Please use this identifier to cite or link to this item: http://doi.org/10.25358/openscience-3486
Authors: Bausen, Melanie
Title: Einfluss des Aktin-Zytoskeletts und intrazellulärer Signalkaskaden auf die postsynaptische Lokalisation von Gephyrin
Online publication date: 25-Jan-2006
Year of first publication: 2006
Language: german
Abstract: Neuronen haben für die Informationsübertragung untereinander spezielle Strukturen entwickelt, welche als Synapsen bezeichnet werden. Um eine schnelle und präzise synaptische Signalübertragung zu gewährleisten, ist eine hohe Konzentration von Neurotransmitter-regulierten Ionenkanälen in der postsynaptischen Plasmamembran notwendig. Die spezifische Verankerung der Rezeptoren wird durch intrazelluläre Proteine der Postsynapse vermittelt. Das periphere Membranprotein Gephyrin spielt eine essentielle Rolle in der synaptischen Lokalisation von Glyzin- und GABAA-Rezeptoren an inhibitorischen Synapsen. Um das postsynaptische Netzwerk zu stabilisieren, ist eine Interaktion von Gephyrin mit Proteinen der Mikrofilamente und der Mikrotubuli nötig. In der vorliegenden Arbeit sollte analysiert werden, wie Gephyrin mit dem Aktin-Zytoskelett interagiert, und ob die Größe und Stabilität neuronaler Gephyrincluster durch das Aktin-Zytoskelett reguliert wird. Dies wurde mittels Expression von GFP-Gephyrin-Konstrukten in HEK293T-Zellen und Aktin-depolymerisierende Alkaloidbehandlung von hippokampalen Primärkulturzellen untersucht. Der Einfluss unterschiedlicher Signalkaskaden auf die Lokalisation und Funktionalität von GABAA- oder Glyzin-Rezeptoren wurde bereits intensiv untersucht, jedoch für Rezeptor-assoziierte Proteine wie Gephyrin existierten nur wenig relevante Daten. Ein weiteres Ziel war daher, durch pharmakologische Beeinflussung von Schlüsselenzymen in hippokampalen Primärkulturen jene Signalwege zu identifizieren, die am Transport von Gephyrin, seiner Stabilisierung im postsynaptischen Netzwerk und seinem Abbau beteiligt sind. Im Verlauf der Arbeit konnte belegt werden, dass das Aktin-regulierende Phosphoprotein ena/VASP als Adapter die Interaktion von Gephyrin mit F-Aktin vermittelt, und dass diese Bindung ausreicht, um Gephyrin an das Aktin-Zytoskelett zu rekrutieren. Entgegen früheren Veröffentlichungen konnte die Bindung von ena/VASP im Bereich der sog. Linkerregion von Gephyrin nachgewiesen werden. Aktin-depolymerisierende Alkaloidbehandlungen von hippokampalen Neuronen bestätigten, das die Lokalisation von Gephyrin an sich entwickelnden inhibitorischen Kontakten von einem intakten Mikrofilamentsystem abhängig zu sein scheint. Das Aktin-Zytoskelett könnte somit eine transiente Rolle in der Ausbildung und Stabilisierung des Gephyrin-Netzwerkes in der frühen Entwicklung von inhibitorischen GABAergen Synapsen haben, während die Abhängigkeit der synaptisch-lokalisierten Gephyrincluster vom Aktin-Zytoskelett mit steigender neuronaler Differenzierung abnimmt. Zusätzlich konnte erstmals der Einfluss einzelner Signaltransduktionskaskaden auf die synaptische Lokalisation von Gephyrin nachgewiesen werden. Dabei hatte die Inhibition der Protein- Phosphatasen 1 und 2A eine Destabilisierung synaptisch-lokalisierter Gephyrincluster bei gleichzeitigem Anstieg der zytoplasmatischen Immunreaktivität zur Folge. Dies ist möglicherweise auf eine Hyperphosphorylierung wichtiger Sequenzabschnitten von Gephyrin zurückzuführen, wobei Änderungen im Phosphorylierungsstatus der Linkerregion von Gephyrin unter anderem die Assoziation mit dem Zytoskelett beeinträchtigen oder lösen könnten. Umgekehrt könnte eine Dephosphorylierung möglicherweise die Stabilität der Vernetzung erhöht. Kopräzipitationsstudien konnten zusätzlich nachweisen, dass Gephyrin, PP1 und PP2A nicht nur gemeinsam an inhibitorischen Synapsen vorliegen, sondern dass eine direkte Interaktion besteht. Dabei handelt es sich um den ersten Nachweis einer direkten Bindung von Gephyrin an Ser/Thr-Phosphatasen. Die Komplexbildung von PP1 und PP2A mit Gephyrin könnten der Regulation des Phosphorylierungsgrades dienen. Der genaue Mechanismus wird jedoch in weiteren Experimenten zu untersuchen sein.
DDC: 570 Biowissenschaften
570 Life sciences
Institution: Johannes Gutenberg-Universität Mainz
Department: FB 10 Biologie
Place: Mainz
ROR: https://ror.org/023b0x485
DOI: http://doi.org/10.25358/openscience-3486
URN: urn:nbn:de:hebis:77-9362
Version: Original work
Publication type: Dissertation
License: In Copyright
Information on rights of use: https://rightsstatements.org/vocab/InC/1.0/
Appears in collections:JGU-Publikationen

Files in This Item:
  File Description SizeFormat
Thumbnail
936.pdf21.22 MBAdobe PDFView/Open