et al. 1999, Dı́az and 

Cabido 2001, Bihn et al. 2010, Woodcock et al. 2013). Although the advantage of such methods 

lies in the straightforward approach of focusing on the functional divergence between species 

(Mason et al. 2005), it remains unclear which of the traits are actually relevant for ecosystem 

functioning (Hodapp et al. 2013). Here, we therefore introduce a reversed approach where, 

instead of analyzing how many specific functional traits a given species presents, we study seven 

a priori defined ecosystem functions and assess each species’ contribution to them in order to 

calculate functional redundancy. 

The goal of this study was to investigate which factors influence multifunctional redundancy 

in tropical ant communities, with a focus on circadian cycles. Ants represent one of the most 

diverse and abundant animal taxa in tropical rainforests and are 'ecosystem engineers'. Due to 

their high overall biomass, probably one of their most important impacts on ecosystem processes 

happens through their consumption of resources, e.g. predation, nectarivory, granivory and 

scavenging. The latter is related to detritivory, for which ants also play an important role in the 

nutrient cycle (Folgarait 1998b). Here, resource consumption can be regarded as a measure of 

functional performance, analogous to primary production in plants. Contrary to the agricultural 

concept of overyielding where factors that increase performance are the main research goal 

(Hector 2006), our focus is on the relation between functional performance and stability. High 

functional performance in an ecosystem can be sustained either by relatively even contributions 

of many species, or by outstanding functional performance of a single species, which dwarfs the 

contribution of the others (Grime 1998). Thus, the evenness of functional contributions, and its 

relation to overall functional performance can affect functional redundancy (Fig. S1). 

Since assessing single ecosystem functions can be misleading (Hector and Bagchi 2007, 

Gamfeldt et al. 2008, Byrnes et al. 2014), we measured average redundancy for seven different 

functions, all of which are related to resource consumption. In order to assess the generality of 

our results, we studied forests that differed in biogeographic region and disturbance status. To 
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obtain an accurate estimate of each species’ performance on multiple functions, we incorporated 

empirically measured functional traits such as biomass, recruitment and spatial frequency in our 

calculation of functional redundancy. We analyzed the impact of species richness and functional 

(trophic) performance on functional redundancy, and tested whether these impacts differ 

between sites and between diurnal and nocturnal ant communities. A special focus was placed on 

the contribution of the highest-performing species. We then studied the effects of daytime, 

species richness and trophic performance on FR. If, at high levels of species richness, high 

trophic performance is mainly due to single, high-performing species, we should expect a 

decreasing functional redundancy ('sampling effect', Cardinale et al. 2006). In a subsequent step, 

we analyzed the increase in functional redundancy by shifting from one time period to the whole 

circadian cycle. We tested whether the increase was determined by species richness, circadian 

asynchrony, and/or functional performance at grid point level.  

 

Materials and Methods 

Study sites and sampling design 

 Ant ecosystem functions were investigated in two neotropical (French Guiana) and two 

paleotropical sites (Borneo). On each continent, we sampled a primary and a secondary forest, 

henceforth abbreviated as NPF (neotropical primary forest), PSF (paleotropical secondary forest) 

and so on. In the neotropics, the Les Nouragues Nature reserve was studied as primary forest 

(NPF, 4°05′N-52°41″W), which covers more than 100.000 ha of pristine forest. The secondary 

forest site was a 16 ha forest fragment, bordered by urban grass and surrounded by residential 

areas on the Campus Agronomique in Kourou (NSF, 5°09′N-52°39″W). In the paleotropics, 

primary forest was sampled in the Danum Valley Conservation Area (PPF, Sabah, Malaysian 

Borneo; 4°55′N-117°40′E). The site is part of a 438 km² primary forest dominated by 

Dipterocarpaceae trees. As secondary forest, the Malua Forest Reserve was chosen (PSF, 

4º24′N-118°14′E). It comprises 35 km² of production forest, which was selectively logged in the 

1980s.  

On each site, we established four plots (90 m²) of 4 x 4 grid points, i.e. a total number of 64 

grid points. Sampling was performed using pitfalls and seven different baits. We presented seven 

baits and three pitfalls at every grid point during day and at night, but only one bait or one pitfall 
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at a given day (Andersen 1994). We used seven complementary food baits which reflected 

natural resources available to ants in a rainforest: sucrose, melezitose, crushed insects, bird 

faeces, a seed mixture, living termites and living grasshoppers (Houadria et al. 2015). See 

supplement for more details on the sites and the sampling methods. In the context of our study, 

we define ecosystem functions as the consumption rate of these resources; each resource type is 

assumed to represent one function. 

 

Data analysis 

Defining the trophic performance of a species for a specific resource 

To estimate the relative contribution of a species i to the consumption of a resource , we 

calculated its species- and resource-specific trophic performance as  

 eqn.1: s  ,,

4/3

, iiii ARWMTP  ,      

where Mi is the dry mass of species i, Wi, is the median number of workers of species i at 

resource , and ARi, is the attraction rate of species i to resource . According to metabolic 

theory, the resource quantity consumed by any animal, i.e. its consumption rate, is proportional 

to the 3/4
th

 power of its biomass M (Allen et al. 2002). Wi, is an estimate of how much species i 

recruits to resource , and was calculated to reduce variation from stochastic factors like nest 

proximity or the time elapsed since a resource was discovered. The attraction rate was an 

estimate of the likelihood that species i would recruit to resource  given its presence on a grid 

point, and was calculated as  

          eqn.2,  

where ,if  denotes the number of times it was found foraging on a resource  during day or 

night (range 1-128) and iJ   is its incidence, i.e. the number of grid points where it was found at 

least once in pitfalls or baits (range 1-64). For iJ , since both methods were complimentary in 

sampling additional species on certain gridpoints, data from baits and pitfalls were combined to 

obtain the most precise information on a species’ spatial presence. Incidences at pitfalls and 

incidences at pitfalls and baits combined were highly correlated for all four sites (Fig. S4). 

Hence, combining the two methods did not favour certain species, or bias the metric towards bait 
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data. The attraction rate is low for a common species that rarely recruited on a resource, but high 

for a rare species that always recruited.  

 

Calculating functional redundancy 

Functional redundancy for a single resourceat grid point k and time t (SFR,k,t) was calculated 

as its effective number of species, where each species was weighted according to its trophic 

performance s ,iTP . We included s ,iTP  of all species caught at grid point k during time t in any 

bait or pitfall. This way, we used information about the presence of less efficient and potentially 

behaviourally non-dominant species, such that competitive exclusion from a single bait should 

not affect our estimate of functional redundancy. We first calculated the single-function Shannon 

entropy (i.e. Shannon diversity) of these trophic performances for resource  at grid point k and 

time t as 

                      eqn.3 

where sTPi is the species- and resource-specific trophic performance of species i for resource ; 

Ik,t is the number of species occurring at grid point k during daytime t; and gTP,k,t is the grid 

point-and resource-specific sum of trophic performances for all species at grid point k for 

resource  and time t:    



tkI

i

itk sTPgTP
,

1

,,,     eqn. 4  

Shannon entropy reflects the uncertainty in the outcome of a sampling process (Walker et al. 

1999) and is a commonly used diversity measure in ecology. Eqn. 3 calculates Shannon diversity 

of the relative functional contributions of all species at a grid point. Single-function redundancy 

was calculated as its exponential form: tkSH

tk esFR ,, 

,,


  .   eqn.5 

 This term expresses the 'effective' number of species fulfilling the function. Such an effective 

number reflects the relevance of different trophic performances in a community more accurately 

than the Shannon entropy (eqn. 3) itself would (Jost 2006). If trophic performance was equal for 

all species, sFR,k,t would equal the species richness for function , but it is lower if species 

contribute unevenly. Multifunctional redundancy (FRk,t, henceforth, ‘functional redundancy’ or 

‘FR’) on grid point k and time of day t was calculated as the mean of the single-functional 

redundancies (sFR,k,t) of the seven resources. 
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Statistical analysis 

 First, we compared species richness, functional redundancy between sites using ANOVA and 

Tukey HSD tests. Comparisons between diurnal, nocturnal and circadian (for day and night 

communities pooled) values were conducted using paired t tests. For each site, we determined 

the single highest-performing species based on its overall (site-level) trophic performance across 

all grid points. Such a species had high species-specific trophic performance coupled to high 

spatial frequency. We tested whether trophic performance and functional redundancy were 

higher on grid points with or without this species using Wilcoxon tests. Furthermore, temporal 

specialization of this species was assessed by comparing the number of grid points where it was 

captured during day and at night with ² tests. 

Subsequently, we analyzed which factors affect FRk,t. We used a linear mixed-effects model, 

with FRk,t as response variable, grid point k as random factor, and the following fixed effects: 

local species richness Ik,t (i.e. total number of species which were found at baits and pitfalls), 

multifunctional trophic performance TPk,t, time of day t, and site (PSF, PPF, NSF, or NPF). TPk,t 

was calculated as the total trophic performance per grid point and daytime that was done by all 

species for all seven functions; values were standardized to account for variation in overall 

functional performance between sites, resources, and times of day. All metrics were calculated 

for each site separately. Due to interactions of ‘site’ with other factors in a comprehensive model 

(Table S3), we analysed each site separately. 

In a further analysis, we asked which factors affect the grid point-wise gain in functional 

redundancy (FRk) accomplished through combining nocturnal and diurnal ant communities. 

The response variable was FRk, i.e. the increase in FR from the circadian cycle (pooled diurnal 

and nocturnal communities) compared to the average of diurnal and nocturnal FR. This gain 

might be affected by local species richness, the overall trophic performance TPk,t of all species 

present at a grid point, and the functional circadian asynchrony CAk between species. CAk was 

calculated as the Bray-Curtis distance between the species present during day or night at the 

same gridpoint. To account for interspecific differences in functional performance, we used 

species-specific trophic performance values instead of presence/absence values. If trophic 

performance was equal for all species, asynchrony would equal the diversity between day and 

night based on presence/absence data. Like for functional redundancy and species richness, FR 



Chapter III: The relation between circadian asynchrony, functional redundancy and trophic 
performance in tropical ant communities 

- 65 - 

 

Mickal  Yann  Isani  HOUADRIA 
Department of Evolutionary Biology, Johannes Gütenberg University, Mainz, Germany 

October 2015 

and circadian asynchrony were first compared between sites using ANOVA and Tukey HSD. 

We then constructed a linear model with FR as response variable and circadian asynchrony 

CAk, trophic performance TPk (summed over the two time periods), and species richness Ik as 

explanatory variables. Due to interactions of 'site' and other variables in a comprehensive model 

(Table S5), we calculated site-specific models. 

In each model, interactions between all explanatory variables were allowed. Higher-level 

interactions were removed from the models if not significant. The importance of each factor or 

interaction was evaluated using ² tests (FR, linear mixed-effects models) or F tests (FR, linear 

models). For PSF, two grid points with outstanding trophic performance (up to five times the 

average TP,k,t) were removed from the models. These points were the only ones to significantly 

affect any model when omitted. All analyses were conducted using R version 2.15.2 (R 

Development Core Team 2012). Regression planes were created using the effects package for R 

(Fox 2003). 

 

Results 

Species richness and high performing species across sites 

 The four rainforest sites differed in local species richness and the presence of high performing 

species (Fig. 1a, Table S1, S2). Among the four sites, the paleotropical secondary forest (PSF) 

showed the lowest species richness per grid point regardless of time period, although it had the 

highest species richness at the site level (Fig. 1a). The paleotropical sites were dominated by a 

single Lophomyrmex species. The species occurred in PPF and PSF on 60 and 62 gridpoints 

(respectively) out of 64, and accounted for 57% of the overall trophic performance in both sites 

(Fig. 2, blue species, Fig. S4). The highest performer in NPF was Camponotus femoratus (40% of 

total performance), it occurred only on 32/64 grid points. In NSF, it was another Camponotus 

species which occurred on 52/64 grid points. This species accounted for 46% of the total 

performance, but was mainly present at night (Fig. 2, green species). Grid points where the high 

performing species was present had a higher trophic performance in PSF (W = 65, P = 0.014), 

NSF (W = 750, P = 0.0024) and NPF (W = 723, P < 0.0001), but not in PPF (W = 694, P = 0.15). 

However, the dominance of such key performers was not necessarily associated with a loss in 

functional redundancy (all P > 0.2, except NPF with W = 1604, P = 0.035). The high-performing 
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species was temporally specialized only in NSF (nocturnal; ²= 17.8; P < 0.0001; other sites: all 

² < 1.7; P > 0.19) 

 

 

 

 

 

 

 

Fig. 1 (a) Species richness, (b) functional redundancy, (c) circadian asynchrony, and (d) circadian 

gain in functional redundancy per grid point in PPF, PSF, NPF and NSF. The graphs show mean and 

standard error. Sites with same letters are not significantly different according to Tukey HSD.The 

numbers above the plots in (a) give the site-level species richness. (a)-(c): Each graph shows 

circadian (CI, blue), diurnal (DI, orange) and nocturnal (NO, black) values. Nocturnal and diurnal 

species richness, and nocturnal and diurnal FR differed for NPF and NSF (paired t test: p < 0.001), 

but not for PPF and PSF (p > 0.05). For species richness and FR, both nocturnal and diurnal values 

differed from circadian ones for all four sites (paired t tests: all p < 0.0001).  
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Functional redundancy and circadian dynamics across sites 

 Presumably due to the low species richness per grid point and the nearly ubiquitous high 

performing species, functional redundancy was lowest in PSF (Fig. 1b, Table S1). In NSF, 

functional redundancy was highest, with the NPF and PPF in between NSF and PSF (Fig. 1b). 

Note that, for each grid point, FR was based on the sTPi, values of all species captured at the 

grid point using baits or pitfalls. Thus, we avoided potential bias in FR assessment due to 

competitive exclusion at baits. In the two neotropical forests, species richness and functional 

redundancy were higher during the day than at night. This was not the case in the two 

paleotropical forests, where species richness and functional redundancy did not differ between 

day and night (Fig. 1a, 1b, Table S2). In the same line, circadian asynchrony in the two 

neotropical sites was higher than in paleotropics (Fig. 1c). Circadian gain in functional 

redundancy (FR) was highest in the two neotropical sites, intermediate in PPF and lowest in the 

PSF (Fig. 1d).   

 

Fig. 2. Relative contributions of different species to trophic performance per grid point in PSF and 

NSF for different time frames. Each bar represents one of the 64 grid points; every color per site 

represents a different species. The bars are ordered left to right by maximum to minimum 

contribution of the highest-performing species. 

(d) NSF (night) 

(a) PSF (day) 

(b) PSF (night) 

(c) NSF (day) 
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Table 1. Effects of species richness, trophic performance (TP), and 

time of day on FR, analyzed for each site separately using a linear 

mixed-effect model. All variables have 1 df. Significant P values 

are denoted with asterisks (*p < 0.05; **p < 0.01; ***p < 0.001). 

See Table S1 for separate day/night analyses. The abbreviations 

stand for ‘neotropical/paleotropical,primary/secondary forest’. 

 

Site Factor ² P   

PPF 

Richness 136.05 <0.0001 *** 

TP 7.42 0.0065 ** 

Time 0.016 0.90  

Richness:TP 0.12 0.73  

Richness:Time 0.58 0.45  

TP:Time 2.50 0.11  

Richness:TP:Time 14.00 0.00018 *** 

PSF 

Richness 94.97 <0.0001 *** 

TP 1.72 0.19   

Time 6.06 0.014 * 

Richness:TP 8.68 0.0032 ** 

 NPF 

Richness 446.95 <0.0001 *** 

TP 47.23 <0.0001 *** 

Time 1.52 0.22   

Richness:Time 4.02 0.045 * 

TP:Time 4.61 0.032 * 

NSF 

Richness 156.96 <0.0001 *** 

TP 0.03 0.87   

Time 7.14 0.0008 ** 

Richness:TP 4.44 0.035 * 

TP:Time 6.72 0.0095 ** 
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Functional redundancy - impacts of species richness, trophic performance and time of day  

In all four sites, species richness had by far the greatest effect on functional redundancy 

(Table 1, Fig. 3). The effect was always positive, strongest in NPF and weakest in PSF (Table 1). 

Time of day influenced functional redundancy directly and via interactions. In addition to the 

above-mentioned species richness differences between day and night, functional redundancy was 

lower during the night even for equal species richness and trophic performance in NSF and PSF 

(significant 'time' effect; Table 1). Moreover, the positive effect of species richness on functional 

redundancy in NPF was weaker at night than during the day (richness:time interaction, Table 1, 

S4).  
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Interactive effects of trophic performance and species richness on functional redundancy 

Effects of trophic performance on FR varied between sites and times of day. In NPF, 

functional redundancy invariably decreased with trophic performance, but the effect was 

stronger at night. In NSF, trophic performance positively affected FR, but only in nocturnal 

communities (TP:time interactions Table 1, S4; Fig. 3). Except for NPF, effects of trophic 

performance interacted with species richness. At low richness levels, trophic performance 

enhanced functional redundancy, but, for higher species richness, this effect became weaker (in 

NSF and diurnal PPF) or even negative (in PSF) with higher values of overall trophic 

performance (Fig. 3, Fig. S2). However, in nocturnal communities in PPF, the effect of trophic 

performance on functional redundancy became more positive at high species richness levels (Fig. 

3), which explains the three-way interaction of species richness, trophic performance and time 

(Table 1). Overall, the effect size of species richness on FR was negatively correlated to the 

relative trophic performance contribution of the high-performing species (Spearman’s  = -0.88; 

p = 0.0072; Fig. 4a). The species richness effect was low in PPF and PSF, where the most 

frequent species was a temporally unspecialized, ubiquitous high performer. It was strongest in 

Fig. 3 Functional redundancy plotted against trophic performance and species richness in (a) PPF, 

separately for day and night, (b) PSF, (c) NPF and (d) NSF. The graphs show values for day (red) and 

night (black) as well as regression planes calculated with linear mixed-effects models. In PPF, diurnal 

and nocturnal communities were analyzed separately due to a 3-way interaction of time, trophic 

performance and species richness (Table 1). 
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NPF, where the high performer was not the most common species (NPF; Fig. S3). In diurnal 

NSF, the richness effect was low although the high performer was a night specialist and 

contributed less during the day. Presumably, this was due to additional, high performing species 

during day time (Fig. 2). 

Table 2. Effects of species richness, circadian asynchrony 

and overall trophic performance (during day and night, TP) 

on circadian gain in functional redundancy (
i
FR) for each 

site, analyzed with a linear model. All variables have 1 df. 

Significant P values are denoted with asterisks (*p < 0.05; 

**p < 0.01; ***p < 0.001). The abbreviations stand for 

‘neotropical/paleotropical primary/secondary forest’. 

 

Site Factor F P   

 PPF 

Richness 8.89 0.0041 ** 

Asynchrony 20.08 <0.0001 *** 

TP 1.83 0.18  

PSF 

Richness 9.71 0.0029 ** 

Asynchrony 3.06 0.086  

TP 0.02 0.90  

TP:Richness 5.17 0.027 * 

 NPF 

Richness 14.67 0.0003 *** 

Asynchrony 5.61 0.0211 * 

TP 7.81 0.0070 ** 

NSF 

Richness 26.91 <0.0001 *** 

Asynchrony 31.84 <0.0001 *** 

TP 1.90 0.17   

     

Circadian gain in multifunctional redundancy: FR 

Both species richness and asynchrony enhanced FR in all sites except PSF, where the 

effect of asynchrony was marginal (Table 2). Compared to the effect of species richness on FR, 

its effect on FR was much lower, and comparable to effects of asynchrony (Tables 1, 2). 

Trophic performance reduced FR in NPF, but had no effect in PPF and NSF. In PSF, trophic 
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performance had a negative effect onFR at low levels of species richness, but a positive effect 

at high richness levels (Table 2, Fig. S2). Notably, circadian FR was similar in NPF and PPF 

despite different FR and circadian asynchrony (Fig. 1b). 

 

Discussion  

Functional asynchrony is seen as an important aspect of ecosystem stability (Loreau 

2010). To date, research on temporal asynchrony focused on large scales: asynchrony over 

seasons, years and even decades (Isbell and Loreau 2013). However, to fully understand the role 

of temporal asynchrony for functional redundancy and the diversity-stability relationship, as for 

the spatial dimension (Wang and Loreau 2014), it is necessary to investigate its role across 

contrasting temporal scales, including circadian cycles (Levin 1992, Whittaker et al. 2001). 

Across our four study sites, we found highly variable effects of species richness, asynchrony and 

time of day on functional redundancy. Species richness always enhanced redundancy, but its 

effect size was lowered if highly efficient species were frequent in space and time. Subsequently, 

the level of functional asynchrony between night and day was of high importance for circadian 

stability. Finally, the interaction effect of trophic performance and species richness on functional 

redundancy could be explained by the sampling effect, but was specific to certain sites and/or 

time frames. 

Circadian asynchrony, high performing species and their effect on functional redundancy  

 High species turnover between day and night is common in many taxa (Fellers 1989, 

Andresen 2002, Devoto et al. 2011, Harvey et al. 2012), but their implications to ecosystem 

functioning have been barely studied till now. Here we showed that circadian asynchrony was 

important in the two neotropical sites, but not in the paleotropical ones. Communities 

characterized by high circadian asynchrony should have a higher FR, and hence a relatively 

higher circadian redundancy, than those where nocturnal and diurnal communities are similar. 

oth 

metrics being higher in the neotropics than in the paleotropics. However, these differences 

between sites were not always reflected in circadian functional redundancy (e.g. between PPF 

and NPF), indicating that other factors can overrule this effect.  
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Circadian asynchrony is influenced by the temporal breadth of the ant species involved, 

especially the high performers. Spatial and temporal ubiquity of a high performing species (as in 

PSF) will result in low circadian asynchrony. In contrast, temporal specialization of the high 

performer (as in NSF) will be detrimental for the functional redundancy at the concerning 

temporal specialization of highly common and highly efficient species can affect ecosystem-

level properties. Whether the traits of dominant species are similar or dissimilar to the remaining 

community (Grime 1998, Hillebrand et al. 2008), will have considerable consequences on 

circadian FR. Hence, studying only one time period may be as misleading as studying only one 

ecosystem function when investigating the diversity-stability relationship (Byrnes et al. 2014) 

 

 

 

 

 

 

 

 

 

Fig.4 (a) Effect size of species richness on diurnal or nocturnal FR in relation to the relative contribution 

(in %) of the most performant species TP. Each data point represents the effect size (Table S4) of a site 

during day (yellow) or night (black).  

(b) Effects of species richness, circadian asynchrony and the contribution of a high-performer on 

circadian functional redundancy. Grey bars (left) represent high or low levels of circadian asynchrony. 

The right-hand bar shows the percent contribution of the highest-performing species to overall trophic 

performance; the slope of the regression lines represents the effect size of species richness on circadian 

functional redundancy. We define 3 major scenarios:  
(A) Low circadian asynchrony, and trophic performance mostly done by a single, high-performing species 

results in the weakest effect of species richness on FR (PSF, PPF). 
(B) High circadian asynchrony, and trophic performance mostly done by a single, high-performing species 

results in a stronger effect of species richness on FR (comparable to NSF). 
(C) High circadian asynchrony, and low relative contribution of the high-performing species results in the 

strongest effect of species richness on FR (NPF). 
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Effects of high trophic performance and species richness on functional redundancy 

Species richness has been seen as a good predictor of stability (de Mazancourt et al. 

2013) and a useful surrogate of functional diversity (Bihn et al. 2010). We evaluated the 

generality of this hypothesis by studying forests of different biogeographic region and 

disturbance status. Indeed, species richness always enhanced functional redundancy in our data. 

Nevertheless, effect sizes were highly variable. For sites with similar mean species richness, 

different levels of FR were obtained (e.g. in NPF and NSF), probably because the high 

performing species differed in commonness and temporal breadth across sites (Fig. 4b). 

In three of four sites, grid points where a high performing species was present had a 

significantly higher trophic performance than gridpoints where it was absent. This suggests that 

high levels of trophic performance can only be achieved through the presence of few, highly 

efficient species, but not by even contributions of several, less efficient ones. These data 

corroborate a recent meta-analysis, where performance of polycultures was similar, but not 

higher than performance of monocultures of the single, most efficient species (Cardinale et al. 

2006). Highly efficient species, however, make the function they perform vulnerable to species 

loss, since their extinction is harder to buffer by the other species. If high performance on a grid 

point is invariably due to the presence of highly efficient species (such as in NPF), trophic 

performance will have a negative effect on functional redundancy due to the uneven functional 

contributions of the species involved (Fig. S1a). In the other sites, trophic performance positively 

influenced functional redundancy at low levels of species richness, but at high species richness, 

this effect became weaker (NSF, diurnal PPF) or even negative (PSF). In our opinion, this can be 

explained by the sampling effect (Cardinale et al. 2006): at high levels of species richness, there 

is a higher likelihood of obtaining highly efficient species, which increase trophic performance 

but reduce functional redundancy. In PSF, the TP:richness interaction suggested that the 

sampling effect was strongest, although a high-performer was nearly ubiquitous at this site. Grid 

points with high species richness at PSF brought forward species with even higher performance 

than the overall high performer (Fig. 2, S1b). Thus, we suggest that the sampling effect is 

genuine and occurs in biological communities, but is specific to certain community assemblages 

and time frames.   
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Conclusions 

 By assessing multiple ecosystem functions during day and night across varying habitats, we 

showed that functional redundancy can differ between day and night, and circadian asynchrony 

can greatly influence the circadian gain in functional redundancy. Diurnal and nocturnal 

ecosystem properties of the very same habitat can markedly differ in terms of species richness, 

functional redundancy and the presence of high performers. Our study thus highlights that the 

importance of studying multiple time periods in order to understand the diversity-stability 

relationship.  

We showed that the influence of species richness on functional redundancy depends on the 

relative functional contribution of the most efficient species, which in turn is affected by its 

spatial frequency and temporal breadth. High trophic performance was generally due to few, 

highly efficient species, but rarely to even contributions of less efficient ones. We suggest that 

circadian asynchrony and the functional contribution of efficient species jointly influence the 

effect of species richness on circadian functional redundancy (Fig. 4).  

The two tropical regions differed markedly in terms of asynchrony, and the forest condition 

(secondary/primary) was no clear indicator of its level of functional redundancy. Moreover, the 

‘sampling effect' was specific to certain sites and/or time frames. Hence, generalizations across 

varying community assemblages are hard to apply. Site differences may be caused by frequency 

and temporal specialization of high performers, but also by other factors such as spatial 

heterogeneity or the degree of competitive exclusion.  

Compared to larger-scale experiments, fine-scale studies provide limited predictability of an 

ecosystem, but may enable to pinpoint more vulnerable habitats (with lower asynchrony or lower 

redundancy) without the logistical constraints of long-term experiments. By analysing 

asynchrony through a finer scale, we hope to contribute towards building a broader framework 

helpful for conservation purposes.  
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General Discussion 

 

An extensive body of research has focused on the biodiversity ecosystem functioning 

(BEF) relation of primary producers, where the ecosystem provides valuable economical 

services (Balvanera et al. 2006, Isbell et al. 2011, Schneiders et al. 2012). In order to understand 

the mechanisms of coexistence in higher trophic levels and how it relates to the (BEF) relation 

between species, researchers have inferred functional aspects from life history traits, 

morphological characteristics and isotope analysis. As we have argued previously, if this was an 

important first step, it nonetheless represented a crude measure of the relation between traits and 

functional performance. By analysing the contribution of different species to a given ecosystem 

function (our reversed approach), we may be limiting the number of trophic functions we might 

encompass. But the relation between the species of a community and each trophic function was 

empirically crystal clear and enabled us to provide the Trophic Performance index (TP) found in 

chapter 3. This index was insightful in enabling us to quantify the relative contribution of 

different species to a given ecosystem function and measure accurately the stability of an 

ecosystem through functional redundancy.  

Trophic Performance 

Among the elements integrated in this index, two deserve particular attention. Firstly, 

assessing each species’ capacity to consume resources can be regarded as a measure of 

functional performance, analogous to primary production in plants. It was estimated, according 

to the metabolic theory, that the resource quantity consumed by any animal, i.e. its consumption 

rate, is proportional to the 3/4
th

 power of its biomass M (Allen et al. 2002) for a given set of 

temperatures and taxa; the theory is sound but challenging with regard to polymorphism in ant 

species (Morrison 2000). With dimorphic species (major and minor), an average ratio may be 

calculated if enough recruitment on each bait has been quantified. However, for polymorphic 

species (major, media, minor), the range of different sizes disables a possible ratio (but see Bihn 

et al., 2010), and only an average biomass may be estimated over a vast number of weighed 

recruitments. Firstly this implies an even distribution of different casts within and out of a 

colony. Secondly determining the relative abundance of a given species for a specific resource is 

a problematic issue. Whatever the mathematical tool (mean, weighted mean, median), several 

ecological factors may influence these values with nest proximity being the most problematic. 
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Therefore species abundances and frequencies need to be corrected by taking in consideration 

the spatial distribution of species. Even though pitfall traps may be slightly biased towards 

species that fall into traps more readily than others (Stuble et al. 2013). To my knowledge they 

represent the only base line to correct for relative frequencies of the species actively foraging on 

the surface, and have also been used in relation to baits to define ecologically dominant species 

(Andersen 1992).  

Baiting method 

 The baiting method established during my PhD is pioneer in quantifying the BEF relationship 

in invertebrates and therefore needs to be thoroughly discussed. The advantages of traditional 

cafeteria experiments with monitoring are that it enables us to assess functional traits such as 

preferred food and segregation behaviour (Dejean et al. 1999, Sanders and Gordon 2003, Menzel 

et al. 2012). Even though presenting several baits simultaneously does allow us to define a 

species preferred food, this approach fails to provide information of what a species may forage 

besides its preferred food. Moreover, this type of sampling is limited in the number of replicates 

one can observe simultaneously. Additionally, the identification and quantification by 

observation of morphospecies may be hazardous in certain hyper diverse genera (e.g. Pheidole, 

Solenopsis), particularly at night. The method of sampling we devised using retrieval boxes was 

conceived to exploit the advantages of cafeteria experiments while reducing the limitations 

related to monitoring. The absence of monitoring on baits enabled us to increase the number of 

samples left out (32 per usual sampling session and 1024 in total per site) and retrieving the ants 

for a more accurate quantification. We expected that the information usually gathered by 

monitoring would be instead gained by the sheer number of replicates. Our method did indeed 

enable the demonstration of segregation capacities, temporal and dietary preferences. Our results 

also revealed that previous measures may have overlooked important aspects. For instance, 

several of the specialised predatory species we sampled were found predating but also 

scavenging (odontomachus, pachycondyla), which would not have been detected through isotope 

analysis. Another predatory species (myoponera, unpublished data) was found frequently 

feeding on carbohydrates, a finding which we would not expect based on morphological traits.  

Combining passive and active sampling, such as the data of pitfall and bait sampling 

(Andersen 1992, Andersen and Patel 1994, Sanders and Gordon 2003, Stuble et al. 2011, 

Baccaro et al. 2012), provides a more thorough assessment of a species abundance and spatial 
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distribution and valuable information on the success rate of our baiting method. Indeed, an issue 

arose concerning big predatory species that seldom recruits. Even though live baits were 

displayed in a manner that was thought to slow down prey removal, solitary predatory ants’ 

frequencies on baits (e.g Pachycondyla, Odontomachus) were undermined in comparison to their 

pitfall frequency. It would, therefore, appear that the display needs improving or that monitoring 

is still required for live baits. Species on other baits were not undermined, but certain points are 

nonetheless worth mentioning. Liquid baits such as carbohydrates must be carefully displayed in 

relation to the environmental conditions. Depending on sugar concentration, temperature and 

humidity the liquid solutions may evaporate sooner or later (during the 90 min display) which 

may alter its level of attractiveness. Oleic acid was initially thought to be an interesting attractant 

in relation to elaiosome seeds (Reifenrath et al. 2012), which would enable us to distinguish 

between ant functioning as seed dispersers or granivores. However, this oily substance is also 

found in decaying insects and may have simply attracted ants due to its lipid rich content; 

additionally, we lacked the botanical information about the presence or not of elaiosome plants, 

which made this bait difficult to define as a trophic function for specific ecosystems. 

Mechanisms of coexistence in relation to niche plasticity 

 The first chapter of this thesis demonstrates that temporal and dietary differences may be 

found on community as well as on species level.  

Community compositions were clearly different at night or day, which concords with previous 

findings where temporal partitioning was the most relevant (among the trade-offs tested) aspect 

of coexistence between species of a same community (Fellers 1989, Albrecht and Gotelli 2001, 

Stuble et al. 2011). Based on the multifunctional approach of this thesis, we were able to go a 

step further and also analyse resource partitioning through a range of complementary baits. Even 

though a number of clear differences were found between certain resources, some types of baits 

were similar in the communities that they attracted (Chapter 1). Even though certain species 

were present on only one of these resources, the bulk of the recruitments were performed by 

analogous ants, thus rendering them similar on a community level. It is therefore interesting to 

look at each species separately to further understand the relation between niche specialisation 

and coexistence. 

Species frequently presented temporal and food preferences, but they seldom displayed strict 

temporal or dietary exclusiveness. In chapter 1 we saw that certain species showed differing 



General Discussion - 79 - 

 

Mickal  Yann  Isani  HOUADRIA 
Department of Evolutionary Biology, Johannes Gütenberg University, Mainz, Germany 

October 2015 

temporal preferences (but never opposite) depending on the sampling method. These facts 

suggest that species-realized niche traits may display a certain level of flexibility in relation to 

their fundamental niche. Niche plasticity may enable species to coexist via niche pre-emption 

where species may respond to the presence of a superior competitor by switching to an 

alternative, less used resource (Sanders and Gordon 2003, Ashton et al. 2010). These levels of 

trait flexibility are of growing concern both in plant and animal ecology (Heemsbergen et al. 

2004) as functional traits may vary as much within as between species (Valladares and 

Niinemets 2008) and, in consequence, impair the explanatory power of trait-based analyses in 

predictive models (Berg and Ellers 2010). Hence, the question remains whether fixed traits can 

be generalized for a species with no consideration for the ecological context (Messier et al. 

2010). This thesis demonstrated that temporal and dietary preferences may significantly differ 

between sites (chapter 2), to the extent that certain species niches may be closer to other species 

than conspecifics, and that the level of plasticity is dependent on the dominance hierarchy 

established in a community, which is, in turn, dependent on the ecological context. Hence 

ecological indices which base diversity on morphological characteristics or life history traits (Ilg 

and Foeckler 2012, Demars et al. 2012, Sternberg and Kennard 2014, Mlambo 2014) must take 

into consideration the trait plasticity of a species in relation to its ecological context. Especially 

since these are precisely the type of traits that are highly plastic in response to environmental 

change (Roff et al. 2002). The different levels of plasticity among species (and within species) 

convey differences in realized niches that emphasize the functional asynchrony of species, an 

essential aspect of ecosystem stability (Loreau 2010). This is a vital feature of our understanding 

of stability and how species within a community may respond to perturbations such as habitat 

disturbance or climate change. Once again our current knowledge is mostly focused on the 

response diversity of plants (Laliberté et al. 2010) while little is still known for higher trophic 

levels. Chapter 2 is only a first step in bridging this gap. 

Ecosystem stability 

 Climate change and other human-driven (anthropogenic) environmental changes will continue 

to cause biodiversity loss in the coming decades (Sala et al. 2000), in addition to the high rates of 

species extinctions already occurring worldwide (Stork 2009). It is therefore essential to clearly 

understand the mechanisms that promote stability in relation to biodiversity. For instance if the 

populations of different species fluctuate asynchronously through time, the sum of their 
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populations, and thereby their total functional contributions, varies less over time than that of 

any single species, which enhances stability (Doak et al. 1998, Yachi and Loreau 1999, Garibaldi 

et al. 2011). While this is true in principle, this assertion does not take into consideration the 

ecosystem performance of different species. Whether the traits of dominant species are similar or 

dissimilar to the remaining community (Grime 1998, Hillebrand et al. 2008), will have 

considerable consequences on the asynchronous population fluctuation. In chapter 3 we 

demonstrate that most high levels of trophic performance can only be achieved through the 

presence of few, highly efficient species, and not by even contributions of several, less efficient 

ones. Hence stability through asynchrony depends on the even functional performance of 

different species and their temporal asynchrony in a given community. 

Most work considering temporal asynchrony was conducted on plants, for which seasonal and 

inter-annual changes are most important (Isbell et al. 2011), while few studies have investigated 

the role of circadian cycles for ecosystem functioning (but see Andresen 2002, Boulay et al. 

2007). Chapter 3 demonstrates that diurnal and nocturnal ecosystem properties of the very same 

habitat can markedly differ in terms of species richness, functional redundancy and the presence 

of high performers. Hence even short term functional asynchrony may influence the stability of 

an ecosystem and needs to be considered in predictive models. 

 

Future Research: expanding the niche concept 

The two main aspects of this thesis, mechanisms of coexistence and ecosystem stability, 

are governed by similar aspects where, in general, the conditions that promote species 

coexistence within communities also promote the long term stabilizing effect of biodiversity on 

ecosystem functioning. These aspects are intertwined and limited by our lack of predictive 

ability (especially in animals) in forecasting how a species niche adapts to its environment (on 

short evolutionary scales). 

Fundamental and realized niche is an everlasting dilemma in ecology, in order to understand 

the capacity of a species to restrict its niche (realized) one must be able to define its fundamental 

niche. However, certain researchers consider this fundamental niche as a hypothetical concept 

(Malanson 1997), which is visualized as being the niche in the absence of competitors or biotic 

conditions that may affect the species persistence over time. Defining the fundamental niche for 

different species would require determining the growth rate (r) of a species under the n 
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parameters defining its environmental conditions (humidity, food, temperature, strata…), until 

one finds the optimum r through all possible combinations of the different n parameters (in all 

the ranges of each parameter).  

If this is theoretically plausible, in reality it is unfeasible. As a consequence, fundamental 

niches are rarely measured and we do not know when or if realized niches are narrower than 

fundamental niches as a result of competition, or if the realized niches can be wider owing to the 

sink out effect (Pulliam 1988), where species may occur but not thrive. This fundamental–

realized niche framework begins with clearly understanding the drivers of a species niche. This 

thesis focused mostly on biotic factors that may govern niche plasticity, which enabled us to 

better understand complexity of niche partitioning. Future research should, in a first step, define 

a framework combining main biotic and abiotic factors that govern a species-specific niche. 

Depending on the complexity of the ecosystem, micro habitat variation will be the most 

challenging and novel aspect. In this regard quantifying resource limitation/availability such as 

in carbohydrates or nitrogen resources might be near impossible in complex habitats. An 

alternative strategy would be to control these limitations by artificially providing one resource 

constantly which would enable its removal as a possible limiting factor. In a second more 

empirical step, it is necessary to gather data on these factors that govern the realized niche of a 

given species in a similar manner than the one described in chapter 3, and then replicate this on a 

scale which is relevant to the species natural geographical range. The success of a realized niche 

would be defined by the relative biomass of a species for a given set of biotic and abiotic 

conditions. In a final modelling step, inspired by the NICHE model (Pulliam 2000) and this 

thesis, it is necessary to use the biotic and abiotic data collected as explanatory variables of the 

species success in different realized niche. This would enable us to see, first of all, which factors 

are the most influential in a given species niche and, second, to see how the fluctuation of these 

different factors influences the realized niche in order to realistically predict the fundamental 

niche of a species. The capacity to define a species fundamental niche boundaries based on biotic 

and abiotic factors would be a tremendous achievement (especially for invertebrates) in our 

capacity to predict a species’ (or a community’s) response to environmental change. 



References - 82 - 

 

Mickal  Yann  Isani  HOUADRIA 
Department of Evolutionary Biology, Johannes Gütenberg University, Mainz, Germany 

October 2015 

References 

Agrawal, A., and D. Ackerly. 2007. Filling key gaps in population and community ecology. 

Frontiers in Ecology and the Environment 5:145–152. 

Albrecht, M., and N. J. Gotelli. 2001. Spatial and temporal niche partitioning in grassland ants. 

Oecologia 126:134–141. 

Allen, A., J. H. Brown, and J. F. Gillooly. 2002. Global biodiversity, biochemical kinetics, and 

the energetic-equivalence rule. Science 297:1545–8. 

Andersen, A. N. 1991. Sampling communities of ground-foraging ants: Pitfall catches compared 

with quadrat counts in an Australian tropical savanna. Austral Ecology 16:273–279. 

Andersen, A. N. 1992. Regulation of“ momentary” diversity by dominant species in 

exceptionally rich ant communities of the Australian seasonal tropics. American Naturalist 

140:401–420. 

Andersen, A. N. 1995. A classification of Australian ant communities, based on functional 

groups which parallel plant life-forms in relation to stress and disturbance. Journal of 

Biogeography 22:15–29. 

Andersen, A. N. 2008. Not enough niches: non-equilibrial processes promoting species 

coexistence in diverse ant communities. Austral Ecology 33:211–220. 

Andersen, A. N., X. Arnan, and K. Sparks. 2013. Limited niche differentiation within 

remarkable co-occurrences of congeneric species: Monomorium ants in the Australian 

seasonal tropics. Austral Ecology 38:557–567. 

Andersen, A. N., and A. Patel. 1994. Ants as dominant members of Australian ant communities: 

an experimental test of their influence on the foraging success and forager abundance of 

other species. Oecologia 98:15–24. 

Andresen, E. 2002. Dung beetles in a Central Amazonian rainforest and their ecological role as 

secondary seed dispersers. Ecological Entomology 27:257–270. 

Arnan, X., X. Cerdá, and J. Retana. 2012. Distinctive life traits and distribution along 

environmental gradients of dominant and subordinate Mediterranean ant species. Oecologia 

170:489–500. 

Arnan, X., C. Gaucherel, and A. N. Andersen. 2011. Dominance and species co-occurrence in 

highly diverse ant communities: a test of the interstitial hypothesis and discovery of a three-

tiered competition cascade. Oecologia 166:783–94. 

Ashton, I., A. Miller, W. Bowman, and K. Suding. 2010. Niche complementarity due to 

plasticity in resource use: plant partitioning of chemical N forms. Ecology 91:3252–3260. 

Baccaro, F. B., J. L. P. De Souza, E. Franklin, V. Lemes Landeiro, and W. E. Magnusson. 2012. 

Limited effects of dominant ants on assemblage species richness in three Amazon forests. 

Ecological Entomology 37:1–12. 

Balmford, A., K. J. Gaston, S. Blyth, A. James, and V. Kapos. 2003. Global variation in 

terrestrial conservation costs, conservation benefits, and unmet conservation needs. 

Proceedings of the National Academy of Sciences of the United States of America 

100:1046–50. 

Balvanera, P., A. B. Pfisterer, N. Buchmann, J.-S. He, T. Nakashizuka, D. Raffaelli, and B. 

Schmid. 2006. Quantifying the evidence for biodiversity effects on ecosystem functioning 

and services. Ecology letters 9:1146–56. 



References - 83 - 

 

Mickal  Yann  Isani  HOUADRIA 
Department of Evolutionary Biology, Johannes Gütenberg University, Mainz, Germany 

October 2015 

Benjamini, Y., and Y. Hochberg. 1995. Controlling the False Discovery Rate: A Practical and 

Powerful Approach to Multiple Testing. Journal of the Royal Testing 57: 289-300. 

Berg, M. P., and J. Ellers. 2010. Trait plasticity in species interactions: a driving force of 

community dynamics. Evolutionary Ecology 24:617–629. 

Bestelmeyer, B. T. 2000. The trade-•off between thermal tolerance and behavioural dominance 

in a subtropical South American ant community. Journal of Animal Ecology 69:998–1009. 

Bihn, J. H., G. Gebauer, and R. Brandl. 2010. Loss of functional diversity of ant assemblages in 

secondary tropical forests. Ecology 91:782–92. 

Blüthgen, N., and K. Fiedler. 2004a. Competition for composition: lessons from nectar-feeding 

ant communities. Ecology 85:1479–1485. 

Blüthgen, N., and K. Fiedler. 2004b. Preferences for sugars and amino acids and their 

conditionality in a diverse nectar •feeding ant community. Journal of Animal Ecology 

76:155–166. 

Blüthgen, N., G. Gebauer, and K. Fiedler. 2003. Disentangling a rainforest food web using stable 

isotopes: dietary diversity in a species-rich ant community. Oecologia 137:426–35. 

Blüthgen, N., F. Menzel, T. Hovestadt, B. Fiala, and N. Blüthgen. 2007. Specialization, 

constraints, and conflicting interests in mutualistic networks. Current biology : CB 17:341–

6. 

Bolnick, D. I., P. Amarasekare, M. S. Araújo, R. Bürger, J. M. Levine, M. Novak, V. H. W. 

Rudolf, S. J. Schreiber, M. C. Urban, and D. a Vasseur. 2011. Why intraspecific trait 

variation matters in community ecology. Trends in ecology & evolution 26:183–92. 

Boonzaaier, C., M. McGeoch, and C. L. Parr. 2007. Fine-scale temporal and spatial dynamics of 

epigaeic ants in Fynbos: sampling implications. African Entomology 15:1–11. 

Boulangeat, I., S. Lavergne, J. Van Es, L. Garraud, and W. Thuiller. 2012. Niche breadth, rarity 

and ecological characteristics within a regional flora spanning large environmental 

gradients. Journal of Biogeography 39:204–214. 

Boulay, R., J. Coll-Toledano, and X. Cerdá. 2005. Geographic variations in Helleborus foetidus 

elaiosome lipid composition: implications for dispersal by ants. Chemoecology 16:1–7. 

Le Breton, J., J. Orivel, J. Chazeau, and A. Dejean. 2006. Unadapted behaviour of native, 

dominant ant species during the colonization of an aggressive, invasive ant. Ecological 

Research 22:107–114. 

Bronstein, J. L., R. Alarcón, and M. Geber. 2006. The evolution of plant-insect mutualisms. The 

New phytologist 172:412–28. 

Byrnes, J. E. K., L. Gamfeldt, F. Isbell, J. S. Lefcheck, J. N. Griffin, A. Hector, B. J. Cardinale, 

D. U. Hooper, L. E. Dee, and J. Emmett Duffy. 2014. Investigating the relationship between 

biodiversity and ecosystem multifunctionality: challenges and solutions. Methods in 

Ecology and Evolution 5:111–124. 

Cadotte, M. W., K. Carscadden, and N. Mirotchnick. 2011. Beyond species: functional diversity 

and the maintenance of ecological processes and services. Journal of Applied Ecology 

48:1079–1087. 

Cardinale, B. J., D. S. Srivastava, J. E. Duffy, J. P. Wright, A. L. Downing, M. Sankaran, and C. 

Jouseau. 2006. Effects of biodiversity on the functioning of trophic groups and ecosystems. 

Nature 443:989–92. 

Carroll, C. R., and D. H. Janzen. 1973. Ecology of foraging by ants. Annual Review of Ecology 

and Systematics 4:231–257. 



References - 84 - 

 

Mickal  Yann  Isani  HOUADRIA 
Department of Evolutionary Biology, Johannes Gütenberg University, Mainz, Germany 

October 2015 

Castillo-Rivera, M., S. Ortiz-Burgos, and R. Zarate-Hernandez. 2011. Estuarine fish community 

structure in a submerged aquatic vegetation habitat: seasonal and diel variations. 

Hidrobiologica 3:311–321. 

Caswell, H. 1976. Community structure: a neutral model analysis. Ecological monographs 

46:327–354. 

Cerdá, X., E. Angulo, S. Caut, and F. Courchamp. 2011. Ant community structure on a small 

Pacific island: only one native species living with the invaders. Biological Invasions 

14:323–339. 

Cerdá, X., X. Arnan, and J. Retana. 2013. Is competition a significant hallmark of ant 

(Hymenoptera: Formicidae) ecology? Myrmecol. News 18:131–147. 

Cerdá, X., J. Retana, J. Bosch, and A. Alsina. 1989. Exploitation of food resources by the ant 

Tapinoma nigerrimum(Hym., Formicidae). Acta Oecologica 10:419–429. 

Cerdá, X., J. Retana, and S. Cros. 1998. Prey size reverses the outcome of interference 

interactions of scavenger ants. Oikos 82:99–110. 

Chapin III, F. S., B. Walker, R. Hobbs, D. U. Hooper, J. Lawton, S. E. Osvaldo, and D. Tilman. 

1997. Biotic Control over the Functioning of Ecosystems. Science 277:500–504. 

Chase, J. M., and M. Leibold. 2003. Ecological niches: linking classical and contemporary 

approaches. Chicago Press, Chicago, IL, USA. 

Clarke, K. R., and R. Gorley. 2006. Primer v6: User Manual/Tutorial. Primer-E L. Plymouth, 

UK. 

Colwell, R. K. 2013. EstimateS: Statistical estimation of species richness and shared species 

from samples. 

Connell, J. H. 1961. The influence of interspecific competition and other factors on the 

distribution of the barnacle Chtalamus stellatus. Ecology 42:710–723. 

Davidson, D. W. 1997. The role of resource imbalances in the evolutionary ecology of tropical 

arboreal ants. Biological Journal of the Linnean Society 61:153–181. 

Davidson, D. W. 1998. Resource discovery versus resource domination in ants: a functional 

mechanism for breaking the trade-•off. Ecological Entomology:484–490. 

Dejean, A., B. Schatz, J. Orivel, and G. Beugnon. 1999. Feeding preferences in African ponerine 

ants: A cafeteria experiment (Hymenoptera: Formicidae). Sociobiology 34:555–568. 

Delsinne, T., Y. Roisin, and M. Leponce. 2007. Spatial and temporal foraging overlaps in a 

Chacoan ground-foraging ant assemblage. Journal of Arid Environments 71:29–44. 

Demars, B. O. L., J. L. Kemp, N. Friberg, P. Usseglio-Polatera, and D. M. Harper. 2012. Linking 

biotopes to invertebrates in rivers: Biological traits, taxonomic composition and diversity. 

Ecological Indicators 23:301–311. 

Devoto, M., S. Bailey, and J. Memmott. 2011. The “night shift”: nocturnal pollen-transport 

networks in a boreal pine forest. Ecological Entomology 36:25–35. 

Dı́az, S., and M. Cabido. 2001. Vive la difference: plant functional diversity matters to 

ecosystem processes. Trends in Ecology & Evolution 16:646–655. 

Doak, D., D. Bigger, and E. Harding. 1998. The statistical inevitability of stability-diversity 

relationships in community ecology. The American Naturalist 151:264–276. 

Dornhaus, A., and S. Powell. 2010. Foraging and defense strategies. Pages 210–230 in L. Lach, 

C. L. Parr, and K. Abbot, editors. Ant ecology. Oxford university Press. 

Elmqvist, T., and C. Folke. 2003. Response diversity, ecosystem change, and resilience. 

Frontiers in Ecology … 1:488–494. 

Elton, C. S. 1927. Animal Ecology. New York, Macmillan Co. 



References - 85 - 

 

Mickal  Yann  Isani  HOUADRIA 
Department of Evolutionary Biology, Johannes Gütenberg University, Mainz, Germany 

October 2015 

Feldhaar, H., G. Gebauer, and N. Blüthgen. 2010. Stable isotopes: past and future in exposing 

secrets of ant nutrition (Hymenoptera: Formicidae). Myrmecol News 13:3–13. 

Fellers, J. H. 1987. Interference and exploitation in a guild of woodland ants. Ecology 68:1466–

1478. 

Fellers, J. H. 1989. Daily and seasonal activity in woodland ants. Oecologia 78:69–76. 

Fellers, J. H., and G. M. Fellers. 2012. Tool Use in a Social Insect and Its Implications for 

Competitive Interactions. Science 192:70–72. 

Folgarait, P. J. 1998. Ant biodiversity and its relationship to ecosystem functioning: a review. 

Biodiversity and Conservation 7:1221–1244. 

Fourcassié, V., and J. F. a Traniello. 1994. Food searching behaviour in the ant Formica 

schaufussi(Hymenoptera, Formicidae): response of naive foragers to protein and 

carbohydrate food. Animal behaviour. 

Fox, J. 2003. Effect Displays in R for Generalised Linear Models. Journal of Statistical Software 

8:1–27 URL http://www.jstatsoft.org/v08/i15/. 

Gamfeldt, L., H. Hillebrand, and P. Jonsson. 2008. Multiple functions increase the importance of 

biodiversity for overall ecosystem functioning. Ecology 89:1223–1231. 

Garibaldi, L. a, I. Steffan-Dewenter, C. Kremen, J. M. Morales, R. Bommarco, S. a 

Cunningham, L. G. Carvalheiro, N. P. Chacoff, J. H. Dudenhöffer, S. S. Greenleaf, A. 

Holzschuh, R. Isaacs, K. Krewenka, Y. Mandelik, M. M. Mayfield, L. a Morandin, S. G. 

Potts, T. H. Ricketts, H. Szentgyörgyi, B. F. Viana, C. Westphal, R. Winfree, and A. M. 

Klein. 2011. Stability of pollination services decreases with isolation from natural areas 

despite honey bee visits. Ecology letters 14:1062–72. 

Gause, G. 1934. Experimental analysis of Vito Volterra’s mathematical theory of the struggle for 

existence. Science 79:2036. 

Gibb, H., and C. L. Parr. 2013. Does structural complexity determine the morphology of 

assemblages? An experimental test on three continents. PloS one 8:e64005. 

Gotelli, N. J. 2000. Null model analysis of species co-occurrence patterns. Ecology 81:2606–

2621. 

Goulson, D., G. C. Lye, and B. Darvill. 2008. Diet breadth, coexistence and rarity in 

bumblebees. Biodiversity and Conservation 17:3269–3288. 

Greenslade, P. J. M. 1973. Sampling ants with pitfall effects. Insectes Sociaux 20:343–353. 

Grinnell, J. 1917. The Niche-Relationships of the California Thrasher. The Auk. 

Groc, S., J. H. C. Delabie, R. Céréghino, J. Orivel, F. Jaladeau, J. Grangier, C. S. F. Mariano, 

and A. Dejean. 2007. Ant species diversity in the “Grands Causses” (Aveyron, France): In 

search of sampling methods adapted to temperate climates. Comptes rendus biologies 

330:913–22. 

Harcourt, A. H., S. A. Coppeto, and S. A. Parks. 2002. Rarity, specialization and extinction in 

primates. Journal of Biogeography 29:445–456. 

Harvey, E. S., S. R. Dorman, C. Fitzpatrick, S. J. Newman, and D. L. McLean. 2012. Response 

of diurnal and nocturnal coral reef fish to protection from fishing: an assessment using 

baited remote underwater video. Coral Reefs 31:939–950. 

Hector, A. 2006. Overyielding and stable species coexistence. The New phytologist 172:1–3. 

Hector, A., and R. Bagchi. 2007. Biodiversity and ecosystem multifunctionality. Nature 

448:188–90. 

Heemsbergen, D. A., M. P. Berg, M. Loreau, J. R. van Hal, J. H. Faber, and H. A. Verhoef. 

2004. Biodiversity effects on soil processes explained by interspecific functional 

dissimilarity. Science (New York, N.Y.) 306:1019–1020. 



References - 86 - 

 

Mickal  Yann  Isani  HOUADRIA 
Department of Evolutionary Biology, Johannes Gütenberg University, Mainz, Germany 

October 2015 

Hillebrand, H., D. Bennett, and M. W. Cadotte. 2008. Consequences of dominance: a review of 

evenness effects on local and regional ecosystem processes. Ecology 89:1510–1520. 

Hodapp, D., D. Kraft, and H. Hillebrand. 2013. Can monitoring data contribute to the 

biodiversity-ecosystem function debate? Evaluating data from a highly dynamic ecosystem. 

Biodiversity and Conservation 23:405–419. 

Hölldobler, B. 1983. Territorial behavior in the green tree ant (Oecophylla smaragdina). 

Biotropica 15:241–250. 

Hölldobler, B., and E. Wilson. 1990. Host tree selection by the neotropical ant Paraponera 

clavata (Hymenoptera: Formicidae). Biotropica 22:213–214. 

Holway, D. 1998. Factors governing rate of invasion: a natural experiment using Argentine ants. 

Oecologia 115:206–212. 

Hooper, D. U. 1997. The Effects of Plant Composition and Diversity on Ecosystem Processes. 

Science 277:1302–1305. 

Houadria, M., N. Blüthgen, A. Salas-Lopez, M.-I. Schmitt, J. Arndt, E. Schneider, J. Orivel, and 

F. Menzel. 2015a. The relation between circadian asynchrony, functional redundancy and 

trophic performance in tropical ant communities. Ecology In press. 

Houadria, M., A. Salas-lopez, J. Orivel, N. Blüthgen, and F. Menzel. 2015b. Dietary and 

temporal niche differentiation in tropical ants - can they explain local ant coexistence ? 

Biotropica 47: 208-217. 

Hubbell, S. P. 2001. The unified neutral theory of biodiversity and biogeography. Princeton 

University Press, Princeton, NJ, USA. 

Human, K. G., and D. M. Gordon. 1996. Exploitation and interference competition between the 

invasive Argentine ant, Linepithema humile, and native ant species. Oecologia:405–412. 

Human, K. G., S. Weiss, a. Weiss, B. Sandler, and D. M. Gordon. 1998. Effects of Abiotic 

Factors on the Distribution and Activity of the Invasive Argentine Ant (Hymenoptera: 

Formicidae). Environmental Entomology 27:822–833. 

Hutchinson, G. E. 1959. Homage to Santa Rosalia or why are there so many kinds of animals? 

The American Naturalist 93:145–149. 

Ilg, C., and F. Foeckler. 2012. Hydrological gradient and species traits explain gastropod 

diversity in floodplain grasslands. River Research 1629:1620–1629. 

Isbell, F., V. Calcagno, A. Hector, J. Connolly, W. S. Harpole, P. B. Reich, M. Scherer-

Lorenzen, B. Schmid, D. Tilman, J. van Ruijven, A. Weigelt, B. J. Wilsey, E. S. Zavaleta, 

and M. Loreau. 2011. High plant diversity is needed to maintain ecosystem services. Nature 

477:199–202. 

Isbell, F., and M. Loreau. 2013. Human impacts on minimum subsets of species critical for 

maintaining ecosystem structure. Basic and Applied Ecology 14:623–629. 

Johnson, C., D. Agosti, and J. H. C. Delabie. 2001. Acropyga and Azteca ants (Hymenoptera: 

Formicidae) with scale insects (Sternorrhyncha: Coccoidea): 20 million years of intimate 

symbiosis. American Museum Novitates:1–18. 

Jost, L. 2006. Entropy and diversity. Oikos 113:363–375. 

Kaspari, M., and S. P. Yanoviak. 2000. Bait Use in Tropical Litter and Canopy Ants-Evidence 

Differences in Nutrient Limitation. Biotropica 33:207–211. 

Kaspari, M., S. P. Yanoviak, and R. Dudley. 2008. On the biogeography of salt limitation: a 

study of ant communities. Proceedings of the National Academy of Sciences of the United 

States of America 105:17848–51. 

Kathiresan, K., and N. Alikunhi. 2011. Tropical coastal ecosystems: Rarely explored for their 

interaction. Ecologia.1:1-22. 



References - 87 - 

 

Mickal  Yann  Isani  HOUADRIA 
Department of Evolutionary Biology, Johannes Gütenberg University, Mainz, Germany 

October 2015 

Kay, A. 2002. Applying optimal foraging theory to assess nutrient availability ratios for ants. 

Ecology 83:1935–1944. 

Kay, A. 2004. The relative availabilities of complementary resources affect the feeding 

preferences of ant colonies. Behavioral Ecology 15:63–70. 

Kneitel, J. M., and J. M. Chase. 2004. Trade-offs in community ecology: linking spatial scales 

and species coexistence. Ecology Letters 7:69–80. 

Kunin, W. E., and K. J. Gaston. 1993. The biology of rarity: Patterns, causes and consequences. 

Trends in ecology & evolution 8:298–301. 

Laliberté, E., J. a Wells, F. Declerck, D. J. Metcalfe, C. P. Catterall, C. Queiroz, I. Aubin, S. P. 

Bonser, Y. Ding, J. M. Fraterrigo, S. McNamara, J. W. Morgan, D. S. Merlos, P. a Vesk, 

and M. M. Mayfield. 2010. Land-use intensification reduces functional redundancy and 

response diversity in plant communities. Ecology letters 13:76–86. 

Lawton, J. H., S. Naeem, R. M. Woodfin, V. K. Brown, A. Gange, H. J. C. Godfray, P. A. 

Heads, S. Lawler, D. Magda, C. D. Thomas, L. J. Thompson, and S. Young. 1993. The 

Ecotron: A Controlled Environmental Facility for the Investigation of Population and 

Ecosystem Processes Philosophical Transactions of the Royal Society B: Biological 

Sciences 341:181-194. 

Lebrun, E. G. 2005. Who is the top dog in ant communities? Resources, parasitoids, and multiple 

competitive hierarchies. Oecologia 142:643–52. 

Levin, D. A., and W. W. Anderson. 1970. Competition for Pollinators between Simultaneously 

Flowering Species. 

Levin, S. A. 1992. The Problem of Pattern and Scale in Ecology : The Robert H. MacArthur 

Award Lecture. Ecology 73:1943–1967. 

Lewis, O. T. 2009. Biodiversity change and ecosystem function in tropical forests. Basic and 

Applied Ecology 10:97–102. 

Loreau, M. 2010. From Populations to Ecosystems: Theoretical Foundations for a New 

Ecological Synthesis. (S. A. Levin and H. S. Horn, Eds.) Monographs in Population 

Biology. Princeton Univ Pr. 

Loreau, M., S. Naeem, P. Inchausti, J. Bengtsson, J. P. Grime, A. Hector, D. U. Hooper, M. A. 

Huston, D. Raffaelli, B. Schmid, D. Tilman, and D. a Wardle. 2001. Biodiversity and 

ecosystem functioning: current knowledge and future challenges. Science 294:804–8. 

Lotka, A. J. 1920. Analytical Note on Certain Rhythmic Relations in Organic Systems. 

Proceedings of the National Academy of Sciences of the United States of America 6:410–

415. 

MacArthur, R. H., and R. Levins. 1967. The limiting similarity, convergence, and divergence of 

coexisting species. American naturalist 101:377–385. 

Majer, J. 1983. Ants: bio-indicators of minesite rehabilitation, land-use, and land conservation. 

Environmental management 7:375–383. 

Malanson, G. 1997. Simulated responses to hypothetical fundamental niches. Journal of 

vegetation Science:307–316. 

Mason, N., and K. MacGillivray. 2003. An index of functional diversity. Journal of Vegetation 

Science 14:571–578. 

Mason, N., D. Mouillot, W. Lee, and J. B. Wilson. 2005. Functional richness, functional 

evenness and functional divergence: the primary components of functional diversity. Oikos 

111:112–118. 

May, R. M. 1974. Biological populations with nonoverlapping generations: stable points, stable 

cycles, and chaos. Science (New York, N.Y.) 186:645–647. 



References - 88 - 

 

Mickal  Yann  Isani  HOUADRIA 
Department of Evolutionary Biology, Johannes Gütenberg University, Mainz, Germany 

October 2015 

May, R. M., and R. H. M. Arthur. 1972. Niche overlap as a function of environmental 

variability. Proceedings of the National Academy of Sciences of the United States of 

America 69:1109–1113. 

May, R. M., M. P. Hassell, R. M. Anderson, and D. W. Tonkyn. 1981. Density dependence in 

host-parasitoid models. The Journal of Animal Ecology 50:855–865. 

Mayaux, P., P. Holmgren, F. Achard, H. Eva, H.-J. Stibig, and A. Branthomme. 2005. Tropical 

forest cover change in the 1990s and options for future monitoring. Philosophical 

transactions of the Royal Society of London. Series B, Biological sciences 360:373–84. 

De Mazancourt, C., F. Isbell, A. Larocque, F. Berendse, E. De Luca, J. B. Grace, B. Haegeman, 

H. Wayne Polley, C. Roscher, B. Schmid, D. Tilman, J. van Ruijven, A. Weigelt, B. J. 

Wilsey, and M. Loreau. 2013. Predicting ecosystem stability from community composition 

and biodiversity. Ecology letters 16:617–25. 

McGill, B. J., B. J. Enquist, E. Weiher, and M. Westoby. 2006a. Rebuilding community ecology 

from functional traits. Trends in ecology & evolution 21:178–85. 

McGill, B. J., B. A. Maurer, and M. D. Wieser. 2006b. Empirical evaluation of neutral theory. 

America 87:1411–1423. 

McGlynn, T. P., and S. E. Kirksey. 2000. The effects of food presentation and microhabitat upon 

resource monopoly in a ground-foraging ant (Hymenoptera: Formicidae) community. 

Revista de Biología Tropical:1–14. 

Menzel, F., M. Staab, A. Y. C. Chung, G. Gebauer, and N. Blüthgen. 2012. Trophic ecology of 

parabiotic ants: Do the partners have similar food niches? Austral Ecology 37:537–546. 

Messier, J., B. J. McGill, and M. J. Lechowicz. 2010. How do traits vary across ecological 

scales? A case for trait-based ecology. Ecology letters 13:838–48. 

Mikheyev, A. S., U. G. Mueller, and P. Abbot. 2010. Comparative dating of attine ant and 

lepiotaceous cultivar phylogenies reveals coevolutionary synchrony and discord. The 

American naturalist 175:E126–33. 

Mlambo, M. C. 2014. Not all traits are “functional”: insights from taxonomy and biodiversity-

ecosystem functioning research. Biodiversity and Conservation 23:781–790. 

Mori, A. S., T. Furukawa, and T. Sasaki. 2013. Response diversity determines the resilience of 

ecosystems to environmental change. Biological reviews of the Cambridge Philosophical 

Society 88:349–64. 

Morrison, L. W. 1996. Community organization in a recently assembled fauna: the case of 

Polynesian ants. Oecologia 107:243–256. 

Morrison, L. W. 2000. Mechanisms of interspecific competition among an invasive and two 

native fire ants. Oikos 90:238–252. 

Mouillot, D., N. Mason, O. Dumay, and J. B. Wilson. 2005. Functional regularity: a neglected 

aspect of functional diversity. Oecologia 142:353–9. 

Naeem, S. 1995. Empirical evidence that declining species diversity may alter the performance 

of terrestrial ecosystems. Philosophical transactions of the Royal Society of London. 

Biological sciences 347:249–262. 

Ness, J., K. Moon, L. Lach, and K. Abbot. 2010. Ants as mutualits. Pages 97–114 in L. Lach, C. 

L. Parr, and K. Abbot, editors. Ant ecology. Oxford university Press, Oxford, UK. 

Parr, C. L., and H. Gibb. 2010. Dominance hierarchies. Pages 33–35 in C. L. Parr, L. Lach, and 

K. Abbot, editors. Ant ecology. Oxford university Press, Oxford, UK. 

Parr, C. L., and H. Gibb. 2012. The discovery-dominance trade-off is the exception, rather than 

the rule. The Journal of animal ecology 81:233–41. 

Patten, B. C. 1975. Ecosystem Linearization: An Evolutionary Design Problem. 



References - 89 - 

 

Mickal  Yann  Isani  HOUADRIA 
Department of Evolutionary Biology, Johannes Gütenberg University, Mainz, Germany 

October 2015 

Pearce-Duvet, J. M. C., C. P. H. Elemans, and D. H. J. Feener. 2011. Walking the line: search 

behavior and foraging success in ant species. Behavioral Ecology 22:501–509. 

Petchey, O. L., and K. J. Gaston. 2002. Functional diversity (FD), species richness and 

community composition. Ecology Letters:402–411. 

Pfeiffer, M., D. Mezger, and J. Dyckmans. 2013. Trophic ecology of tropical leaf litter ants 

(Hymenoptera: Formicidae)–a stable isotope study in four types of Bornean rain forest. 

Myrmecol. News 19:31–41. 

Pulliam, H. 1988. Sources, sinks, and population regulation. American naturalist 132:652–661. 

Pulliam, H. 2000. On the relationship between niche and distribution. Ecology Letters 3:349–

361. 

R Development Core Team. 2012. R: A Language and Environment for Statistical Computing. 

Reifenrath, K., C. Becker, and H. J. Poethke. 2012. Diaspore trait preferences of dispersing ants. 

Journal of chemical ecology 38:1093–104. 

Retana, J., and X. Cerdá. 2000. Patterns of diversity and composition of Mediterranean ground 

ant communities tracking spatial and temporal variability in the thermal environment. 

Oecologia 123:436–444. 

Roff, D., S. Mostowy, and D. Fairbairn. 2002. The evolution of trade‐offs: testing predictions on 

response to selection and environmental variation. Evolution 56:84–95. 

Roscher, C., V. M. Temperton, M. Scherer-Lorenzen, M. Schmitz, J. Schumacher, B. Schmid, N. 

Buchmann, W. W. Weisser, and E.-D. Schulze. 2005. Overyielding in experimental 

grassland communities - irrespective of species pool or spatial scale. Ecology Letters 

8:419–429. 

Rosenfeld, J. 2002a. Logical fallacies in the assessment of functional redundancy. Conservation 

Biology 16:837–839. 

Rosenfeld, J. 2002b. Functional redundancy in ecology and conservation. Oikos 98:156–162. 

Sala, O. E., F. S. Chapin, J. J. Armesto, E. Berlow, J. Bloomfield, R. Dirzo, E. Huber-Sanwald, 

L. F. Huenneke, R. B. Jackson, A. Kinzig, R. Leemans, D. M. Lodge, H. A. Mooney, M. 

Oesterheld, N. L. Poff, M. T. Sykes, B. H. Walker, M. Walker, and D. H. Wall. 2000. 

Global biodiversity scenarios for the year 2100. Science (New York, N.Y.) 287:1770–1774. 

Sanders, N. J., and D. M. Gordon. 2003. Resource-dependent interactions and the organization of 

desert ant communities. Ecology 84:1024–1031. 

Santamaria, C., I. Armbrecht, and J. Lachaud. 2009. Nest Distribution and Food Preferences of 

Ectatommaruidum (Hymenoptera: Formicidae) in Shaded and Open Cattle Pastures of 

Colombia. Sociobiology 53:517–542. 

Santini, G., L. Tucci, L. Ottonetti, and F. Frizzi. 2007. Competition trade-•offs in the 

organisation of a Mediterranean ant assemblage. Ecological entomology 32:319–326. 

Savolainen, R., and K. Vepsäläinen. 1989. Niche differentiation of ant species within territories 

of the wood ant Formica polyctena. Oikos 56:3–16. 

Schmitt, T., F.-T. Krell, and K. E. Linsenmair. 2004. Quinone mixture as attractant for 

necrophagous dung beetles specialized on dead millipedes. Journal of chemical ecology 

30:731–40. 

Schneiders, A., T. Van Daele, W. Van Landuyt, and W. Van Reeth. 2012. Biodiversity and 

ecosystem services: Complementary approaches for ecosystem management? Ecological 

Indicators 21:123–133. 

Schuldt, A., H. Bruelheide, W. Durka, S. G. Michalski, O. Purschke, and T. Assmann. 2014. 

Tree diversity promotes functional dissimilarity and maintains functional richness despite 

species loss in predator assemblages. Oecologia 174:533–43. 



References - 90 - 

 

Mickal  Yann  Isani  HOUADRIA 
Department of Evolutionary Biology, Johannes Gütenberg University, Mainz, Germany 

October 2015 

Schwartz, M. W., C. Brigham, J. D. Hoeksema, K. G. Lyons, M. H. Mills, and P. J. Van 

Mantgem. 2000. Linking biodiversity to ecosystem function: implications for conservation 

ecology. Oecologia 122:297–305. 

Segev, U., and Y. Ziv. 2012. Consequences of behavioral vs. numerical dominance on foraging 

activity of desert seed-eating ants. Behavioral Ecology and Sociobiology 66:623–632. 

Slatyer, R. a, M. Hirst, and J. P. Sexton. 2013. Niche breadth predicts geographical range size: a 

general ecological pattern. Ecology letters 16:1104–14. 

Stephens, P. R., and J. J. Wiens. 2003. Explaining species richness from continents to 

communities: the time-for-speciation effect in emydid turtles. The American naturalist 

161:112–28. 

Sternberg, D., and M. J. Kennard. 2014. Phylogenetic effects on functional traits and life history 

strategies of Australian freshwater fish. Ecography 37:54–64. 

Steudel, B., A. Hector, T. Friedl, C. Löfke, M. Lorenz, M. Wesche, M. Kessler, and M. Gessner. 

2012. Biodiversity effects on ecosystem functioning change along environmental stress 

gradients. Ecology letters 15:1397–405. 

Stork, N. E. 2009. Re-assessing current extinction rates. Biodiversity and Conservation 19:357–

371. 

Stuble, K. L., L. K. Kirkman, C. R. Carroll, and N. J. Sanders. 2011. Relative effects of 

disturbance on red imported fire ants and native ant species in a longleaf pine ecosystem. 

Conservation biology : the journal of the Society for Conservation Biology 25:618–22. 

Stuble, K. L., M. a Rodriguez-Cabal, G. L. McCormick, I. Jurić, R. R. Dunn, and N. J. Sanders. 

2013. Tradeoffs, competition, and coexistence in eastern deciduous forest ant communities. 

Oecologia 171:981–92. 

Tanaka, H. O., S. Yamane, and T. Itioka. 2010. Within-tree distribution of nest sites and foraging 

areas of ants on canopy trees in a tropical rainforest in Borneo. Population Ecology 52:147–

157. 

Thibaut, L. M., and S. R. Connolly. 2013. Understanding diversity-stability relationships: 

towards a unified model of portfolio effects. Ecology letters 16:140–50. 

Tilman, D. 2001. Encyclopedia of biodiversity. (S. A. Levin, Ed.). Academic Press, San Diego. 

Tilman, D., S. Naeem, J. M. H. Knops, P. B. Reich, E. Siemann, M. Ritchie, J. Lawton, D. A. 

Wardle, O. Zackrisson, G. Hörnberg, and A. Flower. 1997. Biodiversity and Ecosystem 

Properties. Science 278:1866–1869. 

Tista, M., and K. Fiedler. 2010. How to evaluate and reduce sampling effort for ants. Journal of 

Insect Conservation 15:547–559. 

Turnbull, L. A., J. M. Levine, M. Loreau, and A. Hector. 2013. Coexistence, niches and 

biodiversity effects on ecosystem functioning. Ecology letters 16 Suppl 1:116–27. 

Valladares, F., and Ü. Niinemets. 2008. Shade Tolerance, a Key Plant Feature of Complex 

Nature and Consequences. Annual Review of Ecology, Evolution, and Systematics 39:237–

257. 

Vepsäläinen, K., and R. Savolainen. 1990. The effect of interference by formicine ants on the 

foraging of Myrmica. The Journal of Animal Ecology 59:643–654. 

Viljanen, H., H. Wirta, O. Montreuil, P. Rahagalala, S. Johnson, and I. Hanski. 2010, July. 

Structure of local communities of endemic dung beetles in Madagascar. Cambridge 

University Press. 

Violle, C., B. J. Enquist, B. J. McGill, L. Jiang, C. H. Albert, C. Hulshof, V. Jung, and J. 

Messier. 2012. The return of the variance: intraspecific variability in community ecology. 

Trends in ecology & evolution 27:244–52. 



References - 91 - 

 

Mickal  Yann  Isani  HOUADRIA 
Department of Evolutionary Biology, Johannes Gütenberg University, Mainz, Germany 

October 2015 

Völkl, W., J. Woodring, M. Fischer, M. W. Lorenz, and K. H. Hoffmann. 1999. Ant-aphid 

mutualisms: the impact of honeydew production and honeydew sugar composition on ant 

preferences. Oecologia 118:483–491. 

Walker, B. 1992. Biodiversity and ecological redundancy. Conservation biology 6:18–23. 

Walker, B. 1995. Conserving Diversity Biological through Ecosystem Resilience. Conservation 

Biology 9:747–752. 

Walker, B., A. P. Kinzig, and J. Langridge. 1999. Original articles: plant attribute diversity, 

resilience, and ecosystem function: the nature and significance of dominant and minor 

species. Ecosystems 2:95–113. 

Wang, S., and M. Loreau. 2014. Ecosystem stability in space: α, β and γ variability. Ecology 

letters 17:891–901. 

Ward, P. S. 2013. The Phylogeny and Evolution of Ants. Annual Review of Ecology, Evolution, 

and Systematics 45:23-43. 

Wasserberg, G., and B. Kotler. 2006. A specter of coexistence: Is centrifugal community 

organization haunted by the ghost of competition? Israel Journal of Ecology & Evolution 

52:123–140. 

Weber, N. A. 1966. Fungus-growing ants. Science 153:587–604. 

Weiser, M., and M. Kaspari. 2006. Ecological morphospace of New World ants. Ecological 

Entomology:131–142. 

Whittaker, R. J., K. J. Willis, and R. Field. 2001. Scale and species richness: towards a general, 

hierarchical theory of species diversity. Journal of Biogeography 28:453–470. 

Wiescher, P. T., J. M. C. Pearce-Duvet, and D. H. J. Feener. 2011. Environmental context alters 

ecological trade-offs controlling ant coexistence in a spatially heterogeneous region. 

Ecological Entomology 36:549–559. 

Wisheu, I. 1998. How organisms partition habitats: different types of community organization 

can produce identical patterns. Oikos 83:246–258. 

Witte, V., and U. Maschwitz. 2008. Mushroom harvesting ants in the tropical rain forest. Die 

Naturwissenschaften 95:1049–54. 

Woodcock, P., D. P. Edwards, R. J. Newton, C. Vun Khen, S. H. Bottrell, and K. C. Hamer. 

2013. Impacts of intensive logging on the trophic organisation of ant communities in a 

biodiversity hotspot. PloS one 8:e60756. 

Wriedt, J., and D. Mezger. 2008. Observations on the foraging behaviour of Myrmicaria brunnea 

subcarinata (Smith)(Hymenoptera: Formicidae) in a tropical rainforest in Sarawak 

(Malaysia). Asian Myrmecology 2:109–120. 

Yachi, S., and M. Loreau. 1999. Biodiversity and ecosystem productivity in a fluctuating 

environment: the insurance hypothesis. Proceedings of the National Academy of Sciences 

of the United States of America 96:1463–1468. 

 



Appendix section 92 

 
 
 
 
 

Mickal  Yann  Isani  HOUADRIA 
Department of Evolutionary Biology, Johannes Gütenberg University, Mainz, Germany 

October 2015 

Appendix section 
Supplement chapter 1 

S1: Sampling design 

 

We established four plots of 4 x 4 grid points each (16 points per square plot), i.e. a total 

number of 64 grid points. The grid points in the plots were separated by 10 m each all plots 

were less than 100 m from one another. At each grid point, we presented in total eight 

different baits, both during day and at night, and placed pitfalls during day and at night. 

However, to avoid interference between multiple baits, only one bait or one pitfall was 

presented at each grid point at a given time. We took care that, during each sampling session, 

all eight baits were presented evenly (at different grid points), in order to avoid any bias due 

to fluctuating weather conditions. Pitfalls were only placed when no baiting was performed on 

the same plot.  

All ants collected were preserved in 75% ethanol. They were counted and sorted to 

morphospecies by Mickal Houadria and Alex Salas-Lopez, based on Bolton (1997). Voucher 

specimens of all species are deposited at the Institute of Zoology, University of Mainz.  

Pitfalls 

The pitfall traps (Ø 4cm, depth 6cm) were buried in level with the surrounding soil surface 

and replaced after each sampling session (into the same hole) to reduce the digging-in effect 

(Greenslade 1973). They were opened for 10 hours between 20h30 to 6h30 for the nocturnal 

traps and between 7h00 to 17h00 for the diurnal ones. For each grid point, we obtained three 

10-hour replicates day and night, yielding a total of 60 sampling hours. To kill and preserve 

the ants, the traps were filled ca. 1.5 cm high with a 50% propylene glycol solution. This 

preservative is non-toxic to vertebrates at these quantities and neither attracts nor repels ants 

(Boonzaaier et al. 2007).  

Displaying the bait 

The boxes were placed 1 cm deep in the ground and had, 6 mm above the bottom, two slit-

like openings (1 cm wide and 8 cm long), level with the ground. They could be quickly 

retrieved by encasing into a similar box without side openings. As plastic is potentially 
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avoided by some ants, the base of the box were covered with paper towel. A hole in the lid 

allowed squirting the killing solution (propylene glycol solution 70%) right after retrieval.  

The liquid solutions were pipetted directly onto the paper towel in the baiting device while 

the solid baits were put into the centre of the devices. Live baits were harder to display. 

Approximately ten termites were maintained free on the paper towel and usually stayed at a 

small piece of termite mound which was added. To avoid that all termites would be captured 

before the end of the sampling  approximately five further individuals were glued live on a 2 

cm stick with odourless rat glue (Greenleaf Ltd., Beijing, China). For grasshoppers, in order 

to partly maintain their ability to jump but restrain it to the baiting device, we tethered it to a 

fine, 3 cm long string which was pinned to the base of the boxes. 

The baits were presented for 90min during the day (between 10h00 and 15h00) and at 

night (between 20h00 and 23h00). Preliminary tests had shown that this time was sufficient to 

allow at least partial recruitment on all baits, but was not long enough to have dominant ants 

saturating the majority of the most attractive baits. 

S2: Pair wise similarities between different baits 

Ant communities at sucrose (a disaccharide) did not differ from those at melezitose, which is 

a trisaccharide common in honeydew (Völkl et al. 1999). Hence, the regular consumption of 

melezitose-containing honeydew may not represent an option to evade competition by 

sucrose-foraging species. Furthermore, we had expected to find different predatory ant species 

at grasshoppers and termites. Apparently, the same ant species could overwhelm the two prey 

items regardless of their size.  

Many ant predators are solitary foragers, specialised on certain prey types, do not recruit, 

and immediately retrieve the whole food item to their nest instead of feeding directly at the 

spot (Dornhaus and Powell 2010). Thus, the chances of capturing such species without 

constant bait observation are smaller compared to species that recruit massively and do not 

retrieve large pieces of bait. Pachycondyla crassinoda for instance was only found twice on 

crickets and once on crushed insects but had a high pitfall incidence (Fig. 2). Therefore 

presenting suitable live prey species in an appropriate manner may prove difficult and may 

partly explain the similarities found between termites ands grasshoppers. For future studies, 

the set of baits should be continuously extended or amended with complementary baits and/or 

specific displays, aiming to cover as many species as possible.  



Appendix section 94 

 
 
 
 
 

Mickal  Yann  Isani  HOUADRIA 
Department of Evolutionary Biology, Johannes Gütenberg University, Mainz, Germany 

October 2015 

We had not expected  seeds and elaiosome to be similar as the latter is assumed to contain 

oleic acid as attractant (Boulay et al. 2005, Bronstein et al. 2006), but see (Reifenrath et al. 

2012), and the presence of a chemical food cue alone often suffices to attract specialised 

species (Schmitt et al. 2004). However, no information could be obtained on the diversity of 

elaiosome-bearing plants at the site 
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Supplement chapter 2 

Table S1: Euclidean distances between species niches in the two sites. Bold numbers give the 

difference for conspecific niche distances. “CN > IN” corresponds to the number of species which 

have a lower niche distance to the species in question (interspecific niche distance, IN) than to its 

conspecific (CN).  

   Malua   

  
Species 

Cam 

sp.1 

Eup 

sp.1 

Lop 

sp.1 

Lop 

sp.2 

Phe 

sp.6 

Car 

sp.1 

Rec 

sp.2 

Tec 

sp.2 

CN>IN 

(Malua) 

D
a
n

u
m

 

Cam 

sp.1 30.2 46.1 27.5 25.9 40.4 30.4 34 37.5 2 

Eup sp.1 47.7 38 22.1 33.8 37 19.9 26.5 20.2 6 

Lop sp.1 33.4 41.1 7.6 14.1 32.7 17.8 17.5 25.3 0 

Lop sp.2 30.2 52.7 17.3 17.5 37.7 20.7 18.9 31.8 1 

Phe sp.6 46.3 42.5 23.2 33 34.6 18.6 29.8 25.3 5 

Car sp.1 37.9 39.3 21.3 28.5 28.6 15.7 30.5 26.8 0 

Rec sp.2 41.9 53.3 28.2 33.4 43.3 24.1 20.4 35.9 0 

Tec sp.2 65.1 37.8 40.9 49.8 60.6 47.3 46.2 33 0 

  

CN>IN 
1 1 0 1 2 0 2 5 

  (Danum) 
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Supplement chapter 3 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. S1 Relation between trophic performance, functional redundancy (FR), and the sampling 

effect. Each bar represents a grid point, on which several species (colours) contribute to overall 

trophic performance. All presented FR values are based on calculations of the depicted, 

hypothetical trophic performance values (hence, no units are given).  

(a) On the grid points B vs. A and C vs. A, higher trophic performance is due to higher, but 

relatively even contributions of each species. Hence, FR remains constant or increases with 

trophic performance. On grid point D, higher trophic performance is largely due to a single high 

performer. Hence, FR decreases with trophic performance. The effect of trophic performance on 

FR at a constant species richness allow to evaluate the evenness of the species-wise functional 

contributions. In our study, very high performance was often achieved by a high performer, but 

rarely by even contributions of multiple low performers. 

(b) In site such as PSF (Malua), high performers are ubiquitous. Hence, FR is low due to uneven 

species contributions. At low species richness (A and B; 3 species each), FR increases with 

trophic performance since the evenness of functional contributions increases. At higher species 

richness (C and D; 5 species each), the likelihood of a second high performer increases. Hence, 

grid points with high trophic performance can have a lower FR (D vs. C).  

The sampling effect occurs if an increase in performance with species richness is due to a single, 

highly efficient species rather than multiple equally performing species. Here, this is detectable in 

that trophic performance negatively affects functional redundancy at high species richness. Given 

a positive effect at low species richness, trophic performance and species richness will have an 

interaction effect on FR. 
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Fig. S2 FR plotted against trophic performance and species richness. The 

graphs show original values and regression planes calculated with linear mixed-

effects models. 
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Fig. S3 For each site, the plots show incidence and relative TP contribution of the three species with 

highest incidence. Incidence (day and night pooled; 1-64 grid points) is shown by the blue bars. The 

numbers indicate incidence during day and night separately. Relative TP contribution (in %) is 

given by the yellow and black bars, which represent diurnal and nocturnal contribution 

(respectively). 



Appendix section 99 

 
 
 
 
 

Mickal  Yann  Isani  HOUADRIA 
Department of Evolutionary Biology, Johannes Gütenberg University, Mainz, Germany 

October 2015 

 
 
 
 
 
 

  

Fig. S4 Species-wise incidence on pitfalls plotted against incidence on baits and 

pitfalls. The two metrics are highly correlated for each site. In red PPF (Pearson 

correlation: t = 26.94, df = 90, r = 0.94, p < 0.0001); in green PSF (t = 25.19, df = 83, 

r = 0.94, p < 0.0001); in blue NPF (t = 14.95, df = 106, r = 0.82, p < 0.0001) and black 

NSF (t = 12.16, df = 48, r = 0.87, p <  0.0001). 
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