Please use this identifier to cite or link to this item: http://doi.org/10.25358/openscience-7270
Authors: Kamuf, Jens
Garcia Bardon, Andreas
Ziebart, Alexander
Ruemmler, Robert
Schwab, Johannes
Dib, Mobin
Daiber, Andreas
Thal, Serge C.
Hartmann, Erik K.
Title: Influence of rosuvastatin treatment on cerebral inflammation and nitro-oxidative stress in experimental lung injury in pigs
Online publication date: 1-Jul-2022
Year of first publication: 2021
Language: english
Abstract: BACKGROUND Many patients with acute respiratory distress syndrome (ARDS) suffer from cognitive impairment after hospital discharge. Different mechanisms have been implicated as potential causes for this impairment, inter alia cerebral inflammation. A class of drugs with antioxidant and anti-inflammatory properties are β-HMG-CoA-reductase inhibitors (“statins”). We hypothesized that treatment with rosuvastatin attenuates cerebral cytokine mRNA expression and nitro-oxidative stress in an animal model of acute lung injury. METHODS After approval of the institutional and state animal care committee, we performed this prospective randomized controlled animal study in accordance with the international guidelines for the care and use of laboratory animals. Thirty-two healthy male pigs were randomized to one of four groups: lung injury by central venous injection of oleic acid (n = 8), statin treatment before and directly after lung injury (n = 8), statin treatment after lung injury (n = 8), or ventilation-only controls (n = 8). About 18 h after lung injury and standardized treatment, the animals were euthanised, and the brains and lungs were collected for further examinations. We determined histologic lung injury and cerebral and pulmonal cytokine and 3-nitrotyrosine production. RESULTS We found a significant increase in hippocampal IL-6 mRNA after lung injury (p < 0.05). Treatment with rosuvastatin before and after induction of lung injury led to a significant reduction of hippocampal IL-6 mRNA (p < 0.05). Cerebral 3-nitrotyrosine was significantly higher in lung-injured animals compared with all other groups (p < 0.05 vs. animals treated with rosuvastatin after lung injury induction; p < 0.001 vs. all other groups). 3-Nitrotyrosine was also increased in the lungs of the lung-injured pigs compared to all other groups (p < 0.05 each). CONCLUSIONS Our findings highlight cerebral cytokine production and nitro-oxidative stress within the first day after induction of lung injury. The treatment with rosuvastatin reduced IL-6 mRNA and 3-nitrotyrosine concentration in the brains of the animals. In earlier trials, statin treatment did not reduce mortality in ARDS patients but seemed to improve quality of life in ARDS survivors. Whether this is attributable to better cognitive function because of reduced nitro-oxidative stress and inflammation remains to be elucidated.
DDC: 610 Medizin
610 Medical sciences
Institution: Johannes Gutenberg-Universität Mainz
Department: FB 04 Medizin
Place: Mainz
ROR: https://ror.org/023b0x485
DOI: http://doi.org/10.25358/openscience-7270
Version: Published version
Publication type: Zeitschriftenaufsatz
License: CC BY
Information on rights of use: https://creativecommons.org/licenses/by/4.0/
Journal: BMC anesthesiology
21
Pages or article number: 224
Publisher: BioMed Central
Publisher place: S.l.
Issue date: 2021
ISSN: 1471-2253
Publisher DOI: 10.1186/s12871-021-01436-0
Appears in collections:JGU-Publikationen

Files in This Item:
  File Description SizeFormat
Thumbnail
influence_of_rosuvastatin_tre-20220701092402955.pdf1.93 MBAdobe PDFView/Open