Please use this identifier to cite or link to this item: http://doi.org/10.25358/openscience-6319
Full metadata record
DC FieldValueLanguage
dc.contributor.authorFabricant, Anne-
dc.contributor.authorIwata, Geoffrey Z.-
dc.contributor.authorScherzer, Sönke-
dc.contributor.authorBougas, Lykourgos-
dc.contributor.authorRolfs, Katharina-
dc.contributor.authorJodko-Władzińska, Anna-
dc.contributor.authorVoigt, Jens-
dc.contributor.authorHedrich, Rainer-
dc.contributor.authorBudker, Dmitry-
dc.date.accessioned2021-09-10T09:22:01Z-
dc.date.available2021-09-10T09:22:01Z-
dc.date.issued2021-
dc.identifier.urihttps://openscience.ub.uni-mainz.de/handle/20.500.12030/6329-
dc.description.abstractUpon stimulation, plants elicit electrical signals that can travel within a cellular network analogous to the animal nervous system. It is well-known that in the human brain, voltage changes in certain regions result from concerted electrical activity which, in the form of action potentials (APs), travels within nerve-cell arrays. Electro- and magnetophysiological techniques like electroencephalography, magnetoencephalography, and magnetic resonance imaging are used to record this activity and to diagnose disorders. Here we demonstrate that APs in a multicellular plant system produce measurable magnetic fields. Using atomic optically pumped magnetometers, biomagnetism associated with electrical activity in the carnivorous Venus flytrap, Dionaea muscipula, was recorded. Action potentials were induced by heat stimulation and detected both electrically and magnetically. Furthermore, the thermal properties of ion channels underlying the AP were studied. Beyond proof of principle, our findings pave the way to understanding the molecular basis of biomagnetism in living plants. In the future, magnetometry may be used to study long-distance electrical signaling in a variety of plant species, and to develop noninvasive diagnostics of plant stress and disease.en_GB
dc.language.isoengde
dc.rightsCC BY*
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/*
dc.subject.ddc530 Physikde_DE
dc.subject.ddc530 Physicsen_GB
dc.subject.ddc570 Biowissenschaftende_DE
dc.subject.ddc570 Life sciencesen_GB
dc.titleAction potentials induce biomagnetic fields in carnivorous Venus flytrap plantsen_GB
dc.typeZeitschriftenaufsatzde
dc.identifier.doihttp://doi.org/10.25358/openscience-6319-
jgu.type.dinitypearticleen_GB
jgu.type.versionPublished versionde
jgu.type.resourceTextde
jgu.organisation.departmentFB 08 Physik, Mathematik u. Informatikde
jgu.organisation.departmentHelmholtz Institut Mainzde
jgu.organisation.number7940-
jgu.organisation.number9050-
jgu.organisation.nameJohannes Gutenberg-Universität Mainz-
jgu.rights.accessrightsopenAccess-
jgu.journal.titleScientific reportsde
jgu.journal.volume11de
jgu.pages.alternative1438de
jgu.publisher.year2021-
jgu.publisher.nameMacmillan Publishers Limited, part of Springer Naturede
jgu.publisher.placeLondonde
jgu.publisher.urihttps://doi.org/10.1038/s41598-021-81114-wde
jgu.publisher.issn2045-2322de
jgu.organisation.placeMainz-
jgu.subject.ddccode530de
jgu.subject.ddccode570de
jgu.publisher.doi10.1038/s41598-021-81114-w
jgu.organisation.rorhttps://ror.org/023b0x485
Appears in collections:JGU-Publikationen

Files in This Item:
  File Description SizeFormat
Thumbnail
fabricant_anne-action_potenti-20210827123534035.pdf2.85 MBAdobe PDFView/Open