
Computational analysis of
quantitative “omics” data

Vivien A.C. Schoonenberg

2023





Computational analysis of
quantitative “omics” data

Dissertation
zur Erlangung des Grades

Doktor der Naturwissenschaften
am Fachbereich Biologie

der Johannes Gutenberg-Universität
Mainz

Vivien Antoinette Catharina
Schoonenberg

geb. am 25. Oktober 1993 in Utrecht,
die Niederlande

Mainz, 2023



Dekan: Prof. Dr. Eckhard Thines

Erstgutachter:      
Zweitgutachter:

Tag der mündlichen Prüfung:



“Science, like all human endeavors, is evolutionary. We build by adding to
and recombining what is already there.”

- Frances H. Arnold
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Preface
Before you lay the collected work of my PhD, and the result of the past
years. The thesis is composed of a general introduction, three chapters,
and a conclusion. Each of the chapters is an original research article,
printed here as it was originally published or as it is currently being pre-
pared for peer review. For two out of the three included articles, I am the
(shared) main author, and at the beginning of each chapter, there will be
a statement of contribution.
Over the course of my PhD, I have been fortunate to cover a wide range
of biological questions, investigating DNA damage in different model or-
ganisms. I have applied quantitative mass spectrometry as either the main
method or as an added tool in an effort to answer them. My work has
focused on the analysis of proteomics data and its integration with other
types of (large-scale) biological data, such as transcriptomics.
In Chapter 1, General introduction, I have laid out general concepts and
broader perspectives for the individual research projects or chapters within
this thesis. In Chapter 2, we mapped the system’s response to DNA damage
over time in Tetrahymena thermophila, while we studied the interactome
of specific DNA damage lesions across the Tree of Life in Chapter 3. Finally,
in Chapter 4, we developed a computational pipeline to make positive
selection analysis user-friendly.
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Summary

Over the past decades, the rise of “omics” approaches has allowed for
systematic, in-depth investigation of each aspect of molecular biology. It
has contributed to our changed view on the on the linearity and the regu-
lation of the informational flow of the central dogma. Different regulatory
mechanisms have been identified, describing interaction and variety not
only on the genetic level but also on the transcript and protein level. The
development and integration of multi-omics have allowed for the uncov-
ering of intricate molecular mechanisms underlying different phenotypic
manifestations of traits at a high accuracy, in a systematic manner. With
this, multi-omics is essentially the basis of network or systems biology.
In this thesis, I have utilized “omics” technologies, specifically proteomics,
and the subsequent computational data analysis and integration to investi-
gate the systematic DNA damage response in Tetrahymena thermophila and
identify DNA damage proteins across the Tree of Life. Additionally, I
co-developed a user-friendly computational pipeline for evolutionary pos-
itive selection analysis, which relies on comparative genomics and either
large-scale genome sequencing or proteotranscriptomics data.
In Chapter 2, we mapped the system’s response to DNA damage over time
in Tetrahymena thermophila (Nischwitz, Schoonenberg et al., in prepara-
tion). To date, limited studies have combined the strength of proteomics
and transcriptomics to investigate DNA damage kinetics in response to
various DNA-damage treatments. Our study investigated DNA damage
response (DDR) dynamics over eight hours after or during exposure to
six different mutagens. We observed upregulation of previously identified
DNA damage repair pathways and found novel crosstalk between DDR
pathways. All treatments induced a dynamic response at both the tran-
script and protein levels. Using unsupervised self-organizing maps, we ex-
amined the clustering of expression profile trends to better understand the
DDR. Many of the quantified proteins and transcripts exhibited damage-
specific responses. We are currently employing a novel knockdown system
to target a subset of PARP-related proteins to characterize their specific
roles in Tetrahymena further.
In Chapter 3, we studied the interactome of specific DNA damage lesions
across the Tree of Life, exploring the conservation of pathways responsible
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Summary

for repair and recognition of DNA damage lesions (Nischwitz, Schoonen-
berg et al., iScience, 2023). Due to the need for precise genome mainte-
nance, DNA repair has been highly conserved across all domains of life.
To study the shared and unique elements of the DNA damage response,
we performed a phylointeractomic study to identify enriched DNA dam-
age binders in 11 different species at the 8-oxoG and abasic lesions and
at a uracil base incorporated into DNA. Our approach identified several
known DNA damage factors as binders to the afore-mentioned lesions.
Additionally, through orthology, network, and domain analysis, we linked
44 previously unassociated proteins to DNA repair.
Finally, in Chapter 4, we developed a computational pipeline to make pos-
itive selection analysis user-friendly (Ceron-Noriega et al., Genome Biology
and Evolution, 2023). AlexandrusPS generates orthology relationships,
sequence alignments, and phylogenetic trees with its automated process.
It then performs site-specific (SSM), branch (BM), and branch-site (BSM)
positive selection analyses and produces four main output files, including
orthology relationships, positive selection results, and all intermediate files
(sequence alignments, phylogenetic trees).
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Zusammenfassung
In den letzten Jahrzehnten hat das Aufkommen der ”Omics”-Ansätze
eine systematische, eingehende Untersuchung jedes Aspekts der
Molekularbiologie ermöglicht. Dies hat dazu beigetragen, dass
sich unsere Sichtweise auf die Linearität und die Regulierung des
Informationsflusses des zentralen Dogmas geändert hat. Es wurden
verschiedene Regulierungsmechanismen identifiziert, die die Interaktion
und Vielfalt nicht nur auf genetischer Ebene, sondern auch auf der
Ebene der Transkripte und Proteine beschreiben. Die Entwicklung
und Integration von Multi-omics hat es ermöglicht, die komplexen
molekularen Mechanismen, die den verschiedenen phänotypischen
Ausprägungen von Merkmalen zugrunde liegen, mit hoher Genauigkeit
und auf systematische Weise aufzudecken. Damit ist die Multi-omik im
Wesentlichen die Grundlage der Netzwerk- oder Systembiologie.
In dieser Arbeit habe ich “omics”-Technologien, insbesondere Proteomik,
und die anschließende computergestützte Datenanalyse und -integration
eingesetzt, um die systematische DNA-Schadensreaktion in Tetrahymena
thermophila zu untersuchen und DNA-Schadensproteine im phylogenetis-
chen Stammbaum zu identifizieren. Zusätzlich habe ich eine benutzer-
freundliche computergestützte Pipeline für die Analyse der evolutionären
positiven Selektion mitentwickelt, die auf vergleichender Genomik und
entweder groß angelegten Genomsequenzierungs- oder Proteotranskrip-
tomikdaten beruht.
In Kapitel 2 haben wir die Reaktion von Tetrahymena thermophila
auf DNA-Schäden im Zeitverlauf kartiert (Nischwitz, Schoonenberg
et al., in Bearbeitung). Bisher gibt es nur wenige Studien, die die
Stärken von Proteomik und Transkriptomik kombinieren, um die Kinetik
von DNA-Schäden als Reaktion auf verschiedene DNA-schädigende
Behandlungen zu untersuchen. In unserer Studie untersuchten wir
die Dynamik der DNA-Schadensreaktion (DDR) über einen Zeitraum
von acht Stunden bei der Exposition gegenüber sechs verschiedenen
Mutagenen. Wir beobachteten eine Hochregulierung bereits identifizierter
DNA-Schadensreparaturwege und fanden neuartige Wechselwirkungen
zwischen den DDR-Wegen. Alle Behandlungen führten zu einer
dynamischen Reaktion sowohl auf der Transkript- als auch auf der
Proteinebene. Mithilfe von unüberwachten selbstorganisierenden Karten
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Zusammenfassung

untersuchten wir das Clustering von Expressionsprofiltrends, um die DDR
besser zu verstehen. Viele der quantifizierten Proteine und Transkripte
zeigten schädigungsspezifische Reaktionen. Wir setzen derzeit ein
Knockdown-System ein, um eine Untergruppe von PARP-verwandten
Proteinen herunterzuregulieren und ihre spezifische Rolle in Tetrahymena
weiter zu charakterisieren.
In Kapitel 3 untersuchten wir das Interaktom von spezifischen DNA-
Schadensläsionen im phylogenetischen Stammbaum und untersuchten
die Erhaltung der Wege, die für die Reparatur und Erkennung von
DNA-Schadensläsionen verantwortlich sind (Nischwitz, Schoonenberg et
al., iScience, 2023). Weil das Genom akkurat erhalten werden muss, ist
die DNA-Reparatur in allen Lebensbereichen stark konserviert. Um die
gemeinsamen und einzigartigen Elemente der DNA-Schadensreaktion zu
untersuchen, haben wir eine phylointeraktomische Studie durchgeführt,
um in 11 verschiedenen Arten angereicherte DNA-Schadensbinder an den
8-oxoG- und abasischen Läsionen sowie an einer in die DNA eingebauten
Uracil-Base zu identifizieren. Unser Ansatz identifizierte mehrere
bekannte DNA-Schadensfaktoren als Binder für die oben genannten
Läsionen. Darüber hinaus konnten wir durch Orthologie-, Netzwerk-
und Domänenanalysen 44 bisher nicht assoziierte Proteine mit der
DNA-Reparatur in Verbindung bringen.
Abschließend entwickelten wir in Kapitel 4 eine computergestützte
Pipeline, um die Analyse der positiven Selektion benutzerfreundlich
zu machen (Ceron-Noriega et al., Genome Biology and Evolution,
2023). AlexandrusPS erzeugt in einem automatisierten Prozess
Orthologiebeziehungen, Sequenzalignments und phylogenetische Bäume.
Anschließend führt es site-spezifische (SSM), branch-spezifische (BM)
und branch-site-spezifische (BSM) Positivselektionsanalysen durch
und produziert vier Hauptausgabedateien, einschließlich Ortholo-
giebeziehungen, Positivselektionsergebnisse und alle Zwischendateien
(Sequenzalignments, phylogenetische Bäume).
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1. General introduction

1.1. Central dogma of molecular biology and
multi-omics

The central dogma of molecular biology describes the unidirectional flow
and transfer of information in a cell, from deoxyribonucleic acid (DNA) to
ribonucleic acid (RNA) to protein. Within a cell, a gene or other segment of
the DNA is transcribed into messenger RNA, which in turn is translated into
protein, exercising biological function within or outside of the cell [1–3].
This simple concept between nucleic acids (DNA, RNA) and proteins was
initially introduced in the early 1950s and has been the focus of various
biological research in all three domains of life: eukaryotes, bacteria, and
archaea. However, over the past decades, new concepts, technologies, and
formulations of big data science have developed rapidly and changed our
view on the linearity and the regulation of the informational flow of the
central dogma [1, 4]. For example, different regulatory mechanisms have
been identified, describing interaction and variety not only on the genetic
level but also on the transcript and protein level (i.e., mRNA splicing,
histone modifications, post-translational modifications) [3]. The rise of
“omics” approaches has allowed in-depth investigation of each aspect of
molecular biology instead of a more reductionist approach focusing only
on one gene or a few genes and proteins [1, 5].
“Omics” can be defined as the probing and analyzing of large amounts of
data representing the structure and function of an entire makeup of a given
biological system (i.e., a cell or organism) at a particular level, such as gene
(genomics), transcript (transcriptomics), or protein (proteomics). Follow-
ing the central dogma, “omics” technologies have been used to capture
static genomic alterations, temporal transcriptomic perturbations, alterna-
tive splicing, spatiotemporal proteomic dynamics, and post-translational
modifications [5]. “Omics” is a rapidly developing and growing field, al-
lowing the uncovering of the intricate molecular mechanisms underlying
different phenotypic manifestations of traits in a systematic manner at a
high accuracy. Thereby reinforcing that within a cell or biological sys-
tem the flow of information is interconnected between levels, of which
genes, transcripts, and proteins constitute the most prominent three [1,
4, 5]. Moreover, the complexity of cellular behavior and its decision-
making system has driven the establishment and expansion of novel omics
and associated techniques. These include epiomics to analyze modifica-
tions of the initially described three “omics” (such as epigenome, epitran-
scriptome, epiproteome), molecular interactomics (i.e., varied levels of
interactome), and disease-associated hallmarks such as metabolome and
immunome. Multi-omics integration has become a prevailing trend for
constructing a comprehensive relationship between molecular signatures
and phenotypic manifestations of a particular disease, tied to the aim of
uncovering causality within this relationship. With that, multi-omics is
essentially the basis of network or systems biology [5].
Importantly, with the large-scale and increasingly complex data generation
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1.2. Genomics and transcriptomics

1through “omics” approaches, we now face the challenge of developing an
understanding of how to analyze these different data types and how they
quantitatively relate to one another and the phenotypic characteristics of
the organism [6, 7].
In this thesis, I have utilized “omics” technologies, specifically proteomics,
and the subsequent computational data analysis and integration to inves-
tigate the systematic DNA damage response in Tetrahymena thermophila
and identify DNA damage proteins across the tree of life. Additionally, I
co-developed a user-friendly computational pipeline for evolutionary pos-
itive selection analysis, which relies on comparative genomics and either
large-scale genome sequencing or proteotranscriptomics data.

1.2. Genomics and transcriptomics

The application of omics in entire genomes, aiming to determine the (com-
plete) genomic sequence, base order, and characterize and quantify all
genes of an organism is referred to as genomics. It aids in uncovering the
(inter)relationship of genomic sequences and genes and their respective
influence on the organism and specific phenotypes [8].
Transcriptomics describes the study of the expression of all RNAs from a
given cell population, offering a global perspective on molecular dynamic
changes induced by environmental factors or pathogenic agents. The tran-
scriptome includes many types of RNA, including protein-coding RNAs
(mRNAs), long noncoding RNAs (lncRNAs), short noncoding RNAs (mi-
croRNAs, small-interfering RNAs, short noncoding RNAs, enhancer RNAs),
and circular RNAs. All of these types of RNA have been indicated to
affect phenotype and have been associated with different diseases (such
as diabetes, cancer, and cardiovascular disease) [8].
Both the transcriptome and genome have initially been investigated
through micro-array technology. This technology is based on the
comparative hybridization of fluorescently labeled DNA or cDNA (in
the case of transcriptome profiling) under stringent conditions to
capture probes (complementary oligonucleotides). Micro-arrays allow
the simultaneous analysis of tens of thousands of molecules, which
revolutionized the scale and depth in which DNA and RNA could
be investigated around three decades ago [9]. Transcriptome and
genome analysis have continued to develop quickly, especially since
next-generation sequencing (NGS) emerged. NGS allows for sequencing
hundreds of millions of DNA molecules simultaneously, potentially
highlighting millions of genomic or transcriptomic variants in a single
experiment. Its arrival has dramatically improved the turnaround time of
genome-scale experiments and their results, thereby speeding up genetic
and genomic discovery and advancing the understanding of molecular
mechanisms of disease and cell biology [9, 10].
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1. General introduction

The most popular next-generation sequencing technologies currently avail-
able are based on a sequencing-by-synthesis approach. Within this, we
can distinguish short-read and long-read sequencing [11]. For each of
these technologies, different platforms are available, with Illumina leading
the current market for short-read sequencing and Oxford Nanopore Tech-
nologies (ONT) and Pacific Biosciences (PacBio) for long-read sequencing
[12].
The complete workflow, sample preparation, and analysis of each available
technology slightly differ, depending on the platform used.
The general steps of sample preparation for current short-read sequencing
are (i) RNA or DNA fragmentation (for RNA sequencing technologies, it is
common to convert RNA to cDNA before sequencing, thereby losing any
RNA base modifications). Next, (ii) adapters are ligated to the template to
facilitate the attachment of fragments to solid surfaces (e.g., microchips,
microbeads, or nanowells) or for fragments to be circularized. Finally,
(iii) templates are amplified to provide enough copies of each template to
allow the sequencer to detect them. The libraries can either be sequenced
only from one end (known as single-end reads) or from both ends (known
as paired-end reads) [11]. In an Illumina sequencer, DNA templates with
ligated adapters hybridize to a solid surface with patterned clusters of com-
plementary adapters. Then, cluster generation begins, where thousands of
copies of each fragment are generated through a process known as bridge
amplification. In this process, one strand folds over, and the adapter on
the end of the molecule hybridizes with another oligonucleotide in the flow
cell. A polymerase incorporates nucleotides to build double-stranded DNA
molecule bridges, which are denatured to leave single-stranded DNA frag-
ments tethered to the flow cell. This process is repeated continually, pro-
ducing millions of clusters of clonal template DNA fragments that can be
sequenced simultaneously. Sequencing synthesis begins using reversible
terminator nucleotides, which permits one nucleotide to be incorporated at
a time and the representative fluorescence to be recorded as a base call by
high-resolution optical imaging. Cleavage of the terminal chemical mod-
ification allows the next complementary fluorescently labeled nucleotide
to be incorporated. This process is repeated for the length of the read
to generate the sequence output. The read lengths of the fragments can
range between 25 to 450 base pairs (bp) (Figure 1.1) [11, 13].
Illumina’s short-read sequencing produces highly accurate sequencing
reads, which are inexpensive and easy to generate on a massive scale.
However, short reads are too short to detect more than 70% of human
genome structural variation (affecting sequences longer than 50 base
pairs). Additionally, more than 15% of the human genome is inaccessible
via short-read sequencing due to its repeat content or GC content, which
causes problems when assembling or mapping the short reads [12].
One of the solutions developed to overcome these issues is long-read
sequencing. Long-read technologies can generate continuous sequences
ranging from 10 kilobases (kb) to several megabases (Mb) in length
directly from native DNA.

4



1.2. Genomics and transcriptomics

1

Figure 1.1.: Overview of NGS short-read sequencing on an Illumina platform. 3
steps in the workflow for sequencing: A) Library preparation: NGS library is prepared
by fragmenting the DNA sample and ligating specialized adapters to both fragment ends.
B) Bridge and cluster amplification: The library is loaded into a flow cell and the
fragments are hybridized to the flowcell surface. Each bound fragment is amplified into
a clonal cluster through bridge amplification. C) Sequencing: Sequencing reagents,
including the fluorescently labeled nucleotides, are added and the first base is
incorporated. The flow cell is imaged and the emission from each cluster is recorded.
The emission wavelength and intensity are used to identify the base. This is repeated “n”
times to create a read length of “n” bases. Created with BioRender.com

PacBio’s single-molecule real-time (SMRT) long-read sequencing uses a
circular DNA molecule template called a SMRTbell, composed of a double-
stranded DNA insert with single-stranded hairpin adapters on either end.
The insert can range in length from one to more than a hundred kilo-
bases, which allows long sequencing reads to be generated. During the
sequencing reaction, a DNA polymerase processes around the SMRTbell
template and incorporates fluorescently labeled deoxynucleoside triphos-
phates into the nascent strand. After each incorporation, a laser excites
the fluorophore, and a camera records the emission, as with the Illumina
short-read platform (Figure 1.2A) [11, 12].
ONT long-read sequencing technology uses linear DNA molecules. They
are typically one to several hundred kilobases long but can have a length of
several megabases. Steps for ONT sequencing involve attaching a double-
stranded DNA molecule to a sequencing adapter, which is preloaded with
a motor protein. Next, the DNA mixture is loaded onto a flow cell con-
taining nanopores embedded in a synthetic membrane. The motor protein
unwinds the double-stranded DNA and, in combination with an electrical
current, drives the negatively charged DNA through the nanopore. As
the DNA goes through the pore, it causes characteristic disruptions to the
current (based on its base composition), translated in real-time into base
calls (Figure 1.2B). The throughput for nanopore sequencing is high but
has much higher error rates (>15%) than short-read sequencing. SMRT
long-read sequencing has a higher accuracy but is limited by high costs
and lower throughput. However, these techniques will continue to be
developed and improved together with others and keep expanding the
boundaries of NGS, genomics, and transcriptomics research [11, 12].
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1. General introduction

Figure 1.2.: Overview of PacBio and ONT long-read sequencing. A) In Pacific
Biosciences (PacBio) single-molecule, real-time (SMRT) sequencing, DNA (yellow for
forward strand, dark blue for reverse strand) is fragmented and ligated to hairpin
adapters (light blue) to form a topologically circular molecule known as a SMRTbell.
Once the SMRTbell has been generated, it is bound by a DNA polymerase and loaded
onto a SMRT Cell for sequencing. Each SMRT Cell can contain up to 8 million
zero-mode waveguides (ZMWs), which are chambers that hold picolitre volumes. Light
penetrates the lower 20–30 nm of each well, reducing the detection volume of the well
to only 20 zl (10−21 l). As the DNA mixture floods the ZMWs, the SMRTbell template
and polymerase become immobilized on the bottom of the chamber. Fluorescently
labelled deoxynucleoside triphosphates (dNTPs) are added to begin the sequencing
reaction. As the polymerase begins to synthesize the new strand of DNA, a fluorescent
dNTP is briefly held in the detection volume, and a light pulse from the bottom of the
well excites the fluorophore. Unincorporated dNTPs are not typically excited by this
light but, in rare cases, can become excited if they diffuse into the excitation volume,
thereby contributing to noise and error in PacBio sequencing. The light emitted from
the excited fluorophore is detected by a camera, which records the wavelength and
relative position of the incorporated base in the nascent strand.
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1Figure 1.2.: Overview of PacBio and ONT long-read sequencing (continued). The
phosphate-linked fluorophore is then cleaved from the nucleotide as part of the natural
incorporation of the base into the new strand of DNA and released into the buffer,
preventing fluorescent interference during the subsequent light pulse. The DNA
sequence is determined by the changing fluorescent emission that is recorded within
each ZMW, with a different colour corresponding to each DNA base (for example, green,
T; yellow, C; red, G; blue, A). B) In Oxford Nanopore Technologies (ONT) sequencing,
arbitrarily long DNA (yellow for forward strand, dark blue for reverse strand) is tagged
with sequencing adapters (light blue) preloaded with a motor protein on one or both
ends. The DNA is combined with tethering proteins and loaded onto the flow cell for
sequencing. The flow cell contains thousands of protein nanopores embedded in a
synthetic membrane, and the tethering proteins bring the DNA molecules towards these
nanopores. Then, the sequencing adapter inserts into the opening of the nanopore, and
the motor protein begins to unwind the double-stranded DNA. An electric current is
applied, which, in concert with the motor protein, drives the negatively charged DNA
through the pore at a rate of about 450 bases per second. As the DNA moves through
the pore, it causes characteristic disruptions to the current, generating a readout known
as a ‘squiggle’. Changes in current within the pore correspond to a particular k-mer
(that is, a string of DNA bases of length k), which is used to identify the DNA sequence.
Figure and caption from [@Logsdon2020].

In summary, short-read NGS has an incredibly high throughput and accu-
racy, making it the method of choice for standard gene expression analysis.
Long-read sequencing is becoming an increasingly popular option and so-
lution to investigate large structural variants, repeat sequences, and splice
variants. Together, the rise of NGS has pushed the “omics” revolution for-
ward by facilitating whole genome (re)sequencing projects, whole-exome
sequencing, genome analyses such as large-scale detection of single nu-
cleotide polymorphisms (SNPs) and variant calling (VC), as well as the de-
tection of (large) DNA mutations, (i.e., insertions and deletions), and DNA
methylation [9, 10]. NGS can be further used to map protein-DNA (using
chromatin immunoprecipitation sequencing (ChIP-seq) or CUT&RUN) or
DNA-DNA interactions (chromosome conformation capture, Hi-C) at nu-
cleotide resolution [14, 15]. Additionally, as NGS does not rely on capture
probe design, novel noncoding RNAs, splice variants, post-transcriptional
modifications, and nascent RNA synthesis can be quantitatively analyzed
[9].

1.2.1. Analysis of transcriptome data

During one single sequencing run, NGS analyzes millions of DNA frag-
ments. The read lengths of the short-read fragments can range between
25 to 450 base pairs, depending on the NGS platform. For long-read se-
quencing, read lengths can range from 250 base pairs up to 2.3 megabases.
As the throughput of NGS is incredibly high, creating data sets of up to 50
gigabases in a single run, its development raised the need for scalable and
improved computational methods and algorithms to analyze this data [13].
Additionally, long-read sequencing platforms produce qualitatively differ-
ent data from second-generation sequencing, thus necessitating tailored
analysis tools [16].
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1. General introduction

Analysis for both long-read and short-read sequencing relies on availabil-
ity of an accurate reference genome. Reference genomes can be created
by layering (genome) sequencing information to combine into scaffold
information. Genome assembly and its annotation can still be challenging
in itself and has been proposed to be improved by the use of RNA-seq
contig evidence (overlapping reads or sequence data) as well as peptide
information obtained by mass-spectrometry in a proteo-transcriptomics
assembly workflow [17].

A standard analysis pipeline for short-read RNA-seq consists of several
steps. First, raw image data is converted into short-read sequences, known
as base-calling. Generally, the short-read sequences are configured in
FASTQ format, a text-based representation of every nucleotide, and as-
signed an associated base quality score. Next, the reads are aligned to a
reference genome or transcriptome [13].
Examples of popular read-aligning tools are Bowtie, STAR, and BWA. The
performance of the different aligners is usually a tradeoff between accu-
racy and speed. Overall, the performance is impacted by the transcriptome
size, coverage, and alignment lengths. Depending on the setup and ques-
tion asked from the data, it is essential to consider choosing intron-aware
or splice-aware aligners [18].
The aligners produce a human-readable sequence alignment map (SAM)
file and a binary version (BAM) with a smaller file size. These files enable
visualization and interrogation of the sequence (read assembly and base
sequence) using programs such as the Integrative Genomics Viewer (IGV)
[11]. After aligning or mapping RNA-seq reads to a reference genome,
the number of mapped reads is counted, and gene expression level is
calculated by peak calling algorithms. Examples of such algorithms are
featureCounts (from Subread), HTSeq, or Cufflinks [19].

As for short-read sequencing, the first step in any long-read read analysis
is base calling. ONT base-calling is more complex than SMRT base-calling.
During SMRT sequencing, successions of fluorescence flashes are recorded
as a movie, similar to how this is done for short-read sequencing. Because
the template is circular, the polymerase may go over both strands of the
DNA fragment multiple times, resulting in a continuous long read. This
read is split into subreads, where each subread corresponds to one pass
over the library insert without the linker sequences. Subreads are stored as
an unaligned BAM file. From aligning these subreads together, an accurate
consensus circular sequence (CCS) for the insert is derived [12, 16].

Nanopore raw data are current intensity values. Base-calling of nanopore
reads is an active research area where algorithms are quickly evolving
(incorporating different machine learning techniques and training mod-
els). Both SMRT and ONT technologies provide lower per-read accuracy
than short-read sequencing. In the case of SMRT, the circular consensus
sequence quality heavily depends on the number of times the fragment
is read, which results from the original fragment's length and the poly-
merase's longevity.
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1The quality of nanopore reads is independent of the length of the DNA
fragment. Read quality depends on achieving optimal translocation speed
of the DNA fragment through the pore, which typically decreases in the
late stages of sequencing runs, negatively affecting the quality [12, 16].
The following steps for long-read analysis are the same as in short-read
analysis: aligning the reads to a reference genome and read quantifica-
tion (gene expression) [20]. However, a major strength of long-read se-
quencing is the ability to determine the full-length RNA transcripts and
isoforms. It simplifies the downstream analysis by eliminating the need
to reconstruct isoforms based on the error-prone assembly of short RNA-
sequencing reads. There are specific long-read isoform detection tools,
which work by clustering aligned and error-corrected reads into groups
and collapsing these into isoforms, but the detailed implementations differ
between tools [11, 16, 20].
The most common follow-up analysis for gene expression quantification is
differential expression (DE) [13, 21]. A basic mean DE analysis determines
whether individual genes are up or downregulated between conditions
(i.e., disease states, different tissues, etc.). Typically, DE analysis is done
at the gene level by collapsing all mapped read counts to single gene units
[21]. Importantly, DE analysis and its interpretation should account for
biases associated with the expression level or abundance of reads for a
particular gene. Additionally, while it gives valuable insights, the use of
DE analysis alone could lead to missing some biological complexity and
context, i.e., DE genes may not be causal to a phenotype, or functional
genes are not nominated as only their function changes rather than their
expression level [21]. All biological components in a cell or organism
work in a biological system, never truly in isolation. A change to one
molecule, like a transcript or gene, might cause a perturbation in its in-
teraction with other components in the biological system, contributing
to (more prominent) phenotypic differences or effects. To capture these
coordinated patterns of gene expression, we can group genes by pathway
or function in pathway analyses (e.g., Kyoto Encyclopedia of Genes and
Genomes (KEGG) and Gene Ontology (GO)) [21–23]. Alternatively, or as
a complementary approach, gene expression profiles can be presented as
a biological network, highlighting known and predicted interactions and
showing that genes can be part of multiple pathways. Together, these
different analyses combine multiple information types, can improve in
silico-predicted interactions within a condition, and prove insights into the
biological systems or conditions investigated [21].

1.3. Quantitative mass spectrometry-based
proteomics

As per the central dogma, proteins represent one of the main functional
entities inside and outside cells. They regulate the activity of our immune
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system, build cells, funnel information, and are known as the building
blocks of life. As described above, we now understand that it is not solely
proteins that are responsible for the phenotype, but instead that proteins
are organized in functional modules and networks, carrying out cellular
functions and determining phenotypes through coordinated activities in
combination with other molecules (such as RNA and DNA) in the cell
[24].
Proteomics investigates the functional relevance of all expressed proteins
in a cell, tissue, or organism [5]. The field is a collection of various tech-
nical disciplines, including cell imaging by light and electron microscopy,
array and chip experiments, and genetic readout experiments (e.g., yeast
two-hybrid assay) [25].
Over the past decades, mass spectrometry (MS)-based methods have
emerged for the confident and near-exhaustive identification and
quantification of the proteins in a biological sample. De novo analysis of
proteins or protein populations from cells or tissues can be challenging
due to the high complexity of cellular proteomes and the low abundance
of many proteins, necessitating highly sensitive analytical techniques
[24, 25]. In short, MS relies on the measurement of charged molecules,
determining their mass-to-charge ratios, and quantifying peptides by
their signal intensities. It is a protein characterization technique that
can determine the amino acid sequence of a protein or peptide and
post-translational modification (PTM) sites and quantify them [5].
MS-based proteomics is made possible by the availability of gene and
genome sequence databases. It can reveal the quantitative state of the
proteome and has significantly contributed to unraveling cellular signaling
networks, elucidating the dynamics of protein-protein interaction in
different cellular states, and improving molecular understanding of
disease mechanisms [24, 25].

1.3.1. Principles of mass spectrometry

The generic overall process of MS-based proteomics consists of digesting
the protein sample into peptides (using trypsin, lysin, or another enzyme
mixture), fractionating the peptides (separation with liquid chromatogra-
phy (LC)), and mass spectrometry analysis. Mass spectrometry analysis
includes the ionizing of peptides, measurement of the mass-to-charge ratio
of these peptide ions (also precursor ions), and sequential selection of pre-
cursor ions for fragmentation through collision. Fragment ion masses are
then analyzed in a second analyzer to infer the peptide sequence [25, 26].
This workflow is also known as liquid chromatography coupled tandem MS
(LC-MS/MS or LC-MS2) since two generations of ions are being analyzed
(precursor and fragment) [5, 27, 28].
Ionization of peptides is commonly achieved through electrospray ioniza-
tion (ESI) or matrix-assisted laser desorption/ionization (MALDI). ESI can
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1directly be combined with separation techniques like high-performance LC
(HPLC), as it ionizes peptides or analytes out of a solution. MALDI ionizes
the samples out of a dry, crystalline matrix via laser pulses and produces
singly charged ions of peptides, thereby minimizing spectral complexity
[25, 27].

Figure 1.3.: Schematic presentation of the Q Exactive mass spectrometer (Thermo
Fisher Scientific). View from above. The tip of the HPLC column is pointed at the front
of the spectrometer. Liquid droplets containing peptides are sprayed from the column
tip; peptides become mostly desolvated before entering the capillary, which is heated to
a high temperature to help complete desolvation. Applied electromagnetic fields direct
and focus the ion beam. During MS2 spectrum acquisitions, the quadrupole filters a
small range of m/z values centered around the desired precursor m/z. The
higher-energy collision-induced dissociation (HCD) cell is where high velocity
precursors collide with gas particles, generating fragments. Peptides or fragments are
collected in the C-trap for a set time (“injection time”) before an applied voltage injects
them into the orbitrap for mass analysis and detection (m/z and intensity
measurements). Adapted from [28]

The sensitivity and resolution of a mass spectrometer depend on the mass
analyzer’s ability to separate ions effectively. Two of the most popular mass
analyzers and detectors for proteomics are the time-of-flight (TOF) ana-
lyzer and the orbitrap [27, 28]. An example of a mass spectrometer using
an orbitrap analyzer is the Q Exactive Plus (Thermo Fisher Scientific) (Fig-
ure 1.3). Here, for the first full MS scan (measurement of precursor ions
m/z, MS1), ions within a wide range of m/z pass through the quadrupole
(filters for specific m/z ranges), are trapped in the C-trap (stabilizing the
ions using nitrogen and an electromagnetic field), before being injected
into the orbitrap. The orbitrap works with a magnetic spindle, around
which the ion spins from side to side. A big molecule will move slower, and
a small one will move faster. Based on the image current, the exact mass of
the molecule can be inferred. During a single sample measurement, as the
peptides are sprayed into the mass spectrometer, MS1 spectra are acquired
repeatedly. From each MS1 spectrum several MS/MS (MS2) acquisition
events are triggered, which occur before the following MS1 spectrum is
acquired [26–28]. Usually, in the case of discovery-based proteomics, the
top N most abundant precursor ions from the MS1 scan are selected for
fragmentation and MS/MS analysis. The quadrupole selects these ions for
a specific m/z value, sending them through the C-trap to the higher-energy
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collision-induced dissociation (HCD) cell for fragmentation. Ion fragments
are again stabilized in the C-trap and measured in the orbitrap.

Figure 1.4.: Workflow of Data-dependent acquisition (DDA) mass spectrometry.
Proteins are digested into small peptides, which are measure on the mass spectrometer.
In the first MS scan (MS1), top N abundant peptides are selected for fargmentation and
identification (MS2). LC-MS: liquid chromatography�mass spectroscopy. Created with
BioRender.com

An example of a mass spectrometer using a TOF mass analyzer to acquire
MS1 spectra rather than an orbitrap is the timsTOF (Bruker). A major
difference between the timsTOF and the Q Exactive is the trapped ion
mobility spectrometry (TIMS) element [28]. Briefly, the concept behind
TIMS is using an electric field to hold ions stationary against a moving gas
so that the drift force is compensated by the electric field and ions are sep-
arated based on their respective ion mobilities [29]. The ions are “eluted”
gradually from the dual TIMS analyzer, separating different precursors.
These are analyzed by a TOF mass analyzer, where ions are pulsed by an
electric field and accelerated. All ions acquire the same kinetic energy
and enter the flight tube, which is a field-free drift region where mass
separation occurs. Ions with a lighter mass will have a shorter time of
flight, whereas heavier ions will take longer to traverse the flight path
toward the detector. Current time-of-flight analyzers have a reflectron
device built in, which corrects for kinetic energy dispersion and spatial
spread of ions that exhibit the same m/z but have varying velocities. This
reflectron correction allows ions of the same m/z to arrive at the detector
simultaneously. The reflectron device also increases the flight path length,
improving mass resolution [30].
Each MS1 acquisition can trigger MS2 spectra before the next MS1, as with
the Q Exactive. Similarly, ions will be filtered by the quadrupole and frag-
mented in the collision-induced dissociation (CID) cell [28]. MS2 spectra
are used to identify peptides, whereas quantitation happens based on the
MS1 spectrum. This setup of MS measurement, where the most abundant
ions are selected for identification, is called data-dependent acquisition
(DDA) (Figure 1.4) [26, 28, 31].
An alternative to DDA is data-independent acquisition (DIA). The most
popular DIA methods are based on Sequential Window Acquisition of All
Theoretical Mass Spectra (SWATH-MS), in which all m/z values within the
MS1 range are included in fragmentation and identification. DIA allows
excellent temporal resolution and can quantify proteins in complex mix-
tures over an extensive dynamic range, thereby overcoming the challenge
of under-sampling when using DDA. For label-free quantification methods,
this means greatly improved data completeness and increased proteomic
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1depth. It offers high precision and reproducibility. However, the data
generated is much larger and more complex because of the number of
multiplexed MS spectra. Therefore, the database search methods devel-
oped for DDA analysis cannot be applied directly (see section “Analysis of
proteome data”) [28, 32].

1.3.2. Quantification methods

Mass spectrometry-based proteomics is not inherently quantitative. Pro-
teolytic peptides have a wide range of physicochemical properties, such
as size, charge, and hydrophobicity, which leads to significant differences
in mass spectrometric measurement and response. Therefore, each pep-
tide needs to be compared between experiments for accurate quantitation.
When molecules only differ in their isotopic composition and have identical
physical and chemical properties, they can be compared between different
experiments [27, 33]. Technically, this can be achieved in one of two
ways: (i) label-based quantification and (ii) label-free quantification (Fig-
ure 1.5).

For label-based quantification, peptides are labeled with groups of atoms
that are identical but contain different isotopes, introducing an expected
mass difference. This results in different m/z values, either of the peptides
or their fragments, while conserving chemical properties such as retention
time, ionizability, and fragmentation pattern [27, 28]. Different labeling
methods are chemical, metabolic, or enzymatic. The most popular and
widely used method for metabolic labeling is stable isotope labeling with
amino acids in cell culture (SILAC). Here, the whole proteome of one condi-
tion is labeled with amino acids containing heavy isotopes (by exchanging
amino acids in cell culture media or feeding organisms with labeled food,
e.g., feeding C. elegans a heavy lysine- and arginine-labeled E. coli strain
[34]). The natural “light” proteins are combined with the “heavy” proteins
at the start of sample preparation, and the mass shift will be used in the
MS1 spectra [27, 28, 33].

Examples of chemical labeling are dimethyl labeling (DML) or the intro-
duction of tandem mass tags (TMT), an isobaric labeling method.

For DML, samples are digested as usual, with proteases such as trypsin.
The derived peptides of the different samples are then labeled with iso-
meric dimethyl labels. A reductive amination reaction converts all primary
amines (the N terminus and the side chain of lysine residues) in a peptide
mixture to dimethylamines. Peptide triplets can be obtained using combi-
nations of several isomers of formaldehyde and cyanoborohydride. They
will differ by a minimum mass of 4 Da between different samples. The
labeled samples are mixed and simultaneously analyzed by MS, whereby
the mass difference of the dimethyl labels is found in MS1 and can be used
to compare the peptide abundance in the different samples [35].
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In isobaric labeling methods, such as TMT, peptides are labeled after diges-
tion and combined before LC-MS/MS. Labeled peptides will coelute as a
single peak with the same m/z value in an MS1 scan. Only fragmentation
of the labeled peptides during the MS2 or MS3 in the collision-induced
dissociation cell (CID or HCD) generates reporter ion peaks of differing
mass, enabling quantification across samples [27, 28, 36, 37].

Figure 1.5.: Quantitation methods and multiplexing options for MS-based
proteomics. Common quantitative mass spectrometry (MS)-based proteomics
workflows and quantitation methods. Red and blue boxes boxes represent two
experimental conditions. Horizontal lines indicate when samples are combined. Dashed
lines indicate the points at which experimental variation and thus quantification errors
can occur. Adapted from [38].

Label-free quantification (LFQ) methods aim to compare two or more sam-
ples by comparing the direct mass spectrometric signal intensity for any
given peptide or using the number of acquired spectra matching a pep-
tide (spectral counts). Intensity-based LFQ uses the MS signal response
of intact peptides for quantification. Typically, this is accomplished by
integrating the ion intensities of a precursor ion over its chromatographic
elution profile. A precursor ion’s MS1 peak is observed multiple times
during its elution from the HPLC column, even if the precursor is only
fragmented once during the whole run. We can use the height of this
integrated chromatographic peak or the area under the curve (AUC) to
measure the relative abundance of the peptide [28, 38].

In most cases, labeling-based methods for quantification will be the most
accurate. Additionally, with LFQ, only one biological sample can be ana-
lyzed per MS run. For SILAC, each run can analyze two to three biological
samples. With TMT, one run can analyze up to 18 biological samples
[28]. However, labeling techniques typically limit direct comparison of ex-
periments, whereas direct comparison between LFQ samples is unlimited.
Additionally, there is evidence that label-free methods provide a higher
dynamic range of quantification than stable isotope labeling and, there-
fore, may be advantageous when significant and global protein changes
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1between experiments are observed. It is, therefore, worth considering
experiment type, research question, and finances when deciding on a quan-
tification method [27, 28, 38].

1.3.3. Analysis of proteome data

Quantitative proteomic data are complex. The raw data set produced by
a single LC-MS/MS run is an extensive collection of spectra, each with a
retention time, m/z values, intensities, and other metadata. Several soft-
ware packages can process these data and perform peptide identification
and quantification [28, 33].
One such software is MaxQuant [39]. For peptide identification,
MaxQuant has implemented the Andromeda search engine, which
performs the most commonly used identification approach, a database
search. For this, the program needs a user-supplied reference proteome
(FASTA). It will predict all peptides that could arise from the proteins
in the database by enzymatic cleavage and predict the MS2 spectra of
the corresponding peptide ions (precursors). These predicted peptides
and their predicted spectra are compared with the experimental spectra
to make peptide-spectrum matches (PSMs). After false discovery rate
(FDR) control, through searching against reverse peptide sequences of
the database, peptide identification is complete [28, 39].
After peptide identification, they will be matched to the proteins or genes
from which they originated. This can be a somewhat ambiguous pro-
cess, as protein sequences may match the same set of identified peptide
sequences. If no unique identifying peptides are found, proteins will be
grouped together in a protein group (PG). Then, relative PG quantities are
generated using peptide intensities. Most software packages, including
MaxQuant, allow quantification only with PG-unique peptides.
Notably, for LFQ, the popular MaxLFQ algorithm within MaxQuant can
account for the fact that different peptides belonging to the same pro-
tein can have very different base intensities, for example, due to differing
ionization efficiencies. In addition, MaxLFQ deals with missing values by
taking available pairwise comparisons and using median ratios to compare
and reliably estimate protein intensities. This is an important feature, as
proteomic data usually are incomplete. Even the most advanced mass
spectrometers can be overwhelmed by the number of peptides in a sample.
As a result, only a subset of all proteins present can be identified. For pro-
tein quantification, it is mandatory to detect a protein in all experiments
that will be compared, but this can be partially overcome by solutions as
implemented by MaxLFQ [28, 33, 40].
The next steps in data analysis for generic (comparative) proteomic exper-
iments consist of removing contaminants and filtering for protein groups
confidently identified by two or more peptides. The data is usually log
transformed to approximate a normal distribution for statistical testing
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and normalized to correct for inter-run technical variability. Further, as
statistical methods often require complete data, missing values might be
imputed or estimated, especially in the case of LFQ. Estimation can be done
by averaging available values of the protein from other replicates or using
related values from other proteins from the same experiment. Imputation
is standard practice in proteomic data analysis, but it should be noted that
estimating values will result in decreased statistical power [27, 28, 38].

1.4. Proteomics and transcriptomics to study
DNA damage

Both exogenous and endogenous mutagens constantly threaten the stabil-
ity of the genome. These stressors can damage the architecture and struc-
ture of the DNA, causing single-stranded breaks, double-stranded breaks,
or chemical modifications to individual bases. To prevent genomic insta-
bility, a carefully orchestrated DNA damage response (DDR) functions to
identify and repair damaged DNA [41]. The cellular response to DNA
damage typically involves a wide range of cellular processes, such as gene
expression modulation, protein and metabolic activity changes, and, in ex-
treme cases, changes in DNA sequence or structure, all of which contribute
differently to cellular phenotype [42].
The core of the cellular defense against DNA damage is formed by various
DNA repair mechanisms, each with its specificity. Together, they can re-
move the vast majority of damage from the genome [43]. Generally, the
DDR consists of a cascade of sensors, transducers, mediators, and effec-
tors [44]. Recruitment of the appropriate sensor, transducer, mediator,
and effector depends on the cell cycle, extent of damage, and type of
DNA damage. They dictate which DNA repair pathway is induced [44].
Bases with minor chemical alterations that do not strongly disturb the DNA
double-helix structure are substrates for Base Excision Repair (BER).
On the other hand, Nucleotide Excision Repair (NER) removes
a broad spectrum of single-strand lesions that cause local helix
destabilization. Two different modes of damage detection are
functional in NER: transcription-coupled NER (TC-NER), which efficiently
removes transcription-stalling lesions and allows fast resumption of
transcription, and global genome NER (GG-NER), which localizes
lesions anywhere in the genome. Lesions that are substrates for NER
and BER are located only in one of the DNA strands and are removed
with a “cut-and-patch”-mechanism. In these cases, the undamaged
complementary strand is an accurate template for repairing the damaged
strand. However, some damaging agents affect both strands, such as
ionizing radiation, inducing DNA double-strand breaks (DSBs), and agents
that produce inter-strand cross-links (ISCLs). These lesions are highly
cytotoxic because they are more challenging to repair as the cell cannot
rely on merely copying the information from the undamaged strand. Two
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1distinct pathways, homologous recombination (HR) and non-homologous
end-joining (NHEJ), repair DSBs and fall under double-strand break
repair (DSBR) [43].

Until recently, all these processes and pathways were studied in isola-
tion, neglecting the broader cellular context for challenge-response mech-
anism outcome [42]. As described above, the rise of omics technologies
enables measuring interaction and changes at molecular resolution for
genomes, proteomes, and metabolomes covering the whole cell. Quan-
titative mass spectrometry has aided in identifying novel factors involved
in DNA damage repair and genome instability previously uncharacterized
[45]. Affinity purification and proximity labeling techniques have been
essential in identifying unknown factors and revealing unknown crosstalk.
Global proteome measurements have allowed for a comprehensive view
of the DNA damage response. It has presented an unbiased approach to
studying all aspects of DNA repair rather than focusing on the previously
associated candidates [46]. Omics data can help gain a systems-level
understanding of dynamic cellular response mechanisms to perturbations
or DNA-damaging agents [9, 42].

In Chapter 2 of this thesis, I used quantitative proteomics and transcrip-
tomics to profile the DDR temporally. In Chapter 3, I used quantitative
mass spectrometry with (DNA) affinity purification and phylointeractomic
analysis to study DNA repair proteins across the Tree of Life. Together
with other molecular and biochemical techniques, this has led to novel
contributions to genome instability and DNA damage studies. 

1.5. Omics in evolutionary analysis and
applications

Not only has multi-omics integration become a trend and useful tool for
constructing a comprehensive relationship between molecular signatures
and phenotypic manifestations of a particular disease within a particular
organism, it has also enabled more detailed study of processes ranging
from subcellular to evolutionary, that drive biological organization. Sub-
cellular and evolutionary processes, such as differential gene expression,
speciation, and phenotypic plasticity, can operate over dramatically dif-
ferent timescales (milliseconds to billions of years) and are responsible
for generating patterns of phenotypic variation [5, 47]. Whilst pheno-
typic variation is often studied at specific levels of biological organization
to isolate processes working at a particular scale, the varying types of
omics data can provide complementary inferences to link molecular and
phenotypic variation to create an integrated view of evolutionary biology,
ranging from molecular pathways to speciation [47]. Using evolutionary
relationships between species, we can investigate both trait evolution and
the impact of traits on ecological speciation rates. By applying epigenomic,
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transcriptomic, proteomic, and metabolomic data in a comparative frame-
work, we can treat these molecular phenotypes as evolvable traits sorted
across species [47].

Within this context, population geneticists have long sought to understand
the contribution of natural selection to molecular evolution. The rates and
patterns of molecular sequence evolution are estimated using comparative
studies of orthologous genes. Orthologous sequences (sequences from
distinct species that descended from a common ancestor) have been
modified by an extensive evolutionary process with mutation rates
varying by order of magnitude.
The genetic code of each organism, containing the translational key for
DNA sequence into protein–amino acid sequence, is partially redundant,
with multiple nucleotide triplets translating into the same amino acid.
This redundancy is demonstrated by synonymous sites, for which
specific changes in the coding DNA sequence do not change the amino
acid sequence. Thus, the structure or function of the protein remains
unchanged. Without selective forces, beneficial mutations may be selected
and developed via drift effects [48]. Conversely, mutations that encode
distinct amino acids (non-synonymous sites) might be selected against
and disappear from the genome since they are unfavorable. Accounting
for this rate variation under different levels of selective pressure can
provide insight into the functional restrictions on proteins. Proteins with
strict functional or structural requirements face significant purifying
(negative) selective pressure, resulting in fewer amino acid modifications.
Consequently, genes with a limited rate of evolution are prone to
performing critical functions optimally. Unless their interaction networks
are altered, the probability of improved performance is relatively low.
Genes having redundant and non-central functions, as well as weaker
constraints, evolve at a faster rate [49–51]. Different approaches have
been proposed that use population genetics theory to quantify the rate and
strength of positive selection acting in a species' genome. Methods can
use patterns of between-species nucleotide divergence and within-species
diversity to estimate positive selection parameters from population
genomic data [52]. Ultimately, determination of the rate and strength of
positive selection aids in understanding how genomes evolve, providing
researchers with insights into the biological importance of genes of
interest and species differences.

Chapter 4 of this thesis addresses the need for software that greatly reduces
the manual input required for positive selection analyses. I co-developed a
computational pipeline called AlexandrusPS, which facilitates researchers
in performing correct and efficient large-scale evolutionary analysis.
AlexandrusPS solves two additional challenges in the steps needed before
performing the actual positive selection analysis. These are the need
for accurate orthology predictions and sequence alignment. They are
critical in positive selection analysis because including ancient paralogs,
i.e., paralogs that have diverged during long timescales, has been shown
to cause bias. The increased nonsynonymous substitution rate caused by
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1decreased purifying selective pressure can result in two alternative fates
of the gene copies. Either one of the paralogs becomes non-functional
due to the lack of selective pressure and accumulation of mutations.
Alternatively, in some cases, the functions and expression patterns of the
gene pair may diverge substantially and give rise to novel functions or
specializations in the organism called neofunctionalization [53].
In Chapter 3 of this thesis, I investigated the phylogenetic diversity in the
recognition and repair of three well-established DNA lesions, primarily
repaired by BER or RER. Previous literature has highlighted strong con-
servation of fundamental proteins in both pathways [54]. However, only
by studying these pathways across the tree of life can the convergence and
divergence of these different repair machinery be elucidated.
#
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2. DNA damage response in T. thermophila

2.1. Summary

This study combines transcriptomics and proteomics to study DNA damage
kinetics across well-established treatments in the ciliate Tetrahymena
thermophila. We treated Tetrahymena with six common DNA mutagens.
The damaging agents used were ultraviolet light (UV, inducing nucleotide
excision repair), hydrogen peroxide (HP, inducing base and nucleotide
excision repair), methyl methanesulfonate (MMS, inducing base and
nucleotide excision repair, hydroxyurea (HU, halting replication) ionizing
radiation (IR, inducing double-stranded break repair), and cisplatin
(inducing nucleotide excision repair and inter-crosslink repair). This
large-scale data set of 6 treatment conditions and 7 time points (from 0 to
8 hours) integrates over 250 transcriptome and proteome measurements.
We observed the upregulation of known DNA repair proteins and a global
response of transcripts and proteins that have not yet been characterized.
Using self-organizing maps, we classified different expression profile
trends between proteins and transcripts in response to the mutagens,
including PARP and PARP-related proteins. Utilizing a novel gene
knockdown system in Tetrahymena, we are currently investigating the
effect of DNA damage agents on several proteins of the PARP family,
nominated by our analysis. In addition to the comprehensive analysis
presented, the data can be explored via an accessible user interface at
https://butterlab.imb-mainz.de/Tt_DDR/.
We are still exploring protein and transcript expression trends further
through correlation analysis. Ultimately, our study identified novel
candidates in the DNA damage response and provides new insights into
current proteins of interest.

2.2. Zusammenfassung

In dieser Studie werden Transkriptomik und Proteomik kombiniert, um die
Kinetik von DNA-Schäden bei verschiedenen etablierten Behandlungen
des Ciliaten Tetrahymena thermophila untersucht. Wir haben Tetrahymena
mit sechs bekannten DNA-Mutagenen behandelt. Bei den verwendeten
Schadstoffen handelte es sich um ultraviolettes Licht (UV, induziert die
Nukleotid-Exzisionsreparatur), Wasserstoffperoxid (HP, induziert die
Basen- und Nukleotid-Exzisionsreparatur), Methylmethansulfonat (MMS,
induziert die Basen- und Nukleotid-Exzisionsreparatur), Hydroxyharnstoff
(HU, stoppt die Replikation), ionisierende Strahlung (IR, induziert
die Reparatur von Doppelstrangbrüchen) und Cisplatin (induziert
die Nukleotid-Exzisionsreparatur und die Reparatur zwischen den
Querverbindungen). Dieser groß angelegte Datensatz mit 6 Behand-
lungsbedingungen und 7 Zeitpunkten (von 0 bis 8 Stunden) umfasst
über 250 Transkriptom- und Proteom-Messungen. Wir beobachteten
die Erhöhung der Expression bekannter DNA-Reparaturproteine und

22



2.3. Statement of Contribution

2

eine globale Reaktion von Transkripten und Proteinen, die bisher noch
nicht charakterisiert worden sind. Mithilfe von selbstorganisierenden
Karten klassifizierten wir unterschiedliche Expressionsprofil-Trends
zwischen Proteinen und Transkripten als Reaktion auf die Mutagene,
darunter PARP und mit PARP verwandte Proteine. Unter Verwendung
eines neuartigen Gen-Knockdown-Systems in Tetrahymena untersuchen
wir derzeit die Auswirkungen von DNA-Schadstoffen auf mehrere
Proteine der PARP-Familie, die durch unsere Analyse identifiziert
wurden. Zusätzlich zu der hier präsentierten umfassenden Analyse
können die Daten über eine zugängliche Benutzeroberfläche unter
https://butterlab.imb-mainz.de/Tt_DDR/ betrachtet werden.
Wir sind noch damit befasst, die Trends bei der Expression von
Proteinen und Transkripten durch Korrelationsanalysen weiter zu
untersuchen. Insgesamt identifizierte unsere Studie neue Kandidaten für
die DNA-Schadensreaktion und bietet neue Einsichten in aktuelle Proteine
von Interesse.

2.3. Statement of Contribution
Emily Nischwitz and I led this study with the support of Falk Butter. I de-
signed the initial large experimental setup together with Emily, which she
implemented and executed with the help of Rachel Mullner and Susanne
Zimbelmann. I led all aspects of the data analysis and was responsible
for initial data visualization. Emily and I led in-depth data interpretation
and finalization of visualization. Emily and I are writing the initial draft
version of the manuscript with support from Falk Butter. We are currently
completing the final analysis and biological validation experiments. We
plan to submit by the end of 2023.
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2. DNA damage response in T. thermophila

2.4. Abstract

A tightly regulated DNA damage response is critical to the overall integrity
of the genome. Here, we combine transcriptomics and proteomics to study
DNA damage kinetics across well-established treatments in the ciliate
Tetrahymena thermophila. This extensive data set of 6 conditions (HU,
MMS, IR, HP, cisplatin, and UV) and 7 time points (from 0 to 8 hours)
integrating over 250 transcriptome and proteome measurements. We
observed upregulation of known DNA repair proteins and a global dynamic
of not yet characterized transcripts and proteins. Using self-organizing
maps, we classify different expression profile trends in response to the
treatments, including PARP and PARP-related proteins. Utilizing a novel
gene knockdown system in Tetrahymena, we investigate the effect of DNA
damage agents for [several] proteins of the PARP family. In addition to
the comprehensive analysis presented here, the data can be explored via
an accessible user interface at https://butterlab.imb-mainz.de/Tt_DDR/.
Ultimately, our study identified novel candidates in the DNA damage
response and provides new insights into current proteins of interest.

2.5. Introduction

Environmental genotoxic stressors create DNA damage that poses a threat
to the stability and integrity of the genome. It is, therefore, critical to
have a carefully regulated orchestra of DNA damage response factors and
pathways [41]. DNA damage repair activity is required in all living organ-
isms, and the dysregulation of any of these pathways has been correlated
with disease [54, 55]. Primary DNA repair pathways include nucleotide
excision repair (NER), base excision repair (BER), mismatch repair (MMR),
homologous recombination (HR), non-homologous end joining (NHEJ),
and interstrand crosslink repair (ICL) [56–60].
Exogenous mutagens can induce damage lesions that are associated with
particular repair pathways. UV exposure typically results in pyrimidine (6-
4) pyrimidone photoproducts ((6-4) PPs) and cis-syn cyclobutane pyrimi-
dine dimers [61], repaired by NER. Cisplatin (CPT) causes covalent bonds
between base pairs on different DNA strands, referred to as interstrand
crosslinks (ICLs) [62]; NER often repairs this damage. However, there is
a cell cycle-dependent compilation of various repair pathways to address
this damage, including HR, NER, translesion synthesis (TLS), and, in hu-
mans, the Fanconi Anemia (FA) pathway [58, 63]. Hydrogen peroxide
(HP) and methyl methanesulfonate (MMS) cause oxidative and alkylative
damage, respectively [64]. Previously, BER was thought to be the pri-
mary repair pathway to resolve these lesions. However, growing evidence
highlights the interdependence of both BER and NER [65, 66]. R causes
direct DSBs, which are repaired by either homologous recombination (HR)
or non-homologous end joining (NHEJ) [57]. In addition to these direct
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DSBs, a large number of reactive oxygen species are created by IR, which
BER and NER can repair. HU does not damage DNA through direct in-
teraction with DNA or the creation of a deleterious byproduct but inhibits
the enzyme ribonucleotide reductase (RR). The inhibition of RR drastically
reduces the available amount of deoxynucleotide triphosphate pools, caus-
ing large degrees of replication stress [67, 68].
Each damaging agent specifically induces one of these known DNA dam-
age repair pathways. However, a large global and temporal DNA dam-
age response occurs in the cell. To evaluate this globally, comprehensive
DDR studies utilizing omics methods are vital. Even within well-studied
unicellular eukaryotic organisms, such as S. cerevisiae, there have been
limited studies of the proteomic or transcriptomic response to DNA damage
[69–75]. These studies often lack either a combined transcriptome and
proteome approach or only consider a singular or limited time point in the
DDR.
Here, we studied DNA damage repair kinetics from a global transcriptomic
and proteomic perspective in Tetrahymena thermophila (Tetrahymena),
a ciliate with a unique nuclear architecture containing a macronucleus
(MAC), and the germline containing micronucleus (MIC). To obtain
a systematic comparative overview of the kinetics of DNA damage
repair in a eukaryotic organism, we performed transcriptome and
proteome measurements over 8 hours, with six well-established genotoxic
treatments invoking different DNA damage repair pathways.

2.6. Results

2.6.1. Known DNA damage repair factors are
differentially regulated in response to genotoxic
stressors

We treated Tetrahymena with six well-established treatments to study DNA
damage response kinetics. The damaging agents were 254 nm ultraviolet
light (UV), cis-diamine platinum (II) dichloride (CPT), hydrogen peroxide
(HP), methyl methanesulfonate (MMS), ionizing radiation (IR), and hy-
droxyurea (HU). The treatment conditions were determined either by the
establishment of EC50 or from previous DNA damage studies of Tetrahy-
mena [76–78] (Table A.1). To obtain transcriptome and proteome expres-
sion information, we harvested samples at 0, 1, 2, 3, 4, 6, and 8 hours
(H0-H8) in quadruplicate and performed mRNA sequencing (RNA-seq)
and high-resolution mass spectrometry (MS) measurements (Figure 2.1A).
We measured all transcriptomes and proteomes in sets of three, two treat-
ments paired with a non-treatment, which were collected and processed
together. We could calculate changes in transcript expression and protein
intensity in each drug treatment condition over a matched nontreated con-
dition, thereby correcting for any potential batch effect (log2 fold change
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values, Figure A.1). After stringent filtering across treatments and time
points, we quantified 20,443 transcripts and 6,551 protein groups, with
99.6% of proteins associated with transcriptome data (Figure 2.1B). We
examined differential upregulation of primary DNA repair pathways to
verify each treatment induced the anticipated DNA damage. We compiled
gene lists for five DNA repair pathways: NER [60, 79], BER [56, 80], MMR
[81–83], DSBR [84–87], ICL [88], and general DDR [41, 89]. These lists
containing 130 DNA repair genes are not intended to be comprehensive
but highlight previously established critical genes involved in the different
DNA repair pathways (Table A.2). Across all treatments, 81.4-100% of
detected pathway-associated genes were upregulated, and 82.4-96% of
detected pathway-associated proteins were upregulated. Of the detected
global DNA damage response transcripts and proteins, 81.4% and 88.9%
were upregulated in the transcriptome and proteome datasets, respectively.
We examined the amount of upregulated transcripts and proteins for each
treatment with its commonly associated DNA repair pathway. Across all
treatments, 68.4-96.6% of the transcripts and 33.3-92% of the proteins as-
sociated with the respective pathways were upregulated (Figure 2.1C).

The selected members of the primary DNA repair pathways were further
examined for each treatment over time (Figure 2.1D). Through hierar-
chical clustering, we found a group of 10 transcripts (MSH6L3, RAD51,
RAD4, SNML1, RAD5, RLP1, RAD5L4, RFA1, TTHERM_00316410 (Rad3
homolog), and TTHERM_00391570 (Rev3 homolog)) with a minimum
2.3 log2 fold change across all treatments, indicating an unexpected core
DNA damage response that crosses MMR, DSBR, and NER pathways, as
well as general responders, regardless of damage origin. The expression
profiles reveal unique kinetics amongst the members and between gene
and protein regulation.

2.6.2. Genotoxic stressors induce core and specific
global dynamic gene expression responses

We examined the expression dynamics of both the transcriptome and pro-
teome over time by calculating the Gini coefficient for every quantified
transcript and protein (Figure 2.2). We applied a Gini coefficient filter
of the 60th quantile (Gini score > 0.042) to the transcriptome to separate
dynamic and stable transcripts (Figure 2.2A). In addition to our dynamicity
filter, to select transcripts up- and downregulated in response to the DNA
damaging agents, we applied a log2 fold filter, requiring the expression
change over the time course to reach either more than 1 or less than -1
(log2 fold change) once, and a significance filter, of adjusted p-value <
0.05 (FDR). Of the 20,443 detected transcripts, we classified 8,815 as
dynamic, surpassing these thresholds. Amongst them were the previously
characterized DSBR gene RAD51 and the MSH6 homolog, MSH6L3 [76, 90,
91], whereas TTLL6B was found to be a stable transcript (Figure 2.2B).
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Figure 2.1.: Screen to explore the kinetics of DNA damage response in
Tetrahymena. A) Schematic of the screen workflow. Cells were treated with a
mutagenic agent, and samples were harvested incrementally over eight hours. At each
time point, samples were collected for RNA sequencing and quantitative mass
spectrometry processing. B) Venn diagram depicting the overlap between the identified
transcripts and proteins. C) Lollipop plot of enriched DNA damage repair factors. D)
Heat map of hierarchical clustering of DNA repair genes of interest. NER: nucleotide
excision repair, ICL: inter crosslink repair, BER: base excision repair, DSBR:
double-strand break repair, MMR: mismatch repair, DDR: DNA damage response, UV:
ultraviolet light, CPT: cisplatin, HP: hydrogen peroxide, MMS: methyl
methanesulfonate, IR: ionizing radiation, HU: hydroxyurea
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There were 57 overlaps of shared dynamic transcripts among treatments,
42 of which were significantly more than expected (p-value ≤0.04, Fisher's
exact test). All seven groups that contained five or more treatments were
significant (p-value < 0.001) (Figure 2.2C). Of the 78 genes in these
overlaps, 39 had no yeast homolog. This indicates both a strongly
conserved and unique DNA damage response in Tetrahymena. Amongst
these genes with no yeast homolog, three PARP and PARP-correlated
genes were included: PCP3 (PARP12, TTHERM_00467770), PARP3
(TTHERM_00030430), and PCP5 (PZN1, TTHERM_00773650). Of the
15 PARP and PARP-correlated protein families, 12 members were dynamic
in one or more treatments. While PCP3, PARP3, and PCP5 act as core
responders, there are also damage-specific PARP responses. For example,
PARP1, PARP7, and PCP1 only have a dynamic expression profile in
response to UV. This same core and highly treatment-specific dynamic
response is observed globally as well.

Figure 2.2.: Mutagenic treatments cause a global dynamic response. A) Volcano
plots plotting dynamic transcripts for each treatment. The x-axis contains the maximal
positive or negative fold change during the time course, and the y-axis contains a Gini
score evaluating the dynamicity throughout the entire time course. B) Example line
plots of the expression profiles dynamic (MSH6L3 and RAD51) and stable transcripts
(TTLL6B). C) Upset plots of overlapping dynamic transcripts between treatments. D)
Volcano plots plotting dynamic proteins for each treatment. The x-axis contains the
maximal positive or negative fold change during the time course, and the y-axis
contains a Gini score evaluating the dynamicity throughout the entire time course. E)
Line plots of the expression profiles dynamic (MSH6L3 and RAD51) and stable proteins
(BTU1). F) Upset plots of overlapping dynamic proteins between treatments.
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We performed the same analysis with the 6,551 proteins quantified across
these six treatments. Here, the Gini coefficient threshold for dynamicity
was also set at the 60th quantile (Gini score > 0.021 with a minimum
log2 fold change > |1|, and p-value < 0.05 (Welch t-test) at any point
in the time course) (Figure 2.2D). We found a total of 2,582 proteins to
be dynamically regulated. RAD51 and MSH6L3 were dynamic in each
treatment (Figure 2.2E). Of the 57 overlapping groups of dynamically
upregulated proteins, there was significantly more overlap than expected
in 38 overlaps (p<0.05, Fisher's exact test). (Figure 2.2F). Thirty-three
proteins were present in overlaps containing five or more treatments. As
for the dynamic transcripts, regulated proteins across all treatments had
an overrepresentation of the GO terms 'DNA repair' and 'cellular response
to damage'. Of these 33 core responders, 15 proteins have no homolog in
S. cerevisiae.

2.6.3. Early and unique transcriptional response is
critical to the DNA damage response

To cluster the 8,815 dynamic and differentially regulated transcripts, we
used self-organizing maps (SOMs), an unsupervised machine-learning ap-
proach. The transcripts detected across all six treatments fell into 15 dis-
tinct clusters (T1-T15); 689 transcripts could not be assigned to a cluster
(Figure 2.3, Figure A.2A). All of these clusters have unique temporal and
degrees of response. T1 and T2 have a variety of initial intensities but
overall trends of downregulation. In contrast, T4 and T5 show variable
peaks of regulation followed by downregulation. In T8, T10, T12, T13,
and T14, CPT-treated cells consistently showed the most extreme differ-
ential regulation, while all other treatments showed variable degrees of
differential regulation. Next, each transcript was mapped to its respec-
tive homolog(s) in S. cerevisiae, and functional enrichment analysis was
performed using Gene Ontology (GO) for these S. cerevisiae homologs for
each cluster (Figure 2.3B).
Cluster T10 uniquely showed an overrepresentation of genes related to
'DNA repair', 'cellular response to DNA damage stimulus', 'DNA replica-
tion', and 'DNA metabolic process'. Within this cluster's average expression
profile for CPT-treated cells, there is an immediate strong and continual
upregulation. This response could be due to the known long half-life of
CPT [92]. At H0, the average expression profile of IR- and UV-treated cells
shows strong upregulation, followed by gradual downregulation through-
out the remaining time points. This also reflects these specific treatments,
as UV and IR treatments had only one initial application and were not
sustained in culture. This cluster also has a moderate increase in the
average expression of HP-, MMS-, and HU-treated cells. Additionally, 17
DNA damage response proteins were found in this cluster (Table A.2).
Further general responses to DNA damage were found also in other clus-
ters. All histones (T7), 20S ribosomal proteins (T2), and dense core gran-
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Figure 2.3.: Transcript clusters reveal dynamic DNA damage response. A) Average
expression profiles for clusters of dynamic transcripts. Using an unsupervised machine
learning technique, we clustered dynamic transcripts based on their shared expression
profiles into 15 clusters. These line graphs are the average expression profiles for each
treatment. B) Heat map of functional enrichment analysis using KEGG. Each row
contains an over-represented KEGG term with a gradient representing the adjusted
p-value. C) Heat map of functional enrichment analysis using GO analysis. Each gene
was mapped to its respective homolog(s) in S. cerevisiae. Each row contains an
over-represented GO term with a gradient representing the adjusted p-value.
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ules (T3) clustered together showed primarily similar regulation trends for
each treatment. The degree and time point of decline depended on the ac-
tual treatment, but each gene family or complex subunit behaved similarly
within each treatment. In contrast, the three families of previously studied
chromatin remodelers in Tetrahymena, the Poly-(ADP-ribose) polymerases
(PARPs)/PARP-associated proteins, histone acetyltransferases (HATs), hi-
stone deacetylases (HDACs) are differentially regulated and span across
multiple clusters [93–97]. The PARP and PARP-correlated proteins medi-
ate DNA repair by chromatin modifications via ADP-ribosylation and direct
binding, modification, and recruitment of DNA repair proteins [98, 99].
PARP7, PARP8, and PARP12 (T2), PCP1 (T7), PARP6 (T9), and PARP2 and
PARP5 (T10) all showed unique responses to DNA damage. The histone
acetylases and deacetylases are critical to changing chromatin architecture
to facilitate DNA repair [97]. The histone acetylases (HATs) HAT1 (T10)
and MYST2 (T2) and histone deacetylases THD4, THD17, and THD18a
(T2, T3, T6, respectively) also showed greatly differential regulation. This
indicates that each of the PARPs, HATs, and HDACs in Tetrahymena has a
particular role.
In another example, within the 15 clusters, nine clusters are enriched
for 'protein phosphorylation' (T1, T2, T4, T5, T8, T10, T12-14). It has
been previously reported that phosphorylation plays a critical role in the
processing of interstrand crosslinks, as well as preventing ICL proteins
from conducting inappropriate repair [58, 100–102]. Overall, it is clear
that protein phosphorylation is critical to immediate and sustained DNA
damage response as a whole in Tetrahymena.
The transcriptome data shows specific transcriptional regulation kinetics
of the DNA damage response dependent on the genotoxic stressor.

2.6.4. Protein expression over time reveals specific
trends involved in DNA damage response

As for the transcriptome, we used self-organizing maps clustering 2,582
dynamically expressed proteins into seven distinct clusters (P1-P7); 202
proteins could not be assigned (Figure 2.4, Figure A.2B). Each protein in-
cluded in these seven clusters was mapped to its respective homolog(s) in
S. cerevisiae, and functional enrichment analysis was performed using GO
(Figure 2.4B). Cluster P6 uniquely showed an overrepresentation of genes
related to 'DNA repair', 'cellular response to DNA damage stimulus', 'DNA
replication', and 'DNA metabolic process'. In P6, there were 15 known
DNA damage factors, which included ATR1, RAD53/Chk1, TKU80, RAD3,
DNA2, three members of the RFC complex, and TKU80. ATR1 and TKU80
are critical in DNA damage response and conjugation in Tetrahymena [77,
103].
In this cluster, two MMR proteins, MSH3L6 and TMLH1, were also iden-
tified. Together with MSH2, MSH3 is part of the MMR MutS𝛽 complex,
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which repairs larger insertions and deletions. Alternatively, if MSH6 and
MSH2 form an MMR recognition heterodimer MutS𝛼, one to two base
pair mismatches and indels are repaired. Intriguingly, MSH6 is found
in P3, indicating a differential regulation of these portions of the MMR
recognition complex. TMHL1 and PMS2 interact with the recognition
complex to initiate cleavage events. Our clustering data suggests that
TMLH1 expression profiles are more comparable to MSH3 than MSH6.

Similarly to transcriptional regulation, the chromatin remodelers within
the PARP family were differentially regulated across clusters. However,
this family of genes is not just being regulated at the transcriptional level.
For example, PARP7, PARP8, and PARP12 all fell within T2, whereas now
they are found within P6, P7, and P4, respectively.

Other gene families not directly responsible for DNA repair with a similar
time-dependent transcriptional regulation fell into different clusters and
showed diverging protein-level expression patterns. For example, all dy-
namic dense core granules clustered in T3 but were part of two different
protein clusters (P2 and P3). All histones were transcriptionally regu-
lated similarly (T33), whereas the histone proteins had different protein
expression profiles (P6 and P7). Also, the DNA repair-related PARP family
was differentially regulated. While the dynamic transcripts also showed
a differential regulation across all clusters, some of the PARP transcripts
expression profiles were clustered in the same SOM. However, there were
some instances of similar protein and transcriptional regulation, such as
for the 20S proteasome (T2 and P7) and transcription-related factors (T6
and P7). Generally, the differences between transcriptome and protein
expression profiles indicate additional regulation at the protein level.

2.6.5. Using novel knockdown system to characterize
highly dynamic DNA repair proteins and
PARP-correlated proteins

Utilizing a novel knockdown system, we take advantage of the unique
phenotypic characteristics of a mutant strain of Beta tubulin 1, BTU-1, in
Tetrahymena [104]. We targeted the btu-1 (K350M; pacs loci) allele of
CU522. Previously characterized due to its unique effects on macronu-
clear development, these mutants are sensitive to several selective pres-
sures, including sublethal treatments of Paclitaxel. This microtubule stabi-
lizer is used for positive selection of successful transformants [105, 106].
The novel knockdown system contains a designed hairpin flanked by two
Beta tubulin arms in the base pUC118 construct. After being integrated
via biolistic bombardment and undergoing positive selection, cells were
screened with whole-cell PCR for successful integration. Then, to verify
the successful reduction of protein levels, quantitative mass spectrometry
was used to measure the reduction in protein levels.
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Figure 2.4.: Protein clusters reveal a specific and dynamic DNA damage response.
A) Average expression profiles for clusters of dynamic transcripts. Using an
unsupervised machine learning technique, we clustered dynamic transcripts based on
their shared expression profiles into 7 different clusters. These line graphs are the
average expression profiles for each treatment. B) Heat map of functional enrichment
analysis using KEGG. Each row contains an over-represented KEGG term with a gradient
representing the adjusted p-value. C) Heat map of functional enrichment analysis using
GO analysis. Each gene was mapped to its respective homolog(s) in S. cerevisiae. Each
row contains an overrepresented GO term with a gradient representing the adjusted
p-value.
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2.7. Methods

2.7.1. Cell culture

The Tetrahymena thermophila wildtype strain SB210 (Tetrahymena Stock
Center) was used throughout the study. Cultures were grown in a
medium of 2% proteose peptone (BD Biosciences), 0.2% yeast extract
(BD Biosciences), 12 µM FeCl, and 1x Penicillin/Streptomycin/Funizone
(Hyclone) at 30 °C at 100-150 rotations per minute.

2.7.2. Collection of Tetrahymena for mass spectrometry
and RNA sequencing

Tetrahymena were grown to a concentration between 1.5x105-3x105

cells/ml in 500 ml cultures. Samples were treated with six different
conditions, and two treatments were grouped with one nontreated group
(as MMS, HP; CP, UV; and HU, IR). Details of treatments are described
in Table A.1. Cells were harvested at 0, 1, 2, 3, 4, 6, and 8 hours after
the initial treatment. To collect samples for later quantitative mass
spectrometry, 5x104 cells were centrifuged at 9,400 xg for 5 minutes.
The supernatant was removed, and cells were washed with 1 ml 10
mM Tris-HCl (pH=7.5) and centrifuged at 9,400xg for 5 minutes. The
supernatant was discarded, leaving a total of ~15 µl of cells and Tris,
and 5 µl of 4x LDS (Thermo) and 2 µl of 1M DTT (Sigma) were added.
Samples were heated to 90 °C for 10 minutes. Samples were stored at
-20 °C until mass spectrometry sample preparation. To collect samples
for later RNA sequencing (RNA-seq), 5 ml of cells were collected and
centrifuged at 1,400xg for 3 minutes. The supernatant was decanted,
and cells were washed with 5 ml 10 mM Tris-HCl (pH=7.5). Cells were
centrifuged at 1,400xg for 3 minutes, and the supernatant was removed.
The cell pellet was resuspended in 600 ul Buffer RLT (Qiagen, RNeasy
mini kit), flash frozen in liquid nitrogen, and stored at -80 °C until RNA
sequencing sample preparation.

2.7.3. Mass spectrometry sample preparation

LDS sample was loaded on a 4-12% NuPage NOVEX Bis-Tris gel (Thermo)
and ran for 10 min at 180V in 1x MES buffer (Thermo Fisher Scientific).
Samples were processed as previously described [107]. In short, the gel
was stained and fixed with Coomassie Brilliant Blue G250 (Sigma Aldrich);
initial destaining of the gels was done overnight with water. Gel pieces
were cut, further destained with 50% EtOH / 50 mM ammonium bicar-
bonate (ABC) and dehydrated with acetonitrile (VWR), reduced with 10
mM DTT (Sigma) and alkylated using iodoacetamide (Sigma), and sub-
sequently again dehydrated with acetonitrile (VWR) and digested with 1

34



2.7. Methods

2

μg of MS-grade trypsin (Sigma) at 37 °C overnight. The peptides were
eluted from the gel pieces, loaded onto activated C18 material (Empore)
StageTips [108], and stored at 4 °C until elution and measurement.

2.7.4. Mass spectrometry measurement

Peptides were eluted from the StageTips using 80% acetonitrile / 0.1%
formic acid and concentrated prior to loading on an Easy-nLC-1200 system
coupled to an Orbitrap Exploris 480 mass spectrometer (Thermo Fisher).
The peptides were loaded on a 50 cm column (75 μm inner diameter, New
Objective) in-house packed with ReproSil-Pur 120 C18-AQ (Dr. Maisch
GmbH). We used a 103-min gradient from 3% to 40% acetonitrile with
0.1% formic acid at a flow of 250 nl/min. The mass spectrometer was
operated in positive ion mode with a top 20 MS/MS data-dependent ac-
quisition strategy of one MS full scan (scan range 300 - 1,650 m/z; 60,000
resolution; normalized AGC target 300%; max IT 28 ms) and up to twenty
MS/MS scans (15,000 resolution; AGC target 100%, max IT 40 ms; isola-
tion window 1.4 m/z) with peptide match preferred using HCD fragmen-
tation.

2.7.5. Mass spectrometry data analysis

Raw files were analyzed using MaxQuant (version 1.6.10.43). As a
search space, the T. thermophila protein database was used (June 2014,
TGD). Oxidation and acetylation were set as variable modifications,
Carbamidomethylation as fixed modification. Fast LFQ was used to
calculate and normalize intensities. The minimum ratio count used was
2. Match between runs was used to match within each time point per
treatment and to the time points right before and after, with a match time
window of 0.7 min, match ion mobility window of 0.05, an alignment
time window of 20 min, and alignment ion mobility of 1. Matching of
unidentified features was deactivated. Label minimum ratio count 2 and
unique + razor peptides were used for protein quantification.

2.7.6. RNA sample preparation and sequencing

Previously obtained samples were thawed on ice. RNA isolation was per-
formed with RNeasy mini kit (Qiagen) per manufacturer instructions with
the addition of the optional DNaseI on column digestion. This digestion
was carried out with 3 units of DNaseI (Qiagen) per sample, and samples
were digested for 15 minutes on the column at room temperature. NGS
library prep was performed with Lexogen's QuantSeq 3'mRNA-Seq Library
Prep Kit FWD following Lexogen's standard protocol (015UG009V0252).
Libraries were prepared with a starting amount of 300 ng and amplified
in 14 PCR cycles. Libraries were profiled in a High Sensitivity DNA on a
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2100 Bioanalyzer (Agilent Technologies) and quantified using the Qubit
dsDNA HS Assay Kit in a Qubit 2.0 Fluorometer (Life Technologies). All
libraries from the two treatments and coordinating non-treatment were
pooled together in equimolar ratio and sequenced on 1 NextSeq 500 high
output flow cell, SR for 1x84 cycles plus 7 cycles for the index read.

2.7.7. RNA-seq analysis

All demultiplexed, raw sequencing files of each treatment set were an-
alyzed together. Initial analysis was done through a modified version
of the NGS pipeline by the bioinformatics core facility of the IMB (avail-
able at https://gitlab.rlp.net/imbforge/NGSpipe2go). For reference, “sub-
read2rnatypes”, “genebodyCov2”, “rMATS”, and the GO enrichment anal-
ysis were removed from the pipeline. In short, the library quality was
assessed with FastQC before alignment against the T. thermophila genome
assembly SB210 and a custom-built GTF file, which included gene anno-
tations from T. thermophila (TGD, T_thermophila_June2014.gff3). Align-
ment was performed with STAR aligner version 2.7.3a [109]. Reads map-
ping to annotated features in the custom GTF file were counted with fea-
tureCounts [110]. Initial CPM counts were calculated with DESeq2 [111]
in R [112].

2.7.8. Further bioinformatic analysis

All further analysis was done with scripts developed in R [112], incorpo-
rating ggplot2 for visualization [113] among other packages.
For proteome data, contaminants, reverse database hits, protein groups
only identified by site, and protein groups with less than two peptides (at
least one classified as unique) were removed. Additionally, only protein
groups present in at least 2 out of 4 technical replicates were kept. Missing
values were imputed by shifting a compressed beta distribution obtained
from the LFQ intensity values to the limit of quantitation (between 0.2
and 2.5 percentile of the measured intensity distribution per sample). LFQ
intensities were log2 transformed, after which fold changes for individual
comparisons of time points or strains could be calculated per protein; a
Welch t-test was used to calculate p-values. The general protein enrich-
ment threshold was set to a p-value lower than 0.05 and an absolute
fold change higher than 1. All calculated values can be found in the
supplemental data.
For transcriptome data, transcripts that did not have any CPM value across
the time points and treatments below the 25th quantile of all CPM values
(CPM < 1.673028) were removed (Figure A.3). All CPM values were log2
transformed. Differential regulation thresholds were set at L2FC > 1 or <
-1, and adjusted p-value (FDR) < 0.05.
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The dynamicity of transcripts or proteins was calculated using the Gini
ratio, as described before [114, 115]. Statistical testing of overlaps of
dynamic genes was done with the R package SuperExactTest [116]. Func-
tional enrichment analysis was performed using Kyoto Encyclopedia of
Genes and Genomes (KEGG) [117], Gene Ontology [23], and the Clus-
terProfiler R package [118, 119] for statistical analysis. Terms for groups
of enriched proteins were assessed for overrepresentation with a Fisher's
exact test against all terms found in our complete dataset as background.
The enrichment threshold was set to an adjusted (FDR) p-value < 0.05.
Self-organizing map (SOM) clustering was done with the help of the Ko-
honen package in R [120].
All data can be explored through a user-friendly web interface at
https://butterlab.imb-mainz.de/Tt_DDR. This web interface was de-
signed and built with the use of R Shiny. All data and code for the analysis
in this study was written in R and is freely available via the workflowr
[121] website https://vivienschoonenberg.gitlab.io/Tetddr_wflowr/ or
https://gitlab.com/vivienschoonenberg/Tetddr_wflowr.
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3.1. Summary
In this study, we investigate the phylogenetic diversity in recognizing
and repairing three well-established DNA lesions. These lesions are
8-oxoguanine, an abasic site, and a ribonucleotide incorporated into
DNA. They are primarily repaired by base excision repair (BER) and
ribonucleotide excision repair (RER).
8-oxoG is formed through oxidative or alkylative damage. An abasic le-
sion can occur as an independent lesion or a BER intermediate. A uracil
incorporated base is primarily caused by improper DNA replication and is
often repaired by ribonucleotide excision repair. The three DNA damage
lesions were incorporated into synthetic oligos, and affinity purifications
were performed with protein extracts from 11 different species to compare
against similar interactions with an undamaged synthetic oligo. The 11
species we investigated were E. coli, B. subtilis, H. salinarum, T. brucei, T.
thermophila, S. cerevisiae, S. pombe, C. elegans, H. sapiens, A. thaliana, and
Z. mays. Using quantitative mass spectrometry, we identified 337 binding
proteins across these species. Of these proteins, 99 were previously charac-
terized to be involved in DNA repair. We linked 44 previously unconnected
proteins to DNA repair through orthology, network, and domain analysis.
Together, this study presents an extensive resource for future study of the
crosstalk and evolutionary conservation of DNA damage repair across all
domains of life.

3.2. Zusammenfassung
In dieser Studie untersuchen wir die phylogenetische Vielfalt bei der
Erkennung und Reparatur von drei bekannten DNA-Läsionen. Bei diesen
Läsionen handelt es sich um 8-Oxoguanin, eine abasische Stelle und ein
Ribonukleotid eingebaut in die DNA. Sie werden hauptsächlich durch
Basen-Exzisionsreparatur (BER) und Ribonukleotid-Exzisionsreparatur
(RER) repariert.
8-oxoG wird durch oxidative oder alkylative Schäden geformt. Eine aba-
sische Läsion kann als unabhängige Läsion oder als BER-Zwischenprodukt
auftreten. Eine Uracil inkorporierte Base wird in der Mehrheit
der Fälle durch eine fehlerhafte DNA-Replikation verursacht und
wird oft durch Ribonukleotid-Exzisionsreparatur repariert. Die drei
DNA-Schadensläsionen wurden in synthetische Oligos eingebaut, und
es wurden Aufreinigungen von Proteinextrakten aus 11 verschiedenen
Spezies ausgeführt, um sie mit ähnlichen Aufreinigungen an einem
unbeschädigten synthetischen Oligo zu vergleichen. Die 11 untersuchten
Arten waren E. coli, B. subtilis, H. salinarum, T. brucei, T. thermophila,
S. cerevisiae, S. pombe, C. elegans, H. sapiens, A. thaliana und Z. mays.
Mit Hilfe der quantitativen Massenspektrometrie identifizierten wir
337 Bindungsproteine in diesen Arten. Von diesen Proteinen wurden
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99 bereits zuvor als an der DNA-Reparatur beteiligt charakterisiert.
Mit Hilfe von Orthologie-, Netzwerk- und Domänenanalysen konnten
wir 44 Proteine mit der DNA-Reparatur in Verbindung bringen, die
zuvor nicht in dieser Verbindung standen. Zusammengenommen bietet
diese Studie eine umfangreiche Informationsquelle für die weitere
Erforschung der Interkonnektivität und der evolutionären Konservierung
der DNA-Schadensreparatur in allen Domänen des Lebens.

3.3. Statement of Contribution
Emily Nischwitz and I led this study with the support of Falk Butter and
Marion Scheibe. Emily, Marion, Falk, and I contributed to the experi-
mental design and its implementation. Emily and I led the data analysis
and data visualization and provided in-depth data interpretation. Albert
Fradera Sola, Mario Dejung, and Michal Levin conducted bioinformatic
data analysis. Olga Vydzhak and Brian Luke provided experimental sup-
port and offered critical feedback on the manuscript. Emily and I wrote
the initial draft and final version of the manuscript with support from
Falk Butter and Marion Scheibe. All authors read and approved the final
manuscript.
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?

Figure 3.1.: Graphical abstract

3.4. Abstract

Genome maintenance is orchestrated by a highly regulated DNA damage
response with specific DNA repair pathways. Here, we investigate the phy-
logenetic diversity in the recognition and repair of three well-established
DNA lesions, primarily repaired by base excision repair (BER) and ribonu-
cleotide excision repair (RER): 1) 8-oxoguanine, 2) abasic site, and 3)
incorporated ribonucleotide in DNA in 11 species: E. coli, B. subtilis, H.
salinarum, T. brucei, T. thermophila, S. cerevisiae, S. pombe, C. elegans, H.
sapiens, A. thaliana, and Z. mays. Using quantitative mass spectrometry,
we identified 337 binding proteins across these species. Of these proteins,
99 were previously characterized to be involved in DNA repair. Through
orthology, network, and domain analysis, we linked 44 previously uncon-
nected proteins to DNA repair. Our study presents a resource for future
study of the crosstalk and evolutionary conservation of DNA damage repair
across all domains of life.

3.5. Introduction

The stability of the genome is constantly threatened by both exogenous and
endogenous mutagens. These genotoxic stressors can damage the architec-
ture of the DNA, causing single-stranded breaks, double-stranded breaks,
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or chemical modifications to individual bases. These alterations may pre-
vent the successful storage of genetic information and its transmission from
one generation to the next and may potentially affect cellular fitness. To
maintain genome integrity, there is a carefully orchestrated DNA damage
response that functions to identify and subsequently repair damaged DNA
[41]. Base excision repair (BER) and ribonucleotide excision repair (RER)
represent two pathways that are responsible for resolving some of the most
frequently encountered DNA lesions.
Base excision repair (BER) is primarily responsible for removing nonhelix-
distorting lesions [56]. Some of the most prevalent lesions removed via the
BER pathway are alkylated or oxidized bases and uracil misincorporation.
The most frequent oxidative base lesion is 7,8-dihydro-8-oxoguanine (8-
oxoG/8-oxoGuanine), which has been reported to occur up to 1,500 times
per mammalian cell per day [122]. There is strong conservation of the BER
pathway in archaea, protozoa, fungi, metazoa, and plantae [123–127].
In higher eukaryotes, the repair process generally begins with damage
recognition by a DNA glycosylase, which then removes the damaged base
and creates an apurinic/apyrimidinic site (AP site/abasic site). Abasic sites
can be formed not only as BER intermediates but also endogenously. It
has been estimated that there are up to 10,000 abasic sites arising per
day in a single mammalian cell [128]. When abasic sites are generated,
a 5‘-cleavage event is typically triggered by an AP endonuclease, result-
ing in a 3‘-hydroxyl and 5‘-deoxyribose phosphate. In single nucleotide
repair, the 5‘-deoxyribose is removed primarily by DNA polymerase β and
in some cases by DNA polymerase γ, and the resulting gap is then filled.
If two or more nucleotides are repaired, the 3‘-hydroxyl is used for strand
displacement synthesis via either DNA polymerase β or δ and ε, usually
in conjunction with PCNA [129]. The previously cleaved 5‘-deoxyribose
strand, often referred to as a 5‘-flap, is removed by FEN1. In both in-
stances, the nick is sealed with ligase I or III [126]. Even more common
than the generation of abasic sites is ribonucleotide misincorporation into
double-stranded DNA during DNA replication. This occurs at a rate of
one million sites per genome in mammalian cells, rendering it the most
common endogenous DNA damage [130]. DNA polymerases have a highly
conserved amino acid pocket that enforces sugar selectivity, referred to as
a steric gate. While this steric gate helps polymerases prevent the entry of
ribonucleotide triphosphates (rNTPs), there is still a large rate of ribonucle-
oside incorporation into DNA due to the imbalance of the nucleotide pools.
For example, in S. cerevisiae, there are 30- to 200-fold more ribonucleotides
than nucleotides [131]. The S. cerevisiae replicative polymerases α, δ and
ε add approximately 1,900, 2,200, and 9,600 ribonucleotides per round of
replication, respectively [132]. Across different organisms, there is a vari-
able bias within the type of ribonucleotides incorporated into DNA. In this
study, we selected rU, which in S. cerevisiae and S. pombe has comparable
incorporation rates to rC and rA in nuclear genomes [133] but has thus far
been studied less. When misincorporated ribonucleoside monophosphate
(rNMP), also known as DNA-incorporated rNTPs, are integrated into DNA,
they are most frequently repaired by RNase H2-mediated ribonucleotide
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excision repair (RER). RNase H2 recognizes the rNMP and incises at the
5‘-side of the ribonucleoside, leaving a 3‘-hydroxyl and 5‘-phosphate. As
in BER, the 3‘-hydroxyl is used for strand displacement DNA synthesis via
either DNA polymerase δ supported by PCNA or by DNA polymerase ε. The
flap that is formed, beginning with the 5‘-phosphate, is removed by FEN1
or EXO1, after which the repaired strand is ligated [134, 135].
Previously, we used a phylointeractomic screen to study the evolution of
proteins binding telomeres across the vertebrate lineage [136]. Here, we
revisit this concept, investigating the phylogenetic diversity in the recogni-
tion and repair of three well-established DNA lesions, primarily repaired
by BER or RER: 1) 8-oxoguanine, 2) an abasic site, and 3) incorporated
ribonucleotide in DNA. Previous literature has highlighted strong conser-
vation among fundamental proteins in both of these pathways [54]. How-
ever, only by studying these pathways across the tree of life can the conser-
vation and divergence of these different repair machinery be elucidated.
Including organisms across all three domains of life, this study recapitu-
lates previous findings and reveals new candidate proteins with the poten-
tial to be involved in DNA damage repair. We provide a large resource
dataset that can be used to propel new discoveries within these specific
DNA repair pathways and model organisms.
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Figure 3.2.: Overview of screen for proteins interacting with DNA damage marks.
A) Phylogenetic tree and overview of the eleven species included in this study. B)
Experimental setup of the interactomics screen. Pull downs were performed for a
control, and for an 8-oxoG, abasic, and RNA base lesion. Pull downs of the respective
DNA damage lesion were compared to the common control to calculate enriched
interaction partners passing a fold change threshold > 2 with Welch t-test p-value <
0.05 (dashed gray line).

3.6. Results and discussion

3.6.1. Wide-scale identification of proteins interacting
with DNA damage marks

In this study, we selected 11 species from a broad phylogenetic range
encompassing all three domains of life: Escherichia coli and Bacillus sub-
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tilis (bacteria); Halobacterium salinarum (archaea); Trypanosoma brucei
and Tetrahymena thermophila (eukaryota, protists); Schizosaccharomyces
pombe and Saccharomyces cerevisiae (eukaryota, fungi); Caenorhabditis el-
egans and Homo sapiens (eukaryota, metazoa); Zea mays and Arabidopsis
thaliana (eukaryota, plantae) (Figure 3.2A). We used oligonucleotides that
were 79 bases long with three different site-specific synthesized DNA al-
terations, to which a biotinylated counterstrand was annealed (Table B.1).
These double-stranded nucleic acid baits were immobilized on paramag-
netic streptavidin beads and then incubated with protein lysates from the
different species. Bound proteins were eluted from the beads and pre-
pared for mass spectrometry measurements on a high-resolution orbitrap
platform (Figure 3.2B). We quantified between 1,357 and 3,615 protein
groups per species (Figure B.1A). The replicates of each single experi-
ment showed good technical reproducibility covering similar range of LFQ
protein intensities (Figure B.1B). Each of the three DNA lesions, 8-oxoG,
abasic, and RNA, was compared to a common nonmodified oligonucleotide
with four replicates per condition to allow the calculation of an average
enrichment value (fold change) and a p-value for the reproducibility of
the enrichment (Welch t-test) (Figure 3.2). Those proteins that had a log2
fold change > 2 and a p-value < 0.05 were considered enriched. Overall,
we enriched 337 proteins across all lesions and species.

Table 3.1.: Overview of enriched interactors of each DNA damage lesion, per
species (fold change > 2, Welch t-test p-value < 0.05). *Indicates orthology to known
DNA damage repair factor, bold indicates previously known role in DNA damage repair,
italics indicates no OrthoMCL orthology with the other 10 species included in the study.
Species 8-oxoG abasic RNA base
E. coli mutY, phrB fadJ, nfo, phrB,

polA
nfo, polA

B. subtilis exoA, mutY, nfo,
ydaT, yhaZ, yisX,
yxlJ

dinG*, disA,
exoA, hupA,
mutM, nfo,
parC, parE,
priA, topB*,
ydaT, ydeI, yfjM,
yhaZ, yqxK, yxlJ

dinG*, exoA,
mutM, nfo,
topB*, ydcG,
ydeI, yfjM, yhaZ,
yisX, yusI, yxlJ

H. salinarum cydB, VNG_2525H ogg,
VNG_2498H

ogg

T. brucei GLE2,
Tb927.11.14995,
Tb927.7.1290,
Tb927.8.4240,
Tb927.8.5510

DRBD9, GLE2,
PPL2,
Tb927.10.6550,
Tb927.3.5150,
Tb927.8.5510,
TOP2

DRBD9, NST4,
SET30,
Tb927.2.6100,
Tb927.6.1580,
Tb927.8.5510
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Species 8-oxoG abasic RNA base
T.
thermophila

PHR2*,
TTHERM_000530789,
TTHERM_00145210,
TTHERM_00147470,
TTHERM_00361370,
TTHERM_00463150,
TTHERM_00614680,
TTHERM_00852850

APN2*, PARP4,
PARP6, PCP1,
PCP2, PHR2*

PARP6, PCP1,
TTHERM_00013250

S. pombe myh1 sac11,
SPAC3H8.08c,
top2

alp5, hmo1,
hpz1, kin1,
mca1, mlo3,
moc3, nop12,
rfc1, rfc2, rfc3,
rfc4, rfc5,
SPAC3H8.08c,
SPCC126.11c

S. cerevisiae APN1, ASG1,
MYO4, NUT1,
PHR1, POL5, RNQ1

APN1, ASG1,
CMR1, INO80,
MAK5, MYO4,
PDR1, PHR1,
POL5, RFC1,
RFC2, RFC3,
RFC4, RFC5,
RSC1, RSC58,
RSC6, SNF2,
SWI6, TOP2

APL4, APN1,
ASG1, CMR1,
HAP1, INO80,
MBP1,
MGM101,
MYO4, OAF3,
PDR1, POL5,
RFC1, RFC2,
RFC3, RFC4,
RFC5, RSC1,
RSC30, RSC58,
RSC6, RSC9,
SFH1, SNF2,
STH1, SWI6,
TOP2, YPL245W

C. elegans col-143, exo-3,
hmg-5

apn-1, col-119,
col-140, col-143,
dpy-17, exo-3,
F07A5.2,
F07H5.8, his-74,
K07C5.3, obr-1,
parp-2, perm-2,
phat-1, phat-2,
T01E8.8,
Y14H12B.2,
Y37D8A.19

C27D8.2, exo-3,
F07A5.2,
hmg-12,
T01E8.8
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Species 8-oxoG abasic RNA base
H. sapiens
(HeLa)

FANCI, FERMT2,
KPNA6, MYL12A,
NACC1, PPWD1,
RTRAF

APTX, ATP5MG,
BEND3, BLM,
BOP1, COQ6,
DNAJC13,
EXOSC3,
GATAD2A,
HNRNPF,
HNRNPH2,
HPF1, ISG20L2,
LIG3, MRTO4,
MYL12A,
NAP1L1, NIP7,
NOP53, PARP1,
POLB, PPIG,
RIOX1, RPL21,
RPLP1, RPS26,
S100A8,
UBE2N, XRCC1

AHCTF1,
CENPV, CHD2,
FXR1, KAT6A,
MECP2, MPG,
PCGF1, SAP130,
ZMYND11,
ZNF512B

H. sapiens
(HEK293)

MAX, MUTYH,
NTHL1, SEPTIN11

APTX, CMSS1,
DDB1, DDB2,
DNAJC13, LIG3,
NOC3L, PARP2,
PNKP, POLB,
WRN, XPC,
XRCC1

AHCTF1,
APOBEC3C,
BCOR, BCORL1,
BRPF1, CENPV,
CHD1, CHD2,
CTCF, GLYR1,
KAT6A, KRI1,
KRR1, MPG,
MSANTD7,
NIP7, NOC3L,
NSD2, NUP205,
PCGF1, PITX2,
RNF2, SUB1,
TRIP12,
ZNF512B
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Species 8-oxoG abasic RNA base
Z. mays B4FTT9*, P06678 A0A1D6F6W7*,

A0A1D6JZF1*,
A0A1D6K922,
A0A1D6LV91,
A0A1D6NSE6,
A0A1D6P5Y9,
A0A804P6S3,
B4FDA0,
B4FER3*,
B4FJC2,
B4FQT5,
B4FRR3,
B4FWP8,
B4FX14 B6SNB5,
, B6U4F1,
K7UTP1,
K7VBU4*

A0A1D6F4B6,
A0A1D6GRJ8,
A0A1D6HK01,
A0A1D6HW59,
A0A1D6LV91,
A0A1D6LVY7,
A0A1D6MYU1,
A0A1D6N2N7,
A0A1D6NSE6,
A0A1D6QEP6,
A0A804MH07,
A0A804MT25,
A0A804NRM4,
A0A804R2N8,
B4FDA0,
B4FDW2,
B4FRR3,
B4FX14,
B4G1M3,
B4G1W8,
B6SNB5,
B6UA70,
C0P7N5,
C0P9C9,
C4J4W6,
C4J9R0,
C4JC33,
K7UTP1,
Q6R9L4

A. thaliana ARP, At1g09150,
At4g32105,
At5g16990, CRYD,
PHR1, TRE1

At1g06260,
At1g07080,
CRYD, MOC1,
PHR1

ARP, HON5,
MOC1, TRE1

3.6.2. Functional enrichment and network analysis
reveal novel insights into the enriched interactors

We classified the 337 enriched proteins as either ‘DNA repair’ or ‘non-DNA
repair’ using the Gene Ontology term (GO:0006281) (Figure 3.3A). Of
the 337 proteins, 99 were related to DNA repair, and 13 proteins were
orthologs of DNA repair proteins (Figure 3.3A, Table 3.1, proteins with
asterisks). Thus, our experimental conditions allowed for the identifica-
tion of both known direct and indirect binders to the DNA damage lesions.
Next, we used OrthoMCL to establish protein orthologies between species
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[137]. The orthology group predictions are based on sequence similar-
ity (reciprocal BLAST), normalization of interspecies differences, followed
by Markov clustering. In total, the OrthoMCL database contains 70,388
ortholog groups across more than 55 species [138]. Proteins detected
in our DNA damage interactome screen across eleven species belonged
to 10,329 of these groups. We identified 82 proteins that possessed no
OrthoMCL orthology with the other 10 species included within the study
(Table 3.1, italicized protein names), four of which were repair proteins
(Figure 3.3A). This suggests that in addition to finding conserved and
previously established DNA repair factors, we also enriched for species
specific DNA repair proteins.
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Figure 3.3.: Interactors of the DNA damage lesions per species. A) Number of
proteins enriched at each lesion in each species highlighted for Gene Ontology
annotation “DNA repair” (GO:0006281) (blue) and presence of orthologs in OrthoMCL
(yellow). B) KEGG term overrepresentation of enriched proteins at each lesion across
species. Conditions with no enriched KEGG terms are not shown, or presented in gray.
‘Gene ratio’ refers to genes in the dataset (enriched proteins at lesion) over genes in the
background (whole genome).

To determine which functionalities were overrepresented, in addition to
general ‘DNA repair’, within the interactors of 8-oxoG, abasic, and RNA
lesions, we utilized both the Kyoto Encyclopedia for Genes and Genomes
(KEGG) and GO [117, 139] (Table B.5). We found an overrepresentation
of the KEGG term ‘base excision repair’ for all lesions. There was additional
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3. DNA damage repair proteins across the tree of life

enrichment of ‘nucleotide excision repair’, ‘mismatch repair’, and ‘DNA
replication’ (Figure 3.3B). Further interrogation of the enriched interactors
of 8-oxoG showed enrichment of the GO biological processes ‘Base-excision
repair’, ‘Base-excision repair ap site formation’, and ‘Photoreactive repair’
(Table B.5, Figure B.2). Within the interactors of the abasic lesion, there
was enrichment of ‘DNA repair’ annotated proteins in multiple species,
and there were seven more terms belonging to the parent term of ‘DNA
repair’. Four DNA repair related GO terms (‘UV-damage excision repair’,
‘double-strand break repair’, ‘DNA repair’, and ‘base-excision repair’) were
overrepresented among the interactors of the RNA base lesion.
To investigate the context of our enriched proteins at each of the lesions,
we created lesion- and species-specific networks using previously estab-
lished interactions and proteins included in the STRING database [140].
We found a total of 339 interactions across our enriched proteins and
species (Figure B.3B). Of these enriched protein sets (3 lesions, 12 condi-
tions, 36 total), ~61% had previously reported interactions among them.
The largest number of known interactions (90) was found for the RNA
lesion in S. cerevisiae. The 8-oxoG, abasic, and RNA enriched proteins
exhibited 7, 187, and 151 previously established interactions, respectively.
This indicates relative specificity of the 8-oxoG recognition and a more
complex response resolving abasic and RNA lesions.

3.6.3. Interactors of 8-oxoG, abasic, and RNA lesions
across phylogenetic branches

To establish the overlap of enriched orthologs across the included species
at the 8-oxoG lesion, abasic lesion, and RNA base, we used orthology
group predictions by OrthoMCL (Table B.4), only counting proteins that
surpassed our enrichment threshold (Figure 3.4, Table B.10). Within the
interactors of the 8-oxoG lesion, we identified protein families that were
conserved in up to four species (Figure 3.4A-B, Figure B.4). The most
conserved protein families were photolyases, MUTYH, and ExoIII-like
and EndoIV-like AP endonucleases. Photolyases are critical repair
proteins in bacteria, archaea, plantae, fungi, and animals. Despite their
importance, they lost all DNA repair functionality in placental mammals
[141]. The five enriched photolyases were grouped into two orthology
groups (hsap_CRY1/OG6_100453 and atha_PHR1/OG6_104135). The
divergence in these orthology groups indicates a specialization of the
photolyases between species. It was unanticipated that photolyases
would be enriched at 8-oxoG, as typically these proteins recognize and
resolve pyrimidine dimers. However, with the enrichment traversing
five different species, there is a strong argument to suggest that a base
conversion or lesion intermediate interacts with these photolyases, and
is resolved similarly across the tree of life. Other conserved interactors
enriched at the 8-oxoG lesions were four members of the hsap_MUTYH
group (OG6_102506). This enrichment was specific to 8-oxoG in B.
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Figure 3.4.: Interactors of the different lesions across phylogenetic branches. A)
Barplot of the total number of enriched proteins at 8-oxoG across species. B) UpSet plot
showing overlap of enriched proteins at the 8-oxoG lesion for the different species based
on assigned orthology groups via OrthoMCL. C) Barplot of the total number of enriched
proteins at abasic lesions per species. D) UpSet plot showing overlap of enriched
proteins at the abasic lesion for the different species based on assigned orthology groups
via OrthoMCL. E) Bar plots of the total number of enriched proteins at the uracil RNA
base per species. F) UpSet plot showing overlap of enriched proteins at the RNA base
lesion for the different species based on assigned orthology groups via OrthoMCL.
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subtilis, S. pombe, and H. sapiens, whereas mutY in E. coli was also bound
to the abasic lesion. Although this is a well-characterized base excision
repair glycosylase, it has thus far been shown primarily to bind 8-oxoG:A
as opposed to the 8-oxoG:C used here. It is possible that the MUTYH
orthologs generally bind to 8-oxoG due to their strong affinity, or they
bind to a shared intermediate state of 8-oxoG:A and 8-oxoG:C [142].

At the abasic lesion, we found a higher degree of overlapping proteins
with seven instances of three or more orthologs enriched in two or
more species (hsap_DNAJC13, hsap_TOP2B, scer_PHR1, hsap_LIG3,
scer_APN1, hsap_APTX1, and hsap_APEX1) (Figure 3.4C-D, Figure B.5,
Table B.10). Two anticipated groups were the hsap_APEX1 (ExoIII-like)
and scer_APN1 (EndoIV-like) AP endonucleases (OG6_101139 and
OG6_104339, respectively), which are critical to the removal of abasic
sites. Members of hsap_LIG3 and hsap_APTX1 are also critical to the
BER pathway [56]. While LIG3 has been well studied in H. sapiens, the
enriched ortholog in C. elegans has not been studied in the context of
BER (K07C5.3, UniProt ID: Q19138). It is still unclear which ligase is
involved in BER in C. elegans [143]. There were three homologs enriched
in the hsap_APTX1 group, in HeLa and HEK cell lines and in Z. mays.
APTX removes AMP from BER intermediates to form 3‘-OH utilized by
repair polymerases. A similar enrichment pattern was present in the
hsap_DNAJC13 group. DNAJC13 is a heat shock protein that is critical to
the heat stress response and has been associated with Parkinson’s disease
[144, 145]. DNAJC13 has not been studied in the context of BER.

Among the enriched proteins interacting with rU across species, members
of the RFC complex were enriched in both S. cerevisiae and S. pombe
(Table B.10). RFC is critical to the loading of PCNA, which is a
well-established interactor of RNaseH2, an initiator of RER. Additionally,
there was significant enrichment of the hsap_APEX group in B. subtilis, T.
brucei, C. elegans, and A. thaliana. Additionally, proteins of the scer_APN
group in E. coli, B. subtilis, and S. cerevisiae were enriched at rU. While
the striking amount of enrichment of AP endonuclease was expected
at the abasic and 8-oxoG lesions, this was unanticipated for the RNA
lesion. There was also a noticeable enrichment of chromatin remodelers
(Figure 3.4E-F, Figure B.6). In both, HeLa and HEK293 cells, PCGF1 and
CHD1 were enriched. PCGF1 is part of the polycomb repressive complex
1, which is critical to epigenetic alterations repressing gene expression.
Additionally, in HEK293 cells, two interactors of the polycomb repressive
complex were enriched, BCOR and BCORL1 [146]. CHD1 is critical in the
opening of chromatin around DNA damage lesions [147]. Within HEK293
cells, CHD2 and CTCF, which also mediate chromatin architecture in
the presence of damage, were enriched [148, 149]. In S. cerevisiae, we
observed enrichment of chromatin remodelers Ino80, Snf2, Swi6, and
seven members of the Remodels the Structure of Chromatin (RSC) family
(Sfh1, Sth1, Rsc1/6/9/30/58). All of the described chromatin remodelers
have not yet been characterized in the misincorporated uracil from DNA
but have been directly linked to the promotion of BER [150].
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3.6.4. DNA damage interactors conserved across lesions

In this study, we observed potential DNA repair crosstalk through pref-
erential binding of the same proteins at multiple lesions (Figure 4). We
included two DNA damage lesions that are canonical substrates for base ex-
cision repair, 8-oxoG and abasic lesions, as well as a uracil ribonucleotide
incorporated into DNA. As 8-oxoG is a common trigger for BER, and aba-
sic lesions are a common BER intermediate, we anticipated finding joint
interactors between these two lesions. Of the 55 8-oxoG interactors, 19
overlapped with the abasic interactors (Table B.11). Within this overlap,
we unexpectedly found four instances of photolyases (Figure 3.5A-C, Ta-
ble B.11). Additionally, in B. subtilis, ydaT was shared between 8-oxoG
and abasic lesions (Figure 3.5D). This is an uncharacterized stress response
protein that increases resistance to ethanol and low temperatures [151].
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Figure 3.5.: Conserved interaction partners across the lesions. Venn diagrams
showing the overlapping enriched proteins at the RNA base, abasic site, and 8-oxoG
lesions for A) A. thaliana, B) S. cerevisiae, C) E. coli and D) B. subtilis. Overlap in other
species is detailed in Table B.2.
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There were 47 instances in which a protein was enriched both at the abasic
site and rU. Such a large degree of overlap between the RNA base and
abasic lesion was not initially expected. However, there has been evidence
that abasic sites can occur within RNA, and are primarily resolved by APE1
and MPG [152]. In HEK and HeLa cells as well as B. subtilis, we en-
riched MPG and its ortholog yxlJ. Additionally, APE1 and APN1 orthologs
were enriched in 6 of the 11 species. Thus, the removal of abasic sites
from RNA may share mechanisms with uracil and abasic sites removal
when incorporated into DNA. Our data also suggest that in S. cerevisiae
the chromatin remodeling mechanisms that are needed to repair abasic
sites are shared for the repair of rU (Ino80, Rsc1, Rsc6, Rsc58, Swi6 and
Snf2) (Figure 3.5B). Chromatin state is a critical factor for the removal of
both ribonucleotides and BER intermediates [135, 147, 150]. Beyond the
overlaps between the enriched protein sets of two lesions, we also observed
a notable overlap between all three lesions. In B. subtilis, T. brucei, S.
cerevisiae, and C. elegans, AP endonuclease orthologs are enriched at all
three lesions. In B. subtilis, we observed two uncharacterized glycosylases,
yhaZ and yxlJ, at all three lesions (Figure 3.5D). Although ASG-1, POL5,
and MYO4 are not characterized as DNA repair proteins, they were also
found in all three lesions in S. cerevisiae (Figure 3.5B). Taken together,
our screen reiterates a broader profile for DNA repair factors in the repair
of 8-oxoG, abasic, and RNA lesions and a potential crosstalk between the
different repair pathways (Figure 3.5, Table B.11).

3.6.5. Binding patterns by DNA repair factors are
evolutionarily conserved across all domains of life

As the maintenance of genome stability is critical in each organism, many
DNA damage factors are conserved in both sequence and functionality
across species [54]. Across species and lesions, we enriched for classical
BER-related proteins, including orthologs of the glycosylases MUTYH and
MPG, deadenylase APTX, LIG3 and XRCC1, PCNA clamp loader RFC1-4,
POLB, and the AP endonucleases APEX1 and Apn1 (Figure 3.6A). The
APEX1/APE1 and Apn1 orthology groups represent the ExoIII-like AP ex-
onucleases and EndoIV-like AP endonucleases, respectively. These groups
of conserved AP endonucleases have been studied at length due to their
evolutionary history [56, 153, 154]. Using a maximum likelihood phy-
logenetic tree including all AP endonucleases across the 11 species we
demonstrate the potential enrichment differences between the two groups
(Figure B.7). For both groups of endonucleases, we found a twofold or
greater binding to 8-oxoG and abasic lesions, in eight of the eleven species.
Additionally, more unexpectedly spanning both groups was the enrich-
ment of AP endonucleases at the RNA base in six of the eleven species.
While AP endonucleases have been well-characterized within BER, thus
far they have been shown to play a more minor role in RER [135]. It
is possible that both types of AP endonucleases play a larger role than
originally anticipated.
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Figure 3.6.: Conservation of DNA repair orthologs across the tree of life. A)
Heatmap representing enrichment levels of OrthoMCL orthology groups with GO
annotation ‘DNA repair’ (GO:0006281) with two or more enriched proteins across
eleven species and 8-oxoG (black), abasic (white) and RNA base (gray) lesions. The
color scale represents the fold change in comparison to control samples . Abbreviations:
hsap, Homo sapiens; scer, S. cerevisiae; cele, C. elegans; atha, A. thaliana; spom, S. pombe.
B) Neighbor-joining phylogenetic tree of the photolyase gene family including
information on detection and enrichment (fold change > 2, Welch t-test p-value < 0.05)
for the different lesions. White boxes represent proteins that were not detected in the
respective experiment. The scale bar in the plots indicates the number of amino acid
substitutions per site. C) Neighbor-joining phylogenetic tree of the MUTY glycosylase
gene family. Same as B.
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Two additional protein families that had highly conserved enrichment
patterns were the photolyases (scer_PHR1 and atha_PHR1) and
MUTYH-related glycosylases (hsap_MUTYH). Despite both being DNA
repair proteins, the binding of these proteins was unexpected in this
particular context. Photolyases are known to have specific repair activity
for cyclobutane pyrimidine dimers and 6-4 pyrimidine-pyrimidone
photoproducts caused by UV light [155]. However, the S. cerevisiae PHR1
orthologs in E. coli, T. thermophila, and S. cerevisiae were significantly
enriched at both the 8-oxoG and abasic lesions (Figure 3.6B). Both
orthologs in the atha_PHR1 group were also significantly enriched at the
8-oxoG lesion. There was enrichment at the abasic lesion in A. thaliana,
and for Z. mays, it was 1.9-fold, just below our threshold. As per the
orthology groups, the maximum likelihood phylogenetic tree showed a
clear divergence of the plant photolyases, despite their similar in vitro
binding characteristics. We did not observe enrichment of any orthologs
of PHR1 (atha_PHR1 and scer_PHR1) at the RNA lesion, which extended
across all species regardless of evolutionary relation (Figure 3.6B).

MutY-related glycosylases are well characterized in the removal of
8-oxoG:A, but there are few studies showing their binding to 8-oxoG:C,
which was used in this study. In an in vitro setting when the diffusion rate
was measured, MUTYH orthologs would linger much longer at 8-oxoG:A
but also have moderate stalling at 8-oxoG:C [156]. MUTYH orthologs
were found to bind specifically to 8-oxoG in E. coli, B. subtilis, S. pombe,
and H. sapiens (Figure 3.6C). There were no instances of detection of a
MUTYH ortholog without enrichment at 8-oxoG, indicating highly specific
binding which was independent of the evolutionary relation of the protein
sequences. MUTYH has recently been suggested to facilitate the overall
DNA damage response as a scaffolding protein [157]. While this function
has been primarily explored within vertebrates, our findings indicate that
its multiple functionalities might have emerged far earlier in evolution
than originally estimated (Figure 3.6C).

3.6.6. Identification of uncharacterized DNA repair
proteins across multiple species

In addition to the enriched known DNA repair proteins, one-third of the
enriched proteins were previously not associated with the ‘DNA repair’
GO term (GO:0006281). We found enrichment of 35, 85 and 105 non-
DNA repair classified proteins at the 8-oxoG lesion, abasic lesion, and
RNA base, respectively. To investigate these proteins further, we created
species-specific networks with all three DNA damage lesions using the
STRING database (Figure B.8, Table B.6, Table B.7, Table B.8, Table B.9).
Within these networks we marked proteins categorized as repair (triangle)
and non-DNA repair proteins (circle), and indicated at which lesion they
were enriched. Here, we highlighted the S. cerevisiae, C. elegans, and T.
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thermophila networks (Figure 3.7A). Within S. cerevisiae, all enriched pro-
teins contained in STRING interacted and formed one large network (Fig-
ure 3.7A). Included are five chromatin remodelers (RSC6, RSC9, RSC58,
SFH1, and SWI6) that, although not characterized as DNA repair proteins,
had a prominent number of interactions with both repair and non-DNA
repair proteins. Within the RSC family, RSC1, RSC30, and STH1 have
been classified as DNA repair proteins and are specifically linked to base
excision repair [150, 158]. This suggests that the other RSC proteins
likely play a role in chromatin remodeling surrounding DNA repair. Ad-
ditionally, the non-DNA repair protein CMR1 had 11 interaction partners,
five of which were ‘DNA repair’ proteins. Notably, although not included
in the ‘DNA repair’ GO term, CMR1 has been shown to be needed to
resolve genotoxic stress and has a preference binding UV lesions in vitro
[159, 160]. For the C. elegans interactors, we identified three different
subnetworks. Within one subnetwork, the ‘DNA repair’ proteins parp-2,
exo-3, and apn-1 interacted with 3, 4, and 1 non-DNA repair proteins,
respectively. All three proteins were mutually linked to hmg-5. Hmg-5 was
studied in a C. elegans Parkinson’s disease model, and together with nth-1,
BER glycosylase, and other associated proteins reduce mitochondrial stress
and oxidative damage [161]. Within the T. thermophila network, there
were mutual interactions between APN2, identified as a DNA repair pro-
tein based on its orthology to the S. cerevisiae AP endonuclease, and four
different PARP-related proteins, as well as TTHERM_00463150, which has
not been characterized. This indicates that APN2 might orchestrate the
recruitment of PARP-related proteins, or that PARP-related proteins are
needed for APN2 to access DNA.

We evaluated the Pfam domains found among the enriched non-DNA re-
pair proteins to elucidate more of their potential functionalities [162]. The
two most frequently identified domains were DNA-binding domains: 1)
‘protein of unknown function, DUF573’ (corresponding to Interpro protein
family ‘GLABROUS1 enhancer-binding protein family’), which is often part
of proteins associated with plant stress response, and 2) ‘Fungal Zn(2)-
Cys(6)’ often involved in growth and metabolism [163, 164]. We assigned
each Pfam domain into one of 15 categories to summarize its primary
function (Table B.12). At all three lesions, the majority of domains were
related to DNA repair and DNA binding (Figure 3.7B). Thus, despite the
lack of categorization as DNA repair genes under the GO term ‘DNA repair’,
there was a clear link to DNA repair functionality within these proteins. For
example, we identified the ‘Poly(ADP-ribose) polymerase’ and ‘DNA-Ligase
Zn-finger region’ in four different proteins. These included hpz1 in S.
pombe and Tb927.10.6550 in T. brucei, which both belong to the same
orthology group. The other two proteins are PARP-related proteins in
T. thermophila, PCP1 and PCP2. We also detected the ‘PARP-associated
WGR domain’ and a ‘PARP catalytic domain’ in PARP4 and PARP6 in T.
thermophila.

Furthermore, we examined the conservation of enrichment of non-DNA re-
pair proteins across species, to further support a role in DNA damage repair
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Figure 3.7.: Network, domain, and phylogenetic analyses implicate novel proteins
in DNA repair. A) Networks of enriched proteins across lesions for S. cerevisiae, C.
elegans, and T. thermophila. Interactions as established in the STRING database. B)
Classification of non-DNA repair proteins based on Pfam domain annotation. The total
number of proteins classified at 8-oxoG was 29, at abasic 75, and at the RNA base 74.
C) Heatmap representing enrichment levels of OrthoMCL orthology groups without GO
annotation ‘DNA repair’ (GO:0006281) with two or more enriched proteins across all
eleven species and 8-oxoG (black), abasic (white) and RNA base (gray) lesions. The
color scale represents the fold change in comparison to control samples. Abbreviations:
hsap, Homo sapiens; cele, C. elegans; spom, S. pombe.
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and recognition of lesions. We found at least five instances in which non-
DNA repair genes were enriched in multiple species (Figure 3.7C). Intrigu-
ingly, some of these proteins were also identified within our domain analy-
sis. For example, both enriched proteins in the spom_hpz2 orthology group
in T. brucei and S. pombe contained a PARP-related domain. Furthermore,
there was specific enrichment of the T. brucei ortholog (Tb927.10.6550) at
the abasic lesion and the S. pombe ortholog (hpz1) at the RNA base. Addi-
tionally, all three proteins enriched within the hsap_DNAJC13 orthology
group, have Pfam ‘DnaJ domains’. These proteins preferentially bound
to the abasic lesion in both HEK293 and HeLa cell lines as well as the
two paralogs in Z. mays (UniProt: A0A1D6K922 and A0A1D6P5Y9). The
conservation of enrichment across various species in both cases suggests a
very likely role in DNA repair.

Through the use of network, domain, and phylogenetics analysis, we have
identified proteins that, despite not being classified as DNA repair proteins,
likely have a role in the DNA damage response.

3.6.7. Conclusions and limitations of study

Performing a mass spectrometry based phylointeractomics screen across
11 species, we compared the binding capabilities of three well-established
DNA damage lesions, an 8-oxoG modification, abasic site, and ribonu-
cleotide base incorporation. We enriched 337 proteins across all lesions
and selected species (Table 3.1). Of these 337 proteins, 99 were related
to DNA repair, which in a proteome-wide generic screen with thousands
of possible proteins strongly indicates the specificity of the experiment.
Supporting the specificity even further, DNA repair-related KEGG and GO
terms were overrepresented in the enriched group of proteins. Through
phylogenetic analysis, we established that the enrichment of particular
DNA damage proteins extends through many species. In some cases, we
do not identify or enrich all expected interaction partners, which can be
caused by a variety of reasons. For instance, preparation from a large range
of different tissues and cellular material can lead to variation in the pool
of proteins available for measurement. The lack of in vivo conditions, such
as pH, salt concentrations, temperature, post-translational modifications
and many other cellular conditions, affects DNA-protein interactions. As
we did not perform cross-linking mass spectrometry, it is possible that
some more transient interactions were not maintained. Furthermore, it
is important to highlight the likely creation of repair intermediates in the
in vitro pull down assays. The ability to repair 8-oxoG, abasic sites, and
uracil residues in vitro has been previously demonstrated with human cell
extract [165, 166]. However, we did find that unrepaired lesions existed
in our experiment, for example, 11 out of the 24 canonical DNA repair-
related proteins were uniquely enriched at the 8-oxoG lesion, suggesting
that unrepaired lesions persisted.
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In addition to DNA repair genes, we identified two other intriguing groups
of interactors in our screen. Namely, we detected an enrichment of 82
species-specific proteins as well as proteins that have not been implicated
previously in DNA repair. This group of proteins presents an avenue to
study potentially unique aspects of repair or damage response in their
corresponding model organism. To elucidate functionality and connection
to DNA damage repair for originally non-DNA repair proteins, we utilized
network, domain, and phylogenetics analysis. With this we indicated an
additional 44 proteins to potentially play a role in the DNA damage re-
sponse.
Our study systematically evaluates in vitro binding partners in both BER
lesions and an RNA lesion in eleven model species across the tree of life.
We recapitulate previous findings and nominate putative unknown candi-
dates to be involved in the resolution of these lesions. Through the use
of network, domain, and phylogenetics analysis, we identified a subset
of non-DNA repair classified proteins to likely be involved in DNA repair.
Overall, this study opens avenues for further investigation of newly iden-
tified candidates to explore key factors in the crosstalk between BER and
RER DNA damage pathways.
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3.8. STAR Methods

3.8.1. Resource availability

Lead contact
Further information and requests for resources and reagents should
be directed to and will be fulfilled by the lead contact Falk Butter
(f.butter@imb.de).
Materials availability
This study did not generate new unique reagents.
Data and Code Availability

• The mass spectrometry proteomics data have been deposited to the
ProteomeXchange Consortium via the PRIDE partner repository with
the dataset identifier PXD036040.

• All original code has been deposited into the GitHub repository used
for the proteomics and STRING database analysis, which is available
at: (https://github.com/mariodejung/DNAdamage_phylointeractome
and https://github.com/AFraderaSola/DNADamage_Phylointeracome).

• Any additional information required to reanalyze the data reported
in this paper is available from the lead contacts upon request.

3.8.2. Experimental model and subject details

All cultivation and growth conditions as relevant for B. subtilis (DSM10),
E. coli (DH5ɑ), H. salinarum (NRC-1), S. cerevisiae (BY4742ɑ), S. pombe
(pp265), T. thermophila (SB210), C. elegans (N2), T. brucei (Lister 427), H.
sapiens cell lines (HeLa and HEK293), A. thaliana and Z. mays are included
within the ‘Method Details’ section.

3.8.3. Method details

3.8.3.1. Cultivation and extract preparation

Bacteria: B. subtilis (DSM10) and E. coli (DH5ɑ) were grown at 37 °C in LB
medium (IMB media lab) and harvested at OD600=0.7. Cell pellets were
resuspended in PBB buffer (150 mM NaCl, 50 mM Tris/HCl pH 8.0, 0.5%
Igepal CA-630, 10 mM MgCl2, Pierce protease inhibitor EDTA free) and
sonicated on with a sonifier 450 (Branson) 3 times for 45 s (cycle=70%,
output level 2) with 2-minute breaks. The lysate was centrifuged at 4 °C
for 15 min at 20,200 x g). The supernatant was supplemented with 10%
(f.c.) glycerol (Roth), shock-frozen in liquid nitrogen and stored at -80
°C.

61



3. DNA damage repair proteins across the tree of life

Archaea: H. salinarum strain NRC-1 was cultivated in Complex Media (4.3
M NaCl, 81 mM MgSO4 x 7 H2O, 27 mM KCl, 12 mM sodium citrate, 1%
w/v oxoid peptone) at 37 °C and in light for ~52h/2.5 days and harvested
at OD600=0.5. The cells were pelleted at 3,500 x g for 30 min at 4 °C
and washed twice in Basic Salt Solution (4.3 M NaCl, 81 mM MgSO4 x 7
H2O, 27 mM KCl, 12 mM sodium citrate) to remove the medium. After
washing the cells were resuspended in 10 ml Lysis Buffer (2.1M NaCl, 50
mM Tris/HCl pH 7.5, 10 mM MgCl2) and sonicated on ice using a Branson
450 sonifier 6 times for 30 s (cycle=50%, output level 2) with 1 min breaks.
The sonicated lysate was cleared by centrifugation at 3,500 x g for 30 min
at 4 °C and supplemented with 10% (f.c.) glycerol (Sigma) before shock-
freezing in liquid nitrogen and stored at -80 °C.
Yeast: S. cerevisiae (BY4742ɑ) was grown in YP medium containing 20%
glucose (IMB media lab) at 37 °C until OD600=0.5 and harvested by cen-
trifugation at 20,200 x g. S. pombe (pp265) was cultivated in YES media at
32 °C until OD600=1.0 and harvested by centrifugation. For both species,
cells were lysed using 0.5 mm zirconia glass beads (Roth) in lysis buffer
(100 mM NaCl, 50 mM Tris-HCl pH 7.5, 10 mM MgCl2, 0.01% Igepal CA-
630, 1x PMSF) at 4 °C with 3 cycles alternating between 30 s milling and 30
s cooling using a FastPrep-24 system (MP Biomedicals). The supernatant
was transferred to a new tube, shock-frozen in liquid nitrogen and stored
at -80 °C.
T. thermophila: A mid-log SB210 culture of 3x107 cells was grown in 2%
proteose peptone (BD Biosciences), 0.2% yeast extract (BD Biosciences),
12 μM ferric chloride, and 1x Penicillin/Streptomycin/Funizone (Hyclone)
at 30 °C at 100-120 rotations per minute. Cells were pelleted at 1,500 x g
for 3 minutes and washed in 10 mM Tris-HCl pH 7.4. Cells were transferred
to a 1.5 ml centrifuge tube and centrifuged at 1,500 x g for 2 min and the
supernatant was removed. Cells were resuspended in 1.2 ml lysis buffer
(350 mM NaCl, 40 mM Hepes pH 7.5, 1% Triton X-100, 10% glycerol,
freshly added 1 mM DTT, and 1x complete protease inhibitors [Roche])
and approximately 200 μl zirconia glass beads (Roth) were added and
vortexed for 3 minutes at 4 °C. The tube was centrifuged at ≥16,000 x
g at 4 °C for 5 min, and the supernatant was transferred to a new tube.
The sample was centrifuged at ≥16,000 x g at 4 °C for 15 minutes. The
supernatant was transferred to a new tube, shock-frozen in liquid nitrogen
and stored at -80 °C.
C. elegans: Nuclear extraction was performed with N2 gravid adult worms
as in (de Albuquerque et al. 2014). Worms were synchronized and grown
on egg plates until they reached the gravid adult stage. Then, worms
were washed with M9 buffer 3 times, pelleted, and frozen into pellets
in Extraction Buffer (40 mM NaCl, 20 mM MOPS pH 7.5, 90 mM KCl,
2 mM EDTA, 0.5 mM EGTA, 10% glycerol, 2 mM DTT, and 1x complete
protease inhibitors, Roche). Pellets were ground into a fine powder with
a mortar and pestle. The powder was transferred to a precooled glass
douncer (Kimble), and the samples were ruptured with piston B over 30
strokes. The debris was cleared twice at 200 x g for 5 minutes at 4 °C. The
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nuclear pellet was isolated by centrifuging at 2,000 x g for 5 minutes at 4 °C.
This pellet was washed in extraction buffer twice. The nuclear pellet was
resuspended in 200 μL Buffer C+ (420 mM NaCl, 20 mM Hepes/KOH pH
7.9, 2 mM MgCl2, 0.2 mM EDTA, 20% glycerol, and freshly added 0.1%
Igepal CA-630, 0.5 mM DTT, 1x complete protease inhibitors [Roche]).
The lysate was centrifuged at 4 °C for 15 min at 20,200 x g. The super-
natant was supplemented with 10% (f.c.) glycerol (Roth), shock-frozen in
liquid nitrogen and stored at -80 °C.
Plants: Z. mays and A. thaliana (Columbia) were ground, frozen in liquid
nitrogen and transferred to a liquid nitrogen precooled 50 ml steel con-
tainer for cryomilling with an MM400 (Retsch) at 30 Hz for 4 min. Z.
mays powder was resuspended in 35 ml PBB buffer (150 mM NaCl, 50
mM Tris/HCl pH 8.0, 0.5% IGEPAL-CA630, 10 mM MgCl2, Pierce protease
inhibitor EDTA free) and incubated on ice for 10 min. For A. thaliana,
powder was resuspended in 30 ml Buffer A (10 mM Hepes KOH pH 7.9,
1.5 mM MgCl2, 10 mM KCl), incubated on ice for 10 min, and subsequently
dounced with 40 strokes in a glass douncer using pestle B (Kimble). After
centrifugation at 3,640 x g at 4 °C, the pellet was washed with 1x DPBS
(Gibco), centrifuged again and incubated in 4-6 ml Buffer C+ (420 mM
NaCl, 20 mM Hepes/KOH pH 7.9, 2 mM MgCl2, 0.2 mM EDTA, 20% glyc-
erol, and freshly added 0.1% Igepal CA-630, 0.5 mM DTT, 1x complete
protease inhibitors [Roche]) for 1 hour at 4 °C on a rotation wheel. Cell
fragments were removed by centrifugation at 20,200 x g and 4 °C for 60
min. The supernatant was shock-frozen in liquid nitrogen and stored at
-80 °C.
Cultured cells: HeLa and HEK293 cells were grown in DMEM (Gibco) with
10% FBS (Gibco) and PennStrep (Sigma) at 37 °C with 75% relative humid-
ity and 5% CO2 in an incubator (Thermo). Cells were harvested, washed
in 1x DPBS (Gibco), resuspended in buffer A (10 mM Hepes KOH pH 7.9,
1.5 mM MgCl2, 10 mM KCl) and incubated on ice for 10 min. Cells were
centrifuged at 500 x g for 5 min and resuspended in Buffer A+ (10 mM
Hepes KOH pH 7.9, 1.5 mM MgCl2, 10 mM KCl, Roche protease inhibitor
EDTA free, 0.1% Igepal CA-630, 0.5 mM DTT ) and then dounced with 40
strokes in a glass douncer using pestle B (Kimble). Cells were centrifuged
at 2,640 x g for 15 min and the cell pellet was washed with 1x DPBS (Gibco)
prior to incubation of the pellet in buffer C+ (420 mM NaCl, 20 mM
Hepes/KOH pH 7.9, 2 mM MgCl2, 0.2 mM EDTA, 20% glycerol, and freshly
added 0.1% Igepal CA-630, 0.5 mM DTT, 1x complete protease inhibitors
[Roche]) for 1 hour at 4 °C on a rotation wheel. Cell fragments were
removed by centrifugation at 20,200 x g and 4 °C for 60 min. Supernatant
was shock-frozen in liquid nitrogen and stored at -80 °C.

3.8.3.2. DNA pull-down experiments

Chemically synthesized oligonucleotides (Table B.1) were ordered
HPLC-purified from BioSynthesis (Lewisville) and Metabion (Planegg).
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For pull-down 1 nmol of single-stranded DNA lesion (or nondamaged
control) oligonucleotide was annealed with 1 nmol of 5’-biotinylated
counterstrand with annealing buffer (20 mM Tris-HCl pH 8.0, 10 mM
MgCl2, 100 mM KCl) by first heating to 85 °C for 5 min and slowly cooling
to RT. The double-stranded oligonucleotides were immobilized on 250
μg streptavidin Dynabeads C1 (Thermo) and incubated with different
amounts of protein extract ranging from 200-1,000 μg (200 μg: C. elegans,
Z. mays and A. thaliana; 400 μg: HEK293 and HeLa; 500 μg: H. salinarum,
T. thermophila; 800 μg: S. cerevisiae and 1,000 μg: B. subtilis, E. coli, S.
pombe and T. brucei) in 1x PBB buffer (150 mM NaCl, 50 mM Tris-HCl
pH 8.0, 0.5% Igepal CA-630, 5 mM MgCl2 and 1x protease inhibitor
cocktail [Roche]) rotating at 4 °C for 90 min. Protein concentrations
were determined using Protein Assay Dye Reagent (Bio-Rad). All samples
were prepared in quadruplicate. After incubation, unbound proteins were
removed by 3 washes with PBB buffer. The Dynabeads were ultimately
resuspended in 25 μl 1x LDS (Thermo) containing 100 mM DTT (Sigma)
and heated to 70 °C for 10 min.

3.8.3.3. Mass spectrometry sample preparation

LDS supernatant was loaded on a 4-10% NuPage NOVEX PAGE gel
(Thermo) and run for 10 min at 180 V. Samples were processed
as previously described (Scherer et al. 2020). In short, gel pieces
were cut, destained with 50% EtOH/50 mM ammonium bicarbonate
(ABC), dehydrated with acetonitrile (VWR), reduced with 10 mM DTT
(Sigma), alkylated using iodoacetamide (Sigma) and subsequently again
dehydrated with acetonitrile (VWR) and digested with 1 μg of MS-grade
trypsin (Sigma) at 37 °C overnight. The peptides were eluted from
the gel pieces, loaded onto a StageTip [108] and stored at 4 °C until
measurement.

3.8.3.4. Mass spectrometry measurement

Peptides were eluted from the StageTips using 80% acetonitrile/0.1%
formic acid and concentrated prior to loading either on an uHPLC
nLC-1000 system coupled to a Q Exactive Plus mass spectrometer
(Thermo) or an uHPLC nLC-1200 system coupled to an Exploris 480
mass spectrometer (Thermo). The peptides were loaded on a 20 cm (Q
Exactive Plus) or 50 cm (Exploris 480) column (75 μm inner diameter)
in-house packed with Reprosil C18 (Dr. Maisch GmbH) and eluted with
a 73- or 88-min optimized gradient increasing from 2% to 40% mixture
of 80% acetonitrile/0.1% formic acid at a flow rate of 225 nl/min or 250
nl/min. The Q Exactive Plus was operated in positive ion mode with a
data-dependent acquisition strategy of one MS full scan (scan range 300
- 1,650 m/z; 70,000 resolution; AGC target 3e6; max IT 20 ms) and up
to ten MS/MS scans (17,500 resolution; AGC target 1e5, max IT 120
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ms; isolation window 1.8 m/z) with peptide match preferred using HCD
fragmentation. The Exploris 480 was operated in positive ion mode with
a data-dependent acquisition strategy of one MS full scan (scan range 300
- 1,650 m/z; 60,000 resolution; normalized AGC target 300%; max IT 28
ms) and up to twenty MS/MS scans (15,000 resolution; AGC target 100%,
max IT 40 ms; isolation window 1.4 m/z) with peptide match preferred
using HCD fragmentation.

3.8.3.5. Mass spectrometry data analysis

MaxQuant (Version 1.6.5.0) was used to search and quantify the raw
mass spectrometry files, for each species individually. Individual protein
databases used as search space for MaxQuant can be found in Table B.3.
Oxidation and acetylation were set as variable modifications, and
carbamidomethylation was set as a fixed modification. LFQ was used
to calculate and normalize intensities, without activating fast LFQ. The
minimum ratio count used was 2. Match between runs was used to match
within each lesion (control, abasic, 8-oxoG, RNA base), with a match
time window of 0.7 min, match ion mobility window of 0.05, alignment
time window of 20 min, and alignment ion mobility of 1. Matching
of unidentified features was deactivated. For protein quantification we
used a label minimum ratio count of 2, and unique + razor peptides for
quantification.

3.8.3.6. Bioinformatics analysis and statistical analysis

MaxQuant proteinGroup results files of all species were combined into
a single file, with a column “species” indicating the individual species
and cell type (Table B.4). The complete dataset was filtered by removing
reverse database binders, potential contaminants or proteins identified
only on a modification site. Additionally, all protein groups with fewer
than 2 peptides (1 unique) were filtered out. Missing LFQ values were
treated as if they were below the detection limit of the mass spectrometer.
Imputation was performed for each replicate of a condition individually
from a beta distribution, within a range of the 0.2 and 2.5 percentile of
measured intensities of the replicate. Only proteins that were present
in ≥ 2 replicates of 4 per pull down condition were used to calculate
enrichment values (log2 fold change, p-value by Welch t-test) (Table B.4).
Gene information and annotations were downloaded [167, 168] and used
to assign detected proteins to orthology groups, as per OrthoMCL [138].
Labeling of specific orthology groups for Figure 3.7 was performed based
on the following hierarchy of species: hsap, scer, spom, cele, ecol, atha,
bsub, halo, tbrt, tetr, and zmay. In other words, if an orthology group
contained a human gene, it would be referred to as this. If not, the S.
cerevisiae gene was taken, and so forth according to the listed hierarchy.
If multiple genes of one species were present in the orthology group, the
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first one from the list would be selected.
Heatmap clustering was performed on a numerical matrix, where 1 was
an enriched protein (log2 fold change > 2, p-value < 0.05), 0 a detected
protein (i.e., not enriched but measured), and -1 a protein not detected
within a species at all. To find similar clusters of proteins, we applied
the complete linkage method (default setting) in hclust from the stats
package in the R framework [112].
For functional enrichment analysis, terms were queried in the Gene
Ontology (GO) [139] and the Kyoto Encyclopedia of Genes and Genomes
(KEGG) [169] databases. Terms for a particular group of enriched
proteins were tested for overrepresentation (adjusted p-value [FDR] <
0.05; Fisher’s exact test) against all terms found in the background (whole
genome). The top three most overrepresented terms in each database
were selected for graphical representation.
To determine known and predicted interactions, enriched proteins were
queried in the STRING database version 11.5 [140]. Hits from text-mining
and co-occurrence interaction sources were excluded. Hits with a score >
150 in any of the remaining interaction sources (experiments, databases,
coexpression, gene fusion and neighborhood) were included in the
downstream analysis. Thus, protein-protein networks were generated
with in-house scripts based on an R framework incorporating igraph
[170], with the Fruchterman-Reingold force-directed layout algorithm
implementation, and ggnetwork [171]. Enriched proteins were illustrated
as nodes, where color indicates their associated experimental lesion and
their shape indicates whether they are known repair proteins or not.
STRING known and predicted interactions were visualized as edges. All
networks were drawn with the spoke model.

For phylogenetic tree construction, the amino acid sequences of all or-
thologs from the respective OrthoMCL groups were extracted from the
species specific protein sequence FASTA files (Table B.3). For AP endonu-
cleases the OrthoMCL groups OG6_101139 and OG6_104339 were cho-
sen to represent the group. OG6_104135 and OG6_100453 contains the
Photolyase family and OG6_102506 contains the MutY Glycosylase family.
Amino acid sequences of each family were aligned using Clustal Omega
[172]. The phylogenetic tree was constructed from these alignments by
using the neighbor-joining method of Clustal Omega with no genetic dis-
tance correction and no outgroup setting [172]. The phylogenetic tree
was then exported as a Newick file for visualization in R alongside relevant
mass-spectrometry binding results using the ape package [173].

Pfam analysis for proteins with no previous DNA repair associations was
conducted using Pfam domain annotations downloaded from OrthoMCL
[138]. To enable broader categorizations Pfam terms were classified into
more general terms based on text-mining of the Pfam term description
(Table B.12). These classifiers were used to detect the distribution of Pfam
functions across the proteins that have not been previously annotated as
DNA repair proteins.
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3.8.4. Quantification and statistical analysis
All quantification and statistical analysis details and associated citations
can be found in the method details in section ‘Mass spectrometry data
analysis’ and ‘Bioinformatics analysis and statistical analysis’. In short,
the pulldowns performed in the analysis were performed in quadruplicate
and p-value was determined by Welch t-test with an enrichment thresh-
old of log2 fold change > 2 and p-value < 0.05. Utilizing both GO and
KEGG databases, enriched proteins were tested for overrepresentation us-
ing Fisher’s exact test determining an adjusted p-value (false discovery
rate) < 0.05. The STRING database was used to determine previously
established interactors to proteins of interest. To create phylogenetic tree
the evolutionary history was inferred in MEGA X61 by using the Maximum
Likelihood method and JTT matrix-based model [174]. Pfam domain an-
notations were downloaded from OrthoMCL [138].
#
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4.1. Summary

The evolution of protein sequences is influenced by the constraint of
changes (purifying selection) or the fixation of alleles that confer fitness
advantage (positive selection). An essential metric to detect the selection
type driving such sequence evolution is the nucleic acid and amino acid
substitution rate, namely, the nonsynonymous to synonymous substitution
rate ratio. This measure has proven helpful in understanding different
evolutionary adaptation processes by comparative genomics. Additionally,
accounting for rate variation under different levels of selective pressure
can provide insight into the functional restrictions of proteins.
These evolutionary analyses have benefited from the massive amounts of
data from next-generation sequencing (NGS) technologies, making com-
parative genome-wide analyses more attainable.
In this project, we developed a user-friendly pipeline, AlexandrusPS, de-
signed to simplify genome-wide positive selection analysis. The pipeline,
implemented as a combination of Perl, R, and shell scripts running in
a Linux/UNIX environment, is provided as an open-source solution and
available as a Docker image to minimize the need for local installation.
AlexandrusPS only requires CDS and peptide FASTA files as input. Alexan-
drusPS automatically generates orthology relationships, sequence align-
ments, and phylogenetic trees. It then performs site-specific (SSM), branch
(BM), and branch-site (BSM) positive selection analyses.

4.2. Zusammenfassung

Die Evolution von Proteinsequenzen wird durch die Begrenzung
von Veränderungen (reinigende Selektion) oder die Festlegung
von Allelen, die einen Fitnessvorteil bieten (positive Selektion),
beeinflusst. Ein wichtiges Maß zur Ermittlung der Selektionsart,
die eine solche Sequenzevolution antreibt, ist die Nukleinsäure-
und Aminosäure-Substitutionsrate, das heißt, das Verhältnis von
nicht-synonymer zu synonymer Substitutionsrate. Dieses Maß hat sich
als hilfreich für das Studium verschiedener evolutionärer Prozesse in der
vergleichenden Genomik erwiesen. Zusätzlich kann die Berücksichtigung
von Variationsraten bei Selektionsdruck Aufschluss über die funktionellen
Einschränkungen von Proteinen geben.
Diese evolutionären Analysen haben von den riesigen Datenmengen
der Next-Generation-Sequencing (NGS)-Technologien profitiert, die
vergleichende Genomanalysen einfacher zugänglich machen.
In diesem Projekt haben wir eine benutzerfreundliche Pipeline,
AlexandrusPS, entwickelt, die die genomweite positive Selektionsanalyse
erleichtern soll. Die Pipeline, die als eine Kombination aus Perl-, R- und
Shell-Skripten in einem Linux/UNIX-Umgebung implementiert ist, wird als
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Open-Source-Lösung bereitgestellt und ist als Docker-Image verfügbar, um
die Notwendigkeit einer lokalen Installation zu minimieren. AlexandrusPS
benötigt nur CDS- und Peptid-FASTA-Dateien als Eingabe. AlexandrusPS
generiert automatisch Orthologiebeziehungen, Sequenzalignments
und phylogenetische Bäume. Anschließend führt es site-spezifische
(SSM), branch-spezifische (BM) und branch-site-spezifische (BSM)
Positivselektionsanalysen durch.

4.3. Statement of Contribution
For this project, Alejandro Ceron Noriega conceived the initial design,
implemented the software, participated in debugging and software testing
phases, and drafted the manuscript. I led the debugging phase, updated
the software implementation and documentation, and conceived the
Docker and Singularity implementation. Michal Levin and Falk Butter
participated in the initial design, coordination, and manuscript drafting.
All authors read and approved the final manuscript.
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4.4. Abstract
The detection of adaptive selection in a systems approach considering all
protein coding genes allows for the identification of mechanisms and path-
ways that enabled adaptation to different environments. Currently avail-
able programs for the estimation of positive selection signals can be di-
vided into two groups. They are either easy to apply but can analyze only
one gene family at a time, restricting systems analysis; or they can han-
dle larger cohorts of gene families, but require considerable prerequisite
data such as orthology associations, codon alignments, phylogenetic trees
and proper configuration files. All these steps require extensive computa-
tional expertise restricting this endeavor to specialists. Here, we introduce
AlexandrusPS, a high-throughput pipeline that overcomes technical chal-
lenges when conducting transcriptome-wide positive selection analyses on
large sets of nucleotide and protein sequences. The pipeline streamlines
(1) the execution of an accurate orthology prediction as a precondition for
positive selection analysis, (2) preparing and organizing configuration files
for CodeML, (3) performing positive selection analysis using CodeML and
(4) generating an output that is easy to interpret, including all maximum
likelihood and log likelihood test results. The only input needed from
the user is the CDS and peptide FASTA files of proteins of interest. The
pipeline is provided in a Docker image, requiring no program or module
installation, enabling the application of the pipeline in any computing en-
vironment. AlexandrusPS and its documentation are available via GitHub
(https://github.com/alejocn5/AlexandrusPS).

4.4.1. Significance

Understanding the mechanisms and pathways that enable adaptation
to different environments is crucial in evolutionary biology. However,
existing tools for detecting such adaptive processes in protein sequences
have limitations in terms of the computational complexity and required
resources. AlexandrusPS is a user-friendly containerized pipeline that
streamlines positive selection analysis of protein-coding genes on a
genome scale by automating key steps, providing an easily interpretable
output and facilitating high-throughput analyses on a desktop computer.

4.5. Introduction
The evolution of protein sequences is influenced by the constraint of
changes (purifying selection) or by the fixation of alleles that confer
fitness advantage (positive selection) [175]. An essential metric to detect
the selection type driving such sequence evolution is the nucleic acid
and amino acid substitution rate, namely, the nonsynonymous (dN) to
synonymous (dS) substitution rate ratio (𝜔 = dN/dS). This measure has
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proven to be useful for understanding different evolutionary processes
in comparative genomics [176–190]. Such evolutionary analyses have
profited from massive amounts of data derived from next-generation
sequencing (NGS) technologies, making comparative genomics analyses
more attainable.
The enormous quantity of such data provides a valuable resource for re-
searchers, but as the number of genomes continues to grow, downstream
analyses have become increasingly challenging in terms of the quality and
amount of data that need to be processed. This problem has led to the
need for the development of specialized, efficient and user-friendly bioin-
formatics tools that can help researchers in downstream tasks [191].
One of the most popular bioinformatics tools for applying maximum likeli-
hood (ML) based models in evolutionary research to test the ratio between
nonsynonymous and synonymous substitutions (𝜔 =dN/dS) for multiple
orthologous protein-coding sequences is CodeML [192]. CodeML is im-
plemented in the PAML (Phylogenetic Analysis by Maximum Likelihood)
program package [175, 192]. While the program is statistically robust and
highly accurate in examining selective pressure [193–196] CodeML also
faces limitations: i) being executed on a single processing unit renders
operations on large sets of sequences highly time-consuming, driving the
need for accessibility to high-performance computers. ii) Each individual
orthology group analysis needs to be separately prepared and executed
by the user. iii) The execution requires a preceding accurate orthology
analysis, which itself is challenging and can introduce errors to the analysis
if not performed properly. iv) CodeML provides output that is difficult to
interpret, especially for inexperienced users [48, 175, 197].
To support less experienced users and minimize the manual operation
of CodeML, several programs have emerged: JCoDA [198], Armadillo
[199], PAMLX [200], IMPACT_S [201], PSP [202], PhyleasProg [203], and
Selecton [204]. These programs use graphical interfaces or web-server
implementations for single-gene family analysis. However, they are not
suitable for streamlined operation of CodeML for multiple analyses. Some
additional software to solve these large-scale analysis challenges include
VESPA [205] , IDEA [179], and POTION [206]. These programs still have
certain shortcomings: i) The installation is complex. ii) They depend on
large computational infrastructure such as high-performance computers
(HPCs). iii) They require advanced programming skills of the user. Table
C.1 provides a comprehensive comparison of the features and implemen-
tation properties of different available tools.
Here, we introduce AlexandrusPS, a high-throughput user-friendly
pipeline designed to simplify the automated operation of established
CodeML protocols. Containerized in a Docker image, AlexandrusPS was
developed as a single command pipeline minimizing user intervention in
both installation and execution. The pipeline provides a well-organized
output table including all relevant results for drawing conclusions. All
intermediate data, such as the results of the orthology analysis as well as

73



4. AlexandrusPS: pipeline for positive selection analysis

multiple sequence alignments, are also retained. To enable full analysis
flexibility for more experienced researchers, AlexandrusPS is an open
source software and thus enables modifications of parameters in all major
configuration files.

4.6. Implementation

4.6.1. AlexandrusPS: Functionality

AlexandrusPS is a pipeline consisting of Perl and R scripts called
by a main bash shell script and is available as a Docker image \
(https://github.com/alejocn5/AlexandrusPS). The only input needed
from the user is FASTA files of CDS and amino acid sequences of all target
proteins. AlexandrusPS leverages the ProteinOrtho program [207] to
discern and anticipate orthologous gene clusters (OGCs). These OGCs
are selected for further investigation if they meet two criteria: First, they
must encompass a minimum of three species; second, they exclusively
consist of 1-to-1 orthologs, excluding any paralogs within the cluster
spanning different species. The pipeline then utilizes PRANK to generate
alignments and gene trees for each identified OGC. These gene trees are
formatted in Nexus format initially but are subsequently converted to
the dnd format, ensuring compatibility with subsequent analysis using
CodeML.
To evaluate site-specific models (SSMs), the following model comparisons
are performed: M0 versus M3, M1a versus M2a and M7 versus M8. For
branch models (BM) 𝜔 values are estimated by evaluating M2 against
a nearly neutral null model (M1a). For the branch-site model, M8a is
compared with its null (M8a null) using a fixed 𝜔 assumption (𝜔 = 1). Sub-
sequently, Bayesian empirical Bayes (BEB) analysis further identifies sites
of positive selection, allowing posterior probability computation [208].
These results are then used for likelihood ratio tests (LRTs) to determine
whether the models reflect diversifying selection. For this, the
log-likelihood score (2ΔlnL) between any two models is calculated.
Subsequently, the P value is determined by comparing each 2ΔlnL against
the Chi-square distribution using the respective degrees-of-freedom (DoF)
for each model pair. Significant LRT results (FDR < 0.05) indicate
a significant difference between the two models and thus imply an
evolutionary explanation for these differences.
The main workflow of AlexandrusPS Figure 4.1 is composed of four steps:
i) Orthology prediction by ProteinOrtho [207]; ii) multiple amino acid
sequence alignment and gene tree generation by PRANK [209] and DNA
codon sequence alignment by pal2nal [210]; iii) site-specific model calcu-
lations by CodeML [192]; and iv) branch and branch-site-specific model
calculations by CodeML.
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Figure 4.1.: AlexandrusPS workflow. Flowchart describing the AlexandrusPS
workflow, which sequentially combines four steps to finally execute CodeML and collect
results. PO = ProteinOrtho; SSM = Specific Site Model; BM = Branch Model; BSM =
Branch Site Model; LRT = Likelihood Ratio Test; OGC = Orthologous Gene Cluster.
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4.6.2. AlexandrusPS: Input Files

FASTA files of all proteins of interest
For each species included in the analysis two FASTA files are needed: one
with the amino acid and the other with the respective CDS sequences. Both
files should contain the same number of sequences and their headers must
be identical. AlexandrusPS can analyze all orthologous protein groups
from protein-coding genes on a genome scale across multiple species. An
example dataset is provided with the pipeline to enable testing of the
proper functionality of the pipeline (CDS and protein fasta files of this
example dataset are also included as Supplemental Data C.1).

4.6.3. AlexandrusPS: Output Files

Site-Specific Models (SSM) The CodeML output files are parsed into a
CSV file. This file contains all orthologous gene clusters (OGC) organized
in rows. Columns include OGC_ID, species included in the OGC and ML
results for all models with the respective metrics such as likelihood (lnL),
the number of parameters (np),𝜔 (dN/dS), degrees of freedom (DoF), log
likelihood value (lnL), likelihood ratio tests (LRT) and positively selected
sites (PSS).
Branch and branch-site models The results of the LTR-based branch and
branch-site model analyses (null model (H0) and alternative model (H1)
of the branch-site test) for the OGC with significant signals of site-specific
diversifying selection are written into final easily interpretable results files
(the final output folder containing the result files of the example dataset
is included for illustration in Supplemental Data C.2). We have intro-
duced a significant improvement in comparison to other pipelines involv-
ing CodeML. AlexandrusPS employs a more refined selection procedure
testing every individual branch. Specifically, within each OGC, each indi-
vidual terminal branch is sequentially designated as the foreground, with
all other branches considered as background. This approach, reminiscent
of the methodology employed by Anisimova and Yang in their study [211],
offers numerous advantages. Concentrating on a single foreground branch
alongside multiple background branches, we constrain the calculations to
the count of orthologs within the examined OGC, varying from a minimum
of three to a maximum of all evaluated organisms. This unbiased choice
of branches for foreground and background streamlines a more unbiased
analysis, ultimately enhancing the comprehensiveness of our branch and
branch-site model analysis.

4.6.4. AlexandrusPS: Execution and Paralleling

Utilizing the inherent single-node architecture of CodeML, which operates
on a single CPU, the parallelization process entails a series of systematic
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steps. Upon gathering the codon alignment, configuration files for the
seven distinct CodeML models, and the phylogenetic tree specific to each
Orthologous Gene Cluster (OGC) from prior stages, all relevant compo-
nents are allocated to one of the accessible nodes, subsequently initializing
the CodeML analysis. After extracting the values of likelihood (lnL), the
number of parameters (np), 𝜔 (dN/dS), degrees of freedom (DoF), and
log-likelihood value (lnL), the input and output files undergo compression.
Subsequent to this, the node is freed to undertake the analysis of another
OGC, continuing this iterative process until all OGCs have been analyzed.
With this methodology we enable increasingly efficient processing of large
volumes of OGCs with augmenting amounts of available CPUs, making the
pipeline optimally adjusted to run in high-performance computing (HPC)
environments. We used AlexandrusPS for a positive selection analysis
including three of the nematode proteo-transcriptomes (C. elegans, C. brig-
gsae and C. inopinata) established in [212] on a tabletop PC with 20 CPUs
and on an HPC system with 128 CPUs and could reduce computation time
from 12.3 hours to 2.5 hours emphasizing the added value of using the
pipeline on an HPC.

4.6.5. Testing positive selection in subgroups of the
phylogeny

AlexandrusPS enables positive selection analysis within OGC subgroups
involving a minimum of 3 species, diverging from the conventional ap-
proach considering OGCs present in all species. This choice aims to address
the potential impact of phylogenetic distances on positive selection signal
dilution, which is often underestimated in large-scale analyses. Testing
positive selection in subgroups relies on gene trees generated automati-
cally by AlexandrusPS. Users should be aware that utilizing a gene tree
can affect phylogenetic accuracy and positive selection detection due to
distorted branch lengths, potentially leading to inaccurate substitution rate
estimates and misidentification of positively selected genes. To validate
positive selection signals, it is possible to confirm them with a reliable
species phylogeny. After running AlexandrusPS, compressed intermediate
data for each OGC can be accessed in the output folder. For validation
with a species tree, replace the tree in the *.dnd.GenTree.nex file that
is contained in the output/Results/<_ocgid_>.tar.gz/Orthology_Groups
directory and run CodeML manually using the same config files that were
already created (example config files are included in Supplemental Data
C.3).

4.6.6. AlexandrusPS: Proof of principle

AlexandrusPS was successfully applied to perform a large-scale positive
selection analysis using proteotranscriptomics data across 12 nematode
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species including 77,000 protein sequences resulting in 5,400 1-1 orthol-
ogous groups including orthologs from at least 3 species [212]. This ex-
tensive phylogenetic analysis was executed on a tabletop PC with a pro-
cessor of 8 cores/16 hyperthreads (8 GB RAM each) finished within 7
days. The analysis allowed interesting new insights into the evolutionary
processes of this metazoan group and uncovered evolutionary events that
suggest intriguing adaptive mechanisms. Notably, C. japonica exhibited
an exceptionally high frequency of positive selection events. Interestingly,
positively selected genes in C. japonica are closely linked to its distinctive
phoretic lifestyle, setting it apart from other Caenorhabditis species, which
are predominantly free-living. In stark contrast, C. inopinata displayed
the lowest count of positively selected protein-coding genes. This stands
in sharp contrast to the findings in its sister species, C. elegans, where
we observed an enrichment of positively selected genes associated with
muscle-related functions. This discrepancy is particularly striking given
the close relationship between these two species and may be attributed
to the long-term cultivation of C. elegans in laboratory conditions. The
prevalence of muscle-related functions among the positively selected genes
in C. elegans might reflect an adaptation to distinct demands for locomo-
tion, such as moving on two-dimensional agar plates versus navigating
a three-dimensional environment in soil or on decaying fruit. Addition-
ally, we noted widespread adaptive evolution among ribosomal proteins
in seven out of the 12 species, highlighting that adaptation often occurs
at fundamental gene regulatory levels rather than within highly specific
functional subnetworks. Investigating these potent evolutionary changes
is of significant interest and enhances our understanding of biological phe-
nomena through in-depth phylogenetic comparisons among species that
have more recently diverged.

4.7. Conclusion
AlexandrusPS is a pipeline that is available in a Docker image to avoid the
need for local installation of any modules or programs. It is provided as
an open-source pipeline that allows the use of various CodeML models for
molecular adaptive evolution (SSM, BM, and BSM) in parallel. It can run
with default parameters, as it is based on standard protocols that allow
the analysis of datasets that encompass protein-coding genes on a genome
scale. Users are only required to provide the CDS and peptide FASTA files
of the proteins of interest. With its usage simplicity, AlexandrusPS offers
distinct advantages over other programs.
AlexandrusPS automatically generates orthology relationships and identi-
fies optimal orthology groups for positive selection analysis to avoid prob-
lems such as paralog introduction. It also generates a gene tree of each
OGC and organizes, executes and extracts all pertinent information from
CodeML outputs. This completely automates the analysis with no need
for intervention by the user. AlexandrusPS generates four main outputs:
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orthology relationships, site-specific positive selection results, branch and
branch-site positive selection results, along with all intermediate files for
each OGC. These intermediate files enable manual repetition of certain
analyses for any individual OGC without having to repeat the entire pro-
cess. AlexandrusPS allows users to run CodeML protocols on a desktop
computer in an automated parallel manner, facilitating high-throughput
analyses without the need for high-performance computer systems.
We successfully applied AlexandrusPS to protein-coding genes on a
genome scale to investigate positive selection in a phylogeny of 12
nematode species and obtained highly interesting results [212]. We
believe that this implementation will empower many more researchers to
explore positive selection in any species range of interest.

4.8. Supplementary Material
Supplementary data are available at Genome Biology and Evolution online
(http://www.gbe.oxfordjournals.org/).
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The complexity of cellular behavior and its decision-making system has
driven the establishment and expansion of novel “omics” and associated
techniques, allowing for systematic, in-depth investigation of each aspect
of molecular biology. “Omics” technologies have captured static genomic
alterations, temporal transcriptomic perturbations, alternative splicing,
spatiotemporal proteomic dynamics, and post-translational modifications
[5]. Through this, they have contributed to our changing view on the
linearity and the regulation of the informational flow of the central dogma.
Regulatory mechanisms have been identified, describing interaction and
variety not only on the genetic but also on the transcript and protein
levels. The development and integration of multi-omics have allowed for
the uncovering of intricate molecular mechanisms underlying different
phenotypic manifestations of traits at high accuracy in a systematic
manner, thereby forming the basis of network or systems biology [5].
In this thesis, I have utilized ”omics” technologies, specifically proteomics,
and the subsequent computational data analysis and integration to investi-
gate the systematic DNA damage response in Tetrahymena thermophila and
identify DNA damage proteins across the Tree of Life. Additionally, I
co-developed a user-friendly computational pipeline for evolutionary pos-
itive selection analysis, which relies on comparative genomics and either
large-scale genome sequencing or proteotranscriptomics data.
In Chapter 2, we conducted one of the most extensive systematic studies
to date, profiling the DNA damage response (DDR) in the model organ-
ism Tetrahymena thermophila (Nischwitz, Schoonenberg et al., in prepa-
ration). Our objective was to understand the underlying DDR kinetics in
Tetrahymena. We collected samples for transcriptome and proteome mea-
surements over an eight-hour time course after damage induction with six
different mutagens.
Here, we used Lexogen 3' mRNA QuantSeq short-read sequencing to mea-
sure the transcriptome, measured on an Illumina 500 NextSeq sequencer,
even though long-read sequencing is becoming increasingly popular. In
particular, long-read sequencing is a great option to resolve repetitive re-
gions of the genome and regions with high GC content, as well as for (struc-
tural) variant discovery. In addition, nanopore sequencing is capable of
label-free sequence determination of native DNA and RNA molecules with-
out the need for amplification. It can produce long read lengths, making it
optimal for de novo genome assembly. It might be interesting to perform
this type of sequencing in Tetrahymena, as the organism has a vast genome
with a high degree of repetition, making it hard to annotate and map.
However, our study aimed to investigate the response to DNA-damaging
agents on a large scale. As this involved a significant number of transcript
measurements (9 conditions, 7 time points, 4 replicates, 252 samples),
short-read sequencing was the most appropriate choice for gene expression
profiling. Although short-read sequencing is considered unbiased, it is
essential to note that fragmentation and library construction can introduce
biases into RNA-seq results. With the sequencing of cDNA fragments, the
number of reads corresponding to each transcript is proportional to the
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number of cDNA fragments rather than the number of transcripts. Longer
transcripts will be assigned more reads as they give rise to more fragments
than shorter transcripts. Thus, when carrying out differential expression
analysis, the differentially expressed genes are more likely to be enriched
for longer than shorter transcripts, as the statistical power is higher for
longer transcripts due to the larger counts. The levels of expression (num-
ber of reads for a specific transcript) can be corrected by the transcript
size. However, this information is most likely unavailable for non-model
species. In this case, the correction can be performed using the contig size
from the de novo reconstruction of the transcript (based on the reads) or
the transcript sizes of a closely related model species. Nevertheless, this
correction only partially solves the problem owing to the transcript size, as
the sampling is always higher for longer transcripts. 3’ RNA-seq methods
have been developed to minimize this bias, like the QuantSeq we used
here. In the 3' RNA-seq method, mRNAs are not fragmented before reverse
transcription. Instead, the cDNAs are only reverse transcribed from the
3� end of the mRNAs, and only one copy of cDNA is generated for each
transcript. Thus, when the cDNAs are sequenced, the number of reads
directly reflects the number of transcripts of a specific gene, and the longer
and shorter transcripts should have the same coverage of reads. The down-
side of 3' RNA sequencing is the loss of complete transcript information,
making de novo transcriptome assembly impossible, and, per definition,
losing information on splicing [213, 214].
We used 3' QuantSeq as it is a robust and straightforward mRNA
sequencing method. As Tetrahymena is a well-annotated model organism,
QuantSeq increases the precision in gene expression measurements
as only one read per transcript is generated. Focusing on the 3� end
at lower read depths results in higher stability of differential gene
expression measurements. QuantSeq is ideal for increasing the degree
of multiplexing in NGS gene expression experiments and is the method
of choice for accurately determining gene expression at the lowest cost
[215].
For the proteome profiling in this study, we used label-free quantification,
measuring 252 samples on an Orbitrap Exploris 480 mass spectrometer
(Thermo Fisher Scientific) set up for LC-MS/MS data-dependent acquisi-
tion (DDA).
While chemical labeling-based quantification methods (e.g., TMT)
are generally considered to possess high quantitative accuracy, they
nonetheless suffer from ratio distortion and sample interference issues
while being less cost-effective and offering less throughput than label-free
approaches. Consequently, label-free quantification (LFQ) has been
widely used in comparative quantitative experiments profiling the native
and post-translationally modified proteomes [216] and is also used here.
Additionally, this label-free approach allowed us to compare all the
different conditions we measured (9) in a non-restricted way.
As described in Chapter 1, General Introduction, data-independent acqui-
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sition (DIA) utilizes isolation windows to co-isolate and elute fragment
peptides regardless of their signal intensity, thereby providing a system-
atic collection of peptide fragments, as is not the case with DDA. Conse-
quently, DIA should allow for identifying peptides with high sensitivity
and improved reproducibility [217]. A major disadvantage of DIA work-
flows is that each MS2 scan contains multiplexed spectra from several
precursor ions, making accurate identification of peptides difficult [216].
Additionally, while DIA addresses the stochasticity of precursor selection
for fragmentation, it does not solve the problem of incomplete MS analysis
due to the limited charge capacity of C-traps that lie upstream of Orbitraps
(which have become much faster and thus have a greater analysis capac-
ity). The limited capacity of the C-trap means that modern Orbitrap mass
spectrometers only analyze <1% of available ions at the MS1 level.
For this reason, we explored a novel acquisition scheme called 'BoxCar'
for this study. This method distributes the maximal charge capacity of
the C-trap evenly over multiple narrow m/z segments. This limits the
proportion of highly abundant species in the C-trap and greatly increases
ion injection (or 'filling') times for less abundant precursor ions. A similar
benefit has been observed in DIA methods, in which the instrument cycles
through m/z segments to acquire fragment ion spectra of all precursors in
each segment. This method has been shown to improve performance on
the MS1 level drastically [218]. However, after running multiple tests
with our Exploris Orbitrap setup, we could not improve sequencing depth
over the established, robust DDA methods and could not achieve consis-
tent measurements. Therefore, we decided for a label-free, DDA-based
workflow, allowing us to identify 6,551 protein groups robustly.
In our data analysis, we encountered some batch effects in our proteome
data. However, as we always included a matched non-treated set in the
sample preparation and measurement among treatment batches, this
proved to be easily corrected using the matched non-treated sample of
proteins and transcripts within each treatment batch.
We performed hierarchical clustering of a curated list of DNA repair
proteins to confirm the induction of DNA damage with the mutagens used.
Interestingly, a distinct cluster of ten DNA damage factors, including
MSH6L3 and RAD51, was upregulated at both transcript and protein
levels. RAD51 and other mismatch repair proteins are critical DNA repair
proteins during sexual reproduction (conjugation) in Tetrahymena [77,
219, 220]. We are further investigating these proteins' roles in repair, as
they might mirror their role in conjugation.
To assess the kinetics of proteins and transcripts during DDR over time, we
calculated their dynamicity with a Gini score. Economists initially used the
Gini Index to describe inequalities in wealth distribution in populations,
which varies between 0 (complete equality) and 1 (extreme inequality),
and has in recent years been adopted by biologists to describe, in a simple
way, the distributions of expression levels of different genes between tis-
sues or cell lines [114, 221]. Here, using the Gini score, we can essentially
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collapse our temporal measurements of 8 timepoints into a single score.
While we found variability in the dynamic transcripts and proteins across
treatments, we were interested in identifying treatments with overlapping
dynamic responses. We found a significantly higher level of overlap than
expected among three or more treatments, indicating a specific shared
response alongside the overall global response. We also identified a core
overlap of eight proteins between all treatments, including the aforemen-
tioned RAD51 and MSH6L3. However, there was no overlap between the
15 core dynamic transcripts and the eight core dynamic proteins, highlight-
ing the differential regulation in transcription and protein expression.
To investigate these dynamic proteins and transcripts further, we used self-
organizing maps (SOMs), an unsupervised machine learning approach, to
cluster the expression profiles of all six treatments. Because of the number
of treatments and time points in this data set, the SOM algorithm is an
excellent way to reduce the data dimensions and get an interpretable result.
The SOM algorithm is an unsupervised neural network trained to build a
low-dimensional, topological map using unsupervised learning techniques.
It will not cause data loss as the input data is preserved and retains the
topological relations (i.e., similarity of the temporal dynamics) of the in-
put. SOMs can handle various categorization issues while producing an
insightful and practical summary of the data [222].
We determined 15 transcript and 7 protein expression profile clusters. For
both, we observed complexes grouping within the same cluster, such as
20S proteasome and transcription-related factors, indicating that the clus-
tering method successfully identifies similarly regulated complexes. In con-
trast, we found that PARP and PARP-correlated proteins showed specific
up- or downregulation to unique treatments, and some of them displayed
variable transcriptional and protein responses. However, this still needs
to be confirmed through ongoing correlation analysis of the transcript and
protein expression profiles. Additionally, we are currently implementing
a novel knockdown system for experimental validation. We are working
on examining the effects of reducing the aforementioned PARP proteins
on global protein expression changes. There will likely be a compensatory
DDR response, although it remains unknown whether this response will
originate from other members of the PARP family or other DNA damage
repair proteins. We will also assess the effects on cell survivability when
these PARP proteins are reduced. Some knockdowns may exhibit sensitiv-
ity to particular DNA-damaging agents.
Ultimately, we hope this work will also serve as a resource dataset for
DNA damage research. We are working on creating an accessible online
database with an easy-to-use interface. We hope this propels ongoing
analysis forward and opens up new research areas.
In Chapter 3 of this thesis, we studied the interactome of specific DNA
damage lesions across the Tree of Life. We explored the conservation
of pathways responsible for repairing and recognizing DNA damage le-
sions (Nischwitz, Schoonenberg, et al., iScience, 2023). We used a mass
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spectrometry-based phylointeractomics workflow, comparing the in vitro
binding capabilities of three well-established DNA damage lesions: 8-oxoG,
abasic site, and ribonucleotide incorporated into DNA. To gain a broad
perspective on the repair and recognition of these lesions, we included
11 different species in our study. Previous literature has highlighted the
strong conservation of fundamental proteins in the pathways that repair
these lesions. Only by studying these pathways across the Tree of Life
can the convergence and divergence of these different repair machinery
be elucidated.
For this study, we again used a label-free quantification approach for the
mass spectrometry measurements. Since we compare proteins binding to a
DNA lesion over a control sequence, the study could have been a candidate
for a labeling method for quantitation, such as SILAC or dimethyl labeling,
allowing for accurate relative quantification; however, as we included 3
lesions, in 11 species, the label-free approach again allowed us to make
unrestricted, straightforward comparisons between all conditions. SILAC
labeling would not have been possible in all species tested, and dimethyl
labeling would have limited the comparisons between lesions and species.
With this unbiased approach, we identified several known DNA damage
factors as binders to the aforementioned lesions. We enriched 337 proteins,
of which 99 were related to the 'DNA repair' GO term. In addition to known
DNA repair genes, we identified both species-specific and non-DNA repair
proteins. These 82 species-specific proteins had no orthologs in the 10
other investigated species, offering the opportunity to study potentially
unique repair or damage response aspects in their respective model organ-
isms.
First, we focussed our study on known enriched DNA repair protein ho-
mologs, which are especially interesting for the species in which these
proteins have not been characterized. Unexpectedly, we found enrichment
of photolyases and MutY glycosylases, which are highly associated with
DNA repair. However, the lesions included in this study are considered
non-canonical targets.
Additionally, an interesting finding was the crosstalk between all three
lesions. We had anticipated a high degree of overlap between the 8-oxoG
and abasic lesions since they rely heavily on BER for repair. However,
we also observed a high degree of overlap with proteins enriched at the
uracil incorporated into the DNA. We believe this finding warrants further
investigation. While a few studies have related some BER proteins to RER,
more extensive research is needed [134, 135].
Next, we focused on enriched proteins not associated with the 'DNA re-
pair' GO term. Through network, domain, and phylogenetic analysis, we
identified 44 additional proteins likely to have a role in the DNA damage
response.
Network analysis relied on the STRING database, connecting enriched
proteins based on known interactions, revealing connection with known
DNA repair proteins.
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For instance, within the S. cerevisiae network, there was an incredibly
elaborate network of chromatin remodelers. While few had DNA repair
designation, many interacted with those DNA repair-associated chromatin
remodelers and amongst themselves. This leads to the conclusion that a
more extensive network of chromatin remodelers may be involved in DNA
repair than previously thought.
Further, we used Pfam domain annotations in the non-DNA repair proteins
to find potential unknown functions. We curated the major domains into
categories based on their general descriptions, again inferring the previ-
ously unknown potential for DNA repair function in these proteins.
Finally, the most significant finding in our study was through phylogenetic
analysis. With this, we could identify enriched proteins across species that
had not been previously associated with repair. We found five instances
of these orthology groups, providing strong evidence that our screen suc-
cessfully discovered novel DNA repair proteins across species.
Notably, while we enriched proteins previously associated with the recog-
nition and repair of the three studied lesions, not all previously described
proteins were identified in our screen. This was not unexpected as the
cells' physiological conditions, such as pH, temperature, salt concentration,
etc., are highly specific and cannot consistently be replicated. Nonetheless,
our ability to identify classical repair proteins reinforces the validity of our
screen. Altogether, our study opens avenues for further investigation of
newly identified candidates and exploration of key factors in the crosstalk
between BER and RER DNA damage pathways.
Finally, in Chapter 4, we developed a computational pipeline to make pos-
itive selection analysis user-friendly (Ceron-Noriega et al., Genome Biology
and Evolution, 2023). AlexandrusPS generates orthology relationships,
sequence alignments, and phylogenetic trees with its automated process.
It then performs site-specific (SSM), branch (BM), and branch-site (BSM)
positive selection analyses. It produces four main output files, including
orthology relationships, positive selection results, and all intermediate files
(sequence alignments, phylogenetic trees).
The development of this tool came forth out of other work by our lab, in
which high-throughput experimental data, such as RNA-seq and peptide
evidence, was integrated to facilitate accurate protein-coding gene anno-
tation [17, 212]. Using proteotranscriptomics leads to highly valid gene
prediction even in species without a reference genome, which is crucial for
conducting any evolutionary analyses such as positive selection.
AlexandrusPS implements standard CodeML protocols and aims
to avoid biases in positive selection identification. Combining
high-throughput omics data, creating high-quality gene annotations,
and appropriate positive selection analysis (as per AlexandursPS) allows
for a comprehensive evolutionary analysis. This was demonstrated in
nematodes by Ceron-Noriega et al., extending the understanding gained
from decades of research on C. elegans to a diverse range of nematode
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species with different life histories, modes of reproduction, and habitats.
This analysis shed light on how nematode species have evolved to better
adapt to their environments through changes in genes involved in stress
response, detoxification, metabolism, reproduction, and development
[212, 223].
Using “omics” technologies, specifically proteotranscriptomics, results in
highly reliable and experimentally validated gene annotations. These an-
notations can advance evolutionary studies, including the analysis of pos-
itive selection and phylogeny. It underscores the importance and impact
of large data sets in evolutionary analyses and is a valuable foundation for
future research.
In conclusion, in this thesis, we show various applications and analyses
of different ”omics” technologies, specifically proteomics. We find that
proteomics and transcriptomics, and their subsequent integration, give
rise to unbiased approaches to investigating large biological questions. We
show that these methods create large amounts of data, requiring different
approaches to multi-omics integration so that we can try to construct com-
prehensive relationships between molecular signatures, systems, mecha-
nisms, and phenotypic manifestations.
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A.1. Supplemental tables

Table A.1.: DNA damage treatments for Tetrahymena. BER: base excision repair;
DSBR: double strand break repair; NER: nucleotide excision repair; ICL: Interstrand
crosslink repair

Treatment

Induced
Repair
Pathway

Treatment
Concentra-
tion

Basis of con-
centration

Stock
Preparation

Hydrogen
peroxide
(HP)

BER 0.66 mM Tested EC50s Purchased at
9.8 M
(Carl-Roth)

Methyl
methane-
sulfonate
(MMS)

BER;DSBR 2.38 mM Tested EC50s Purchase at
11.8 M
(Sigma)

Ultraviolet
light (UV)

NER; ICL 100 J/m2 Tested EC50s UV-Crosslinker
Cells treated
in 10 mM
Tris-HCl
(pH=7.5)

Cisplatin
(CP)

ICL; NER 100 ug/mL Tested EC50s/
Loidl and
Mochizuki,
2009

2 mg/ml in
DMSO
(Sigma)
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Treatment

Induced
Repair
Pathway

Treatment
Concentra-
tion

Basis of con-
centration

Stock
Preparation

Hydroxyurea
(HU)

ICL 20 mM Sandoval et
al., 2015

1.5 M in water
(Sigma)

Ionizing
radiation
(IR)

DSBR 5000 rads
(equivalent
to 50 Grays)

Loidl and
Mochizuki,
2009

Used Faxitron
CellRad,
Cells treated
in 10 mM
Tris-HCl
(pH=7.5)

Table A.2.: Curated list of DNA damage genes. Inlcuding human description/gene,
yeast standard ID and name, Tetrahymena gene and ID, and pathway classification(s).
BER: base excision repair; DSBR: double strand break repair; NER: nucleotide excision
repair; ICL: Interstrand crosslink repair; DDR: DNA damage response; MMR: Mismatch
repair

Human Gene
Yeast
Gene

Yeast
Stan-
dard

Tetrahymena
Standard TTHERM

Repair
Path-
way

MSH6 MSH6 YDR097C MSH3 00426230 MMR
XPG EXO1 YOR033C NA 00773520 DSBR
XPG EXO1 YOR033C NA 00773520 MMR
XPG EXO1 YOR033C NA 00773520 NER
down stream
mediators

RAD53 YPL153C NA 00000020 DDR

ERCC1 RAD10 YML095C RAD10 00011650 NER
RAD23 RAD23 YEL037C RAD23 00013290 NER
Mec1/ATR DNA2 YHR164C NA 000136019 DDR
XPF1 RAD1 YPL022W XPF1 000160559 NER
DSIF SPT5 YML010W SPT5 00028580 NER
KU80 YKU80 YMR106C TPB1 000309879 DSBR
NA RAD5 YLR032W RAD5 00037210 ICL
NA SNM1/

PSO2
YMR137C SNM1 000697499 ICL

down stream
mediators

RAD53 YPL153C NA 00075550 DDR

down stream
mediators

RAD53 YPL153C NA 00079490 DDR

down stream
mediators

RAD53 YPL153C NA 000841299 DDR

down stream
mediators

RAD53 YPL153C NA 00106700 DDR

RPA1 RFA1 YAR007C RFA1 00106890 DSBR
RPA1 RFA1 YAR007C RFA1 00106890 NER
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Human Gene
Yeast
Gene

Yeast
Stan-
dard

Tetrahymena
Standard TTHERM

Repair
Path-
way

down stream
mediators

RAD53 YPL153C NA 00106920 DDR

NA APN2 YBL019W NA 001080610 BER
POL Epsilon POL2 YNL262W POL2 00112520 BER
POL Epsilon POL2 YNL262W POL2 00112520 NER
down stream
mediators

CHK1 YBR274W NA 00112569 DDR

MLH1 MLH1 YMR167WTMLH1 00127000 MMR
down stream
mediators

RAD53 YPL153C NA 00128720 DDR

down stream
mediators

RAD53 YPL153C NA 00128740 DDR

down stream
mediators

CHK1 YBR274W NA 001358411 DDR

Mec1/ATR DNA2 YHR164C DNA2 00136030 DDR
down stream
mediators

RAD53 YPL153C NA 001388156 DDR

MSH6 MSH6 YDR097C NA 00142230 MMR
RAD51 RAD51 YER095W RAD51 00142330 DSBR
down stream
mediators

CHK1 YBR274W NA 00145520 DDR

MSH6 MSH6 YDR097C MSH6L3 00150000 MMR
down stream
mediators

RAD53 YPL153C NA 00151959 DDR

down stream
mediators

RAD53 YPL153C NA 00151970 DDR

down stream
mediators

RAD53 YPL153C NA 00151980 DDR

RFC RFC5 YBR087W RFC5 00161180 BER
clamp loader RFC5 YBR087W RFC5 00161180 DDR
RFC RFC5 YBR087W RFC5 00161180 MMR
RFC RFC5 YBR087W RFC5 00161180 NER
MSH6 MSH6 YDR097C MSH6 00194810 MMR
DNAPKCs NA NA DPK1 00203010 DSBR
down stream
mediators

RAD53 YPL153C NA 00213560 DDR

RFC RFC3 YNL290W RFC3 00213600 BER
clamp loader RFC3 YNL290W RFC3 00213600 DDR
RFC RFC3 YNL290W RFC3 00213600 MMR
RFC RFC3 YNL290W RFC3 00213600 NER
TOP3 TOP3 YLR234W NA 00216140 DSBR
TOP3 TOP3 YLR234W NA 00216140 MMR
RAD54 RAD54 YGL163C RAD54 00237490 DSBR
RFC RFC2 YJR068W RFC2 00245150 BER
clamp loader RFC2 YJR068W RFC2 00245150 DDR
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Human Gene
Yeast
Gene

Yeast
Stan-
dard

Tetrahymena
Standard TTHERM

Repair
Path-
way

RFC RFC2 YJR068W RFC2 00245150 MMR
RFC RFC2 YJR068W RFC2 00245150 NER
down stream
mediators

CHK1 YBR274W NA 00295610 DDR

MSH2 MSH2 YOL090W MSH2 00295920 MMR
NA RAD5 YLR032W RAD5L4 00298220 ICL
XPD RAD3 YER171W NA 00298500 NER
down stream
mediators

RAD53 YPL153C NA 00300380 DDR

down stream
mediators

RAD53 YPL153C NA 00301710 DDR

CSB RAD16 YBR114W NA 00313280 NER
TFIIH TFB2 YPL122C NA 00313290 BER
TFIIH TFB2 YPL122C NA 00313290 NER
XPD RAD3 YER171W NA 00316410 NER
LIG1 CDC9 YDL164C LIG1 00348170 BER
LIG1 CDC9 YDL164C LIG1 00348170 DSBR
LIG1 CDC9 YDL164C LIG1 00348170 NER
down stream
mediators

RAD53 YPL153C NA 00355740 DDR

LIGIV DNL4 YOR005C LIG4 00387050 DSBR
down stream
mediators

RAD53 YPL153C NA 00389660 DDR

NA REV3 YPL167C NA 00391570 ICL
NA RAD5 YLR032W RAD16 00420480 ICL
NA SNM1/

PSO2
YMR137C SNML1 00433640 ICL

FEN1 RAD27 YKL113C RAD27 00437617 BER
FEN1 RAD27 YKL113C RAD27 00437617 DSBR
NA REV3 YPL167C REV3 00437650 ICL
POL Delta POL3 YDL102W NA 00444660 BER
POL Delta POL3 YDL102W NA 00444660 DSBR
POL Delta POL3 YDL102W NA 00444660 NER
RPB7 RPB7 YDR404C RPB7 00446180 NER
down stream
mediators

CHK1 YBR274W NA 00449360 DDR

down stream
mediators

CHK1 YBR274W NA 00449370 DDR

down stream
mediators

CHK1 YBR274W NA 00449400 DDR

TOP3 TOP3 YLR234W NA 00464990 DSBR
TOP3 TOP3 YLR234W NA 00464990 MMR
TOP3 TOP3 YLR234W NA 00465030 DSBR
TOP3 TOP3 YLR234W NA 00465030 MMR
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Human Gene
Yeast
Gene

Yeast
Stan-
dard

Tetrahymena
Standard TTHERM

Repair
Path-
way

down stream
mediators

RAD53 YPL153C NA 00474550 DDR

KU80 YKU80 YMR106C TKU80 00492460 DSBR
down stream
mediators

RAD53 YPL153C NA 00494350 DDR

down stream
mediators

CHK1 YBR274W NA 00497000 DDR

down stream
mediators

CHK1 YBR274W NA 00497250 DDR

TOP3 TOP3 YLR234W TOP3 00497920 DSBR
TOP3 TOP3 YLR234W TOP3 00497920 MMR
9-1-1 clamp DDC1 YHR144C DCD1 00498180 DDR
down stream
mediators

RAD53 YPL153C NA 00526980 DDR

down stream
mediators

RAD53 YPL153C NA 00534050 DDR

NA RAD6 YGL058W NA 00547960 ICL
KU70 YKU70 YMR284WTKU71 00561799 DSBR
down stream
mediators

CHK1 YBR274W NA 00600470 DDR

MUS81/ERCC4 MUS81 YDR386W MUS81 00624870 DSBR
POL Delta POL3 YDL102W POLD1 00636920 BER
POL Delta POL3 YDL102W POLD1 00636920 DSBR
POL Delta POL3 YDL102W POLD1 00636920 NER
down stream
mediators

RAD53 YPL153C NA 00637100 DDR

NA MMS2 YGL087C UCV2 00670590 ICL
down stream
mediators

CHK1 YBR274W NA 00670900 DDR

KU70 YKU70 YMR284WNA 00684440 DSBR
XPD RAD3 YER171W RTEL1 00684490 NER
POL31 POL31 YJR006W POL31 00691170 DSBR
down stream
mediators

CHK1 YBR274W NA 00715940 DDR

apical kinases MRE11 YMR224C MRE11 00721450 DDR
MRE11 MRE11 YMR224C MRE11 00721450 DSBR
RPA1 RFA1 YAR007C RLP1 00726370 DSBR
RPA1 RFA1 YAR007C RLP1 00726370 NER
PARP1 NA NA PARP1 00726460 DSBR
POL4 (pol
lambda)

POL4 YCR014C POLB1 00732550 DSBR

RFC RFC1 YOR217W NA 00762900 BER
RFC RFC1 YOR217W NA 00762900 MMR
RFC RFC1 YOR217W NA 00762900 NER
MSH5/MutS MSH5 YDL154W MSH5 00763040 MMR
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Human Gene
Yeast
Gene

Yeast
Stan-
dard

Tetrahymena
Standard TTHERM

Repair
Path-
way

apical kinases RAD50 YNL250W RAD50 00773790 DDR
RAD50 RAD50 YNL250W RAD50 00773790 DSBR
NA RAD18 YCR066W NA 00780660 ICL
RFC RFC4 YOL094C RFC4 00780750 BER
clamp loader RFC4 YOL094C RFC4 00780750 DDR
RFC RFC4 YOL094C RFC4 00780750 MMR
RFC RFC4 YOL094C RFC4 00780750 NER
UNG UNG1 YML021C UNG1 00794250 BER
NA APN2 YBL019W APN2 00794600 BER
down stream
mediators

RAD53 YPL153C NA 00815090 DDR

XPC RAD4 YER162C RAD4 00825460 NER
MET19 MET18 YIL128W NA 00829370 NER
down stream
mediators

RAD53 YPL153C NA 00852690 DDR

MSH4/MutS MSH4 YFL003C MSH4 00857890 MMR
LIG1 CDC9 YDL164C NA 00865240 BER
LIG1 CDC9 YDL164C NA 00865240 DSBR
LIG1 CDC9 YDL164C NA 00865240 NER
down stream
mediators

CHK1 YBR274W NA 00923220 DDR

CSB RAD16 YBR114W NA 00933250 NER
down stream
mediators

RAD53 YPL153C NA 00935420 DDR

RFC RFC1 YOR217W RFC1 00939110 BER
RFC RFC1 YOR217W RFC1 00939110 MMR
RFC RFC1 YOR217W RFC1 00939110 NER
down stream
mediators

RAD53 YPL153C NA 00976420 DDR

apical kinases MEC1 YBR136W ATR1 01008650 DDR
down stream
mediators

RAD53 YPL153C NA 01018400 DDR

down stream
mediators

RAD53 YPL153C NA 01026430 DDR

RecQ SGS1 YMR190C SGS1 01030000 DSBR
RecQL, RecQ4,
RecQ5, BLM,
WRN

SGS1 YMR190C SGS1 01030000 MMR

down stream
mediators

RAD53 YPL153C NA 01044420 DDR

down stream
mediators

RAD53 YPL153C NA 01049260 DDR

NTH1 NTG1 YAL015C NTG1 01106120 BER
PCNA POL30 YBR088C PCNA1 01107420 BER
PCNA PCNA YBR088C PCNA1 01107420 MMR
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Human Gene
Yeast
Gene

Yeast
Stan-
dard

Tetrahymena
Standard TTHERM

Repair
Path-
way

PCNA PCNA YBR088C PCNA1 01107420 NER
PMS2 PMS1 YNL082W PMS2 01109940 MMR
NA UBC13 YDR092W UCN2 01123950 ICL
RAD51 RAD51 YER095W NA 01143840 DSBR
XPG EXO1 YOR033C EXO1 01179960 DSBR
XPG EXO1 YOR033C EXO1 01179960 MMR
XPG EXO1 YOR033C EXO1 01179960 NER
down stream
mediators

RAD53 YPL153C NA 01205310 DDR

OGG1 OGG1 YML060W OGL1 01243450 BER
down stream
mediators

RAD53 YPL153C NA 01246670 DDR

down stream
mediators

RAD53 YPL153C NA 01246690 DDR

TOP3 TOP3 YLR234W NA 01262890 DSBR
TOP3 TOP3 YLR234W NA 01262890 MMR
down stream
mediators

CHK1 YBR274W NA 01358400 DDR

down stream
mediators

RAD53 YPL153C NA 01376880 DDR

down stream
mediators

RAD53 YPL153C NA 01494740 DDR

ELOC ELC1 YPL046C NA 01658030 NER
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A.2. Supplemental figures

Figure A.1.: Principal component analysis (PCA) of LFQ protein data, before (A) and
after (B) normalization. Sets measured together (A), were i) MMS, HP, NT1; ii) UV, CPT,
NT2; iii) IR, HU, NT3.
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Figure A.2.: Boxplots showing the intradistance (distance between trends of proteins
(A) or transcripts (B) clustered together) for each self-organzing map cluster. Clusters
with a large median intradistance were excluded from further analysis (cutoff presented
by dotted line). Mean values are written and presented for each cluster with a red dot

Figure A.3.: Density of the log2(CPM) values of each RNA sample measured.
Transcripts that did not have any CPM value across the complete time series and in any
of the treatments below the 25th quantile of all CPM values(CPM < 1.673028, dotted
line) were removed
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B.1. Supplemental tables

Table B.1.: Oligo sequences used in this study.

Table B.2.: Identified orthology groups (as per OrthoMCL for species in this study.) \
See https://doi.org/10.1016/j.isci.2023.106778
Table B.3.: Overview of the databases used (in Supplemental Information).

Table B.4.: Complete dataset of identified and enriched proteins, including calculated
values.
See https://doi.org/10.1016/j.isci.2023.106778
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Table B.5.: Enrichment values for KEGG and GO biological processes.
See https://doi.org/10.1016/j.isci.2023.10677
Table B.6.: Enriched proteins included in the STRING database.
See https://doi.org/10.1016/j.isci.2023.10677
Table B.7.: STRING interaction score of combined networks.
See https://doi.org/10.1016/j.isci.2023.106778
Table B.8.: Network edges in all combined networks.
See https://doi.org/10.1016/j.isci.2023.106778
Table B.9.: Network nodes in all combined networks.
See https://doi.org/10.1016/j.isci.2023.106778
Table B.10.: Overlap of interaction partners across species, per lesion.

Table B.11.: Overlap of interaction partners across lesions (in Supplemental
Information).
See https://doi.org/10.1016/j.isci.2023.106778
Table B.12.: Pfam domains of non-DNA repair enriched proteins and their
categorization.
See https://doi.org/10.1016/j.isci.2023.106778
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B.2. Supplemental figures
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Figure B.1.: A) Barplot showing the total amount of identified, quantifiable proteins per
species (see methods). B) Boxplot showing log10 LFQ intensity per replicate (y-axis)
and experiment (x-axis) of each included species.
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Figure B.2.: Overrepresentation of GO terms biological processes among enriched
proteins at each lesion across species. Conditions with no enriched GO terms are not
shown, or presented in gray. ‘Gene ratio’ refers to genes in the dataset (enriched
proteins at lesion) over genes in the background (whole genome).
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8-oxoG abasic RNA base
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Figure B.3.: A) Barplot of enriched proteins per lesion and species that are included in
the STRING database. B) Bar plot of number of interactions per lesion and species.
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with log2 fold change > 1 and p-value < 0.05 are highlighted and labeled.
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Figure B.5.: Volcano plots showing the fold change (x-axis) and p-value (y-axis) of
proteins binding to the abasic lesion compared to the control for each species. Proteins
with log2 fold change > 1 and p-value < 0.05 are highlighted and labeled.
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experiment (8-oxoG, abasic, control, RNA base), from a beta distribution within a range
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Supplemental Data C.1
See https://doi.org/10.1093/gbe/evad187
Supplemental Data C.2
See https://doi.org/10.1093/gbe/evad187
Supplemental Data C.3
See https://doi.org/10.1093/gbe/evad187
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