Please use this identifier to cite or link to this item: http://doi.org/10.25358/openscience-7822
Full metadata record
DC FieldValueLanguage
dc.contributor.authorReyes-Puerta, Vicente-
dc.contributor.authorKim, Suam-
dc.contributor.authorSun, Jyh-Jang-
dc.contributor.authorImbrosci, Barbara-
dc.contributor.authorKilb, Werner-
dc.contributor.authorLuhmann, Heiko-
dc.date.accessioned2022-10-04T10:29:25Z-
dc.date.available2022-10-04T10:29:25Z-
dc.date.issued2015
dc.identifier.urihttps://openscience.ub.uni-mainz.de/handle/20.500.12030/7837-
dc.description.abstractThe manner in which populations of inhibitory (INH) and excitatory (EXC) neocortical neurons collectively encode stimulus-related information is a fundamental, yet still unresolved question. Here we address this question by simultaneously recording with large-scale multi-electrode arrays (of up to 128 channels) the activity of cell ensembles (of up to 74 neurons) distributed along all layers of 3–4 neighboring cortical columns in the anesthetized adult rat somatosensory barrel cortex in vivo. Using two different whisker stimulus modalities (location and frequency) we show that individual INH neurons – classified as such according to their distinct extracellular spike waveforms – discriminate better between restricted sets of stimuli (≤6 stimulus classes) than EXC neurons in granular and infra-granular layers. We also demonstrate that ensembles of INH cells jointly provide as much information about such stimuli as comparable ensembles containing the ~20% most informative EXC neurons, however presenting less information redundancy – a result which was consistent when applying both theoretical information measurements and linear discriminant analysis classifiers. These results suggest that a consortium of INH neurons dominates the information conveyed to the neocortical network, thereby efficiently processing incoming sensory activity. This conclusion extends our view on the role of the inhibitory system to orchestrate cortical activity.en_GB
dc.description.sponsorshipDFG, Open Access-Publizieren Universität Mainz / Universitätsmedizinde
dc.language.isoengde
dc.rightsCC BY*
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/*
dc.subject.ddc610 Medizinde_DE
dc.subject.ddc610 Medical sciencesen_GB
dc.titleHigh stimulus-related information in barrel cortex inhibitory interneuronsen_GB
dc.typeZeitschriftenaufsatzde
dc.identifier.doihttp://doi.org/10.25358/openscience-7822-
jgu.type.dinitypearticleen_GB
jgu.type.versionPublished versionde
jgu.type.resourceTextde
jgu.organisation.departmentFB 04 Medizinde
jgu.organisation.number2700-
jgu.organisation.nameJohannes Gutenberg-Universität Mainz-
jgu.rights.accessrightsopenAccess-
jgu.journal.titlePLoS Computational Biologyde
jgu.journal.volume11de
jgu.journal.issue6de
jgu.pages.alternativee1004121de
jgu.publisher.year2015-
jgu.publisher.namePublic Library of Sciencede
jgu.publisher.placeSan Francisco, Calif.de
jgu.publisher.urihttp://dx.doi.org/10.1371/journal.pcbi.1004121de
jgu.publisher.issn1553-7358de
jgu.publisher.issn1553-734Xde
jgu.organisation.placeMainz-
jgu.identifier.pmid26098109
jgu.subject.ddccode610de
opus.date.modified2018-09-05T09:15:40Z
opus.subject.dfgcode00-000
opus.organisation.stringFB 04: Medizin: Institut für Physiologie und Pathophysiologiede_DE
opus.identifier.opusid51985
opus.importsourcepubmed
opus.institute.number0403
opus.metadataonlyfalse
opus.type.contenttypeKeinede_DE
opus.type.contenttypeNoneen_EN
opus.affiliatedReyes-Puerta, Vicente
opus.affiliatedImbrosci, Barbara
opus.affiliatedLuhmann, Heiko
jgu.publisher.doi10.1371/journal.pcbi.1004121de
jgu.organisation.rorhttps://ror.org/023b0x485-
Appears in collections:DFG-OA-Publizieren (2012 - 2017)

Files in This Item:
  File Description SizeFormat
Thumbnail
high_stimulusrelated_informat-20220914001929405.pdf2.93 MBAdobe PDFView/Open