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Abstract
The majority of drug candidates fails the approval phase due to unwanted toxicities and side effects. Establishment of an 
effective toxicity prediction platform is of utmost importance, to increase the efficiency of the drug discovery process. For 
this purpose, we developed a toxicity prediction platform with machine-learning strategies. Cardiotoxicity prediction was 
performed by establishing a model with five parameters (arrhythmia, cardiac failure, heart block, hypertension, myocardial 
infarction) and additional toxicity predictions such as hepatotoxicity, reproductive toxicity, mutagenicity, and tumorigenic-
ity are performed by using Data Warrior and Pro-Tox-II software. As a case study, we selected artemisinin derivatives to 
evaluate the platform and to provide a list of safe artemisinin derivatives. Artemisinin from Artemisia annua was described 
first as an anti-malarial compound and later its anticancer properties were discovered. Here, random forest feature selec-
tion algorithm was used for the establishment of cardiotoxicity models. High AUC scores above 0.830 were achieved for 
all five cardiotoxicity indications. Using a chemical library of 374 artemisinin derivatives as a case study, 7 compounds 
(deoxydihydro-artemisinin, 3-hydroxy-deoxy-dihydroartemisinin, 3-desoxy-dihydroartemisinin, dihydroartemisinin-furano 
acetate-d3, deoxyartemisinin, artemisinin G, artemisinin B) passed the toxicity filtering process for hepatotoxicity, mutagen-
icity, tumorigenicity, and reproductive toxicity in addition to cardiotoxicity. Experimental validation with the cardiomyocyte 
cell line AC16 supported the findings from the in silico cardiotoxicity model predictions. Transcriptomic profiling of AC16 
cells upon artemisinin B treatment revealed a similar gene expression profile as that of the control compound, dexrazoxane. 
In vivo experiments with a Zebrafish model further substantiated the in silico and in vitro data, as only slight cardiotoxicity 
in picomolar range was observed. In conclusion, our machine-learning approach combined with in vitro and in vivo experi-
mentation represents a suitable method to predict cardiotoxicity of drug candidates.
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Abbreviations
AUC​	� Area under the curve
hERG	� Human ether-a-go-go related gene
kNN	� K-nearest neighboring
RF	� Random forest
ROC	� Receiver operating characteristic
SVM	� Support vector machine

Introduction

The drug discovery process comprises numerous and 
extensive preclinical analyses including in silico, in vitro, 
and in vivo experiments, before clinical trials with human 
subjects can be initiated. A main reason, why com-
pounds do not reach clinical phases is the occurrence of 
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non-tolerable toxicities. Besides hepatotoxicity, hema-
totoxicity, tumorigenicity and cardiotoxicity may pose 
severe and even life-threatening side effects (Cheng et al. 
2017; Lee 2003; McGowan et al. 2017; Oliveira et al. 
2007). Most drug candidates drop out from the develop-
ment pipeline because of these toxicities. One important 
criterion for the screening of novel drug candidates is the 
absence of cardiotoxic effects (Lee et al. 2019). The selec-
tion of potentially active compounds from large databases 
requires in silico methods as rapid and cost-effective pre-
selection step for subsequent in vitro experiments. Cou-
pling suitable in silico analyses with toxicity predictions 
increase the efficiency of preclinical drug development 
(Briggs et al. 2012; Issa et al. 2017). The selection of both 
active and safe compounds represents a most critical step. 
With emerging new concepts in artificial intelligence and 
machine learning, the prediction of toxicity may become 
not only more time- and cost-effective but also more rea-
sonable and reliable.

Many natural compounds and derivatives thereof have 
proven their effectiveness in drug therapy during the past 
decades. About 60% of the clinically established drugs are 
indeed in one way or another of natural origin (Newman 
and Cragg 2007). Available natural compound databases 
serve as an invaluable source to identify novel compounds 
that could possess activity against certain diseases or dis-
orders by focusing on particular target proteins.

The sesquiterpenoid artemisinin was initially described 
as anti-malarial compound isolated from the plant Artemi-
sia annua L. Later on, it became apparent that artemisinin 
and its derivatives are also active against cancer, viral 
infections, schistosomiasis and trypanosomiasis (Efferth 
2017a, b; Efferth et al. 2002, 2008; Michaelsen et al. 2015; 
Mu and Wang 2018; Ooko et al. 2015; Shi et al. 2018). 
Hence, this class of compounds seems to be suited for 
further drug development. This also implies that toxicity 
evaluation of artemisinin derivatives is a mandatory criti-
cal step for the development of second-generation arte-
misinin derivatives.

In the present study, we developed a cardiotoxicity 
prediction model focusing on five of the most impor-
tant parameters (arrhythmia, cardiac failure, heart block, 
hypertension, myocardial infarction). In addition, hepa-
totoxicity, mutagenicity, tumorigenicity, and reproduc-
tive toxicity were also evaluated with corresponding in 
silico tools. With these computational tools at hand, we 
selected a chemical library of 374 artemisinin derivatives 
to evaluate the toxicity and provide a panel of presumably 
safe artemisinin derivatives. The in silico results for these 
compounds have been verified in vitro with a cytotoxicity 
assay using human cardiomyocytes, microarray to analyze 
gene expression profiles and in vivo cardiotoxicity assess-
ment on a zebrafish model.

Material and methods

Preparation of a library of artemisinin derivatives 
and calculation of chemical descriptors

The chemical structures of 374 artemisinin derivatives 
were retrieved from PubMed and PubChem. The Data 
Warrior software was used to calculate the chemical 
descriptors for cardiotoxicity in addition to mutagenic-
ity, tumorigenicity, reproductive toxicity (Lopez-Lopez 
et al. 2019; Sander et al. 2015). After chemical descriptor 
calculations, correlation coefficients were calculated with 
SPSS software (IBM, USA). Descriptors having pairwise 
correlation with the cardiotoxicity parameters above 0.1 
were considered to predict drug safety. For descriptors 
having a pairwise correlation coefficient higher than 0.9, 
the one with lower correlation coefficient with the car-
diotoxicity parameters were excluded (Cai et al. 2018). 
By this strategy, relevant descriptors without the potential 
issue of over-fitting issue were selected to build the model.

Cardiotoxicity prediction model establishment

The establishment of a prediction model for cardiotox-
icity was performed by using the machine-learning soft-
ware Orange (Ljubljana, Slovenia) (Demsar et al. 2013; 
Kadioglu and Efferth 2019) and the cardiotoxicity training 
subset of compounds deposited in the DrugBank database 
(https://​www.​drugb​ank.​ca/). A total of 1451 compounds 
for arrhythmia, 626 compounds for cardiac failure, 545 
compounds for heart block, 1163 compounds for hyperten-
sion, and 639 compounds for myocardial infarction were 
selected for the learning steps and model establishment. 
For further external validation and evaluation of the mod-
els, additional 143 compounds for arrhythmia, 538 com-
pounds for cardiac failure, 403 compounds for heart block, 
291 compounds for hypertension, and 179 compounds for 
myocardial infarction were selected. After applying the 
descriptor selection criteria by considering appropriate 
relevance and over-fitting issues, “logP”, “drug likeness”, 
“amines”, “ligand efficiency (LE)”, “alkyl-amines”, “aro-
matic nitrogens” and “basic nitrogens” were considered for 
model preparation. Various classification algorithms with 
the “leave-one-out” sampling method were tested, i.e. Ada 
Boost, k-nearest neighboring (kNN), Naive Bayes, random 
forest (RF), and support vector machine (SVM). Receiver 
operating characteristic (ROC) curves are depicted in 
Fig. 1. Based on this training set of known cardiotoxic 
compounds, the further evaluation of the established cardi-
otoxicity models was performed by using a list taken from 
the literature (Mladenka et al. 2018). The RF algorithm 

https://www.drugbank.ca/
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performed better than the other classification algorithms. 
Overall performance for the established models is sum-
marized in Table 1.

Prediction of other toxicities

The prediction of hepatotoxicity and immunotoxicity was 
performed with the Pro-Tox-II web server (Banerjee et al. 
2018). Additional toxicity parameters (mutagenicity, tumo-
rigenicity, reproductive toxicity) were evaluated with Data 
Warrior software.

Verification of cardiotoxicity predictions

At first, molecular docking on hERG (human ether-a-go-go 
related gene, alias KCNH2) protein (PDB ID: 5VA2) was 
performed to assess the interaction between the selected 
compounds and the well-known cardiotoxicity marker pro-
tein hERG. Doxorubicin is a well-known cardiotoxic drug, 
which was used as positive control for cardiotoxicity. Dexra-
zoxane is a safe cardiovascular agent, which has protective 
effects towards cardiotoxicity caused by anthracyclines 
(Liesse et al. 2018; Narayan et al. 2019; Zhang et al. 2015). 

Fig.1   Receiver operating 
characteristic (ROC) curves 
of Ada Boost, kNN, Naive 
Bayes, RF, SVM classification 
algorithms based on leave-one-
out sampling for cardiotoxicity 
assessment models

Table 1   Performance of the in silico cardiotoxicity models based on the random forest classifier algorithm

Cardiotoxicity models Machine learning External validation set

AUC​ sensitivity specificity overall predic-
tive accuracy

precision sensitivity specificity overall predic-
tive accuracy

precision

Arrhythmia 0.849 0.775 0.764 0.770 0.767 0.887 0.789 0.838 0.808
Cardiac failure 0.831 0.768 0.742 0.755 0.752 0.804 0.730 0.767 0.751
Heart block 0.869 0.783 0.779 0.781 0.780 0.881 0.806 0.843 0.819
Hypertension 0.854 0.795 0.766 0.781 0.773 0.862 0.676 0.769 0.727
Myocardial infarction 0.834 0.765 0.759 0.762 0.760 0.820 0.753 0.787 0.768
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This drug was utilized as negative control for cardiotoxicity. 
Briefly, the AutoDock 4 algorithm (Morris et al. 2009) was 
used for the molecular docking calculations with 2.500.000 
energy evaluations and 250 runs. The AutoDock Tools 1.5.7 
software (Morris et al. 2009) was applied for visualization 
and preparation of ligand and protein structures. The arte-
misinin compounds selected by the machine learning-based 
RF algorithm described above have been subjected to an 
automated and comprising molecular docking campaign 
by using the high-performance supercomputer MOGON 
(Johannes Gutenberg University, Mainz). Compound flexi-
bilities were taken into account and a rigid receptor structure 
was used. The binding site of hERG was retrieved from the 
literature (Wang and MacKinnon 2017). Three independent 
defined docking runs were performed by covering the bind-
ing site on hERG. Weak binding with hERG implies safe 
drug profiles (Bhat and Houghton 2018; Lee et al. 2019).

Cytotoxicity assay

To verify the cardiotoxicity of the selected compounds fur-
ther, the cardiomyocyte cell line AC16 was used, which 
was kindly provided by Dr. James Spiers (Trinity College 
Dublin, Department of Pharmacology and Therapeutics). It 
was cultured as previously described (Elgenaidi and Spiers 
2019). The cytotoxicity of the selected compounds (provided 
by one of the authors, E.F.) and of doxorubicin (provided 
by University of Mainz Clinical Pharmacy as positive con-
trol drug) towards AC16 cardiomyocytes was evaluated by 
the resazurin assay with three independent experiments per 
compounds and each 6 parallel measurements per experi-
ment as previously described (Ooko et al. 2016).

Microarray analyses

Microarray experiments for artemisinin B, doxorubicin and 
dexrazoxane were performed with 10 µM concentration 
for artemisinin B and dexrazoxane on AC16 cells for 24 h, 
whereas the IC50 concentration was used for doxorubicin 
(1.918 µM). RNA extraction and quality control were per-
formed as previously described (Yan et al. 2020). Microarray 
analyses using the Affymetrix Clariom S assay (Affymetrix, 
Santa Clara, CA, USA) chips according to the manufacturer 
protocol were conducted by the Genomics and Proteom-
ics Core Facility at the German Cancer Research Center 
(DKFZ, Heidelberg). Statistical analysis was performed with 
the Chipster software (Helsinki, Finland).

Zebrafish handling and acute toxicity assay

Wild-type AB strain of adult zebrafish was purchased from 
the China Zebrafish Resource Center, Institute of Hydro-
biology, China Academy of Science (Wuhan, China) and 

accredited by the Association for Assessment and Accredi-
tation of Laboratory Animal Care International (SYXK 
2012–0171). Zebrafish larvae 48 h post fertilization (hpf) 
were obtained by natural pair-mating and housed in a light-
controlled aquaculture facility with a standard 14:10 h day/
night photoperiod and fed with live brine shrimp twice a day 
and fry flakes once a day.

Totally, 210 zebrafish larvae 48 hpf were employed 
and divided into 7 groups in 6-well plates (Nest Biotech, 
China) with 30 fishes in each group. The basic procedure 
of zebrafish handling and drug treatment was recently 
described by us (Zheng et al. 2020). Artemisinin B was 
dissolved with DMSO (Sigma Aldrich, Germany) for treat-
ment groups, and DMSO only was used for DMSO group. 
Artemisinin B at 0, 0.0625, 0.125, 0.25, 0.5, and 1.0 pg/ml 
were respectively microinjected into the yolk sac of each 
zebrafish larvae. All fishes were subject to visual observa-
tion and image acquisition under a dissecting stereomicro-
scope (Olympus Ltd, Tokyo, Japan). The death number and 
adverse event of zebrafishes were recorded for each group.

Results

Toxicity predictions

We developed a machine learning-based toxicity predic-
tion platform focusing on cardiotoxicity, hepatotoxicity, 
immunotoxicity, mutagenicity, reproductive toxicity and 
tumorigenicity. First, we generated a cardiotoxicity predic-
tion model with a leave-one-out sampling based random 
forest algorithm for five main parameters of cardiotoxicity 
(arrhythmia, cardiac failure, heart block, hypertension, myo-
cardial infarction) with high-performance scores for both 
learning and external validation sets. The sensitivity for 
the learning set was in the range 0.765 to 0.795 and for the 
external validation set between 0.804 and 0.887 (Table 1). 
The specificity, overall predictive accuracy and precision 
for the learning and external validation set ranged between 
0.676 and 0.843 (Table 1).

Secondly, we coupled the cardiotoxicity platform with 
software for predicting hepatotoxicity, immunotoxicity, 
mutagenicity, reproductive toxicity and tumorigenicity, in 
order to provide a sufficient filtering method to select safe 
compounds from any given compound library. A set of 374 
artemisinin derivatives, which was retrieved from PubMed 
(Supplementary Table 1), was used as exemplary case study 
in the present investigation. Overall, the main aim to use the 
artemisinin derivatives is to provide novel non-toxic arte-
misinin derivatives for further drug development. Step-by-
step filtering and scheme for the selection of safe compounds 
are depicted in Fig. 2. The first round of filtering with our 
cardiotoxicity model delivered 197 compounds (~ 53%) 
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(Supplementary Table 2) as potentially safe with low car-
diotoxicity features. As a next filtering step, mutagenicity, 
tumorigenicity and reproductive toxicity were assessed 
by using DataWarrior software. Here, 17 compounds out 
of 197 were selected (Supplementary Table 3). The last 
filtering step was performed by using the Pro-Tox II soft-
ware focusing on hepatotoxicity and immunotoxicity, and 
finally resulted in 7 out of 17 compounds (deoxydihydro-
artemisinin, 3-hydroxy-deoxy-dihydroartemisinin, 3-desoxy-
dihydroartemisinin, dihydroartemisinin-furano acetate-d3, 
deoxyartemisinin, artemisinin G, artemisinin B).

A widely accepted marker to evaluate the interaction of 
chemical compounds with cardiotoxicity is hERG (Bhat and 
Houghton 2018; Luo et al. 2014).

As a third step in the prediction process, we chose to per-
form an in silico evaluation of the models for cardiotoxicity 
and the additional parameters (mutagenicity, tumorigenicity, 
reproductive effect, immunotoxicity and hepatotoxicity) with 
a list of 39 compounds with known cardiotoxicity taken from 
the literature (Mladenka et al. 2018). Here, a 97.4% success 
rate was achieved, as 38 of them were predicted to involve 
toxicity. Thirty-four compounds were successfully predicted 
as cardiotoxic (Table 2), and the next step of filtering with 
the additional parameters led to the prediction of four more 
compounds as toxic (malathion: mutagenicity, tumorigenic-
ity, reproductive toxicity; methyldopa: reproductive toxicity; 
grayanotoxin III 6,14 diacetate: immunotoxicity; sorafenib: 
immunotoxicity and hepatotoxicity).

These results made us confident to select the remain-
ing set of 7 compounds of artemisinin derivatives from the 
machine learning-based toxicity prediction platform for fur-
ther experimental in vitro and in vivo validation.

Verification of cardiotoxicity in silico predictions

A widely accepted marker to evaluate the interaction of 
chemical compounds with cardiotoxicity is hERG (Bhat and 

Houghton 2018; Luo et al. 2014). Provided that a compound 
has a weak interaction with hERG, a safe profile in terms of 
cardiotoxicity can be assumed (Bhat and Houghton 2018; 
Lee et al. 2019). As a first step, the interactions of the inves-
tigational compounds with hERG were evaluated by means 
of molecular docking. All compounds except deoxyarte-
misinin and artemisinin G revealed weaker binding than 
doxorubicin (Table 3), which is a well-known cardiotoxic 
drug, also being labeled cardiotoxic in the in silico predic-
tion testing (Table 2). Dihydroartemisinin furano acetate-
d3 and artemisinin B revealed the weakest interaction with 
hERG, which can be taken as a clue for missing cardio-
toxicity. Remarkably, artemisinin B possessed even weaker 
binding than the cardioprotective control drug, dexrazoxane 
(Table 3).

Five out of the 7 selected compounds were available to 
us to investigate cytotoxicity in vitro towards AC16 cardio-
myocytes as a parameter to measure cellular cardiotoxic-
ity. As shown in Fig. 3, none of the selected compounds 
revealed cytotoxicity. The percentages of cell viabilities 
were quite comparable to those of the cardioprotective con-
trol compound, dexrazoxane, except of 3-hydroxydeoxy-
dihydroartemisinin. Here, treatment with a high concentra-
tion of 100 µM revealed a moderate cytotoxic effect (IC50: 

Fig.2   Computational filtering steps to select safe artemisinin deriva-
tives

Table 2   Performance of the in silico cardiotoxicity prediction

Compounds labeled with * exert mutagenicity, tumorigenicity, repro-
ductive effect, immunotoxicity or hepatotoxicity

Name Predicted 
cardiotoxicity

Name Predicted 
cardiotox-
icity

5-Fluorouracil Yes Lidocain Yes
Aconitine Yes Malathion* No
Amifostine Yes Metamphetamine Yes
Amphetamine Yes Methyldopa* No
Atropine Yes Methyltestosterone Yes
Chloroprocaine Yes Metoprolol Yes
Clenbuterol Yes Milrinone No
Clonidine Yes Nortrpytiline Yes
Cocaine Yes Paclitaxel Yes
Digoxin Yes Phenylephrine Yes
Dobutamine Yes Prednisone Yes
Doxazosin Yes Reserpine Yes
Doxorubicin Yes Ritodrine Yes
Grayanotoxin iii 

6,14 diacetate*
Yes Rofecoxib Yes

Ibuprofen Yes Salbutamol Yes
Ibutilide Yes Sildenafil Yes
Isoprenaline Yes Sorafenib* No
Lapatinib Yes Theohylline Yes
Levosimendan Yes Verapamil Yes

Yohimbine Yes
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24.915 ± 0.247 µM). Considerable cytotoxicity towards 
AC16 cardiomyocytes was solely observed with doxoru-
bicin. Here, the IC50 value was 1.918 ± 0.230 µM. It was 
not possible to measure IC50 values for all other artemisinin 
derivatives as well as dexrazoxane in concentrations up to 
100 µM. Even cell viability at high concentrations for arte-
misinin B and deoxyartemisinin was similar to cytotoxicity 
results previously reported for spinochrome D on AC16 cell 
line (Yoon et al. 2018). Overall, these results indicate that 

the six artemisinin derivatives may reveal a sufficient cardi-
osafety profile for their use in vivo.

Toxicity evaluation of artemisinin B

The compound artemisinin B with the best performance in 
the molecular docking and cell viability experiments was 
finally tested in the Zebrafish model. The curves of death 
rate and adverse events of zebrafish larvae are shown in 
Fig. 4. Zebrafish death was observed with artemisinin B at 
0.5 pg/ml, and only one dead fish (3.3% death rate) was 
found. A death rate below 10% can be regarded as experi-
mental error. Pericardial edema was observed as the only 
possible adverse event induced by artemisinin B at 1.0 pg/
ml. Since the incidence rate of adverse event was less than 
10% which can be accepted as normal response, 1.0 pg/ml 
can still be estimated as safe dose of artemisinin B. There-
fore, artemisinin B at a dose range within 1.0 pg/ml was 
non-toxic to zebrafish larvae.

Transcriptomic analyses

Transcriptome-wide RNA expression analyses revealed 
that artemisinin B treatment of AC16 cardiomyocytes led 
to deregulations in cardiotoxicity marker genes in a similar 
manner as dexrazoxane, and it caused the upregulation of 
various cardiotoxicity marker genes, which are known to 

Table 3   Molecular docking results of selected artemisinin derivatives 
on hERG

Compound LBE (kcal/mol) Predicted inhibi-
tion constant 
(µM)

Deoxydihydro-artemisinin − 5.050 ± 0.000 198.777 ± 0.235
3-Hydroxydeoxy-dihydroarte-

misinin
− 5.053 ± 0.006 197.417 ± 0.556

3-Desoxy-dihydroartemisinin − 5.050 ± 0.000 200.210 ± 0.113
Dihydroartemisinin-furanoac-

etate
− 4.893 ± 0.006 258.980 ± 1.825

Deoxyartemisinin − 5.230 ± 0.000 146.603 ± 0.391
Artemisinin G − 5.200 ± 0.000 155.018 ± 0.295
Artemisinin B − 4.467 ± 0.031 531.677 ± 29.573
Doxorubicin (positive control) − 5.160 ± 0.066 166.230 ± 17.840
Dexrazoxane (negative control) − 4.570 ± 0.000 449.210 ± 1.417

Fig.3   Cytotoxicity assessment 
of the selected compounds on 
AC16 cardiomyocytes. Results 
represent mean values and 
standard deviation of each three 
independent experiments with 
each 6 parallel measurements



2491Archives of Toxicology (2021) 95:2485–2495	

1 3

be associated with doxorubicin associated cardiotoxicity. 
Referring to the literature, where potential cardiotoxicity 
marker genes were reported (Yoon et al. 2018) and consid-
ering those genes, APP was 644-fold upregulated, CCND1 
was 385-fold upregulated, NT5E was 774-fold upregulated, 
PCNA was 126-fold upregulated, PRNP was 360-fold upreg-
ulated, STK39 was 60-fold upregulated, TXNIP was 371-fold 
upregulated by artemisinin B.

AIFM1 was 170-fold downregulated, APP was 633-fold 
downregulated, ARAF was 675-fold downregulated, CBR1 
was 650-fold downregulated, CNP was 160-fold down-
regulated, DLD was 394-fold downregulated, GSK3B was 
697-fold downregulated, NBN was 189-fold downregulated, 
NT5E was 510-fold downregulated, PBX3 was 222-fold 
downregulated, RAB2A was 788-fold downregulated, SP110 
was 264-fold downregulated, UBE4B was 540-fold down-
regulated, VIM was 558-fold downregulated by doxorubicin.

CTSC was 291-fold upregulated, DVL1 was 66-fold 
upregulated, KLF6 was 163-fold upregulated, MUS81 was 
50-fold upregulated, NT5E was 603-fold upregulated, PFN1 
was 562-fold upregulated, PRNP was 283-fold upregulated 
by dexrazoxane (Table 4).

Seventy-eight genes were commonly deregulated in arte-
misinin B and dexrazoxane and 67 of them are both down- or 
upregulated in artemisinin B and dexrazoxane-treated cells 
(Supplementary Table 4). Twenty-eight genes are com-
monly deregulated in all treatments and 9 out of those 28 
genes are reversely deregulated in artemisinin B and dexra-
zoxane-treated cells compared to doxorubicin-treated cells 
(Table 5), implying cardiotoxicity features of these genes 
(ANPEP, BACE1, C1QBP, MGLL, MT1A, MT1B, NT5E, 
RGS4, RPL23A).

Discussion

Recent advances of in silico approaches and tools are 
promising in terms of systematic evaluation of drug-
induced cardiovascular (CV) complications in both drug 
discovery and post-marketing surveillance (Collins et al. 
2015; Lorberbaum et  al. 2016a, 2016b). Recently, a 
machine learning-based cardiotoxicity prediction platform 
has been reported (Cai et al. 2018). In the present study, 
we generated models based on random forest algorithm 

Fig.4   Mortality and adverse 
events of zebrafish larvae upon 
artemisinin B treatment

Table 4   Fold change of cardiotoxicity marker genes in artemisinin 
B-, dexrazoxane- and doxorubicin-treated AC16 cells

Gene Artemisinin 
B

Gene Dexrazox-
ane

Gene Doxorubicin

APP 644.150 CTSC 291.693 AIFM1 − 170.564
CCND1 385.042 DVL1 66.551 APP − 633.831
NT5E 774.197 KLF6 163.719 ARAF − 675.091
PCNA 126.363 MUS81 50.017 CBR1 − 650.829
PRNP 360.351 NT5E 603.894 CNP − 160.800
STK39 60.882 PFN1 562.100 DLD − 394.123
TXNIP 371.243 PRNP 283.204 GSK3B − 697.101

NBN − 189.766
NT5E − 510.647
PBX3 − 222.206
RAB2A − 788.420
SP110 − 264.249
UBE4B − 540.823
VIM − 558.631
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with leave-one-out cross-validation to predict cardio-
toxicities of different categories in a similar manner as 
described by Cai et al. (2018). Moreover, we considered 
other toxicities as well with the use of additional soft-
ware applications. Our models outperformed in all cat-
egories in learning steps except for specificity (0.779 vs. 
0.813) and precision (0.780 vs. 0.794) of the heart block 
model and specificity (0.759 vs. 0.765) of the myocar-
dial infarction model. Regarding the external validation 
set, we outperformed all categories except for specific-
ity (0.676 vs. 0.710) of the hypertension model. Seven 
compounds of artemisinin derivatives (deoxydihydro-arte-
misinin, 3-hydroxy-deoxy-dihydroartemisinin, 3-desoxy-
dihydroartemisinin, dihydroartemisinin-furano acetate-d3, 
deoxyartemisinin, artemisinin G, artemisinin B) passed 
the toxicity filtering process not only as non-cardiotoxic 
compounds but also as safe compounds in terms of hepa-
totoxicity, mutagenicity, tumorigenicity, and reproductive 
toxicity by including those additional toxicity parameters. 
Even if drug candidates exert promising pharmacological 
features towards their therapeutic disease-specific target, 
non-tolerable toxicities may lead to a drop out of these 
compounds from the drug development pipeline. For this 
purpose, suitable toxicity profiling of candidate drugs is 
essential. The presented toxicity prediction platform was 
highly accurate and reliable and may, therefore, offer the 
opportunity to speed up the preclinical drug discovery 
process and to reduce the developmental costs. The plat-
form proved its success rate in external validation sets, and 
selected artemisinin derivatives revealed weak interaction 
with hERG and a comparable safety profile with that of a 
cardioprotective agent, dexrazoxane, on cardiomyocytes.

Drug attrition and thus approval failure in the last 20 
years were mainly due to the lack of efficacy (accounting 
for ~ 30% of failures) and safety (toxicology and clinical 
safety accounting for a further ~ 30% (Ferri et al. 2013)). 
Cardiovascular toxicity is among the most frequent serious 

adverse drug reactions and cause of withdrawal for mar-
keted drugs. Therefore, it is of utmost importance to 
identify and characterize the cardiotoxicity risk of drug 
candidates as early as possible at the preclinical stage of 
development (Redfern et al. 2010). Safety liabilities asso-
ciated with the cardiovascular system account for 45% of 
the total post-approval drug withdrawal from the market, 
compared to 32% for the hepatic system (Stevens and 
Baker 2009). Such a high incidence and severity of car-
diovascular toxicity in the late-stage of clinical develop-
ment can lead to restrictions in indications and dose levels, 
pre- and/or post-approval monitoring, and ultimately drug 
discontinuation or withdrawal (Ferri et al. 2013).

Considering the cardiotoxicity marker genes, which are 
deregulated in doxorubicin-treated cardiomyocytes (Yoon 
et al. 2018), artemisinin B treatment caused an upregu-
lation of 7 genes (APP, CCND1, NT5E, PCNA, PRNP, 
STK39, TXNIP), while treatment with the cardioprotective 
control, dexrazoxane, revealed an upregulations of another 
5 genes (CTSC, DVL1, KLF6, MUS81, PFN1), but interest-
ingly also NT5E and PRNP. By contrast, doxorubicin led 
to the downregulation of 14 genes (AIFM1, APP, ARAF, 
CBR1, CNP, DLD, GSK3B, NBN, NT5E, PBX3, RAB2A, 
SP110, UBE4B, VIM).

Nine genes (including NT5E) were reversely deregu-
lated in artemisinin B- or dexrazoxane-treated cells com-
pared to doxorubicin-treated cells, implying cardiotoxic-
ity marker properties of these genes (ANPEP, BACE1, 
C1QBP, MGLL, MT1A, MT1B, NT5E, RGS4, RPL23A) in 
addition to the genes mentioned above. RGS4-null mice 
showed a reduced basal heart rate (Stewart et al. 2012) 
and enhanced bradycardia resulting from RGS4 loss due 
to intrinsic alterations in cardiac automaticity (Cifelli et al. 
2008). Artemisinin B and dexrazoxane treatments led to 
the upregulation of RGS4, whereas doxorubicin downreg-
ulated RGS4, implying cardioprotection by artemisinin 
B. Among the previously reported doxorubicin-related 
downregulated cardiotoxicity marker genes (Todorova 
et al. 2012), APP, CCND1, NT5E, PCNA, PRNP, STK39, 
TXNIP were upregulated in artemisinin B-treated cardio-
myocytes, further supporting the cardioprotective proper-
ties of artemisinin B.

The cardiotoxic potential of artemisinin derivatives 
has been reported in dogs (Yin et al. 2014). However, 
human trials did not show considerable heart function 
impairment signs by artemisinin derivatives (Efferth and 
Kaina 2010). This is presumably due to the low dose of 
artesunate applied in malarial therapy (Efferth and Kaina 
2010). The therapeutically effective doses may be different 
for the treatment of cancer or other diseases. Therefore, 
the safety of artemisinins in malaria treatment does not 
allow to extrapolate on safety for other diseases. Only via 
dose escalation studies in animal and human studies, the 

Table 5   Fold change of reversely deregulated genes in artemisinin B- 
or dexrazoxane-treated AC16 cells compared to doxorubicin-treated 
AC16 cells.

Gene Artemisinin B Dexrazoxane Doxorubicin

ANPEP 503.888 154.716 − 1166.090
BACE1 − 60.065 − 38.736 131.002
C1QBP 251.246 296.638 − 1196.785
MGLL 41.710 205.947 − 229.316
MT1A 3050.855 2360.951 − 2028.899
MT1B 1895.162 1362.674 − 1498.303
NT5E 774.197 603.894 − 510.647
RGS4 256.294 348.026 − 361.650
RPL23A − 611.567 − 612.719 676.744
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appropriate cardiotoxic profiles of artemisinin derivatives 
can be reliably determined.

Radioligand binding assays, electrophysiology measure-
ments, rubidium-flux assays, and fluorescence-based assays 
are among the methods to assess cardiotoxicity (Polak et al. 
2009). Zebrafish modeling is another widely used strategy 
in that regard (Sarmah and Marrs 2016). However, such 
methods are less feasible for the evaluation of a large num-
ber of compounds in early-stage drug discovery because of 
high expenses and low throughput. After in silico filtering 
and in vitro experimentation, we selected artemisinin B and 
tested it in a zebrafish model, because artemisinin B revealed 
the weakest interaction with hERG and the lowest cytotoxic-
ity towards AC16 cardiomyocytes. Our results indicate that 
artemisinin B at 1.0 pg/ml was non-toxic to zebrafish larvae. 
We conclude that artemisinin B is a promising non-cardio-
toxic compound, since it revealed a similar gene expression 
profile to that of dexrazoxane and showed only slight cardio-
toxicity in the picomolar range in zebrafish.

Conclusions

In the present study, we established a toxicity prediction 
platform involving cardiotoxicity, hepatotoxicity, immuno-
toxicity, tumorigenicity, mutagenicity, and reproductive tox-
icity. Random forest feature selection algorithm was used for 
the establishment of cardiotoxicity models, and high AUC 
scores above 0.830 were achieved for all five cardiotoxicity 
indications. Using artemisinin derivatives as example, 7 out 
of 374 compounds passed the toxicity filtering procedure. 
Selected compounds revealed weak interaction with hERG, 
low toxicity towards cardiomyocytes, verifying their safe 
profile. Artemisinin B treatment revealed a similar gene 
expression profile to that of dexrazoxane and showed only 
slight cardiotoxicity in the picomolar range in zebrafish. 
In conclusion, our toxicity prediction scheme can speed 
up the identification of safe compounds in preclinical drug 
development.
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