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15 ABSTRACT: In this Communication, we report the first
16  synthesis of structurally well-defined graphene nanorib-
17 bons (GNRs) functionalized with dendritic polymers. The
18 resultant GNRs possess grafting ratios of 0.59—0.68 for
19 the dendrons of different generations. Remarkably, the
20 precise 3D branched conformation of the grafted
21 dendrons affords the GNRs unprecedented 1D supra-
22 molecular self-assembly behavior in tetrahydrofuran
23 (THF), yielding nanowires, helices and nanofibers
24 depending on the dimension of the dendrons. The GNR
25 superstructures in THF exhibit near-infrared absorption
26  with maxima between 650 and 700 nm, yielding an optical
27 bandgap of 12-1.3 eV. Ultrafast photoconductivity
28 analyses unveil that the helical structures exhibit the
29 longest free carrier (3.5 ps) and exciton lifetime (several
30 hundred ps) among the three superstructure systems. This
31 study opens pathways for tunable construction of ordered
32 GNR superstructures with promising optoelectronic
33 applications.

34 tructurally well-defined graphene nanoribbons (GNRs)
35 have attracted tremendous interest due to their appealing
36 tunable optical and electronic properties.' '’ They can be
37 prepared by solution-mediated chemical synthesis,'®™>°
38 enabling their gram-scale production and edge functionaliza-
39 tion, in contrast to other synthetic strategies includin§ top-
40 down™'*'” and surface-assisted bottom-up approaches.””*~**
41 Recently, excellent dispersibility and long-term stability of
42 GNRs in the liquid phase have been achieved by grafting of
43 polymer chains, which provides opportunities for investigating
44 new physiochemical properties and potential applications of
45 GNRs."”'* The achievement can be traced to the large
46 geometric dimensions of polymers that may effectively alleviate
47 the strong 7—rx interaction of GNR backbones."* However,
48 polymer-functionalization of GNRs has so far been limited to
49 linear poly(ethylene oxide) (PEO)," yet clearly additional
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functionalization could be introduced. This realization has so
inspired the interest to functionalize GNRs with other s1
polymeric structures to achieve new functional GNRs with s2
novel physiochemical properties and potential applications. 33

Here, we report the solution synthesis of dendronized s4
GNRs, which consist of a structurally defined backbone grafted ss
with benzyl ether-type dendrons®~>° of different generations s

(GNR-G1—-G3, Figure 1). The GNR backbones possess an s7fi

GNR-Dendron
(GNR-G1,GNR-G2,GNR-G3)

Figure 1. Schematic illustration of the synthesis of the dendronized
GNRs (GNR-G1-G3).

arm-chair edged structure with a uniform width of 1.7 nm and ss
an average length of 30 nm."” The side alkylcarboxyl active s9
groups at the edge of the backbones allow the grafting of 60
benzyl ether-type dendrons (G1—G3) with hydroxyl groups 61
through an esterification reaction. The resultant dendronized 62
GNRs have grafting ratios of 0.59—0.68 for the dendrons of 63
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64 different generations. With the bulky three-dimensional (3D)
65 dendrons, the maximum concentration of the GNR dispersion
66 in common solvents such as THF reaches ~3 mg mL™" (for
67 GNR backbone unless otherwise mentioned). More interest-
68 ingly, the dendronized GNRs aggregate into ultralong
69 nanowires, 1D helices, or short nanofibers in THF, depending
70 on the dimension of the dendrons. The 1D nanostructures, to
71 our knowledge, represent the first ordered GNR super-
72 structures in organic solvents, thanks to the well-defined
73 geometry of the grafted dendrons.”>™>° In particular, helical
74 structures have been rarely observed in superstructures of
75 achiral macromolecules. The formation of the superstructures
76 leads to near-infrared (NIR) absorption with a maximum at
77 685 nm for GNR-G1 and GNR-G2 in THF, and at 652 nm for
78 GNR-G3. Ultrafast photoconductivity measurements reveal
79 that GNR-G2 helices exhibit much longer free carrier (3.5 ps)
80 and exciton lifetime (several hundred ps) than those of GNR-
81 G1 nanowires and GNR-G3 short nanofibers, as well as those
82 of reported GNRs.” This discrepancy unveils the considerable
83 effect of supramolecular structures on the optoelectronic
84 properties of GNRs in the liquid phase, making them
85 promising candidates for optoelectronics applications.

86 The G1—G3 dendrons were synthesized by a traditional
87 convergent method.***>*® The production of the dendrons
ss was demonstrated by 'H, "C nuclear magnetic resonance
89 (NMR) and matrix-assisted laser desorption/ionization time-
90 of-flight (MALDI-TOF) mass spectroscopy (see details in the
91 Supporting Information). The dendronized GNRs were
92 synthesized by the esterification of the hydroxyl groups in
93 the dendrons with the carboxyl groups at the edges of GNR-
94 COOH" (Figure 1). The Fourier transform infrared (FTIR)
9s spectra (Figure S1) of GNR-G1—G3 show obvious signals at
96 1730 cm™ (C=O0 stretching from the ester group), proving
97 the successful grafting of the dendrons.'”"® The first-order
9¢ Raman spectra of the dendronized GNRs display characteristic
99 D and G peaks (Figure S2), which are basically identical to
100 that of GNR-COOH."* 2D solid-state 'H—'H double
101 quantum-single quantum MAS NMR spectra confirm the
102 dendron grafting and the unaffected GNR backbones (Figure
103 $3)."*** Quantitative single-pulse solid-state '*C magic-angle
104 spinning (MAS) NMR spectra give dendron grafting ratios of
105 0.59, 0.60, and 0.68 for GNR-G1, -G2, and -G3, respectively
106 (Figure S4, Table S1).

107 Mild sonication of the dendronized GNRs in common
108 organic solvents, including THF, chloroform, toluene,
109 chlorobenzene, etc., generated stable black homogeneous
110 dispersions without observable precipitate (Figure 2a). GNR-
111 G1, -G2, and -G3 exhibit improved dispersibility, e.g., in THF,
112 with the highest concentrations of 1.5, 2.4, and 3 mg mL™",
113 respectively, much higher than that (~1 mg mL™") of PEO-
114 grafted GNRs'® and those (~0.01 mg mL™") of documented
115 alkyl-chain modified GNRs.” GNR-G3 in dilute THF
116 dispersion shows optical absorption between 500 and 1200
117 nm with the maximum at ~652 nm, which yields an optical
118 bandgap of ~1.3 eV (Figure 2b). In contrast, GNR-G1 and
119 -G2 in THF show red-shifted absorptions in NIR region with
120 the maximum at ~685 nm.

121 The differences in UV—vis-NIR absorptions suggest
122 electronic coupling between GNRs, implying that defined
123 aggregates exist in THF dispersions. The aggregates were
124 examined by transmission electron microscopy (TEM), cryo-
125 TEM and atomic force microscopy (AFM). Interestingly,
126 GNR-G1, -G2, and -G3 formed different superstructures,
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Figure 2. (a) Dispersions of GNR-COOH and the dendronized
GNRs in THF with the maximum concentrations. (b) Normalized
UV—vis absorption spectra of the dendronized GNRs in THF (0.01
mg mL™).

including ultralong nanowires, 1D helices, and short nanofibers 127
(Figure 3). The morphologies of these aggregates were nearly 125 3
independent of the GNR concentrations in the range of 0.01— 129
1 mg mL™L. As a control, ordered superstructures were not 130
found for GNRs grafted with alkyl or PEO chains in organic 131
solvents, emphasizing the exceptional effect of the dendrons on 132
the aggregation mode of GNRs. 133

GNR-G1 formed wire-like nanostructures with a mean 134
diameter of 40 + 25 nm and lengths of 15—50 um based on 135
TEM images (Figure 3a,b, Figure SS). AFM height profiles
confirm the formation of the nanowires and give an average 137
diameter of 45 + 28 nm (Figure 3c). Considering the sizes of 138
the nanowires and the GNRs as well as the synergistic effect of 139
the 7—r interaction of the GNRs and the close packing of the 140
G1 dendrons, an aggregation model for the nanowires is 141
proposed in Figure 3d. The strong 7—7 interaction of GNRs 142
resulted in the aggregation of GNR-GI, in an entropically 143
driven random side-by-side and end-to-end fashion. The 144
association led to a crowded packing of G1 dendrons with a 145
more energetically favorable near-fan architecture’** on the 146
periphery of the aggregated ribbons (see calculation on Page 147
S1S5). The tight arrangement of the dendrons limited the 14s
aggregation of GNR-G1 preferentially along the 1D direction, 149
yielding the nanowires. 150

More interestingly, GNR-G2 aggregated into ultralong 151
helical nanostructures (Figure 3e—g, Figure S6). The 1s2
formation of the helices in the liquid phase was confirmed 153
by cryo-TEM (inset of Figure 3e). Left- and right-handed
helices were found to coexist. The helices are mostly double- 155
or triple-stranded, which consist of the twist of thinner wire- 156
like nanostructures. Similar to the GNR-G1 nanowires, the 157
formation of the helices can also be driven by the interplay 1s8
between the GNR 77—z stacking and the tight arrangement of 159
the G2 dendrons (Figure 3h). However, the difference is the 160
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G1-dendron

-
GNRs

G2-dendron

Figure 3. TEM images, AFM height profiles, and the proposed aggregation models of the GNR superstructures in THF. (a—d) GNR-G1
nanowires; (e—h) GNR-G2 helices (inset in panel e shows a typical cryo-TEM image); (i—k) GNR-G3 nanofibers. In the schematic aggregation
models, the short alkyl chains between the GNR backbones and dendrons are omitted; the near-fan architectured dendrons are presented as
“regular fans” separated by dashed lines, which are not the actual “borders” among the dendrons.

161 larger dimension of the dendrons. It is known that the
162 formation of racemic helical structures by the self-assembly of a
163 few achiral polymer systems could be driven by steric
164 hindrance among polymer coils.””*® Similarly, after the
165 aggregation of the GNRs, the steric hindrance between the
166 neighboring G2 dendrons is quite large (see calculation on
167 Page S15), which may result in an energetically favorable near-
168 fan conformation of G2,%* as well as a left- or right-handed
169 spiral of the associated semirigid GNRs,”” providing more
170 peripheral space for accommodation of the dendrons and thus
171 yielding the helices (Figure 3h).

172 GNR-G3 formed short nanofibers with average diameter and
173 length of 10 = 3 nm and 120 + 4S5 nm, respectively (Figure
174 3ij, Figure S7). The formation mechanism resembles that of
175 GNR-G1 nanowires (Figure 3k), while the much greater
176 dimension of G3 significantly reduces the number of
177 aggregation (Nagg), leading to an apparent decrease in the
178 length and diameter of the nanofibers.

179 To verify the formation possibility of the three 1D
180 superstructure systems, dissipative particle dynamics (DPD)
181 simulations were performed (see details on Pages S16—S19).
182 Three model molecules including AgB,3, AgoBogy, and AgB,gg
183 are designed to simulate GNR-G1, -G2, and -G3, respectively
184 (Figure 4a). Figure 4b displays snapshots in the formation
185 process of GNR-G1 nanowires, in which AgB,; molecules
186 (Figure 4b1) first self-assemble into thin fibers (Figure 4b2),

—
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~
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and the latter gradually associate into long nanowires with a
combined side-by-side and end-to-end alignment of “GNR
backbones” (Figure 4b3 and the inset). For AgBy, (GNR-G2)
molecules, small short helices and irregular aggregates form
first (Figure 4c1,c2); these primary structures gradually evolve
into long helices, in which the associated GNR backbones are
twisted upon the repulsion of the dendrons (Figure 4c3 and
the inset). With the largest dendrons, most AgB,g9 (GNR-G3)
molecules aggregate into short nanofibers with significantly
reduced N,g, by a GNR packing mode similar to that in the
AgB,; nanowires, while a minority of AgB,gy retain their
unimolecular state. Evidently, the DPD simulations nicely
support the experimental results and the packing modes of the
GNRs in the superstructures proposed in Figure 3.

Finally, we evaluated the ultrafast photoconductivity of the
dendronized GNRs in THF, employing time-resolved optical
pump-Terahertz (THz) probe spectroscopy.’””*® The meas-
urement protocol and the underlying principle are presented in
the SI (Figure S10). Figure S compares the time-dependent
complex conductivity of GNR-G1—G3 in THF (~1 mgmL™").
Obviously, the THz response rises sharply upon photo-
excitation, followed by a rapid decay in both the real and the
imaginary parts. The ultrafast rise of the signal is attributed to
the generation of short-lived quasi-free charge carriers; the
subsequent rapid decay arises from the formation of excitons
within a few ps due to strong Coulomb interactions between
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213 photogenerated electron—hole pairs.
214 states are long-lived, several hundreds of picoseconds (Figure
215 S11). While the photoconductivity dynamics of all three
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Figure 4. DPD simulation. (a) AgB,3, AgBogy, and AgeB,g, represent
GNR-G1, -G2, and -G3, respectively. (b1—b3) The formation process
of AgB,; nanowires at different simulation times: (b1) T = 0; (b2) T
=1 x 10% (b3) T = 2 X 105% the inset shows the packing mode of
AgB,3. (c1—c3) The formation process of A4By, helices at different
times: (c1) T = 0; (c2) T =2 x 10% (c3) T = 2 x 105 the inset
shows the packing mode of AgBy,. (d1—d3) The formation course of
AgoB,go nanofibers at different times: (c1) T = 0; (c2) T = 5 X 10%
(c4) T=2 X 10%. Yellow, GNR backbone; cyan, dendrons.
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Figure 5. THz spectroscopy for monitoring the photoconductivity in
GNRs. The plot compares the time-resolved THz photoconductivity
for GNR-G1—G3. The lifetimes (7) of free charge carriers are defined
by the decay time from the peak to 1/e in the real conductivity
(normalized), as indicated by the marked shadow areas for GNR-G1—
G3 dynamics.

39404647 The exciton

different GNRs qualitatively reflects charge generation

216

followed by exciton formation. The photoconductivity of 217

GNR-G1 and -G3 with similar cylindrical superstructures, is
characterized by a nearly identical 0.7 ps decay time constant,
in spite of their striking variance in dendron size. In contrast,
GNR-G2 helical superstructures exhibit a 5-fold longer free
carrier lifetime (3.5 ps) than those of GNR-G1 and -G3, which
is also longer than those of reported alkyl-chain modified
GNRs.”* This observation can be rationalized by considering
that after the dissociation of excitons into free carriers, the

218

carriers can move along different ribbons; the reformation of 226

excitons is expected to slow down in helical structure due to
the weaker inter-ribbon coupling strength imposed by the
twisted geometry between ribbons. Additionally, these results
indicate that the measured photoconductivity of GNRs does
not originate from single nanoribbons, as otherwise the free
carrier and exciton dynamics among all ribbons would be
identical. Instead, our results illustrate the vital effect of GNR
superstructures on the lifetime of free charge and exciton
formation dynamics.

227
228
229
230
231
232
233
234
235

In summary, we demonstrate the solution synthesis of 236

dendronized GNRs. The grafted 3D dendrons of different
dimensions render the GNRs with tunable 1D superstructures
in liquid phase including nanowires, helices, and nanofibers.
DPD simulations reveal that the unprecedented self-assembly
behavior is attributed to the interplay between the 7—n
interaction of the GNR backbones and the tight packing of the
grafted dendrons. Ultrafast photoconductivity analyses unveil
free carrier lifetime of 3.5 ps and exciton lifetime of several
hundred ps for the helices, much longer than those of the other
two superstructures. Dendronized GNRs thus hold promise as
some of the powerful building units for the construction of 1D
functional nanomaterials with potential applications in
optoelectronics, nanocomposites, biotechnology, among
others.
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