Please use this identifier to cite or link to this item: http://doi.org/10.25358/openscience-6265
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBarra, Anthony-
dc.contributor.authorRoss, Andrew-
dc.contributor.authorGomonay, Olena-
dc.contributor.authorBaldrati, Lorenzo-
dc.contributor.authorChavez, A.-
dc.contributor.authorLebrun, Romain-
dc.contributor.authorSchneider, J. D.-
dc.contributor.authorShirazi, Paymon-
dc.contributor.authorWang, Qi-
dc.contributor.authorSinova, Jairo-
dc.contributor.authorCarman, Gregory P.-
dc.contributor.authorKläui, Mathias-
dc.date.accessioned2021-08-09T08:12:28Z-
dc.date.available2021-08-09T08:12:28Z-
dc.date.issued2021-
dc.identifier.urihttps://openscience.ub.uni-mainz.de/handle/20.500.12030/6275-
dc.description.abstractAs a candidate material for applications such as magnetic memory, polycrystalline antiferromagnets offer the same robustness to external magnetic fields, THz spin dynamics, and lack of stray fields as their single crystalline counterparts, but without the limitation of epitaxial growth and lattice matched substrates. Here, we first report the detection of the average Neel vector orientation in polycrystalline NiO via spin Hall magnetoresistance (SMR). Second, by applying strain through a piezo-electric substrate, we reduce the critical magnetic field required to reach a saturation of the SMR signal, indicating a change of the anisotropy. Our results are consistent with polycrystalline NiO exhibiting a positive sign of the in-plane magnetostriction. This method of anisotropy-tuning offers an energy efficient, on-chip alternative to manipulate a polycrystalline antiferromagnet's magnetic state.en_GB
dc.language.isoengde
dc.rightsInCopyright*
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/*
dc.subject.ddc530 Physikde_DE
dc.subject.ddc530 Physicsen_GB
dc.titleEffective strain manipulation of the antiferromagnetic state of polycrystalline NiO Aen_GB
dc.typeZeitschriftenaufsatzde
dc.identifier.doihttp://doi.org/10.25358/openscience-6265-
jgu.type.contenttypeScientific articlede
jgu.type.dinitypearticleen_GB
jgu.type.versionAccepted versionde
jgu.type.resourceTextde
jgu.organisation.departmentFB 08 Physik, Mathematik u. Informatikde
jgu.organisation.number7940-
jgu.organisation.nameJohannes Gutenberg-Universität Mainz-
jgu.rights.accessrightsopenAccess-
jgu.journal.titleApplied physics lettersde
jgu.journal.volume118de
jgu.journal.issue17de
jgu.pages.alternative172408de
jgu.publisher.year2021-
jgu.publisher.nameAmerican Inst. of Physicsde
jgu.publisher.placeMelville, NYde
jgu.publisher.urihttps://doi.org/10.1063/5.0046255de
jgu.publisher.issn0003-6951de
jgu.organisation.placeMainz-
jgu.subject.ddccode530de
jgu.publisher.doi10.1063/5.0046255-
jgu.organisation.rorhttps://ror.org/023b0x485-
Appears in collections:JGU-Publikationen

Files in This Item:
  File Description SizeFormat
Thumbnail
barra_a.-effective_stra-20210806133304143.pdf781.57 kBAdobe PDFView/Open