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Abstract

The electromagnetic form factors of the proton are fundamental quantities sen-
sitive to the distribution of charge and magnetization inside the proton. Precise
knowledge of the form factors, in particular of the charge and magnetization radii
provide strong tests for theory in the non-perturbative regime of QCD. However,
the existing data at Q2 below 1 (GeV/c)2 are not precise enough for a hard test
of theoretical predictions.

For a more precise determination of the form factors, within this work more
than 1400 cross sections of the reaction H(e, e′)p were measured at the Mainz
Microtron MAMI using the 3-spectrometer-facility of the A1-collaboration. The
data were taken in three periods in the years 2006 and 2007 using beam energies
of 180, 315, 450, 585, 720 and 855 MeV. They cover the Q2 region from 0.004
to 1 (GeV/c)2 with counting rate uncertainties below 0.2% for most of the data
points. The relative luminosity of the measurements was determined using one of
the spectrometers as a luminosity monitor. The overlapping acceptances of the
measurements maximize the internal redundancy of the data and allow, together
with several additions to the standard experimental setup, for tight control of
systematic uncertainties.
To account for the radiative processes, an event generator was developed and
implemented in the simulation package of the analysis software which works with-
out peaking approximation by explicitly calculating the Bethe-Heitler and Born
Feynman diagrams for each event.

To separate the form factors and to determine the radii, the data were analyzed by
fitting a wide selection of form factor models directly to the measured cross sec-
tions. These fits also determined the absolute normalization of the different data
subsets. The validity of this method was tested with extensive simulations. The
results were compared to an extraction via the standard Rosenbluth technique.

The dip structure in GE that was seen in the analysis of the previous world data
shows up in a modified form. When compared to the standard-dipole form factor
as a smooth curve, the extracted GE exhibits a strong change of the slope around
0.1(GeV/c)2, and in the magnetic form factor a dip around 0.2 (GeV/c)2 is found.
This may be taken as indications for a pion cloud. For higher Q2, the fits yield
larger values for GM than previous measurements, in agreement with form factor
ratios from recent precise polarized measurements in the Q2 region up to 0.6
(GeV/c)2.

The charge and magnetic rms radii are determined as

〈re〉 = 0.879± 0.005stat. ± 0.004syst. ± 0.002model ± 0.004group fm,
〈rm〉 = 0.777± 0.013stat. ± 0.009syst. ± 0.005model ± 0.002group fm.

This charge radius is significantly larger than theoretical predictions and than
the radius of the standard dipole. However, it is in agreement with earlier results
measured at the Mainz linear accelerator and with determinations from Hydrogen
Lamb shift measurements. The extracted magnetic radius is smaller than previous
determinations and than the standard-dipole value.
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Zusammenfassung
Die elektromagnetischen Formfaktoren des Protons sind fundamentale Messgrößen,
sensitiv auf die Verteilung der Ladung und der Magnetisierung innerhalb des
Protons. Die genaue Kenntnis der Formfaktoren, d.h. insbesondere auch des
Ladungs- und des magnetischen Radius, sind wichtige Tests für die Theorie im
nicht-perturbativen Gebiet der QCD. Die existierenden Daten sind jedoch nicht
genau genug für einen belastbaren Test von Theorie-Vorhersagen.

Um die Formfaktoren genauer zu bestimmen, wurden im Rahmen dieser Arbeit
mehr als 1400 Wirkungsquerschnitte der Reaktion H(e, e′)p am Mainzer Mi-
crotron MAMI mit der 3-Spektrometer-Anlage der A1-Kollaboration gemessen.
Die Daten wurden in drei Messperioden in den Jahren 2006 und 2007 bei den
Strahlenergien 180, 315, 450, 585, 720 und 855 MeV aufgenommen. Sie bedecken
den Q2-Bereich zwischen 0.004 und 1 (GeV/c)2 mit Zählstatistik-Unsicherheiten
unter 0.2% für die Mehrzahl der Datenpunkte. Die relative Luminosität wurde
mit einem der Spektrometer als Luminositätsmonitor bestimmt. Der Überlapp der
Akzeptanzen der Messungen maximiert die interne Redundanz der Daten und er-
laubt zusammen mit einer Reihe von Zusätzen zu dem Standard-Messaufbau eine
genaue Kontrolle der systematischen Fehler.
Um die Strahlungsprozesse zu berücksichtigen, wurde ein Ereignisgenerator ent-
wickelt und im Rahmen des Simulationspakets der Analysesoftware implemen-
tiert, der ohne Peaking-Näherung die Bethe-Heitler und Born Feynman-Diagram-
me ereignisweise berechnet.

Um die Formfaktoren zu separieren und um die Radien zu bestimmen, wur-
den die Daten mit Anpassungen einer breiten Auswahl an Formfaktor-Modellen
analysiert. Diese Anpassungen dienten auch zur Bestimmung der absoluten Nor-
mierung der verschiedenen Daten-Untergruppen. Die Anwendbarkeit dieser Me-
thode wurde mit ausgiebigen Simulationen getestet. Die Ergebnisse wurden mit
einer Extraktion über die Standard-Rosenbluth-Separations-Methode verglichen.

Die in Analysen früherer Daten identifizierte Dellen-Struktur in GE zeigt sich
in diesem neuen Datensatz in anderer Form. Verglichen mit dem Standard-
Dipol-Formfaktor zeigt das extrahierte GE ein starke Änderung der Steigung bei
0.1(GeV/c)2, und in GM zeigt sich eine Delle bei 0.2 (GeV/c)2. Dies kann als
Anzeichen für eine Pionen-Wolke gesehen werden. Die Daten ergeben im höheren
Q2-Bereich größere Werte für GM als frühere Messungen, in Übereinstimmung
mit Formfaktor-Verhältnissen aus jüngeren präzisen polarisierten Messungen im
Q2-Bereich bis 0.6 (GeV/c)2.

Der Ladungs- und der magnetische Radius ergeben sich zu
〈re〉 = 0.879± 0.005stat. ± 0.004syst. ± 0.002model ± 0.004group fm,
〈rm〉 = 0.777± 0.013stat. ± 0.009syst. ± 0.005model ± 0.002group fm.

Der Ladungsradius, der im Rahmen dieser Arbeit ermittelt wurde, ist deutlich
größer als theoretische Vorhersagen und als der Radius des Standard-Dipols, ist
aber in Übereinstimmung mit Ergebnissen früherer Messungen am Mainzer Line-
arbeschleuniger und mit H-Lamb-Shift-Messungen. Der extrahierte magnetische
Radius ist kleiner als frühere Bestimmungen und als der des Standard-Dipols.
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1 Introduction

Physics is often driven by the search for fundamental limits. For a long time,
the atom was such a limit, perceived as indivisible, an opaque object with
no internal structure. The first experimental indications for internal structure
inside atoms were found by Rutherford, Geiger and Marsden in 1911 [GM09;
Rut11]. Stimulated by the surprising results found in scattering α particles off
gold foils, Rutherford developed his model of the atom and shaped the modern
view of the atom as a system comprised of an electron hull and a very small
nucleus with almost all of the mass.
He also discovered the unique role of the hydrogen nucleus, the proton, when he
transmuted nitrogen into oxygen in 1919 [Rut19]. Together with the discovery
of the electron by Thomson [Tho97] in 1897 and of the neutron by Chadwick
[Cha32] in 1932, three fundamental building blocks were believed to be found.

Dirac developed a formalism to describe pointlike spin-1
2 -particles in relativistic

quantum mechanics. From his equations, it follows that a particle with charge
Ze and mass M has a magnetic moment

µ =
g

2
· Ze
M
· ~

2
. (1.1)

~ is Plancks constant divided by 2π. The gyromagnetic ratio g has a value of
2. Experiments have shown a deviation of g from 2, this is explained precisely
by quantum electrodynamics1. For a proton, one defines

µ̃p = µp · µK =
gp
2
· µK (1.2)

where µK is the nuclear magnetic moment, i.e. µ calculated from eq. (1.1) for
the mass and charge of the proton. Hence, from the Dirac equation, one expects
µp = 1. However, µp was found by Stern et al. [FS33; ES33] to differ significantly
from the Dirac prediction, namely (with updated values from [MTN08]) µp =
+2.792847356(23). This deviation of µp from unity can not be explained by
higher order calculations in quantum electrodynamics, but is a direct proof for
internal structure of the proton.

Direct access to the internal structure of a system is provided by the mea-
surement of form factors. In unpolarized elastic electron-proton scattering, the
electric and magnetic form factors, GE and GM , are accessible. In a non-
relativistic picture, the form factors are the Fourier transform of the charge

1These higher order corrections depend on the fine structure constant α. The experimental
value and calculations [KN06] are in such good agreement that, reversing the chain of
thought, the measurement of g gives the best value for the fine structure constant α
[OHDG06; GHK+07]
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1 Introduction

and magnetic distribution inside the proton. This strict correspondence is lost
in the relativistic case, however, the mathematical identity can be recovered in
the Breit frame, where no energy is transferred to the nucleon in the scattering
process.

The first measurements were performed by Hofstadter in the 1950s at the High
Energy Physics Laboratory (HEPL) at Stanford [HM55; CH56; Hof56]. A
dipole form could describe the results for both form factors of the proton and
also for the magnetic form factor of the neutron. The choice of this parametriza-
tion, which relates to an exponential distribution of the charge, was purely em-
pirical. Nevertheless, it is used until today as a simple approximation to the
data, though, since the measurements by Simon et al. in Mainz [SSBW80], it
is known that a simple dipole is not sufficient.

From the time of the experiment of Hofstadter up to now, the form factors of
the proton and neutron were continuously in the focus of experiments, lead-
ing to a wealth of data points, which roughly agreed with the smooth dipole
parametrization. In recent years, the interest in the form factors below 1 (GeV/c)2

was kindled by two findings: a) A possible bump/dip structure in the proton
and neutron form factors at low Q2 as a signature of a pion cloud, and b) the
electric radius extracted from Lamb shift measurements which is significantly
higher than the radius given by the standard dipole.

a) In 2003, Friedrich and Walcher performed a reanalysis of the world form
factor data for the proton and neutron [FW03]. One of their models, which was
constructed to describe the data phenomenologically, consisted of two dipole
terms and a bump term, which was needed to achieve a good fit. This bump
term was found in all four form factors, with very similar positions (see fig.
1.1). While the exact position and shape of this bump or dip depends on the
choice of the smooth part of the fit, the existence of such a structure was taken
as an indication for a pion cloud, which arises from the picture of the proton as
a superposition of a bare proton and a combination of neutron and π+ (respec-
tively, of a neutron as a superposition of a bare neutron and a combination of
proton and π−).

b) Further interest in the form factors is driven by the atomic physics commu-
nity. The proton electric radius plays an important role in the interpretation of
high precision atomic transition measurements, linking the fields of nuclear and
atomic physics. These measurements were pushed to extreme precision (e.g. the
2p-1s energy difference and hyperfine splitting in hydrogen [N+00; EGS01]), in
order to measure fundamental constants and to test QED. Assuming QED to be
correct, the difference between measurement and theory was used to determine
a radius. The current particle data book [Ams09] quotes rE = 0.8768± 0.0069,
the result of the CODATA analysis [MTN08], which essentially determines the
radius as a free parameter of a fit of the measured energy levels of hydrogen.
This analysis uses the result of the reanalysis of the electron scattering data by
Sick [Sic03], rE = 0.895 fm, as additional input. Several other determinations
of the radius are summarized in table 1.1 and displayed graphically in fig. 1.2.

2
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Figure 1.1: The difference of the measured data for the form factors GPE , GPM ,
GNE , and GNM to the smooth part of the phenomenological fit of Friedrich
and Walcher. All form factors exhibit a bump/dip structure around 0.2
(GeV/c)2 (source: [FW03]).
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rE [fm] Reference Comment
0.8768±0.0069 Mohr et al. [MTN08] 2006 CODATA value
0.8750±0.0068 Mohr et al. [MT05] 2002 CODATA value
0.883±0.014 Melnikov et al. [Mv00] 1S Lamb Shift in H
0.890±0.014 Udem et al. [U+97; Kar99] 1S Lamb Shift in H
0.897±0.018 Blunden et al. [BS05] [Sic03] + 2γ corrections

0.895±0.010±0.013 Sick [Sic03] ep world data reanalysis
0.880±0.015 Rosenfelder et al. [Ros00] ep→ ep+ Coulomb corr.
0.847±0.008 Mergell et al. [MMD96] ep→ ep+ disp. relations
0.877±0.024 Wong et al. [Won94] Mainz data reanalysis

0.830±0.040±0.040 Eschrich et al. [GE+01] ep→ ep
0.865±0.020 McCord et al. [M+91] ep→ ep
0.862±0.012 Simon et al. [SSBW80] ep→ ep
0.880±0.030 Borkowski et al. [BPS+75] ep→ ep
0.810±0.020 Akimov et al. [A+72] ep→ ep
0.800±0.025 Frerejacque et al. [FBD66] ep→ ep (CH2 target)
0.805±0.011 Hand et al. [HMW63] ep→ ep

Table 1.1: Overview of different proton charge-radius results.

 0.74  0.76  0.78  0.8  0.82  0.84  0.86  0.88  0.9  0.92
<rE> [fm]

CODATA 06
CODATA 02

Melnikov et al.
Udem et al.

Blunden et al.
Sick et al.

Rosenfelder et al.
Mergell et al.

Wong et al.
Eschrich et al.
McCord et al.

Simon et al.
Borkowski et al.

Akimov et al.
Frerejacque et al.

Hand et al.

Figure 1.2: Overview of different proton charge-radius results. Filled dots: Re-
sults from new measurements. Hollow dots: Reanalyses of existing data.
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It has to be noted that a large fraction of the quoted results are reanalyses
of either the Mainz data by Simon et al. [SSBW80] or of the world data set.
However, the low Q2/small error data by Simon dominate the fit also in the
latter case.
Newer analyses with better theoretical corrections [Ros00; Sic03; BS05] seem
to reconcile the Lamb shift results with the result of Simon et al. [SSBW80].

The shortcomings of the existing world data for electron-proton scattering is
illustrated in figure 1.3, which displays the ratio of GE to the standard dipole
for the data, the Friedrich-Walcher fit [FW03] and a dispersion theoretical cal-
culation by Belushkin et al. [BHM07]. As can be seen, in the lowest Q2 region
the data by Simon et al. [SSBW80] dominate. The negative slope (which leads
to the large radius) can not be reproduced by the theoretical calculation, the
same is true for the “jump” or “shoulder” around 0.4 (GeV/c)2. However, the
existence of the “dip” around 0.3 (GeV/c)2 and the “shoulder” is in fact ques-
tionable in the light of the precision of the data. Therefore, a high precision
data set is highly desirable which starts at a Q2 as small as possible (to extract
a precise radius) and which covers the complete region of the bump/dip.

The excellent beam of the Mainz accelerator facility and the detector setup
available at the A1-collaboration allow such a high precision measurement of
the elastic electron-proton cross section in the Q2 region below 1 (GeV/c)2.
In order to achieve high accuracy, this experiment does not only aim at a sta-
tistical accuracy of the order of 0.2% on the single data point, but also at a
high redundancy within the total data set. Hence, this program consists of the
measurement of more than 1400 cross sections, making use of all three spec-
trometers of the MAMI facility.
The main method to decompose the cross sections into GE and GM will be a
kind of super-Rosenbluth-separation by fitting sufficiently flexible model func-
tions for GE and GM to the measured cross sections. This procedure makes
obsolete the requirement to measure the cross sections with different energies
at precisely the same Q2 values. It also allows for the determination of the nor-
malization directly from the data. The method is similar to to the technique
used by Arrington for a reanalysis of the world data [AMT07].
In addition, the standard Rosenbluth technique will be used as a cross check of
the super-Rosenbluth result. It also allows us to look for possible non-linearities
in the Rosenbluth plots.

In chapter 2, the theoretical foundation of the elastic electron-proton cross sec-
tion is reviewed and the required theoretical corrections are discussed. These
include the radiative corrections, Coulomb distortion corrections and two pho-
ton exchange effects.
Chapter 3 describes the facilities available in Mainz. This includes the accel-
erator MAMI, the 3-spectrometer-facility of the A1-collaboration, the detector
system of the spectrometers and the target system. Also, the additions to the
standard setup required for this experiment will be discussed.
Details about the extensive measurement program are given in chapter 4.
In chapter 5, the main features of the simulation software for the data analysis
are presented. Here, the event generator used for the analysis is explained in
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Polarization data
Friedrich-Walcher

Belushkin et al.

Figure 1.3: World data set of GE , normalized to the standard dipole. The
curves represent the model by Friedrich and Walcher [FW03] (solid), and
the calculation by Belushkin et al. [BHM07] (dashed). The slope of the data
at low Q2 is not reproduced by the calculation, as is the shoulder at higher
Q2. The uncertainty of the data in the Q2 range above 0.3 (GeV/c)2 is
rather large. Therefore, the existence of a dip is only poorly established.
Data points labeled “Polarization data” correspond to GE values given in
[FW03] from the polarized measurements [P+01; J+00; G+01; M+98; D+01].
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detail. It contains a precise description of the radiative tail to extract the first
order cross section from the measurements.
Chapter 6 describes the experimental procedure to extract the cross sections
from the measured counting rates. The cuts applied to the data and the match-
ing of experiment and simulation are discussed. The chapter also covers the
determination of the luminosity, the normalization using the luminosity moni-
tor and further corrections to the data.
The data are analyzed by fitting models for the form factors, which are de-
scribed in chapter 7. These models include several flexible polynomial and
spline models, dipole models, the Friedrich-Walcher parametrization and the
Gari-Krümpelmann model which has a footing in physical considerations.
The result of the fits for the cross sections are presented in chapter 8, which
also covers considerations about the model selection and the determination of
the statistical errors.
Chapter 9 presents the results for the form factors and for the proton electric and
magnetic radius. After a discussion of the statistic and systematic confidence
bands, the form factors extracted by the fit of the models and by Rosenbluth
separation are presented and compared to previous data. The second part of
the chapter describes the extraction of the radius including a discussion of the
model dependency.
Chapter 10 summarizes the results of this work and gives an outlook for possi-
ble future experiments to extend the covered Q2 range and to resolve remaining
uncertainties.
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2 Theoretical foundations

2.1 Cross section of elastic electron-proton scattering1

The kinematics of the elastic scattering of an electron on a target at rest is
depicted in fig. 2.1.

θ

φ

q

P1

P2

k1

k2

Figure 2.1: The kinematics for the elastic scattering of an electron on a target
at rest.

The incident electron has a four-momentum2 k1 = (E1 = E, ~p1). It is scattered
in the direction Ω = (θ, φ) with four-momentum k2 = (E2 = E′, ~p2). In the
scattering process, the four-momentum q = k1 − k2 is transferred to the target
via the exchange of a virtual photon. The target of mass M is initially at rest,
P1 = (M,~0).
The unpolarized cross section is independent of the azimuthal scattering angle
φ. Therefore, it has two degrees of freedom, e.g. the energy of the incoming
electron E and the scattering angle θ. The virtual photon in the scattering
process has a negative four-momentum squared, it is space like. Therefore, the
negative of q2

Q2 = −q2 = 4EE′ sin2 θ

2
> 0 (2.1)

1For a more detailed treatment of this subject, refer to [DG89].
2Units are such that ~ = 1, c = 1.
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2 Theoretical foundations

is used for convenience. The photon has the polarization

ε =
(

1 + 2 (1 + τ) tan2 θ

2

)−1

. (2.2)

The transition currents of the electron, jµ, and of the target, Jµ, are

jµ = −eūk2γ
µuk1

Jµ = eūP2ΓµuP1 , (2.3)

where u = (
√
E +M,~σ · ~p/

√
E +M)Tχ. Here, ~σ are the Pauli matrices, and χ

is a spinor. In terms of these currents, the Born invariant transition amplitude
is given as

M = jµ
gµν

q2
Jν = jµ

1
q2
Jµ. (2.4)

For a target with internal structure like the proton, the vertex has to be
parametrized by introducing appropriate form factors Γi. Since there are three
independent Lorentz vectors, Pµ1 , Pµ2 , and γµ, the most general form is

Γµ = Pµ1 Γ1 + Pµ2 Γ2 + γµΓ3. (2.5)

In the case of a free on-shell particle, the form factors Γi depend on Q2 only.
Because uP1 and ūP2 satisfy the free Dirac equation, one obtains from current
conservation, i.e. from

qµūP2ΓµuP1 = 0, (2.6)

that Γ1 = Γ2. Using the Gordon decomposition and with the proton mass mp

and the anomalous part of the magnetic moment (in units of µK), κ = µp − 1,
Γµ can be rewritten as

Γµ = γµF1

(
Q2
)

+ iσµνqν
κ

2mp
F2

(
Q2
)
. (2.7)

Here, the Dirac and Pauli form factors are used. They are preferred in Vector
Meson Dominance (VMD) models and in perturbative quantum chromodynam-
ics (pQCD). Using these definitions, the unpolarized cross section for the elastic
scattering of an electron on a proton with internal structure is given in the one-
photon approximation as(

dσ
dΩ

)
0

=
(

dσ
dΩ

)
Mott

[(
F 2

1 + τ (κF2)2
)

+ 2τ (F1 + κF2)2 tan2 θ

2

]
, (2.8)

with the dimensionless quantity τ = Q2/(4m2
p) and where(

dσ
dΩ

)
Mott

=
4Z2α2E′2

Q4

E′

E

(
1− β2 sin2

(
θ

2

))
(2.9)
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2.2 Radiative corrections

is the recoil-corrected Mott cross section3, which is the cross section for the
scattering of a spin-1

2 -particle on a scalar point-like target. The relations

GE = F1− τκF2,
GM = F1 + κF2 (2.10)

translate the Dirac and Pauli form factors into the Sachs form factors. They
were first proposed by Yennie et al. [YLR57]. Sachs et al. [ESW60; Sac62]
conjectured that this choice might prove more physically meaningful than F1

and F2.

In the Breit frame, defined as PB1 + PB2 = (2EB,~0), the transition current
reduces to

JB = eχTp2
(2M ·GE , i~σ × ~qGM )χp1 . (2.11)

In this frame, GE and GM are regarded as the Fourier transform of the spatial
charge and magnetization distribution.

With the Sachs form factors, the cross section is given by(
dσ
dΩ

)
0

=
(

dσ
dΩ

)
Mott

[
G2
E

(
Q2
)

+ τG2
M

(
Q2
)

1 + τ
+ 2τG2

M

(
Q2
)

tan2 θ

2

]

=
(

dσ
dΩ

)
Mott

εG2
E + τG2

M

ε (1 + τ)
. (2.12)

The choice of the Sachs form factors eliminates the mixed term in the cross
sections, which now depends on the squares of GE and GM only.

In the static limit Q2 = 0, the form factors normalize to the charge and mag-
netic moment of the proton in units of the electron charge and of the nuclear
magneton µK , GE(0) = 1 and GM (0) = µp.
The standard method to extract the form factors from measured cross sections
is the Rosenbluth separation [Ros50]. It exploits the linear structure in ε of
eq. (2.12) by disentangling the form factors at fixed Q2 values from several
measurements at different ε values (see subsection 9.2.2). The advances in
computer power over the last decades open the possibility for an alternative
method, namely, a multi-parameter fit of form factor models directly to the
cross section data.

2.2 Radiative corrections

Nature does not allow us to measure the lowest order cross section directly since
higher orders, as depicted as Feynman graphs in fig. 2.2, always contribute to
the scattering process. It is common practice to divide these contributions
into groups with an additional virtual (v1-v5 in fig. 2.2) or real photon (r1-r4).
However, this grouping is problematic: Divergences in one group cancel against

3At the energy scales of this experiment, β is very close to unity. Hence, the approximation
of the term (1−β2 sin(θ/2)) in eq. (2.9) with cos2(θ/2) is valid with an error below 0.002%.
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2 Theoretical foundations

(b)
p1 = (EP , ~pP )

k1 = (E, ~p) k2 =
(
E′, ~p′

)
q

p2 =
(
E′P ,

~p′P

)

(v1) (v2)

(v3) (v4)

(v5)

(r1) (r2)

(r3) (r4)

Figure 2.2: Feynman graphs of leading and next to leading order for elastic scat-
tering. (b) leading order, (v1-v5) next to leading order with an additional
virtual photon, (r1-r4) leading order graphs with a radiated real photon.
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2.2 Radiative corrections

divergences in the other group, hence all graphs have to be evaluated at once.
This leads to an “internal”4 correction to the leading order process(

dσ
dΩ

)
1

=
(

dσ
dΩ

)
0

(1 + δ) . (2.13)

Here,
(

dσ
dΩ

)
0

is the cross section for one photon exchange alone (graph (b) in
fig. 2.2) as given by eq. (2.12), while

(
dσ
dΩ

)
1

is the cross section when next to
leading order contributions are taken into account (graphs v1-v5 and r1-r4 in
fig. 2.2).
Vice versa, the non-radiative cross section

(
dσ
dΩ

)
0

can be determined in a first
order approximation by identifying the experimental cross section with

(
dσ
dΩ

)
1

and dividing it by (1 + δ).

The integrals over the internal four-momenta of the graphs v1,v2 and v5 are
logarithmically divergent for large momenta. This can be treated theoretically
by charge and mass renormalization. Details can be found in [MT00; V+00].
Graph v2 leads to an infrared divergence, but it can be shown [BN37; JR54]
that this cancels with corresponding divergences of the graphs r1-r4.

Results

In the following, the formulae for the contributions from different groups of
graphs will be presented. For details of the calculation, see [MT00; V+00].
The vacuum polarization (v1) gives rise to a term

δvac =
α

π

2
3

{(
v2 − 8

3

)
+ v

3− v2

2
ln
(
v + 1
v − 1

)}
, (2.14)

Q2�m2
l−→ α

π

2
3

{
−5

3
+ ln

(
Q2

m2

)}
, (2.15)

with v2 = 1 + 4m2
l

Q2 , where ml is the mass of the particle in the loop. The
approximation (2.15) is valid for loop-electrons. However, at the energy scales
of this experiment and within the envisaged accuracy, the vacuum polarization
via muon and tau loops has to be accounted for and must be evaluated with
eq. (2.14).
The finite part of the electron vertex correction (v2, the infinite part cancels
later on) is given in the ultra-relativistic limit by

δvertex =
α

π

{
3
2

ln
(
Q2

m2

)
− 2− 1

2
ln2

(
Q2

m2

)
+
π2

6

}
. (2.16)

In the same limit, the contribution from real photon emission by the electron
(r1, r2) yields:

δR =
α

π

{
ln

(
(∆Es)

2

E · E′el

)[(
Q2

m2

)
− 1
]

−1
2

ln2 η +
1
2

ln2

(
Q2

m2

)
− π2

3
+ Sp

(
cos2 θe

2

)}
, (2.17)

4To distinguish from “external” corrections like bremsstrahlung in the target.
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2 Theoretical foundations

where η = E/E′el, ∆Es = η · ∆E′. E′el is the energy of an electron scattered
elastically through an angle θ when no photon is emitted. An electron which
radiates a photon has a lower energy than E′el. ∆E′ is the maximum difference
to E′el allowed by the radiative tail cut-off; it is called the cut-off energy. Details
about the Spence function Sp (x) can be found in appendix B of [Fri00].

The contributions from the proton side (v3, v4, r3, r4) are complicated and
an exact calculation requires the knowledge of the internal structure of the
proton. Maximon and Tjon [MT00] divide the correction in three parts, one
proportional to Z (δ1), one to Z2 (δ2) and a third part in which they include all
of the structure dependence (δ(1)

el ). The last part is believed to be small for the
kinematics of this work and is therefore neglected. The other two correction
terms5 are given by

δ1 =
2α
π

{
ln

(
4 (∆Es)

2

Q2x

)
ln η + Sp

(
1− η

x

)
− Sp

(
1− 1

ηx

)}
,

δ2 =
α

π

ln

(
4 (∆Es)

2

m2
p

) E′P∣∣∣~p′P ∣∣∣ lnx− 1

+ 1 (2.18)

+
E′P∣∣∣~p′P ∣∣∣

(
−1

2
ln2 x− lnx ln

(
ρ2

m2
P

)
+ lnx

−Sp
(

1− 1
x2

)
+ 2Sp

(
−1
x

)
+
π2

6

)}
, (2.19)

with

x =
(Q+ ρ)2

4m2
P

, ρ2 = Q2 + 4m2
P . (2.20)

For vanishing cut-off energies ∆E′, the corrections δR, δ1 and δ2 get infinitely
large. In this case, however, more photons than just one are emitted in each
scattering event. It has been shown in [BN37; YFS61] that this can be approx-
imately taken into account by exponentiation of the corresponding correction
terms as well as for the vertex correction. For the vacuum polarization contri-
bution, Vanderhaeghen et al. [V+00] iterate the first order contribution to all
orders, which does not lead to an exponentiation. In total, they find(

dσ
dΩ

)
exp

=
(

dσ
dΩ

)
0

eδvertex+δR+Zδ1+Z2δ2

(1− δvac/2)2 , (2.21)

which, for the kinematics used in the present work, is marginally different (below
0.05%) from the fully exponentiated form, which will therefore be used in the
analysis of the measured cross sections6:(

dσ
dΩ

)
exp

(
∆E′

)
=
(

dσ
dΩ

)
0

eδvac+δvertex+[δR+δ1+δ2](∆E′). (2.22)

5The Z-dependence is divided out.
6Here, Z has been set to 1.
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2.3 Coulomb distortion and two photon exchange

It will be described in subsection 5.2.1 how these higher-order contributions
are accounted for in the determination of the first-order cross section from the
measured data.

2.3 Coulomb distortion and two photon exchange

The Coulomb distortion, i.e. the scattering process via the exchange of many
soft photons, and the related two photon exchange, where both photons have a
sizable momentum, is not fully included in the radiative corrections. There is
yet some theoretical uncertainty in the modeling of these two effects. For the
two photon effect, the off-shell nucleon and its exited states have to be modeled.
For a discussion of the Coulomb distortion, see [Fri00]. A complete treatment
of these effects could not be the topic of this thesis.
Nevertheless, the Coulomb distortion can not be ignored completely, especially
for the determination of the radius, as has been shown by Rosenfelder [Ros00].
He finds that the extracted radius is enlarged by about 0.018 fm when Coulomb
distortion is accounted for. It has been found in [Fri00] that the correction by
Rosenfelder is in agreement with the simple additional correction-factor (1 + δ)
given in a footnote by Tsai (see [Tsa61], footnote 22 and references therein):

δ = Zαπ
sin θ

2 − sin2 θ
2

cos2 θ
2

. (2.23)

This correction has been applied to the measured cross sections and lowers them
by at most 1.2% at 180◦.

The two photon exchange (TPE) becomes more important at larger Q2 and may
explain part of the difference between polarized and unpolarized measurements
at large Q2 [GV03]. Therefore, a lot of theoretical work focuses on the energy
scales above 1 GeV. In 2007, Arrington et al. [AMT07] have reanalyzed the
world data set with a model for two photon exchange corrections and made
two fits, one with the corrections applied and one without. The ratio of these
fits will be used as an estimate of the two photon effect on the form factor
ratio in the Q2 region of this experiment. With this correction, it is possible
to compare the form factor ratio with previous polarized measurements, where
the contribution of TPE on the result is believed to be small.

2.4 Proton radius

The electric and magnetic root mean square radii of the proton are related to
the low-Q2 behavior of the form factors as can be seen by expanding the form
factors in terms of Q2,

G
(
Q2
)
/G (0) = 1− 1

6
〈
r2
〉
Q2 +

1
120

〈
r4
〉
Q4 − . . . , (2.24)
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2 Theoretical foundations

hence 〈
r2
〉

= − 6
G (0)

dG
(
Q2
)

dQ2

∣∣∣∣∣
Q2=0

. (2.25)

Therefore, the radius can be determined from the slope of the form factors at
Q2=0.
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3 Accelerator and Experimental setup

In this chapter, an overview of the accelerator and detector facilities used in
the experiment will be given. Important aspects regarding the drift chambers,
pA-meter and angle setup will be discussed in detail in later chapters.

3.1 Accelerator

MAMI, the Mainz Microtron [HFK+76; Jan06; K+08], is a normal conducting
continuous wave electron accelerator. It consists of a cascade of three race track
microtrons (RTMs) and a fourth stage, a harmonic double sided microtron
(HDSM). A schematic floor plan is depicted in figure 3.1.

1

Figure 3.1: Overview of the MAMI facilities with the accelerator stages and
experimental halls. The A1 hall with the 3-spectrometer facility is situated
in the lower right. From [K+08].

The accelerator is equipped with two electron sources: A thermionic source,
which can provide currents in excess of 100µA, and a polarized source that
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3 Accelerator and Experimental setup

makes use of the photoelectric effect on a GaAs crystal using polarized light.
A linear accelerator injects the electrons with 3.97 MeV into the first RTM.
Each of the three RTMs contains a normal conducting accelerator segment and
two large high precision conventional magnets which recirculate the beam back
into the accelerator segment. In the first RTM, the beam is recirculated 18
times, raising the electron energy to 14.86 MeV. The second RTM boosts this
to 180 MeV in 51 turns.
The beam may now bypass the rest of the accelerator and may be directed to
the different experimental sites. Alternatively, it can enter RTM 3, which can
boost the energy up to 855 MeV in 90 turns. Every other recirculation path
can be instrumented with a kicker magnet which deflects the beam to the exit
beam line system. Thus, the energy can be selected in 15 MeV steps.
The beam may then be injected into the fourth stage. The design of this HDSM
stage is comprised of two anti-parallel accelerator segments, one of which is
operated at the doubled frequency to suppress instabilities. The beam is recir-
culated by four magnets. The HDSM stage raises the energy up to 1.6 GeV in
43 recirculations.
The root mean square energy spread is 30 keV at 855 MeV and 110 keV at
1.5 GeV. For the measurements described in this work, an unpolarized beam
with beam energies of 180, 315, 450, 585, 720 and 855 MeV was used.

3.2 3-spectrometer facility

The detector setup of the A1-collaboration at MAMI is called the 3-spectrometer-
facility1. The three high resolution magnetic spectrometers, labeled A, B and
C, can be operated in single, double or triple coincidence mode. A photograph
of the experimental hall with the spectrometers is depicted in figure 3.2, a de-
tailed description can be found in [B+98]. The spectrometers can be rotated
around a central pivot to measure at different scattering angles. In the course of
this work, the control system was extended to remote setting of the spectrom-
eter angles from the counting room (see appendix A). This was indispensable
for the large number of angle changes (more than 400) planned in this work.

3.2.1 Magnetic system

The magnetic system of spectrometer A and C is comprised of a quadrupole, a
sextupole, and two dipoles. This system enables the high resolution measure-
ment of particle momentum and angle inside a relatively large acceptance (up
to 28 msr). Spectrometer B consists of only a single dipole in a clamshell con-
figuration, leading to a slim design with higher spatial resolution but smaller
acceptance (5.6 msr); for out-of-plane measurements, spectrometer B can be
tilted, but this was not needed in this experiment. The main features of the

1A misleading name: Several additional permanent [Ach04] or temporary spectrometers are
available.
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3.2 3-spectrometer facility

Figure 3.2: The A1 hall. The three big spectrometers A (red, left), B (blue,
middle), C (green, right) are visible. The short orbit spectrometer SOS is
positioned in front of the target, in the middle of the picture. The thin
upstream beam-line pipe comes in from the right. As a dimension scale: A
person is slightly taller than the concrete block on the lower left edge.
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Spec. A Spec. B Spec. C
Configuration QSDD Clamshell D QSDD
Maximum momentum (MeV/c) 735 870 551
Reference momentum (MeV/c) 630 810 459
Central momentum (MeV/c) 665 810 490
Maximum solid angle (msr) 28 5.6 28
Momentum acceptance 20% 15% 25%
Momentum resolution 10−4 10−4 10−4

Angular resolution at target [mrad] < 3 < 3 < 3
Position resolution at target [mm] 3-5 1 3-5
Length of central path [m] 10.75 12.03 8.53

Table 3.1: Main parameters of the spectrometers A, B, and C.

Spec. A: QSDD Spec. B: Clamshell D

Target

Focal Plane

Reference Path

1.5 Tesla Line

Focal Plane

Target

Figure 3.3: Dimensions and magnet arrangement of spectrometer A and B.
Spectrometer C is a scaled-down version of spectrometer A. Modified ver-
sion, original from [Sch94].

spectrometers are summarized in table 3.1; figure 3.3 shows the dimensions and
magnet arrangements for spectrometers A and B.

3.2.2 Detector system

Each of the three spectrometers is equipped with similar detector systems con-
sisting of two scintillator planes, two packets of two vertical drift chamber layers
(VDC) and a gas-Čerenkov detector. The scintillators are used for triggering,
particle identification and for a time reference. The drift chambers are used
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3.2 3-spectrometer facility

Čerenkov radiator

Scinitillator
ToF-plane
dE-plane

VDC-package 2 (X2, S2)

VDC-package 1 (X1, S1)

Photomultiplier

Mirrors

Particle trajectory

Figure 3.4: Drawing of the detector package of the three spectrometers. A par-
ticle first passes the four VDCs (blue), then two layers of scintillators (red)
and a Čerenkov detector (green). Modified version, original from [B+98].

for the reconstruction of the particle trajectory. The Čerenkov detector distin-
guishes between pions (and heavier particles) and electrons. Figure 3.4 shows
a drawing of the detector package.

Scintillators

The two scintillator planes are segmented (15 segments for A and C, 14 for
B). The segmentation improves time resolution and allows for a rough position
estimation of the particle track. The first plane (dE-Plane) is 3 mm thick,
the second plane (ToF-plane) 1 cm. Normally, a coincidence between dE and
ToF-plane is demanded for a trigger signal, with the ToF-plane providing the
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3 Accelerator and Experimental setup

timing. For efficiency measurements and for measurements with low momentum
protons or deuterons, the logic can be switched to dE or ToF only. The different
energy deposition in the two layers makes it possible to separate heavier from
minimum ionizing particles. The timing information is used for the coincidence
logic between the spectrometers and as a common stop signal for the Time-to-
Digital converters of the VDCs.

Vertical drift chambers

The vertical drift chambers are used for the reconstruction of the particle tra-
jectory inside the detector system. The spatial resolution is better than 200 µm
(FWHM) in the dispersive and 400 µm in the non-dispersive direction. A de-
tailed description is given in subsection 6.2.2. Continuing the efforts started in
[Ber04], in preparation for this experiment the VDC system of A and B was
refurbished (see appendix E).

Čerenkov detector

The Čerenkov detector is realized as a gas detector. The detector volume is filled
with Decafluorobutane, R 3-1-10, in which passing electrons or positrons with
energies larger than 10 MeV produce Čerenkov light. A mirror system reflects
these photons to an array of photomultipliers. Pions with less than 2.7 GeV
do not produce Čerenkov light. Therefore, the Čerenkov detector discriminates
between electrons and heavier particles.
In spectrometer A, the Čerenkov detector can be replaced with a focal plane
polarimeter. Details can be found in [P+02; Pos00].

3.3 Target system

The target system is enclosed in a vacuum scattering chamber located on the
rotation axis of the spectrometers. A target ladder holds several interchangeable
solid state materials like graphite, polyethylene, HAVAR foil, copper etc. of
varying thicknesses. Additionally, a luminescent screen (an Al2O3 plate with a
cross hair printed on) is mounted. It is used for beam position calibration. The
target ladder has a vertical translation degree of freedom that is actuated by
an electric motor to select the target material.
The normal lid of the barrel-shaped scattering chamber can be exchanged for
two different target constructions: A high-pressure gas target and a cryogenic
target. Figure 3.5 shows the latter, which was filled with hydrogen as a proton
target for this experiment.

The cryogenic target system is comprised of two loops. An inner loop (“Basel-
loop”) is filled with the target gas, which is liquefied before the beginning of
the beam time. The completely liquefied material is continuously recirculated
by a fan. The loop contains an interchangeable target cell; two types were
used in this experiment: A long, cigar shaped cell (see figure 3.5) and a round
cell with a diameter of 2 cm. A heat exchanger couples the inner loop to the
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3.4 Additions to the standard experimental setup

Scattering chamber

"Basel-Loop"

Heat
exchangerVentilator

Target cell

49.5 mm

11.5 mm

Electron-
beam

liquid
hydrogen

10 µm Havar

Figure 3.5: Top left: Schematics of the “long” target cell. Lower left: Photo
of the installed cell. Right: Schematics of the target setup installed in the
scattering chamber. Figure from [Pos00].

outer loop, which is coupled to a Philips compressor. The outer loop is also
filled with hydrogen and works like a heat pipe: Hydrogen is liquefied at the
Philips compressor. It flows down to the target, cooling down the target heat
exchanger. The warmed up hydrogen then evaporates and returns to the Philips
compressor.
The hydrogen inside the inner loop is subcooled to ensure that the beam load
does not substantially change the density of the hydrogen by local heating above
the boiling point. Nevertheless, for higher currents the beam is rastered in the
transverse directions to reduce the effective power density.

3.4 Additions to the standard experimental setup

3.4.1 pA-meter

In the normal setup, the beam current is measured with a Förster probe lo-
cated in a part of RTM 3 where all recirculations of the beam pass through.
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3 Accelerator and Experimental setup

Accordingly, the accuracy of the measurement is best with the highest number
of recirculations, i.e. for a beam energy of 855 MeV. For 180 MeV, the beam
does not pass the probe at all.
For measurements at small energies and currents, a pA-Meter was installed
at the collimator called INT0KOLLI12, right before the linear accelerator seg-
ment. When the beam is deflected on the collimator, a beam induced current
can be measured. When the deflection magnet is switched off, i.e. when the
beam passes through the collimator and is injected into the accelerator, some of
the beam current is still lost at the collimator. This offset has to be subtracted
from the measured value when the beam is deflected to be fully absorbed by
the collimator. The true beam current is a function of the difference of these
two measurements. At the position of the collimator, the beam has an energy
of 100.15 keV and is already chopped and bunched, so that the complete phase
space is accepted by the rest of the accelerator. Though this current measure-
ment is in such an early stage of the accelerator, the current at this position
is essentially the same as in the experimental hall: Any significant beam loss
would increase the radiation levels in the accelerator hall, which are carefully
monitored; any excess in radiation would automatically shut off the accelerator.

3.4.2 Beam position stabilization

In [Ber04], it was shown that a shift of the beam position on the target results
in a drift of the measured cross section. The beam is normally stabilized by
the circulation in RTM 3, which dampens beam position changes introduced in
the earlier stages of the accelerator. This self-stabilization is less effective with
lower recirculation number, i.e. lower energies and is absent in the case of an
incident beam energy of 180 MeV when the beam bypasses RTM 3. To eliminate
beam position drifts, a beam-position control system has been installed by the
MAMI group [Deh10]: The beam position is measured with two cavities in
front of the target. Their signal is digitized and a correction current for the
beam steering dipoles in the beam line is generated. The cavities need high
beam currents for adequate sensitivity. Therefore, the beam has to be switched
to a diagnostic mode where the beam is modulated as a train of high current
pulses with a very low duty cycle. These periods have to be excluded from
the cross section measurements. During the data taking, the A1 computer
system periodically disables the data acquisition and generates a signal to the
MAMI control system to start the adjustment process. When the correction
has been performed, MAMI signals back to the A1 system and data acquisition
is resumed. The analysis tool chain has been modified to account for these
pauses in the data acquisition.
The system was installed in the beginning of the second measurement period
and was used for all later measurements. After the installation of the system,
there was no beam position drift detectable.
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4 Measuring program

At a given four-momentum-transfer squared,

Q2 = 4EE′ sin2 θ

2
, (4.1)

the relative contributions of GE and GM to the cross sections depend on the
polarization of the virtual photon

ε =
(

1 + 2 (1 + τ) tan2 θ

2

)−1

. (4.2)

To disentangle the form factors from the measured cross sections using the
traditional Rosenbluth technique, it is mandatory to measure at different ε for
a given Q2 value. While this constraint does not have to be fulfilled strictly
when employing a global fit, the range and number of different ε values in a
given Q2 range determine the accuracy of the separation.
Figure 4.1 displays the region in the ε-Q2-plane accessible by the accelerator and
detector setup in the planned measurements1. The colored areas are excluded
because of the various experimental limitations (see figure description).

To vary ε at constant Q2, both the scattering angle and the incident beam
energy have to be changed. A beam energy change takes about six hours with
the Mainz setup, which is quick in comparison to other accelerator facilities but
still costly to be done a large number of times. Thus, the measuring program
was organized to minimize beam-energy changes. Since the energy gain in RTM
1 and RTM 2 is fixed, the minimum beam energy of MAMI is achieved when the
beam passes RTM 3 without further acceleration, resulting in a 180 MeV beam.
The beam time allocation permitted to measure at six energies, spread out
evenly between 180 MeV and 855 MeV in 135 MeV steps. In this experiment,
no use was made yet of the 1.5 GeV stage of MAMI2.

At each beam energy, the measured angle range was maximized. The geometric
designs of target and spectrometers allow each spectrometer to cover different,
but overlapping angular ranges. To maximize the angular range covered by the
data set and the internal redundancy in the data, all three spectrometers were
used in parallel. While Spectrometer A and C switch roles between “production
spectrometer” (changing angle from run to run) and “luminosity monitor” (at a

1To help the readability, only the centers of the overlapping acceptances are marked.
2While the HDSM stage of MAMI C was already commissioned for productive use, there

was no experience with the quality of the beam, and it was not yet possible to extract the
beam at energy levels between 0.855 and 1.5 GeV.

25



4 Measuring program

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  0.2  0.4  0.6  0.8  1

0.04

0.16

0.36

0.64

1

1.44

1.96

Q
 [G

eV
/c

]

Q
2  [(

G
eV

/c
)2 ]

ε
A momentum limit
B momentum limit
MAMI   min. E= 180 MeV
MAMI C max. E=1.53 GeV

B min. angle
C max. angle
MAMI B max. E= 855 MeV

90°110°

Figure 4.1: The accessible kinematical region in the ε-Q2-plane. Colored re-
gions are excluded because of minimum/maximum beam energy (dark/light
yellow), maximum detectable momentum of spectrometer A and B (light
red/blue), minimum angle of B (dark blue) and maximum angle of C (dark
green). The center of the acceptances of the different kinematical settings
are denoted with symbols (squares/crosses/stars (color red/blue/green) cor-
respond to spectrometer A/B/C). The symbols are slightly shifted vertically
to distinguish overlapping measurements. The near-vertical black lines de-
note spectrometer angles of 90◦ and 110◦. The red line represents the maxi-
mum energy of MAMI B. The black near-horizontal lines represent a possible
future extension using MAMI C energies. To stretch the low-Q2 part, the
(left) y-axis is presented linear in Q =

√
Q2.
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fixed angle)3, spectrometer B was always used to take data. The spectrometer
angle is changed each time only by a fourth of the acceptance, i.e. by 2.5◦ for
A and C and by 0.5◦ for B, so that each angle is measured four times with
the same spectrometer but with different parts of the spectrometer acceptance.
Spectrometer A is used in the range between 25◦ and 110◦4, spectrometer C
extends this to over 130◦. The slim construction of spectrometer B allows it to
reach scattering angles down to 15.5◦.

The program for the detector simulation developed in [Ber04] was extended to
aid the optimization of the parameters of the experiment: Beam current, event
prescaling5, measurement duration and concurrent angles of the spectrometers.
It calculates the maximum beam current and optimal scaler values at which
the rate of recorded events is below 500 Hz for each spectrometer and each
wire of the VDC chambers triggers with less than 1000 Hz. When the field of
a spectrometer is changed, the magnets have to settle. Since this takes some
time, the momentum was adjusted only every second angle change in order to
keep the elastically scattered electrons at the same place in the focal plane.
For most of the individual points, the required time to achieve the envisaged
statistics of below 0.2% is around 30 minutes. For the small angle measure-
ments, the cross section difference to the luminosity-measuring spectrometer
is very large. Therefore, since both spectrometers have to achieve the desired
statistics, these kinematics take considerably longer. Most settings were divided
in either 15 or 20 minutes long sub-measurements. This reduces the statisti-
cal accuracy per measurement (which is compensated by the higher number of
measurements), but increases the accuracy of the luminosity and facilitates the
search for time dependent errors.
The measurements were done in three beam time periods, summarized in table
4.1.

3A similar technique, but limited to spectrometer C as the luminosity monitor, was employed
in [Flo98; F+99].

4Due to the construction of the target, the angle of A had to be limited to 90◦ for the long
and to 110◦ for the short target cell.

5The experiment allows prescaling of the triggers, so that only every nth event is recorded.
Only recorded events produce significant dead time. The prescaling helps to accommodate
the largely different event rates of the different spectrometers at different scattering angles.
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4 Measuring program

August 2006 November 2006 May 2007
Duration 10 days 11 days 17 days
Setup/ calibration/ misc. 2 days 2 days 6 days
Incident energies [MeV] 585, 855 180, 720 315, 450, 720
Target cell used long short long
Setup changes 152 173 217
Individual measurements 700 1008 1260
Real measurements 358 490 574

Table 4.1: Overview of the beam times. Setup changes are changes of momen-
tum and/or angle of at least one spectrometer. The individual measure-
ments also contain the luminosity measurements by one of the spectrometers
and those which where later excluded because of obvious errors.
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5 Simulation of the cross section
measurement

5.1 Overview

The basic quantity measured in a scattering experiment is a counting rate. The
number of (true) events n detected over a period of time T is related to the
cross section by

n =
∫

∆Ω

∫
∆E′

∫
T

dσ
dΩdE′

(
θ,E′

)
A
(
Ω, E′, t

)
L (t) dΩdE′dt, (5.1)

with A describing the acceptance of the spectrometer and L the luminosity.
The acceptance is primarily given by the geometry of the spectrometers. Also,
detector efficiency and resolution and the energy loss in the target and detector
system have to be accounted for. A simulation of the experiment can fulfill
these demands. Since the acceptance is assumed to be constant over the short
measurement times, the integrals in eq. (5.1) can be rewritten as

n =
∫
T
L (t) dt ·

∫
∆E′

∫
∆Ω

A
(
Ω, E′

) dσ
dΩdE′

dΩdE′. (5.2)

The first integral is handled by the program package Lumi++.
The second integral is evaluated by the simulation software Simul++. It can
simulate the accepted phase space ( dσdΩ = 1) or alternatively generate events
according to a given cross section. It mimics the behavior of the data analysis
package Cola++, so that the same histogram definitions can be used. It is
based on Monte Carlo sampling, which relates the integral of a function F over
a sufficiently small volume (a bin) to a sum of N (pseudo) randomly sampled
points ([PTVF92], section 7.6):

∫
V
F (Ω) dΩ ≈ V · 〈F 〉 ± V

√
〈F 2〉 − 〈F 〉2

N
. (5.3)

The angle brackets denote the arithmetic mean over N sample points,

〈Y 〉 =
1
N

N∑
i=1

Y (xi) . (5.4)
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5 Simulation of the cross section measurement

5.2 Generator

As described earlier, the extraction of the first order Born cross section dσ
dΩ 0

of
the process ep −→ e′p′ also requires the calculation of a (radiation) correction
factor. This factor depends on the kinematics and cut-off energy ∆E′ in the
spectrum of the scattered electrons:(

dσ
dΩ

)
exp

=
(

dσ
dΩ

)
0

· corr
(
∆E′, E, θ

)
, (5.5)

or, differential in the scattered electron energy(
dσ

dΩdE′

)
exp

=
(

dσ
dΩ

)
0

· d corr
dE′

, (5.6)

where d corr
dE′ gives rise to the so called radiative tail. Since the correction factor

varies over the large acceptance of the spectrometers, a single correction factor
per spectrometer setting is not very accurate. The best way to extract the cross
section is to simulate the measured spectrum on the basis of an assumed cross
section, a peak shape and on the (known) energy loss via radiation. Division of
the measured count rate by the luminosity integral and by the simulation then
directly gives the ratio of the true cross section to the cross section assumed in
the simulation without further corrections (see chapter 6).

A generator algorithm has to produce events with the correct weight in an
efficient manner. This does not only incorporate the computational cost of the
algorithm. The error term of eq. (5.3) depends on the variation of the function
to be integrated inside the volume V . Through clever manipulation of the
event distribution, the variance of the function can be minimized (Importance
sampling, see [BL98]), thus, for a given error in the estimation of the integral,
fewer events are required than for equally distributed events. The generator
is based on a generator for events in a virtual Compton scattering experiment
described in [Jov03]. In its original form, it was limited to a description of
the shape of the tail, without correct global normalization. In the course of
this work, it was extended to also describe accurately the peak region with
the correct normalization. In the following, the details of the algorithms are
explained. It can be separated in two parts, an outer “driver” that generates
the radiative tail and an inner part which calculates the cross section.
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5.2 Generator

5.2.1 Radiative tail generator

For each event, a vertex position, a scattering angle and an azimuthal angle is
generated pseudo-randomly.

Electron contribution

Then the generator follows the principles laid out in Vanderhaeghen et al.
[V+00]: First, neglecting the proton contribution, the only part of the radiative
correction δ (see chapter 2.2) that is dependent on the energy of the radiated
photon and therefore gives rise to the radiative tail is:

δ(∆Es) =
α

π
ln

(
(∆Es)

2

E · E′el

)[
ln
(
Q2

m2

)
− 1
]
. (5.7)

As already defined in chapter 2.2, E is the incoming electron energy, E′el is the
energy of an electron scattered elastically through the generated angle, Q2 is
the momentum transfer for this reaction and ∆Es is the energy of the radiated
photon in the c.m. system of photon and proton.

In the exponentiated form of the correction, δ is one term in the sum in the
exponent. Separating this part, it is possible to rewrite exp(δ(∆Es)) as(

(∆Es)
2

E · E′el

)a
=

(
η2 (∆E′)2

E · E′el

)a
= ηa

(
∆E′

E′el

)2a

, (5.8)

using

a =
α

π

[
ln
(
Q2

m2

)
− 1
]

η = E/E′el

∆Es = η∆E′, (5.9)

where ∆E′ is again the energy difference between E′el and the final energy of the
outgoing electron in the laboratory. Using a ∆E′ distribution I (E′,∆E′, t = 2a)
which satisfies ∫ ∆E′

0
I
(
E′el, x, t = 2a

)
dx =

(
∆E′

E′el

)t
, (5.10)

and weighting the event with ηa, it is clear that sampling this distribution
accounts correctly for the radiative events, independent of up to where the
spectrum is integrated. The distribution that has this property is given by

I(E′el,∆E
′, t) =

t

∆E′

(
∆E′

E

)t
. (5.11)

Its integral is normalized to 1.
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5 Simulation of the cross section measurement

To generate events according to this distribution, the generator starts with
a uniformly distributed random number r between 0 and 1. From this, it
calculates a ∆E:

∆E = E′el · r
1
t .

The distribution J (E′el,∆E
′, t) of this new random number ∆E is given by

J
(
E′el,∆E

′, t
)

=
(

d∆E′

dr

)−1

=
(
E′el

1
t
r

1
t
−1

)−1

. (5.12)

Solving equation (5.12) for r,

r =
(

∆E′

E′el

)t
,

and back substitution yields

J
(
E′el,∆E

′, t
)

=
t

E′el

(
∆E′

E′el

)t−1

=
t

∆E′

(
∆E′

E′el

)t
. (5.13)

Comparison of equations (5.11) and (5.13) shows that for t = 2a, this is the
needed distribution. Therefore, generating events after this recipe with a weight
of ηa yields the correct radiative tail.

Proton contribution

The proton contribution has two terms that contribute to the radiative tail.
The first one is contained in δ1:

δ1 =
2α
π

(
ln

(
4 (∆Es)

2

Q2x

)
ln η + . . .

)
, (5.14)

Similar calculations as before yield an exponent b,

b =
2α
π

ln η,

and a correction factor for the weight(
4E2

Q2x

)b
.

The second term contributing to the peak shape is contained in δ2:

δ2 =
α

π

(
ln

(
4 (∆Es)

2

m2
p

)(
E′P
|~pP |

lnx− 1
))

, (5.15)

giving rise to a exponent c,

c =
α

π

(
E′P
|~pP |

lnx− 1
)
,
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and a correction factor for the weight(
4E2

m2
p

)c
.

Collecting all parts, the generator uses

t = 2a+ 2b+ 2c, (5.16)

and a weight factor

ηa ·
(

4E2

Q2x

)b
·
(

4E2

m2
p

)c
. (5.17)

5.2.2 Cross section generator

This part can be subdivided into two steps: Generation of a photon direction
and calculation of the lowest order contribution to the ep −→ epγ reaction.

Generation of photon direction

In principle, the generation of the photon direction is easy: One has to simply
generate a uniformly distributed direction, which is a rather standard technique.
However, such a naive approach is very inefficient: The cross section for photon
emission varies strongly with the angle when the photon is radiated in the
direction of the outgoing or incoming electron, with a very sharp drop at the
exact directions.
As has been noted before, a high variance leads to a large error term in eq.
(5.3). Importance sampling is a better approach: Photon angles are generated
according to a distribution which approximates the correct cross section. The
transformation from a uniform distribution to this new distribution gives rise to
a Jacobian, which has to be applied to the weight of the event. By design, this
Jacobian and the original cross section cancel to a large extent. In the result,
the average weight for each event will be nearly constant, minimizing the error
term.
An approximation for the Bethe-Heitler part of the cross section is given by
the sum of individual cross sections for radiation off the incoming or outgoing
electron, neglecting the interference:(

dσ
dΩ

)
approx.

=
(

1
2

(
dσ
dΩ

)
e

+
1
2

(
dσ
dΩ

)
e′

)
dσ
dΩ e

=
1

N (E, ~p)
· 1− cos2 θe,γ(

E
|~p| − cos θe,γ

)2 (5.18)

N (E, ~p) = −4− 2
E

|~p|
· ln
((

E

|~p|
− 1
)
/

(
E

|~p|
+ 1
))

and the same expressions for E′, p′, θe′γ . E (E′) is the incoming (outgoing)
electron energy, ~p (~p′) the corresponding momentum and θeγ (θe′γ) the angle
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5 Simulation of the cross section measurement

between the incoming (outgoing) electron and the photon. The generator now
selects with equal probability whether the photon is radiated from the incoming
or outgoing electron.
Then, the transformation method is used to generate random values with a
distribution according to eq. (5.18): The cumulative distribution1 is given by

F (θe,γ) =

∫ cos(θe,γ)
−1

dσ
dΩ e

d cos θeγ∫ 1
−1

dσ
dΩ e/e′

d cos θeγ

=
1

N (E, ~p)

 1−
(
E
|~p|

)2

E
|~p| − cos θe,γ

− cos θe,γ

−2
E

|~p|
ln

E
|~p| − cos θe,γ

E
|~p| + 1

− 2 +
E

|~p|

)
. (5.19)

A uniformly distributed number r between 0 and 1 is now transformed by
solving r = F (θe,γ) to the new random variable θeγ with the correct distribution
(see [PTVF92], section 7.2). The required inversion of F is realized numerically
via a bisection method.
The event has to be weighted with the inverse of

(
dσ
dΩ

)
approx.

. The upper two
plots of fig. 5.1 depict the different steps of this part of the generator: The
approximated angular distribution generated and the result when the weight
is applied. In the upmost plot one can see the two peaks around the electron
angles. The two-dimensional close-up around the forward peak reproduces the
expected drop in the middle of the peak. Multiplying with the weight achieves
a flat distribution.

Lowest order of ep −→ epγ

The innermost part of the generator calculates the Feynman graphs of the lowest
order describing the Bethe-Heitler (radiation from the electron, graphs r1 and
r2 in fig. 2.2) + Born (radiation from the proton, graphs r3 and r4) processes
for the now fixed kinematic. Here, a Jacobian for the transformation dΩLab

k to
dΩc.m.

k has to be taken into account. It is calculated numerically using finite
differences.
The cross section calculated with these graphs is infrared divergent. This is
accounted for by a modification of the propagators. Their denominators are

Bethe-Heitler : 2k · q′, −2k′ · q′

Born : −2p · q′, p′ · q′,

were k(k′) is the four-vector of the incoming (outgoing) electron and q′ the
four-vector of the radiated photon evaluated in the c.m. system. Here, q′ is
replaced with q′mod = q′/

∣∣∣~q′∣∣∣. Hence, the calculation yields the correct cross

1When the photon is radiated from the outgoing electron, again, the appropriate substitu-
tions E → E′ etc. have to be applied.
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5.3 Other aspects of the simulation

section multiplied with a factor K2 =
∣∣∣~q′∣∣∣2 since the matrix element enters

quadratically into the cross section. One order of K is then divided out at the
cross section level, the remaining order has to be accounted for later on when
the different parts of the generator are combined.

Combination

The soft photon limit (|q| → 0) of the lowest order yields the correction δR +
δ1 + δ2 (without exponentiation). This contribution has to be replaced by the
full calculation above. Differentiation for ∆E gives the term

t

∆E′
, (5.20)

which has to be divided out. In combination with the remaining order of K,
this gives the factor

∆E′

tK
, (5.21)

which is numerically stable (it becomes 1/ (t · η) for diminishing ∆E). The
lower part of figure 5.1 depicts the result of this final step.

5.3 Other aspects of the simulation

5.3.1 External radiation

When the cryo target is used, the incoming beam has to pass through different
layers of matter until the scattering process occurs. This includes the walls
of the target and the liquid hydrogen inside the target. Additionally, the cold
target acts as a cold trap. “Snow”, frozen water and nitrogen from the residual
gas inside the vacuum chamber, can form on the target. The outgoing electron
has to pass part of the hydrogen, the wall of the target, possibly snow and then
the windows between spectrometer and vacuum chamber and a short distance
of air between them. In all these layers, the electron loses energy by external
bremsstrahlung and ionization of the atoms which adds to the radiative tail.
These processes have to be folded with the internal bremsstrahlung spectrum;
the simulation does this numerically.

5.3.2 Resolution

The resolution of the vertical drift chambers, the characteristics of the electron-
ics and the limited knowledge of the transport inside the magnetic system give
rise to specific error distributions for the extracted kinematical properties of
the detected particles at the target. In the simulation, these distributions are
modeled with parametrizations for the in-plane and out-of-plane angles, for the
momentum and for the vertex resolution, i.e. the resolution of the reaction ver-
tex along the beam axis. While the latter is modeled with a simple Gaussian,
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Figure 5.1: Different stages of the generator. Left: Distribution of events vs.
the scattering angle. Right: Close-up of the area around the forward peak.
The sharp drop of the cross section due to helicity conservation is clearly
visible. Top: Distribution of events generated according to an appropriate,
approximate distribution function. Middle: Same as top, now weighted
by the inverse of the distribution function; the result should be uniform.
Bottom: After multiplication with the correct weight from the Feynman
graph calculation.
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5.4 Test of the description of the radiative tail

the simulation employs a sum of Gaussians with different weights and widths
to model the momentum and angle resolution. The additional Gaussians allow
the modeling of the longer tails of these distributions in contrast to a single
Gaussian.

5.4 Test of the description of the radiative tail

The measured data allow a check of the description of the tail. Figure 5.2
shows a comparison of the measured ∆E′ spectrum and the simulated tail.
Background from the target walls complicate the situation, this will be dealt
with in detail in section 6.4. For the comparison of the tail simulation with
measured data, this background is suppressed by a vertex cut. Such cut is
problematic for a cross section determination, as described in chapter 6.4, but it
is well suited for this comparison. The resolution parameters mentioned above
have to be optimized for this comparison. Details can be found in section
6.3. Figure 5.3 depicts comparisons of the integrated strength for different
kinematical setups.
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Figure 5.2: Top: Comparison of experimental (cyan) and simulated (red) ∆E′

histogram. Bottom: Ratio of the integral of the experimental data to the
integral of the simulation integrated up to the cut-off energy ∆E′. The
ratio varies by less than 0.1% for cut-off energies up to 75 MeV. Data:
Spectrometer A, 53◦, 855 MeV incident beam energy.
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Figure 5.3: Same as fig. 5.2 for spectrometer A at 73◦ and 585 MeV (top),
spectrometer B at 54◦ and 855 MeV (middle) and spectrometer C at 118◦

and 180 MeV (bottom).
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6 The cross section data

6.1 Overview

The experiment aims at measuring the elastic electron-proton cross section in
the kinematical region accessible with MAMI. The cross section is measured
as the integral over the spectrometer acceptance. Complete knowledge of the
exact transfer function of the magnetic system of the spectrometers would allow
a further subdivision of the large acceptances. However, the experiment proved
that this function is not known exactly enough for the level of precision the
experiment aims at. Cuts on the phase space would be especially hard to control
when the spectrometer angles change. From this it follows that the experiment
is limited to a measurement of the cross sections integrated over the complete
spectrometer acceptance. This cross section is determined relative to the cross
section implemented in the simulation as

σrel,exp =
A−B
σsimL

. (6.1)

Here, A is the number of counts in the peak region (see subsection 6.2.1) inte-
grated to the cut-off energy ∆E′, B is the estimated background in this region,
σsim is the simulated cross section integrated over the acceptance of the spec-
trometers (see chapter 5 and section 6.3) and L =

∫
Leffdt is the time-integrated

effective, i.e. prescaling and dead-time corrected, luminosity.
With the existing setup, the absolute normalization, which includes the know-
ledge of the target length, current calibration and detector efficiency, can be
determined only on the few-percent level. This is not sufficient for the accuracy
aimed at in this experiment. Therefore the global normalization will be left
floating in the final analysis.
The next sections describe the determination of A, B and L.

6.2 Data preparation

Besides the events one is interested in, the system also records background
events and random triggers from cosmic rays. To minimize background and
erroneous trajectories, cuts have to be applied. This is described in subsection
6.2.1.
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6 The cross section data

The detector information stored in the data files is interpreted and analyzed by
the software package Cola++1, which has been developed in the A1-collaboration.
In a single-arm experiment, the main tasks are:

• Calculate the particle trajectories in the detector system from the VDC
information.

• Transform these trajectories using the transfer matrix to the particle co-
ordinates at the target. This gives the directions, vertex positions and
relative momenta of the particles.

• Calculate the true momentum of the particle from the reference momen-
tum and from the momentum of the particle relative to the reference
momentum (the reference momentum is calculated from the field setting
and given by a parametrization file).

• Calculate derived properties and fill histograms accordingly.

The first of these steps is very critical: If the parametrized description of the
VDC is not optimal, a certain amount of good events are lost. The parametriza-
tion is dependent on TDC offsets and on the drift velocity of the electrons in
the VDC gas mixture. Subsection 6.2.2 describes the procedure to determine
these values.
The transformation from the detector system to the target is done using a ma-
trix formalism. Some details can be found in subsection 6.2.3.

6.2.1 Event identification

Electrons scattered elastically without the emission of a photon have an energy

E′ (θ) =
E

1 + E
mp

(1− cos θ)
. (6.2)

Internal and external bremsstrahlung as well as ionization reduce the energy of
the detected electron. To identify the elastic reaction, one defines

∆Eexp = E′ (θexp)− E′exp, (6.3)

the difference of the detected energy E′exp to the energy calculated from the
detected scattering angle, E′(θexp). The histogram for ∆Eexp shows a peak
near zero, with the radiative tail to the right (see top plot of fig. 6.1; note the
logarithmic scale). A cut around this peak down to a cut-off energy ∆E′ selects
the elastic reactions.

The momentum acceptance of the spectrometer is given by the extent of the
detector plane. Since it is difficult to control the efficiency (including angular
acceptance) at the edges of the detector plane, the uppermost and lowermost

1Cindy OnLine Analysis in C++, [DMW01]. Further details about the software used in this
work can be found in appendix F.
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Figure 6.1: ∆E′ histograms of the measurement with spectrometer A at 90.5◦

at an incident energy of E = 585 MeV. Top: Spectrum without any cut.
Middle: After all cuts except a cut in ∆E′. Bottom: Events that are rejected
by the cuts. Random events give rise to the nearly constant level between
-30 and 15 MeV. The bump around 30 MeV stems from events detected
near the edge of the detector plane, which are cut away.
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6 The cross section data

Cut spec. A spec. B spec. C
∆pc −10% < ∆pc < 9% |∆pc| < 7.3% |∆pc| < 12.3%
Φ0 |Φ0| < 6.5◦% |Φ0| < 3◦% |Φ0| < 6.7◦%
Θ0 |Θ0| < 5◦% |Θ0| < 3◦% |Θ0| < 6.5◦%
Snout cut ysnout – |ysnout| < 30,mm –

Table 6.1: Overview of the cuts used in the analysis.

accepted momenta are cut out. The measured relative momentum is ∆pc, the
deviation of the particle momentum from the central momentum2. To reduce
background, cuts around the nominally accepted in-plane (Φ0) and out-of-plane
(Θ0) angles were applied. In order not to loose good events, these cuts have
been chosen sufficiently broad. The cuts are summarized in table 6.1, figure 6.1
shows the effect of the cuts on the ∆E′-spectrum.

For spectrometer B, an additional cut has to be introduced. Here, particles can
be detected whose trajectory between target and spectrometer is outside of the
acceptance defined by the collimator, when they hit the long snout in front of
the collimator, whereby they may be scattered back into the acceptance. Fortu-
nately, they are easily identified by the horizontal component of the intersection
of the particle trajectory and the plane of the entrance of the snout (ysnout).
Figure 6.2 shows the two-dimensional histogram of the horizontal offset at the
collimator ycolli versus ysnout. The events around ysnout = 0 correspond to good
events. One can see a shadow on the right and a dimmer shadow on the left. In
the final analysis, the cut |ysnout| < 30 mm was applied. As one can see in fig.
6.3, which shows the distribution of the events that are cut away by this cut,
the back-scattered electrons are located in the radiative tail. Their particular
energy spectrum would not be accounted for by the ansatz for the background
used in this work (see subsection 6.4) and would therefore be left as a contri-
bution to the elastic scattering events in the tail region in particular at low
electron energy.

6.2.2 VDC optimization

Each spectrometer is equipped with two packages of vertical drift chambers
(VDCs). Each package consists of two individual VDC planes, one with wires
perpendicular to the dispersive plane (“X”-chambers) and one with diagonal
wires (40◦ rotation, “S”-chambers). The timing information from these vertical
drift chambers is used to reconstruct both the intersection point and the angles
of the trajectory to the focal plane.

A schematic view of a VDC is shown in figure 6.4. A VDC consists of a plane
of alternating signal and potential wires with a pitch of 2.5 mm, sandwiched be-
tween two cathode planes of aluminized foil in 12 mm distance. The potential

2For spectrometers A and C, the central momentum is not the reference momentum (see
table 3.1). Here, the relation ∆pc = (1 + ∆pref) · 630/665 − 1 is used for A and ∆pc =
(1 + ∆pref) · 459/490− 1 for C.
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Figure 6.2: Histogram of ycolli vs. ysnout of the measurement with spectrometer
B at 32.5◦ at an incident energy E = 180 MeV. The gray scale is logarithmic
to emphasize the side bands. The events around ysnout = 0 correspond to
good events, the side bands result from back scattering from the snout walls.
The black vertical lines denote the cut used in the analysis.
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Figure 6.3: ∆E′ histogram of the same measurement shown in figure 6.2. The
events that were cut away (cyan) contribute mainly in the region of the
elastic tail of the complete data set (red, with peaks). — The peak at
−5 MeV stems from elastic scattering off the nuclei in the entrance and exit
walls of the cryogenic target cell.
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Figure 6.4: Schematic view of a vertical drift chamber. The cut is perpendicular
to the wires.

wires are grounded directly, while the signal wires have zero potential through
the input impedance of the preamplifier electronics. The cathode planes are set
to a potential of about -6 kV with respect to the wires. The volume is filled
with an argon-isobutane mixture with a small admixture of ethanol. A passing
charged particle generates electron-ion-pairs along its trajectory. While the ions
drift to the cathodes, the free electrons are accelerated to the high field strength
area around the wires, where the number of primary electrons is magnified due
to secondary collisions (gas amplification). When the electrons reach the sig-
nal wire, the current is strong enough to be digitized. The potential wires are
thicker. Therefore, the field strength is lower and no sufficient gas amplification
takes place there.
The VDC system is operated in a common stop mode: The TDCs connected to
each signal wire are started when the electron clouds reach the wires and they
are stopped by the (delayed) signal from the scintillator system.
The timing information of an event is translated into distances from the wires
(for details, see [Dis90; Ber04]). To this end, the algorithm needs two param-
eters, a time offset corresponding to a zero drift time and the drift velocity.
These parameters depend on the gas mixture and pressure, on the applied high
voltage and on the trigger setup. The exact values vary over time and need to
be determined and controlled.
The algorithm used to find the trajectories also estimates an error. This error
estimate is histogrammed. The shape and especially the position of the max-
imum of the histogram is a good indicator for a correct determination of the
offset and drift time.
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6.2 Data preparation

Due to the sheer number of settings in this experiment it is not feasible to
optimize the offsets and drift velocities by hand. Therefore, an automatic fit
program has been created from a stripped-down version of the analysis package
Cola++. The algorithm determines the goodness of the tested parameter com-
bination from the peak position of the error histograms. The exact position of
the peak is not the main focus here. Rather, the robustness against statistical
fluctuations is important for a successful fit. The following algorithm proved to
be a robust estimate of the peak position:

• First, in the error histogram, the bin with the maximum value is searched.

• Then, the algorithm searches in both directions from the maximum the
bins where the histogram has dropped to 80% and 30% of the maximum
value. This identifies the region of the peak slopes on both sides.

• A straight line is fitted to both sides of the peak from the 80% to the 30%
point.

• The x-coordinates of these two lines at the average height of the four
points are calculated and the middle between these two coordinates is
taken.

Using this peak-position algorithm, the drift velocity and the offsets which mini-
mize the peak position can be determined for each individual measurement with
standard algorithms.
The drift velocities found by this optimization are shown in figure 6.5. While
most of the measurements yield very similar velocities, there are obvious struc-
tures within the 180 MeV and 315 MeV measurement periods. After some
search it was found that these structures coincide with the replacement of the
isobutane bottle. It is very likely that some admixture of another gas changed
the drift time. A possible source is insufficient flushing of the pipe system after
swapping of the bottles. However, considering the small volume of the pipe
system in comparison to the volume of the VDCs and the duration of the ef-
fect, this appears unlikely. On the other hand, the isobutane bottles themselves
contain impurities. While these are minimal, it is possible that they accumulate
at the top of the bottle, so they are released in a higher concentration when the
bottle is fresh. A test at a later beam time showed that the blow-off of about
0.5 kg of isobutane cures this problem.

Figure 6.6 shows the change of the error estimate when the drift velocity is
off by 5% or if one of the TDC offsets is wrong by 10 channels (5 ns). The
worsening of the error estimate is obvious, therefore, this is an efficient way to
determine these important quantities.

In order to account for the drifts of the drift velocity and of the TDC offsets,
the values found by the optimization were described with appropriate functions
of time. By taking these functions in the final analysis, individual outliers are
suppressed.
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Figure 6.5: The drift velocities as determined by the fit procedure. The mea-
surements are numbered sequential in time. The vertical lines separate
measurements at different beam energies. The concurrent, sudden rise of
the drift velocities coincide with the replacement of the isobutane supply
bottle.
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The cyan line shows the optimized case. When the TDC offset is changed
by 10 channels (5 ns), the error is much larger (red curve). The result is
even worse when the drift velocity is wrong by 5% (blue curve), which is
comparable to the magnitude of the effect seen when the isobutane bottle
is changed.

6.2.3 Matrix optimization

The determination of the trajectory by the VDC yields four values (two posi-
tions and two angles), the so called “focal plane coordinates”. They are then
translated to target coordinates: Two angles, the momentum and the position
perpendicular to the central plane of the spectrometer. This transformation is
parametrized in a matrix formalism. In essence, the functional dependency of
a target coordinate ti ∈ {θ, φ, y0, ∆p} is described by a polynomial expansion
in terms of the detector or focal plane coordinates fj ∈ {Θ0, Φ0, X, Y }:

ti =
∑
a

∑
b

∑
c

∑
d

Mabcd,if
a
1 f

b
2f

c
3f

d
4 . (6.4)

Here, it is assumed that the perpendicular beam coordinates are zero (or
known). The coefficients were determined by a fit to sieve-slit data (details
of the process can be found in [Kor94]). When the VDC package is removed for
maintenance, the position may change slightly when it is mounted again. To
accommodate such changes without a complete redetermination of the matrix,
the formalism allows for the specification of offsets which are subtracted from
fj .
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Figure 6.7: The effect of the matrix optimization, here on a measurement with
spectrometer A at 70.5◦ and 450 MeV incident beam energy. Red: Data
analyzed with unoptimized matrix. Cyan: With optimized matrix. The
peak shifts to the right due to a change in the reconstructed scattering
angle. Left: Original data. Right: Cyan peak is rescaled and shifted to
make the reduced width more apparent. The FWHM gets smaller by about
7%.

Using sieve slit measurements taken at the beginning of each beam time, the
offsets and some low order coefficients were optimized. Figure 6.7 shows a com-
parison of the ∆E′ histogram before and after the optimization. In this case,
the full width at half maximum could be reduced by 7%.

6.3 Determination of resolution and central momentum

In the simulation, the accuracy of the determination of the particle coordi-
nates is parametrized in the target reference frame, i.e. the simulation contains
parametrizations for the resolution in the vertex position, in the momentum
and in the in-plane and out-of-plane angles. These parametrizations include
parameters for the width of the distributions, which depend on the kinematics
of the setup and which have to be determined for each setup individually.
Additionally, the peak position in the ∆E′ histogram has to match between
experiment and simulation, otherwise the cut in ∆E′ would fail to select the
equivalent part of the peak and tail region in both the experiment and the
simulation. The peak position is given by the relative momentum (determined
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6.3 Determination of resolution and central momentum

in first order by the focal plane coordinate X) and by the momentum of the
reference trajectory, which itself depends on the fields of the magnets. These
are measured using Hall probes and, for the dipole fields which define the mo-
mentum, an NMR (Nuclear Magnetic Resonance) system which is more precise
and does not drift due to radiation damage. To measure the field strength with
NMR, inhomogeneities of the field at the position of the probe must be below
a certain level, otherwise no resonance can be found. This is fulfilled for spec-
trometer A and C, but not for B, where correction coils have to be employed
to suppress inhomogeneities caused by the clamshell design. Unfortunately,
the NMR probe of spectrometer B only found a resonance in rare cases, so for
most settings, only Hall probe measurements are available. The Hall probe,
designed for the fast and coarse measurement needed in the initial steps of the
field-change procedure, has only limited resolution and is not calibrated very
well. Despite extensive efforts, the cause of the problems with the NMR system
in spectrometer B could not be determined.
Additionally, precise reconstruction of the momentum needs precise knowledge
of the transfer matrix. In any case, the conversion from field to momentum is
not perfect. So, for all spectrometers, the exact momentum has to be found
by comparing the peak positions of experiment and simulation (the incident
energy is known within 0.1 MeV or better).

The determination of the momenta and resolutions is done in a two step process:
The first step is to find the vertex resolution and, together with this, a possible
target offset. For this, a standard non-linear least-squares optimization is per-
formed, for which the derivatives of χ2 with respect to the parameters have to
be calculated numerically: For each variation of the parameters, the simulation
is run, and the vertex histograms of experiment and simulation are compared.
Since the analysis of the measured data is not dependent on these values, only
the simulation has to be updated at each fit iteration.
In the second step, the momentum and the remaining resolutions are optimized.
To this end, the spectra of ∆E′, of the angles, and of ∆p ( the momentum rel-
ative to the reference momentum) are compared. Since the momentum value
changes the data analysis, both data and simulation have to be updated at each
step.
An example for the excellent matching between experiment and simulation is
shown in figure 6.8. Figure 6.9 shows the difference between the “true” refer-
ence momentum determined from the known incoming energy by the described
procedure and the reference momentum determined “online” from the mea-
surements of the magnetic fields. For spectrometer B, large deviations around
1.5 MeV are found. This is easily understood from the fact that for spectrometer
B, only the uncalibrated values of the Hall measurement were available. In fact,
in the rare cases where the NMR locked on to a resonance and gave a field mea-
surement, the Hall probe and NMR probe differed by approximately 1.5 MeV.
The slope of the differences for spectrometer B is caused by non-linearities of
the Hall probe and by the effect explained in appendix D.
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(red) for the measurement with spectrometer A at 43◦ and with 450 MeV
incident beam energy.
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6 The cross section data

6.4 Background subtraction

As mentioned in section 3.3, the liquid hydrogen is contained in a cryo cell.
The electron beam has to pass through the walls of this cell, a thin foil made of
HAVAR, an alloy of several metals. So, besides the scattering off hydrogen one
is interested in, scattering also occurs on the nuclei of the wall atoms3. This
produces background in the energy region of the elastic peak of the hydrogen.
Due to the difference in recoil, the peak from elastic scattering off the proton
sits on the tail of the elastic peaks from the wall nuclei. At higher momentum
transfer, this background mainly comes from quasi-elastic scattering, which,
more or less by definition, sits under the elastic hydrogen peak, broadened by
the Fermi momentum of the nucleons in the initial state and shifted by the
separation energy. Due to the different masses mi of the nuclei of HAVAR, the
elastic background peak is a superposition of several peaks at positions

E′i =
E

1 + E
mi(1−cos θ)

. (6.5)

Since the reconstruction of the ∆E′ histogram assumes mtarget = mp, the peaks
from the wall-nuclei are broadened.

Isolated inelastic peaks are either very small (at low Q2) or they are already
outside the region of the elastic proton-peak (at large Q2).

The background that is under the proton peak has to be separated or subtracted
from the data. A separation with kinematical cuts would be possible in a
coincidence experiment. In a single arm experiment like in this work this is not
possible. The only possibility to reduce or eliminate the background would be a
cut in the vertex position. Such a cut however is very problematic: The vertex
resolution and accuracy depends strongly (see appendix C) on the spectrometer
angle and is almost impossible to handle, at least at the level of precision this
experiment aims at: An estimation of the target length could not be attained
with sufficient precision. Also, the assumption that the target length seen by
one spectrometer is constant during one energy setting could not be maintained.

The approach for handling the background in this work consists of an estimation
of the contributions by simulation. To this end, the simulation package was
extended by models to simulate the elastic and quasi-elastic scattering on the
wall nuclei, including their radiative tails. Both contributions are constructed
to give the correct shape, while the amplitude is fitted to the data.

The generators for both contributions first select, according to the composi-
tion of HAVAR, a type of nucleus on which the scattering occurs. The elastic
generator then calculates the radiative tail similar to the hydrogen generator,
but without the explicit calculation of the Feynman graphs. The quasi-elastic
generator additionally generates a nucleon. The kinematics are calculated rel-
ativistically, the Fermi momentum distribution is approximated by a sphere
in momentum space. The elementary cross section is calculated according to

3HAVAR mainly consists of cobalt, chrome, iron, tungsten, molybdenum and manganese.
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the de Forest off-shell cross section prescription [de Fo83]. Figure 6.10 depicts
example spectra for both generators.

For each measurement, the amplitudes a of the two background types are de-
termined by a fit of the sum of the simulated background ∆E′-spectra and the
simulated hydrogen spectrum to the measured spectrum by minimizing

χ2 (asim., ael., aq.el.) =
∑
i

(
di − (asim.si + ael.ei + aq.el.qi)

∆di

)2

, (6.6)

where di is the measured count rate and si, ei, qi are the values of the simulated
hydrogen, elastic background and quasi-elastic spectrum in the ith bin. Figure
6.11 displays a measured spectrum and the difference spectrum, i.e. the data
histogram minus the three simulated and scaled spectra. One sees the excellent
agreement in the tail, while there are slight imperfections in the replication of
the immediate peak region by the simulation around the steep fall offs of the
hydrogen peak, which, however, level out to zero in the integral. The ratio of
the integrals of the background-corrected data and the integrated simulation
of the hydrogen peak in the tail region is depicted in figure 6.12 for three
measurements. This figure shows that within a large range, the choice of the
cut-off energy has an effect of at most a couple of per mill. The background
is largest for the small-angle settings at 180 MeV; for spectrometer B, the
background contribution reaches 10%. However, for most of the setups, the
background is below 4%.
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Figure 6.10: The simulated spectra of the elastic (top) and quasi-elastic (bot-
tom) background for spectrometer B at 25.5◦ and 450 MeV incident beam
energy (Q2 = 0.038 (GeV/c)2). The amplitudes are fitted to the measured
spectrum.

56



6.4 Background subtraction

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

-40 -30 -20 -10  0  10  20  30  40  50

co
un

ts

∆E’ [MeV]

-200

-100

 0

 100

 200

 300

-40 -30 -20 -10  0  10  20  30  40  50

co
un

ts

∆E’ [MeV]

Figure 6.11: Top: ∆E′ spectrum measured with spectrometer B at 25.5◦ and
450 MeV incident beam energy. Bottom: Same spectrum (cyan), back-
ground estimate (blue) and difference of the data to the sum of simulated
hydrogen peak and background (red).
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Figure 6.12: The ratio of background-corrected data to simulation in the tail
region. Top: Spectrometer A at 88◦ and 855 MeV incident beam energy.
Middle: Spectrometer B at 49◦ and 180 MeV. Bottom: Spectrometer C at
73◦ and 585 MeV.
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6.5 Luminosity

The integrated luminosity is defined as the number of electrons, Ne, impinging
on the target in the duration of the measurement, T , multiplied by nT , the
areal density of the target nuclei:

L = NenT . (6.7)

The number of electrons can be calculated from the charge Qe hitting the target,
i.e. from the integrated beam current I,

Ne =
Qe
e

=
1
e

∫
T
Idt, (6.8)

where e is the electron charge. In this experiment, the beam current I is either
measured with the Förster probe or with the pA-meter, which gives more stable
results (see subsection 6.5.1).
The areal density of the protons nT is given by the areal density of the hydrogen
molecules nH2 and the number of atoms in a hydrogen molecule z = 2. With
Avogadro’s constant NA ≈ 6.022 · 1023 mol−1, the mass-volume-density ρ, the
thickness x, and the molar mass MH2 of the target, nT is determined by

nT = z · nH2 = 2
NA

MH2

ρ · x. (6.9)

The target density ρ is calculated from continuous pressure and temperature
measurements. These values are nearly constant during a cross section mea-
surement.

To avoid local overheating of the liquid hydrogen due to the heat load of the
passing electron beam, at high currents the beam is rastered over the (curved)
frontal face of the target. The small change in the effective target thickness
x due to this rasterization is accounted for by the simulation. The absolute
length of the cooled-down cryo cell is hard to determine on the sub-percent
level. Uncertainties in its determination enter as a constant factor in the global
normalization which will be taken as a fit parameter anyhow; it is gratifying to
note, however, that the normalizations of the different blocks of measurements
are in the expected range and do not depend strongly on the form factor model
used in the fit (see appendix G).

The luminosity has to be corrected for prescaling and dead time. This is done
with the program LumiTNG, a rewrite of Lumi++. (The rewrite was necessary
to implement the special treatment of the pauses caused by the beam position
stabilization (see subsection 3.4.2)). It also calculates the effective measurement
time and the integrated Förster probe values.

6.5.1 pA-meter calibration

The design of the experiment aims at a determination of the luminosity by
the measurements done with one of the spectrometers (at constant angle) as
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luminosity monitor as described in the next subsection. In this case, no current-
measurement is needed. However, the measurement of the beam current pro-
vides a cross check. Furthermore, an anomaly in the 315 MeV data (see sub-
section 6.6.2) makes it impossible to use the luminosity measurements with the
spectrometer for this energy, instead the analysis has to rely on the normal-
ization from the beam current. The pA-meter provides precise measurements
even for extreme low currents and low beam energies where the standard Förster
probe works badly (if at all).
The pA-meter measures the current on a collimator positioned right before the
first linear-accelerator segment. For a beam-current measurement, the colli-
mator current is measured with the beam once deflected onto the collimator
and once not, so that the beam passes through the collimator and enters the
rest of the accelerator. The actual beam current should be proportional to the
difference of these two values.
The pA-meter measurement is calibrated against the Förster probe. These
measurements were done over a large range of currents using a beam energy
of 855 MeV, maximizing the number of return paths in RTM 3 and hence the
precision of the Förster-probe measurement.

The Förster probe (also called fluxgate magnetometer) measures the magnetic
field of the electron beam by cancellation with the field of a coil. The current to
produce the compensation field is the measurement signal, which is converted
into a frequency. The output signal is counted to integrate the beam current
over the measurement time. The signal fed into the frequency converter can be
reduced by a fixed factor f , allowing to measure both high and low currents
with good precision. In the normal analysis, f is taken to be exactly the design
value 100. Since the calibration measurements span both ranges, this factor
was tested by fitting the two ranges separately. For the complete data range,
we make the ansatz

iFörster (ipA) =

{
m · ipA + blr, low range
f ·m · ipA + bhr, high range

, (6.10)

i.e. with the same slope for both ranges (apart from f), but different offsets.
The low-range offset blr is small, and, within the uncertainty, compatible with
zero. This offset is most likely caused by the limited precision of the Förster
probe for low currents and is set to zero in the final calibration. The high-range
offset is larger, but still compatible with 0. Setting f to 100 and bhr also to 0,
the fit of only m does not reproduce the data. This is demonstrated in figure
6.13 which shows the deviation of the data and of a fit of eq. (6.10) with free
f from a fit with fixed f = 100 and bhr = 0. The change in the behavior
above 1000 nA, where the switch between low range and high range occurs, is
obvious. The fit with both offsets b set to zero gives a proportionality factor of
m = 2.0682± 0.0019 and f = 98.77± 0.10.

Non-linearities in the frequency converter may introduce deviations from the
linear relation (6.10). In a fit with a quadratic term, this term is found to be
compatible with zero. Therefore, the relation between beam current ibeam and
pA-meter current is taken to be strictly linear.
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Figure 6.13: Deviation of the beam currents measured by the Förster probe and
of a fit with free f from a fit with fixed f and bhr. The fit with free f does
explain the data in the low range(red) and high range (cyan) of the Förster
probe.

It has to be noted that also for the measurements where a normalization with the
luminosity monitor is not possible the exact knowledge of the proportionality
factor m is not needed, since it only affects the global normalization, which is
subsumed in the normalization parameters of the global fit.

The 315 MeV data were measured with several different beam currents. How-
ever, several cross section measurements were done at each beam current. Now,
the average of the beam current measurements for each constant-beam-current
group is calculated. The scattering of the individual current measurements of
each group from the average is an indication of the precision of the measure-
ment. The superior performance of the pA-meter at low beam energies and
low currents is demonstrated in figure 6.14, where the ratio of the individual
measurement to the average value is depicted for both pA-meter and Förster
probe.

6.5.2 Luminosity monitor

For all measurements, one of the three spectrometers was used as a luminosity
monitor, i.e. this spectrometer stayed with the same field at the same angle,
thus measuring the count rate for a fixed momentum transfer for a time where
many runs at different angles were taken with the other spectrometers. This
spectrometer thus monitors the constancy of the luminosity. In the course of
the measurements at one energy, only a few changes of the monitor angle are
necessary to ensure that its event rate is high enough.
Each measurement of the luminosity monitor is analyzed in the same way as the
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Figure 6.14: The current-measurements of the 315 MeV beam time, grouped by
constant setup of the electron source of the accelerator. Depicted is the ratio
of the individual measurement to the average current of a group, for pA-
meter (cyan) and Förster probe (red). While the scattering of the pA-meter
values is barely visible, the Förster probe values scatter significantly, the
more the lower the beam currents. At higher beam energies, the performance
of the Förster probe is considerably better.

normal cross section measurements, that is, the normal procedure of background
subtraction, dead time correction and normalization to the estimated luminosity
is performed.

From the n individual results, the average cross section is calculated:

σlum,avg =
1
n

n∑
i=1

σlum,i. (6.11)

The cross section values σexp,i, measured with the other spectrometers, are now
normalized:

σexp,norm,i = σexp,i ·
σlum,avg

σlum,i
. (6.12)

Hence, the common factors in the luminosity, i.e. beam current, target density
and target length, cancel out and uncertainties in their determination play no
role apart from the overall normalization, which will be taken as a fit-factor in
the final analysis anyhow.

In this procedure, the statistical error of the normalized data is enhanced by
the statistical error of the luminosity measurement:

∆σexp,norm,i

σexp,norm,i
=

√(
∆σexp,i

σexp,i

)2

+
(

∆σlum,i

σlum,i

)2

. (6.13)

62



6.5 Luminosity

 0.97

 0.98

 0.99

 1

 1.01

 1.02

 1.03

 0.975  0.98  0.985  0.99  0.995  1  1.005  1.01  1.015  1.02  1.025

σ r
el

 s
pe

ct
ro

m
et

er
 C

σrel spectrometer A

Figure 6.15: Relative cross sections measured with spectrometer A versus those
measured with spectrometer C in the same run. The angle of spectrometer
C is fixed. The correlation is obvious.

For higher currents, where the beam and the current read-out is stable, the
effect of the normalization to the luminosity monitor is small, though visible.
For 180-MeV-measurements with very small currents and a less stable beam the
normalization is indispensable as can be seen from figures 6.15 and 6.16. The
former figure shows the relative cross sections measured with spectrometer A
plotted against those measured in parallel with spectrometer C. The correlation
is clearly visible, the correlation coefficient is r = 0.997, though the spread in
the data from spectrometer A due to the deviation from the standard dipole is
still present. Figure 6.16 demonstrates the result of the normalization to the lu-
minosity monitor. The luminosity normalization is applied to all measurements
where possible (see subsection 6.6.2).
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Figure 6.16: The effects of the luminosity-monitor normalization for the
180 MeV data. Top: Uncorrected (relative) cross sections measured with
spectrometer A vs. time (number of measurement, scattering angles vary
from 35.5◦ to 85.5◦). Middle: Measurements of the luminosity-monitor spec-
trometer C at a fixed angle of 73◦. The correlation is obvious (see also figure
6.15). Bottom: Corrected data from spectrometer A. The scattering of the
data is significantly reduced, the remaining tendency in the data shows the
deviation from the standard dipole.
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6.6 Further corrections and anomalies

The level of statistical precision achieved in this experiment together with the
conceptual design of overlapping acceptances made several anomalies apparent,
which would have been missed in a traditional type of experiment. Some of
them are handled automatically by the way the data are analyzed. These
are described in appendix B. For others, the cause could be understood and
corrections could be calculated (subsection 6.6.1). However, the cause for an
anomaly in the 315 MeV data could not be found, therefore these data need a
particular treatment (see subsection 6.6.2).

6.6.1 Corrections

In the course of the analysis it was found that the acceptances of spectrometers
A and C are not completely given by the sheer geometry of the collimators,
instead, they depend to some extent on the the vertex position. A corresponding
correction has been determined and is now included in the simulation package.
Details can be found in appendix C.

Furthermore it was found that the magnetic field of spectrometer C influences
the measurement with spectrometer B when the spectrometers are close to
each other: Then the field of the quadrupole of spectrometer C influences the
trajectories of the scattered electrons on their way to spectrometer B. The
handling of this problem is explained in appendix D.

6.6.2 315-MeV-anomaly

The 315 MeV data exhibit problems with spectrometer C which served as lumi-
nosity monitor. For the first half of the beam time, the cross sections, though
measured at a constant angle, show a drift and there were jumps which are
not correlated to the behavior of the cross sections measured with the other
spectrometers. A closer look revealed that one of the VDC wires in spectrom-
eter C was “hot”, i.e. it fired almost constantly. This may skew the result of
the trajectory determination and thus may lead to lost trajectories if such wire
is not excluded from the analysis. However, even after exclusion, the strange
cross section behavior persisted.
A reduction of the data set to those events where this wire had no signal showed
no drift, but then the number of events is so drastically reduced that the effect
may be hidden in the statistical uncertainty. This also prohibits to use the
reduced data set for normalization and such a cut would be questionable any-
how, since there is no good argument why the ratio of “good” to “bad” events
should be constant in time. However, the vanishing of the effect with a cut on
“good” events is an indication that the strange behavior is not caused by some
unaccounted dead time due to the dead wire, since the dead time would still
affect the reduced data set.
More likely is some kind of interference of the firing wire with the rest of the
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electronics. While the ultimate cause could not be determined, the problem
vanished half way through the beam time.
For the 315 MeV data set, this problem makes a normalization to the lumi-
nosity monitor impossible, and the analysis was performed with the luminos-
ity determined by the pA-meter. Accordingly, this data subset may have a
larger (statistical) error since for the pA-meter measurement, the cross section
measurement has to be interrupted, hence it does not register beam current
fluctuations while the cross section measurement is performed.

6.7 Results

The described procedures yield 1422 cross section measurements. Due to the
division by the simulation, the internal and external radiation has been taken
into account and one gets cross sections relative to the cross section calculated
from the standard dipole, integrated over the acceptances of the spectrometers.
They will now be analyzed by global fits of different models (see chapter 7). The
cross section results of these fits, which also fix the normalization, are presented
in chapter 8, the cross section values are listed in appendix K.1.
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7 Parametrizations for the form factors

For a direct fit of the measured cross sections, an ansatz has to be made for
the description of the form factors. Care has to be taken that the final results
do not depend on a particular choice of the form factor parametrization. The
model bias can only be judged in the context of an appropriate selection of
models of different kinds. In the following, the models used in this work will
be discussed. All models are normalized to 1 at Q2 = 0. — For the magnetic
form factor GM the factor µp has been suppressed to improve readability.

7.1 Dipole

The standard dipole

Gstandard dipole(Q2) =
(

1 +
Q2

0.71 (GeV/c)2

)−2

(7.1)

emerged from the measurements by Hand et al. [HMW63]. For a long time, it
was the accepted form for the electric form factor of the proton, and – scaled
with µp/n – also for the magnetic form factor of both the proton (“scaling
relation”) and the neutron, and it is found in many text books (e.g. [PRSZ04]).
While the choice of the dipole form was originally purely phenomenological, the
related exponential fall-off in r-space comes about as the probability function
of a quantum mechanical particle trapped in a narrow potential well.
In the present analysis, the scaling relation is not enforced. Instead different
parameters for the electric and magnetic form factor are used:

GE,Mdipole(Q
2) =

(
1 +

Q2

aE,M

)−2

. (7.2)

With only two free parameters, aE and aM , this model is very rigid, and it will
be seen that it is not able to describe the data of this experiment, as was the
case already for earlier data (e.g. Simon et al. [SSBW80]).

7.2 Double dipole

A somewhat more flexible ansatz consists of the sum of two dipoles:

GE,Mdouble dipole(Q
2) = a

E/M
0

(
1 +

Q2

a
E/M
1

)−2

+
(

1− aE,M0

)(
1 +

Q2

a
E/M
2

)−2

.

(7.3)
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The model is invariant under the exchange

aE,M1 ⇔ aE,M2 , aE,M0 ⇔ (1− aE,M0 ). (7.4)

This ambiguity might cause problems for the optimization algorithm.

7.3 Polynomials

7.3.1 Simple polynomial

A polynomial is a simple model without assumptions for the devolution of the
form factors except some level of continuity or smoothness. The constant term
is fixed to 1 by the normalization constraint GE,M (0) = 1. With a polynomial
of the order n, the form factors are parametrized as:

GE,Mpolynomial,n(Q2) = 1 +
n∑
i=1

aE,Mi ·Q2·i. (7.5)

Since the form factors drop rapidly with Q2, a rather high order is needed to
describe them adequately over a larger Q2 range.

7.3.2 Polynomial × dipole

In order to free the polynomial from the necessity to describe the gross be-
havior of the form factors, the latter may be accounted for by multiplying the
polynomial by the standard dipole:

GE,Mpolynomial×dipole,n(Q2) = Gstandard dipole(Q2)×

(
1 +

n∑
i=1

aE,Mi ·Q2·i

)
. (7.6)

In principle, it is possible to optimize also the parameter of the dipole. It was
found, however, that this additional freedom does not improve the fits while
the fit consumes much more computer time.

7.3.3 Polynomial + dipole

A variation of the aforementioned splitting-off of the gross behavior of the
form factors is the sum of a polynomial and the standard dipole instead of the
product:

GE,Mpolynomial+dipole,n(Q2) = Gstandard dipole(Q2) +

(
n∑
i=1

aE,Mi ·Q2·i

)
. (7.7)

While the multiplication parametrizes the relative deviation from the standard
dipole, the sum parametrizes the absolute deviation.
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7.3.4 Inverse polynomial

A variation of the polynomial model is the inverse polynomial ansatz as in
[Arr04]:

GE,Minv. poly.,n(Q2) =
1

1 +
∑n

i=1 a
E,M
i ·Q2·i

. (7.8)

7.4 Splines

In polynomial models, the behavior of the model in different Q2 regions is
highly correlated. Therefore, possible shortcomings in the description of the
data in one Q2 region may influence negatively the description in other regions.
Functions that decouple the behavior in different Q2 regions to a greater extent
are splines.
A spline is a function that is assembled piecewise from polynomials of a certain
(low) order n. The points where the polynomial pieces join are called knots.
There, an (n−1)-times continuous differentiability is enforced. If the knots are
equidistant, the spline is called uniform.
A spline ansatz has multiple advantages. Depending on the number of knots,
a spline can be very flexible. Nevertheless, the fit converges even for a large
number of knots very quickly since each parameter essentially only affects a
limited part of the curve.
The knots have to be chosen appropriately for the Q2 range of the data.
It is clear that a spline is not suited for extrapolations.

7.4.1 Plain uniform cubic spline

Cubic splines are assembled from polynomials of the third order. Due to the
continuity constraints, a cubic spline with k knots (k− 1 polynomials with four
parameters each) has only k + 2 parameters. The spline segment between the
ith and (i+ 1)th knot can be written in matrix notation as:

Si (t) =
1
6
[
t3 t2 t 1

] 
−1 3 −3 1
3 −6 3 0
−3 0 3 0
1 4 1 0



pi−1

pi
pi+1

pi+2

 . (7.9)

Here, t ∈ [0, 1] denotes the position between the two knots Q2
i and Q2

i+1:

t =
Q2 −Q2

i

Q2
i+1 −Q2

i

. (7.10)

To enforce the normalization constraint, the ansatz is chosen as

GE,Mspline(Q
2) = 1 +Q2 · SE,M (Q2). (7.11)
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7.4.2 Cubic spline × dipole

Following the same considerations as in subsection 7.3.2, it might be advanta-
geous to multiply the spline ansatz with the standard dipole. This leads to the
ansatz

GE,Mspline×dipole(Q
2) = Gstandard dipole(Q2) ·

(
1 +Q2 · SE,M (Q2)

)
. (7.12)

7.5 Friedrich-Walcher parametrization

In their analysis of the world form factor data, Friedrich and Walcher [FW03]
used an ansatz that is composed from a smooth part and a “bump”. The
smooth part is identical to the double dipole ansatz:

GS
(
Q2, a0, a1, a2

)
= a0

(
1 +

Q2

a1

)−2

+ (1− a0)
(

1 +
Q2

a2

)−2

. (7.13)

The bump contribution consists of a Gaussian in Q2 with an amplitude ab,
position Qb and a width σb. If Qb 6= 0, the Taylor expansion of the Gaussian
has odd powers, which is not allowed for form factors. This is circumvented
by adding another Gaussian which is mirrored at Q2 = 0, as has been done by
Sick [Sic74] for a model-independent analysis of nuclear charge distributions in
r-space. The bump contribution is hence described by:

Gb
(
Q2, Qb, σb

)
= e
− 1

2

“
Q−Qb
σb

”2

+ e
− 1

2

“
Q+Qb
σb

”2

(7.14)

To attribute the full normalization to the smooth part, the bump contribution
is multiplied by Q2. The complete model is therefore:

GE,MFriedrich−Walcher(Q
2) = GS

(
Q2, a

E/M
0,1,2

)
+ a

E/M
b ·Q2Gb

(
Q2, Q

E/M
b , σ

E/M
b

)
(7.15)

7.6 Extended Gari-Krümpelmann model

While all previous models are just mathematical functions for the description
of the data, the extended Gari-Krümpelmann model [GK92; Lom01; Lom02;
Lom06] – actually a group of models which differ only in details – is based on
physical considerations. In this work, the version called DR-GK’(1) ([Lom01])
respectively GKex(01) ([Lom02; Lom06]) is selected, since it had the best re-
sults in [Lom06] for existing proton form factor data when the normalization of
the data sets is not varied.
Under the assumption that QCD is the fundamental theory of the strong inter-
action, the electromagnetic form factors can be calculated in perturbative QCD
(pQCD) for very high momentum transfers. For small momentum transfers, the
confinement property of QCD leads to an effective hadronic description with
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vector meson dominance (VMD), the coupling of a photon to a vector meson
which itself couples to the nucleon.
Earlier models that were based solely on VMD introduced multiple, phenomeno-
logical poles of higher mass besides the ρ, ω and φ-poles. Gari and Krümpel-
mann limit the VMD contributions to these three poles, but enforce the asymp-
totic Q2 behavior dictated by the scaling behavior of pQCD by additional terms.
In the model used here, the dispersion integral approximation of the ρ meson
contribution is replaced by an analytical form. The model was extended to
include the ρ′(1450)-pole (for details see [GK92; Lom01]).
As has been described in section 2.1, the form factors can be written either as
the Sachs form factors GE and GM or as the Dirac and Pauli form factors F1

and F2, which can be divided into an isoscalar and an isovector component:

2F p1,2 = F is1,2 + F iv1,2, 2Fn1,2 = F is1,2 − F iv1,2. (7.16)

The model GKex(01) is formulated in terms of these four form factors with the
poles for ρ, ρ′, ω, ω′ and φ mesons:
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In this model, the form factors Fαi (α = ρ, ω, ω′, φ, meson-nucleon) and FDi
(quark-nucleon) are parametrized as:
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(7.18)
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7 Parametrizations for the form factors
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with

Q̃2 = Q2
ln
[(
λ2
D +Q2

)
/λ2

QCD

]
ln
(
λ2
D/λ

2
QCD

) . (7.20)

The parametrization fulfills the normalization constraint1 for Q2 = 0. The
constants κν , κs and the masses mρ, mω, mφ, mρ′ and mω′ are taken as κν =
3.706, κs = −0.12, mρ = 0.776 GeV, mω = 0.784 GeV, mφ = 1.019 GeV,
mρ′ = 1.45 GeV and mω′ = 1.419 GeV.
There remain at most 14 free parameters: Eight couplings (four gα/fα, four
κ), four cut-off masses (λ1, λ2, λD and µφ), the mass λQCD, which gives the
size of the logarithmic Q2 behavior, and the normalization parameter N for the
dispersion relation part of the ρ meson.
In [Lom02], at most 12 of these parameters were varied, since either the ω′

meson contribution was neglected or N and λQCD were fixed to N = 1 and
λQCD = 0.150, the physical value. The latter constraints are also used in the
present work. Still, the fitting of the model was very time-consuming due to
the logarithmic terms and slow convergence to the optimum.

1In this model, µp is neither suppressed nor does it show explicitly, i.e. Gm (0) = F p1 (0) +
F p2 (0) = 1 + κp = µp.
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8 Fit of the form factor models to the
cross sections and selection of the
models

The experimentally determined cross sections are analyzed using a direct fit of
the different models for the form factors.
As has been mentioned before, it is almost impossible to determine the global
normalization down to a sub-percent level directly from a precise knowledge
of all relevant properties of the experiment. Therefore, the normalization is
left floating, i.e. for each data group a scaling parameter is included in the fit
(details see appendix G). Overall, 31 normalization constants are used as free
parameters in addition to the model parameters in the fit to a total of 1422
cross sections.

The fit minimizes the function

χ2 =
∑
i

(
ri − ni ·

∫
Ai

(
dσ
dΩ

)
model

dΩ∫
Ai

(
dσ
dΩ

)
std. dipole

dΩ

)2

/(∆ri)2. (8.1)

Here, ri is the ratio of the ith measured cross section to the standard dipole, Ai
is the acceptance of measurement i, and ∆ri is the statistical error of ri. ni is
the normalization constant for the data group to which measurement i belongs.(

dσ
dΩ

)
model

and
(

dσ
dΩ

)
std. dipole

are the cross sections calculated from the fit model
and from the standard dipole, respectively.
The integration over the acceptance is done numerically.

8.1 Scaling of the statistical errors

Besides the errors of counting statistics and dead time estimation, different
additional effects contribute to the statistical error. These include the nor-
malization to the luminosity measurement and the uncertainty of the current
measurement for the 315 MeV data (see subsection 6.6.2), the statistical error
of the background estimation and undetected slight variations of the detector
and accelerator performance. To estimate these effects, one can inspect for spe-
cific data groups1 the distribution of the deviation of the data points from the
fit, divided by the error from the counting statistics and normalization.

1Grouped by incident beam energy and spectrometer the data is measured with.
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8 Fit of the form factor models to the cross sections and selection of the models
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Figure 8.1: The distribution of the deviations of the data points from the spline
fit, divided by the estimated statistical errors, with the data grouped by
energy and spectrometer. The distributions for the 315 MeV data are sig-
nificantly wider, since these data could not be normalized to the luminosity
measurement.
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8.1 Scaling of the statistical errors
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Figure 8.2: Like fig. 8.1, but with the errors scaled.

75



8 Fit of the form factor models to the cross sections and selection of the models

The results are presented in figure 8.1 for the fit with the spline model with 8
parameters per form factor. The widths of the distributions were determined
by a fit of Gaussians.

The errors of the different data groups are then scaled by these widths, and
the fit is redone; after one iteration, some of the width are now significantly
below 1. The scaling factors of those groups are subsequently reduced until all
widths are above one. Therefore, the final χ2 per degree of freedom is expected
to be slightly larger than unity (in fact, to achieve a reduced χ2 of unity for
the best models, the statistical error would have to be increased additionally
by less than 7%).

The final distributions of the deviations are depicted in figure 8.2.

By this scaling of the errors, single cross sections calculated from the fit change
at most by 0.3%.

8.2 Determination of model parameter number and
model selection

The spline and polynomial models allow for a varying number of parameters.
For the determination of the optimal number, one encounters the basic fact
that it is not possible to determine simultaneously which model describes the
data and how statistically pure a data sample is. In the extreme case, a model
goes through all data points, i.e. it interpolates the data. The choice of the
number of parameters is therefore a trade-off: With too few parameters, the
model cannot describe the data and deduced quantities cannot be trusted; on
the other hand, a fit with too many parameters starts to follow local deviations
instead of averaging out fluctuations.

To find the optimal number of parameters, the reduced χ2,

χ2
red =

χ2

number of data points− number of parameters
, (8.2)

is used.

In figure 8.3, χ2
red is shown as a function of the number of parameters Np

for the different models for the form factors. A plateau is reached at around
ten parameters per form factor. In each group, the model with the standard
dipole multiplied in reaches the plateau with one to two parameters less. In-
terestingly, for the spline models χ2

red starts to drop again when the parameter
number reaches twelve; the fits then start to show oscillations at a Q2 above
0.4 (GeV/c)2.

The number of parameters were selected as the lowest number where the plateau
was surely reached. While not directly visible in the χ2 value, the polynomial
× dipole model starts to oscillate at higher Q2 for orders above 9, so an order
of 8 has been selected. The inverse polynomial reaches the plateau already with
7 parameters. Table 8.1 summarizes the used parameter numbers.
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factor parametrizations for different polynomial and spline models.

77



8 Fit of the form factor models to the cross sections and selection of the models

Poly. Poly. + dip. Poly. × dip. Inv. poly. Spline S. × dip.
Order 10 10 8 7 8 7

Table 8.1: Selected orders for polynomial and spline models.

Model χ2 Number of parameters χ2
red

Single dipole 3422 2× 1 + 31 2.4635
Double dipole 1786 2× 3 + 31 1.2893

Polynomial 1563 2× 10 + 31 1.1399
Poly. + std. dipole 1563 2× 10 + 31 1.1400
Poly. × std. dipole 1572 2× 8 + 31 1.1436

Inv. poly. 1571 2× 7 + 31 1.1406
Spline 1565 2× 8 + 31 1.1385

Spline × std. dipole 1570 2× 7 + 31 1.1403
Friedrich-Walcher 1598 2× 7 + 31 1.1588

extended Gari-Krümpelmann 1759 14 + 31 1.2777

Table 8.2: The achieved total χ2, the number of parameters and χ2
red for the

different models used in this thesis.

The flexible spline and polynomial models reach χ2 values below 1600 (for 1422
data points). This is the baseline against which one can test the other models.
Table 8.2 lists the achieved χ2 value and number of parameters of the different
models. The single-dipole fit results in a χ2 of more than 3400, and, looking at
a comparison of the data and the fit, the failing of this model is obvious (figure
8.4). The double dipole achieves a χ2 of 1786, which is much closer to the
results with the flexible models. Nevertheless, the model dependency analysis
(appendix H) shows that the extraction of the radius by the double dipole is not
reliable and, depending on the exact shape of the form factor, the deviations of
the fit from the true value can be large.

The Friedrich-Walcher model reaches a χ2 that is less than 2.5% larger than
the best flexible model, well below the width of the χ2 distribution (σχ2 ≈ 58);
it is therefore included in the analysis.

The extended Gari-Krümpelmann model achieves a χ2 of 1759, which is only
slightly better than the double dipole. This fit is rather complicated and it
seems that there are ambiguities in the solutions. Since the calculation and
convergence is very slow due to the large number of logarithms and to the
numerical properties of the model, it was not possible to perform a full study
of this model. Such a study would need to vary the starting conditions and
constraints. For a reliable fit of this model, it may be necessary to fix the 31
normalization parameters beforehand with one of the flexible models. Then,
form factors can be extracted with the standard Rosenbluth technique (see
subsection 9.2.2) and subsequently be used as data for a fit.
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8.3 Fits to the cross sections
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Figure 8.4: The single-dipole fit compared to the measured cross sections for an
incident beam energy of 855 MeV. Here, as in the following figures, the data
measured with spectrometers A, B and C are shown in red (squares), blue
(dots) and green (triangles). Obviously, the single dipole cannot describe
the rise of the cross section (compared to the standard dipole) at larger
scattering angles. Since the normalization per data set is floating, these
data sets are shifted down in order to minimize χ2 (most visible for the data
measured with spectrometer C).

8.3 Fits to the cross sections

Figures 8.5 to 8.10 show the normalized cross section data with the scaled
statistical errors compared to the fits. To emphasize the precision of better
than 0.4% (average) per data point, the cross sections are divided by the cross
section given by the standard dipole. It has to be noted that the normalization
parameters depend slightly on the fit. Therefore, to compare the data to a fit,
the normalization of that fit should be used. However, the models that achieve
a small χ2 yield very similar normalizations, so it is reasonable to present the
data normalized to the spline model only, which has the smallest χ2

red. For
the flexible models, the maximum difference in a normalization parameter is
0.26%, and the average standard deviation is 0.073% (see appendix G). The
largest difference for the “good” models occurs for the 855 MeV data, where
the (less flexible) Friedrich-Walcher model shifts the data slightly upwards,
namely by 0.7% for the data measured with spectrometer C. To judge the size
of this effect, in figure 8.10, the data points are additionally plotted with the
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8 Fit of the form factor models to the cross sections and selection of the models

normalizations from the Friedrich-Walcher model (orange crosses).

For the models that do not achieve a χ2 below 1600, i.e. the double-dipole and
the extended Gari-Krümpelmann model, the differences in the normalization
are larger (up to 1.6% in the case of the double-dipole fit). Both models would
shift the cross sections down, therefore both fit curves are below the data with
normalizations from the spline fit.

The analyses with the “good” models yield cross sections which differ by less
than 1% for almost all of the Q2 range of the data. In the high-Q2 range,
the fits start to diverge. Above 0.55 (GeV/c)2, only data from 720 MeV and
855 MeV contribute. Therefore, the separation into GE and GM is not well
fixed. In the Q2 region covered only by 855 MeV data, the allocation of the
cross section strength to the electric or magnetic part is undetermined, giving
rise to the larger spread of the models.
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8.3 Fits to the cross sections

180 MeV incident beam energy
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Figure 8.5: The measured cross sections and the fits for 180 MeV incident beam
energy, divided by the cross section calculated from the standard dipole, as
functions of the scattering angle (top) and of Q2 (bottom). The normal-
ization parameters of the data are taken from the spline fit. The fits that
achieve a good χ2 differ by at most 0.3%. The normalization parameters
from the double-dipole fit would shift the data down by up to 1.6%. Accord-
ingly, its curve lies below the data with the normalizations from the spline
fit. (Symbols/colors as in fig. 8.4)
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8 Fit of the form factor models to the cross sections and selection of the models

315 MeV incident beam energy
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Figure 8.6: Same as fig. 8.5, but for 315 MeV incident beam energy. The dif-
ference between the models is smaller than for the 180 MeV data.

82



8.3 Fits to the cross sections

450 MeV incident beam energy
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Figure 8.7: Same as fig. 8.5, but for 450 MeV incident beam energy.
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8 Fit of the form factor models to the cross sections and selection of the models

585 MeV incident beam energy
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Figure 8.8: As fig. 8.5, but for 585 MeV incident beam energy.
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8.3 Fits to the cross sections

720 MeV incident beam energy
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Figure 8.9: Same as fig. 8.5, but for 720 MeV incident beam energy. The “good”
fits begin to diverge at Q2 values above the data. Here, the form factor sep-
aration breaks down since there are only data from one energy (855 MeV).
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8 Fit of the form factor models to the cross sections and selection of the models

855 MeV incident beam energy
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Figure 8.10: Same as fig. 8.5, but for 855 MeV incident beam energy. The or-
ange (crosses) data points are normalized according to the Friedrich-Walcher
fit; they differ from the data normalized with the more flexible models only
above 90◦ (0.7 GeV/c)2) and here by less than 0.7%. — The behavior of
the flexible models beyond the 1 (GeV/c)2 range is heavily influenced by
just the highest points, as can be seen by the steep rise of the polynomial
model to “catch” the last data point.
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9 Results for the form factors and for
the rms radii

9.1 Determination of the errors on the extracted form
factors and radii

There are several contributions to the final error for the form factors and radii:
The statistical error of the data, uncertainties from the experimental setup and
systematical uncertainties from the model and from theory.

9.1.1 Statistical errors

Pointwise confidence band

The statistical uncertainties of the measured cross sections give rise to a sta-
tistical uncertainty of the extracted form factors. This uncertainty is expressed
as a confidence band (or error band) to a given confidence level around the
optimal fit.
Usually, this is taken as the symmetrical confidence band around the best fit,
with a width calculated with standard error propagation. A model f , which
describes the quantity y at the position x and which depends on a parameter
vector ~p, can be written as

y = f(x, ~p). (9.1)

The fit to the data yi gives best fit parameters ~̂p. The parameters ~̂p have
uncertainties and correlations, described by the covariance matrix V(~p) with
Vi,j(~p) = cov(pi, pj). Standard error propagation1 now gives the variance of y
at the point x by

σ2
y(x) = V (y(x)) = (

∂f

∂p1
,
∂f

∂p2
, . . . )TV(~p)(

∂f

∂p1
,
∂f

∂p2
, . . . ). (9.2)

Further details can be found in appendix I. By this method one constructs
the pointwise confidence band with 68.3% confidence level (in case of Gaussian
errors, the 1σ-errors), i.e. one expects the true value ytrue(x) to be within the
band with 68.3% probability at a given x (or Q2 in our case):

P [f(x, ~̂p)− σy(x) ≤ ytrue(x) ≤ f(x, ~̂p) + σy(x)] = 0.683. (9.3)

1In the case cov(pi, pj) = 0 for i 6= j, this can be written as the more familiar σ2
y =P

i

“
∂y
∂pi

σpi

”2

.
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9 Results for the form factors and for the rms radii

To obtain the confidence band for a different confidence level, the width of the
band has to be scaled accordingly.
This method is exact for models which are linear in the parameters. However,
in the case at hand, the cross sections described by a form factor model do
not depend linearly on the parameters. It is not easy to determine if a linear
approximation is good enough in the parameter range which has to be exhausted
to give the desired confidence level. Therefore, a different approach using Monte
Carlo techniques has been taken.

Monte Carlo method

It is possible to estimate the confidence bands with Monte Carlo techniques:
Taking the best fit to the data, one can calculate points on the fit curve at the
original kinematical positions. Now, a large number (about 50 000) of pseudo
data sets are generated: The calculated points are randomized according to the
statistical errors of the original data. Additionally, the normalization of each
normalization group is varied randomly according to a Gaussian with a width
of 5% (it has been tested that the choice of this width has negligible influence
on the result).
In essence, these data sets simulate the outcome of 50 000 experiments with
1422 cross section measurements each, under the assumption that the best fit
represents the truth.

Each data set is now fitted with the model used in the original fit. From each
fit result, the radii and the form factor values at a large number of different
Q2 are calculated. At each Q2 and for the radii, the confidence band is now
constructed around the best fit such that 68.3% of the 50 000 fits are inside the
band. Figure 9.1 displays the input (best fit), the distribution of the form factor
values and the constructed confidence band for the spline × dipole model.

This method has the benefit that the full parameter interdependence and the
non-linear nature of the model is taken into account. The confidence band
constructed by the Monte Carlo method agrees very well with the one calculated
directly from the covariance matrix for almost all models (for a comparison see
appendix I.4).

Simultaneous confidence bands

For a comparison with theoretical models, the pointwise confidence band is not
well suited. More useful is the simultaneous confidence band, where one expects
the true value to be inside the band with a probability β (the chosen confidence
level) for all x, or at least for a certain range X of x:

P [f(x, ~̂p)− l(x) ≤ ytrue(x) ≤ f(x, ~̂p) + u(x) for all x ∈ X] = β. (9.4)

The exact analytical treatment is involved. However, with the assumption that
the shape of the pointwise and simultaneous confidence band is similar, one can
determine a scaling factor using Monte Carlo techniques. For 68.3% confidence
level, the factor is found to be around 2.3 for the flexible models and slightly
less for the stiffer ones. Details on the procedure and scaling factors for different
confidence levels can be found in section I.5 of the appendix.
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Figure 9.1: The distribution of GE(Q2), GM (Q2) and µpGE/GM (Q2) deter-
mined from 50000 pseudo-data sets calculated and analyzed with the spline
× dipole model. The pseudo data account for the statistical error and
normalization uncertainties of the cross sections. The cyan (inner) line rep-
resents the best fit, the red (outer) lines the pointwise confidence bands to
a confidence level of 68.3%.
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9 Results for the form factors and for the rms radii

9.1.2 Systematic errors

The systematic errors are divided in two groups: Experimental errors and the-
oretical errors. While a global shift has no effect because it is subsumed in the
fitted normalization, drifts in the course of time transform into changes in the
slope of the data versus the scattering angle or Q2, which will influence the
outcome of the fits. Therefore, such trends in the data have to be estimated.
The experimental errors have several sources:

• Energy cut in the elastic tail. This can be estimated by varying the cut-off
energy. It changes the form factor results by at most 0.2% for high Q2

and by less than 0.1% for Q2 < 0.55 (GeV/c)2.

• Drift of the normalization. This might occur due to unaccounted dead
time effects in the detectors or electronics when the event rate changes.
From the long time experience with the detector setup, this error on the
cross sections is estimated to be below 0.05%.

• Efficiency change due to different positions of the elastic peak on the focal
plane. The detector efficiency is position-dependent because of different
wire tension, missing wires or quality of the scintillators. Since the posi-
tion of the electron trajectories in the focal plane changes only slightly in
the course of the experiment, this effect on the cross sections is estimated
to be at most 0.05%.

• The vertex-dependent acceptance correction for spectrometers A and C.
A comparison of the 720 MeV data, measured with the long and short
target cells, leads to a (cross section) uncertainty below 0.1%.

• The background estimation. Depending on the size of the background
below the elastic hydrogen peak, this error is estimated to be between
0.1% and 0.5%.

While the first point can be tested directly by varying the cut-off energy used in
the fit, the other uncertainties have to be applied by hand to the data. To this
end, the cross sections are grouped by the energy and by the spectrometer they
are measured with. For each group, a factor, interpolating linearly from 0 for
the smallest angle to the full estimated uncertainty2 at the maximum angle of
the group, is multiplied onto the cross sections. The slope of this linear factor
was kept constant for all energies. The so modified cross sections were then
fitted with the form factor models. To determine an upper and a lower bound,
the fit was repeated with the negative of the slope. The so found uncertainties
are combined quadratically with the uncertainties from the radiative tail cut-off.

The theoretical systematic errors are harder to determine. The absolute value of
the radiation correction itself should be correct on the sub-percent level. There-
fore, any slope introduced by the radiation correction should be contained in
the slope-uncertainty discussed above, up to a negligible rest; it is therefore not
considered.

2Since the effects are independent, the estimated uncertainties are added quadratically.
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9.2 Results for the form factors

The Coulomb distortion is corrected only approximately. To evaluate its effect,
the amplitude of the correction was scaled by ± 50%. The so modified cross
sections are fitted with the different models. The differences of the extracted
form factors to the results for the data with the unmodified correction gives the
widths of the theoretical confidence bands presented in this work.
The two photon exchange (TPE) is not included, and the data have to be inter-
preted as such. No error estimate for the neglect of the two photon exchange
has been included. For the form factor ratio, an estimate of the TPE effect is
given by a comparison of the fits by Arrington et al. [AMT07] (see section 2.3).
There, the ratio GE/GM drops by at most 5% (at 1 (GeV/c)2) when the TPE
correction is applied.

In the plots presented in this work, the bands from the systematic experimental
and the theoretical uncertainties are added linearly to the statistical confidence
bands.

9.2 Results for the form factors

9.2.1 Fits and their confidence bands

Figures 9.2 to 9.9 display the results of the fits with the different models for the
form factors and for their ratio, including the confidence bands. The extended
Gari-Krümpelmann fit is not included here, since the fits are too slow and
unstable to generate the confidence bands.
The Q2 range covered by the individual energies are indicated by black lines.

For all models, the confidence bands for GE get broader with increasing Q2.
This is caused by the lower number of energies covering the region and by
the decreasing contribution of GE to the cross section. For GM , this effect is
less pronounced, since the increasing contribution of GM to the cross sections
compensates the decreasing number of contributing energies.
It is obvious that the confidence bands of the flexible models get large above
0.75 (GeV/c)2, especially for GE . Here, only the large-angle data of 855 MeV
incident beam energy contribute, and no separation is possible. Therefore, the
form factor values extracted in that region are unreliable.

The resulting parameters of the different models can be found in appendix
J. Numeric values for the extracted form factors and their error estimates are
tabulated in appendix K.2.2 for 46 Q2 values between 0.005 and 1.000 (GeV/c)2.
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Figure 9.2: GE (top), GM (middle) and GE/GM (bottom) determined by the
double-dipole fit. The black (innermost) line is the best fit. The blue lines
represent the statistical pointwise confidence band (68.3% confidence level),
while the green lines also account for the experimental systematical errors
and the red (outermost) lines also for the theoretical errors (the different
errors are added linearly). The straight black lines at the edge of each plot
indicate the Q2 regions covered by the different energies (bottom to top:
180 MeV to 855 MeV).
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Figure 9.3: Same as fig. 9.2, but for the polynomial model.
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Figure 9.4: Same as fig. 9.2, but for the polynomial + dipole model.
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Figure 9.5: Same as fig. 9.2, but for the polynomial × dipole model.
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Figure 9.6: Same as fig. 9.2, but for the inverse polynomial model.
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Figure 9.7: Same as fig. 9.2, but for the spline model.
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Figure 9.8: Same as fig. 9.2, but for the spline × dipole model.
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Figure 9.9: Same as fig. 9.2, but for the Friedrich-Walcher model.
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9.2.2 Rosenbluth separation

Fixing the cross sections with the normalizations of the different data groups
determined by one of the flexible fits, it is possible to extract GE and GM by
the standard Rosenbluth technique. Writing the cross section (eq. (2.12)) as

σred = ε (1 + τ)
(

dσ
dΩ

)
0

/

(
dσ
dΩ

)
Mott

=
(
εG2

E

(
Q2
)

+ τG2
M

(
Q2
))

(9.5)

shows that, for constant Q2, the reduced cross section σred depends linearly on
ε with G2

E(Q2) as slope and τG2
M (Q2) as y-intercept3.

To judge the deviation from a straight line, a separation of GE and GM requires
data at at least three different ε values.

Due to the large number of measurements with overlapping acceptances, one
can define a set of narrow-spaced Q2 values (see table K.3 in the appendix)
such that each measured cross section can be attributed to one Q2 out of this
set. The cross section measured in one setting is projected to that Q2 value
which is nearest to the central Q2 of the acceptance. Since the cross sections
are measured as the ratio to the form factor implemented in the simulation (the
standard dipole), the projection is performed automatically by multiplication
with the standard-dipole cross section at the Q2 to project to. The error of
projection is given by the change of the ratio between central Q2 and selected
Q2. The error is below 0.15% at the highest Q2 presented here, and considerably
less for lower Q2.

The numerical values of the Rosenbluth separation are given in table K.3 in the
appendix K.2.1 for 77 Q2 values.

Figure 9.10 compares the form factor values from the Rosenbluth separation
with the result of the global fit (spline model). For the lowest Q2 points, where
GM is less well determined, GM/(µpGstd. dip.) was not determined by the fit,
but for each point set once to 1 and once to 1.05, as one would expect GM to be
in that range and not larger. For each point, the range in GE of the two fits and
the errors of the individual fits are combined to produce the error of GE shown
in the figure. The unconstrained points are presented in red for reference. The
use of the prior knowledge that the magnetic form factor can not differ much
from µp at small Q2 helps to reduce the error bars on GE considerably.

The agreement of the Rosenbluth-separated form factors with those from the
global fits has been tested by calculating a reduced χ2 from the differences of the
Rosenbluth data points to the global fit. The rather large value of 2.2 is found4.
Fits of polynomials (order 10) to GE and GM from the Rosenbluth separation
yield also χ2

red values above 2. To put these numbers into perspective, one has
to note that the χ2

red-distribution is much wider for the fit to the Rosenbluth-
separated form factors, due to the lower number of degrees of freedom. In fact,

3This is one formulation of the so called Rosenbluth separation. It is also possible to use an
other variant of eq. (2.12) with τ( 1

1+τ
+ 2 tan2(θ/2)) as the x-axis. Then, the slope is G2

M

and the y-intercept G2
E/(1 + τ).

4With similar numbers for a comparison of GE or GM alone.
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Figure 9.10: GE and GM determined via the Rosenbluth separation technique
(black points) compared to the spline fit (cyan curve). For the lowest points,
GM/(µpGstd. dip.) was set to 1 and 1.05 (the results of an unconstrained fit
are shown in red). For details see text.
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9 Results for the form factors and for the rms radii

interpreting the deviation of the flexible fits from the expectancy value 1 as
pure statistical, χ2

red values up to 1.7 for the fit to the Rosenbluth-separated
form factors would have the same probability as χ2

red values up to 1.14 for the
global fits.

While the “ingredients” of the global fit and the Rosenbluth separation are in
principle similar, the explicit Rosenbluth separation is fundamentally different
from the global fit since it has to a) contract the large acceptance of the mea-
surements to single Q2 points and acts b) on sub-samples of the complete data
set. The consequences of this differences have not been studied fully, however,
the robustness (see section 8.7 of [Jam06]) of both estimators, i.e. the sensitivity
to unaccounted non-Gaussian errors of the input data, has been tested. To this
end, statistically pure pseudo data are generated from the spline fit and then
perturbed with systematic errors. It was found that the Rosenbluth separation
is much more sensitive.
In fact, attributing, at variance with the above remark on the χ2

red-distribution,
all of the χ2-difference to systematic errors, a systematic, that is “not normal
distributed”, shift of 5% of the measured cross sections by only 0.5% yields
a χ2-difference comparable to the difference seen for the measured data. We
therefore conclude that the global fit is a much more robust estimator of the
form factors with respect to non-normal errors in the measured cross sections.

Figures 9.11 to 9.13 show the relative deviations of the measured σred from the
Rosenbluth fit for Q2 values from 0.02 to 0.55 in steps of 0.01 (GeV/c)2. For
this investigation, the measured cross sections are attributed to all Q2 values
that are inside the middle half of the respective acceptance. Due to the narrow
steps in Q2 in comparison to the large acceptance of the spectrometers, this
results partly in the attribution of one measured cross section to more than one
Q2 value. At the level of statistical accuracy of this experiment, no systematic
deviations from the straight line, which would be a hint to insufficiencies in the
measurement or theory (e.g. unaccounted two photon effects), are visible; this
was tested by fitting polynomials of second order, where the coefficient of the
quadratic term was found to be compatible with zero.
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Figure 9.11: The relative deviation of the measured σred from the Rosenbluth
straight-line fit. x-axis: ε. y-axis: Deviation.
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Figure 9.12: 9.11 continued.
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Figure 9.13: 9.11 continued.
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9.2.3 Comparison of the models and discussion of the result

All models give very similar form factors, in particular in the Q2 region where
several energies contribute. This is demonstrated by figure 9.14, which shows
the ratio of GE and GM from the different fits to the results from the poly-
nomial fit. Up to 0.5 (GeV/c)2, all flexible models and the Friedrich-Walcher
model agree on the 0.1% level. This means that the form factors are extracted
essentially model-independently by the super-Rosenbluth-fit, as very different
models have been tested. Above 0.5 (GeV/c)2, the less flexible models (double-
dipole, Friedrich-Walcher, Gari-Krümpelmann) are no longer able to describe
the data at this level of precision, while the flexible models can do so and they
all agree to within better than 0.5% up to about 0.75 (GeV/c)2. However, since
in the Q2 range between 0.55 and 0.75 (GeV/c)2 only data from the highest
two energies contribute to the fit and since they have only a small separation
in ε, the separation of the cross section into GE and GM is very susceptible to
slightest unaccounted uncertainties in the data and the flexible models might
just follow such deviations.
Above 0.75 (GeV/c)2, there are only cross sections from 855 MeV, hence there is
no information which would allow a separation of GE and GM , and the different
models “interpret” the cross sections in that range very differently, according
to their functional form.

Figure 9.15 shows the electric form factor determined by the different fits, di-
vided by the standard dipole. In the upper plot, the different large-Q2 behavior
of the flexible and of the stiff models already seen in the ratio-plot is clearly
visible. The flexible models slope down above 0.55 (GeV/c)2, while the less
flexible models continue with (about) the same slope as in the lower Q2 region.
The erratic behavior of the flexible models above 0.75 (GeV/c)2 is obvious.
In the lower plot, which focuses on the low-Q2 region, two aspects are visible:
a) The results from all fits start with large downward slope (compared to the
standard dipole). This slope changes significantly around 0.05 (GeV/c)2, from
where on it is almost stable up to 0.55 (GeV/c)2. b) Between 0.1 and 0.2
(GeV/c)2, there appears a slight bump, slightly stronger in the spline models
than in the others. However, a smooth shape without a bump would be inside
the combined confidence bands (see figures 9.2 to 9.9).

In figure 9.16, the magnetic form factor extracted by the different models is
presented. In the Q2 range between 0.1 and 0.55 (GeV/c)2, the fits of the
Friedrich-Walcher model and of the flexible models are almost identical. For
higher Q2, the fit of the Friedrich-Walcher model falls slightly below the fits of
the flexible models, however, for GM , the difference between the flexible models
and the Friedrich-Walcher model is much smaller than for GE .
In the low-Q2 region (lower plot), all models except the double dipole model
exhibit the same principal phenomenology: A bump around 0.04 (GeV/c)2,
followed by a dip around 0.2 (GeV/c)2. While the fit of the Gari-Krümpelmann
model finds a different shape as the flexible models for both structures, the fit
of the Friedrich-Walcher model gives almost the same dip, but a smaller bump.
It has to be noted that the first bump below 0.1 (GeV/c)2 is an artifact of the
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way the data is presented and is just an indication that the slope at Q2 = 0 (and
therefore the magnetic radius) is smaller than the slope of the standard dipole.
Normalization to a dipole with a different parameter (and therefore slope) would
eliminate this bump. However, the depression around 0.2 (GeV/c)2 cannot be
explained that way and might be taken as an indication for a pion cloud.
One has to keep in mind that momentum transfers below 0.05 were measured
in forward direction in this experiment. Hence, the contribution of GM to the
cross section is small and the determination of GM is very sensitive to small
uncertainties in the data.

9.2.4 Comparison with existing data

The form factors determined in this experiment are now compared with existing
data. Table 9.1 gives an overview of the different data sets taken into account.

Figures 9.17 to 9.19 show the form factors extracted by the spline model (as
an example for the flexible models) and the Friedrich-Walcher model (as an
example for the stiffer models) in comparison to the previous data points (the
confidence bands for the Friedrich-Walcher model have been omitted to avoid
cluttering and to keep the plots legible). Shown here are also the fits to previous
data by Arrington [AMT07] (without the two photon exchange correction) and
by Friedrich and Walcher [FW03].

Figure 9.17 compares the results of the fits for the electric form factor, normal-
ized to the standard dipole, to the previous data which are plotted only with
their statistical errors. As can be seen in the top plot, the results of the fits
agree on a 2% level with the previous data, up to 0.57 (GeV/c)2. At larger Q2,
the less flexible models follow the trend of the previous data points while the
flexible models follow the data of this work and show a downward slope.

In the low-Q2 region, it is obvious that the Borkowski et al. [BPS+75] data and
the other data points have different normalizations; the Borkowski data seem
to be lower in comparison to the fit and the other data points by about 1%,
which is clearly within their normalization uncertainty. If one allows for such
a shift of the Borkowski data, the fits agree reasonably well with the existing
data up to 0.38 (GeV/c)2.

The previous data are by far not precise enough to make any statement about
the indication for a bump around 0.15 (GeV/c)2 seen in the results of the flexible
fits.

The fits to the data of this work do not follow the upward shift of the Price and
Janssens data sets above 0.38 (GeV/c)2. Following these data, the Arrington
and Friedrich-Walcher parametrizations rise above 0.4 (GeV/c)2, however they
still stay below most of the previous data points between 0.38 and 0.6 (GeV/c)2.
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Measurement Q2 range [(GeV/c)2] Reference
GE

H(e, e′) 0.006 – 0.03 Murphy et al. [MSS74]
0.01 – 0.05 Simon et al. [SSBW80]
0.014 – 0.12 Borkowski et al. [BPS+75]
0.04 – 1.75 Price et al. [P+71]
0.16 – 0.86 Janssens et al. [JHHY66]
0.39 – 1.95 Berger et al. [B+71]
0.4 – 5.5 Christy et al. [C+04]

d(e, e′p) 0.27 – 1.76 Hanson et al. [H+73]
GM

H(e, e′) 0.014 – 0.12 Borkowski et al. [BPS+75]
0.04 – 1.75 Price et al. [P+71]
0.16 – 0.86 Janssens et al. [JHHY66]
0.39 – 1.95 Berger et al. [B+71]
0.4 – 5.5 Christy et al. [C+04]

0.49 – 1.75 Bosted et al. [B+90]
0.67 – 3.00 Bartel et al. [B+73]

d(e, e′p) 0.27 – 1.76 Hanson et al. [H+73]
GE/GM
~H(~e, e′p) 0.16 – 0.59 Crawford et al. [C+07]
H(~e, e′~p) 0.23 – 0.49 Ron et al. [R+07]

0.32 – 1.77 Gayou et al. [G+01]
0.37 – 0.44 Pospischil et al. [P+01]
0.38 – 0.50 Milbrath et al. [M+98]

0.40 Dieterich et al. [D+01]
0.49 – 3.47 Jones et al. [J+00]
0.50 – 3.48 Punjabi et al. [P+05]

Table 9.1: Compilation of the earlier form factor measurements shown in figures
9.17 to 9.19.
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Figure 9.17: The electric form factor GE determined with the spline and with
the Friedrich-Walcher model in comparison to the previous data. To com-
press the data range, the form factor is divided by the standard dipole.

112



9.2 Results for the form factors

 0.94

 0.96

 0.98

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 0  0.2  0.4  0.6  0.8  1

G
M

/(
µ p

G
st

d.
 d

ip
ol

e)

Q2 [(GeV/c)2]

 0.96

 0.97

 0.98

 0.99

 1

 1.01

 1.02

 1.03

 1.04

 0  0.02  0.04  0.06  0.08  0.1

G
M

/(
µ p

G
st

d.
 d

ip
ol

e)

Q2 [(GeV/c)2]

Spline fit
  + statistical error
  + exp. sys. error
  + theor. sys. error
Friedrich-Walcher fit
  
 
Arrington 07
F.-W. 03

Christy et al.
Price et al.
Berger et al.
Hanson et al.
Borkowski et al.
Janssens et al.
Bosted et al.
Bartel et al.
Hoehler et al.

Figure 9.18: The magnetic form factor GM determined with the spline and with
the Friedrich-Walcher model, normalized to µpGstd. dipole, in comparison to
previous data.

Figure 9.18 shows the same comparison for the magnetic form factor. Looking
at the close-up (lower plot), again, the Borkowski et al. [BPS+75] data is about
1% lower than the fits to the new data. In the close-up, results from a dispersion-
relation analysis by Höhler [H+76] is included, which are slightly higher than the
Borkowski et al. [BPS+75] data and agree within their errors with the present
result.

While the agreement between the fits and the previous data is good at low Q2

if one accepts a normalization error of 1% for the Borkowski et al. [BPS+75]
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data, the fits, i.e. the new data, lie above the previous data in the Q2 range
from 0.2 to 0.8 (GeV/c)2 by nearly constant 4%. It has to be noted that
Brash et al. [BKLH02] found 1.5 to 3% higher GM values in their analysis
of the previous world data, when they used the GE/GM -ratio measured in
polarized measurements as a constraint for the Rosenbluth separation. Some
of the difference may also be caused by a different treatment of the internal
radiation correction, especially the proton vertex contribution. Unfortunately,
the publications are not all clear on what kind of radiation corrections were
applied.

Figure 9.19 shows the form factor ratio measured in polarization experiments
compared to fits to the previous data and to the present result from the global
fits. In the lower plot, the TPE correction (see section 2.3) is applied to the
fits.

Around 0.4 (GeV/c)2, the fits to previous data are higher than most of the
polarization measurements. It has to be noted here that the fits to previous
data fall below the previous (Rosenbluth-separation) GE data points in that
region, i.e. that those data points indicate an even larger ratio.
The discrepancy is especially large for the high precision data sets by Ron et al.
[R+07]. Unpublished, preliminary data from the Jefferson Laboratory [Hig10;
ZH10], in the range from 0.35 to 0.7 (GeV/c)2, with uncertainties below 2%,
give ratios which are notably below those given by the old fits, and therefore by
the old data sets for GE and GM . The TPE correction reduces this discrepancy
only slightly. Therefore, it has to be noted that the previous GE and GM
data are incompatible with the polarized measurements, and they can not be
reconciled with the TPE correction used here.

By contrast, the fits to the new data of this work are in excellent agreement
with these high precision polarization measurements up to 0.6 (GeV/c)2. How-
ever, the polarization measurements do not support the downward slope of the
flexible fits at higher Q2, which, anyhow, is not well established by the present
data (see subsection 9.2.3), and it has to be mentioned that this downward slope
also does not match with the high-Q2 results from polarization measurements
[P+01; J+00; G+01; M+98; D+01].
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Figure 9.19: Ratio of the electric to the magnetic form factor determined with
the spline and the Friedrich-Walcher model. Top: Fits without two photon
exchange (TPE) correction. Bottom: Fits corrected for TPE by the ratio of
the Arrington et al. [AMT07] fits (see text). The data points shown here are
measured in polarized experiments. Not shown are unpublished preliminary
results from the Jefferson Laboratory [Hig10; ZH10], which are in excellent
agreement with the new fits.
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Figure 9.20: GE extracted with additional pseudo data points. Shown are the
best fit curve without pseudo data (blue), curves (shades of red, dashed) with
increasing number of pseudo data points from the Arrington-07 parametriza-
tion (black) with constant uncertainty, and a curve with pseudo data points
with smaller uncertainty (green). The pseudo data points are distributed
uniformly between 0 and 1 (GeV/c)2.

9.2.5 Inclusion of external data

In the light of the problems of the previous data, an inclusion in the analysis of
the present data has questionable merit. In any case, the existing data points
inside the Q2 region covered by the present experiment have only a marginal
effect: Due to their low number and their larger errors, their influence on the
minimization of χ2 is minimal. Reduction of the errors of the additional data
points increases their impact. However it leads to oscillations of the flexible
models inside the data range, when the fit is locally pulled away from the
optimal solution for the new cross section data.

One possibility with which one might circumvent this oscillatory behavior is to
create dense pseudo data points from a parametrization of the old data. While
this approach has no statistical value, because the weight of the old data is now
arbitrary, it is a test of the stability of the fit procedure. The result is as one
would expect: With increasing number of pseudo data points, or larger weight,
the fit continuously shifts away from the optimal solution without the addition
of external data toward the parametrization for the additional data. This is
shown in figure 9.20, where different numbers of points calculated from the
(not TPE corrected) Arrington-07 parametrization have been included, finally
with highly reduced errors.
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9.2 Results for the form factors

A similar effect can be seen when external data at Q2 higher than 1 (GeV/c)2

are included. While the less flexible models are too fixed by the low-Q2 data
of this experiment to change in a significant way, the polynomial5 models can
describe the additional data, but with heavy oscillations between the individual
points. When dense pseudo data points are created and included as outlined
above, the flexible fits can describe these also, but flexibility in the low-Q2

region is lost and the description of the data of this work gets worse. This can
be compensated by a larger number of parameters, but then the fit is essentially
unchanged for low Q2 and the parametrization for the pseudo data points is
replicated at large Q2.

5The large gaps between the external data points force rather large knot distances for the
spline models. With such knot distances, the description of the data at low Q2 would
deteriorate considerably.
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9.3 Determination of the electric and magnetic rms radii

According to eq. (2.25), the electric and magnetic root mean square (rms)
radii, 〈re〉 and 〈rm〉, are given by the slopes of the corresponding form factors
at Q2 = 0. Therefore the accuracy with which they are determined by the
measurement is given by the accuracy of the data in particular at low Q2.
Since the accuracy of GE is high at low Q2, 〈re〉 will be determined with good
precision, while GM , due to its small contribution to the cross section at low
Q2, is poorly determined here. At any rate, the determination of 〈re〉 and 〈rm〉
correspond to an extrapolation of GE and GM to Q2 = 0, and one has to
ask the question to which extent the result depends on the ansatz for the fit
model, in particular on its flexibility, which is certainly different for the different
functional forms and which also depends on the number of parameter, Np, i.e.
on the order of the polynomial or number of knots in the splines, respectively.

9.3.1 Determination of the radii from the global fits

Figure 9.21 displays the dependency of the extracted electric and magnetic radii
on Np. It has to be noted that for both the electric and the magnetic radius
the polynomial and the polynomial + dipole model produce a stable result for
Np > 9. The polynomial × dipole model works comparably well for the elec-
tric radius for Np > 8, but shows erratic behavior for the magnetic radius for
Np > 9. The inverse polynomial, which has a quicker convergence to the χ2

plateau, also deteriorates quicker into such an erratic behavior for 〈rm〉. Never-
theless, these models agree quite well for both radii when one confines oneself
to Np at the beginning of the plateau.
The erratic behavior of the magnetic radius stems from the less stringent de-
termination of the magnetic form factor at low Q2, where the magnetic con-
tribution is very small and where, with enough flexibility (large Np), the fit
follows smallest statistical deviations, resulting in large uncertainties. Low Np

give the fit enough stability to extrapolate GM from higher Q2 values, where
the magnetic contribution is sizable, down to Q2 = 0. It has to be noted that
in previous determinations of 〈rm〉, only low order Q2 terms have been used
(up to Q4 in [SSBW80]).

The spline fits (here based on polynomials of third order) tend to give a smaller
electric radius than the rest of the models, they additionally exhibit a depres-
sion in the value of the radius for Np around 10. This difference between the
result from the splines and the polynomials was further investigated, but no
conclusive cause was found. It has to be noted (see the model dependency
analysis in appendix H) that for some input models the spline models have a
bias to smaller radii.
The curvature of a spline is limited by the order of the base polynomial. There-
fore, also splines based on polynomials of fourth and fifth order were tested6.
They produce larger radii, as can be seen from figure 9.22.

6Higher orders would reduce the spline fit to a simple polynomial fit.
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Figure 9.21: The dependence of the extracted electric (top) and magnetic (bot-
tom) radius of the different flexible models on the number of parameters.
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Figure 9.22: The electric and magnetic rms radii, extracted by the spline model
with polynomials of third, fourth and fifth order as base functions.
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Figure 9.23: The electric rms radius as extracted by the different models. Col-
ored: Statistical error. Black: Linearly added systematic error.

Focusing on the χ2-sum of points below Q2 = 0.06 (GeV/c)2 (543 data points),
the spline fits yield a χ2 around 581, while the rest of the models give around
576. While this also points to a less good fit of the low-Q2 region by the spline
models, it is not statistically significant since the ∆χ2 of 5 lies well within the
1σ-width of the χ2 distribution (σχ2(Nd.o.f ≈ 543) ≈ 33).

To estimate the model dependency for the extracted radii, the radii are de-
termined with all models described before and for some variation in Np. The
results are shown in figures 9.23 and 9.24.

The results for the charge radius fall apart into two groups according to the
model of the analysis, namely those determined with the spline-based models
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Figure 9.24: The magnetic rms radius as extracted by the different models.
Colored: Statistical error. Black: Linearly added systematic error.
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9.3 Determination of the electric and magnetic rms radii

Group radius

Spline
〈re〉 0.875± 0.005stat. ± 0.004syst. ± 0.002model fm
〈rm〉 0.775± 0.012stat. ± 0.009syst. ± 0.004model fm

Polynomial
〈re〉 0.883± 0.005stat. ± 0.005syst. ± 0.003model fm
〈rm〉 0.778+0.014

−0.015 stat. ± 0.010syst. ± 0.006model fm

Table 9.2: The electric and magnetic rms radii 〈re〉 and 〈rm〉 determined from
the two groups of models, namely the spline and the polynomial group.

and those from the polynomial-based models. For each group, the electric and
magnetic radius has been determined as the weighted average and an additional
model error has been determined from the weighted variance. The results for
〈re〉 and 〈rm〉 are summarized in table 9.2.

The final result is the (unweighted) arithmetic average of the values of the
two groups. An additional model error (labeled “group”), accounting for the
difference of the two groups, is attributed to the result. Since it cannot be
assumed that this error is normal-distributed, it is taken as half of the difference
of the two groups. The final result from these flexible models is

〈re,flexible〉 = 0.879± 0.005stat. ± 0.004syst. ± 0.002model ± 0.004group fm,
〈rm,flexible〉 = 0.777± 0.013stat. ± 0.009syst. ± 0.005model ± 0.002group fm.

The results of the fit of the Friedrich-Walcher parametrization is not included
in this average. It yields

〈re,F.−W.〉 = 0.884+0.007
−0.008 stat.

+0.007
−0.005 syst. fm

〈rm,F.−W.〉 = 0.807± 0.002stat.
+0.004
−0.001 syst. fm.

It is in agreement with the charge radius found by the flexible models, but differs
for the magnetic radius. The very small error bar for the magnetic radius is an
indication that the Friedrich-Walcher parametrization is not flexible enough to
express the shape of the data for the magnetic form factor at smaller Q2, i.e.
it is completely fixed by the large-Q2 data. The statistical errors have to be
interpreted in the usual way, that is, with 68.3% probability the true value of
the electric radius is inside the error without any constraint on the magnetic
radius (and vice versa).

9.3.2 Determination of the charge radius from 180 MeV data alone

For small Q2, the contribution of the magnetic form factor to the cross section
is small. Hence, the adoption of a parametrization for GM makes it possible
to extract the charge radius from the 180 MeV data alone: The (small) GM
contribution is estimated from a GM parametrization and subtracted from the
cross section. The resulting values for GE are fitted using a simple model like
a low order polynomial or inverse polynomial. This technique is similar to
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9 Results for the form factors and for the rms radii

the method employed by Simon et al. [SSBW80], where GM was set to µpGE
(scaling relation) and has been applied here only as a kind of consistency check.
In the present work it is used with different parametrizations, different cut-off
values in Q2 and different GM -models. The normalization was left floating,
but the fit recovered the normalization given by the global fit on the 0.1% level.
This approach yields radii between 0.870 and 0.895 fm, with most values around
0.880 fm, thus in excellent agreement with the final result of the global fit.
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10 Conclusion and Outlook

10.1 Conclusion

A high-precision measurement of the elastic electron-proton scattering cross
section was performed at the MAMI 3-spectrometer-facility in the Q2 range
from 0.004 to 1 (GeV/c)2. Employing a direct fit of a selection of different
form factor models to the measured cross sections, the electric and magnetic
form factor were extracted. All flexible models give very similar results, in-
dicating that there is no model bias for the form factor extraction. The high
internal consistency of the data and the results prove the validity of the global
fit approach. These two points are further supported by a model dependency
analysis where the analysis method and the validity of the different fit models
was tested with pseudo data generated from popular parametrizations.

The aim of this work was twofold. First, the analysis of the previously existing
data by Friedrich and Walcher [FW03] did reveal some bump-structure in the
electromagnetic form factors which theory seems to be unable to reproduce.
Second, the electromagnetic rms-radii of the proton should be measured with
high precision in order to clarify the comparison with the Lamb shift measure-
ments.

While our measurement does not support the bump-structure in GE revealed by
the Friedrich-Walcher analysis of the previous data, it is found that the electric
form factor shows several characteristic deviations from the dipole. This is
emphasized in figure 10.1, where the slope of the form factor relative to that
of the standard dipole is shown. One observes three striking features: In the
first segment, below 0.1 (GeV/c)2, the slope of GE is significantly steeper than
that of the standard dipole. In the second segment, the slopes are very similar.
The flexible models show a third region, above 0.5 (GeV/c)2, where the slope
is again substantially larger.

The steeper slope at low Q2 is a direct signature for the fact that the rms-
radius is substantially larger than that of the standard dipole fit (see below).
This large radius, which theory is not able to reproduce hitherto [BHM07], may
be a hint to a pion cloud in the proton.
The change in the (relative) slopes around 0.1 (GeV/c)2 may also be taken as
a hint that there are two different scales in the extension of the proton. It is
interesting to see what theory can say about this change when looking at it
within the precision of this experiment.
The third characteristic, the change in slope at 0.5 (GeV/c)2, is only revealed by
the sufficiently flexible models. The stiffer models (double-dipole and Friedrich-
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Figure 10.1: The derivative of the electric form factor, divided by the derivative
of the standard dipole. Three regions of different behavior are visible: (1)
A steep drop of the ratio up to 0.1 (GeV/c)2, where the slope of the fits is
larger than the slope of the standard dipole. (2) A region where both slopes
are similar (up to 0.5 (GeV/c)2). (3) A region where the flexible models
again show a larger slope.

Walcher parametrization) are not able to follow this feature. While it is inter-
esting to look for a possible physical explanation for this feature, one has to
be aware that above 0.55 (GeV/c)2 only two energies contribute to the mea-
surement and above 0.75 only one. Therefore, the separation into the small
contribution from GE and the larger contribution from GM (which dominates
the cross section in this Q2 region and which does not show this behavior)
may fully exhaust the possible uncertainties in the data in the determination of
GE . This will be checked by further measurements with MAMI C (see below).
Nevertheless it might be worthwhile to think of dispersion contributions to the
cross section, i.e. of two photon exchange with the proton being exited in the
intermediate state. At these energies and relatively large angles, the magnetic
excitation of the ∆ should be quite likely. This is left as an open question.

GM exhibits a structure (relative to the standard dipole) around 0.2 (GeV/c)2,
which again might be taken as a hint for a pion cloud (see figure 9.16). However,
there is no change in the slope around 0.5 (GeV/c)2.
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10.2 Outlook

The determination of the charge radius of the proton, i.e. the extrapolation
of the form factor to Q2 = 0, depends somewhat on the model used for the
extraction. In the analysis of this experiment, a large number of models was
used, which can be classified into two groups, the spline models and polynomial
models. While several findings indicate that the radius extracted by the spline
models is less reliable, the spline models cannot be excluded with certainty.
This model-dependence is accounted for by an additional model error, which is
equal to half of the difference of the results from the two groups. The charge
radius is found to be

〈re〉 = 0.879± 0.005stat. ± 0.004syst. ± 0.002model ± 0.004group fm.

This is far above the standard-dipole value, but it is in good agreement with the
previous, Coulomb-distortion-corrected Mainz result (0.880± 0.015 fm [Ros00])
and results from Lamb shift experiments (0.883 ± 0.014 fm [Mv00], 0.890 ±
0.014 fm [U+97; Kar99]). It has to be noted, however, that the Coulomb cor-
rection applied in the present work is only an approximation, and the radius
might change slightly when a full calculation is applied.

The limited accessible kinematical region and the Q2-scaling of the magnetic
form factor contribution to the cross section lead to a significant larger error
for the magnetic radius. It is found to be

〈rm〉 = 0.777± 0.013stat. ± 0.009syst. ± 0.005model ± 0.002group fm,

hence substantially smaller than the standard-dipole value and also smaller
than the results from previous measurements.

10.2 Outlook

To reduce the theoretical uncertainties of the results of this thesis, a full calcu-
lation of the Coulomb distortion and the two photon effect should be performed
in the future and included in a new fit.

Further experiments can improve the present data set in three ways: With the
installation of the variable energy extraction magnet on the HDSM stage of the
Mainz Microtron (MAMI C), the extension to larger Q2 is straight forward. The
limit here will be the maximum electron momenta the spectrometers can handle,
hence, low scattering angles cannot be measured at the higher energies. It may
be possible to circumvent this by detecting the proton instead, a detailed study
has to be performed in this regard. These measurements will be very important
as they add data with more incident energies at larger Q2 in order to clarify
the situation with the steeper slope in GE above 0.5 (GeV/c)2.
To reduce systematic errors, only the short target and a smaller collimator
should be used for spectrometers A and C – the count rate, though lower at
higher energies, should still be sufficiently high. Furthermore, simultaneous
measurements with spectrometers B and C should be avoided1, at least at

1It may also be possible to shield spectrometer B from the field of spectrometer C.
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small relative angles. Also, the algorithm for the magnetic field setup has to be
revised.
Such an extension is on the agenda of the A1-collaboration for the near future.

It is not as straight forward to achieve a better determination of the magnetic
form factor at small Q2 with the MAMI facility. To enhance the contribution of
the magnetic form factor to the cross section, one needs to measure at backward
angles, hence at smaller incident beam energies. The latter are not currently
available at the Mainz facility. However, the second race track microtron could
be modified to deliver smaller energies. This is under investigation.

In the case of the electric form factor, a different approach is actively inves-
tigated: The idea is to use initial-state-radiation, i.e. the situation where the
electron radiates a (hard) photon before the scattering occurs, to reach very low
Q2. The cross section is determined by measuring deep into the radiative tail.
First feasibility studies for such a measurement were already performed at the
Mainz linear accelerator [PFS+89]. Preliminary calculations indicate that an
exact reaction reconstruction is possible without measurement of the proton or
photon. The validity of this method depends on the accuracy of the theoretical
description of the radiative tail. Varying the kinematics, it is possible to test
at the same time the theoretical description and to extract the electric form
factor. If this method proves valid, it allows for a determination of the electric
form factor down to Q2 = 0.0001 (GeV/c)2.
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A Remote control of the spectrometers

The measurement program encompasses a large number of individual measure-
ments, differing in the magnetic field and in the angles of the spectrometers.
While the magnetic field could be adjusted from the counting room, it was
not possible to change the spectrometer angle remotely. Such feature was not
deemed to be necessary in the original plans for the spectrometer setup, since
the planned coincidence experiments needed such long measurement durations
for a single setting that the interruption time for a hall access and a setting
of the spectrometers by hand was reckoned to be more or less negligible. In
addition, it was felt that the up to 400to heavy spectrometers should be moved
only under the direct control of the experimentalist.
However, a hall access for moving the spectrometers has several disadvantages:

• The beam has to be switched off. In addition, to exclude any endanger-
ment of a person in the experimental hall, one of the beam-line dipoles is
switched off. The field of this magnet drifts for some minutes after it is
switched on again. Also, for the time the beam is switched off, the target
is not heated and the temperature of the liquid hydrogen drops. When
the beam is turned on again, the temperature rises and hence the density
drops to the old value. These effects make it mandatory to delay the start
of the next measurement until the experimental setup has stabilized.

• In addition to the time needed for the actual movement of the spec-
trometers, beam time is lost for the communication with the accelerator
operator and for the opening of the hall.

• The chance for a malfunction of the accelerator or detector setup is higher
in a discontinuous operation than in a continuous one.

All in all, a change in spectrometer angle via hall access takes about 20 minutes.
Together with the higher malfunction risk, this would have been prohibitive for
the planned 500 angle changes of the p(e, e′)-experiment. This program could
only be executed with a remote control of the spectrometers.

A.1 Existing control

The spectrometers are connected to a common pivot right below the target vac-
uum chamber. The spectrometers themselves are seated on a steel ring. When
a spectrometer has to be moved, a compressor mounted on each spectrometer
pumps oil between the steel ring and the spectrometer pillow block. A geared
motor drives a cogwheel that meshes with a chain around the steel ring to move
the spectrometer.
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Compressor and motor are controlled by a “speicherprogrammierbare Steuerung”
(SPS, programmable logic control PLC) of the series S5 made by Siemens. It
is composed of a central unit and several input/output modules connected over
a serial bus system to interact with the user and the motor/compressor. The
user-defined program is stored on an eprom. It interprets the user’s input and
controls and supervises the compressor and motor driver.

A.2 Design of the remote control

The following points were important for the concept of the remote control:

1. The existing method to control the spectrometers from inside the hall
should be preserved.

2. In case of a disruption of the communication link between the spectrometer-
mounted control system and the remote station, the control should go to
a secure mode, i.e. the motion of the spectrometers has to stop.

3. Any collisions between the spectrometers and obstructions in the hall
must be avoided. This includes collisions with the beam line, the tar-
get system and the walkway around the hall, but also collisions of the
spectrometers among each other.

A.2.1 Changes to the SPS program

The SPS is equipped with a debug port that allows access to the memory and
hence to the executed program. Unfortunately, no documented sources of the
control program were available. To find a suitable point to attach the remote
control, parts of the control codes had to be reverse engineered. Here, a strategy
of minimal invasion was observed, which was supported by the design of the S5
series. The SPS has an internal, immutable main loop, the sequence:

• The input status of all attached modules is read in serially and saved in
a special region of the random-access memory.

• The user-defined program is executed. To get the input status, the pro-
gram accesses this memory and writes output commands to another mem-
ory block.

• This second block is written out to the output modules via the serial
connection. Then the actual output change is performed by the attached
modules.

To preserve as much as possible of the original program, the best route is to
modify the memory copy of the input status with the remote control commands.
This would emulate a true button press for the main program without the need
to bridge the buttons electrically with e.g. a relay. It is possible to write to this
memory range via the debugging connection, but erroneous behavior may occur
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when the change is done while the user defined program is executed. Hence,
the access has to be synchronized.

The user defined program consists of a simple main loop which calls consecu-
tively a number of submodules. Using the debugging access, it is possible to
change the ordering or add calls. For the synchronization, two new submodules
were written:
The first module checks a certain memory location. This memory location is
written to by the remote control to enable remote operation. If it is set, the
module copies the input data from a remotely written memory range to the
special memory copy of the inputs. The module is added to the beginning of
the main loop so that later modules either see the true inputs (remote control
off), or the inputs sent by the remote control.
The second submodule is called at the end of the main loop. It copies the mem-
ory range of the output to another memory range where it is read out by the
remote control using the debugging port. This makes the status information
from the local control circuit available on the remote control station.

A.2.2 Remote control hardware and software

The debugging port is a serial connection complying with the V24 standard. For
the installation of the remote control, an electronics board was constructed and
mounted in the counting room, which translates the three V24 channels to RS-
232. The galvanic isolation is realized with optocouplers. The power supply of
the spectrometer control has been equipped with a relay, so that the complete
control logic can be switched on and off from the counting room. This is a
precaution to allow remote reboot of the SPS when the internal microcontroller
has crashed, e.g. due to radiation.

The software has two parts: A server component is running on the control
computer where the converter electronics is attached to. It communicates via
UDP with the GUI component which can be run on any computer on the
network. The GUI component presents the status information read back from
the spectrometer and has buttons to start/stop the compressor and motor.

A.2.3 Security aspects

The original programming of the SPS already provided for collision switches,
but those were never equipped. Collision detection switches were now mounted
on the spectrometers and connected to the provided inputs. They are actuated
by blocks mounted on the steel ring to stop the spectrometers before a colli-
sion with the beam line can occur. Another switch prevents collisions between
spectrometers B and C. A relay, which is powered by the control system of spec-
trometer C, distributes the signal of this switch to both spectrometers. This
makes it mandatory to switch on spectrometer C when B has to be moved. All
switches are normally closed and have forcibly guided contacts, reducing the
risk of a collision due to hardware failures.
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The switch mount plates have space for another switch that is triggered a little
bit later. This allows for a hard switch off of the motor in the case the SPS
crashes in an unsafe manor. The experience of the beam times shows, however,
that this precaution was not necessary.

An unmonitored moving of the spectrometers would be reckless even with the
installation of the collision switches. Temporary obstructions like ladders or
stuck hoses have to be taken into account. Therefore, cameras were mounted on
each side of the spectrometer platforms. The captured images are transmitted
to the counting room via the normal IP network. The cameras are motorized
so that the field of view can be controlled remotely.
The changes to the SPS software are patched in on demand using the debugging
port. After a power outage or when the spectrometer control is power cycled,
the original software is loaded from the eprom, and the spectrometer control is
in a safe operation mode. The patched-in software modules also check whether
the last communication with the remote control was recent. After a timeout,
it does not copy the remotely set input values to the input memory area. This
secures the transition to safe operation when the transmission from the remote
control to the spectrometer control is disturbed.
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B Anomalies

B.1 585-MeV-anomaly

The 585 MeV data set exhibits a strange anomaly. Figure B.1 depicts the mea-
sured cross sections, normalized to the standard dipole, as a function of time
(number of measurement). The measurements with the three spectrometers
are slightly shifted apart by multiplication with some factor. While the cross
sections show a certain continuous variation according to the change of spec-
trometer angle, at least three “jumps” are visible around measurement numbers
20, 40 and 62, where the measurements of all three spectrometers change sud-
denly by the same amount. The data exhibit the same behavior whether they
are normalized to the beam current measured with the Förster probe or with
the pA-meter, ruling out a problem in the luminosity measurement. Several
possible causes were tested and ruled out:

• The most probable cause of such jumps is a change of a target parameter
like target density or position. However, these could be ruled out: A
change in the target position might happen when the target is moved out
and back in, e.g. when the screen is moved into the beam for a beam-
position check. However, at at least one of the jumps, the target was not
moved at all. The target pressure and temperature readings are stable
over the complete measurement period, and a change of the density by
this order of magnitude and short period of time would be very unlikely
anyhow, especially since the jumps do not always coincide with a change
in the beam current.

• A sudden change of beam position might cause such jumps. However, in
the beam-position-monitor data, no indications of a beam-position jump
was found.

• A further possible explanation is a beam loss after the Förster probe
and pA-meter. This, however, should have been detected by an elevated
radiation level.

While there is no indication for a sudden change in beam quality, such an
occurrence could not be ruled out completely. However, some kind of timing
or electric problem in the trigger logic appears more likely. For example, a
“slightly” failing power supply of the PLU1 module of the trigger logic, an
FPGA2, could cause glitches and hence missed events. This would possibly

1Programmable Logic Unit
2Field Programmable Gate Array
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Figure B.1: The cross sections measured with 585 MeV incident beam energy,
divided by the standard dipole cross section, plotted against time (number
of measurement). The data measured with spectrometer A (red circles), B
(blue squares) and C (green triangles) have slightly different normalizations
to spread them apart. These data are normalized to the beam current
measurement of the pA-meter. They show slightly different slopes due to
the different changes in spectrometer angles, but exhibit three clear jumps
around 20, 40 and 62.

correlate with the current drawn by the FPGA and therefore with the trigger
rate.

This kind of error does not appear in any other of the data taking periods of
this experiment and has not been observed in later beam times. However, in
conventional experiments, with less redundancy in the measurements and lower
statistics, it may have been missed entirely. It was not possible to reproduce
the problem nor determine a cause.

Fortunately enough, one of the spectrometers was always used as a luminosity
monitor. In fact, the “jumps” vanish completely when the data are normalized
to the luminosity monitor, as can be seen in figure B.2. Therefore, this anomaly
does not affect the analysis of the data.
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B.2 Quadrupole field
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Figure B.2: Same as B.1, but normalized to the luminosity monitor. No
“jumps” are visible anymore. The large slope of the data measured with
spectrometer A after measurement number 50 and of the data of C stems
from the change of the spectrometer angle, and thus of the deviation from
the standard dipole fit they are normalized to (note that the scattering angle
does not increase uniformly with the measurement number). The measure-
ments of spectrometer C (up to measurement number 80) and of spectrom-
eter A (over 80) which where used for the luminosity normalization are not
displayed.

B.2 Quadrupole field

Another problem became apparent when the acceptance correction (see ap-
pendix C) was tested with varying cuts in the out-of-plane angle. The data
points of spectrometer A for 855 MeV and 720 MeV break up into two groups
according to whether they are measured below or above a certain spectrometer
angle. When the cut is varied, the cross sections do not change in relation to
other measurements of the same group, but the two groups are shifted against
each other, an effect in the order of a few percent. A comparison of the spectra
right before and after the “fault line” showed that the range of accepted out-
of-plane angles gets slightly smaller.
While spectrometer B has only one dipole, i.e. the magnetic field is parametrized
only by one parameter, spectrometers A and C have multiple magnets which
have to be adjusted synchronously. The algorithm implemented for the mag-
net control calculates the required magnetic fields from the requested reference
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Figure B.3: The ratio of the quadrupole field to the dipole field of spectrometer
A for the 720 MeV beam time. The x-axis is the time after the start of
production measurements. The jump shortly after 20h beam time is clearly
visible. It coincides exactly with the jump in the out-of-plane angle range.

momentum. The fields are converted to currents for the different coils and the
power supplies are set accordingly. The dipole fields are then checked and fine-
tuned with the NMR probe, while the fields of the quadrupole and sextupole
are not fine-tuned at all.
If one now compares the Hall probe measurements of the quadrupole with that
of the dipole, the ratio exhibits a jump about 20h after start of the beam time
(see figure B.3). This coincides exactly with those measurements where the
range of out-of-plane angles gets smaller. For measurements after that jump,
the quadrupole has a smaller field in relation to the dipoles. The quadrupole
is defocusing in the out-of-plane direction, a smaller field thus leads to a more
narrow angle distribution. The effect is very subtle and can only be seen when
comparing two histograms directly (figure B.4).

In a detailed study no other jumps for spectrometer A and no jumps at all for
spectrometer C were found.

Since the acceptance is fixed by the geometry of the collimator in front of the
spectrometer (for some subtle detail, however, see appendix C), this effect does
not influence the extracted cross sections as long as no cut depending on the
reconstructed target angles is applied.

To circumvent the problem in the future, the algorithm has to be extended to
readjust all currents. It is unclear whether the resolution of the Hall probe is
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Figure B.4: Histogram of the out-of-plane angle Θ0 of a measurement of spec-
trometer A directly before (cyan) and directly after (red) the jump (720 MeV
data).

good enough for a fine-tuning of the quadrupole, especially for low reference
momenta. Hence, future investigations have to evaluate whether an upgrade of
the Hall probe is needed. Also, it is not clear whether the initial value for the
quadrupole was off, or whether the dipole fine-tuning changed the field by an
unadapted amount. The exact tuning procedure was not logged, so it is not
possible to reconstruct how the fine-tuning procedure changed the initial dipole
current.

139



B Anomalies

140



C Acceptance correction for
spectrometers A and C

Precise knowledge of the acceptance is a prerequisite for a precise determination
of cross sections.
Normally, the acceptance is defined by the well known geometry of the colli-
mator. However, for spectrometers A and C, there are particle trajectories for
which the acceptance is not fully defined by this geometry. These are trajec-
tories which pass the collimator, but then hit parts of the spectrometer before
they can reach the detector system.
This happens only to trajectories which have very large in-plane angles Φ0

which can happen if they originate from a vertex z far off the center (see figure
C.1). The relevant coordinate here is not the position along the beam axis,
but its projection to a plane parallel to the spectrometer collimator plane (see
fig. C.2). Therefore, the effect depends on the target length itself (for the short
target, the effect is much smaller) and on the actual spectrometer angle α. This
would lead to a superimposed slope on the measured cross section. Thus, this
effect in the measurement has to be accounted for also in the simulation.

To identify where collisions occur, the transport of charged particles inside the

Collimator

Incoming beam

Midplane

Target

Figure C.1: Schematic (not to scale) of different trajectories. Blue: Trajectories
from the middle of the target are all accepted. When the vertex has an offset
along the beam line, the trajectories which cross the midplane before the
collimator (red) may have very large angles and may collide with parts of the
spectrometer geometry. Those on the other side of the acceptance (green)
have smaller angles and do not collide inside the spectrometer.
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C Acceptance correction for spectrometers A and C

Collimator
Target cell

Effective
target length

Figure C.2: Effective target length for two different spectrometer angles. The
target appears smaller at smaller angles. At 90◦, the length seen by the
spectrometer is the true target length.

magnetic fields of the spectrometers were calculated. To this end, the program
gridtrace ([Ber04], based on qspin [Pos00]), which solves the equation of motion
by numeric integration, was adapted to calculate the particle transport in A
and C.
Two possible collision points were found, namely a) the vacuum chamber inside
the quadrupole magnet and b) the pole shoes of the first dipole.

a) Trajectories which have at the same time large out-of-plane and in-plane
angels Θ0 and Φ0 may hit the tapered edges of the vacuum chambers inside
the quadrupole magnet (see figure C.3). This leads to “missing corners” in a
Φ0-Θ0-histogram (see figure C.4).

b) The electrons may hit the pole shoes of the first dipole. This effect gets
stronger with higher relative momentum ∆p (the difference to the momentum of
a particle on the reference trajectory), because the focusing effect of quadrupole
and sextupole is then smaller. The magnetic system behind the sextupole
is not symmetric out-of-plane, which gives rise to an asymmetry in Θ0: The
effect is stronger when the trajectory is pointing downwards when entering the
collimator, i.e. when the trajectories have a wide orbit in the up-deflecting
dipoles.

To avoid this z-Φ0-Θ0-dependent acceptance, one may apply cuts in the data
analysis to reduce the accepted phase space to a range where no trajectories are
lost. Such a cut would either be dependent on the vertex position, or it would
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Figure C.3: Schematic drawing of the vacuum chamber inside the quadrupole
of spectrometer A and C. The edges are tapered to make room for the
quadrupole pole shoes outside of the chamber. The cyan arrow points away
from the target into the spectrometer.
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Figure C.4: Φ0-Θ0-histogram for a measurement of quasi-elastic reactions off
a foil-stack target (5 foils with 1 cm distance). One can see the “missing
corners”, corresponding trajectories collide with the tapered edges of the
vacuum chamber inside the quadrupole. Effect b) has been suppressed by a
cut which only accepts ∆p < 0.
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C Acceptance correction for spectrometers A and C
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Figure C.5: Reconstructed offset of the target along the incident beam from
the measurements of spectrometer A as a function of the central scattering
angle. While the target was fixed, the reconstructed position of its center
shows a dependency on the angle.

cut away a lot of “good” phase space. The latter is clearly undesirable, but
the first possibility may look like a viable solution. However, it would be quite
unreliable: With a change of the spectrometer angle, the vertex resolution
changes, too. Also, the vertex reconstruction depends on the angle, as can
be seen in fig. C.5, which shows the reconstructed target position (the true
target position did not change). It is not feasible to match the simulation to
this behavior in the experiment, hence a vertex-dependent cut would introduce
uncontrollable, angle-dependent effects.

A viable alternative is to use the correct aperture in the simulation. The pro-
gram gridtrace was further extended to test the calculated particle trajectory
against the vacuum chamber and dipole geometry. While the geometry of the
dipole is readily available as precise CAD drawings, the drawings for the vac-
uum chambers were not all available in the final version and had to be partly
reconstructed from measurements from the outside of the chamber and from a
comparison of measured data with the simulation.

A full numeric calculation of the particle trajectory for each event in a sim-
ulation is much too time-consuming. Therefore, the acceptance function was
precomputed on a high performance cluster computer. This function depends
on α, Φ0, Θ0, ∆p and z. To compress the data, at each four-dimensional point
(α,Θ0,∆p, z), the minimum and maximum Φ0 is searched by bisection.
For each event in the simulation, the nearest points included in the table are
looked up. The minimum and maximum Φ0 are then linearly interpolated.
Based on these values, the event is either accepted or discarded: A particle
with an in-plane angle between these two values is taken to reach the detector.

144



D Influence of the quadrupole of
spectrometer C on spectrometer B

Spectrometer B and C are located on the same side of the beam line (see figure
D.1).
In the periods where spectrometer C was the designated luminosity monitor, it
is at a fixed angle over a long period of time while spectrometer B is approaching
spectrometer C with each angle change. When spectrometer B comes near to
the minimal angle between B and C, spectrometer C is moved to the next,
larger angle.

beam line

spectrometer A

spectrometer B

spectrometer C

exit beam line

Figure D.1: Schematic of the spectrometer arrangement. Spectrometer B and
C are on the same side of the beam line.

A closer look at the cross sections measured with spectrometer B reveals jumps
of the order of 1 to 2% when spectrometer C is moved, i.e. when the angle
between spectrometer B and C is increased by a large amount. When the
spectrometers are close to each other, the measured cross sections are larger
than anticipated from the rest of the measurements.
In addition, one observes that the energetic position of the hydrogen elastic peak
also shows jumps on the same occasions: The measurements with spectrometer
C close by show larger electron energies in spectrometer B (compared to the
energy calculated from the angle) than those with spectrometer C further away.
In contrast, the position of the elastic peak from the target walls barely changes
when spectrometer C is moved (see figure D.2).
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D Influence of the quadrupole of spectrometer C on spectrometer B
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Figure D.2: ∆E′ histograms measured with spectrometer B at 20◦ with spec-
trometer C close by (cyan) or further away (red). The left peak stems from
electrons scattered elastically on the wall nuclei. The right peak corresponds
to elastic scattering off hydrogen. While the left peak is not shifted, the hy-
drogen elastic peak shifts slightly (by around 15 keV) to larger energies
when spectrometer C is close by.

Both effects can be explained with the influence of the fringe field of the
quadrupole of spectrometer C on the trajectories going into spectrometer B:
The field causes a deflection of the trajectories in the snout section of B, they
are bent in the horizontal plane to larger scattering angles, i.e. away from the
exit beam line. The collimator of spectrometer B is placed behind the snout at
the entrance of the clamshell magnet. Hence, in first order, this deflection causes
not a change of the absolute acceptance, but of the selected angular range. In
effect, the spectrometer accepts smaller scattering angles than the geometry
would indicate. The electrons at these angles have a larger energy and are pro-
duced with higher rate, because the cross section is larger for smaller angles.
This explains both effects mentioned before. The size of the effect gets larger
when spectrometer B is nearing spectrometer C and drops when spectrometer
C is moved away from B to the next angle.

In principle, it is possible to calculate the size of the effect from the relative
position of the hydrogen elastic peak to the peak from the target wall. However,
this proved to be not precise enough. To correct for this effect quantitatively,
it was studied in an additional data taking period. Spectrometer B was at a
fixed angle (and therefore should measure constant electron energies and cross
sections) and spectrometer C was varied both in field strength and angle. From
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Figure D.3: Uncorrected (cyan) and corrected (red) relative cross section mea-
surement with spectrometer B at a constant angle and momentum while
spectrometer C is changed in field and angle. The empirical correction for-
mula (eqs. (D.1) and (D.2)) compensates the spread within the statistical
accuracy.

the change of the electron energy and cross section measured with spectrometer
B, an empirical correction formula for the effective angle shift ∆θ has been
derived. This formula depends on the difference angle ∆α and the ratio of the
spectrometer fields, expressed by the central momenta pC/pB:

∆θ = −3.271◦ · 1.20121.104◦−∆α · pC
pB
. (D.1)

A negative sign indicates that the scattering angle of the accepted electrons
is smaller than the angle spectrometer B is positioned at geometrically. This
leads to a cross section modification

∆σ
∆Ω

=
∆σ
∆Ω exp.

·
dσ
dΩ theory

(E, θ)
dσ
dΩ theory

(E, θ + ∆θ)
. (D.2)

The angle correction ∆θ is always smaller than 0.13◦.
Since the correction depends on the ratio of the cross sections at nearby angles
and since the effect is small, the choice for the theoretical cross section has no
influence on the final result. In this work, the parametrization by Friedrich
and Walcher is used. The correction is at most 1.8% for the kinematics in the
experiment. Figure D.3 depicts the uncorrected and corrected cross sections
measured in the additional beam time.

147



D Influence of the quadrupole of spectrometer C on spectrometer B
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E Maintenance of the VDC in
spectrometer A and B

In [Ber04], as preparatory work for this experiment, the efficiency of the vertical
drift chambers (VDC) was studied with high spatial resolution. The work re-
sulted in maps of the efficiency (see fig. E.1). Non-functional wires are visible as
black lines. Additionally, one sees small areas where the efficiency is lower and
which are not along the wire direction. It was assumed that in these areas the
thin aluminum plating of the cathode planes had been damaged from sparks.
In the preparation of the present experiment, the VDC systems of spectrom-
eters A and B were uninstalled and opened inside the clean room of the A1
detector laboratory. In fact, on the cathode foils, the expected damaged areas
were visible, and they were replaced with new foils.
At the same time, all wires were inspected visually and those which were identi-
fied as broken or exhibited visual imperfections were replaced. The construction
of the VDC enables the coupling of an electric pulse capacitively onto the wires.
This makes it possible to check the electrical connection of the wires to the
preamplifier boards. Disrupted connections were repaired either by resoldering
the wire or by patching broken circuit traces with conductive paint.

Although the wire repair was very successful, the change of the cathode foils
had not the hoped-for effect. Data after the repair still exhibit most of the
structures seen before. The cause for this is unclear. Although the wires did
not exhibit visible defects in these regions, their surface may have been affected
somehow. Further studies have to be performed to identify the physical cause.
In the present experiment, care was taken that the measurements avoid the
lowered-efficiency parts of the planes as much as possible.
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E Maintenance of the VDC in spectrometer A and B
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Figure E.1: The VDC efficiency maps before the repair attempt. Displayed
are the X1 and S1 planes (see [Dis90]) of spectrometer A, which exhibit
the worst structures. The vertical black lines (efficiency 0%) are due to
broken wires. These have been repaired. Unfortunately, the areas where
the efficiency is slightly reduced persist. The algorithm with which the
efficiency is determined over-pronounces efficiency drops, the efficiency per
wire is normally above 98%. For further details, see [Ber04].
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F Software used in this work,
computing time

The main analysis software packages, Cola++ for the data processing and
Simul++ for the simulation, were developed in the A1-collaboration [DMW01].
Besides this, a lot of open-source tools were used. The most important ones are
briefly discussed in the following:

• Normally, the configuration of data analysis and simulation is held in a
single text file. Although this is very flexible and easy to use, the large
number of different measurements and, accordingly, the large number of
simulations, all with different parameters, made it mandatory to use a
database system to hold the information. The relational database Post-
greSQL [Pos] fits perfectly to our situation: The ability to create table
views made it possible to hide the data tables behind an abstraction layer.
This allowed for the implementation of an automatic control system: The
views were extended with triggers which automatically copy the original
data to a log table whenever a change is made. Hence the history of
changes is preserved and it is possible to revert every parameter of the
data analysis and simulation to an earlier stage.

• Most of the control logic, like dependency tracking, job distribution and
data extraction, were written in python [van Ro95], a powerful scripting
language. For fits, the scipy package was used [J+ ]. It contains a wrapper
around the MINPACK lmdif and lmder algorithms [MGH80]. Like most
scripting languages, python is not well suited to perform large numbers of
mathematical operations. However, it is possible to extend python with
custom modules written in a compiled language like C++. To accelerate
the fit procedures, the inner loop and the calculation of the model values
were written in C++ and imported into the python code as a module.
The powerful boost library [boo] was used to quickly generate the wrap-
ping code. The author wants to strongly recommend the combination of
python, boost and C++ for any project which needs fast prototyping and
fast execution speeds.

• Blender [ble], a 3D content creation suite, was a valuable tool for the
reconstruction of the vacuum chamber geometry. Some of the schematics
were realized with Inkscape [ink], a powerful Scalable Vector Graphics
(SVG) editor. Most plots were generated with gnuplot [WK].
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F Software used in this work, computing time

• The layout of this work has been done with LATEX [Lat] and the TEX
distribution TeX live [Tex].

Most of the calculations of the analysis was performed on a blade cluster with
80 cores. Fortunately, the workload is embarrassingly parallel [Fos95], since the
analysis of one of the 1422 data points is independent from all others. Therefore,
the speedup to a single core was nearly a factor 80. The most time-consuming
task is the matching of the simulation to the experiment (see section 6.3) which
takes about 2.5 weeks of computing time on the cluster. The data analysis and
simulation for all 1422 points takes slightly less than a week.
The time for the Monte Carlo calculations for the confidence bands depends
strongly on the model: A typical iteration for the splines is finished in less than
5 seconds, while an iteration for the polynomial models takes up to 2 minutes
(for comparison: A single fit of the extended Gari-Krümpelmann model takes
at least 20 minutes, which excludes this model from such studies). The calcu-
lation of all confidence bands takes about 5 days.
All in all, a complete reanalysis of the data takes about a month of pure com-
putation time.
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G Determination of the normalization
constants

One of the most difficult tasks in the measurement of a cross section is the
absolute normalization. Despite large efforts, it is impossible to determine the
absolute normalization to better than a few percent. Fortunately, theory tells
us that the form factors GE and GM have to go to 1 and µp, respectively, for
Q2 going to zero, and it is possible to make use of this limit to determine the
normalization from the measured data themselves, in particular if they have
been measured down to sufficiently small Q2. Thus, besides the parameters
of the model used to describe the form factors, the fit also has to determine
normalization constants for each group of data. Here, one group of data is
comprised of the cross sections measured for one energy with one spectrometer
for different angles.
The original design of the experiment called for 3 constants per energy: One nor-
malization constant nE , say for spectrometer A, and two constants to parametrize
the efficiency difference between spectrometer A and B, and A and C, nAB and
nAC

1. In principle, each angle setting of the luminosity monitor leads to a dif-
ferent normalization constant. However, the measuring program provided for
one of the other spectrometers to stay at a constant angle when the angle of the
luminosity monitor is changed. These measurements allow the coupling of the
different subgroups. Due to several shortcomings explained below, the number
of normalization constants had to be enlarged.

Table G.1 lists the normalization groups for each energy: For each cross sec-
tion measuring spectrometer, the angle ranges and the number of data points
(in parenthesis) is given in the second column. The spectrometer serving as
luminosity monitor and its angle is given in the third column. The necessary
normalization parameters are listed in the 4th column and the number of pa-
rameters in the 5th. The 6th column lists the comments to that row given
below.

Comments:

1. For 315 MeV, no normalization to the luminosity spectrometer was pos-
sible (see subsection 6.6.2).

2. It was planned to switch from spectrometer C to spectrometer A as lu-
minosity monitor when spectrometer A reached its maximum angle. In
order to couple the two luminosity groups, spectrometer B was left at a

1Due to different setups of the spectrometers from beam energy to beam energy, these are
allowed to change when the beam energy is changed.
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constant angle when the switch from spectrometer C to spectrometer A
occurs. Unfortunately, the influence of spectrometer C on B (not known
at that time) renders these measurements useless for this purpose, since
spectrometer C is moved at these occasions (see appendix D). Therefore,
the planned coupling is not possible and a different normalization constant
has to be included in the fit for the measurements with A as luminosity
monitor.

3. Across an angle-change of spectrometer C as the luminosity monitor, one
of the other spectrometers made measurements at constant angle to couple
the normalization of these two groups. However, some of these measure-
ments were unusable for this purpose either because they had problems
(e.g. low statistics, tripping of the VDC) or they were measured with
spectrometer B (see comment 2). Therefore, it was not possible to couple
all subgroups. Those where it was possible are marked in the table with
parenthesizes.

4. Due to an error of the operators, the setup of spectrometer A was changed
while it was the luminosity monitor. Though it was changed back to
the nominal configuration, it can not be guaranteed that it measured
exactly the same. Therefore, the measurements with spectrometer A as
the luminosity monitor have to be divided in two subgroups with two
normalization constants, nE,A1 and nE,A2.

5. The quadrupole anomaly described in section B.2 of the appendix has an
influence on the acceptance correction of spectrometer A (see appendix
C). The effect can be neglected for 720 MeV, where the acceptance cor-
rection is small (short target cell). However, for 855 MeV, measured with
the long target cell, the change in the quadrupole behavior divides the
measurements of spectrometer A in two groups. The relative normaliza-
tion of these two groups is parametrized with nAQ. The normalization
difference of these two groups is found to be around 1%, about half of the
acceptance correction. This is plausible since the acceptance correction
stems from (lost) trajectories with extreme angles which are affected most
by the focusing of the quadrupole magnet.

6. The main part of the 720 MeV measurements were performed in the
second beam time with the short target. However, the last part had to be
deferred to the last beam time and these data are measured with the long
target. Accordingly, the normalization and the relative efficiencies may
have changed. This makes it necessary to introduce two more constants,
nAB,2 and nAC,2. No additional normalization parameter nE,A is needed,
it is subsumed in these two constants.

7. A field change of the spectrometers is time consuming since the magnetic
field has to be changed slowly, the magnets have to settle. To save beam
time, the field was changed only every other angle-change. This leads to
an alternating position of the elastic peak on the focal plane. A close
inspection of the measured cross sections revealed that for 315 MeV and
450 MeV the cross sections measured with spectrometer A exhibit the
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G Determination of the normalization constants
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Figure G.1: The cross section measurements, divided by the dipole cross sec-
tion, for 450 MeV incident beam energy. Here, the normalization parameter
governing the efficiency difference between the focal plane positions has been
omitted. The alternating pattern can be seen best for the data above 60◦,
where the points alternate between “low” and “high” from angle to angle.

same pattern (see figure G.1), i.e. the efficiency changes with the peak
position on the focal plane. Such a dependency on the position on the
focal plane may be caused by a failure in the setup of the photomultiplier
voltages or by a worsening of the scintillators or VDC chambers between
the beam times (these energies were measured last). The measurements
were split according to the position on the focal plane. An additional
parameter nAA (different for the two energies) was used to describe the
efficiency difference between these two sets. It corrects for a difference of
0.41% for the 315 MeV measurements and of 0.67% for 450 MeV, where
the shift on the focal plane is larger. This correction has a negligible effect
on the extracted form factors, but improves the total χ2 by 89.

All in all, 31 normalization constants are included as free parameters into the
fit to 1422 data points. Due to the high redundancy of the measurements, these
constants are very well determined by the data. Their values are also essentially
independent from the model used in the fits. For the fits of the flexible mod-
els, the difference between the lowest and the largest value of a normalization
constant is at most 0.26%, with an average standard deviation of 0.073%. In-
cluding the fit of the Friedrich-Walcher model, the maximum difference is raised
to 0.74% (from the normalization of spectrometer C at 855 MeV incident beam
energy), with an average standard deviation of 0.074%.
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H Model dependency analysis

The extraction of the form factors and the radii with a direct fit of models to
the measured cross sections may introduce some model dependency. To test
the models, artificial cross section data points are generated at the same kine-
matics as the measured cross sections from different previously existing form
factor parametrizations. To this end, the (pseudo) data points1 are moved away
from the model value by a random number according to the width of the error
estimate of the measured data. They are then group-wise rescaled by a ran-
domly chosen normalization, with the grouping equal to that of the measured
data. The normalization value was generated according to a Gaussian distri-
bution with the width of 5%, which is significantly larger than the estimated
normalization uncertainty of the measurement of 2%.

The selection of input models includes the standard dipole, the phenomeno-
logical Friedrich-Walcher parametrization [FW03] and three parametrizations
by Arrington: Two from [Arr04] (a fit to unpolarized Rosenbluth data (called
Arr. 03 R), and a fit to polarized measurements (called Arr. 03 P)), and the
parametrization from [AMT07] to TPE-corrected cross sections (called Arr.
07). These data are then analyzed with the same models used in the analysis
of the present data.

For each combination of input parametrization and model used for extraction,
about 50 000 tests were performed. The results are analyzed in terms of the
achieved reduced χ2, the form factors and the extracted radii.

H.1 Reduced χ2

The reduced χ2 gives information whether the flexibility of the fit model is suffi-
cient with respect to the input parametrization: Since the errors on the pseudo
data are by construction true statistical errors on the otherwise correct cross
section data, the average χ2

red has to be 1 for a good fit. A χ2
red well above unity

indicates that the fit is not flexible enough to reproduce the input parametriza-
tion. An example for the χ2

red histogram of two combinations is presented in
figure H.1, once for the fit of the spline model to standard-dipole data and once
for the fit of the single dipole model to the Friedrich-Walcher parametrization.
The former combination leads to a χ2

red of about 1.00, indicating that the fit
model can describe the input data. On the other hand, the fit of the single

1While these data points calculated from parametrizations are not data in the classical
sense, the word data is used in this chapter for the (randomized) values derived from the
parametrizations, since they are treated like measured data.
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H Model dependency analysis
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Figure H.1: Distribution of χ2
red for the fit of the spline model to pseudo data

derived from the standard dipole (cyan, left) and for the fit of the single-
dipole model to Friedrich-Walcher data (red, right). The large χ2

red for the
latter combination indicates that the standard dipole can not describe the
form factor shape of the Friedrich-Walcher parametrization.

dipole to the Friedrich-Walcher parametrization gives a χ2
red above 3, which is

expected, since the single dipole can not reproduce the bump structure nor the
different fall-off of the two dipoles of this parametrization.

Table H.1 lists the mean values of the χ2
red distributions for the different com-

binations and their widths (the expected width is 0.038).
All flexible models produce χ2

red values very near to unity, as does the Friedrich-
Walcher model, with slightly larger values. The single dipole cannot reproduce
any of the other models. The double dipole shows surprisingly low values for
most of the input models, but fails for Arr. 03 P and Friedrich-Walcher. It has
to be noted that the (reduced) χ2 is a random variable. In an experiment only
one data set is available, and only one χ2 can be calculated. A value of 1.033
(Double dipole + Arr. 03 P) for χ2

red would not lead to a rejection of the model:
For N = 1422, this corresponds to a total χ2 of 1469, which is less than 1σ
off the mean value of the χ2

red-distribution. However, a value of χ2
red = 1.162

(double-dipole fit to Friedrich-Walcher pseudo data) is off by more than four
standard deviations and leads to a rejection of the fit model.
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H.1 Reduced χ2
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H Model dependency analysis
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Figure H.2: Two-dimensional histogram for the electric form factor determina-
tion with the fits of the spline model to standard-dipole input data. To en-
hance the visibility, the one-dimensional sub-histogram at eachQ2 is rescaled
so that the maximum value is 1. Superimposed are the average value (cyan)
and the confidence band (red). Since the form factor results are normalized
to the standard dipole, a model without bias should reproduce the hori-
zontal line at 1. This is fulfilled here for most of the range, except for the
part above 0.75 (GeV/c)2, where data from only one incident beam energy
contribute and the form factor separation is not possible anymore.

H.2 Form factors

Histogramming the form factor at a number of given Q2 for all generated so-
lutions gives a distribution at each of these Q2 values. The width of this dis-
tribution is an estimate for the error of the extracted form factor at that Q2.
Further, one can compare the average value of this distribution with the value
from the input parametrization. A bias of the model would show up as devi-
ations. Figure H.2 displays a two-dimensional map of the distribution of the
electric form factor extracted by a spline-model fit to standard-dipole pseudo
data. Superimposed lines represent the 68.3% pointwise confidence band (red)
and the average value at a given Q2 (cyan).

In figures H.3 to H.7, the estimated confidence band (solid lines) and the relative
deviation of the fit average from the input parametrization (dashed lines) are
displayed for the different input models, each one analyzed with all models used
in the analysis of the data in this thesis. One can see that the single dipole and
the double dipole can not reproduce the (more flexible) input models.
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H.2 Form factors

Input parametrization: Standard dipole
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Figure H.3: Confidence band and relative deviation of the fits from the
standard-dipole input data. Top: GE . Bottom: GM . The solid lines rep-
resent the error estimate from the fits as described in the text, the dashed
lines the relative deviation of the average of the fits from the input model.
For the standard dipole as input, all models can reproduce the input within
the confidence band. The flexible models tend to run off to extreme values
for higher Q2.
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H Model dependency analysis

Input parametrization: Arrington 03 P
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Figure H.4: As fig. H.3, but with Arrington 03 P as the input model. Solid
lines: Confidence band. Dashed lines: Average of the fits. For GE and
GM , the fits with a single and with a double dipole show large deviations,
significantly outside of the confidence band.
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H.2 Form factors

Input parametrization: Arrington 03 R
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Figure H.5: As fig. H.3, but with Arrington 03 R as the input model. Solid lines:
confidence band. Dashed lines: Average of the fits. Again, the fit with a
single dipole shows significant deviations, while here the double-dipole model
lies well within the confidence band.
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H Model dependency analysis

Input parametrization: Arrington 07
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Figure H.6: As fig. H.3, but with Arrington 07 as the input model. The fits of
a single dipole and of a double dipole show the same behavior as for the
Arrington 03 R input data.
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H.2 Form factors

Input parametrization: Friedrich-Walcher
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Figure H.7: As fig. H.3, but with Friedrich-Walcher as the input model. Both
the fit of a single dipole and of a double dipole show large deviations.
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H Model dependency analysis

Of more interest is the behavior of the flexible models. It is worthwhile to note
that all have very similar confidence bands below 0.75 (GeV/c)2, independent
of input parametrization and of the fit model. In that region, only the spline
fit exhibits noticeable deviations from the input, in the order of 0.2% at 0.7
(GeV/c)2, however, they are always well inside the confidence band.
At higher Q2, the confidence bands get wider very quickly, as does the deviation
of the flexible fits from the input, especially for GE . This means that they have
very limited predictive power in the region where only (pseudo) data from one
incident beam energy contribute.

For the tested input models, the Friedrich-Walcher model works fairly well both
for the description of the shape in the low-Q2 region and for the extrapolation
into the higher-Q2 region.

H.3 Radii

The extracted radii have been histogrammed for each combination of input
parametrization and fit model (for an example, see fig. H.8). From these dis-
tributions, the average electric and magnetic radius and the 1σ-width are cal-
culated. These values can be compared to the radii which are known exactly
from the input parametrizations. The results are presented in table H.2. It is
obvious that the single-dipole model can not be used for the radius extraction.
Also, the double dipole has problems with several of the input parametriza-
tions. The spline models exhibit a small bias to lower radii for some of the
input parametrizations.

H.4 Conclusion

All flexible models and the Friedrich-Walcher parametrization are able to re-
produce the whole set of studied input models. This is true with respect to the
radius extraction, but also for the shape of the form factor itself. We therefore
conclude that we have selected reasonably flexible models which should be able
to model also the “truth” behind the experimental data.

While the single dipole simply has not enough flexibility, the double dipole does
surprisingly well for some of the models, but fails in the description of the radius
for others. In these cases, also χ2

red is large. Still, the form factor deviations are
always below 3%, what would have been missed in a less accurate measurement.

It is important to notice that the spline fit, while it reproduces the input form
factor shape faithfully, exhibits a bias to lower radii for some of the input
parametrizations. In these cases, the average χ2

red is only raised by 0.2%, which
is undetectable in a real experiment.
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H.4 Conclusion

〈re〉

Fit model Input parametrization
Std. dipole Arr. 03 P Arr. 03 R Arr. 07 F.-W.

811 829 868 878 860
Single Dipole 0±0.7 29±1 −6±1 −15±1 −2±1
Double Dipole 0±1 10±1 0±2 3±3 81±27

Polynomial 0±7 0±7 0±6 0±6 0±6
Poly. + dipole 0±7 −1±7 0±6 −1±6 0±6
Poly. × dipole 0±5 0±5 0±4 0±4 0±5

Inv. poly. −1±5 −1±5 0±5 −1±5 0±5
Spline −1±3 −1±3 −3±3 −5±3 0±3

Spline × dipole 0±3 1±3 −1±3 −2±3 1±3
Friedrich-Walcher 0±1 3±2 −1±2 +2±3 −1±3

〈rm〉
Fit model Input parametrization

Std. dipole Arr. 03 P Arr. 03 R Arr. 07 F.-W.
811 837 863 858 805

Single dipole 0±0.3 −32±0.4 −50±0.4 −53±0.4 5±0.4
Double dipole 0±1 12±2 2±3 3±4 49±2

Polynomial −1±18 −1±17 −1±17 −2±17 −2±17
Poly. + dipole 0±15 −1±15 −1±14 −1±12 −1±15
Poly. × dipole −1±14 −1±14 −1±13 −2±14 −2±14

Inv. poly. 0±13 0±13 0±13 0±12 0±13
Spline 1±7 1±7 1±6 −1±7 0±7

Spline × dipole 0±6 0±6 −1±6 −2±6 −1±6
Friedrich-Walcher 0±2 1±5 0±6 2±5 −1±6

Table H.2: The difference of the extracted radii to the input radii and the es-
timated errors (in atm). The numbers in the table head are the radii of
the input model. The numbers in the table body are the differences of the
radius between fit and input. Positive values correspond to an extracted ra-
dius larger than the input radius. Top: Charge radius. Bottom: Magnetic
radius.
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Figure H.8: The distribution of the charge (cyan, narrow) and magnetic (red,
broad) radii extracted by a fit with the spline model from pseudo data
generated with the standard-dipole parametrization. Since the magnetic
form factor has only a small impact to the cross section at low Q2, the
magnetic radius is less well determined.
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I Further details on the confidence
band calculation

I.1 Linear least squares

While not directly applicable to the case at hand, it is instructive to start the
discussion of the confidence band with the linear least squares problem.
A model, where the quantity ym at x depends linearly on parameters ~p, can be
written as

ym = f(x, ~p) = p1f1(x) + p2f2(x) . . . (I.1)

This model is to be fitted toN data points ~y = (y1, y2, . . . )T at ~x = (x1, x2, . . . )T .
The measured value yi is a sum of the (unknown) true value ytrue,i and a devi-
ation term εi with expectation value zero and variance σ2

i :

yi = ytrue,i + εi (I.2)
E(εi) = 0 (I.3)
V (εi) = σ2

i . (I.4)

An estimate for the truth is the parameter vector ~̂p which minimizes the sum
of the normalized deviations squared (sum of residuals squared),

χ2(~p) =
∑ (yi − f(xi, ~p))

2

σ2
i

. (I.5)

Matrix formalism allows for a compact writing of the equations: Defining the
design matrix A, the covariance matrix of the data points V(~y) and the weight
matrix W as

A =


f1(x1) f2(x1) . . .
f1(x2) f2(x2) . . .
. . .

f1(xN ) f2(xN ) . . .

 , V(~y) =


σ2

1 0 . . . 0
0 σ2

2 . . . 0
. . .
0 0 . . . σ2

N

 = W−1, (I.6)

the model can be written as
~ym = A~p, (I.7)

and eq. (I.5) gives
χ2(~p) = (~y −A~p)TW(~y −A~p). (I.8)

At the minimum, the partial derivatives of χ2 with respect to every parameter
have to vanish:

~0 = 2ATW(~y −A~̂p). (I.9)
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I Further details on the confidence band calculation

This determines the best fit parameters ~̂p:

~̂p = (ATWA)−1ATW~y. (I.10)

By construction, ~̂p gives the minimal sum of residuals squared:

χ2
min = (~y −A~̂p)TW(~y −A~̂p) = ~yTA~y − ~̂pTATW~y. (I.11)

Here, eq. (I.9) has been used.

Eq. (I.10) is a linear transformation from y-space into parameter space. There-
fore, the covariance matrix V(~p) with Vi,j = cov(pi, pj) = E ((pi − p̄i)(pj − p̄j))
can be calculated (exactly) with standard error propagation (see chapter 4 in
[BL98]) from V(y), respectively W:

V(~p) = (ATWA)−1. (I.12)

The value of the best fit, f(x, ~̂p), at any x is given by (f1(x), f2(x), . . . )~̂p. Again,
standard error propagation can be used to calculate the variance of f(x, ~̂p):

σ2
ym = V (f(x, ~̂p)) = (f1(x), f2(x), . . . )(ATWA)−1(f1(x), f2(x), . . . )T . (I.13)

The standard deviation σym , the square root of the variance V (f(x, ~̂p)), defines
the confidence interval at the chosen point x to the confidence level 68.3%. It
should be noted already here that calculating the interval at all x gives the
“pointwise confidence band”, and that the probability statement is fulfilled at
every point x separately, but not at all x simultaneously (see section I.3).

I.2 Covariance ellipsoids

A real symmetric positive definite matrix M allows us to define bilinear forms
describing ellipsoids around ~x = ~0 [Ort86]:

~xTM~x = c. (I.14)

Since the matrix V(~p)−1 fulfills these conditions, one can define ellipsoids in
the parameter space centered at the best fit:

(~p− ~̂p)T (V(~p))−1(~p− ~̂p) = c, (I.15)

or, with ∆~p = ~p− ~̂p,
∆~pT (V(p̂))−1∆~p = c. (I.16)

These ellipsoids are called parameter interval covariance ellipsoids.

One can now calculate the increase in χ2 for a parameter variation ~p = ~̂p+ ∆~p

χ2
min + ∆χ2 =

(
~y −A

(
~̂p+ ∆~p

))T
W
(
~y −A

(
~̂p+ ∆~p

))
(I.17)

=
(
~y −A~̂p

)T
W
(
~y −A~̂p

)
+ (A∆~p)T W (A∆~p) (I.18)

∆χ2 = ∆~pTATWA∆~p (I.19)

Eq. (I.18) follows from eq. (I.17) using eq. (I.9). From the identity of the right
hand side of eq. (I.19) and the left hand side of eq. (I.16), one can see that the
ellipsoids defined by (I.16) are contours of constant ∆χ2 = c.
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I.3 Pointwise confidence band

I.3 Pointwise confidence band

Section I.1 describes the standard error propagation. The meaning of its results
is revealed by comparison with the direct construction of a “pointwise confidence
band”. Such a band is determined by consideration of a confidence level β, to
which an appropriate region in parameter space is constructed with the help of
the covariance ellipsoids defined in section I.2.

For a fixed x and given β, one wants to find a value µ, so that

P
[∣∣∣f(x, ~̂p)− ytrue(x)

∣∣∣ ≤ µ] = β, (I.20)

i.e. the probability that the difference of the best fit to the true value is smaller
than µ, should be β, the confidence level [Jam06]. Assuming that the model
can describe the truth, one can introduce the true parameters ~ptrue and eq. I.20
can be written as

P
[∣∣∣f(x, ~̂p)− f(x, ~ptrue)

∣∣∣ ≤ µ] = β. (I.21)

In these equations, ~̂p is a random variable. In the case at hand, ~̂p is normal
distributed around ~ptrue (because the yi are normal distributed), and the shape
of the distribution, described by the covariance matrix, is independent of ~̂p.
Therefore, the probability statement can be rewritten as a statement about
parameter variations ∆~p = ~p − ~̂p, where we make the usual estimate ~ptrue = ~̂p
[Jam06]:

P
[∣∣∣f(x, ~̂p+ ∆~p)− f(x, ~̂p)

∣∣∣ ≤ µ] = β,

P
[∣∣∣~aT (~̂p+ ∆~p)− ~aT ~̂p

∣∣∣ ≤ µ] = β,

P
[∣∣~aT∆~p

∣∣ ≤ µ] = β, (I.22)

with ~a = (f1(x), f2(x), . . . )T and f(x, ~̂p) = ~aT ~̂p. This means that, for given
confidence level β, one looks for the region of parameter variations with∣∣~aT∆~p

∣∣ ≤ µ(β). (I.23)

Eq. (I.23) defines a band in parameter space perpendicular to ~a (see figure I.1).

The random variable k = ~a∆~p is a linear transformation of the random variable
∆~p, therefore, its probability density distribution is a Gaussian,

P [k = ~aT∆~p] =
1√

2πσk
e
− 1

2
( k
σk

)2

, (I.24)

with σ2
k given by standard error propagation (see chapter 4 in [BL98]) as:

σ2
k = ~aTV(~p)~a. (I.25)
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I Further details on the confidence band calculation

1

2

µ ~a
~aT~a

~a

∆~P

~̂pBand with∣∣~aT∆~p
∣∣ ≤ µ

Figure I.1: Parameter band for a pointwise confidence interval at a given x in
the case of two parameters. At the given x, f(x, ~p) is a linear combination
of the parameters, which is given by ~a = (f1(x), f2(x))T . The gray shaded
band extends to infinity perpendicular to ~a and covers a probability of β.
For all parameter combinations in the band, f(x, ~p) differs from f(x, ~̂p) by
at most µ. For all x, the edges of the corresponding bands are tangents of
the ellipse defined by eq. (I.16) with c = (µ/σk)2.

To find the width of the band for the confidence level β, one has to find µ(β),
so that:

β =
∫ µ(β)

−µ(β)
P [k = ~aT∆~p]dk. (I.26)

For β=68.3%, eq. (I.26) gives µ = σk and we find

µ(β = 68.3%) =
√
~aTV(~p)~a, (I.27)

which is identical to the standard error propagation eq. (9.3) (since ∂f
∂pi

= fi).

For all x, the parameter-band limits are tangent planes to the ellipsoid defined
by eq. (I.16) with c = (µ/σk)2. To prove this, one first has to realize that any
plane can be regarded as a tangent plane of an ellipsoid for an appropriately
chosen c. Therefore, one only has to show that c = (µ/σk)2 for any ~a.

A normal vector on an implicitly defined surface, g(~x) = const., is given by ~∇g.
Therefore, a normal vector of the ellipsoid eq. (I.16) at the point ∆~P is

~N(∆~P ) = ~∇q
(
~qT (V(~p))−1~q

)∣∣∣
~q=∆~P

= 2(V(~p))−1∆~P . (I.28)
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Hence, the tangent plane at the point ∆~P is defined as

(∆~p−∆~P )T ~N = 0 (I.29)
(∆~p−∆~P )T (V(~p))−1∆~P = 0 (I.30)

∆~pT (V(~p))−1∆~P = ∆~P T (V(~p))−1∆~P = c. (I.31)

On the other hand, one edge plane of the parameter band1 is defined as

∆~pT~a = µ. (I.32)

Equations (I.31) and (I.32) are equal for all ∆~p exactly when

c~a = µ(V(~p))−1∆~P . (I.33)

Multiplication of eq. (I.33) with ~aTV(~p) from the left yields

~aTV(~p)c~a = ~aTV(~p)µ(V(~p))−1∆~P . (I.34)

With eq. (I.25) follows
cσ2
k = µ~aT∆~P . (I.35)

From figure I.1 and eq. I.32, the projection of ∆~P on ~a is µ, therefore c =
(µ/σk)2, independent of the direction of ~a (or x). It is thus shown that for all x
(leading to different directions of ~a) the pointwise confidence interval in y-space
is related to an infinite band in parameter space with limiting planes tangential
to a covariance ellipsoid with constant c, which is given by the confidence level2.
This fact will be used for the study of the simultaneous confidence band in
section I.5.

I.4 Comparison of the confidence bands from
linearization and Monte Carlo

The covariance matrix yields the confidence band via standard error propaga-
tion. If f(x, ~p) depends linearly on ~p or if linearization, i.e. the corresponding
truncation of a Taylor expansion, is a good approximation in the relevant re-
gion of the parameter space, the results found should be equal to those from
the Monte Carlo approach. This has been tested in detail.

In fact, for almost all models both methods give very similar results, with
significant differences only in the Q2 range above 0.75 (GeV/c)2. The biggest
difference is found for the Friedrich-Walcher model, where the linearization
yields significantly larger errors already above 0.4 (GeV/c)2. This behavior can
be understood by the fact that this model has a highly non-linear dependence on
the parameters. Additionally, for GE , the parameters of the two dipoles come
out almost degenerate. Figure I.2 shows a comparison for ∆(GE/Gstd. dipole)
for the polynomial × dipole and the Friedrich-Walcher model. Here, ∆ is half
the width of the pointwise 68.3%-confidence-band around the best fit.

1The proof is analogous for the other edge plane, ∆~pT~a = −µ.
2All these considerations are valid only if one assumes that the model, especially its smooth-

ness, represents the truth found in nature. Only in this context, statements about the best
fit value and confidence intervals at x-points between measurements have a well defined
meaning.
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Figure I.2: Half of the width of the pointwise 68.3%-confidence-band around
GE/Gstd. dipole for the polynomial × dipole model (top) and for the
Friedrich-Walcher model (bottom). Cyan curve: Monte Carlo result. Red
curve: Linearization result.
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I.5 Simultaneous confidence bands

The confidence bands calculated from the statistical errors of the measurements
presented so far are “pointwise confidence bands”, i.e. the true value of one form
factor is expected to lie in the confidence band with the probability of 68.3%
at a given Q2 whatever the values at other Q2 and whatever the value of the
other form factor. While it is this “pointwise confidence band” which is usually
calculated, one should be more interested in the simultaneous confidence band,
i.e. in the band which contains the true curve at all points (in a region X) at
the selected confidence level. In the case of symmetric bands one wants to find
the curve s(x), so that

P [f(x, ~̂p)− s(x) ≤ ytrue(x) ≤ f(x, ~̂p) + s(x) for all x ∈ X] = β. (I.36)

The band defined by ±s(x) is the simultaneous confidence band. Since require-
ment eq. (I.36) is stronger, the simultaneous confidence band has to be wider
than the pointwise band for the same level of confidence. The simultaneous
bands are hard to construct analytically, even for simple linear models.

I.5.1 Analytical approximation

An approximation of the simultaneous confidence band can be constructed from
the simultaneous confidence region for the parameters: Suppose that the N -
dimensional parameter estimate ~̂p is N-dimensional normal distributed around
mean ~ptrue, the true parameters, with covariance V(~p), i.e. the probability den-
sity function pdfN−norm is

pdfN−norm(~̂p, ~ptrue) =
1

(2π)
N
2 |V(~p)|

1
2

exp
[
−1

2
(~̂p− ~ptrue)TV−1(~p)(~̂p− ~ptrue)

]
.

(I.37)
From the Normality of ~̂p it follows that the covariance form

Q(~̂p, ~ptrue) = (~̂p− ~ptrue)TV−1(~p)(~̂p− ~ptrue) (I.38)

has a χ2(N) distribution. Since eq. (I.38) is symmetric in ~̂p and ~ptrue, it is
possible to make a statement about the probability that the parameter esti-
mate ~̂p lies inside an ellipsoid (see section I.2) around the true parameters, or,
alternatively, that the true parameters are inside an ellipsoid around the best
fit estimate. This probability β is given by

β = P [Q(~̂p, ~ptrue) ≤ c(β)] =
∫ c(β)

0
pdfχ2(N)(χ

2)dχ2. (I.39)

The point c up to which one has to integrate depends on the confidence level β
and on the number of parameters N.

To calculate the confidence band in y(x), one constructs the envelope of all
f(x, ~p) with ~p inside the ellipsoid. The so constructed band has the same shape
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No. of parameters N 1 2 3 33 37 45 47 51
c 1 2.30 3.53 36.30 40.53 48.96 51.06 55.25√
c 1 1.52 1.88 6.03 6.37 7.00 7.15 7.43

Table I.1: Values of c and
√
c, the scale factor between a pointwise confidence

band with 68.3% confidence level and the simultaneous confidence band
with the same confidence level calculated with the approximate analytical
method described in subsection I.5.1.

as the pointwise confidence band, but is scaled by a factor3 √c. From the χ2

p.d.f., one can calculate the scaling factor for different numbers of parameters,
the results for a 68.3% confidence level and the parameter numbers of the models
used in this thesis are listed in the table I.1. Values for different confidence levels
can be found in table of “UP” in the MINUIT reference manual [Jam94].

The construction guarantees that the true curve is inside the confidence band
with at least the probability chosen via the covariance ellipsoid in parameter
space. However, depending on the model, and the covered x-range X, the
confidence band may contain the true curve with a larger probability, since also
parameters outside the ellipsoid may lead to curves inside the confidence band.
This is illustrated for the two-dimensional case by a toy model [Dis10]: From
the “true” basis model y = 2 − 3x a large number of pseudo data sets were
generated. Each data set contains 20 data points. One can now test for each
of the data sets whether its fit is inside the confidence band calculated by the
method above. In fact, for this model 1% of the fits are inside the confidence
band in the range of the data points, but outside of the band for infinite x. If
one is interested in the simultaneous confidence band restricted to the x-range
of the data, the calculated band therefore is a 69%-band instead of the aimed at
68%-band. The parameters of the curves which are inside the confidence band
inside the data range, but outside further out, can be recognized from figure
I.3.

For larger parameter numbers, the difference between aimed at confidence level
and the confidence level of the band constructed in the described way gets
bigger. E.g. for an extension of the toy model to 10 parameters, it was found
that already above 98% of the curves lie inside the band instead of the aimed
at 68.3%. This means that with larger numbers of parameters the factor

√
c

gets larger (see table I.1), but that this factor has to be reduced considerably
due to the inappropriateness of this analytical approximation.

To see how this comes about, one has to revisit subsection I.3 which defines the
parameter band for a pointwise confidence interval at a point x. The simul-
taneous band is the intersection of all pointwise parameter bands for x ∈ X,
scaled to achieve the desired confidence level. The so constructed parameter
space is equal to an ellipsoid if the directions of ~a(x) cover completely half of a

3The factor c is applied at the level of the variances. Thus, the confidence band is scaled
with

√
c.
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Figure I.3: One quarter of the parameter space of the toy model. The blue
curve is the ellipse according to eq. (I.16) with c = 2.3, which encloses
68.3% of the best fit parameter combinations from the Monte Carlo data
sets. Cyan points represent parameter combinations whose curves are inside
of the confidence bands constructed according to subsection I.5.1 inside the
data range. Red points represent parameters of curves which are partly
outside of the confidence band inside the data range. Cyan points that
are outside of the ellipse produce curves which cross the confidence bands
outside of the range of the data points. Adapted from [Dis10].

unity sphere of dimension (N -1), i.e. a half-circle in the two-dimensional case.
For a model y = p1 + p2x, this is the case if X = [−∞,∞]. However, in the toy
model, X is limited to [0, 1] and not all directions are covered (see figure I.4).

For larger parameter numbers, the dimensionality of this half sphere is larger
than one (the dimension of x), therefore the directions of ~a(x) describe a curve in
the (N -1)-dimensional subspace of the directions in the parameters and can not
cover the complete subspace. The resemblance of the intersection volume with
the ellipsoid is then lost more and more with higher dimensionality (except for
pathological cases, e.g. where the curve is a fractal). This explains the difference
of the factors

√
c in table I.1 and those for β=0.683 in table I.2: While the

approximation via the ellipsoid (
√
c) severely over-predicts the scaling factors

and produces values around 7 for the number of parameters at hand, the better
method using Monte Carlo described in subsection I.5.2 yields factors around
2.3 (table I.2).
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1

2

Θ

Figure I.4: Geometric construction of the simultaneous confidence band. The
intersection (gray shaded area) of all parameter bands for the pointwise
confidence band is almost an ellipse. However, since the directions of ~a only
cover a range Θ, there are additional “corners”.

I.5.2 Simultaneous confidence bands from Monte Carlo

With the assumption that the simultaneous confidence bands have the same
shape as the pointwise bands, a Monte Carlo approach can provide a better
approximation of the scaling factor and hence of the bands.

• First, the pointwise confidence band has to be constructed in the way
described in subsection 9.1.1.

• Now, the width of the band is multiplied by a scaling factor. Every fit
curve from the pseudo data ensemble is now tested whether it is inside
the confidence band in the selected interval. The ratio R of those com-
pletely inside to the total number gives an estimate of the confidence level
achieved with the selected scaling factor.

• Since R is a monotone function of the scaling factor, standard search
techniques like bisection (see chapter 9 of [PTVF92]) can be used to find
the appropriate scaling factor for a given confidence level.

This procedure has been performed for all models used in the analysis with the
requirement that the fit curves are completely inside the confidence band forGE ,
GM and GE/GM (simultaneously) in the Q2 region from 0 up to 0.75 (GeV/c)2.
The probability statement (I.36) requires simultaneity for all x ∈ X. This is
approximated with densely selected Q2 points. Table I.2 lists the scaling factors
which are to be applied to the pointwise confidence bands (with confidence level
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Model Scaling factor
β=68.3% β=80% β=90% β=95%

Spline 2.22 2.46 2.76 3.03
Spline × dipole 2.17 2.41 2.71 3.00
Polynomial 2.34 2.57 2.86 3.12
Polynomial + dipole 2.37 2.61 2.91 3.18
Polynomial × dipole 2.28 2.51 2.81 3.08
Inverse polynomial 2.24 2.47 2.77 3.03
Double dipole 1.73 1.99 2.33 2.64
Friedrich-Walcher 2.03 2.29 2.63 2.94

Table I.2: The scaling factors which have to be applied to the 68.3% pointwise
confidence bands presented in this work to construct simultaneous confi-
dence bands within the Q2 range of the measurement with the given confi-
dence levels.

68.3%) to construct the simultaneous confidence bands of the chosen confidence
level. It has to be noted that the small increments in the factors for higher
confidence levels indicate a faster drop of the distribution than a Gaussian.
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J The model parameters from the fits

The precision of the parameters shown in the tables have been chosen to assure
negligible rounding errors in the form factors calculated with these parameters.

J.1 Polynomial models

For the parametrizations, see section 7.3

Polynomial, n = 10 Poly. + dip., n = 10
i aEi aMi aEi aMi
1 -3.3686 -2.5952 -0.5462 +0.2247
2 +14.5606 +1.0222 +8.4132 -4.9624
3 -88.1912 +23.4945 -74.1588 +34.6437
4 +453.6244 -93.0372 +412.3289 -110.4415
5 -1638.7911 +140.7984 -1511.5330 +158.4156
6 +3980.7174 -0.3656 +3680.7305 -0.6291
7 -6312.6333 -305.6759 -5842.6829 -335.5010
8 +6222.3646 +444.6251 +5767.2393 +488.0699
9 -3443.2251 -273.6688 -3197.2449 -301.1986
10 +814.4112 +64.5811 +757.7072 +71.3869

Poly. × dip., n = 8 Inv. poly., n = 7
i aEi aMi aEi aMi
1 -0.4980 +0.2472 +3.3615 +2.5239
2 +5.4592 -4.9123 -3.0343 +7.6694
3 -34.7281 +29.7509 +29.6677 -30.0897
4 +124.3173 -84.0430 -85.6169 +68.4884
5 -262.9808 +129.3256 +130.7053 -79.0470
6 +329.1395 -111.1068 -101.5145 +43.9206
7 -227.3306 +49.9753 +34.2926 -9.0837
8 +66.6980 -9.1659 – –

J.2 Spline and spline × dipole model

The spline model has 8 parameters with knots at 0.2 (GeV/c)2 intervals from
0 (GeV/c)2 to 1 (GeV/c)2.
The spline × dipole model has 7 parameters with knots at 0.25 (GeV/c)2 inter-
vals from 0 (GeV/c)2 to 1 (GeV/c)2.
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J The model parameters from the fits

Hence, the spline is defined for 0 (GeV/c)2 ≤ Q2 ≤ 1 (GeV/c)2. For the
parametrizations, see section 7.4.

Spline, n = 8 Spline × dipole, n = 7
i aEi aMi aEi aMi
-1 -6.31651 -2.08450 -2.04607 +2.38427
0 -2.83182 -2.80421 -0.12746 -0.17812
1 -1.97181 -1.91391 -0.13069 -0.00069
2 -1.48803 -1.43427 -0.07138 +0.04974
3 -1.18342 -1.14666 -0.12528 +0.06191
4 -1.00683 -0.94838 -0.32693 +0.10366
5 -0.85394 -0.80697 -2.55871 +0.01874
6 -1.27114 -0.70011 – –

J.3 Double-dipole and Friedrich-Walcher model

For the parametrizations, see sections 7.3 and 7.5

Double dipole Friedrich-Walcher
Parameter GE GM GE GM

a0 +0.98462 +0.28231 +13.13613 +0.99377
a1 +0.68414 +1.34919 +0.67183 +0.71253
a2 +0.01933 +0.55473 +0.67186 -2.93647
ab – – -0.18245 -0.05312
Qb – – +0.00636 -0.39067
σb – – +0.15274 +0.11611

J.4 Extended Gari-Krümpelmann model

For the parametrization, see section 7.6.

Parameter Value
gρ′
fρ′

-1.54007

κρ′ -280.6672
gω
fω

-0.52063
κω +183.0761
gφ
fφ

-0.02544
κφ +396.0842
µφ +0.2052
gω′
fω′

+1.54644
κω′ -209.8490
λ1 +0.19945
λD +0.67102
λ2 +38933.

λQCD +0.150 (not varied)
N +1.0 (not varied)
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K Numerical results: Cross sections
and form factors

The cross section data with the normalizations from all models and form fac-
tor values for a larger set of Q2 values will be available shortly on the web.
Nevertheless, the cross section data with the spline normalization and the form
factor results including the error margins for a selection of Q2 values will be
given here.

K.1 Cross sections

Table K.1 lists the cross section results after all corrections. The central angle of
the spectrometer is given as θcentral, Q2

avg. denotes the average Q2 of the setting.
The normalizations determined by the spline fit are applied to the data. The 6th
and 11th column lists the combination of the normalization constants for this
measurement (refer to table K.2 for the mapping to those defined in appendix
G). With this information, a (re)fit with floating normalization, as was done in
this work, can be performed.

Ein Spec. & Q2
avg

σexp
σdip

∆
σexp
σdip

Norm.
Spec. & Q2

avg
σexp
σdip

∆
σexp
σdip

Norm.

MeV θcentral
GeV2

c2
θcentral

GeV2

c2

180 A,35.50 0.011280 0.9893 0.0031 n3 A,35.50 0.011272 0.9929 0.0030 n3
180 A,35.50 0.011286 0.9914 0.0031 n3 A,35.50 0.011268 0.9923 0.0030 n3
180 A,35.50 0.011286 0.9977 0.0038 n3 A,35.50 0.011285 0.9904 0.0037 n3
180 A,35.50 0.011281 0.9879 0.0037 n3 A,35.50 0.011281 0.9923 0.0038 n3
180 A,35.50 0.011269 0.9889 0.0038 n3 A,35.50 0.011272 0.9945 0.0042 n3
180 A,35.50 0.011283 0.9892 0.0042 n3 A,38.00 0.012838 0.9992 0.0036 n3
180 A,38.00 0.012836 0.9896 0.0035 n3 A,38.00 0.012840 0.9907 0.0034 n3
180 A,38.00 0.012840 0.9890 0.0034 n3 A,38.00 0.012838 0.9985 0.0035 n3
180 A,38.00 0.012838 0.9983 0.0036 n3 A,40.50 0.014480 0.9915 0.0031 n3
180 A,40.50 0.014480 0.9916 0.0031 n3 A,40.50 0.014481 0.9935 0.0031 n3
180 A,40.50 0.014480 0.9926 0.0031 n3 A,43.00 0.016192 0.9920 0.0031 n3
180 A,43.00 0.016192 0.9893 0.0031 n3 A,43.00 0.016197 0.9852 0.0062 n3
180 A,43.00 0.016193 0.9925 0.0030 n3 A,43.00 0.016193 0.9931 0.0035 n3
180 A,45.51 0.017978 0.9873 0.0056 n3 A,45.51 0.017979 0.9823 0.0033 n3
180 A,45.51 0.017975 0.9923 0.0029 n3 A,48.00 0.019801 0.9894 0.0052 n3
180 A,48.00 0.019803 0.9856 0.0031 n3 A,48.00 0.019803 0.9829 0.0054 n3
180 A,48.00 0.019803 0.9868 0.0036 n3 A,48.00 0.019803 0.9868 0.0033 n3
180 A,50.51 0.021699 0.9866 0.0039 n3 A,50.51 0.021694 0.9839 0.0023 n3
180 A,50.51 0.021701 0.9964 0.0054 n3 A,50.51 0.021700 0.9816 0.0030 n3
180 A,50.51 0.021694 0.9856 0.0032 n3 A,53.01 0.023627 0.9814 0.0032 n3
180 A,53.01 0.023633 0.9811 0.0038 n3 A,53.01 0.023634 0.9862 0.0028 n3
180 A,53.01 0.023635 0.9865 0.0028 n3 A,55.50 0.025600 0.9779 0.0048 n3
180 A,55.50 0.025593 0.9778 0.0029 n3 A,55.50 0.025599 0.9781 0.0034 n3
180 A,55.50 0.025601 0.9849 0.0050 n3 A,55.50 0.025599 0.9811 0.0022 n3
180 A,58.00 0.027608 0.9818 0.0047 n3 A,58.00 0.027603 0.9814 0.0024 n3
180 A,58.00 0.027603 0.9804 0.0025 n3 A,58.00 0.027609 0.9776 0.0024 n3
180 A,60.50 0.029635 0.9777 0.0021 n3 A,63.00 0.031691 0.9805 0.0020 n3
180 A,65.49 0.033759 0.9802 0.0021 n3 A,65.49 0.033758 0.9758 0.0021 n3
180 A,68.01 0.035870 0.9847 0.0021 n3 A,68.01 0.035869 0.9844 0.0021 n3
180 A,70.50 0.037961 0.9809 0.0021 n3 A,70.50 0.037962 0.9783 0.0021 n3
180 A,72.99 0.040052 0.9785 0.0019 n3 A,75.50 0.042157 0.9822 0.0021 n3
180 A,75.50 0.042158 0.9805 0.0021 n3 A,78.00 0.044252 0.9832 0.0022 n3
180 A,78.00 0.044255 0.9774 0.0021 n3 A,80.50 0.046339 0.9768 0.0040 n3

Table K.1: Cross section data with normalization from spline model
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K Numerical results: Cross sections and form factors

180 A,80.50 0.046338 0.9807 0.0025 n3 A,80.50 0.046336 0.9801 0.0022 n3
180 A,83.01 0.048418 0.9774 0.0045 n3 A,83.01 0.048418 0.9821 0.0023 n3
180 A,85.51 0.050470 0.9796 0.0046 n3 A,85.51 0.050468 0.9809 0.0027 n3
180 A,85.51 0.050467 0.9733 0.0023 n3 A,85.51 0.050466 0.9736 0.0051 n3
180 A,85.51 0.050467 0.9748 0.0035 n3 A,85.51 0.050468 0.9792 0.0027 n3
180 A,88.00 0.052491 0.9822 0.0051 n3 A,88.00 0.052492 0.9821 0.0023 n3
180 A,90.50 0.054499 0.9748 0.0030 n3 A,90.50 0.054494 0.9804 0.0052 n3
180 A,90.50 0.054495 0.9764 0.0021 n3 A,93.01 0.056484 0.9744 0.0050 n3
180 A,93.01 0.056484 0.9832 0.0031 n3 A,93.01 0.056484 0.9791 0.0030 n3
180 A,95.50 0.058421 0.9802 0.0053 n3 A,95.50 0.058421 0.9799 0.0031 n3
180 A,95.50 0.058422 0.9825 0.0027 n3 A,97.99 0.060326 0.9799 0.0051 n3
180 A,97.99 0.060327 0.9848 0.0030 n3 A,97.99 0.060327 0.9786 0.0030 n3
180 A,97.99 0.060327 0.9796 0.0031 n3 A,97.99 0.060326 0.9819 0.0030 n3
180 A,100.50 0.062204 0.9889 0.0046 n3 A,100.50 0.062204 0.9774 0.0029 n3
180 A,100.50 0.062204 0.9807 0.0025 n3 A,103.00 0.064042 0.9818 0.0048 n3
180 A,103.00 0.064043 0.9773 0.0035 n3 A,103.00 0.064044 0.9807 0.0025 n3
180 A,105.51 0.065843 0.9791 0.0051 n3 A,105.51 0.065844 0.9819 0.0030 n3
180 A,105.51 0.065838 0.9833 0.0026 n3 A,90.50 0.054498 0.9860 0.0028 n3
180 B,20.01 0.003843 0.9951 0.0045 n1n3 B,20.01 0.003839 0.9984 0.0045 n1n3
180 B,20.50 0.004031 0.9942 0.0046 n1n3 B,20.50 0.004028 0.9926 0.0045 n1n3
180 B,20.50 0.004031 1.0001 0.0047 n1n3 B,20.50 0.004031 0.9926 0.0046 n1n3
180 B,21.00 0.004227 0.9954 0.0047 n1n3 B,21.50 0.004426 0.9993 0.0047 n1n3
180 B,21.50 0.004426 0.9952 0.0047 n1n3 B,22.00 0.004626 0.9925 0.0052 n1n3
180 B,22.00 0.004626 0.9897 0.0052 n1n3 B,22.00 0.004626 0.9975 0.0044 n1n3
180 B,22.00 0.004625 0.9947 0.0043 n1n3 B,22.50 0.004833 0.9940 0.0043 n1n3
180 B,22.50 0.004838 0.9891 0.0043 n1n3 B,23.00 0.005051 1.0011 0.0044 n1n3
180 B,23.00 0.005047 1.0012 0.0044 n1n3 B,23.00 0.005046 0.9957 0.0038 n1n3
180 B,23.00 0.005046 0.9957 0.0038 n1n3 B,23.51 0.005271 1.0002 0.0039 n1n3
180 B,23.51 0.005271 0.9985 0.0039 n1n3 B,23.51 0.005272 0.9990 0.0039 n1n3
180 B,23.51 0.005266 0.9961 0.0039 n1n3 B,24.01 0.005487 0.9963 0.0038 n1n3
180 B,24.01 0.005487 0.9939 0.0044 n1n3 B,24.50 0.005708 0.9908 0.0072 n1n3
180 B,24.50 0.005707 0.9934 0.0042 n1n3 B,24.50 0.005707 1.0003 0.0037 n1n3
180 B,24.50 0.005713 0.9956 0.0066 n1n3 B,24.50 0.005707 0.9960 0.0040 n1n3
180 B,24.50 0.005708 0.9925 0.0068 n1n3 B,25.01 0.005940 0.9960 0.0046 n1n3
180 B,25.01 0.005941 0.9965 0.0042 n1n3 B,25.01 0.005941 1.0012 0.0049 n1n3
180 B,25.01 0.005941 0.9994 0.0030 n1n3 B,25.50 0.006168 1.0021 0.0068 n1n3
180 B,25.50 0.006174 0.9922 0.0038 n1n3 B,25.50 0.006174 0.9939 0.0041 n1n3
180 B,25.50 0.006174 0.9919 0.0040 n1n3 B,25.50 0.006168 0.9902 0.0048 n1n3
180 B,26.01 0.006415 0.9906 0.0036 n1n3 B,26.01 0.006415 0.9913 0.0036 n1n3
180 B,26.01 0.006415 0.9939 0.0061 n1n3 B,26.01 0.006413 0.9967 0.0036 n1n3
180 B,26.01 0.006415 0.9921 0.0043 n1n3 B,26.51 0.006646 0.9941 0.0063 n1n3
180 B,26.51 0.006646 0.9963 0.0029 n1n3 B,26.51 0.006646 0.9984 0.0058 n1n3
180 B,26.51 0.006646 0.9982 0.0030 n1n3 B,26.51 0.006646 0.9968 0.0031 n1n3
180 B,26.51 0.006646 0.9926 0.0030 n1n3 B,27.00 0.006895 0.9848 0.0057 n1n3
180 B,27.00 0.006895 0.9922 0.0027 n1n3 B,27.50 0.007144 0.9934 0.0026 n1n3
180 B,28.00 0.007390 0.9926 0.0027 n1n3 B,28.00 0.007390 0.9970 0.0027 n1n3
180 B,28.50 0.007652 0.9941 0.0027 n1n3 B,28.50 0.007652 0.9894 0.0027 n1n3
180 B,29.00 0.007906 0.9919 0.0026 n1n3 B,29.00 0.007911 0.9932 0.0026 n1n3
180 B,29.50 0.008175 0.9933 0.0024 n1n3 B,29.99 0.008431 0.9906 0.0026 n1n3
180 B,29.99 0.008431 0.9913 0.0026 n1n3 B,30.50 0.008713 0.9935 0.0026 n1n3
180 B,30.50 0.008712 0.9902 0.0026 n1n3 B,31.00 0.008981 0.9908 0.0045 n1n3
180 B,31.00 0.008981 0.9966 0.0030 n1n3 B,31.00 0.008980 0.9907 0.0026 n1n3
180 B,31.49 0.009259 0.9851 0.0050 n1n3 B,31.49 0.009259 0.9896 0.0027 n1n3
180 B,32.00 0.009540 0.9998 0.0051 n1n3 B,32.00 0.009539 0.9911 0.0031 n1n3
180 B,32.00 0.009539 0.9876 0.0028 n1n3 B,32.00 0.009545 0.9927 0.0056 n1n3
180 B,32.00 0.009545 0.9897 0.0039 n1n3 B,32.00 0.009545 0.9911 0.0030 n1n3
180 B,32.51 0.009836 0.9960 0.0055 n1n3 B,32.51 0.009836 0.9951 0.0025 n1n3
180 B,32.99 0.010113 0.9897 0.0032 n1n3 B,32.99 0.010113 0.9881 0.0055 n1n3
180 B,32.99 0.010113 0.9926 0.0023 n1n3 B,33.50 0.010410 0.9897 0.0053 n1n3
180 B,33.50 0.010410 0.9935 0.0032 n1n3 B,33.50 0.010410 0.9923 0.0033 n1n3
180 B,34.00 0.010705 1.0015 0.0055 n1n3 B,34.00 0.010705 0.9927 0.0032 n1n3
180 B,34.00 0.010705 0.9915 0.0028 n1n3 B,34.50 0.011003 0.9901 0.0052 n1n3
180 B,34.50 0.011003 0.9921 0.0030 n1n3 B,34.50 0.011003 0.9915 0.0031 n1n3
180 B,34.50 0.011003 0.9915 0.0031 n1n3 B,34.50 0.011003 0.9908 0.0031 n1n3
180 B,35.00 0.011305 0.9901 0.0046 n1n3 B,35.00 0.011305 0.9943 0.0029 n1n3
180 B,35.00 0.011305 0.9940 0.0025 n1n3 B,35.50 0.011609 0.9971 0.0048 n1n3
180 B,35.50 0.011609 0.9904 0.0037 n1n3 B,35.50 0.011609 0.9910 0.0025 n1n3
180 B,36.00 0.011917 0.9897 0.0049 n1n3 B,36.00 0.011917 0.9908 0.0029 n1n3
180 B,36.00 0.011917 0.9931 0.0025 n1n3 B,36.50 0.012228 0.9878 0.0025 n1n3
180 B,36.50 0.012228 0.9882 0.0025 n1n3 B,37.00 0.012542 0.9929 0.0025 n1n3
180 B,37.00 0.012542 0.9921 0.0027 n1n3 B,37.50 0.012859 0.9936 0.0031 n1n3
180 B,32.99 0.010113 0.9972 0.0033 n1n4 B,32.99 0.010113 0.9898 0.0058 n1n4
180 B,32.99 0.010113 0.9983 0.0024 n1n4 B,37.50 0.012859 0.9897 0.0031 n1n4
180 B,37.50 0.012859 0.9996 0.0033 n1n4 B,38.01 0.013185 0.9907 0.0036 n1n4
180 B,38.01 0.013185 0.9936 0.0036 n1n4 B,38.50 0.013502 0.9898 0.0033 n1n4
180 B,38.50 0.013503 0.9905 0.0033 n1n4 B,39.00 0.013828 0.9918 0.0030 n1n4
180 B,39.00 0.013828 0.9882 0.0030 n1n4 B,39.49 0.014151 0.9902 0.0029 n1n4
180 B,39.49 0.014151 0.9952 0.0029 n1n4 B,40.50 0.014823 0.9884 0.0057 n1n4
180 B,40.50 0.014823 0.9944 0.0034 n1n4 B,40.50 0.014823 0.9936 0.0029 n1n4
180 B,41.50 0.015500 0.9912 0.0024 n1n4 B,41.50 0.015500 0.9896 0.0024 n1n4
180 B,42.50 0.016187 0.9909 0.0025 n1n4 B,42.50 0.016188 0.9863 0.0025 n1n4
180 B,43.00 0.016535 0.9824 0.0048 n1n4 B,43.00 0.016535 0.9822 0.0028 n1n4
180 B,43.00 0.016535 0.9859 0.0024 n1n4 B,43.50 0.016885 0.9904 0.0048 n1n4
180 B,43.50 0.016885 0.9879 0.0028 n1n4 B,43.50 0.016886 0.9862 0.0024 n1n4
180 B,44.00 0.017238 0.9823 0.0048 n1n4 B,44.00 0.017238 0.9897 0.0028 n1n4
180 B,44.00 0.017238 0.9896 0.0024 n1n4 B,44.51 0.017600 0.9843 0.0049 n1n4
180 B,44.51 0.017600 0.9832 0.0028 n1n4 B,44.51 0.017600 0.9903 0.0025 n1n4
180 B,45.00 0.017950 0.9874 0.0049 n1n4 B,45.00 0.017950 0.9888 0.0029 n1n4

Table K.1: Cross section data with normalization from spline model
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180 B,45.00 0.017950 0.9848 0.0025 n1n4 B,45.50 0.018310 0.9905 0.0047 n1n4
180 B,45.50 0.018310 0.9809 0.0028 n1n4 B,45.50 0.018310 0.9870 0.0024 n1n4
180 B,46.01 0.018679 0.9877 0.0047 n1n4 B,46.01 0.018679 0.9815 0.0028 n1n4
180 B,46.50 0.019036 0.9828 0.0048 n1n4 B,46.50 0.019036 0.9940 0.0028 n1n5
180 B,46.50 0.019036 0.9909 0.0024 n1n5 B,47.00 0.019402 0.9861 0.0048 n1n5
180 B,47.00 0.019403 0.9950 0.0029 n1n5 B,47.00 0.019403 0.9873 0.0022 n1n5
180 B,47.49 0.019764 0.9851 0.0047 n1n5 B,47.49 0.019764 0.9890 0.0028 n1n5
180 B,47.49 0.019764 0.9844 0.0023 n1n5 B,48.00 0.020142 0.9833 0.0025 n1n5
180 B,48.00 0.020142 0.9831 0.0034 n1n5 B,48.50 0.020514 0.9826 0.0023 n1n5
180 B,48.50 0.020514 0.9851 0.0023 n1n5 B,49.00 0.020889 0.9790 0.0023 n1n5
180 B,49.00 0.020889 0.9847 0.0048 n1n5 B,49.00 0.020889 0.9874 0.0026 n1n5
180 B,49.50 0.021266 0.9792 0.0023 n1n5 B,49.50 0.021266 0.9858 0.0033 n1n5
180 B,60.00 0.029547 0.9744 0.0028 n1n5 B,60.00 0.029547 0.9754 0.0028 n1n5
180 C,90.50 0.054477 0.9822 0.0038 n2n4 C,90.50 0.054477 0.9765 0.0066 n2n4
180 C,90.50 0.054479 0.9805 0.0027 n2n4 C,90.50 0.054479 0.9710 0.0035 n2n4
180 C,75.49 0.042134 0.9837 0.0030 n2n4 C,75.49 0.042133 0.9853 0.0030 n2n4
180 C,77.98 0.044216 0.9807 0.0030 n2n4 C,77.98 0.044217 0.9755 0.0030 n2n4
180 C,80.49 0.046310 0.9837 0.0036 n2n4 C,80.49 0.046311 0.9817 0.0029 n2n4
180 C,82.98 0.048370 0.9796 0.0029 n2n4 C,82.98 0.048369 0.9796 0.0029 n2n4
180 C,88.01 0.052480 0.9807 0.0061 n2n4 C,88.01 0.052482 0.9784 0.0035 n2n4
180 C,88.01 0.052481 0.9772 0.0031 n2n4 C,93.00 0.056455 0.9765 0.0026 n2n4
180 C,93.00 0.056455 0.9805 0.0026 n2n4 C,98.01 0.060323 0.9781 0.0027 n2n4
180 C,98.01 0.060322 0.9804 0.0027 n2n4 C,100.50 0.062190 0.9813 0.0053 n2n4
180 C,100.50 0.062188 0.9835 0.0027 n2n4 C,103.00 0.064024 0.9824 0.0054 n2n4
180 C,103.00 0.064026 0.9811 0.0031 n2n4 C,103.00 0.064025 0.9733 0.0027 n2n4
180 C,105.54 0.065847 0.9771 0.0055 n2n4 C,105.54 0.065846 0.9858 0.0032 n2n4
180 C,105.54 0.065846 0.9816 0.0032 n2n4 C,108.04 0.067596 0.9847 0.0056 n2n4
180 C,108.04 0.067595 0.9788 0.0032 n2n4 C,108.04 0.067596 0.9802 0.0028 n2n4
180 C,110.51 0.069275 0.9823 0.0033 n2n4 C,110.51 0.069275 0.9823 0.0029 n2n4
180 C,113.06 0.070965 0.9773 0.0058 n2n4 C,113.06 0.070963 0.9797 0.0034 n2n4
180 C,113.06 0.070962 0.9824 0.0029 n2n4 C,115.56 0.072567 0.9846 0.0058 n2n4
180 C,115.56 0.072568 0.9817 0.0035 n2n4 C,117.94 0.074049 0.9795 0.0060 n2n4
180 C,117.94 0.074049 0.9878 0.0036 n2n5 C,117.94 0.074049 0.9893 0.0031 n2n5
180 C,120.49 0.075577 0.9848 0.0062 n2n5 C,123.08 0.077078 0.9885 0.0061 n2n5
180 C,123.08 0.077077 0.9880 0.0037 n2n5 C,123.08 0.077078 0.9891 0.0029 n2n5
180 C,125.59 0.078472 0.9926 0.0033 n2n5 C,125.59 0.078472 0.9952 0.0045 n2n5
180 C,128.02 0.079770 0.9891 0.0030 n2n5 C,128.02 0.079768 0.9922 0.0030 n2n5
180 C,130.55 0.081062 0.9916 0.0031 n2n5 C,130.55 0.081064 0.9951 0.0065 n2n5
180 C,130.55 0.081062 0.9912 0.0035 n2n5 C,132.95 0.082233 0.9868 0.0032 n2n5
180 C,132.95 0.082231 0.9866 0.0045 n2n5 C,135.53 0.083428 0.9915 0.0032 n2n5
180 C,135.53 0.083428 0.9855 0.0032 n2n5
315 A,43.00 0.047935 0.9789 0.0027 n9 A,43.00 0.047930 0.9762 0.0030 n9
315 A,43.00 0.047932 0.9728 0.0027 n9 A,43.00 0.047940 0.9746 0.0027 n9
315 A,43.00 0.047939 0.9757 0.0029 n9 A,43.00 0.047929 0.9742 0.0027 n9
315 A,43.00 0.047922 0.9698 0.0027 n9 A,43.00 0.047933 0.9778 0.0024 n9
315 A,43.00 0.047938 0.9765 0.0024 n9 A,43.00 0.047925 0.9780 0.0024 n9
315 A,43.00 0.047925 0.9758 0.0024 n9 A,43.00 0.047927 0.9731 0.0024 n9
315 A,43.00 0.047929 0.9783 0.0024 n9 A,43.00 0.047915 0.9757 0.0024 n9
315 A,48.00 0.058153 0.9777 0.0024 n9 A,48.00 0.058160 0.9754 0.0025 n9
315 A,48.00 0.058150 0.9739 0.0025 n9 A,48.00 0.058152 0.9770 0.0025 n9
315 A,48.00 0.058158 0.9708 0.0025 n9 A,48.00 0.058154 0.9773 0.0025 n9
315 A,53.01 0.068797 0.9726 0.0024 n9 A,53.01 0.068790 0.9731 0.0024 n9
315 A,53.01 0.068804 0.9707 0.0024 n9 A,53.01 0.068808 0.9714 0.0024 n9
315 A,58.00 0.079705 0.9671 0.0030 n9 A,58.00 0.079719 0.9718 0.0025 n9
315 A,58.00 0.079729 0.9711 0.0025 n9 A,63.00 0.090777 0.9681 0.0027 n9
315 A,63.00 0.090771 0.9725 0.0027 n9 A,68.01 0.101850 0.9746 0.0030 n9
315 A,73.01 0.112804 0.9689 0.0033 n9 A,73.01 0.112786 0.9730 0.0033 n9
315 A,78.00 0.123531 0.9765 0.0028 n9 A,78.00 0.123529 0.9752 0.0028 n9
315 A,83.01 0.134023 0.9709 0.0033 n9 A,83.01 0.134023 0.9740 0.0034 n9
315 A,82.99 0.133976 0.9721 0.0033 n9 A,82.99 0.133994 0.9699 0.0033 n9
315 A,88.00 0.144119 0.9749 0.0033 n9 A,88.00 0.144115 0.9752 0.0033 n9
315 A,40.50 0.042987 0.9720 0.0035 n7n9 A,40.50 0.042983 0.9780 0.0035 n7n9
315 A,40.50 0.042989 0.9764 0.0037 n7n9 A,40.50 0.042984 0.9776 0.0028 n7n9
315 A,40.50 0.042983 0.9787 0.0028 n7n9 A,40.50 0.042983 0.9778 0.0028 n7n9
315 A,40.50 0.042988 0.9777 0.0028 n7n9 A,40.50 0.042987 0.9763 0.0025 n7n9
315 A,40.50 0.042986 0.9785 0.0025 n7n9 A,45.51 0.052994 0.9796 0.0024 n7n9
315 A,45.51 0.052988 0.9777 0.0024 n7n9 A,45.51 0.052988 0.9786 0.0024 n7n9
315 A,45.51 0.052995 0.9778 0.0024 n7n9 A,45.51 0.052980 0.9731 0.0024 n7n9
315 A,45.51 0.052988 0.9751 0.0024 n7n9 A,50.50 0.063415 0.9729 0.0023 n7n9
315 A,50.50 0.063413 0.9732 0.0023 n7n9 A,50.50 0.063412 0.9752 0.0023 n7n9
315 A,50.50 0.063413 0.9760 0.0022 n7n9 A,55.50 0.074213 0.9695 0.0021 n7n9
315 A,55.50 0.074219 0.9712 0.0021 n7n9 A,55.50 0.074214 0.9707 0.0025 n7n9
315 A,55.50 0.074221 0.9728 0.0025 n7n9 A,60.50 0.085226 0.9681 0.0026 n7n9
315 A,60.50 0.085213 0.9732 0.0027 n7n9 A,60.50 0.085216 0.9702 0.0026 n7n9
315 A,60.50 0.085221 0.9682 0.0027 n7n9 A,65.51 0.096314 0.9709 0.0031 n7n9
315 A,70.50 0.107282 0.9710 0.0034 n7n9 A,70.50 0.107279 0.9704 0.0034 n7n9
315 A,75.50 0.118153 0.9709 0.0035 n7n9 A,75.50 0.118154 0.9715 0.0035 n7n9
315 A,80.51 0.128804 0.9738 0.0033 n7n9 A,85.51 0.139118 0.9714 0.0033 n7n9
315 A,80.50 0.128788 0.9690 0.0032 n7n9 A,80.50 0.128784 0.9741 0.0033 n7n9
315 A,85.49 0.139068 0.9742 0.0033 n7n9 A,85.49 0.139073 0.9724 0.0033 n7n9
315 B,19.50 0.011079 0.9858 0.0047 n6n9 B,19.99 0.011631 0.9873 0.0031 n6n9
315 B,19.99 0.011630 0.9881 0.0031 n6n9 B,20.50 0.012217 0.9905 0.0032 n6n9
315 B,20.50 0.012218 0.9900 0.0032 n6n9 B,21.00 0.012806 0.9844 0.0033 n6n9
315 B,21.00 0.012806 0.9927 0.0033 n6n9 B,21.50 0.013406 0.9890 0.0033 n6n9
315 B,21.50 0.013406 0.9899 0.0031 n6n9 B,21.50 0.013406 0.9923 0.0032 n6n9
315 B,22.00 0.014019 0.9850 0.0032 n6n9 B,22.00 0.014018 0.9890 0.0032 n6n9
315 B,22.50 0.014643 0.9860 0.0033 n6n9 B,22.50 0.014643 0.9877 0.0033 n6n9
315 B,22.50 0.014642 0.9903 0.0031 n6n9 B,22.50 0.014643 0.9902 0.0031 n6n9
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K Numerical results: Cross sections and form factors

315 B,23.00 0.015280 0.9917 0.0032 n6n9 B,23.00 0.015280 0.9911 0.0032 n6n9
315 B,23.51 0.015941 0.9897 0.0033 n6n9 B,23.51 0.015941 0.9908 0.0033 n6n9
315 B,23.51 0.015941 0.9863 0.0030 n6n9 B,23.51 0.015941 0.9895 0.0030 n6n9
315 B,24.00 0.016587 0.9870 0.0030 n6n9 B,24.00 0.016588 0.9899 0.0030 n6n9
315 B,24.00 0.016587 0.9897 0.0030 n6n9 B,24.00 0.016588 0.9877 0.0030 n6n9
315 B,24.50 0.017259 0.9821 0.0031 n6n9 B,24.50 0.017259 0.9846 0.0031 n6n9
315 B,24.50 0.017259 0.9847 0.0026 n6n9 B,24.50 0.017259 0.9838 0.0026 n6n9
315 B,25.01 0.017956 0.9834 0.0031 n6n9 B,25.01 0.017956 0.9871 0.0031 n6n9
315 B,25.01 0.017957 0.9852 0.0035 n6n9 B,25.50 0.018635 0.9886 0.0030 n6n9
315 B,25.50 0.018636 0.9873 0.0030 n6n9 B,25.50 0.018636 0.9868 0.0030 n6n9
315 B,25.50 0.018636 0.9837 0.0031 n6n9 B,26.00 0.019341 0.9917 0.0031 n6n9
315 B,26.00 0.019341 0.9858 0.0031 n6n9 B,26.51 0.020071 0.9861 0.0030 n6n9
315 B,26.51 0.020071 0.9877 0.0031 n6n9 B,27.00 0.020783 0.9882 0.0034 n6n9
315 B,27.50 0.021520 0.9872 0.0032 n6n9 B,28.00 0.022268 0.9870 0.0033 n6n9
315 B,28.00 0.022268 0.9909 0.0033 n6n9 B,28.50 0.023026 0.9837 0.0032 n6n9
315 B,28.50 0.023026 0.9878 0.0032 n6n9 B,29.00 0.023795 0.9922 0.0033 n6n9
315 B,29.00 0.023795 0.9894 0.0033 n6n9 B,29.50 0.024573 0.9876 0.0031 n6n9
315 B,29.50 0.024584 0.9899 0.0031 n6n9 B,30.01 0.025378 0.9887 0.0033 n6n9
315 B,30.50 0.026159 0.9810 0.0033 n6n9 B,30.50 0.026159 0.9811 0.0033 n6n9
315 B,31.00 0.027001 0.9758 0.0033 n6n9 B,30.01 0.025378 0.9731 0.0029 n6n9
315 B,30.01 0.025377 0.9773 0.0030 n6n9 B,30.50 0.026161 0.9807 0.0031 n6n9
315 B,30.50 0.026171 0.9846 0.0031 n6n9 B,31.00 0.026968 0.9831 0.0031 n6n9
315 B,31.00 0.026979 0.9822 0.0031 n6n9 B,31.51 0.027813 0.9793 0.0032 n6n9
315 B,31.51 0.027814 0.9832 0.0032 n6n9 B,32.00 0.028612 0.9806 0.0026 n6n9
315 B,32.00 0.028645 0.9861 0.0032 n6n9 B,32.00 0.028622 0.9819 0.0032 n6n9
315 B,32.51 0.029477 0.9810 0.0025 n6n9 B,33.01 0.030321 0.9827 0.0024 n6n9
315 B,33.50 0.031180 0.9793 0.0026 n6n9 B,33.50 0.031180 0.9802 0.0026 n6n9
315 B,34.00 0.032018 0.9804 0.0027 n6n9 B,34.00 0.032018 0.9826 0.0027 n6n9
315 B,35.00 0.033784 0.9761 0.0022 n6n9 B,35.00 0.033784 0.9786 0.0022 n6n9
315 B,35.51 0.034676 0.9806 0.0021 n6n9 B,35.51 0.034676 0.9759 0.0021 n6n9
315 B,36.00 0.035550 0.9801 0.0025 n6n9 B,36.00 0.035550 0.9796 0.0022 n6n9
315 B,36.50 0.036479 0.9739 0.0037 n6n9 B,37.00 0.037391 0.9780 0.0035 n6n9
315 B,37.00 0.037391 0.9759 0.0035 n6n9 B,38.01 0.039253 0.9785 0.0026 n6n9
315 B,34.50 0.032913 0.9751 0.0022 n6n9 B,38.01 0.039253 0.9798 0.0026 n6n9
315 B,38.50 0.040169 0.9838 0.0024 n6n9 B,38.50 0.040168 0.9797 0.0024 n6n9
315 B,39.00 0.041082 0.9758 0.0022 n6n9 B,39.00 0.041109 0.9762 0.0022 n6n9
315 B,39.51 0.042074 0.9804 0.0022 n6n9 B,39.51 0.042076 0.9787 0.0022 n6n9
315 B,40.00 0.043011 0.9811 0.0022 n6n9 B,40.00 0.043010 0.9779 0.0022 n6n9
315 B,40.50 0.043972 0.9732 0.0021 n6n9 B,41.01 0.044957 0.9749 0.0021 n6n9
315 B,41.01 0.044957 0.9760 0.0021 n6n9 B,41.50 0.045912 0.9749 0.0021 n6n9
315 B,41.50 0.045912 0.9767 0.0021 n6n9 B,42.00 0.046891 0.9803 0.0021 n6n9
315 B,42.00 0.046892 0.9768 0.0021 n6n9 B,42.50 0.047878 0.9734 0.0021 n6n9
315 B,42.50 0.047877 0.9749 0.0021 n6n9 B,43.00 0.048869 0.9752 0.0018 n6n9
315 B,43.00 0.048869 0.9790 0.0018 n6n9 B,43.00 0.048869 0.9769 0.0018 n6n9
315 C,73.01 0.112760 0.9761 0.0032 n8n9 C,73.01 0.112766 0.9763 0.0030 n8n9
315 C,73.01 0.112756 0.9773 0.0030 n8n9 C,90.50 0.149044 0.9727 0.0042 n8n9
315 C,73.01 0.112755 0.9762 0.0029 n8n9 C,73.01 0.112767 0.9751 0.0028 n8n9
315 C,90.50 0.149041 0.9726 0.0040 n8n9 C,90.50 0.149034 0.9651 0.0037 n8n9
315 C,90.50 0.149035 0.9710 0.0040 n8n9 C,90.50 0.149034 0.9702 0.0039 n8n9
315 C,90.50 0.149041 0.9711 0.0040 n8n9 C,90.50 0.149042 0.9757 0.0040 n8n9
315 C,90.50 0.149043 0.9668 0.0032 n8n9 C,90.50 0.149049 0.9719 0.0032 n8n9
315 C,90.50 0.149051 0.9697 0.0031 n8n9 C,90.50 0.149048 0.9710 0.0031 n8n9
315 C,90.50 0.149049 0.9712 0.0037 n8n9 C,90.50 0.149041 0.9705 0.0031 n8n9
315 C,74.54 0.116073 0.9705 0.0021 n8n9 C,75.49 0.118103 0.9722 0.0022 n8n9
315 C,75.49 0.118106 0.9732 0.0022 n8n9 C,80.49 0.128743 0.9720 0.0024 n8n9
315 C,90.50 0.149044 0.9669 0.0032 n8n9 C,80.49 0.128742 0.9694 0.0024 n8n9
315 C,83.02 0.134032 0.9654 0.0025 n8n9 C,83.02 0.134039 0.9660 0.0026 n8n9
315 C,85.51 0.139110 0.9684 0.0025 n8n9 C,85.51 0.139110 0.9676 0.0025 n8n9
315 C,88.01 0.144149 0.9689 0.0026 n8n9 C,88.01 0.144149 0.9660 0.0026 n8n9
315 C,90.50 0.149022 0.9731 0.0027 n8n9 C,90.50 0.149021 0.9684 0.0027 n8n9
315 C,93.00 0.153847 0.9651 0.0026 n8n9 C,95.49 0.158494 0.9693 0.0027 n8n9
315 C,98.01 0.163125 0.9670 0.0028 n8n9 C,98.01 0.163129 0.9686 0.0027 n8n9
315 C,100.50 0.167543 0.9752 0.0028 n8n9 C,103.00 0.171884 0.9692 0.0029 n8n9
315 C,103.00 0.171883 0.9703 0.0030 n8n9 C,105.54 0.176131 0.9727 0.0026 n8n9
315 C,105.54 0.176133 0.9754 0.0026 n8n9 C,105.54 0.176126 0.9736 0.0026 n8n9
315 C,108.04 0.180212 0.9726 0.0032 n8n9 C,108.04 0.180214 0.9731 0.0032 n8n9
315 C,110.53 0.184096 0.9738 0.0029 n8n9 C,110.53 0.184092 0.9706 0.0029 n8n9
315 C,113.06 0.187956 0.9711 0.0029 n8n9 C,113.06 0.187951 0.9728 0.0030 n8n9
315 C,115.56 0.191581 0.9733 0.0031 n8n9 C,115.56 0.191578 0.9767 0.0031 n8n9
315 C,117.94 0.194941 0.9733 0.0032 n8n9 C,117.94 0.194943 0.9733 0.0032 n8n9
315 C,120.49 0.198371 0.9764 0.0033 n8n9 C,120.49 0.198376 0.9789 0.0033 n8n9
315 C,123.08 0.201723 0.9765 0.0034 n8n9 C,123.08 0.201725 0.9766 0.0034 n8n9
315 C,125.59 0.204811 0.9844 0.0035 n8n9 C,125.59 0.204807 0.9803 0.0035 n8n9
315 C,130.55 0.210517 0.9805 0.0035 n8n9 C,130.55 0.210517 0.9813 0.0035 n8n9
315 C,132.95 0.213074 0.9785 0.0034 n8n9 C,132.95 0.213074 0.9784 0.0034 n8n9
450 A,33.01 0.058555 0.9648 0.0070 n13 A,33.01 0.058565 0.9695 0.0066 n13
450 A,33.01 0.058571 0.9780 0.0066 n13 A,38.00 0.075818 0.9729 0.0076 n13
450 A,38.00 0.075811 0.9764 0.0060 n13 A,38.00 0.075812 0.9739 0.0060 n13
450 A,38.00 0.075795 0.9754 0.0060 n13 A,43.00 0.094317 0.9729 0.0045 n13
450 A,43.00 0.094323 0.9757 0.0046 n13 A,43.00 0.094316 0.9764 0.0046 n13
450 A,43.00 0.094335 0.9730 0.0046 n13 A,43.00 0.094320 0.9758 0.0035 n13
450 A,43.00 0.094320 0.9737 0.0048 n13 A,43.00 0.094335 0.9771 0.0061 n13
450 A,43.00 0.094337 0.9728 0.0063 n13 A,43.00 0.094322 0.9710 0.0057 n13
450 A,43.00 0.094331 0.9739 0.0058 n13 A,43.00 0.094325 0.9804 0.0053 n13
450 A,43.00 0.094328 0.9750 0.0052 n13 A,43.00 0.094336 0.9745 0.0052 n13
450 A,43.00 0.094323 0.9747 0.0059 n13 A,48.00 0.113689 0.9731 0.0045 n13
450 A,48.00 0.113679 0.9727 0.0045 n13 A,48.00 0.113679 0.9682 0.0045 n13
450 A,48.00 0.113688 0.9650 0.0045 n13 A,48.00 0.113689 0.9725 0.0035 n13
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K.1 Cross sections

450 A,53.01 0.133564 0.9613 0.0042 n13 A,53.01 0.133565 0.9682 0.0042 n13
450 A,53.01 0.133566 0.9639 0.0033 n13 A,58.00 0.153650 0.9638 0.0045 n13
450 A,58.00 0.153654 0.9660 0.0038 n13 A,63.00 0.173672 0.9617 0.0047 n13
450 A,63.00 0.173678 0.9633 0.0039 n13 A,68.01 0.193443 0.9629 0.0031 n13
450 A,73.01 0.212685 0.9629 0.0036 n13 A,73.01 0.212686 0.9641 0.0036 n13
450 A,78.00 0.231281 0.9662 0.0037 n13 A,78.00 0.231300 0.9672 0.0037 n13
450 A,83.01 0.249254 0.9690 0.0033 n13 A,83.01 0.249240 0.9728 0.0047 n13
450 A,88.00 0.266281 0.9754 0.0037 n13 A,88.00 0.266272 0.9696 0.0037 n13
450 A,90.50 0.274462 0.9698 0.0029 n14 A,90.50 0.274464 0.9669 0.0028 n14
450 A,35.51 0.067030 0.9724 0.0067 n11n13 A,35.51 0.067012 0.9713 0.0067 n11n13
450 A,35.51 0.067027 0.9678 0.0064 n11n13 A,35.51 0.067023 0.9762 0.0065 n11n13
450 A,40.50 0.084873 0.9738 0.0054 n11n13 A,40.50 0.084858 0.9812 0.0054 n11n13
450 A,40.50 0.084881 0.9806 0.0054 n11n13 A,40.50 0.084869 0.9806 0.0054 n11n13
450 A,40.50 0.084869 0.9755 0.0039 n11n13 A,40.50 0.084878 0.9807 0.0039 n11n13
450 A,45.51 0.103943 0.9676 0.0051 n11n13 A,45.51 0.103941 0.9729 0.0051 n11n13
450 A,45.51 0.103924 0.9724 0.0040 n11n13 A,45.51 0.103943 0.9692 0.0048 n11n13
450 A,45.51 0.103942 0.9736 0.0048 n11n13 A,50.51 0.123557 0.9710 0.0033 n11n13
450 A,50.51 0.123560 0.9628 0.0041 n11n13 A,50.51 0.123568 0.9691 0.0041 n11n13
450 A,55.50 0.143516 0.9680 0.0034 n11n13 A,55.50 0.143546 0.9652 0.0031 n11n13
450 A,55.50 0.143538 0.9638 0.0039 n11n13 A,55.50 0.143522 0.9660 0.0039 n11n13
450 A,60.50 0.163616 0.9622 0.0036 n11n13 A,60.50 0.163599 0.9630 0.0036 n11n13
450 A,65.49 0.183467 0.9630 0.0039 n11n13 A,65.49 0.183466 0.9612 0.0038 n11n13
450 A,70.50 0.202996 0.9644 0.0034 n11n13 A,70.50 0.203027 0.9605 0.0034 n11n13
450 A,75.50 0.221986 0.9649 0.0043 n11n13 A,75.50 0.221992 0.9652 0.0035 n11n13
450 A,80.50 0.240280 0.9643 0.0039 n11n13 A,80.50 0.240264 0.9690 0.0039 n11n13
450 A,85.51 0.257797 0.9695 0.0035 n11n13 A,85.51 0.257815 0.9712 0.0040 n11n13
450 A,90.50 0.274397 0.9736 0.0038 n11n13 A,90.50 0.274406 0.9741 0.0036 n11n13
450 B,16.00 0.015218 0.9791 0.0065 n10n13 B,16.00 0.015218 0.9865 0.0066 n10n13
450 B,16.00 0.015218 0.9770 0.0065 n10n13 B,16.00 0.015217 0.9770 0.0065 n10n13
450 B,16.50 0.016173 0.9732 0.0063 n10n13 B,16.50 0.016171 0.9791 0.0064 n10n13
450 B,16.50 0.016171 0.9801 0.0075 n10n13 B,16.50 0.016172 0.9810 0.0060 n10n13
450 B,17.01 0.017172 0.9765 0.0060 n10n13 B,17.01 0.017171 0.9818 0.0060 n10n13
450 B,17.01 0.017172 0.9820 0.0054 n10n13 B,17.01 0.017171 0.9848 0.0054 n10n13
450 B,17.50 0.018157 0.9848 0.0055 n10n13 B,17.50 0.018157 0.9879 0.0055 n10n13
450 B,18.00 0.019185 0.9779 0.0042 n10n13 B,18.49 0.020220 0.9786 0.0042 n10n13
450 B,18.49 0.020221 0.9785 0.0048 n10n13 B,18.49 0.020219 0.9809 0.0048 n10n13
450 B,19.00 0.021322 0.9788 0.0049 n10n13 B,19.00 0.021322 0.9813 0.0049 n10n13
450 B,19.50 0.022428 0.9804 0.0041 n10n13 B,19.50 0.022429 0.9802 0.0046 n10n13
450 B,20.01 0.023583 0.9838 0.0059 n10n13 B,20.01 0.023583 0.9789 0.0060 n10n13
450 B,20.50 0.024714 0.9768 0.0055 n10n13 B,20.50 0.024713 0.9830 0.0056 n10n13
450 B,21.00 0.025890 0.9845 0.0051 n10n13 B,21.00 0.025890 0.9808 0.0050 n10n13
450 B,21.50 0.027093 0.9757 0.0050 n10n13 B,21.50 0.027092 0.9781 0.0057 n10n13
450 B,21.50 0.027094 0.9764 0.0049 n10n13 B,21.50 0.027093 0.9768 0.0049 n10n13
450 B,22.00 0.028317 0.9780 0.0039 n10n13 B,22.50 0.029566 0.9787 0.0047 n10n13
450 B,22.50 0.029568 0.9836 0.0046 n10n13 B,22.50 0.029565 0.9819 0.0043 n10n13
450 B,22.50 0.029566 0.9824 0.0044 n10n13 B,23.00 0.030836 0.9786 0.0043 n10n13
450 B,23.00 0.030836 0.9738 0.0043 n10n13 B,23.51 0.032158 0.9828 0.0034 n10n13
450 B,23.51 0.032158 0.9803 0.0032 n10n13 B,24.00 0.033445 0.9781 0.0040 n10n13
450 B,24.00 0.033446 0.9765 0.0040 n10n13 B,24.00 0.033445 0.9779 0.0040 n10n13
450 B,24.00 0.033444 0.9812 0.0040 n10n13 B,24.50 0.034781 0.9812 0.0032 n10n13
450 B,24.50 0.034783 0.9816 0.0032 n10n13 B,24.50 0.034782 0.9776 0.0029 n10n13
450 B,25.01 0.036170 0.9786 0.0037 n10n13 B,25.01 0.036170 0.9798 0.0037 n10n13
450 B,25.50 0.037518 0.9800 0.0042 n10n13 B,25.50 0.037522 0.9814 0.0035 n10n13
450 B,26.00 0.038920 0.9795 0.0034 n10n13 B,26.00 0.038919 0.9763 0.0034 n10n13
450 B,26.49 0.040309 0.9806 0.0043 n10n13 B,26.49 0.040308 0.9811 0.0035 n10n13
450 B,27.00 0.041777 0.9815 0.0034 n10n13 B,27.00 0.041777 0.9768 0.0034 n10n13
450 B,27.50 0.043239 0.9784 0.0028 n10n13 B,28.00 0.044714 0.9795 0.0030 n10n13
450 B,28.00 0.044717 0.9755 0.0030 n10n13 B,28.50 0.046213 0.9776 0.0031 n10n13
450 B,28.50 0.046214 0.9780 0.0031 n10n13 B,29.00 0.047729 0.9773 0.0036 n10n13
450 B,29.00 0.047730 0.9781 0.0030 n10n13 B,29.50 0.049261 0.9791 0.0030 n10n13
450 B,29.50 0.049265 0.9806 0.0030 n10n13 B,29.99 0.050785 0.9756 0.0031 n10n13
450 B,29.99 0.050784 0.9748 0.0031 n10n13 B,30.50 0.052405 0.9768 0.0028 n10n13
450 B,30.50 0.052405 0.9792 0.0038 n10n13 B,31.00 0.053971 0.9741 0.0028 n10n13
450 B,31.00 0.053972 0.9769 0.0034 n10n13 B,31.51 0.055632 0.9730 0.0029 n10n13
450 B,32.00 0.057214 0.9744 0.0030 n10n13 B,31.51 0.055633 0.9754 0.0030 n10n13
450 B,32.00 0.057196 0.9766 0.0029 n10n13 B,32.50 0.058878 0.9751 0.0033 n10n14
450 B,32.50 0.058852 0.9748 0.0032 n10n14 B,33.01 0.060538 0.9741 0.0032 n10n14
450 B,33.01 0.060538 0.9711 0.0032 n10n14 B,33.50 0.062169 0.9752 0.0033 n10n14
450 B,33.50 0.062168 0.9756 0.0033 n10n14 B,34.00 0.063852 0.9708 0.0030 n10n14
450 B,34.00 0.063853 0.9711 0.0030 n10n14 B,34.50 0.065549 0.9725 0.0029 n10n14
450 B,34.50 0.065547 0.9729 0.0029 n10n14 B,35.00 0.067257 0.9742 0.0027 n10n14
450 B,35.50 0.068982 0.9753 0.0029 n10n14 B,35.50 0.069029 0.9757 0.0029 n10n14
450 B,36.00 0.070747 0.9728 0.0029 n10n14 B,36.00 0.070721 0.9763 0.0029 n10n14
450 B,40.00 0.085110 0.9693 0.0025 n10n14 B,40.00 0.085111 0.9686 0.0025 n10n14
450 B,32.00 0.057214 0.9769 0.0037 n10n15 B,32.00 0.057196 0.9786 0.0035 n10n15
450 B,32.00 0.057194 0.9806 0.0027 n10n15 B,36.50 0.072519 0.9645 0.0034 n10n15
450 B,36.50 0.072519 0.9668 0.0034 n10n15 B,37.00 0.074283 0.9662 0.0033 n10n15
450 B,37.00 0.074283 0.9650 0.0033 n10n15 B,37.50 0.076059 0.9713 0.0029 n10n15
450 B,37.50 0.076061 0.9713 0.0029 n10n15 B,37.99 0.077811 0.9678 0.0027 n10n15
450 B,37.99 0.077810 0.9710 0.0028 n10n15 B,38.50 0.079645 0.9691 0.0020 n10n15
450 B,39.00 0.081459 0.9690 0.0020 n10n15 B,39.49 0.083246 0.9720 0.0025 n10n15
450 B,39.49 0.083246 0.9653 0.0068 n10n15 B,39.49 0.083244 0.9682 0.0025 n10n15
450 B,40.00 0.085110 0.9691 0.0025 n10n15 B,40.00 0.085111 0.9714 0.0025 n10n15
450 B,40.50 0.086952 0.9725 0.0025 n10n15 B,40.50 0.086952 0.9721 0.0025 n10n15
450 B,41.01 0.088843 0.9706 0.0025 n10n15 B,41.01 0.088843 0.9701 0.0025 n10n15
450 B,41.49 0.090632 0.9710 0.0025 n10n15 B,41.49 0.090633 0.9683 0.0025 n10n15
450 B,42.00 0.092539 0.9718 0.0025 n10n15 B,42.00 0.092540 0.9707 0.0026 n10n15
450 B,42.50 0.094419 0.9710 0.0024 n10n15 B,42.50 0.094418 0.9721 0.0023 n10n15
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K Numerical results: Cross sections and form factors

450 B,43.00 0.096307 0.9712 0.0026 n10n15 B,43.00 0.096307 0.9693 0.0026 n10n15
450 B,43.50 0.098203 0.9688 0.0026 n10n15 B,43.50 0.098205 0.9680 0.0026 n10n15
450 B,44.00 0.100105 0.9682 0.0026 n10n15 B,44.00 0.100107 0.9714 0.0026 n10n15
450 B,44.51 0.102055 0.9683 0.0026 n10n15 B,44.51 0.102055 0.9704 0.0026 n10n15
450 B,45.00 0.103939 0.9704 0.0026 n10n15 B,45.00 0.103940 0.9731 0.0027 n10n15
450 B,45.50 0.105866 0.9702 0.0024 n10n15 B,45.50 0.105862 0.9731 0.0024 n10n15
450 B,46.01 0.107833 0.9711 0.0024 n10n15 B,46.01 0.107832 0.9716 0.0024 n10n15
450 B,46.50 0.109733 0.9713 0.0024 n10n15 B,46.50 0.109733 0.9692 0.0024 n10n15
450 B,47.00 0.111677 0.9699 0.0024 n10n15 B,47.00 0.111678 0.9685 0.0024 n10n15
450 B,47.51 0.113663 0.9667 0.0025 n10n15 B,47.51 0.113662 0.9672 0.0025 n10n15
450 B,48.00 0.115581 0.9691 0.0029 n10n15 B,48.00 0.115582 0.9659 0.0029 n10n15
450 B,48.50 0.117543 0.9656 0.0029 n10n15 B,48.50 0.117544 0.9642 0.0029 n10n15
450 C,73.01 0.212676 0.9694 0.0042 n12n15 C,73.01 0.212694 0.9689 0.0040 n12n15
450 C,75.49 0.221949 0.9638 0.0034 n12n15 C,75.49 0.221938 0.9669 0.0034 n12n15
450 C,75.49 0.221949 0.9657 0.0032 n12n15 C,75.49 0.221941 0.9614 0.0032 n12n15
450 C,77.98 0.231289 0.9648 0.0031 n12n15 C,77.98 0.231277 0.9627 0.0031 n12n15
450 C,80.49 0.240258 0.9633 0.0031 n12n15 C,80.49 0.240260 0.9689 0.0032 n12n15
450 C,83.02 0.249310 0.9640 0.0024 n12n15 C,85.51 0.257838 0.9698 0.0024 n12n15
450 C,88.01 0.266320 0.9707 0.0032 n12n15 C,88.01 0.266331 0.9676 0.0086 n12n15
450 C,88.01 0.266324 0.9655 0.0031 n12n15 C,90.50 0.274445 0.9740 0.0032 n12n15
450 C,90.50 0.274434 0.9770 0.0032 n12n15 C,93.00 0.282468 0.9746 0.0033 n12n15
450 C,95.49 0.290101 0.9779 0.0033 n12n15 C,95.49 0.290115 0.9791 0.0033 n12n15
450 C,98.01 0.297722 0.9774 0.0034 n12n15 C,98.01 0.297708 0.9792 0.0034 n12n15
450 C,100.50 0.304881 0.9829 0.0034 n12n15 C,100.50 0.304878 0.9869 0.0035 n12n15
450 C,103.00 0.311934 0.9821 0.0032 n12n15 C,103.00 0.311928 0.9884 0.0032 n12n15
450 C,105.54 0.318730 0.9926 0.0036 n12n15 C,105.54 0.318734 0.9912 0.0036 n12n15
450 C,108.04 0.325279 0.9893 0.0042 n12n15 C,108.04 0.325293 0.9906 0.0036 n12n15
450 C,110.53 0.331453 0.9922 0.0036 n12n15 C,110.53 0.331457 0.9909 0.0037 n12n15
450 C,113.06 0.337572 0.9927 0.0038 n12n15 C,113.06 0.337586 0.9919 0.0038 n12n15
450 C,115.56 0.343296 0.9987 0.0038 n12n15 C,115.56 0.343294 1.0019 0.0039 n12n15
450 C,117.94 0.348571 0.9996 0.0036 n12n15 C,117.94 0.348570 1.0012 0.0036 n12n15
450 C,120.49 0.353927 1.0013 0.0037 n12n15 C,120.49 0.353925 1.0079 0.0037 n12n15
450 C,123.08 0.359153 1.0018 0.0037 n12n15 C,123.08 0.359149 1.0057 0.0037 n12n15
450 C,125.41 0.363583 1.0088 0.0037 n12n15 C,125.41 0.363581 1.0094 0.0037 n12n15
450 C,128.02 0.368375 1.0036 0.0038 n12n15 C,128.02 0.368376 1.0050 0.0038 n12n15
450 C,130.55 0.372734 1.0140 0.0045 n12n15 C,130.55 0.372723 1.0051 0.0044 n12n15
450 C,132.95 0.376647 1.0059 0.0045 n12n15 C,132.95 0.376656 1.0055 0.0045 n12n15
585 A,25.51 0.058977 0.9844 0.0079 n18 A,25.51 0.058979 0.9769 0.0073 n18
585 A,25.51 0.059000 0.9777 0.0073 n18 A,25.51 0.058977 0.9742 0.0064 n18
585 A,25.51 0.059004 0.9655 0.0064 n18 A,25.51 0.059009 0.9714 0.0059 n18
585 A,25.51 0.058979 0.9737 0.0064 n18 A,25.51 0.059005 0.9770 0.0072 n18
585 A,25.51 0.058983 0.9762 0.0073 n18 A,25.51 0.059006 0.9618 0.0069 n18
585 A,25.51 0.058977 0.9691 0.0071 n18 A,25.51 0.058983 0.9714 0.0072 n18
585 A,28.01 0.070729 0.9686 0.0052 n18 A,28.01 0.070729 0.9704 0.0052 n18
585 A,28.01 0.070729 0.9722 0.0052 n18 A,28.01 0.070731 0.9742 0.0052 n18
585 A,28.01 0.070727 0.9669 0.0052 n18 A,28.01 0.070728 0.9690 0.0052 n18
585 A,28.01 0.070726 0.9698 0.0052 n18 A,28.01 0.070732 0.9640 0.0052 n18
585 A,28.01 0.070725 0.9592 0.0051 n18 A,28.01 0.070729 0.9674 0.0052 n18
585 A,30.50 0.083123 0.9717 0.0040 n18 A,30.50 0.083129 0.9675 0.0040 n18
585 A,30.50 0.083137 0.9722 0.0033 n18 A,33.01 0.096406 0.9714 0.0030 n18
585 A,33.01 0.096406 0.9712 0.0025 n18 A,33.01 0.096385 0.9677 0.0045 n19
585 A,33.01 0.096405 0.9693 0.0046 n19 A,33.01 0.096403 0.9789 0.0046 n19
585 A,33.01 0.096402 0.9668 0.0046 n19 A,33.01 0.096400 0.9723 0.0046 n19
585 A,33.01 0.096404 0.9753 0.0046 n19 A,33.01 0.096405 0.9765 0.0046 n19
585 A,33.01 0.096399 0.9740 0.0046 n19 A,35.51 0.110004 0.9754 0.0037 n19
585 A,35.51 0.109997 0.9696 0.0037 n19 A,35.51 0.109999 0.9650 0.0037 n19
585 A,38.00 0.124134 0.9718 0.0031 n19 A,38.00 0.124138 0.9696 0.0030 n19
585 A,40.51 0.138677 0.9719 0.0027 n19 A,40.51 0.138681 0.9686 0.0026 n19
585 A,42.99 0.153507 0.9678 0.0023 n19 A,45.51 0.168762 0.9681 0.0021 n19
585 A,48.01 0.184048 0.9636 0.0021 n19 A,50.49 0.199229 0.9679 0.0022 n19
585 A,53.01 0.214841 0.9632 0.0021 n19 A,55.50 0.230113 0.9639 0.0022 n19
585 A,58.00 0.245623 0.9648 0.0023 n19 A,60.51 0.260796 0.9682 0.0023 n19
585 A,63.00 0.275886 0.9683 0.0024 n19 A,65.49 0.290508 0.9673 0.0024 n19
585 A,68.01 0.305441 0.9707 0.0025 n19 A,70.50 0.319488 0.9730 0.0026 n19
585 A,73.01 0.333796 0.9776 0.0028 n19 A,75.50 0.347294 0.9746 0.0028 n19
585 A,78.00 0.360902 0.9809 0.0029 n19 A,80.51 0.373781 0.9824 0.0030 n19
585 A,80.51 0.373795 0.9811 0.0021 n19 A,82.99 0.386560 0.9878 0.0022 n19
585 A,85.49 0.398678 0.9859 0.0022 n19 A,88.01 0.410848 0.9926 0.0023 n19
585 A,90.50 0.422207 0.9987 0.0023 n19 A,73.01 0.333795 0.9775 0.0015 n19
585 B,16.00 0.025543 0.9893 0.0073 n16n18 B,16.51 0.027166 0.9753 0.0080 n16n18
585 B,16.51 0.027167 0.9725 0.0080 n16n18 B,17.01 0.028802 0.9857 0.0082 n16n18
585 B,17.01 0.028801 0.9887 0.0081 n16n18 B,17.50 0.030441 0.9784 0.0080 n16n18
585 B,17.50 0.030440 0.9795 0.0081 n16n18 B,18.00 0.032159 0.9858 0.0086 n16n18
585 B,18.00 0.032158 0.9785 0.0085 n16n18 B,18.00 0.032158 0.9773 0.0085 n16n18
585 B,18.51 0.033953 0.9791 0.0083 n16n18 B,18.51 0.033954 0.9824 0.0083 n16n18
585 B,18.51 0.033953 0.9763 0.0082 n16n18 B,18.51 0.033953 0.9778 0.0073 n16n18
585 B,18.51 0.033953 0.9892 0.0075 n16n18 B,18.51 0.033954 0.9815 0.0069 n16n18
585 B,18.51 0.033954 0.9841 0.0069 n16n18 B,18.51 0.033953 0.9808 0.0061 n16n18
585 B,18.99 0.035678 0.9768 0.0061 n16n18 B,18.99 0.035678 0.9780 0.0057 n16n18
585 B,19.50 0.037554 0.9799 0.0062 n16n18 B,19.99 0.039389 0.9860 0.0070 n16n18
585 B,19.99 0.039390 0.9813 0.0070 n16n18 B,19.99 0.039390 0.9695 0.0067 n16n18
585 B,19.99 0.039390 0.9742 0.0069 n16n18 B,19.99 0.039390 0.9777 0.0069 n16n18
585 B,19.99 0.039389 0.9740 0.0051 n16n18 B,19.99 0.039389 0.9828 0.0052 n16n18
585 B,19.99 0.039389 0.9772 0.0052 n16n18 B,19.99 0.039390 0.9780 0.0052 n16n18
585 B,20.49 0.041305 0.9774 0.0052 n16n18 B,20.49 0.041305 0.9752 0.0052 n16n18
585 B,21.00 0.043301 0.9763 0.0053 n16n18 B,21.00 0.043301 0.9703 0.0053 n16n18
585 B,21.00 0.043301 0.9675 0.0052 n16n18 B,21.00 0.043300 0.9752 0.0053 n16n18
585 B,21.00 0.043301 0.9831 0.0043 n16n18 B,21.00 0.043301 0.9757 0.0043 n16n18
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K.1 Cross sections

585 B,21.00 0.043302 0.9784 0.0037 n16n18 B,21.00 0.043301 0.9802 0.0034 n16n18
585 B,21.00 0.043301 0.9793 0.0030 n16n18 B,21.00 0.043303 0.9702 0.0041 n16n19
585 B,21.50 0.045293 0.9730 0.0041 n16n19 B,22.00 0.047322 0.9801 0.0042 n16n19
585 B,22.50 0.049388 0.9651 0.0042 n16n19 B,23.01 0.051532 0.9737 0.0042 n16n19
585 B,23.51 0.053670 0.9776 0.0042 n16n19 B,23.99 0.055744 0.9772 0.0042 n16n19
585 B,23.99 0.055745 0.9738 0.0042 n16n19 B,23.99 0.055744 0.9759 0.0034 n16n19
585 B,24.50 0.057996 0.9735 0.0034 n16n19 B,24.99 0.060186 0.9706 0.0034 n16n19
585 B,24.99 0.060185 0.9766 0.0028 n16n19 B,25.50 0.062501 0.9745 0.0028 n16n19
585 B,25.50 0.062501 0.9828 0.0025 n16n19 B,25.50 0.062501 0.9749 0.0024 n16n19
585 B,26.00 0.064804 0.9765 0.0021 n16n19 B,26.00 0.064802 0.9769 0.0019 n16n19
585 B,26.51 0.067186 0.9720 0.0019 n16n19 B,27.00 0.069497 0.9736 0.0019 n16n19
585 B,27.49 0.071840 0.9718 0.0018 n16n19 B,28.00 0.074309 0.9703 0.0020 n16n19
585 B,28.50 0.076761 0.9671 0.0020 n16n19 B,29.01 0.079290 0.9706 0.0020 n16n19
585 B,29.51 0.081796 0.9720 0.0020 n16n19 B,29.99 0.084222 0.9701 0.0020 n16n19
585 B,30.50 0.086833 0.9664 0.0020 n16n19 B,31.00 0.089414 0.9684 0.0021 n16n19
585 B,31.49 0.091963 0.9676 0.0022 n16n19 B,32.00 0.094648 0.9649 0.0022 n16n19
585 B,32.51 0.097391 0.9704 0.0023 n16n19 B,32.99 0.099993 0.9693 0.0024 n16n19
585 B,33.49 0.102709 0.9671 0.0020 n16n19 B,33.99 0.105428 0.9686 0.0021 n16n19
585 B,34.51 0.108218 0.9677 0.0022 n16n19 B,35.00 0.110965 0.9667 0.0023 n16n19
585 B,35.00 0.110966 0.9701 0.0023 n16n19 B,35.00 0.111009 0.9657 0.0022 n16n19
585 B,35.00 0.110965 0.9682 0.0023 n16n19 B,35.00 0.111010 0.9645 0.0022 n16n19
585 B,35.00 0.110966 0.9688 0.0023 n16n19 B,35.00 0.110966 0.9614 0.0022 n16n19
585 B,35.00 0.110966 0.9684 0.0023 n16n19 B,35.00 0.110919 0.9662 0.0022 n16n19
585 B,35.00 0.111010 0.9637 0.0042 n16n19 B,35.00 0.111009 0.9675 0.0022 n16n19
585 B,35.00 0.111009 0.9694 0.0022 n16n19 B,35.00 0.110965 0.9680 0.0019 n16n19
585 B,31.49 0.091963 0.9643 0.0023 n16n20 B,35.00 0.110965 0.9648 0.0020 n16n20
585 B,35.50 0.113745 0.9670 0.0014 n16n20 B,36.50 0.119393 0.9648 0.0012 n16n20
585 B,37.50 0.125073 0.9686 0.0012 n16n20 B,38.50 0.130810 0.9668 0.0012 n16n20
585 B,39.51 0.136662 0.9658 0.0012 n16n20 B,40.50 0.142457 0.9681 0.0012 n16n20
585 B,41.50 0.148354 0.9664 0.0054 n16n20 B,41.50 0.148354 0.9635 0.0013 n16n20
585 B,42.00 0.151321 0.9649 0.0016 n16n20 B,42.50 0.154298 0.9656 0.0016 n16n20
585 B,43.00 0.157280 0.9659 0.0015 n16n20 B,43.50 0.160274 0.9656 0.0015 n16n20
585 B,44.01 0.163333 0.9668 0.0015 n16n20 B,44.51 0.166346 0.9650 0.0016 n16n20
585 B,45.00 0.169304 0.9612 0.0016 n16n20 B,45.50 0.172331 0.9666 0.0016 n16n20
585 B,46.01 0.175415 0.9662 0.0017 n16n20 B,46.51 0.178456 0.9657 0.0016 n16n20
585 B,47.01 0.181497 0.9610 0.0016 n16n20 C,73.01 0.334011 0.9801 0.0040 n17n20
585 C,73.01 0.334037 0.9802 0.0021 n17n20 C,77.98 0.361000 0.9853 0.0022 n17n20
585 C,83.02 0.386973 0.9853 0.0023 n17n20 C,93.00 0.433773 1.0017 0.0026 n17n20
585 C,98.01 0.454929 1.0097 0.0028 n17n20 C,103.00 0.474529 1.0151 0.0029 n17n20
585 C,108.04 0.492722 1.0236 0.0132 n17n20 C,108.04 0.492691 1.0209 0.0029 n17n20
585 C,110.51 0.500929 1.0261 0.0037 n17n20 C,112.92 0.508866 1.0267 0.0038 n17n20
585 C,115.56 0.516976 1.0356 0.0036 n17n20 C,117.94 0.524063 1.0326 0.0037 n17n20
585 C,120.49 0.531168 1.0389 0.0038 n17n20 C,123.08 0.538158 1.0351 0.0038 n17n20
585 C,125.47 0.544191 1.0419 0.0039 n17n20 C,128.02 0.550385 1.0481 0.0040 n17n20
585 C,130.55 0.556122 1.0541 0.0042 n17n20 C,132.95 0.561312 1.0515 0.0041 n17n20
585 C,135.53 0.566478 1.0491 0.0042 n17n20
720 A,38.00 0.183535 0.9640 0.0036 n25 A,38.00 0.183527 0.9578 0.0034 n25
720 A,38.00 0.183534 0.9564 0.0034 n25 A,40.50 0.204463 0.9537 0.0030 n25
720 A,40.50 0.204456 0.9535 0.0027 n25 A,40.50 0.204443 0.9584 0.0030 n25
720 A,43.00 0.225760 0.9638 0.0067 n25 A,43.00 0.225763 0.9587 0.0027 n25
720 A,43.00 0.225763 0.9575 0.0059 n25 A,43.00 0.225765 0.9616 0.0036 n25
720 A,43.00 0.225760 0.9583 0.0027 n25 A,45.51 0.247044 0.9626 0.0028 n25
720 A,48.00 0.268566 0.9670 0.0026 n25 A,50.50 0.290050 0.9702 0.0027 n25
720 A,53.01 0.312024 0.9719 0.0027 n25 A,55.50 0.333157 0.9758 0.0028 n25
720 A,58.00 0.354269 0.9753 0.0029 n25 A,60.50 0.374909 0.9738 0.0030 n25
720 A,63.00 0.395409 0.9861 0.0027 n25 A,65.51 0.415422 0.9879 0.0057 n25
720 A,65.51 0.415428 0.9874 0.0028 n25 A,68.01 0.435104 0.9977 0.0029 n25
720 A,70.49 0.454010 0.9972 0.0030 n25 A,73.01 0.472904 1.0036 0.0032 n25
720 A,75.50 0.490801 1.0115 0.0071 n25 A,75.50 0.490818 1.0060 0.0038 n25
720 A,78.00 0.508461 1.0107 0.0029 n25 A,80.50 0.525358 1.0130 0.0030 n25
720 A,83.00 0.541891 1.0201 0.0032 n25 A,88.01 0.573169 1.0297 0.0039 n25
720 A,85.51 0.557785 1.0214 0.0038 n25 A,90.50 0.587844 1.0283 0.0034 n25
720 A,93.01 0.602181 1.0390 0.0036 n25 A,95.50 0.615728 1.0347 0.0038 n25
720 A,97.99 0.628831 1.0465 0.0048 n25 A,97.99 0.628839 1.0473 0.0048 n25
720 A,100.50 0.641440 1.0428 0.0056 n25 A,100.50 0.641439 1.0435 0.0049 n25
720 A,103.00 0.653555 1.0543 0.0052 n25 A,103.00 0.653554 1.0567 0.0052 n25
720 A,105.51 0.665077 1.0551 0.0066 n25 A,105.51 0.665077 1.0510 0.0047 n25
720 A,105.51 0.665075 1.0547 0.0047 n25 A,108.00 0.676109 1.0571 0.0049 n25
720 A,108.00 0.676105 1.0540 0.0049 n25 A,73.01 0.472914 1.0038 0.0029 n25
720 B,22.00 0.071131 0.9705 0.0042 n21n25 B,22.50 0.074195 0.9684 0.0040 n21n25
720 B,23.00 0.077313 0.9642 0.0040 n21n25 B,23.00 0.077316 0.9639 0.0035 n21n25
720 B,23.51 0.080545 0.9692 0.0032 n21n25 B,24.00 0.083699 0.9655 0.0035 n21n25
720 B,24.00 0.083701 0.9717 0.0077 n21n25 B,24.00 0.083699 0.9662 0.0032 n21n25
720 B,24.50 0.086960 0.9709 0.0042 n21n25 B,25.01 0.090337 0.9691 0.0032 n21n25
720 B,25.01 0.090333 0.9703 0.0032 n21n25 B,25.50 0.093616 0.9654 0.0030 n21n25
720 B,26.00 0.097015 0.9718 0.0030 n21n25 B,26.51 0.100517 0.9695 0.0030 n21n25
720 B,27.00 0.103931 0.9702 0.0030 n21n25 B,27.50 0.107449 0.9625 0.0031 n21n25
720 B,28.00 0.111012 0.9619 0.0031 n21n25 B,28.50 0.114607 0.9675 0.0028 n21n25
720 B,29.00 0.118239 0.9633 0.0055 n21n25 B,29.00 0.118240 0.9673 0.0028 n21n25
720 B,29.51 0.121933 0.9701 0.0029 n21n25 B,29.99 0.125540 0.9655 0.0029 n21n25
720 B,30.50 0.129354 0.9664 0.0030 n21n25 B,31.00 0.133128 0.9702 0.0060 n21n25
720 B,31.00 0.133125 0.9637 0.0034 n21n25 B,31.51 0.136942 0.9672 0.0027 n21n25
720 B,32.01 0.140779 0.9654 0.0027 n21n25 B,32.51 0.144645 0.9674 0.0028 n21n25
720 B,33.50 0.152375 0.9644 0.0034 n21n25 B,33.01 0.148537 0.9653 0.0033 n21n25
720 B,34.01 0.156400 0.9669 0.0032 n21n25 B,34.01 0.156397 0.9643 0.0033 n21n25
720 B,34.01 0.156397 0.9634 0.0033 n21n25 B,34.01 0.156397 0.9656 0.0040 n21n25
720 B,34.01 0.156397 0.9690 0.0040 n21n25 B,34.01 0.156397 0.9669 0.0044 n21n25
720 B,34.01 0.156397 0.9683 0.0040 n21n25 B,34.01 0.156394 0.9666 0.0040 n21n25
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K Numerical results: Cross sections and form factors

720 B,34.01 0.156398 0.9659 0.0040 n21n25 B,34.01 0.156400 0.9669 0.0046 n21n25
720 B,34.01 0.156396 0.9697 0.0036 n21n25 B,34.01 0.156396 0.9659 0.0036 n21n25
720 B,34.01 0.156396 0.9676 0.0037 n21n25 B,34.01 0.156396 0.9654 0.0036 n21n25
720 B,34.01 0.156402 0.9625 0.0036 n21n25 B,34.01 0.156402 0.9628 0.0036 n21n25
720 B,34.01 0.156396 0.9697 0.0037 n21n25 B,30.50 0.129354 0.9630 0.0032 n21n26
720 B,34.01 0.156396 0.9660 0.0039 n21n26 B,34.01 0.156397 0.9666 0.0035 n21n26
720 B,34.51 0.160368 0.9673 0.0031 n21n26 B,35.00 0.164283 0.9665 0.0030 n21n26
720 B,35.50 0.168290 0.9616 0.0030 n21n26 B,36.00 0.172324 0.9575 0.0025 n21n26
720 B,36.50 0.176391 0.9656 0.0025 n21n26 B,37.00 0.180473 0.9675 0.0025 n21n26
720 B,37.50 0.184570 0.9701 0.0031 n21n26 B,38.01 0.188765 0.9678 0.0032 n21n26
720 B,38.50 0.192818 0.9688 0.0032 n21n26 B,39.00 0.196987 0.9631 0.0032 n21n26
720 B,39.49 0.201067 0.9589 0.0032 n21n26 B,40.00 0.205298 0.9617 0.0027 n21n26
720 B,40.00 0.205332 0.9459 0.0088 n21n26 B,40.00 0.205303 0.9596 0.0043 n21n26
720 B,40.00 0.205333 0.9584 0.0066 n21n26 B,40.00 0.205333 0.9623 0.0047 n21n26
720 B,40.50 0.209520 0.9588 0.0034 n21n26 B,40.50 0.209521 0.9614 0.0058 n21n26
720 B,40.50 0.209521 0.9648 0.0049 n21n26 B,40.50 0.209521 0.9591 0.0066 n21n26
720 B,41.50 0.217940 0.9639 0.0034 n21n26 B,41.50 0.217937 0.9443 0.0098 n21n26
720 B,41.50 0.217940 0.9638 0.0050 n21n26 B,41.50 0.217940 0.9579 0.0048 n21n26
720 B,42.50 0.226358 0.9548 0.0031 n21n26 B,42.50 0.226388 0.9581 0.0032 n21n26
720 B,42.50 0.226391 0.9528 0.0131 n21n26 B,42.50 0.226398 0.9484 0.0097 n21n26
720 B,42.50 0.226390 0.9547 0.0040 n21n26 B,43.50 0.234889 0.9600 0.0032 n21n26
720 B,43.50 0.234888 0.9648 0.0052 n21n26 B,43.50 0.234889 0.9562 0.0041 n21n26
720 B,44.51 0.243494 0.9556 0.0031 n21n26 B,39.49 0.201109 0.9598 0.0026 n23n26
720 B,39.49 0.201113 0.9611 0.0024 n23n26 B,40.00 0.205242 0.9592 0.0026 n23n26
720 B,40.00 0.205237 0.9590 0.0046 n23n26 B,40.50 0.209429 0.9636 0.0026 n23n26
720 B,41.01 0.213721 0.9651 0.0025 n23n26 B,41.01 0.213727 0.9625 0.0025 n23n26
720 B,41.50 0.217844 0.9601 0.0026 n23n26 B,41.50 0.217836 0.9614 0.0026 n23n26
720 B,42.00 0.222191 0.9621 0.0026 n23n26 B,42.00 0.222193 0.9618 0.0034 n23n26
720 B,42.00 0.222191 0.9560 0.0037 n23n26 B,42.50 0.226427 0.9665 0.0031 n23n26
720 B,42.50 0.226422 0.9632 0.0027 n23n26 B,43.00 0.230669 0.9642 0.0032 n23n26
720 B,43.00 0.230670 0.9665 0.0042 n23n26 B,43.00 0.230666 0.9649 0.0027 n23n26
720 B,43.50 0.234784 0.9613 0.0027 n23n26 B,43.50 0.234787 0.9573 0.0027 n23n26
720 B,43.98 0.239006 0.9595 0.0027 n23n26 B,43.98 0.239009 0.9592 0.0035 n23n26
720 B,43.98 0.239010 0.9629 0.0034 n23n26 B,44.49 0.243344 0.9577 0.0025 n23n26
720 B,44.49 0.243348 0.9575 0.0025 n23n26 B,45.00 0.247693 0.9627 0.0025 n23n26
720 B,45.50 0.251967 0.9598 0.0026 n23n26 B,45.50 0.251964 0.9633 0.0026 n23n26
720 C,73.01 0.472874 1.0047 0.0024 n22n26 C,73.01 0.472876 1.0045 0.0022 n22n26
720 C,75.49 0.490760 1.0072 0.0022 n22n26 C,77.98 0.508292 1.0096 0.0023 n22n26
720 C,80.49 0.525321 1.0101 0.0023 n22n26 C,83.02 0.542028 1.0258 0.0024 n22n26
720 C,85.51 0.557861 1.0219 0.0020 n22n26 C,88.01 0.573211 1.0250 0.0021 n22n26
720 C,90.50 0.587905 1.0228 0.0141 n22n26 C,90.50 0.587898 1.0328 0.0022 n22n26
720 C,93.00 0.602155 1.0415 0.0219 n22n26 C,93.00 0.602159 1.0364 0.0028 n22n26
720 C,95.48 0.615663 1.0351 0.0029 n22n26 C,98.01 0.628986 1.0498 0.0031 n22n26
720 C,100.50 0.641508 1.0387 0.0031 n22n26 C,103.00 0.653562 1.0475 0.0033 n22n26
720 C,105.54 0.665249 1.0489 0.0028 n22n26 C,105.54 0.665238 1.0553 0.0094 n22n26
720 C,105.54 0.665258 1.0529 0.0045 n22n26 C,105.54 0.665248 1.0523 0.0070 n22n26
720 C,105.54 0.665248 1.0569 0.0049 n22n26 C,108.04 0.676303 1.0573 0.0036 n22n26
720 C,108.04 0.676298 1.0560 0.0062 n22n26 C,108.04 0.676297 1.0604 0.0052 n22n26
720 C,108.04 0.676302 1.0626 0.0072 n22n26 C,113.06 0.696913 1.0638 0.0039 n22n26
720 C,113.06 0.696937 1.0626 0.0116 n22n26 C,113.06 0.696910 1.0727 0.0058 n22n26
720 C,113.06 0.696912 1.0731 0.0056 n22n26 C,117.94 0.715149 1.0669 0.0037 n22n26
720 C,117.94 0.715149 1.0745 0.0039 n22n26 C,117.94 0.715147 1.0872 0.0122 n22n26
720 C,117.94 0.715146 1.0586 0.0048 n22n26 C,123.08 0.732478 1.0810 0.0041 n22n26
720 C,123.08 0.732479 1.0789 0.0065 n22n26 C,123.08 0.732478 1.0817 0.0051 n22n26
720 C,128.02 0.747376 1.0815 0.0040 n22n26 C,103.00 0.653623 1.0466 0.0025 n24n26
720 C,103.00 0.653605 1.0494 0.0023 n24n26 C,105.54 0.665194 1.0516 0.0026 n24n26
720 C,105.54 0.665181 1.0528 0.0046 n24n26 C,108.04 0.676367 1.0584 0.0027 n24n26
720 C,108.04 0.676359 1.0608 0.0027 n24n26 C,110.53 0.686691 1.0626 0.0026 n24n26
720 C,110.53 0.686696 1.0579 0.0026 n24n26 C,113.06 0.696973 1.0607 0.0027 n24n26
720 C,113.06 0.696971 1.0623 0.0027 n24n26 C,115.56 0.706412 1.0718 0.0027 n24n26
720 C,115.56 0.706402 1.0676 0.0036 n24n26 C,115.56 0.706395 1.0681 0.0039 n24n26
720 C,117.94 0.715171 1.0716 0.0033 n24n26 C,117.94 0.715172 1.0699 0.0028 n24n26
720 C,120.49 0.723872 1.0822 0.0035 n24n26 C,120.49 0.723864 1.0725 0.0045 n24n26
720 C,120.49 0.723854 1.0829 0.0029 n24n26 C,123.08 0.732465 1.0819 0.0030 n24n26
720 C,123.08 0.732449 1.0784 0.0030 n24n26 C,125.59 0.740162 1.0833 0.0031 n24n26
720 C,125.59 0.740162 1.0903 0.0040 n24n26 C,125.59 0.740152 1.0847 0.0039 n24n26
720 C,128.02 0.747367 1.0846 0.0028 n24n26 C,128.02 0.747354 1.0844 0.0028 n24n26
720 C,130.65 0.754572 1.0965 0.0029 n24n26 C,132.84 0.760295 1.0938 0.0030 n24n26
720 C,132.84 0.760304 1.0855 0.0029 n24n26
855 A,43.00 0.306851 0.9584 0.0045 n29n30 A,43.00 0.306859 0.9716 0.0045 n29n30
855 A,43.00 0.306902 0.9717 0.0044 n29n30 A,43.00 0.306904 0.9740 0.0046 n29n30
855 A,43.00 0.306888 0.9630 0.0045 n29n30 A,45.51 0.335383 0.9659 0.0046 n29n30
855 A,45.51 0.335385 0.9616 0.0045 n29n30 A,45.51 0.335386 0.9667 0.0045 n29n30
855 A,45.51 0.335370 0.9690 0.0046 n29n30 A,45.51 0.335381 0.9645 0.0045 n29n30
855 A,48.00 0.363893 0.9671 0.0046 n29n30 A,48.00 0.363887 0.9747 0.0046 n29n30
855 A,48.00 0.363849 0.9772 0.0047 n29n30 A,48.00 0.363852 0.9762 0.0047 n29n30
855 A,48.00 0.363838 0.9728 0.0046 n29n30 A,50.50 0.391673 0.9765 0.0047 n29n30
855 A,50.50 0.391679 0.9743 0.0046 n29n30 A,50.50 0.391627 0.9734 0.0046 n29n30
855 A,50.50 0.391630 0.9793 0.0047 n29n30 A,50.50 0.391630 0.9805 0.0046 n29n30
855 A,53.01 0.420080 0.9847 0.0046 n29n30 A,53.01 0.420083 0.9837 0.0075 n29n30
855 A,53.01 0.420103 0.9763 0.0047 n29n30 A,53.01 0.420099 0.9856 0.0047 n29n30
855 A,53.01 0.420102 0.9910 0.0047 n29n30 A,55.50 0.447090 0.9891 0.0048 n29n30
855 A,55.50 0.447116 0.9929 0.0048 n29n30 A,55.50 0.447114 0.9864 0.0048 n29n30
855 A,55.50 0.447120 0.9869 0.0048 n29n30 A,55.50 0.447111 0.9916 0.0049 n29n30
855 A,58.00 0.474824 0.9925 0.0024 n29n30 A,60.50 0.501140 0.9997 0.0022 n29n30
855 A,63.00 0.527449 1.0010 0.0023 n29 A,65.49 0.552353 1.0101 0.0023 n29
855 A,68.00 0.577487 1.0217 0.0024 n29 A,70.50 0.601103 1.0149 0.0024 n29
855 A,73.01 0.624893 1.0248 0.0026 n29 A,75.50 0.646801 1.0291 0.0035 n29
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855 A,78.00 0.668975 1.0329 0.0028 n29 A,80.50 0.689459 1.0248 0.0066 n29
855 A,83.01 0.710104 1.0447 0.0024 n29 A,85.49 0.728977 1.0517 0.0025 n29
855 A,88.01 0.748179 1.0574 0.0032 n29 A,90.50 0.765639 1.0537 0.0028 n29
855 A,85.51 0.729510 1.0489 0.0027 n29 B,20.50 0.086749 0.9489 0.0067 n27n29
855 B,21.00 0.090776 0.9640 0.0068 n27n29 B,21.50 0.094880 0.9631 0.0067 n27n29
855 B,22.00 0.099046 0.9668 0.0070 n27n29 B,22.50 0.103281 0.9552 0.0069 n27n29
855 B,22.50 0.103281 0.9522 0.0069 n27n29 B,23.00 0.107588 0.9512 0.0069 n27n29
855 B,23.51 0.112043 0.9588 0.0069 n27n29 B,23.99 0.116275 0.9538 0.0069 n27n29
855 B,24.50 0.120869 0.9489 0.0068 n27n29 B,24.50 0.120863 0.9503 0.0069 n27n29
855 B,25.01 0.125517 0.9562 0.0069 n27n29 B,25.50 0.130019 0.9585 0.0070 n27n29
855 B,26.01 0.134777 0.9632 0.0071 n27n29 B,26.51 0.139501 0.9600 0.0070 n27n29
855 B,26.51 0.139498 0.9561 0.0070 n27n29 B,26.99 0.144052 0.9515 0.0068 n27n29
855 B,27.50 0.148979 0.9529 0.0069 n27n29 B,28.00 0.153845 0.9607 0.0070 n27n29
855 B,28.50 0.158758 0.9598 0.0070 n27n29 B,28.50 0.158759 0.9577 0.0069 n27n29
855 B,29.00 0.163716 0.9562 0.0112 n27n29 B,29.50 0.168723 0.9596 0.0071 n27n29
855 B,30.01 0.173879 0.9663 0.0072 n27n29 B,30.50 0.178864 0.9640 0.0071 n27n29
855 B,30.50 0.178861 0.9642 0.0072 n27n29 B,31.00 0.183980 0.9702 0.0072 n27n29
855 B,31.51 0.189255 0.9621 0.0072 n27n29 B,32.00 0.194348 0.9621 0.0073 n27n29
855 B,32.50 0.199733 0.9581 0.0073 n27n29 B,32.50 0.199740 0.9592 0.0031 n27n29
855 B,33.01 0.205114 0.9628 0.0032 n27n29 B,33.50 0.210304 0.9575 0.0031 n27n29
855 B,34.00 0.215632 0.9593 0.0032 n27n29 B,34.50 0.220998 0.9667 0.0032 n27n29
855 B,35.00 0.226369 0.9605 0.0032 n27n29 B,35.50 0.231783 0.9628 0.0032 n27n29
855 B,36.00 0.237216 0.9566 0.0043 n27n29 B,36.50 0.242666 0.9584 0.0033 n27n29
855 B,37.00 0.248141 0.9492 0.0092 n27n29 B,37.50 0.253640 0.9646 0.0028 n27n29
855 B,38.01 0.259154 0.9662 0.0028 n27n29 B,38.51 0.264689 0.9671 0.0035 n27n29
855 B,39.00 0.270221 0.9643 0.0032 n27n29 B,39.51 0.275795 0.9661 0.0035 n27n29
855 B,40.00 0.281439 0.9628 0.0035 n27n29 B,42.00 0.303812 0.9669 0.0038 n27n29
855 B,42.50 0.309426 0.9737 0.0038 n27n29 B,42.50 0.309426 0.9673 0.0038 n27n29
855 B,43.00 0.315044 0.9689 0.0039 n27n29 B,43.00 0.315047 0.9708 0.0039 n27n29
855 B,43.50 0.320659 0.9770 0.0040 n27n29 B,43.50 0.320658 0.9726 0.0040 n27n29
855 B,44.00 0.326280 0.9656 0.0035 n27n29 B,44.00 0.326280 0.9626 0.0037 n27n31
855 B,44.51 0.332017 0.9723 0.0042 n27n31 B,45.00 0.337536 0.9675 0.0037 n27n31
855 B,45.50 0.343160 0.9715 0.0037 n27n31 B,46.01 0.348887 0.9710 0.0038 n27n31
855 B,46.50 0.354414 0.9761 0.0037 n27n31 B,47.00 0.360011 0.9690 0.0037 n27n31
855 B,47.51 0.365744 0.9778 0.0038 n27n31 B,48.00 0.371228 0.9718 0.0046 n27n31
855 B,48.00 0.371229 0.9728 0.0046 n27n31 B,48.50 0.376825 0.9716 0.0045 n27n31
855 B,48.50 0.376822 0.9736 0.0044 n27n31 B,49.01 0.382527 0.9715 0.0046 n27n31
855 B,49.01 0.382528 0.9783 0.0048 n27n31 B,49.50 0.387993 0.9694 0.0072 n27n31
855 B,49.50 0.387994 0.9747 0.0043 n27n31 B,50.00 0.393568 0.9754 0.0049 n27n31
855 B,50.00 0.393570 0.9798 0.0049 n27n31 B,50.50 0.399138 0.9862 0.0050 n27n31
855 B,50.50 0.399136 0.9779 0.0099 n27n31 B,51.00 0.404683 0.9808 0.0050 n27n31
855 B,51.00 0.404678 0.9814 0.0051 n27n31 B,51.50 0.410227 0.9885 0.0066 n27n31
855 B,52.00 0.415749 0.9828 0.0052 n27n31 B,52.00 0.415753 0.9817 0.0062 n27n31
855 B,52.49 0.421156 0.9862 0.0053 n27n31 B,52.49 0.421156 0.9770 0.0053 n27n31
855 B,53.01 0.426868 0.9818 0.0054 n27n31 B,53.01 0.426862 0.9674 0.0125 n27n31
855 B,53.50 0.432252 0.9758 0.0245 n27n31 B,53.50 0.432250 0.9842 0.0055 n27n31
855 B,53.50 0.432248 0.9874 0.0055 n27n31 B,53.50 0.432249 0.9847 0.0055 n27n31
855 B,54.01 0.437820 0.9798 0.0079 n27n31 B,54.01 0.437820 0.9791 0.0084 n27n31
855 C,85.51 0.730035 1.0473 0.0028 n28n31 C,88.01 0.748648 1.0572 0.0034 n28n31
855 C,90.50 0.766140 1.0582 0.0030 n28n31 C,93.00 0.783591 1.0663 0.0032 n28n31
855 C,95.49 0.799587 1.0713 0.0033 n28n31 C,98.01 0.815697 1.0786 0.0034 n28n31
855 C,100.50 0.830341 1.0858 0.0035 n28n31 C,103.00 0.844935 1.0823 0.0037 n28n31
855 C,105.54 0.858576 1.0864 0.0046 n28n31 C,105.54 0.858572 1.1010 0.0047 n28n31
855 C,108.04 0.871801 1.0978 0.0050 n28n31 C,108.04 0.871784 1.1069 0.0046 n28n31
855 C,110.51 0.883822 1.1080 0.0049 n28n31 C,110.51 0.883818 1.1129 0.0050 n28n31
855 C,113.06 0.896041 1.1084 0.0073 n28n31 C,115.56 0.907041 1.1184 0.0048 n28n31
855 C,115.56 0.907029 1.1084 0.0048 n28n31 C,117.95 0.917352 1.1189 0.0049 n28n31
855 C,120.49 0.927436 1.1169 0.0050 n28n31 C,120.49 0.927475 1.1192 0.0051 n28n31
855 C,123.08 0.937444 1.1352 0.0067 n28n31 C,125.47 0.945952 1.1379 0.0054 n28n31
855 C,125.47 0.945946 1.1211 0.0062 n28n31 C,128.02 0.954732 1.1366 0.0054 n28n31
855 C,128.02 0.954718 1.1294 0.0054 n28n31 C,130.55 0.962743 1.1391 0.0055 n28n31
855 C,132.95 0.970050 1.1354 0.0056 n28n31 C,132.95 0.970049 1.1426 0.0056 n28n31
855 C,132.95 0.970050 1.1405 0.0056 n28n31 C,135.52 0.977245 1.1508 0.0081 n28n31
855 C,135.52 0.977231 1.1543 0.0088 n28n31
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K Numerical results: Cross sections and form factors

Energy [MeV] Parameters

180
nAB ↔ n1, nAC ↔ n2

nE,C ↔ n3, nE,A1 ↔ n4, nE,A2 ↔ n5

315
nAA ↔ n7, nAB ↔ n6, nAC ↔ n8

nE ↔ n9

450
nAA ↔ n11, nAB ↔ n10, nAC ↔ n12

nE,C1 ↔ n13, nE,C2 ↔ n14, nE,A ↔ n15

585
nAB ↔ n16, nAC ↔ n17

nE,C1 ↔ n18, nE,C2 ↔ n19, nE,A ↔ n20

720
nAB ↔ n21, nAC ↔ n22, nAB,2 ↔ n23, nAC,2 ↔ n24

nE,C ↔ n25, nE,A ↔ n26

855
nAA ↔ n30, nAB ↔ n27, nAC ↔ n28

nE,C ↔ n29, nE,A ↔ n31

Table K.2: Mapping of the normalization constants of table K.1 to those found
in appendix G.

K.2 Form factors

K.2.1 Form factors determined via Rosenbluth separation

The form factors have been extracted from the cross sections (with the normal-
izations from the spline fit) using the equation

ε (1 + τ)
(

dσ
dΩ

)
0

/

(
dσ
dΩ

)
Mott

=
(
εG2

E

(
Q2
)

+ τG2
M

(
Q2
))
. (K.1)

The Rosenbluth-separation result is only given up to Q2 = 0.5524 (GeV/c)2,
up to where cross sections have been measured for at least three beam energies
for fixed Q2. The errors are the non-simultaneous 68.3% errors, that is, for a
given Q2, one expects the true value for one of the form factors inside the errors
with 68.3% probability without any constraint on the other form factor.
The first four points are extracted with a forced GM (set to 1 · µpGstd. dip. and
1.05 · µpGstd. dip. for each Q2 value). The second group lists the results for the
same points with GM as a free parameter.

Q2 [(GeV/c)2] GE GM

0.0152 (0.9511− 0.9530)± 0.0006 forced to (1, 1.05) · µpGstd. dip.

0.0162 (0.9483− 0.9503)± 0.0004 forced to (1, 1.05) · µpGstd. dip.

0.0172 (0.9440− 0.9462)± 0.0005 forced to (1, 1.05) · µpGstd. dip.

0.0192 (0.9400− 0.9427)± 0.0005 forced to (1, 1.05) · µpGstd. dip.

0.0152 0.9433± 0.0071 3.2859± 0.3955
0.0162 0.9430± 0.0042 3.1148± 0.2332
0.0172 0.9346± 0.0045 3.2880± 0.2134
0.0182 0.9434± 0.0037 2.6790± 0.2057
0.0192 0.9328± 0.0053 3.1029± 0.2263

Table K.3: Rosenbluth-separation data.
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K.2 Form factors

Q2 [(GeV/c)2] GE GM

0.0202 0.9354± 0.0041 2.7368± 0.1861
0.0213 0.9375± 0.0046 2.4972± 0.2096
0.0236 0.9349± 0.0039 2.3928± 0.1712
0.0255 0.9250± 0.0029 2.4870± 0.1138
0.0272 0.9170± 0.0027 2.6058± 0.0894
0.0304 0.9119± 0.0030 2.4760± 0.0973
0.0322 0.9053± 0.0026 2.5483± 0.0768
0.0340 0.9021± 0.0017 2.4843± 0.0480
0.0357 0.8921± 0.0021 2.6470± 0.0460
0.0376 0.8921± 0.0024 2.5045± 0.0477
0.0394 0.8888± 0.0016 2.4698± 0.0386
0.0413 0.8800± 0.0014 2.5439± 0.0259
0.0433 0.8767± 0.0010 2.4878± 0.0201
0.0473 0.8657± 0.0010 2.4788± 0.0164
0.0494 0.8622± 0.0012 2.4500± 0.0174
0.0515 0.8579± 0.0013 2.4175± 0.0135
0.0537 0.8534± 0.0009 2.4014± 0.0111
0.0557 0.8474± 0.0013 2.3997± 0.0123
0.0580 0.8419± 0.0009 2.3938± 0.0121
0.0602 0.8364± 0.0012 2.3790± 0.0088
0.0625 0.8326± 0.0008 2.3574± 0.0076
0.0648 0.8274± 0.0007 2.3404± 0.0051
0.0672 0.8213± 0.0010 2.3275± 0.0082
0.0695 0.8162± 0.0008 2.3157± 0.0077
0.0711 0.8115± 0.0007 2.3072± 0.0055
0.0742 0.8033± 0.0007 2.3028± 0.0058
0.0773 0.7968± 0.0007 2.2861± 0.0040
0.0805 0.7909± 0.0005 2.2611± 0.0031
0.0837 0.7858± 0.0005 2.2327± 0.0039
0.0867 0.7794± 0.0038 2.2087± 0.0416
0.0908 0.7707± 0.0024 2.1924± 0.0257
0.0949 0.7625± 0.0031 2.1873± 0.0319
0.1033 0.7427± 0.0029 2.1669± 0.0260
0.1076 0.7379± 0.0026 2.1125± 0.0213
0.1120 0.7272± 0.0011 2.1069± 0.0087
0.1163 0.7212± 0.0017 2.0652± 0.0100
0.1255 0.7055± 0.0016 2.0243± 0.0110
0.1300 0.6990± 0.0013 1.9862± 0.0071
0.1348 0.6923± 0.0012 1.9522± 0.0062
0.1395 0.6857± 0.0015 1.9296± 0.0065
0.1441 0.6779± 0.0012 1.9096± 0.0059
0.1490 0.6676± 0.0009 1.8941± 0.0034
0.1538 0.6642± 0.0016 1.8522± 0.0081
0.1588 0.6551± 0.0012 1.8419± 0.0070
0.1637 0.6483± 0.0013 1.8164± 0.0053
0.1687 0.6362± 0.0013 1.8162± 0.0064
0.1739 0.6305± 0.0009 1.7866± 0.0028
0.1789 0.6247± 0.0011 1.7642± 0.0043
0.1840 0.6154± 0.0010 1.7447± 0.0036
0.1893 0.6111± 0.0018 1.7222± 0.0031

Table K.3: Rosenbluth-separation data.
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K Numerical results: Cross sections and form factors

Q2 [(GeV/c)2] GE GM

0.1943 0.6029± 0.0014 1.7027± 0.0035
0.1997 0.5931± 0.0008 1.6891± 0.0023
0.2051 0.5831± 0.0009 1.6746± 0.0030
0.2103 0.5785± 0.0010 1.6523± 0.0028
0.2156 0.5730± 0.0008 1.6293± 0.0026
0.2210 0.5687± 0.0021 1.6015± 0.0068
0.2318 0.5575± 0.0021 1.5609± 0.0067
0.2427 0.5370± 0.0019 1.5429± 0.0056
0.2481 0.5355± 0.0022 1.5166± 0.0059
0.2592 0.5257± 0.0023 1.4813± 0.0054
0.2758 0.5067± 0.0022 1.4351± 0.0040
0.2814 0.4998± 0.0026 1.4222± 0.0063
0.3069 0.4723± 0.0012 1.3619± 0.0024
0.3354 0.4447± 0.0012 1.2929± 0.0020
0.3638 0.4192± 0.0010 1.2310± 0.0015
0.3916 0.4031± 0.0019 1.1633± 0.0029
0.4201 0.3824± 0.0020 1.1105± 0.0027
0.4471 0.3609± 0.0027 1.0697± 0.0034
0.4748 0.3448± 0.0026 1.0214± 0.0029
0.5011 0.3301± 0.0018 0.9789± 0.0017
0.5274 0.3105± 0.0021 0.9428± 0.0018
0.5524 0.2972± 0.0021 0.9108± 0.0016

Table K.3: Rosenbluth-separation data.

K.2.2 Form factors determined via global fits of model
parametrizations

The tables on the following pages list the form factors and the form factor ratio
determined by the different models. The errors listed are the statistical error (as
the pointwise confidence band with 68.3% confidence level), the experimental
systematic and theoretical systematic errors (see section 9.1 and appendix I).

The Q2 values are chosen equidistant in Q. This reflects the larger number of
cross section measurements at low Q2.

The description of the models can be found in chapter 7, the parameters for
the best fits in appendix J.

194



K.2 Form factors

K.2.2.1 Polynomial model

Q2 [(GeV/c)2] GE · 104 GM/µp · 104 µp
GE
GM
· 104

0.0005 9984± 0 +0
−0

+0
−0 9988± 1 +0

−0
+0
−0 9996± 1 +0

−0
+0
−0

0.0019 9937± 1 +1
−1

+1
−1 9951± 2 +1

−1
+1
−1 9986± 2 +1

−1
+0
−0

0.0043 9859± 2 +2
−2

+2
−2 9890± 5 +3

−2
+2
−2 9969± 5 +2

−2
+0
−0

0.0076 9753± 3 +3
−3

+4
−3 9804± 8 +5

−4
+3
−4 9948± 8 +3

−3
+0
−0

0.0118 9621± 4 +4
−4

+5
−5 9695± 11 +7

−6
+5
−5 9923± 12 +5

−5
+0
−0

0.0170 9465± 5 +6
−5

+7
−6 9563± 14 +9

−8
+7
−7 9898± 16 +7

−7
+1
−0

0.0232 9288± 6 +6
−6

+8
−8 9407± 16 +11

−10
+9
−9 9874± 18 +8

−8
+2
−1

0.0302 9093± 6 +7
−7

+9
−9 9230± 17 +14

−12
+11
−11 9852± 20 +10

−10
+3
−1

0.0383 8883± 6 +7
−7

+10
−10 9033± 17 +15

−14
+13
−13 9834± 21 +12

−12
+4
−2

0.0473 8659± 6 +7
−7

+11
−10 8817± 16 +17

−16
+14
−14 9821± 21 +13

−13
+4
−4

0.0572 8425± 6 +7
−7

+11
−11 8584± 14 +18

−17
+16
−16 9814± 19 +14

−14
+5
−5

0.0681 8181± 6 +6
−6

+11
−11 8337± 12 +19

−18
+17
−16 9812± 18 +15

−15
+6
−6

0.0799 7929± 6 +6
−6

+11
−11 8079± 11 +19

−18
+17
−17 9815± 17 +16

−16
+7
−7

0.0926 7672± 6 +5
−5

+11
−11 7812± 11 +19

−19
+18
−17 9821± 17 +17

−17
+8
−8

0.1063 7410± 6 +5
−5

+11
−11 7538± 11 +19

−18
+18
−17 9830± 18 +18

−18
+8
−9

0.1210 7145± 6 +5
−5

+11
−11 7262± 11 +18

−18
+18
−17 9838± 19 +19

−19
+8
−9

0.1366 6877± 7 +5
−5

+11
−11 6986± 11 +18

−18
+17
−16 9845± 20 +19

−19
+7
−8

0.1531 6610± 7 +5
−5

+11
−11 6712± 10 +17

−17
+17
−16 9848± 21 +20

−20
+7
−8

0.1706 6343± 7 +5
−5

+11
−11 6442± 9 +17

−16
+16
−15 9846± 20 +20

−21
+7
−7

0.1890 6078± 7 +5
−5

+11
−11 6178± 8 +16

−16
+15
−15 9837± 18 +21

−21
+6
−7

0.2084 5816± 7 +4
−4

+11
−11 5922± 7 +15

−15
+15
−15 9821± 17 +21

−21
+6
−7

0.2287 5559± 7 +3
−3

+10
−10 5673± 6 +15

−15
+15
−14 9798± 18 +22

−22
+7
−7

0.2500 5306± 7 +2
−2

+10
−10 5433± 6 +14

−14
+14
−14 9766± 20 +23

−23
+7
−7

0.2722 5060± 8 +2
−2

+10
−9 5201± 6 +14

−14
+14
−14 9729± 23 +24

−25
+8
−8

0.2954 4820± 8 +2
−2

+9
−9 4977± 6 +14

−13
+14
−13 9686± 25 +26

−27
+8
−9

0.3195 4588± 9 +3
−3

+9
−8 4760± 6 +13

−13
+13
−13 9640± 26 +29

−29
+9
−9

0.3445 4365± 9 +3
−3

+8
−8 4550± 5 +13

−12
+13
−13 9593± 27 +31

−31
+9
−9

0.3705 4150± 10 +4
−4

+8
−8 4347± 5 +12

−12
+13
−12 9548± 29 +32

−33
+8
−9

0.3974 3945± 11 +4
−4

+8
−8 4150± 5 +11

−11
+12
−12 9505± 32 +33

−33
+8
−8

0.4253 3749± 12 +5
−5

+8
−8 3961± 5 +11

−11
+11
−11 9465± 38 +34

−35
+7
−7

0.4542 3562± 13 +6
−6

+8
−8 3779± 5 +10

−10
+11
−11 9426± 44 +37

−37
+7
−6

0.4839 3381± 14 +7
−7

+7
−7 3604± 5 +10

−10
+11
−11 9383± 49 +41

−41
+8
−7

0.5147 3207± 15 +9
−9

+7
−6 3436± 5 +10

−10
+10
−10 9332± 55 +47

−47
+10
−9

0.5463 3036± 18 +11
−11

+6
−5 3276± 5 +10

−10
+10
−10 9265± 65 +55

−56
+13
−12

0.5789 2867± 23 +13
−13

+5
−4 3123± 5 +10

−10
+10
−10 9178± 84 +67

−68
+15
−15

0.6125 2701± 28 +17
−17

+4
−4 2977± 5 +10

−10
+10
−10 9071± 107 +83

−84
+17
−18

0.6470 2540± 32 +21
−21

+3
−4 2838± 5 +11

−10
+10
−9 8949± 126 +105

−107
+16
−18

0.6824 2384± 33 +28
−29

+3
−4 2705± 4 +11

−11
+9
−9 8814± 133 +139

−141
+14
−17

0.7188 2233± 32 +35
−36

+3
−4 2580± 4 +11

−11
+9
−8 8656± 133 +172

−175
+14
−16

0.7561 2076± 33 +41
−43

+2
−2 2463± 3 +11

−11
+8
−8 8427± 143 +203

−209
+21
−20

0.7944 1890± 83 +50
−52

+3
−3 2356± 9 +11

−11
+9
−8 8023± 381 +248

−256
+43
−44

0.8336 1650± 246 +59
−63

+13
−17 2257± 23 +11

−11
+9
−9 7313± 1189 +295

−310
+87
−106

0.8738 1369± 577 +72
−78

+31
−47 2161± 45 +10

−10
+10
−9 6338± 2926 +361

−389
+171
−244

0.9149 1216±1126+107
−120

+70
−105 2058± 71 +11

−11
+10
−9 5909± 6071 +552

−609
+364
−530

0.9570 1789±2082+228
−253

+169
−213 1934±109+15

−16
+13
−12 9249± 12500 +1255

−1364
+925
−1138

1.0000 4689±4328+559
−605

+422
−400 1786±264+33

−34
+27
−28 26254±28709756+3593

−3726
+2788
−2563

Table K.4: Form factor data determined with the polynomial model.
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K Numerical results: Cross sections and form factors

K.2.2.2 Polynomial + dipole model

Q2 [(GeV/c)2] GE · 104 GM/µp · 104 µp
GE
GM
· 104

0.0005 9984± 0 +0
−0

+0
−0 9988± 0 +0

−0
+0
−0 9996± 0 +0

−0
+0
−0

0.0019 9937± 1 +1
−1

+1
−1 9951± 1 +1

−1
+1
−1 9986± 2 +1

−1
+0
−0

0.0043 9859± 2 +2
−2

+2
−2 9890± 3 +3

−2
+2
−2 9969± 4 +2

−2
+0
−0

0.0076 9754± 3 +3
−3

+3
−3 9805± 5 +5

−4
+4
−4 9948± 6 +3

−3
+0
−0

0.0118 9621± 4 +4
−4

+5
−5 9695± 7 +7

−6
+6
−5 9924± 8 +5

−5
+1
−1

0.0170 9466± 5 +5
−5

+6
−6 9563± 10 +9

−8
+8
−7 9898± 11 +7

−7
+1
−1

0.0232 9289± 5 +6
−6

+8
−7 9408± 11 +11

−10
+10
−9 9874± 13 +9

−9
+2
−2

0.0302 9094± 6 +7
−7

+9
−9 9231± 13 +13

−12
+12
−11 9852± 15 +10

−10
+2
−3

0.0383 8883± 6 +7
−7

+10
−10 9034± 13 +15

−14
+13
−13 9834± 16 +12

−12
+3
−4

0.0473 8660± 6 +7
−7

+10
−10 8818± 13 +17

−16
+15
−14 9821± 17 +13

−13
+4
−5

0.0572 8425± 6 +7
−7

+11
−11 8585± 13 +18

−17
+16
−15 9814± 17 +14

−14
+5
−6

0.0681 8181± 6 +6
−6

+11
−11 8338± 12 +19

−18
+17
−16 9812± 17 +15

−15
+6
−7

0.0799 7930± 6 +6
−6

+11
−11 8080± 11 +19

−18
+17
−17 9815± 17 +16

−16
+7
−7

0.0926 7672± 6 +5
−5

+11
−11 7812± 11 +19

−18
+17
−17 9821± 17 +17

−17
+7
−8

0.1063 7410± 6 +5
−5

+11
−11 7539± 10 +19

−18
+17
−17 9829± 17 +18

−18
+8
−8

0.1210 7145± 6 +5
−5

+11
−11 7263± 10 +18

−18
+17
−17 9838± 18 +19

−19
+8
−8

0.1366 6878± 6 +5
−5

+11
−11 6986± 10 +18

−18
+17
−16 9845± 18 +19

−19
+8
−8

0.1531 6610± 7 +5
−5

+11
−11 6712± 9 +17

−17
+16
−16 9848± 19 +20

−20
+7
−7

0.1706 6343± 7 +5
−5

+11
−11 6442± 8 +17

−16
+16
−15 9846± 18 +21

−21
+7
−7

0.1890 6078± 7 +5
−5

+11
−11 6179± 7 +16

−16
+15
−15 9837± 18 +21

−21
+6
−6

0.2084 5816± 7 +4
−4

+11
−11 5922± 6 +15

−15
+15
−15 9821± 17 +21

−22
+6
−6

0.2287 5559± 7 +3
−3

+10
−10 5674± 6 +15

−14
+15
−14 9797± 18 +22

−22
+6
−7

0.2500 5306± 7 +2
−2

+10
−10 5434± 6 +14

−14
+14
−14 9766± 20 +22

−23
+7
−7

0.2722 5060± 8 +2
−2

+9
−9 5201± 6 +14

−14
+14
−14 9728± 22 +24

−24
+7
−8

0.2954 4820± 8 +2
−2

+9
−9 4977± 6 +13

−13
+14
−13 9685± 24 +26

−27
+8
−9

0.3195 4589± 9 +3
−3

+9
−9 4760± 6 +13

−13
+13
−13 9640± 26 +29

−29
+8
−9

0.3445 4365± 9 +3
−3

+8
−8 4550± 5 +13

−12
+13
−13 9594± 27 +31

−31
+9
−9

0.3705 4151± 10 +4
−4

+8
−8 4347± 5 +12

−12
+12
−12 9549± 29 +33

−33
+8
−9

0.3974 3946± 11 +4
−4

+8
−8 4150± 5 +11

−11
+12
−12 9506± 33 +34

−34
+8
−8

0.4253 3750± 12 +5
−5

+8
−8 3961± 5 +11

−11
+11
−11 9467± 38 +35

−35
+8
−7

0.4542 3562± 13 +6
−6

+8
−7 3779± 5 +10

−10
+11
−11 9427± 44 +37

−37
+8
−7

0.4839 3382± 14 +7
−7

+7
−7 3604± 5 +10

−10
+11
−11 9384± 49 +41

−41
+9
−8

0.5147 3207± 15 +8
−9

+6
−6 3436± 5 +10

−10
+10
−10 9331± 54 +46

−47
+10
−10

0.5463 3035± 18 +10
−11

+5
−5 3276± 5 +10

−9
+10
−10 9263± 65 +55

−55
+12
−12

0.5789 2866± 23 +13
−13

+5
−5 3124± 5 +10

−10
+10
−10 9176± 85 +67

−68
+14
−15

0.6125 2701± 28 +17
−17

+4
−4 2978± 5 +10

−10
+10
−10 9070± 108 +83

−84
+15
−17

0.6470 2540± 31 +21
−22

+4
−4 2838± 5 +11

−10
+9
−9 8949± 124 +105

−106
+15
−17

0.6824 2385± 32 +28
−29

+4
−4 2705± 4 +11

−11
+9
−9 8815± 131 +139

−140
+14
−16

0.7188 2234± 32 +35
−36

+4
−4 2580± 4 +11

−11
+9
−8 8657± 134 +172

−175
+14
−15

0.7561 2075± 34 +41
−43

+2
−2 2464± 3 +11

−11
+8
−8 8423± 144 +203

−209
+21
−20

0.7944 1887± 92 +50
−53

+2
−3 2356± 10 +11

−11
+9
−8 8006± 424 +247

−259
+37
−40

0.8336 1641± 278 +61
−66

+9
−13 2258± 26 +10

−10
+9
−9 7269± 1345 +301

−323
+69
−86

0.8738 1347± 651 +76
−85

+22
−34 2162± 53 +10

−10
+9
−9 6229± 3330 +377

−420
+126
−182

0.9149 1157±1285+101
−122

+49
−76 2060± 87 +10

−10
+9
−9 5614± 7104 +515

−618
+261
−390

0.9570 1628±2400+178
−234

+123
−164 1940±143+14

−13
+12
−11 8389± 16700 +974

−1254
+682
−885

1.0000 4257±4794+420
−551

+323
−344 1806±338+29

−26
+24
−23 23573±1278287+2650

−3337
+2158
−2228

Table K.5: Form factor data determined with the polynomial + dipole model.
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K.2 Form factors

K.2.2.3 Polynomial × dipole model

Q2 [(GeV/c)2] GE · 104 GM/µp · 104 µp
GE
GM
· 104

0.0005 9984± 0 +0
−0

+0
−0 9988± 0 +0

−0
+0
−0 9997± 0 +0

−0
+0
−0

0.0019 9938± 1 +1
−1

+1
−1 9951± 2 +1

−1
+1
−1 9986± 2 +1

−1
+0
−0

0.0043 9861± 1 +1
−1

+2
−2 9891± 4 +2

−3
+3
−3 9970± 4 +3

−2
+1
−1

0.0076 9756± 2 +2
−2

+3
−3 9806± 6 +4

−5
+4
−4 9949± 6 +4

−4
+1
−1

0.0118 9625± 3 +3
−3

+4
−4 9697± 8 +6

−7
+6
−6 9926± 9 +6

−5
+2
−2

0.0170 9470± 4 +4
−4

+6
−6 9565±11 +8

−9
+8
−8 9901± 12 +8

−7
+3
−3

0.0232 9294± 4 +5
−5

+7
−7 9411±13+10

−12
+11
−10 9876± 14 +10

−8
+3
−4

0.0302 9099± 5 +5
−6

+8
−8 9234±14+12

−14
+12
−12 9854± 16 +12

−9
+4
−4

0.0383 8888± 5 +6
−6

+9
−9 9037±14+14

−15
+14
−14 9835± 18 +13

−10
+5
−5

0.0473 8664± 5 +6
−6

+10
−10 8821±14+15

−16
+15
−15 9822± 18 +14

−11
+6
−6

0.0572 8428± 6 +6
−6

+10
−10 8589±13+16

−17
+16
−16 9813± 18 +15

−12
+6
−6

0.0681 8184± 6 +6
−6

+11
−11 8342±12+17

−18
+17
−16 9810± 17 +15

−13
+7
−7

0.0799 7932± 6 +6
−5

+11
−11 8084±11+18

−18
+17
−17 9811± 17 +16

−15
+7
−7

0.0926 7674± 6 +5
−5

+11
−11 7817±10+18

−18
+17
−17 9816± 16 +17

−16
+7
−7

0.1063 7412± 6 +5
−5

+11
−11 7545± 9 +18

−18
+16
−16 9824± 17 +19

−17
+7
−7

0.1210 7146± 6 +5
−4

+11
−11 7269± 9 +18

−18
+16
−16 9831± 17 +21

−18
+7
−7

0.1366 6879± 6 +5
−4

+11
−11 6993± 9 +17

−18
+16
−15 9838± 18 +23

−19
+6
−6

0.1531 6612± 7 +6
−4

+11
−11 6718± 8 +17

−17
+15
−15 9841± 18 +24

−20
+6
−6

0.1706 6345± 7 +5
−4

+11
−11 6448± 8 +16

−17
+15
−15 9840± 18 +24

−21
+6
−6

0.1890 6079± 7 +5
−4

+11
−11 6183± 7 +15

−16
+15
−14 9832± 18 +23

−21
+6
−6

0.2084 5818± 7 +4
−3

+11
−11 5926± 6 +15

−15
+14
−14 9818± 17 +23

−21
+6
−6

0.2287 5560± 7 +3
−3

+10
−10 5676± 6 +14

−14
+14
−14 9796± 18 +22

−21
+6
−6

0.2500 5308± 7 +2
−2

+10
−10 5434± 6 +14

−14
+14
−14 9768± 19 +22

−22
+7
−7

0.2722 5062± 7 +1
−1

+9
−9 5201± 6 +13

−13
+14
−14 9733± 21 +23

−23
+8
−8

0.2954 4823± 8 +1
−0

+9
−9 4976± 6 +13

−13
+14
−13 9694± 23 +25

−25
+9
−9

0.3195 4592± 8 +2
−1

+8
−8 4759± 5 +13

−13
+13
−13 9651± 25 +28

−27
+9
−10

0.3445 4370± 9 +3
−2

+8
−8 4549± 5 +12

−12
+13
−13 9605± 26 +30

−29
+10
−10

0.3705 4155± 9 +3
−2

+8
−8 4347± 5 +12

−12
+12
−12 9558± 28 +32

−31
+10
−10

0.3974 3949± 10 +4
−3

+7
−7 4152± 5 +11

−11
+12
−12 9511± 31 +34

−34
+9
−9

0.4253 3751± 11 +5
−4

+7
−7 3964± 5 +11

−11
+11
−11 9463± 35 +37

−36
+8
−8

0.4542 3561± 12 +6
−4

+7
−7 3782± 5 +10

−10
+11
−11 9414± 40 +40

−37
+7
−8

0.4839 3378± 13 +7
−5

+7
−7 3607± 5 +10

−10
+11
−10 9363± 45 +42

−39
+7
−7

0.5147 3201± 15 +7
−5

+7
−7 3439± 5 +10

−10
+10
−10 9308± 52 +43

−41
+8
−8

0.5463 3030± 17 +7
−6

+6
−6 3278± 5 +9

−9
+10
−10 9245± 62 +46

−45
+9
−9

0.5789 2864± 21 +9
−8

+5
−5 3124± 5 +9

−9
+10
−10 9169± 78 +55

−51
+13
−13

0.6125 2702± 26 +13
−11

+4
−4 2977± 5 +10

−10
+10
−10 9076± 98 +72

−65
+17
−16

0.6470 2543± 30 +19
−16

+3
−3 2838± 5 +10

−10
+9
−9 8958± 117 +97

−88
+21
−20

0.6824 2385± 32 +26
−23

+2
−2 2707± 4 +11

−11
+9
−9 8810± 129 +128

−118
+22
−21

0.7188 2228± 31 +33
−30

+3
−2 2582± 4 +11

−11
+9
−9 8627± 131 +163

−154
+19
−19

0.7561 2072± 32 +39
−38

+4
−4 2464± 3 +11

−11
+8
−8 8407± 137 +195

−191
+12
−13

0.7944 1920± 56 +43
−44

+4
−4 2352± 6 +11

−10
+8
−8 8164± 254 +217

−222
+8
−10

0.8336 1779± 142 +40
−45

+0
−1 2244±13+10

−10
+8
−8 7929± 679 +214

−231
+25
−28

0.8738 1665± 344 +27
−37

+16
−17 2140±25 +8

−8
+9
−9 7780± 1710 +157

−193
+107
−109

0.9149 1605± 759 +8
−54

+61
−61 2040±42 +7

−6
+10
−10 7866± 3950 +14

−253
+341
−337

0.9570 1643±1546+88
−159

+162
−160 1942±66 +5

−5
+12
−13 8462± 8594 +437

−803
+892
−870

1.0000 1856±2852+229
−365

+348
−343 1846±95 +4

−4
+13
−15 10051±17537+1219

−1957
+1978
−1911

Table K.6: Form factor data determined with the polynomial × dipole model.
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K Numerical results: Cross sections and form factors

K.2.2.4 Inverse polynomial model

Q2 [(GeV/c)2] GE · 104 GM/µp · 104 µp
GE
GM
· 104

0.0005 9984± 0 +0
−0

+0
−0 9988± 0 +0

−0
+0
−0 9996± 0 +0

−0
+0
−0

0.0019 9937± 1 +1
−1

+1
−1 9952± 2 +2

−2
+1
−1 9985± 1 +1

−1
+0
−0

0.0043 9860± 1 +1
−2

+2
−2 9892± 3 +3

−4
+2
−2 9967± 3 +3

−3
+0
−0

0.0076 9754± 2 +2
−3

+3
−3 9809± 5 +5

−6
+4
−4 9944± 5 +5

−5
+1
−1

0.0118 9621± 3 +3
−4

+5
−5 9701± 8 +8

−9
+6
−6 9918± 8 +7

−7
+1
−1

0.0170 9466± 4 +4
−5

+6
−6 9569±10+10

−11
+8
−8 9892± 10 +10

−9
+2
−2

0.0232 9289± 5 +5
−6

+7
−7 9414±12+13

−14
+10
−10 9867± 13 +12

−10
+3
−3

0.0302 9094± 5 +5
−7

+9
−8 9237±13+15

−16
+12
−12 9845± 15 +14

−12
+4
−4

0.0383 8883± 5 +6
−7

+9
−9 9039±14+16

−17
+14
−14 9828± 16 +15

−13
+4
−4

0.0473 8659± 5 +6
−7

+10
−10 8822±13+17

−18
+15
−15 9816± 17 +16

−14
+5
−5

0.0572 8425± 6 +6
−6

+11
−10 8588±13+18

−19
+16
−16 9810± 17 +16

−14
+6
−6

0.0681 8181± 6 +6
−6

+11
−11 8339±12+18

−19
+17
−16 9810± 17 +17

−15
+6
−7

0.0799 7929± 6 +5
−6

+11
−11 8079±11+18

−19
+17
−17 9814± 17 +17

−15
+7
−7

0.0926 7672± 6 +5
−5

+11
−11 7811± 9 +17

−19
+17
−17 9822± 16 +18

−15
+7
−7

0.1063 7410± 6 +5
−5

+11
−11 7538± 9 +17

−19
+17
−17 9831± 16 +19

−16
+7
−7

0.1210 7145± 6 +5
−5

+11
−11 7262± 8 +16

−19
+16
−16 9839± 16 +21

−16
+7
−7

0.1366 6878± 6 +5
−5

+11
−11 6986± 8 +16

−18
+16
−16 9846± 16 +22

−17
+7
−7

0.1531 6610± 6 +5
−5

+11
−11 6712± 7 +15

−17
+16
−16 9848± 17 +22

−17
+7
−7

0.1706 6343± 7 +5
−5

+11
−11 6443± 7 +15

−17
+15
−15 9845± 17 +23

−18
+6
−6

0.1890 6078± 7 +5
−4

+11
−11 6180± 7 +15

−16
+15
−15 9835± 17 +22

−19
+6
−6

0.2084 5816± 7 +4
−4

+11
−11 5923± 6 +15

−15
+15
−14 9819± 17 +22

−20
+6
−6

0.2287 5558± 7 +3
−3

+10
−10 5674± 6 +14

−15
+14
−14 9795± 17 +23

−22
+6
−6

0.2500 5306± 7 +2
−2

+10
−10 5433± 6 +14

−14
+14
−14 9766± 18 +23

−23
+6
−7

0.2722 5060± 7 +1
−1

+10
−10 5200± 5 +14

−14
+14
−14 9731± 19 +25

−25
+7
−7

0.2954 4821± 7 +1
−1

+9
−9 4975± 5 +13

−13
+14
−13 9691± 21 +26

−27
+8
−8

0.3195 4591± 8 +2
−1

+9
−9 4758± 5 +13

−13
+13
−13 9649± 23 +29

−29
+9
−9

0.3445 4368± 8 +3
−2

+8
−8 4548± 5 +12

−12
+13
−13 9605± 25 +30

−30
+9
−9

0.3705 4154± 9 +3
−3

+8
−8 4346± 5 +12

−12
+12
−12 9559± 27 +32

−31
+10
−10

0.3974 3948± 9 +4
−3

+7
−7 4150± 5 +11

−11
+12
−12 9513± 29 +33

−32
+10
−10

0.4253 3750± 10 +4
−3

+7
−7 3962± 4 +10

−11
+12
−12 9466± 32 +34

−33
+10
−10

0.4542 3560± 11 +5
−4

+7
−7 3781± 4 +10

−10
+11
−11 9417± 37 +36

−34
+10
−10

0.4839 3377± 12 +5
−4

+7
−7 3606± 4 +9

−10
+11
−11 9366± 43 +39

−35
+9
−9

0.5147 3200± 14 +6
−5

+7
−7 3438± 4 +9

−10
+10
−10 9308± 50 +42

−38
+8
−8

0.5463 3029± 17 +7
−6

+7
−7 3277± 4 +9

−10
+10
−10 9242± 60 +48

−44
+8
−8

0.5789 2862± 20 +10
−8

+6
−6 3123± 4 +9

−10
+10
−10 9164± 73 +60

−53
+8
−8

0.6125 2700± 23 +14
−11

+6
−6 2977± 4 +10

−10
+9
−9 9069± 89 +78

−68
+9
−9

0.6470 2540± 27 +20
−16

+5
−5 2838± 4 +10

−10
+9
−9 8952± 107 +102

−90
+11
−11

0.6824 2383± 30 +26
−23

+4
−4 2706± 4 +11

−11
+9
−9 8807± 120 +131

−119
+13
−14

0.7188 2227± 30 +33
−31

+3
−3 2581± 4 +11

−11
+9
−9 8629± 125 +163

−156
+15
−16

0.7561 2072± 32 +37
−40

+3
−3 2463± 3 +11

−11
+8
−8 8413± 136 +190

−197
+16
−16

0.7944 1917± 48 +40
−48

+4
−4 2352± 4 +10

−11
+8
−8 8152± 217 +206

−240
+11
−12

0.8336 1761± 91 +37
−56

+6
−6 2246± 7 +10

−10
+7
−7 7842± 427 +202

−282
+1
−1

0.8738 1604±163+31
−63

+11
−11 2144±11+9

−10
+7
−7 7478± 797 +178

−323
+27
−26

0.9149 1445±276+22
−71

+19
−18 2047±14+9

−10
+6
−6 7061±1407+144

−376
+70
−67

0.9570 1286±475+28
−83

+30
−28 1952±17+9

−10
+6
−6 6590±2526+169

−451
+132
−124

1.0000 1128±961+48
−97

+43
−39 1858±18+10

−9
+6
−6 6073±5356+278

−545
+210
−191

Table K.7: Form factor data determined with the inverse polynomial model.
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K.2 Form factors

K.2.2.5 Spline model

Q2 [(GeV/c)2] GE · 104 GM/µp · 104 µp
GE
GM
· 104

0.0005 9985± 0 +0
−0

+0
−0 9988± 0 +0

−0
+0
−0 9997± 0 +0

−0
+0
−0

0.0019 9939± 0 +0
−0

+1
−1 9952± 1 +1

−1
+1
−1 9986± 1 +1

−1
+0
−0

0.0043 9863± 1 +1
−1

+1
−1 9892± 2 +2

−2
+1
−1 9970± 2 +2

−2
+0
−0

0.0076 9759± 1 +2
−2

+2
−2 9809± 3 +3

−4
+2
−2 9949± 4 +3

−3
+0
−0

0.0118 9628± 2 +2
−3

+3
−3 9701± 5 +5

−5
+4
−4 9925± 6 +5

−4
+0
−0

0.0170 9474± 3 +3
−3

+5
−5 9571± 6 +7

−7
+5
−5 9899± 8 +7

−5
+0
−0

0.0232 9297± 4 +4
−4

+6
−6 9417± 7 +8

−9
+7
−7 9872± 10 +8

−6
+1
−1

0.0302 9102± 4 +5
−5

+7
−7 9242± 9 +10

−11
+8
−8 9848± 12 +10

−7
+1
−1

0.0383 8890± 5 +5
−5

+8
−8 9046± 9 +12

−12
+10
−10 9828± 13 +11

−8
+1
−1

0.0473 8665± 5 +6
−6

+9
−9 8830±10+13

−14
+11
−11 9813± 14 +12

−9
+2
−2

0.0572 8429± 5 +6
−6

+10
−10 8597±10+14

−15
+12
−12 9805± 15 +12

−10
+2
−2

0.0681 8185± 6 +6
−6

+11
−10 8348± 9 +15

−15
+13
−13 9804± 15 +12

−11
+3
−3

0.0799 7934± 6 +5
−6

+11
−11 8087± 9 +16

−16
+14
−14 9810± 15 +13

−12
+4
−4

0.0926 7677± 6 +5
−5

+11
−11 7817± 8 +16

−16
+15
−14 9822± 15 +14

−14
+4
−4

0.1063 7417± 6 +5
−5

+11
−11 7540± 8 +16

−16
+15
−15 9837± 15 +17

−15
+5
−5

0.1210 7154± 6 +5
−5

+11
−11 7261± 8 +16

−17
+15
−15 9853± 16 +19

−16
+6
−6

0.1366 6888± 6 +6
−4

+10
−10 6982± 8 +16

−17
+15
−15 9865± 16 +21

−17
+6
−6

0.1531 6620± 6 +6
−4

+10
−10 6708± 8 +16

−16
+15
−15 9869± 17 +23

−19
+7
−7

0.1706 6352± 6 +5
−4

+10
−10 6441± 7 +15

−16
+15
−15 9862± 17 +23

−20
+7
−7

0.1890 6083± 6 +5
−3

+10
−10 6181± 7 +15

−15
+15
−14 9842± 17 +23

−20
+7
−7

0.2084 5818± 6 +4
−3

+10
−10 5928± 6 +15

−15
+14
−14 9815± 17 +23

−21
+7
−7

0.2287 5559± 7 +3
−2

+10
−10 5681± 6 +14

−14
+14
−14 9784± 17 +23

−21
+6
−6

0.2500 5306± 7 +2
−1

+10
−10 5442± 5 +14

−14
+14
−13 9750± 18 +23

−22
+6
−6

0.2722 5060± 7 +2
−1

+10
−9 5209± 5 +13

−13
+13
−13 9714± 20 +24

−24
+6
−6

0.2954 4821± 7 +1
−0

+9
−9 4983± 5 +13

−13
+13
−13 9675± 21 +25

−25
+6
−6

0.3195 4590± 8 +1
−1

+9
−9 4765± 5 +12

−12
+12
−12 9634± 23 +26

−27
+6
−7

0.3445 4368± 8 +2
−2

+8
−8 4554± 5 +12

−12
+12
−12 9592± 25 +27

−28
+7
−7

0.3705 4153± 9 +3
−2

+8
−8 4350± 5 +11

−11
+12
−12 9548± 28 +28

−30
+8
−8

0.3974 3947± 10 +3
−3

+7
−7 4153± 5 +11

−11
+12
−12 9505± 31 +30

−33
+9
−9

0.4253 3750± 11 +4
−4

+7
−7 3964± 5 +11

−10
+11
−11 9461± 34 +33

−35
+10
−10

0.4542 3562± 11 +5
−4

+6
−6 3782± 5 +10

−10
+11
−11 9418± 37 +37

−37
+11
−11

0.4839 3382± 12 +7
−5

+6
−6 3608± 5 +10

−10
+11
−11 9374± 42 +43

−39
+12
−12

0.5147 3208± 14 +8
−6

+5
−5 3440± 4 +10

−10
+10
−10 9326± 50 +49

−42
+12
−13

0.5463 3039± 17 +10
−7

+5
−5 3279± 4 +9

−10
+10
−10 9270± 61 +56

−48
+13
−13

0.5789 2874± 20 +12
−9

+5
−5 3124± 4 +9

−10
+10
−10 9200± 74 +66

−57
+13
−14

0.6125 2712± 23 +14
−13

+4
−4 2978± 4 +10

−10
+9
−9 9107± 89 +79

−72
+13
−14

0.6470 2550± 27 +18
−18

+4
−4 2839± 4 +10

−10
+9
−9 8982± 107 +96

−96
+13
−13

0.6824 2389± 31 +23
−25

+4
−4 2707± 4 +11

−10
+9
−9 8825± 125 +119

−126
+13
−13

0.7188 2231± 31 +30
−31

+4
−4 2583± 4 +11

−10
+8
−8 8639± 129 +151

−157
+14
−14

0.7561 2078± 33 +39
−35

+3
−3 2465± 3 +11

−11
+8
−8 8432± 142 +197

−179
+16
−17

0.7944 1934± 69 +53
−36

+1
−1 2353± 7 +9

−12
+8
−8 8218± 315 +270

−185
+22
−23

0.8336 1798± 161 +80
−31

+1
−2 2246±15+7

−15
+8
−8 8005± 766 +411

−164
+34
−35

0.8738 1645± 346 +143
−10

+6
−6 2146±24+5

−19
+8
−8 7666± 1699 +738

−59
+54
−55

0.9149 1424± 706 +269
−19

+12
−13 2050±29+3

−22
+8
−8 6948± 3555 +1399

−105
+87
−88

0.9570 1073±1354+494
−17

+23
−23 1959±33+3

−22
+7
−7 5478± 7141 +2607

−97
+136
−137

1.0000 510± 2363+844
−0

+36
−37 1873±55+4

−16
+7
−7 2726±13624+4551

−0
+205
−207

Table K.8: Form factor data determined with the spline model.
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K Numerical results: Cross sections and form factors

K.2.2.6 Spline × dipole model

Q2 [(GeV/c)2] GE · 104 GM/µp · 104 µp
GE
GM
· 104

0.0005 9985± 0 +0
−0

+0
−0 9988± 0 +0

−0
+0
−0 9997± 0 +0

−0
+0
−0

0.0019 9939± 0 +0
−0

+1
−1 9952± 1 +1

−1
+1
−1 9987± 1 +1

−1
+0
−0

0.0043 9863± 1 +1
−1

+1
−1 9892± 2 +2

−2
+1
−1 9971± 2 +2

−1
+0
−0

0.0076 9759± 1 +2
−2

+2
−2 9808± 3 +3

−3
+2
−2 9950± 3 +3

−2
+0
−0

0.0118 9629± 2 +2
−2

+4
−3 9701± 4 +4

−5
+4
−4 9926± 5 +4

−3
+0
−0

0.0170 9475± 3 +3
−3

+5
−5 9570± 5 +6

−7
+5
−5 9900± 7 +5

−4
+0
−0

0.0232 9299± 3 +4
−4

+6
−6 9417± 7 +8

−8
+7
−6 9874± 9 +7

−5
+0
−0

0.0302 9103± 4 +5
−5

+7
−7 9242± 8 +9

−10
+8
−8 9850± 10 +8

−6
+1
−1

0.0383 8892± 4 +5
−5

+8
−8 9047± 9 +11

−12
+9
−9 9829± 12 +9

−7
+1
−1

0.0473 8667± 5 +6
−6

+9
−9 8832± 9 +13

−13
+11
−11 9813± 13 +11

−8
+1
−2

0.0572 8430± 5 +6
−6

+10
−10 8600± 9 +14

−15
+12
−12 9803± 14 +11

−9
+2
−2

0.0681 8185± 5 +6
−6

+11
−11 8353± 9 +15

−15
+13
−13 9798± 15 +12

−11
+3
−3

0.0799 7932± 6 +6
−6

+11
−11 8094± 9 +16

−16
+14
−14 9800± 15 +13

−12
+3
−4

0.0926 7674± 6 +5
−5

+11
−11 7825± 8 +16

−16
+15
−14 9807± 15 +14

−13
+4
−4

0.1063 7413± 6 +5
−5

+11
−11 7550± 8 +16

−17
+15
−15 9818± 15 +16

−15
+5
−5

0.1210 7148± 6 +5
−4

+11
−11 7272± 7 +17

−17
+15
−15 9830± 15 +18

−16
+6
−6

0.1366 6882± 6 +5
−4

+10
−10 6993± 7 +16

−17
+15
−15 9841± 15 +20

−18
+7
−7

0.1531 6616± 6 +5
−4

+10
−10 6717± 7 +16

−16
+15
−15 9849± 15 +21

−19
+7
−7

0.1706 6349± 6 +5
−3

+10
−10 6446± 7 +16

−16
+15
−15 9850± 16 +23

−20
+8
−8

0.1890 6083± 6 +4
−3

+10
−10 6182± 6 +15

−16
+15
−15 9841± 16 +24

−21
+8
−8

0.2084 5820± 6 +4
−2

+10
−10 5926± 6 +15

−15
+15
−14 9821± 16 +24

−22
+8
−8

0.2287 5560± 6 +3
−2

+10
−10 5679± 6 +15

−15
+14
−14 9791± 17 +24

−23
+8
−8

0.2500 5305± 7 +3
−1

+10
−9 5440± 5 +14

−14
+14
−14 9753± 18 +24

−24
+7
−7

0.2722 5058± 7 +2
−1

+9
−9 5208± 5 +14

−13
+13
−13 9712± 19 +24

−24
+7
−7

0.2954 4819± 7 +2
−0

+9
−9 4983± 5 +13

−13
+13
−13 9671± 20 +25

−25
+7
−7

0.3195 4588± 8 +2
−1

+9
−9 4764± 5 +12

−12
+13
−12 9630± 22 +26

−26
+7
−7

0.3445 4366± 8 +2
−1

+8
−8 4553± 5 +12

−12
+12
−12 9589± 23 +27

−27
+7
−7

0.3705 4153± 9 +2
−2

+8
−8 4350± 4 +11

−11
+12
−12 9549± 26 +29

−29
+7
−7

0.3974 3949± 9 +3
−2

+8
−7 4153± 4 +11

−11
+12
−11 9508± 29 +31

−30
+8
−8

0.4253 3752± 10 +4
−3

+7
−7 3964± 4 +10

−10
+11
−11 9466± 32 +34

−33
+9
−9

0.4542 3563± 11 +5
−4

+6
−6 3782± 4 +10

−10
+11
−11 9422± 36 +38

−36
+10
−10

0.4839 3381± 12 +7
−5

+6
−6 3607± 4 +10

−10
+11
−11 9374± 41 +43

−39
+11
−11

0.5147 3205± 13 +8
−6

+5
−5 3439± 4 +10

−10
+10
−10 9319± 47 +49

−44
+12
−12

0.5463 3034± 16 +10
−8

+5
−5 3279± 4 +10

−10
+10
−10 9253± 58 +56

−51
+13
−13

0.5789 2867± 20 +12
−10

+5
−5 3125± 4 +10

−10
+10
−10 9174± 73 +66

−59
+13
−14

0.6125 2704± 24 +15
−12

+4
−4 2979± 4 +10

−10
+9
−9 9078± 90 +79

−71
+14
−14

0.6470 2544± 27 +18
−16

+4
−4 2839± 4 +10

−10
+9
−9 8959± 106 +96

−89
+14
−14

0.6824 2386± 29 +23
−22

+4
−4 2707± 4 +10

−10
+9
−9 8813± 117 +119

−114
+14
−15

0.7188 2229± 29 +30
−29

+3
−3 2582± 3 +11

−11
+8
−8 8634± 122 +150

−147
+15
−15

0.7561 2074± 32 +38
−38

+3
−3 2465± 3 +11

−11
+8
−8 8413± 135 +190

−192
+16
−17

0.7944 1915± 43 +48
−52

+2
−2 2355± 5 +11

−11
+8
−8 8131± 195 +240

−257
+19
−19

0.8336 1740± 75 +57
−74

+0
−0 2251± 7 +11

−11
+8
−8 7734± 353 +291

−366
+26
−26

0.8738 1536±141+65
−112

+4
−3 2151±10+11

−11
+8
−8 7142± 687 +335

−555
+42
−41

0.9149 1287±262+73
−173

+10
−10 2055±11+11

−10
+7
−7 6260±1305 +375

−869
+71
−69

0.9570 973± 455+87
−265

+20
−19 1961±10+11

−9
+7
−7 4963±2349+445

−1366
+121
−117

1.0000 577± 724+115
−388

+34
−33 1866± 9 +11

−8
+7
−7 3092±3902+611

−2078
+195
−189

Table K.9: Form factor data determined with the spline × dipole model.
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K.2 Form factors

K.2.2.7 Double-dipole model

Q2 [(GeV/c)2] GE · 104 GM/µp · 104 µp
GE
GM
· 104

0.0005 9979± 1 +1
−1

+0
−0 9986±0 +0

−0
+0
−0 9993± 1 +1

−1
+0
−0

0.0019 9920± 3 +3
−4

+0
−1 9943±0 +1

−1
+0
−1 9976± 3 +3

−3
+1
−1

0.0043 9828± 7 +6
−6

+0
−1 9873±1 +2

−2
+1
−1 9954± 7 +5

−6
+0
−2

0.0076 9712±10 +7
−8

+1
−2 9777±1 +3

−4
+2
−2 9933± 9 +7

−7
+0
−1

0.0118 9574±11+8
−10

+2
−4 9655±2 +4

−5
+3
−3 9916±10 +8

−7
+0
−1

0.0170 9418±13+9
−10

+4
−5 9509±3 +5

−7
+4
−4 9904±11 +8

−7
+0
−1

0.0232 9244±13+9
−11

+6
−7 9342±4 +7

−9
+5
−5 9895±11 +8

−6
+1
−2

0.0302 9054±13+10
−11

+7
−8 9155±5+9

−12
+6
−7 9890±10 +8

−5
+1
−2

0.0383 8848±12+9
−11

+8
−9 8950±6+10

−14
+7
−8 9886±10 +8

−6
+1
−2

0.0473 8628±12+9
−10

+9
−10 8730±7+12

−16
+8
−9 9884± 9 +9

−7
+1
−1

0.0572 8396±12+9
−10

+9
−11 8496±7+13

−17
+10
−10 9881± 9 +10

−9
+0
−0

0.0681 8153±11 +8
−9

+10
−11 8253±8+14

−19
+11
−11 9879± 9 +12

−11
+0
−1

0.0799 7901±11 +8
−8

+10
−11 8000±9+15

−20
+11
−12 9876±10+15

−13
+1
−2

0.0926 7643±11 +7
−7

+10
−11 7742±9+16

−21
+12
−13 9872±10+17

−15
+2
−3

0.1063 7379±10 +6
−7

+10
−11 7479±9+17

−21
+13
−14 9866±10+19

−17
+3
−4

0.1210 7112±10 +6
−6

+10
−11 7215±9+17

−21
+13
−14 9858±11+21

−18
+4
−4

0.1366 6844±10 +5
−5

+10
−11 6949±9+17

−21
+14
−15 9849±12+23

−20
+5
−5

0.1531 6576±10 +5
−4

+10
−11 6685±9+17

−21
+14
−15 9837±12+25

−21
+6
−6

0.1706 6310±10 +4
−3

+10
−10 6423±9+17

−20
+14
−15 9824±13+26

−22
+6
−7

0.1890 6046±10 +4
−3

+9
−10 6164±9+17

−19
+14
−15 9808±14+27

−23
+7
−7

0.2084 5786± 9 +3
−2

+9
−10 5910±9+16

−18
+14
−15 9790±14+28

−24
+7
−7

0.2287 5531± 9 +3
−1

+9
−10 5662±8+15

−17
+14
−14 9769±15+28

−25
+8
−8

0.2500 5282± 9 +3
−1

+9
−9 5420±8+15

−16
+13
−14 9746±15+28

−26
+8
−8

0.2722 5039± 9 +2
−1

+8
−9 5184±8+14

−15
+13
−14 9720±16+29

−26
+8
−8

0.2954 4804± 9 +2
−1

+8
−9 4956±7+13

−14
+13
−13 9693±16+29

−26
+8
−8

0.3195 4576± 9 +2
−1

+8
−9 4735±7+12

−13
+12
−13 9663±17+29

−27
+8
−8

0.3445 4356± 9 +2
−2

+8
−8 4523±7+12

−12
+12
−12 9631±17+29

−27
+8
−8

0.3705 4144± 9 +2
−2

+7
−8 4317±6+11

−12
+11
−12 9597±17+29

−27
+8
−8

0.3974 3940± 8 +2
−2

+7
−8 4120±6+10

−11
+11
−12 9562±18+29

−27
+8
−8

0.4253 3744± 8 +2
−2

+7
−7 3931±5+10

−10
+11
−11 9524±18+30

−28
+8
−8

0.4542 3557± 8 +3
−2

+7
−7 3750±5+9

−10
+10
−11 9485±18+30

−28
+8
−8

0.4839 3378± 8 +3
−2

+6
−7 3576±5 +9

−9
+10
−10 9445±19+31

−29
+8
−8

0.5147 3207± 8 +3
−2

+6
−7 3411±5 +8

−9
+9
−10 9403±19+32

−29
+8
−8

0.5463 3044± 8 +3
−3

+6
−6 3252±4 +8

−9
+9
−10 9360±19+33

−30
+8
−8

0.5789 2889± 7 +3
−3

+6
−6 3101±4 +8

−8
+9
−9 9317±19+34

−31
+8
−8

0.6125 2741± 7 +3
−3

+5
−6 2957±4 +8

−8
+9
−9 9272±19+35

−33
+8
−8

0.6470 2601± 7 +3
−3

+5
−6 2819±4 +8

−8
+8
−9 9227±20+37

−34
+9
−8

0.6824 2468± 7 +3
−3

+5
−5 2688±4 +8

−8
+8
−8 9181±20+39

−36
+9
−9

0.7188 2341± 7 +3
−3

+5
−5 2563±4 +8

−8
+8
−8 9135±20+41

−37
+9
−9

0.7561 2222± 6 +3
−3

+5
−5 2445±4 +8

−9
+8
−8 9088±20+44

−39
+10
−9

0.7944 2108± 6 +3
−3

+4
−5 2332±4 +8

−9
+7
−8 9041±20+47

−42
+10
−10

0.8336 2001± 6 +3
−3

+4
−4 2224±4 +8

−9
+7
−8 8994±21+49

−44
+11
−10

0.8738 1899± 6 +3
−3

+4
−4 2122±4 +8

−9
+7
−7 8947±21+53

−47
+11
−11

0.9149 1802± 6 +3
−3

+4
−4 2025±4 +9

−9
+7
−7 8901±22+56

−50
+12
−12

0.9570 1711± 5 +3
−3

+4
−4 1933±4+9

−10
+7
−7 8854±22+59

−53
+13
−12

1.0000 1625± 5 +3
−2

+4
−4 1845±4+9

−10
+7
−7 8808±23+63

−56
+13
−13

Table K.10: Form factor data determined with the double-dipole model.
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K Numerical results: Cross sections and form factors

K.2.2.8 Friedrich-Walcher model

Q2 [(GeV/c)2] GE · 104 GM/µp · 104 µp
GE
GM
· 104

0.0005 9984±0+0
−0

+0
−0 9987± 0 +0

−0
+0
−0 9997± 0 +0

−0
+0
−0

0.0019 9937±1+1
−1

+1
−1 9948± 0 +0

−0
+0
−0 9990± 1 +1

−1
+1
−1

0.0043 9860±2+1
−2

+2
−2 9883± 0 +0

−1
+0
−0 9978± 2 +1

−1
+1
−1

0.0076 9755±3+2
−3

+3
−3 9793± 1 +1

−2
+1
−1 9962± 3 +2

−2
+2
−2

0.0118 9624±4+3
−4

+4
−5 9679± 1 +1

−3
+1
−1 9943± 4 +2

−2
+3
−4

0.0170 9469±5+4
−5

+6
−6 9542± 2 +2

−4
+2
−2 9923± 5 +3

−3
+4
−5

0.0232 9293±6+5
−6

+7
−8 9384± 2 +2

−5
+3
−3 9903± 6 +3

−3
+5
−5

0.0302 9099±6+6
−7

+9
−9 9206± 3 +3

−6
+4
−4 9884± 6 +3

−3
+6
−6

0.0383 8889±6+6
−7

+10
−10 9009± 3 +4

−7
+5
−5 9866± 6 +3

−3
+6
−6

0.0473 8665±6+7
−8

+11
−11 8796± 4 +6

−9
+6
−7 9852± 6 +5

−2
+6
−5

0.0572 8431±6+7
−8

+12
−12 8568± 6 +7

−10
+8
−8 9840± 7 +6

−1
+5
−4

0.0681 8186±6+7
−8

+12
−12 8326± 7 +9

−12
+9
−10 9832± 9 +8

−2
+4
−3

0.0799 7934±5+7
−7

+13
−13 8074± 8 +10

−14
+11
−12 9827±11+11

−5
+2
−1

0.0926 7676±5+7
−7

+13
−12 7812± 9 +12

−15
+13
−14 9826±13+13

−7
+1
0

0.1063 7413±5+6
−6

+12
−12 7543±10+14

−17
+14
−15 9827±15+16

−10
+4
−2

0.1210 7147±5+6
−6

+12
−12 7270±10+15

−18
+15
−16 9830±16+19

−13
+6
−4

0.1366 6878±5+5
−5

+12
−12 6995±10+16

−18
+16
−17 9833±17+21

−16
+7
−6

0.1531 6610±6+4
−4

+11
−11 6721± 9 +16

−18
+16
−17 9835±16+23

−19
+9
−7

0.1706 6342±6+4
−3

+11
−11 6450± 8 +17

−18
+16
−17 9833±16+25

−21
+9
−8

0.1890 6077±6+3
−2

+10
−10 6185± 7 +16

−18
+16
−17 9825±16+26

−23
+9
−9

0.2084 5815±6+2
−1

+10
−10 5927± 6 +16

−17
+16
−16 9811±15+26

−25
+9
−9

0.2287 5558±6+2
−1

+10
−10 5677± 6 +15

−16
+15
−15 9790±16+27

−26
+9
−9

0.2500 5306±7+2
−0

+10
−10 5435± 5 +15

−15
+15
−15 9762±17+27

−27
+8
−9

0.2722 5060±7+1
−1

+9
−9 5202± 5 +14

−14
+14
−14 9727±17+27

−28
+8
−8

0.2954 4821±7+1
−1

+9
−9 4978± 5 +13

−14
+14
−14 9686±18+28

−28
+8
−8

0.3195 4590±7+2
−1

+9
−9 4761± 4 +13

−13
+13
−13 9641±19+28

−28
+7
−8

0.3445 4367±7+2
−1

+9
−9 4552± 4 +12

−12
+13
−13 9595±19+28

−28
+7
−7

0.3705 4152±7+2
−2

+9
−9 4349± 4 +11

−12
+12
−12 9547±19+28

−28
+6
−7

0.3974 3946±7+2
−2

+9
−9 4153± 3 +11

−11
+12
−12 9500±19+28

−28
+6
−6

0.4253 3748±7+2
−2

+9
−9 3964± 3 +10

−10
+12
−11 9454±19+27

−28
+5
−6

0.4542 3558±7+2
−2

+8
−9 3782± 3 +9

−10
+11
−11 9410±19+27

−28
+5
−5

0.4839 3377±7+2
−2

+8
−9 3606± 3 +9

−9
+11
−11 9367±20+27

−28
+4
−5

0.5147 3205±7+2
−2

+8
−8 3437± 3 +9

−9
+10
−10 9325±20+27

−28
+3
−4

0.5463 3040±7+2
−2

+8
−8 3275± 3 +8

−8
+10
−10 9284±20+28

−29
+3
−4

0.5789 2884±7+2
−2

+8
−8 3120± 2 +8

−8
+10
−10 9243±20+29

−29
+2
−3

0.6125 2735±7+2
−2

+8
−8 2972± 2 +8

−8
+9
−9 9202±20+30

−30
+2
−3

0.6470 2594±6+2
−2

+7
−8 2832± 2 +8

−8
+9
−9 9160±20+31

−31
+2
−2

0.6824 2460±6+2
−1

+7
−7 2698± 2 +8

−8
+9
−9 9116±21+33

−32
+2
−2

0.7188 2333±6+2
−1

+7
−7 2572± 2 +8

−8
+8
−8 9070±21+35

−34
+1
−2

0.7561 2212±6+2
−1

+7
−7 2452± 2 +8

−9
+8
−8 9022±21+37

−35
+1
−2

0.7944 2098±6+2
−1

+7
−7 2339± 2 +8

−9
+8
−8 8971±21+39

−37
+1
−2

0.8336 1990±6+2
−1

+6
−7 2232± 3 +8

−9
+8
−8 8917±21+41

−39
+1
−2

0.8738 1888±5+2
−1

+6
−6 2131± 3 +8

−9
+8
−8 8859±21+43

−41
+1
−2

0.9149 1792±5+2
−1

+6
−6 2036± 3 +9

−10
+7
−7 8797±22+47

−43
+1
−2

0.9570 1700±5+2
−1

+6
−6 1947± 3 +9

−11
+7
−7 8731±23+53

−46
+1
−2

1.0000 1614±5+2
−1

+6
−6 1864± 3 +10

−12
+7
−7 8659±24+63

−49
+1
−2

Table K.11: Form factor data determined with the Friedrich-Walcher model.
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