Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://doi.org/10.25358/openscience-8551
Autoren: Bernáez Timón, Laura
Ekelmans, Pierre
Kraynyukova, Nataliya
Rose, Tobias
Busse, Laura
Tchumatchenko, Tatjana
Titel: How to incorporate biological insights into network models and why it matters
Online-Publikationsdatum: 25-Jan-2023
Erscheinungsdatum: 2022
Sprache des Dokuments: Englisch
Zusammenfassung/Abstract: Due to the staggering complexity of the brain and its neural circuitry, neuroscientists rely on the analysis of mathematical models to elucidate its function. From Hodgkin and Huxley's detailed description of the action potential in 1952 to today, new theories and increasing computational power have opened up novel avenues to study how neural circuits implement the computations that underlie behaviour. Computational neuroscientists have developed many models of neural circuits that differ in complexity, biological realism or emergent network properties. With recent advances in experimental techniques for detailed anatomical reconstructions or large-scale activity recordings, rich biological data have become more available. The challenge when building network models is to reflect experimental results, either through a high level of detail or by finding an appropriate level of abstraction. Meanwhile, machine learning has facilitated the development of artificial neural networks, which are trained to perform specific tasks. While they have proven successful at achieving task-oriented behaviour, they are often abstract constructs that differ in many features from the physiology of brain circuits. Thus, it is unclear whether the mechanisms underlying computation in biological circuits can be investigated by analysing artificial networks that accomplish the same function but differ in their mechanisms. Here, we argue that building biologically realistic network models is crucial to establishing causal relationships between neurons, synapses, circuits and behaviour. More specifically, we advocate for network models that consider the connectivity structure and the recorded activity dynamics while evaluating task performance.
DDC-Sachgruppe: 610 Medizin
610 Medical sciences
Veröffentlichende Institution: Johannes Gutenberg-Universität Mainz
Organisationseinheit: FB 04 Medizin
Veröffentlichungsort: Mainz
ROR: https://ror.org/023b0x485
DOI: http://doi.org/10.25358/openscience-8551
Version: Published version
Publikationstyp: Zeitschriftenaufsatz
Nutzungsrechte: CC BY-NC
Informationen zu den Nutzungsrechten: https://creativecommons.org/licenses/by-nc/4.0/
Zeitschrift: The journal of physiology
Version of Record (VoR)
Verlag: Wiley-Blackwell
Verlagsort: Hoboken, NJ
Erscheinungsdatum: 2022
ISSN: 1469-7793
DOI der Originalveröffentlichung: 10.1113/JP282755
Enthalten in den Sammlungen:DFG-491381577-H

Dateien zu dieser Ressource:
  Datei Beschreibung GrößeFormat
Miniaturbild
how_to_incorporate_biological-20230111110004604.pdf1.3 MBAdobe PDFÖffnen/Anzeigen