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Giant quadratic magneto-optical response of
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We report an observation of a giant magneto-optical (MO) effect quadratic in magnetization (Cotton-Mouton
effect) in a 50 nm thick layer of yttrium-iron garnet (YIG). By a combined theoretical and experimental approach,
we managed to quantify both linear and quadratic MO effects in the studied material. We show that the quadratic
MO signal in the thin YIG film can exceed the linear MO response, reaching values of 450 μrad that are
comparable with Heusler alloys or ferromagnetic semiconductors. This relative enhancement of the quadratic
MO response relative to the linear MO response is attributed to antiferromagnetic coupling of two Fe sublattices.
Furthermore, we demonstrate that a proper choice of experimental conditions, particularly with respect to the
used wavelength, is crucial for optimization of the quadratic MO effect, which can be used very efficiently for
magnetometry measurement.
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I. INTRODUCTION

Yttrium iron garnet (Y3Fe5O12, YIG) is a prototype ferri-
magnetic insulator which represents one of the key systems
for modern spintronic applications [1]. This material has been
thoroughly studied in recent decades owing to its special
properties, such as low Gilbert damping [2–4] and high spin
pumping efficiency [5–8]. YIG has played a crucial role
in fundamental spintronics experiments, revealing spin Hall
magnetoresistance [9,10] or spin-Seebeck effect [11–13].

Many of the above-mentioned spintronic phenomena rely
on high-quality ultrathin YIG films and on detection of small
changes in magnetization therein. However, YIG is a com-
plex magnetic system with 200 μB magnetic moments per
unit cell. Magnetic properties of the few monolayer systems
used in spintronics are vulnerable to small structural changes
and they are relatively difficult to characterize and control
[14–17]. Moreover, reliability of conventional magnetometry
tools, such as the superconducting quantum interference de-
vice (SQUID) or vibrating sample magnetometry (VSM), is
limited by the large paramagnetic background and unavoid-
able impurity content of the gadolinium-gallium garnet that is
commonly used as a substrate for the thin YIG layers. Direct
use of magnetotransport methods for magnetic characteriza-
tion is naturally prevented by a small electric conductivity
of the insulating YIG. Magnetotransport can be utilized only
indirectly in multilayers of YIG/heavy metal, via spin Hall
magnetoresistance [17].

In contrast, optical interactions are not governed by DC
conductivity of the material. Magneto-optics provides a nat-

ural tool for detection of the magnetic state of ferrimagnetic
insulators. YIG in particular has an extremely strong magneto-
optical response that can be easily modified by doping [18].
Magneto-optical (MO) response of a material manifests gen-
erally as a change of polarization state of a transmitted or
reflected light [18], usually detected in the form of a rotation
of the polarization plane of a linearly polarized light. Similar
to the magnetotransport effects, MO effects with different
symmetries with respect to magnetization (M) can occur.
Within certain limitations [19], an MO analogy to the anoma-
lous Hall effect (AHE), which is linear in M, is the Faraday
effect in transmission geometry or the Kerr effect in reflection.
For anisotropic magnetoresistance (AMR) quadratic in M, the
corresponding MO effect is magnetic linear dichroism (MLD)
[19]. As the terminology is quite ambiguous in magneto-
optics, MLD, Q-MOKE, Voigt, or Cotton-Mouton effect,
which are sometimes used, all refer to the same phenomenon
in different experimental geometries. In this paper, we have
chosen to use the name “Cotton-Mouton effect” (CME) for
the rotation of the polarization plane in transmission geometry
that is quadratic in M, consistent with the previous works per-
formed on YIG [20,21]. Similarly, a variety of names is used
in linear magneto-optics. As the usual Kerr or Faraday effects
are observed in experimental geometries different from ours,
we define the linear magneto-optical effect in transmission
(LMET) in this work.

Quadratic MO effects scale with the square of mag-
netization magnitude and their symmetry is given by an
axis parallel to the magnetization vector. As such, they are

2469-9950/2022/106(10)/104434(10) 104434-1 ©2022 American Physical Society

https://orcid.org/0000-0002-0830-5218
https://orcid.org/0000-0001-5182-1501
https://orcid.org/0000-0003-3998-939X
https://orcid.org/0000-0001-6961-6581
https://orcid.org/0000-0003-3784-7734
https://orcid.org/0000-0001-5756-6716
https://orcid.org/0000-0002-8751-931X
https://orcid.org/0000-0001-6867-5942
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.106.104434&domain=pdf&date_stamp=2022-09-30
https://doi.org/10.1103/PhysRevB.106.104434


E. SCHMORANZEROVÁ et al. PHYSICAL REVIEW B 106, 104434 (2022)

generally weaker than the linear MO response [18]. However,
there are significant advantages over the linear magneto-
optics, making them favorable in MO magnetometry. The
even symmetry with respect to the local magnetization en-
ables one to observe these effects in systems with no net
magnetic moment, such as collinear antiferromagnets, as the
contributions from different sublattices do not cancel out [22].
Quadratic MO effects are sensitive to the angle between mag-
netization and the polarization plane [23], similarly to the way
AMR is sensitive to the angle between magnetization and the
electric current [19], which enables one to trace all the in-
plane components of magnetization vector simultaneously in
one experiment [23–26]. There is, however, one key advantage
of the MO approach. The orientation of linear optical polar-
ization can be set easily, unlike the current direction in the
AMR measurement, which is defined by the electrical contact
geometry. Consequently, variation of the light polarization
provides an access to magnetocrystalline anisotropies [25]
without modification of the sample properties by lithography,
which is typically needed for the experimental methods based
on electron transport.

In certain classes of materials and compounds with sig-
nificant spin-orbit coupling, such as Heusler alloys [27] and
ferromagnetic semiconductors [23,28], or some collinear [22]
and noncollinear [29] antiferromagnets, the quadratic MO
response can be strongly enhanced. There, the quadratic
magneto-optics has found its important applications in static
and dynamic MO magnetometry [28,30], helping to discover
unique physical phenomena such as optical spin transfer [31]
and spin-orbit torques [32]. In contrast, in ferrimagnetic insu-
lators the quadratic MO effects have been vastly neglected so
far. The first pioneering experiments have revealed the poten-
tial of the quadratic magneto-optics in YIG to visualize stress
waves [33] or current-induced spin-orbit torque [21]. The
inverse quadratic Kerr effect has even been identified as a trig-
ger mechanism for ultrafast magnetization dynamics in thin
YIG films [21]. However, no optimization of the MO effects
was performed in these works in terms of their amplitude,
spectral dependence, dependence on the angle of incidence,
or initial polarization. In the 1970s and 1980s, limited studies
were published in the field of quadratic magneto-optical spec-
troscopy on bulk YIG crystals, demonstrating magnetic linear
birefringence [34] or dichroism [35,36] of YIG doped by rare
earths and metals, as well as a sizable Voigt effect in terbium-
gallium garnet at cryogenic temperature [37]. However, only
few experiments aiming at understanding the details of the
quadratic MO response in thin films of pure, undoped YIG
have been performed so far.

In this paper, we report on the observation of a giant
Cotton-Mouton effect of a 50 nm thin epitaxial film of pure
YIG, which can even exceed the amplitude of the linear
Faraday effect owing to its origin in ferrimagnetic order of
electronic spins. Using a combined experimental and the-
oretical approach, we quantify the size of CME-induced
polarization rotation with respect to various external param-
eters, such as wavelength, temperature, or angle of incidence.
This is a key prerequisite for the quadratic magneto-optics
optimization for magnetometric applications. The potential of
CME for magnetometry is demonstrated on identification of

FIG. 1. Structural and magnetic characterization of thin YIG
film. (a,b) Reciprocal space maps (RSMs) taken on 444 and 642
Bragg peaks of YIG at room temperature. (c) Cross sections of
RSMs data along the [111] crystallographic directions (points) mod-
eled by dynamical diffraction model (line) with lattice parameter
a = 12.379 Å and distortion angle α = (90.05 ± 0.02)◦. (d) Mag-
netic hysteresis loops measured by SQUID magnetometry in three
in-plane crystallographic directions that are denoted as follows: A [2
-1 -1], B[0 1 -1], and C (diagonal), and in the out-of-plane direction
D [111] at a temperature of 50 K.

magnetic anisotropy of the thin YIG film directly from the
detected MO signals.

II. EXPERIMENTAL DETAILS AND SAMPLE
CHARACTERIZATION

We used a monocrystalline 50 nm thick film of yttrium
iron garnet prepared by pulsed laser deposition (PLD) on
(111)-oriented gallium-gadolinium garnet (GGG). Details of
the growth procedure can be found in Ref. [38]. Since the
thin YIG layers are prone to growth defects and strain inho-
mogeneities [14,16], the samples were carefully characterized
by x-ray diffraction. From the reciprocal space maps (RSMs)
around the YIG and GGG 444 and 642 Bragg peaks we find
that any diffraction signal of the film is aligned with that of the
substrate along the in-plane momentum transfer [see Figs. 1(a)
and 1(b)]. The RSMs thus show the pseudomorphic growth
of the YIG film. Its in-plane lattice parameter, equal to the
substrate lattice parameter, is measured to be 12.385 Å, close
to the previously published values for GGG substrates [39].
Along the [111] direction we find Laue thickness oscillations
indicating the high crystalline quality of the YIG film. In order
to analyze the out of plane lattice parameter, a cross section
along the [111] direction was extracted from the 444 and
642 Bragg peaks and modeled using a dynamical diffraction
model [see Fig. 1(c)]. We used the rhombohedrally distorted
cubic structure of YIG with a = 12.379 Å and rhombohedral
angle α = (90.05 ± 0.02)◦ as an input for the model, parame-
ters that are similar to Ref. [14]. A weak in-plane tensile strain
occurs due to the lattice mismatch, but the resulting distortion
of only 0.05 ° is unlikely to affect the magnetic properties of
the layer in a significant way.
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FIG. 2. (a) Schematics of the experimental setup for magneto-
optical magnetometry. Linearly polarized light with a polarization
E oriented at an angle β with respect to the TE polarization mode
(Es) is incident on the sample, which is oriented under an angle θi.
with respect to the plane in which the magnetic field was applied.
After being transmitted through the sample, the light polarization
plane is rotated by an angle �β. The sample is subject to an external
magnetic field Hext , applied in an arbitrary direction, with the corre-
sponding spherical angles of the Hext vector shown in (b) plane view
projection (azimuthal angle ϕH ) and (c) side view projection (polar
angle θH ) of the experimental geometry.

Magnetic properties of the YIG film were studied us-
ing SQUID magnetometry. An example of hysteresis loops
recorded at 50 K with external magnetic field applied along
different crystallographic directions is shown in Fig. 1(d).
Clearly, the sample is in-plane magnetized, with a coercive
field of μ0Hc = 1.8 mT. Note that there is a small difference
in Hc between the two crystallographic directions denoted
as A and C, indicating the presence of an in-plane magnetic
anisotropy. However, its quantification based on our SQUID
measurement is prevented by a large error caused by the
paramagnetic background of the GGG substrate. For further
details on SQUID see Sec. 1 in the Supplemental Material
[40] (also see Refs. [41,42]). From the SQUID data, the
room-temperature value Ms = 96 kA/m was extracted. The
saturation magnetization is lower than that of a bulk crystal
Ms,bulk = 143 kA/m [43] but in very good agreement with
previously reported values for PLD-grown ultrathin YIG lay-
ers [17], confirming the good quality of our YIG film.

Magneto-optical measurements on the YIG sample were
performed by a homemade vector magneto-optical magne-
tometer, schematically shown in Fig. 2(a). For the majority
of our experiments we used a cw solid-state laser (Match
Box series, Integrated Optics Ltd.) with a fixed wavelength of
403 nm as a light source. The cw laser was replaced by the
second-harmonics output of a tunable titan-sapphire pulsed
laser (model Mai Tai, Spectra Physics) to gain a wider spec-
tral range of λ = 390–440 nm for the wavelength-dependent
measurement. The light was incident on the sample either
under an angle θi = 3◦ (near normal incidence), or θi = 45◦,
as indicated in Fig. 2(c). Linear polarization of the incident
light was set by a polarizer and a half-wave plate. In both

cases, the polarization state of the light transmitted through
the sample was analyzed by a differential detection scheme
(optical bridge) in combination with phase-sensitive (lock-in)
detection [44].

The sample itself was mounted in a closed-cycle cryostat
(ARS Systems) to enable the temperature variation in a range
of T = 20 K–300 K. The cryostat was placed between pole
stages of a custom-made two-dimensional (2D) electromagnet
where the external magnetic field of up to μ0Hext = 205 mT
could be applied in an arbitrary direction in the plane perpen-
dicular to the optical beam axis. The (spherical) coordinate
system for Hext is given in Figs. 2(b) and 2(c). Note that
the polar angle θH is defined from the sample plane, and
it is equivalent to the angle of incidence of the incoming
light θi. Utilization of the 2D electromagnet allowed for two
different approaches in our experiments. Firstly, a standard
magneto-optical magnetometry was used, where the magni-
tude of |Hext| in a fixed y direction is varied, and the resulting
hysteresis loops are recorded. Comparing the measured hys-
teresis loops for different orientations of the light polarization
with our analytical model allowed for determination of the
magnetization reorientation during the magnetic field sweeps,
as further discussed in Sec. III, Theory. Analysis of the full
polarization dependence of the hysteresis loops also enabled
us to separate the contributions of LMET (linear in magneti-
zation) and CME (quadratic in magnetization) to the overall
MO signals, and to extract their corresponding amplitudes.

However, this method of determining the size of the MO
effects was inefficient and burdened by a relatively large error
resulting from the complicated separation of the MO effects
that required full light polarization dependence of the hys-
teresis loops. Therefore, for further systematic study of the
CME we implemented the Magnetic Optic Kerr Effect with
a rotating field (ROT-MOKE) experiment, where the external
magnetic field of a fixed magnitude of 205 mT was rotated in
the sample plane, the azimuthal angle ranging from ϕH = 0◦
to 360◦ (see Fig. 2). The resulting MO signal was recorded as
a function of ϕH [24,25], with the polarization of light kept
fixed to the fundamental TE (s-) mode. In these experiments,
Hext was large enough to saturate the magnetization of the YIG
film, which then exactly followed the field direction during
its rotation. We can therefore neglect the effect of magnetic
anisotropy and determine the MO coefficient simply from one
field rotation curve [25], in a way very similarly to determi-
nation of AMR or planar Hall effect coefficients from field
rotations [26]. This also directly demonstrates the analogy
between magneto-optical and magnetotransport methods.

III. THEORY

The aim of our theoretical analysis is to determine the
kinetics of the magnetization vector during the magnetic field
sweep and to evaluate the magnitude of the magneto-optical
coefficient. Reorientation of the magnetization vector is mod-
eled in terms of the local profile of the magnetization free
energy density. Its functional F is known from the symmetry
considerations (see Eq. (S1) in the Supplemental Material
[40]) assuming the lowest terms in magnetization magni-
tude [45], yet the corresponding constants, which appear in
the expression, are strongly sample dependent. In bulk YIG
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FIG. 3. (a) Rotation of polarization plane �β as a function of
the external magnetic field magnitude Hext measured for two angles
of incidence, θi = 3◦ and 45◦, corresponding to the same two field
angles, θH = 3◦ and 45◦, respectively; a temperature of 20 K and
photon energy of 3.1 eV was used. The data were vertically shifted
for clarity. The complex M-shape-like hysteresis is a clear signature
of magnetization being switched between magnetic easy axes. (b)
Simulation of the MO signal by means of the analytical model.
Based on our model, we identified three equivalent easy axes (c) and
extracted their mutual angle ζ = 120◦ and position of their bisectrix
γ = 6◦. (d) The abrupt changes in magneto-optical signals in (a,b)
correspond to “jumps” of magnetization between the easy axes 1, 3,
and 4 (4, 6, and 1) for the magnetic field sweep from the positive
(negative) field, as schematically indicated in (a).

crystal the anisotropy constants are known [46] and, therefore,
we can roughly estimate the positions of the easy magneti-
zation directions. The dominant anisotropy in a high-quality
thin YIG layer on GGG is the cubic bulk contribution. In
thin samples, there is an additional out of plane anisotropy
(hard direction) due to the stress fields and demagnetization
energy which pushes the magnetization towards the sample
plane [14,15]. We therefore expect that the projection of easy
directions to the [111] crystallographically oriented sample
plane is effectively sixfold [see Fig. 3(c)]. The deflection angle
of the easy directions from the sample plane is only a few
degrees and thus can be neglected (see Sec. 3 in the Supple-
mental Material [40] for more details). We define an effective
in-plane anisotropic energy density with the corresponding
sixfold symmetry as

F = K6 sin23(ϕM − γ ) − Msμ0Hext cosθH cos(ϕH − ϕM),
(1)

where MS is the saturation magnetization of the sample, μ0 is
the vacuum permeability, Hext is the external magnetic field
magnitude, θH its deflection angle from the sample plane,
and ϕH its azimuthal orientation. The symbol ϕM denotes the
azimuthal angle of the in-plane magnetization vector and K6

is the effective anisotropy constant. The symbol γ represents
a rotation angle of an easy axis closest to the x direction,
resulting from an unintentional rotation of the sample in the

experiment [see Figs. 2, 3(c), and 3(d) for the coordinate
system]. It also describes the orientation of the bisectrix be-
tween the two easy directions, involved in the magnetization
switching process that was utilized for evaluation of the MO
coefficients

When interpreting the experimental data, we simulated the
full magneto-optical measurement of the hysteresis by calcu-
lating the MO response of the layered structure (50 nm thick
sample on a 500 μm thick substrate) using Yeh’s formalism
[47]. Our calculations inherently include all multiple reflec-
tions and resulting interferences. As such, they reveal the sum
of all MO effects which take part in the particular geometry.

In our calculations, we consider the refractive index of the
thick GGG substrate to be nS = 1.96. The YIG permittivity
tensor for magnetization oriented along the x axis is defined
as [48]

ε(ϕM = 0) =
⎛
⎝

ε (0) 0 0
0 ε (0) − 2M2

S GA MSK
0 −MSK ε (0) − 2M2

S GA

⎞
⎠.

(2)
We take the permittivity of the material as ε (0) = 6.5 + 3.4i

[49], MSK is the component of the isotropic magneto-optical
K tensor, M2

S GA = (G1111 − G1122)/2 is a combination of the
particular components of the G tensor, and MS is the sat-
uration magnetization. For more details see Sec. 4 of the
Supplemental Material [40].

Owing to the cubic symmetry of the YIG crystal, its per-
mittivity tensor for an arbitrary magnetization orientation in
the sample’s xy plane is calculated by a proper rotation of the
tensor in Eq. (2) around the z axis, corresponding to the [111]
crystallographic direction. The values of the magneto-optical
components of the permittivity tensor were chosen to best fit
our experimental data, as discussed later in this section.

Besides the fundamental wave-optics approach, the exper-
imental data can be interpreted also in terms of the symmetry
of the MO response. The signals are composed of compo-
nents even and odd in magnetization, respectively. The even
contribution is related to the Cotton-Mouton effect and is rep-
resented by the parameter M2

S GA in Eq. (2), which is quadratic
in magnetization. The odd contribution can be phenomeno-
logically understood as a combination of the longitudinal and
transverse linear magneto-optical effects, and it is described
by the parameter MSK in Eq. (2), linear in magnetization.
Note also that the polar Faraday effect does not contribute to
the overall MO response of the system because the projection
of magnetization to the polar (out of plane) direction is negli-
gible.

According to the calculations presented in Sec. 5 of
the Supplemental Material [40], polarization rotation due to
LMET may be expressed in the major terms as

�βLMET(ϕM, β ) = [
PLMET

0 + PLMET cos 2β
]

sin ϕM, (3)

where we defined the effective LMET coefficients
PLMETand PLMET

0 for the polarization-dependent and
-independent parts, respectively. In contrast to the linear MO
effect [Eq. (3)], the quadratic CME is sensitive to the angle
between the magnetization and light polarization directions.
A simple relation can be derived, describing the relation
between polarization rotation �βCME and magnetization
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position ϕM [23]:

�βCME(β, ϕM ) = PCME sin 2(ϕM − β ), (4)

where we defined the effective CME coefficient PCME, which
is connected with the quadratic permittivity tensor compo-
nents.

IV. EXPERIMENTAL RESULTS

A. Hysteresis loops

Firstly, we focused on studying the MO signal during
external magnetic field sweeps (MO hysteresis loops in the
following). In Fig. 3(a) we show an example of the MO hys-
teresis loop measured close to the normal incidence (θi = 3◦)
and at a large angle of incidence (θi = 45◦) at 20 K. The
character of the hysteresis loops changes significantly when
deviating from the normal incidence. Close to the normal
incidence, the signal displays an M-shape-like loop, typical
for the quadratic MO effects [44]. The steps in the M-shape
loops generally correspond to a switching of magnetization
between two magnetic easy axes [44]. In contrast, the hys-
teresis loop gains a more complex shape for θi = 45◦. Besides
the M-shape-like signal, which is still present with virtually
unchanged size, there is another squarelike component that
indicates the presence of a signal odd in magnetization, which
can be attributed to LMET.

In order to understand the nature of the magnetization
dynamics, we used the theoretical approach described in the
Theory section to model the observed signals: We consider
six effective in-plane easy directions for magnetization [see
Eq. (1)] and we numerically modeled the MO response
considering the parameters of the experiment. We used four
fitting parameters: Two of them are related to the amplitude of
the MO effects (even and odd) and two describe the magnetic
anisotropy. The best agreement with the experimental
data appears for the values of MSK = 0.058exp[0.46i]
and M2

S GA = M2
S (G1111 − G1122)/2 = 0.0035exp[−1.05i],

γ = 6◦ and K6 = 61 J/m3 (for more information about the
fitting procedure see Sec. 4 of the Supplemental Material
[40]). As an output of our model, the correct shape of the MO
loops is obtained, as shown in Fig. 3(b).

The magnetic anisotropy utilized by the model is schemat-
ically depicted in Fig. 3(c), with a definition of the magnetic
easy axes position given in Fig. 3(d). Note that the estimated
magnetic anisotropy agrees with the SQUID measurement
[Fig. 1(d)], the diagonal orientation (“C”) being the closest to
the position of one of the easy axes. The reorientation of the
magnetization vector M in the external magnetic field gained
from our model is schematically indicated in Fig. 3(a). For the
large positive external field Hext, M is oriented along the field
direction, close to the easy axis (EA) labeled as “1.” While
decreasing Hext, M is slowly rotated towards the direction of
EA “1.” When Hext of the opposite polarity and magnitude
exceeding the value of coercive field Hc is applied, M switches
directly to the EA “3” by rotating by ∼120◦. Further increase
of the negative Hext leads to another switching, this time by
60 ° to EA “4,” until, finally, M is again oriented in the direc-
tion of Hext. A symmetrical process takes place in the second
branch of the hysteresis loop. Note that the same magnetiza-
tion switching occurs independently of the angle of incidence,

though for larger θi the shape of the loop is distorted by the
presence of the MO signal linear in magnetization.

The macrospin simulations confirmed that the full magne-
tization trajectory extracted from our magneto-optical signals
corresponds to the realistic magnetic anisotropy constants for
thin YIG films (see Sec. 3 of the Supplemental Material [40]).
The model allows for certain ambiguity in its parameters since
we do not have access to the out of plane components of mag-
netization reorientation during the switching, to compare them
with the experimental data. The model thus cannot be used
reliably for obtaining all magnetic anisotropy constants of the
material without the support of a complementary experimental
method. However, it provides a useful tool for prediction of
the behavior of the magneto-optical effects, as shall be shown
further on.

In order to quantify the contributions of the linear and
quadratic MO effect, we recorded the MO hysteresis loops
for different angles β of incident light polarization. Contribu-
tions to the MO signals that are linear (LMET) and quadratic
(CME) in magnetization were obtained by antisymmetrization
and symmetrization of the hysteresis loops, respectively. The
data separation can be done in the following way.

In general, we measure the polarization rotation change
upon magnetization reorientation in our experiment. There-
fore, we define the LMET amplitude ALMET as

ALMET(ϕ1, ϕ2) = PLMET(sin ϕ1 − sin ϕ2 )

= 1
2 [�β(ϕ1) − �β(ϕ2)]

− 1
2 [�β(ϕ1 + 180◦) − �β(ϕ2 + 180◦)],

(5)

where �β is the polarization rotation (including all magneto-
optical and nonmagnetic contributions) for a given orientation
of magnetization M; ϕ1 and ϕ2 are the two positions of M
in the magnetization reorientation process. The difference
in each of the square brackets represents the experimentally
measured change of the MO signal when the position of M
changes between ϕ1 and ϕ2. The subtraction of the parenthe-
ses then corresponds to the data antisymmetrization; i.e., it
extracts only the linear (odd) LMET component from the MO
signal.

Equivalently, we may define the CME amplitude (see Fig. 4
and Eq. (11) in Ref. [44]) as

ACME(β, ϕ1, ϕ2) = 2PCME sin ξ cos 2(γ − β )

= 1
2 [�β(ϕ1) − �β(ϕ2)]

+ 1
2 [�β(ϕ1 + 180◦) − �β(ϕ2 + 180◦)],

(6)

where ξ = ϕ1 − ϕ2 is the angle between the easy axes and
γ = (ϕ1 + ϕ2)/2 is the position of their bisectrix. The right-
hand side of the equation represents the symmetrization of the
MO signal.

Knowing the angles ϕ1,2 from the hysteresis loop mod-
eling, it is possible to extract the MO coefficients using the
above expressions.

The corresponding symmetrized and antisymmetrized
components of the MO field-sweep loops are depicted in
Figs. 4(a) and 4(b) for the two angles of incidence θi = 3◦
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FIG. 4. Analysis of magneto-optical signals at an angle of in-
cidence θi = 3◦ (left column) and θi = 45◦ (right column). For
extracting the MO effects odd and even in magnetization, the signals
were decomposed to antisymmetric (red line) and symmetric (black
line) components with respect to Hext . An example of results of this
procedure is shown for MO signals measured using β = 0◦ for angles
of incidence (external field) θH = θi = 3◦ (a) and θH = θi = 45◦ (b);
the original data are shown in Fig. 3(a). The amplitudes of ALMET and
ACME for each polarization angle β were determined from the size of
the “jumps” in hysteresis loops, as indicated in (b).

and 45◦, respectively. Note that after the separation, the signal
indeed splits into the square-shape hysteresis loop typical for
the linear MO effect, and the characteristic M-shape loop of
the quadratic MO effect.

The polarization dependencies of LMET and CME for
θi = 3◦ (c) and θi = 45◦ are shown in Fig. 4(d). Points stand
for the measured data. The green line corresponds to the fit by
Eqs. (3) and (5), with amplitude PLMET = (280 ± 20) μrad,
assuming that the switching takes place between the easy
axes separated by 120 °. The red line is the fit by Eq. (6),
where PCME = (450 ± 30) μrad for θi = 3◦, and PCME =
(320 ± 20) μrad for θi = 45◦. Comparison with the analytical
model for the polarization dependence of MO signals for
θi = 3◦ [Fig. 4(e)] and θi = 45◦ [Fig. 4(f)] shows excellent
agreement, confirming the validity of our model.

For further analysis, we need to determine the amplitudes
of the MO effects attributed to the particular magnetization
switching process according to Eqs. (5) and (6). The am-
plitude of the even component ACME is taken from the first
ζ = 120◦ magnetization switching, as indicated in Fig. 4(b).
The amplitude of the odd component ALMET is obtained from
the same 120 ° switching, i.e., ϕ1 = −ϕ2 = 60◦ in Eq. (5).
This method also eliminates potential contributions from the

paramagnetic GGG substrate, where no steplike hysteretic
behavior is expected.

The resulting amplitudes of the separated MO signals are
shown as a function of the light polarization in Figs. 4(c) and
4(d) for the angles of θi = 3◦ and 45◦, respectively. Points in
the graphs indicate the values extracted from the experiments,
lines are fits by Eqs. (3) and (6), from which the values
of the effective MO coefficients PCME = (320 ± 20) μrad
and PLMET = (280 ± 20) μrad were extracted for the 45◦
incidence angle, and PCME = (450 ± 30) μrad for the near-
normal incidence. Note that even for θi = 45◦, which is
optimal for observation of the LMET, the strength of the
quadratic CME exceeds that of the linear LMET, and reaches
values comparable to other systems well known for strong
quadratic magneto-optics [27,28].

The observed polarization dependence of MO signal am-
plitudes can be better understood in terms of our analytical
model. Keeping all the input parameters of the model fixed,
we calculated polarization dependencies of the individual MO
amplitudes extracted from the modeled MO hysteresis loops.
The resulting dependencies are presented Figs. 4(e) and 4(f)
for θi = 3◦ and 45◦, respectively. The theoretical curves fol-
low the experimental data very well even for the LMET signal
close to the normal incidence, which indicates the validity of
our analytical approach. We can therefore extend the predic-
tions of the model to conditions that are not easy to change
systematically in experiments, particularly the dependence on
the incidence angle and the sample thickness.

In Fig. 5 we illustrate these dependencies separately for
CME (graphs in the left column) and LMET (right column).
The material parameters for each curve are set separately such
that PCME = 450 μrad at near-normal incidence, keeping the
phase of the parameter M2

S GA equal to –1.05, which best
fits the data. The parameter PLMET = 280 μrad is taken for
the 45◦ angle of incidence, provided that ALMET(β = 0) =
310 μrad. This procedure is chosen to highlight differences
in the CME and LMET in terms of their polarization depen-
dence, which is crucial for analyzing magnetometry signals
[23,27]. In reality, amplitudes of both LMET and CME would
scale with the sample thickness in a nontrivial way.

We used a simplified scheme to model the data, consid-
ering only the 120 ° magnetization reorientation for CME
and LMET. Remarkably, there is a significant difference
in how the polarization dependence of the linear and the
quadratic MO effect is affected by changing both the sam-
ple thickness and the angle of incidence. Nonintuitively, the
polarization dependence of CME is only weakly affected
by both these parameters. Its shape is slightly modified for
large angles of incidence θi [Fig. 5(a)] and, similarly, the
sample thickness has almost no effect on the shape of the
CME signals [Fig. 5(c)]. In contrast, the linear MO signals
are drastically modified by both these parameters. As ex-
pected, the linear MO effect decreases for smaller angles
of incidence [Fig. 5(b)], eventually disappearing at normal
incidence. However, not only the magnitude but also the shape
of the polarization dependence is affected. This complex be-
havior of LMET results from optical interferences: The most
general argument relies on the symmetry. When considering
magnetization oriented in the sample plane, this plane be-
comes the plane of symmetry of the YIG permittivity in the
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FIG. 5. Amplitudes of CME (left column) and LMET (right
column) as a function of incident polarization angle β, extracted
from the hysteresis loops obtained from the analytical model. The
amplitudes ACME and ALMET are obtained by the same method as in
Fig. 4. Polarization dependence of (a) CME and (b) LMET effects
for various angles of incidence θi and fixed sample thickness of 50
nm. The angles of incidence of θi = 0◦, 30 °, 40 °, 60 °, and 80 °
are shown; the arrow indicates increase of θi. Clearly, the LMET is
very strongly angle dependent, while CME is much less affected.
The same feature can be observed for changing the sample thickness
d . While the polarization dependence of CME (c) does not depend
on the sample thickness, LMET (d) can vary significantly. The thick-
nesses of d = 5, 10, 20, 50, 100, 200, 500, and 1000 nm are displayed
for the angle of incidence θi = 45◦.

case of nonzero quadratic MO interaction and zero linear MO
interaction. If, however, there are nonzero linear MO terms,
then it is not the plane of symmetry of the permittivity tensor.
In particular, when there are interferences, i.e., interfering
light waves traveling forth and back inside the YIG layer, there
is a qualitative difference between the linear and quadratic
MO response. In the case of the CME effect, waves propa-
gating forth and back undergo the same MO interaction due
to the symmetry and the overall result can be understood as
a multiplication of a single pass MO response by an effective
number of interfering light waves. The linear effect lacks this
particular symmetry and is therefore much more sensitive to
interferences as seen in Figs. 5(b) and 5(d). This complex
modification of the LMET response makes it difficult to op-
timize the sample thickness for magnetometry measurements.
Therefore, using the quadratic CME for this purpose provides
a significant advantage.

It is important to stress that our model is independent of the
magnetic anisotropy of the particular sample. The conclusions
drawn from the model are, therefore, universal for a series of
samples with identical bulk magnetic properties.

B. ROT MOKE measurements

In order to further investigate the nature of the Cotton-
Mouton effect, we performed ROT MOKE measurements
[24,25] in near-normal incidence geometry to eliminate the

FIG. 6. Rotation of polarization plane �β as a function of the
direction ϕH of the external magnetic field of a fixed magnitude
μ0Hext = 205 mT, measured at 20 K (a) and at room temperature
(b). Polarization was set to β = 0◦. Open squares indicate the as-
measured data; full squares are symmetrized in ϕH to remove linear
magneto-optical effects. The red line is a fit to Eq. (4) for ϕH = ϕM

as Hext is large enough to saturate magnetization of the sample.
Magneto-optical coefficients for the Cotton-Mouton effect obtained
from the fits are PCME = 450 μrad at 20 K and PCME = 230 μrad at
300 K. (c) The decrease of PCME with increasing temperature is well
correlated with the reduction of the square of the saturation magneti-
zation M2

S , values of which were taken from Ref. [50] (and converted
to SI units). (d) The spectral dependence of PCME measured at room
temperature (d) clearly shows a peak at around 3.1 eV.

linear MO contribution to the signal. The ROT MOKE method
provides a more efficient and sensitive tool for extracting
the MO coefficients, without the necessity of changing the
incident light polarization orientation.

Examples of the as-measured ROT MOKE signals are
shown as open symbols in Figs. 6(a) and 6(b) for low temper-
ature (T = 20 K) and room temperature, respectively. Since
we are interested in even MO signals only, the small con-
tribution of linear MO effect was removed from the data by
symmetrization with respect to the angle of the external field
ϕH . The symmetrized curves [solid symbols in Figs. 6(a) and
6(b)] display a clear harmonic behavior, which indicates that
the external field of 205 mT was large enough to saturate
magnetization, which follows exactly the direction ϕH . This
allowed us to fit the data directly to Eq. (4) (red line), with the
angle of magnetization equal to the angle of Hext (ϕH = ϕM).
From the fits we obtain the MO coefficient PCME = (450 ±
40) μrad at 20 K, which is in excellent agreement with the
value extracted from the hysteresis loops. The value of the
CME coefficient decreases to PCME = (230 ± 20) μrad when
heating the sample to room temperature. To understand this
change, we evaluated the PCME coefficient in a relatively large
temperature range. Generally, since the CME is of the second
order in magnetization, scaling of PCME with the square of
saturation magnetization Ms is expected [22,32]. As illustrated
in Fig. 6(c), the good correlation between these two quantities
confirms the intrinsic magnetic origin of the CME effect, as
further elaborated upon in the Supplemental Material [40] and
Fig. S2 therein. Note that the imperfect matching between
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PCME and M2
S suggests a presence from “extrinsic” contribu-

tions to PCME, which include, for example, a cooling-induced
strain and the resulting modification of the optical and/or
magneto-optical properties of the material.

The physical origin of the intrinsic CME effect can be
unveiled by its spectral dependence. For this purpose, we ex-
tracted the PCME coefficient from the room-temperature data,
measured at several wavelengths. The obtained spectrum of
PCME is presented in Fig. 6(d). The maximum of CME oc-
curs at around λ = 400 nm (3.1 eV), and its amplitude drops
rapidly when the laser is detuned from the central wavelength
by more than 10 nm. The sharp increase of the CME response
around 3.05–3.1 eV corresponds energetically to transitions
O-2p to Fe-3d band states of YIG [51]. A giant Zeeman
shift of this transition level was recently reported in a 50
nm thin [111] YIG film [51], which is very similar to the
sample studied in our work. Its origin was attributed to the
combination of strong exchange interaction of Fe-3d orbitals
and the effect of spin-orbit coupling on the Fe-3d bands.
A similar combined act of the exchange of magnetic ions
and spin-orbit coupled valence bands is known from diluted
magnetic semiconductors [28,52], the systems that are typical
for their strong quadratic MO response with a significant peak
on the Zeeman-split energy level [52]. Analogically, a strong
quadratic response of the YIG thin layers at this spectral range
can be expected [52].

V. DISCUSSION

The microscopic explanation of the large CME effect
compared to the linear MO effect of YIG relies on the fer-
rimagnetic order of the magnetic moments. As discussed in
a recent theoretical work [52], the macroscopic net mag-
netic moment of YIG is a sum of contributions from two
sublattices formed by Fe ions at tetragonal and octahedral
symmetry positions, respectively. Since the sublattices are
coupled antiferromagnetically, magnetic momenta of the sub-
lattices subtract. Nonzero net magnetic moment is present due
to a larger number of Fe ions in tetragonal positions within the
YIG unit cell. The crystal field splits Fe-3d orbitals of both
symmetries to eg and t2g symmetry states [53] in such a way
that the linear MO response of each of the sublattices, which
is given by the transition from Zeeman-split O-3p valence
orbitals, has an opposite sign. Therefore, the macroscopic
linear MO response is diminished. In contrast, the quadratic
MO response from the two respective sublattices is additive,
and is not weakened by their antiferromagnetic orientation.
Although the quadratic MO response is roughly of the same
order as that observed, for example, in Heusler alloys [27], the
ratio of the quadratic/linear amplitudes (RQ/RL) significantly
exceeds 1, while the maximum value observed in Co2FeSi
is only about RQ/RL = 0.7 [27]. Even in EuO-based ferro-
magnetic semiconductors, where record values of quadratic
MO response (up to RQ = 4 mrad at cryogenic temperatures)
have been reported recently [54], this ratio does not exceed
RQ/RL = 0.6; the linear MO effect still significantly exceeds
the quadratic MO response.

Apart from the intrinsic MO effect, impurity states can
significantly influence the MO response of thin films. Lattice
defects are known to occur during growth of the very thin YIG

layers, particularly due to the migration of Fe3+ and Gd3+

ions across the interface during the postgrowth annealing
[14,15,18]. Similarly, gadolinium doping can be responsible
for the decrease in saturation magnetization of the PLD-grown
thin YIG layers [17]. However, it mostly affects the interfacial
layer with a thickness of a few nanometers, which orders
antiferromagnetically, reducing the magneto-optical response
of the layer [55], and cannot thus be responsible for the origin
of the observed Cotton-Mouton effect. In fact, previous works
based on the quadratic MO response of YIG [20,21] were
always performed in a spectral region close to 400 nm, even
though thin films of various thickness, prepared by different
methods and presumably containing different level of impuri-
ties, were studied. Though the choice of the wavelength was
not performed systematically in these works and the ampli-
tude of CME was not evaluated, the wavelengths were always
close to the optimum value identified in our experiments.
We are thus led to the conclusion that the observed strong
CME response is very likely intrinsic to any YIG thin layer,
and it is not related to unintentional doping or any type of
defects. Unlike in most of the other materials researched by
quadratic magneto-optics [28,54], the strong Cotton-Mouton
effect in YIG occurs even at room temperature. Therefore, the
quadratic magneto-optics seems to be universally applicable
for sensitive magnetometry measurements in this material.

VI. CONCLUSIONS

In summary, we have shown the presence of a strong
Cotton-Mouton effect in a 50 nm thick epitaxial layer of
YIG in the spectral region close to 400 nm. We measured
both magneto-optical hysteresis loops and ROT MOKE data
that enabled us to extract the values of the CME magneto-
optical coefficient and to determine the magnetocrystalline
anisotropy of the studied thin YIG film. The maximum value
(PCME = 450 μrad) obtained for our YIG layer exceeds the
linear MO response amplitude in this material. Importantly,
CME is rather strong even at room temperature, which make
it a useful tool for optospintronic and magnetometric experi-
ments. Both spectral and temperature dependences indicate an
intrinsic origin of CME, which we attributed to specific ferri-
magnetic transitions (O-3p to Fe-3d) where the MO response
linear in magnetization subtracts for the two sublattices, while
the MO signal quadratic in magnetization adds up construc-
tively.

The measured signals were analyzed in detail using a theo-
retical model based on a calculation of the overall optical and
magneto-optical response of the thin YIG layer on a GGG
substrate. The model enables us to predict properties of the
Cotton-Mouton effect and the linear magneto-optical effect
in transmission for variable sample thicknesses and angles of
incidence, which is crucial for many thin-film experiments.
The calculation revealed that while LMET varies strongly
both with angle of incidence and sample thickness, CME
has a comparable magnitude but much weaker sensitivity to
both of these parameters. Therefore, using CME provides an
advantage against LMET, particularly when the normal light
incidence is dictated by the experiment geometry, which is
the case for most of the optospintronics experiments. Our
combined theoretical and experimental approach enables us to
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optimize the conditions for the experiment in terms of choice
of proper light source and/or measurement geometry, which
can lead to a significant increase in signal to noise ratio and
sensitivity in the optospintronics experiments.

ACKNOWLEDGMENTS

The authors would like to acknowledge fruitful discus-
sions with Dr. Jaroslav Hamrle and Dr. Eva Jakubisová. This

work was supported in part by the MEYS CR, program
INTER-COST, Grant No. LTC20026 and by the EU FET
Open RIA Grant No. 766566. We also acknowledge Czech-
NanoLab Project No. LM2018110 funded by MEYS CR for
the financial support of the measurements at LNSM Research
Infrastructure as well as the Deutsche Forschungsgemein-
schaft (projects A01 and B02/268565370, SFB TRR173
Spin+X).

E.S. and T.O. contributed equally to the work.

[1] M. Wu and A. Hoffman, Recent Advances in Magnetic
Insulators—From Spintronics to Microwave Applications, Solid
State Physics Vol. 64 (Elsevier Academic Press, Amsterdam,
2013).

[2] L. J. Cornelissen, J. Liu, R. A. Duine, J. Ben Youssef, and B. J.
van Wees, Nat. Phys. 11, 1022 (2015).

[3] H. Quin, S. J. Hämäläinen, and S. van Dijken, Sci. Rep. 8, 5755
(2018).

[4] B. Heinz, T. Brächer, M. Schneider, Q. Wang, B. Lägel, A. M.
Friedel, D. Breitbach, S. Steinert, T. Meyer, M. Kewenig et al.,
Nano Lett. 20, 4220 (2020).

[5] Y. Kajiwara, K. Harii, S. Takahashi, J. Ohe, K. Uchida, M.
Mizuguchi, H. Umezawa, H. Kawai, K. Ando, K. Takanashi et
al., Nature (London) 464, 262 (2010).

[6] B. Heinrich, C. Burrowes, E. Montoya, B. Kardasz, E. Girt,
Y. Y. Song, Y. Sun, and M. Wu, Phys. Rev. Lett. 107, 066604
(2011).

[7] S. Klingler, V. Amin, S. Geprägs, K. Ganzhorn, H. Maier-Flaig,
M. Althammer, H. Huebl, R. Gross, R. D. McMichael, M. D.
Stiles et al., Phys. Rev. Lett. 120, 127201 (2018).

[8] L. Wang, Z. Lu, J. Xue, P. Shi, Y. Tian, Y. Chen, S. Yan, L. Bai,
and M. Harder, Phys. Rev. Appl. 11, 044060 (2019).

[9] H. Nakayama, M. Althammer, Y.-T. Chen, K. Uchida, Y.
Kajiwara, D. Kikuchi, T. Ohtani, S. Geprägs, M. Opel, S.
Takahashi et al., Phys. Rev. Lett. 110, 206601 (2013).

[10] C. Y. Guo, C. H. Wan, W. Q. He, M. K. Zhao, Z. R. Yan, Y. W.
Xing, X. Wang, P. Tang, Y. Z. Liu, S. Zhang et al., Nat. Electron.
3, 304 (2020).

[11] K. Uchida, J. Xiao, H. Adachi, J. Ohe, S. Takahashi, J. Ieda, T.
Ota, Y. Kajiwara, H. Umezawa, H. Kawai et al., Nat. Mater. 9,
894 (2010).

[12] T. Kikkawa, K. Uchida, Y. Shiomi, Z. Qiu, D. Hou, D. Tian,
H. Nakayama, X.-F. Jin, and E. Saitoh, Phys. Rev. Lett. 110,
067207 (2013).

[13] K. S. Olsson, K. An, G. A. Fiete, J. Zhou, L. Shi, and X. Li,
Phys. Rev. X 10, 021029 (2020).

[14] B. Bhoi, B. Kim, Y. Kim, M.-K. Kim, J.-H. Lee, and S.-K. Kim,
J. Appl. Phys. 123, 203902 (2018).

[15] C. T. Wang, X. F. Liang, Y. Zhang, X. Liang, Y. P. Zhu, J. Qin,
Y. Gao, B. Peng, N. X. Sun, and L. Bi, Phys. Rev. B 96, 224403
(2017).

[16] C. Dubs, O. Surzhenko, R. Thomas, J. Osten, T. Schneider, K.
Lenz, J. Grenzer, R. Hübner, and E. Wendler, Phys. Rev. Mater.
4, 024416 (2020).

[17] J. Mendil, M. Trassin, Q. Bu, J. Schaab, M. Baumgartner, C.
Murer, P. T. Dao, J. Vijayakumar, D. Bracher, C. Bouillet et al.,
Phys. Rev. Mater. 3, 034403 (2019).

[18] A. K. Zvezdin and V. A. Kotov, Modern Magnetooptics and
Magnetooptical Materials (Taylor & Francis Group, MIlton
Park, UK, 1997).

[19] L. Nádvorník, M. Borchert, L. Brandt, R. Schlitz, K. A. de
Mare, K. Výborný, I. Mertig, G. Jakob, M. Kläui, S. T. B.
Goennenwein, M. Wolf, G. Woltersdorf, and T. Kampfrath,
Phys. Rev. X 11, 021030 (2021).

[20] L. Q. Shen, L. F. Zhou, J. Y. Shi, M. Tang, Z. Zheng, D. Wu, S.
M. Zhou, L. Y. Chen, and H. B. Zhao, Phys. Rev. B 97, 224430
(2018).

[21] M. Montazeri, P. Upadhyaya, M. C. Onbasli, G. Yu, K. L.
Wong, M. Lang, Y. Fan, X. Li, P. Khalili Amiri, R. N. Schwartz
et al., Nat. Commun. 6, 8958 (2015).
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[48] Š. Višňovský, Czech. J. Phys. B 36, 1424 (1986).
[49] H. S. Wemple, S. L. Blank, J. A. Seman, and W. A. Biolsi, Phys.

Rev. B 9, 2134 (1974).
[50] N. Beaulieu, N. Kervarec, N. Thiery, O. Klein, V.

Naletov, H. Hurdequint, G. de Loubens, J. Ben Youssef,
and N. Vukadinovic, IEEE Magn. Lett. 9, 3706005
(2018).

[51] R. Vidyasagar, O. Alves Santos, J. Holanda, R. O. Cunha, F. L.
A. Machado, P. R. T. Ribeiro, A. R. Rodrigues, J. B. S. Mendes,
A. Azevedo, and S. M. Rezende, Appl. Phys. Lett. 109, 122402
(2016).

[52] E. Oh, D. U. Bartholomew, A. K. Ramdas, J. K. Furdyna, and
U. Debska, Phys. Rev. B 44, 10551 (1991).

[53] W.-K. Li and G.-Y. Guo, Phys. Rev. B 103, 014439
(2021).

[54] V. N. Kats, S. G. Nefedov, L. A. Shelukhin, P. A. Usachev, D. V.
Averyanov, I. A. Karateev, O. E. Parfenov, A. N. Taldenkov, A.
M. Tokmachev, V. G. Storchak, and V. V. Pavlov., Appl. Mater.
Today 19, 100640 (2020).

[55] E. Lišková Jakubisová, S. Višňovský, H. Chang, and M. Wu,
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