Please use this identifier to cite or link to this item: http://doi.org/10.25358/openscience-6337
Full metadata record
DC FieldValueLanguage
dc.contributor.authorJiao, Dejin-
dc.contributor.authorLossada, Francisco-
dc.contributor.authorGuo, Jiaqi-
dc.contributor.authorSkarsetz, Oliver-
dc.contributor.authorHeonders, Daniel-
dc.contributor.authorLiu, Jin-
dc.contributor.authorWalther, Andreas-
dc.date.accessioned2021-09-13T09:54:52Z-
dc.date.available2021-09-13T09:54:52Z-
dc.date.issued2021-
dc.identifier.urihttps://openscience.ub.uni-mainz.de/handle/20.500.12030/6347-
dc.description.abstractNature fascinates with living organisms showing mechanically adaptive behavior. In contrast to gels or elastomers, it is profoundly challenging to switch mechanical properties in stiff bioinspired nanocomposites as they contain high fractions of immobile reinforcements. Here, we introduce facile electrical switching to the field of bioinspired nanocomposites, and show how the mechanical properties adapt to low direct current (DC). This is realized for renewable cellulose nanofibrils/polymer nanopapers with tailor-made interactions by deposition of thin single-walled carbon nanotube electrode layers for Joule heating. Application of DC at specific voltages translates into significant electrothermal softening via dynamization and breakage of the thermo-reversible supramolecular bonds. The altered mechanical properties are reversibly switchable in power on/power off cycles. Furthermore, we showcase electricity-adaptive patterns and reconfiguration of deformation patterns using electrode patterning techniques. The simple and generic approach opens avenues for bioinspired nanocomposites for facile application in adaptive damping and structural materials, and soft robotics.en_GB
dc.language.isoengde
dc.rightsCC BY*
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/*
dc.subject.ddc500 Naturwissenschaftende_DE
dc.subject.ddc500 Natural sciences and mathematicsen_GB
dc.subject.ddc540 Chemiede_DE
dc.subject.ddc540 Chemistry and allied sciencesen_GB
dc.titleElectrical switching of high-performance bioinspired nanocellulose nanocompositesen_GB
dc.typeZeitschriftenaufsatzde
dc.identifier.doihttp://doi.org/10.25358/openscience-6337-
jgu.type.dinitypearticleen_GB
jgu.type.versionPublished versionde
jgu.type.resourceTextde
jgu.organisation.departmentFB 09 Chemie, Pharmazie u. Geowissensch.de
jgu.organisation.number7950-
jgu.organisation.nameJohannes Gutenberg-Universität Mainz-
jgu.rights.accessrightsopenAccess-
jgu.journal.titleNature Communicationsde
jgu.journal.volume12de
jgu.pages.alternative1312de
jgu.publisher.year2021-
jgu.publisher.nameNature Publishing Group UKde
jgu.publisher.placeLondonde
jgu.publisher.urihttps://doi.org/10.1038/s41467-021-21599-1de
jgu.publisher.issn2041-1723de
jgu.organisation.placeMainz-
jgu.subject.ddccode500de
jgu.subject.ddccode540de
jgu.publisher.doi10.1038/s41467-021-21599-1
jgu.organisation.rorhttps://ror.org/023b0x485
Appears in collections:JGU-Publikationen

Files in This Item:
  File Description SizeFormat
Thumbnail
jiao_dejin-electrical_swi-20210913084109016.pdf4.16 MBAdobe PDFView/Open