Please use this identifier to cite or link to this item: http://doi.org/10.25358/openscience-8126
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRiel, Nicolas-
dc.contributor.authorKaus, Boris-
dc.contributor.authorGreen, Eleanor-
dc.contributor.authorBerlie, Nicolas-
dc.date.accessioned2022-10-31T08:48:26Z-
dc.date.available2022-10-31T08:48:26Z-
dc.date.issued2022-
dc.identifier.urihttps://openscience.ub.uni-mainz.de/handle/20.500.12030/8141-
dc.description.abstractPrediction of stable mineral equilibria in the Earth's lithosphere is critical to unravel the tectonomagmatic history of exposed geological sections. While the recent advances in geodynamic modeling allow us to explore the dynamics of magmatic transfer in solid mediums, there is to date no available thermodynamic package that can easily be linked and efficiently be accounted for the computation of phase equilibrium in magmatic systems. Moreover, none of the existing tools fully exploit single point calculation parallelization, which strongly hinders their applicability for direct geodynamic coupling or for thermodynamic database inversions. Here, we present a new Mineral Assemblage Gibbs Energy Minimizer (magemin). The package is written as a parallel C library, provides a direct Julia interface, and is callable from any petrological/geodynamic tool. For a given set of pressure, temperature, and bulk-rock composition magemin uses a combination of linear programming, extended Partitioning Gibbs Energy and gradient-based local minimization to compute the stable mineral assemblage. We apply our new minimization package to the igneous thermodynamic data set of Holland et al. (2018), https://doi.org/10.1093/petrology/egy048 and produce several phase diagrams at supra-solidus conditions. The phase diagrams are then directly benchmarked against thermocalc and exhibit very good agreement. The high scalability of magemin on parallel computing facilities opens new horizons, for example, for modeling reactive magma flow, for thermodynamic data set inversion, and for petrological/geophysical applications.en_GB
dc.description.sponsorshipGefördert durch die Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 491381577de
dc.language.isoengde
dc.rightsCC BY*
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/*
dc.subject.ddc550 Geowissenschaftende_DE
dc.subject.ddc550 Earth sciencesen_GB
dc.titleMAGEMin, an efficient Gibbs energy minimizer : application to igneous systemsen_GB
dc.typeZeitschriftenaufsatzde
dc.identifier.doihttp://doi.org/10.25358/openscience-8126-
jgu.type.contenttypeScientific articlede
jgu.type.dinitypearticleen_GB
jgu.type.versionPublished versionde
jgu.type.resourceTextde
jgu.organisation.departmentFB 09 Chemie, Pharmazie u. Geowissensch.de
jgu.organisation.number7950-
jgu.organisation.nameJohannes Gutenberg-Universität Mainz-
jgu.rights.accessrightsopenAccess-
jgu.journal.titleGeochemistry, geophysics, geosystemsde
jgu.journal.volume23de
jgu.journal.issue7de
jgu.pages.alternativee2022GC010427de
jgu.publisher.year2022-
jgu.publisher.nameWileyde
jgu.publisher.placeHoboken, NJde
jgu.publisher.issn1525-2027de
jgu.organisation.placeMainz-
jgu.subject.ddccode550de
jgu.publisher.doi10.1029/2022GC010427de
jgu.organisation.rorhttps://ror.org/023b0x485-
jgu.subject.dfgNaturwissenschaftende
Appears in collections:DFG-491381577-G

Files in This Item:
  File Description SizeFormat
Thumbnail
magemin_an_efficient_gibbs_en-20221020162927509.pdf4.59 MBAdobe PDFView/Open