Please use this identifier to cite or link to this item: http://doi.org/10.25358/openscience-8087
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBlanchard, John W.-
dc.contributor.authorRipka, Barbara-
dc.contributor.authorSuslick, Benjamin A.-
dc.contributor.authorGelevski, Dario-
dc.contributor.authorWu, Teng-
dc.contributor.authorMünnemann, Kerstin-
dc.contributor.authorBarskiy, Danila A.-
dc.contributor.authorBudker, Dmitry-
dc.date.accessioned2022-11-14T11:29:15Z-
dc.date.available2022-11-14T11:29:15Z-
dc.date.issued2021-
dc.identifier.urihttps://openscience.ub.uni-mainz.de/handle/20.500.12030/8102-
dc.description.abstractSignal amplification by reversible exchange (SABRE) boosts NMR signals of various nuclei enabling new applications spanning from magnetic resonance imaging to analytical chemistry and fundamental physics. SABRE is especially well positioned for continuous generation of enhanced magnetization on a large scale; however, several challenges need to be addressed for accomplishing this goal. Specifically, SABRE requires (i) a specialized catalyst capable of reversible H2 activation and (ii) physical transfer of the sample from the point of magnetization generation to the point of detection (e.g., a high-field or a benchtop nuclear magnetic resonance [NMR] spectrometer). Moreover, (iii) continuous parahydrogen bubbling accelerates solvent (e.g., methanol) evaporation, thereby limiting the experimental window to tens of minutes per sample. In this work, we demonstrate a strategy to rapidly generate the best-to-date precatalyst (a compound that is chemically modified in the course of the reaction to yield the catalyst) for SABRE, [Ir(IMes)(COD)Cl] (IMes = 1,3-bis-[2,4,6-trimethylphenyl]-imidazol-2-ylidene; COD = cyclooctadiene) via a highly accessible synthesis. Second, we measure hyperpolarized samples using a home-built zero-field NMR spectrometer and study the field dependence of hyperpolarization directly in the detection apparatus, eliminating the need to physically move the sample during the experiment. Finally, we prolong the measurement time and reduce evaporation by presaturating parahydrogen with the solvent vapor before bubbling into the sample. These advancements extend opportunities for exploring SABRE hyperpolarization by researchers from various fields and pave the way to producing large quantities of hyperpolarized material for long-lasting detection of SABRE-derived nuclear magnetization.en_GB
dc.language.isoengde
dc.rightsCC BY-NC*
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/*
dc.subject.ddc530 Physikde_DE
dc.subject.ddc530 Physicsen_GB
dc.subject.ddc540 Chemiede_DE
dc.subject.ddc540 Chemistry and allied sciencesen_GB
dc.titleTowards large-scale steady-state enhanced nuclear magnetization with in situ detectionen_GB
dc.typeZeitschriftenaufsatzde
dc.identifier.doihttp://doi.org/10.25358/openscience-8087-
jgu.type.dinitypearticleen_GB
jgu.type.versionPublished versionde
jgu.type.resourceTextde
jgu.organisation.departmentFB 08 Physik, Mathematik u. Informatikde
jgu.organisation.departmentHelmholtz Institut Mainzde
jgu.organisation.number7940-
jgu.organisation.number9050-
jgu.organisation.nameJohannes Gutenberg-Universität Mainz-
jgu.rights.accessrightsopenAccess-
jgu.journal.titleMagnetic resonance in chemistryde
jgu.journal.volume59de
jgu.journal.issue12de
jgu.pages.start1208de
jgu.pages.end1215de
jgu.publisher.year2021-
jgu.publisher.nameWileyde
jgu.publisher.placeChichesterde
jgu.publisher.issn1097-458Xde
jgu.organisation.placeMainz-
jgu.subject.ddccode530de
jgu.subject.ddccode540de
jgu.publisher.doi10.1002/mrc.5161de
jgu.organisation.rorhttps://ror.org/023b0x485-
Appears in collections:JGU-Publikationen

Files in This Item:
  File Description SizeFormat
Thumbnail
towards_largescale_steadystat-20221017155708364.pdf4.46 MBAdobe PDFView/Open