Please use this identifier to cite or link to this item: http://doi.org/10.25358/openscience-6151
Authors: Handrich, Kristin
Kamer, Lukas
Mayo, Keith
Sawaguchi, Takeshi
Noser, Hansrudi
Arand, Charlotte
Wagner, Daniel
Rommens, Pol M.
Title: Asymmetry of the pelvic ring evaluated by CT-based 3D statistical modeling
Online publication date: 2-Jul-2021
Year of first publication: 2021
Language: english
Abstract: The human pelvis is a complex anatomical structure that consists of the innominate bones, sacrum and coccyx to form the pelvic ring. Even though considered to be a symmetric entity, asymmetry of the pelvic ring (APR) might occur to alter its anatomy, function, or biomechanics or to impact assessment and treatment of clinical cases. APR and its assessment is complicated by the intricate anatomy of the pelvic ring. There is only limited information and understanding about APR with no established evaluation methods existing. The objective of the present study was to adopt CT-based 3D statistical modeling and analysis to assess APR within the complex anatomy of the pelvic ring. We were interested to establish a better understanding of APR with knowledge and applications transferred to human anatomy, related research, and development subjects and to clinical settings. A series of 150 routine, clinical, pelvic CT protocols of European and Asian males and females (64 ± 15 (20–90) years old) were post-processed to compute gender- and ancestry-specific 3D statistical models of the pelvic ring. Evaluations comprised principal component analysis (PCA) that included size, shape, and asymmetry patterns and their variations to be assessed. Four different CT-based 3D statistical models of the entire pelvic ring were computed according to the gender and ancestry specific groups. PCA mainly displayed size and shape variations. Examination of additional PCA modes permitted six distinct asymmetry patterns to be identified. They were located at the sacrum, iliac crest, pelvic brim, pubic symphysis, inferior pubic ramus, and near to the acetabulum. Accordingly, the pelvic ring demonstrated not to be entirely symmetric. Assessment of its asymmetry proved to be a challenging task. Using CT-based 3D statistical modeling and PCA, we identified six distinct APRs that were located at different anatomical regions. These regions are more prone to APRs than other sites. Minor asymmetry patterns have to be distinguished from the distinct APRs. Side differences with regard to size, shape, and/or position require to be taken into account. APRs may be due different load mechanisms applied via spine or lower extremity or locally. There is a need for simpler and efficient, yet reliable methods to be routinely transferred to human anatomy, related research, and development subjects and to clinical settings.
DDC: 610 Medizin
610 Medical sciences
Institution: Johannes Gutenberg-Universität Mainz
Department: FB 04 Medizin
Place: Mainz
ROR: https://ror.org/023b0x485
DOI: http://doi.org/10.25358/openscience-6151
Version: Published version
Publication type: Zeitschriftenaufsatz
License: CC BY-NC-ND
Information on rights of use: https://creativecommons.org/licenses/by-nc-nd/4.0/
Journal: Journal of anatomy
238
6
Pages or article number: 1225
1232
Publisher: Wiley-Blackwell
Publisher place: Oxford u.a.
Issue date: 2021
ISSN: 1469-7580
Publisher URL: https://doi.org/10.1111/joa.13379
Publisher DOI: 10.1111/joa.13379
Appears in collections:JGU-Publikationen

Files in This Item:
  File Description SizeFormat
Thumbnail
handrich_kristin-asymmetry_of_t-20210702113228829.pdf1.02 MBAdobe PDFView/Open