Please use this identifier to cite or link to this item: http://doi.org/10.25358/openscience-6341
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBecker, Sven-
dc.contributor.authorRen, Zengyao-
dc.contributor.authorFuhrmann, Felix-
dc.contributor.authorRoss, Andrew-
dc.contributor.authorLord, Sally-
dc.contributor.authorDing, S.-
dc.contributor.authorWu, R.-
dc.contributor.authorYang, J.-
dc.contributor.authorMiao, J.-
dc.contributor.authorKläui, Mathias-
dc.contributor.authorJakob, Gerhard-
dc.date.accessioned2021-09-17T09:01:36Z-
dc.date.available2021-09-17T09:01:36Z-
dc.date.issued2021-
dc.identifier.urihttps://openscience.ub.uni-mainz.de/handle/20.500.12030/6351-
dc.description.abstractFerrimagnetic Y3Fe5O12 (YIG) is the prototypical material for studying magnonic properties due to its exceptionally low damping. By substituting the yttrium with rare earth elements that have a net magnetic moment, we can introduce an additional spin degree of freedom. Here, we study the magnetic coupling in epitaxial Y3Fe5O12/Gd3Fe5O12 (YIG/GIG) heterostructures grown by pulsed laser deposition. From bulk sensitive magnetometry and surface sensitive spin Seebeck effect and spin Hall magnetoresistance measurements, we determine the alignment of the heterostructure magnetization as a function temperature and external magnetic field. The ferromagnetic coupling between the Fe sublattices of YIG and GIG dominates the overall behavior of the heterostructures. Because of the temperature-dependent gadolinium moment, a magnetic compensation point of the total bilayer system can be identified. This compensation point shifts to lower temperatures with increasing YIG thickness due the parallel alignment of the iron moments. We show that we can control the magnetic properties of the heterostructures by tuning the thickness of the individual layers, opening up a large playground for magnonic devices based on coupled magnetic insulators. These devices could potentially control the magnon transport analogously to electron transport in giant magnetoresistive devices.en_GB
dc.language.isoengde
dc.rightsInCopyright*
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/*
dc.subject.ddc530 Physikde_DE
dc.subject.ddc530 Physicsen_GB
dc.titleMagnetic coupling in Y3Fe5O12/Gd3Fe5O12 heterostructuresen_GB
dc.typeZeitschriftenaufsatzde
dc.identifier.doihttp://doi.org/10.25358/openscience-6341-
jgu.type.contenttypeScientific articlede
jgu.type.dinitypearticleen_GB
jgu.type.versionAccepted versionde
jgu.type.resourceTextde
jgu.organisation.departmentFB 08 Physik, Mathematik u. Informatikde
jgu.organisation.number7940-
jgu.organisation.nameJohannes Gutenberg-Universität Mainz-
jgu.rights.accessrightsopenAccess-
jgu.journal.titlePhysical review appliedde
jgu.journal.volume16de
jgu.journal.issue1de
jgu.pages.alternative014047de
jgu.publisher.year2021-
jgu.publisher.nameAmerican Physical Societyde
jgu.publisher.placeCollege Park, Md. u.a.de
jgu.publisher.urihttps://doi.org/10.1103/PhysRevApplied.16.014047de
jgu.publisher.issn2331-7019de
jgu.organisation.placeMainz-
jgu.subject.ddccode530de
jgu.publisher.doi10.1103/PhysRevApplied.16.014047
jgu.organisation.rorhttps://ror.org/023b0x485
Appears in collections:JGU-Publikationen

Files in This Item:
  File Description SizeFormat
Thumbnail
becker_s.-magnetic_coupl-20210913132109635.pdf1.6 MBAdobe PDFView/Open