Please use this identifier to cite or link to this item: http://doi.org/10.25358/openscience-8126
Authors: Riel, Nicolas
Kaus, Boris
Green, Eleanor
Berlie, Nicolas
Title: MAGEMin, an efficient Gibbs energy minimizer : application to igneous systems
Online publication date: 31-Oct-2022
Year of first publication: 2022
Language: english
Abstract: Prediction of stable mineral equilibria in the Earth's lithosphere is critical to unravel the tectonomagmatic history of exposed geological sections. While the recent advances in geodynamic modeling allow us to explore the dynamics of magmatic transfer in solid mediums, there is to date no available thermodynamic package that can easily be linked and efficiently be accounted for the computation of phase equilibrium in magmatic systems. Moreover, none of the existing tools fully exploit single point calculation parallelization, which strongly hinders their applicability for direct geodynamic coupling or for thermodynamic database inversions. Here, we present a new Mineral Assemblage Gibbs Energy Minimizer (magemin). The package is written as a parallel C library, provides a direct Julia interface, and is callable from any petrological/geodynamic tool. For a given set of pressure, temperature, and bulk-rock composition magemin uses a combination of linear programming, extended Partitioning Gibbs Energy and gradient-based local minimization to compute the stable mineral assemblage. We apply our new minimization package to the igneous thermodynamic data set of Holland et al. (2018), https://doi.org/10.1093/petrology/egy048 and produce several phase diagrams at supra-solidus conditions. The phase diagrams are then directly benchmarked against thermocalc and exhibit very good agreement. The high scalability of magemin on parallel computing facilities opens new horizons, for example, for modeling reactive magma flow, for thermodynamic data set inversion, and for petrological/geophysical applications.
DDC: 550 Geowissenschaften
550 Earth sciences
Institution: Johannes Gutenberg-Universität Mainz
Department: FB 09 Chemie, Pharmazie u. Geowissensch.
Place: Mainz
ROR: https://ror.org/023b0x485
DOI: http://doi.org/10.25358/openscience-8126
Version: Published version
Publication type: Zeitschriftenaufsatz
Document type specification: Scientific article
License: CC BY
Information on rights of use: https://creativecommons.org/licenses/by/4.0/
Journal: Geochemistry, geophysics, geosystems
23
7
Pages or article number: e2022GC010427
Publisher: Wiley
Publisher place: Hoboken, NJ
Issue date: 2022
ISSN: 1525-2027
Publisher DOI: 10.1029/2022GC010427
Appears in collections:DFG-491381577-G

Files in This Item:
  File Description SizeFormat
Thumbnail
magemin_an_efficient_gibbs_en-20221020162927509.pdf4.59 MBAdobe PDFView/Open