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Abstract. In Quantum Gravity functional integral approaches attempt to give mean-
ing and nonperturbatively evaluate the sum over histories represented by the gravita-
tional path integral. A variant of this approach proceeds indirectly by re-constructing
the sought-for functional integral in the continuum limit from the solution of an appro-
priate Functional Renormalization Group (FRG) equation. This line of thought is at
the core of the Asymptotic Safety scenario, in which the UV completion of Quantum
Gravity is realized via a non-trivial fixed point of the FRG flow.
In the first Part of this thesis, we investigate nonperturbative and geometrical aspects
of quantum dynamics in de Sitter spacetime, an Einstein space of Lorentzian signature
which may be used to model the observed accelerated expansion of the Universe. In this
part, three novel lines of research are established. Firstly, we examine the geometrical
and dynamical contents of the Renormalization Group (RG) flow in a broader context,
such as in connection with a new variant of the AdS/CFT correspondence. Thereby
Quantum Einstein Gravity is explored by solving its scale-dependent effective field equa-
tions and embedding the family of emerging 4-dimensional de Sitter spacetimes into a
single 5-dimensional manifold. Remarkably, we find that there exist only two possible
such 5D spacetimes, namely AdS5 and dS5. Secondly, we investigate the consequences
of nonperturbative, Background Independent quantization of gravity on the geometry
of de Sitter by means of a newly introduced spectral flow method. A first important
result reveals the dynamical thinning out of the effective degrees of freedom in the UV,
which is at the heart of Asymptotic Safety. Furthermore, evidence is found for a dy-
namical fragmentation of the effective quantum spacetime in disjoint, sub-horizon size
patches. Thirdly, we construct scattering amplitudes in curved spacetime, reflecting
the geometric properties of de Sitter spacetime in a novel and nontrivial way. In a fully
covariant formalism, we compute the scattering potential of a graviton-mediated scat-
tering process involving two very massive scalars at tree level. On Hubble-size scales
the potential yields a repulsive force; this can be attributed to the expansion of the de
Sitter Universe. Beyond the horizon, the potential vanishes identically.
The second Part of this thesis is devoted to a detailed discussion, and actual computa-
tion of physical observables in Quantum Gravity. We analyze the special symmetries of
gravity, and we perform the first computations of scale-dependent relational observables
in asymptotically safe gravity. First, inspired by the modeling of a physical coordinate
scaffolding, we construct general effective dynamics for diffeomorphisms of spacetime.
Second, we develop the formalism towards the use of running relational observables
within Asymptotic Safety: we introduce RG-dependent couplings associated to the ob-
servables, and in the spirit of the composite operator formalism, we derive a new flow
equation for these observables. We investigate their scale dependence by computing
their critical exponents, carrying out the analysis both in the standard and in the mini-
mal essential renormalization scheme. The (small) quantum corrections encoded in the
critical exponents represent universal quantities which can be compared to results from
other approaches to Quantum Gravity.
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CHAPTER 1

Introduction

1.1. The need for Quantum Gravity

The first step towards a quantum theory of gravity can be dated back to 1899, when
Max Planck introduced a set of “scales”, the Planck mass, time, and length. However,
Planck himself was unaware of what he had started: during this period, the theories of
Quantum Field Theory (QFT) and General Relativity (GR) had not yet been developed.
At Planck’s time the search for Quantum Gravity had not yet started and it was not
foreseeable what a challenge it would represent for future physicists [1–3].

A few months after Albert Einstein published his seminal papers on the theory of
General Relativity [4–7], he noted that [8]:

Gleichwohl müßten die Atome zufolge der inneratomischen Elektronenbewe-
gung nicht nur elektromagnetische, sondern auch Gravitationsenergie ausstrahlen,
wenn auch in winzigem Betrage. Da dies in Wahrheit in der Natur nicht
zutreffen dürfte, so scheint es, daß die Quantentheorie nicht nur die Maxwellsche
Elektrodynamik, sondern auch die neue Gravitationstheorie wird modi-
fizieren müssen.

Einstein was questioning the possibility of a unification of Planck’s quantum theory
with his newly developed theory of Gravitation.

Some years later three attempts at a theory of Quantum Gravity had been initiated:
Rosenfeld [9], Pauli and Fierz [10] aimed to a formulation of Quantum Gravity in
analogy with quantum electrodynamics; Bronstein [11, 12] and Solomon [13] aimed at
a full quantization of the (non)linear gravitational equations and the generalization to
the case of an absent background metric; van Dantzig [14] treated GR as an intrinsic
macroscopic theory, e.g. as an emergent theory arising as a limit of an underlying
theory.

Generalizing Feynman’s covariant quantization of quantum electrodynamics to non-A-
belian gauge theories was the program outlined by DeWitt [15–17]. He made a number
of important progresses: he introduced the background field method in order to repre-
sent the effective action as a gauge invariant functional of the fields and to connect the
counterterms and all possible ultraviolet (UV) divergences of scattering amplitudes at
a fixed loop expansion: he included ghost fields to compensate the effect of unphysical

1



2 1. introduction

polarizations in loop corrections; and he developed invariant regularization techniques,
as the dimensional regularization, for instance.

As for the gravitational field, ’t Hooft and Veltman [18] were the first to apply
these techniques, in 1974: they showed that, within quantum General Relativity, pure
gravity has a finite S-matrix at one loop order, but as soon as matter, i.e., scalar fields,
are added, higher curvature counterterms are needed. In 1985 Goroff and Sagnotti
[19–21] showed that in pure gravity higher curvature counterterms are required at two
loop order. This was the final result proving that quantum General Relativity is not
renormalizable as a perturbative quantum field theory, and that it cannot be treated
along the lines of Yang–Mills theory at the quantum level.

A theory of Quantum Gravity is expected to be instrumental in an improved under-
standing of Nature, from the biggest to the smallest structures in the Universe. For
example, we can describe the motion of planets and stars and the structure of spacetime
with the classical theory of gravity. However, if we zoom into smaller and smaller scales
and eventually come across single atoms, General Relativity no longer applies. Along
the journey into the microscopic, starting from that point on we need quantum physics.
Considering the electromagnetic interaction, in order to account for the structure of
atoms and the electromagnetic field itself, also the latter has to be treated according to
the laws of quantum mechanics and it turns out to be composed of elementary entities
called photons.

Moreover, since Maxwell’s theory is Lorentz invariant, a proper description of pho-
tons and their interactions implied the development of special relativistic quantum
mechanics: this is how Quantum Electrodynamics (QED) started. It was the first ex-
ample of a Quantum Field Theory, and led to surprisingly precise predictions. Later on
it was understood that the weak and nuclear interactions could be described by (quan-
tum) Yang–Mills theories (Quantum Chromodynamics (QCD)), which are non-Abelian
generalizations of QED.

So now we have at hand two types of extremely successful theories, which are based
on widely different conceptual foundations and mathematical tools. They describe phe-
nomena occurring at widely different scales: sub-atomic distances for QFT, and macro-
scopic to cosmic distances for GR. As long as we stay within the respective regimes,
these theories are perfectly adequate and in accord with the present experiments and
observations. However, it seems unlikely that the status quo is the ultimate theory.
Rather, one would expect a more uniform description of all interactions to be possi-
ble, which likely means that gravity also has to be subjected to the laws of quantum
mechanics.
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After a relativistic quantum theory had been introduced, the task would have been
to develop the next part of the theory, that is, to unify quantum theory, special rela-
tivity and the theory of gravitation into a single consistent framework. The yet to be
developed theory of Quantum Gravity was supposed to provide a satisfactory descrip-
tion of the structure of spacetime even near the Planck scale, where general relativistic
and quantum effects are believed to be equally relevant. This was the motivation for
the search for a theory of Quantum Gravity [22–24].

(1) How might one approach then the construction of a theory of Quantum Gravity?
One possible path consists in starting from General Relativity, which has to characterize
the classical limit of every quantum theory of gravity. In fact, while Newtonian gravity
has been tested experimentally to sub-millimeter length scales [25–28], General Relativ-
ity fails near spacetime singularities, where no physics can be described. For example,
GR does not tell what happens at the center of a black hole or at the beginning of
our universe, the cosmological singularity called Big Bang. In extreme astrophysical or
cosmological situations the notion of a classical, smooth spacetime breaks down. Hence
General Relativity is an incomplete theory, and so the hope is that we shall be able to
understand and resolve the related open problems by analyzing in detail its failures.

Furthermore, in modern cosmology, based on General Relativity as an effective field
theory on large scales, current cosmological data suggest, the existence of a dark sector
in addition to the Standard Model, which should constitute 95% of the total content
of the Universe. In the general relativistic picture of the world the spacetime-versus-
matter distinction breaks down to some extent. In General Relativity, the metric, i.e.,
the gravitational field, has acquired properties that have been characteristic of matter
from Descartes to Feynman: it satisfies differential equations, it carries energy and
momentum, and it can act on, and be acted upon by other forms of energy and momen-
tum. Therefore, in order to explain Dark Matter (DM), modifications of gravity could
be a possible avenue if they give rise to an appropriately modified gravitational field
equation, that mimics DM in the Universe.

(2) From a more theoretical stance, there are some fundamental features of classical
General Relativity which we want its quantum version to inherit. One such feature is
Background Independence [29–32]: no particular spacetime (such as Minkowski space)
should be given a privileged status. Rather, the geometry of spacetime should be
determined dynamically.

In fact, among all fundamental forces in Nature, gravity is exceptional: it is encoded
in the very geometry of spacetime. Therefore, this geometry presumably should make
its appearance at a fundamental level of the sought-for quantum theory.
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Moreover, from a quantum field theoretic point of view there are further fundamental
features that a quantum theory of gravity should have, such as unitarity and renormal-
izability. Formulating the quantum theory of gravity in an ordinary QFT framework
could be attempted by studying the quantum excitations around a given classical back-
ground metric. However, this results in a perturbatively non-renormalizable theory [18,
19] with questionable predictive power at high energy, or none at all.

The simultaneous disentanglement of all these issues of different nature and origin
is very arduous. For instance, the direct perturbative approaches which dominated the
field in the first years ignored the Background Independent nature of gravity. They
assumed that the spacetime can be considered as a continuous, flat, smooth, and fixed
background geometry, and the quantum gravitational field can be treated as a quantum
field on this background. In this setting, using standard perturbation techniques, one
finds that a scattering amplitude calculated from the Einstein–Hilbert action diverges:
the resulting Quantum Gravity turned out to be non-renormalizable.

(3) Moreover, these problems appear hard also because there are very few observations
to guide us [33]. Thanks to experimental improvements and astronomical observations,
more and more extreme scale regimes can be reached both on the quantum and the
macroscopic side. De facto, Newtonian gravity has been tested experimentally down
to sub-millimeter scales [25]: GR makes successful predictions on large scales, from the
very largest cosmic scales (1026 m) down to the scale of the solar system (1010 m).
Furthermore, on scales of the order of kilometers, quantum effects have to be taken
into account in the description of the physics of neutron stars [34]. On the other side,
subatomic collider experiments at the LHC observe quantum effects on scales from
around 10−20 m up to 1 m in molecular physics experiments [35, 36]. In experimental
astroparticle physics we have already observed particles with energies only six orders of
magnitude away from the Planck scale of about 1019 GeV, or (10−35 m)−1 [37].

However, it may be possible to circumvent the problem of the enormous separation
of scales: there are also indirect experimental tests of Quantum Gravity. Fortunately,
the cosmos provides another playground to test gravity, for it contains many objects
that combine heavy and small properties and thus involve large curvature deformation
of spacetime. Furthermore, the gravitational interaction is in a sense isolated from
the other interactions, which are smeared out on cosmological scales. For instance,
supernovae observations or lensing effects due to massive black holes are good candidates
to study the effect of strong spacetime deformations.

A standard example are the imprints of Quantum Gravity that could be traced
thanks to the highly precise measurements of the Cosmic Microwave Background Ra-
diation (CMBR) [38, 39]: the CMBR photons in the observable Universe left over from
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the Big Bang have a total entropy of about 1090 bits. In a discrete model for Quantum
Gravity this entropy can be derived by evaluating the information content carried by
each physical constituent [40]. As a further example, through the detection of gravi-
tational waves we may find answers about the field content of the classical (effective)
theory, including tensor modes [41].

Further indirect experimental signs can be obtained from the computation of scat-
tering amplitudes. Treating gravity as an Effective Field Theory (EFT), scattering
processes will give rise to contributions of different nature, both classical and quantum
[42]. Scattering amplitudes in flat spacetime have been applied to understand diverse
aspects of gravity. A classic result is the construction of the Newtonian potential from
the scattering amplitude in the tree-level Born approximation. Furthermore, the most
exciting recent application is to calculate new quantities of interest to the gravitation-
al-wave community [43].

In the following section we review the currently available approaches towards Quan-
tum Gravity.

1.2. The panorama

Each approach to Quantum Gravity starts from different assumptions, privileging one
of the main requirements for a well-defined theory, and then attempting to comply with
all remaining aspects. In order to quantize the gravitational field one, has to design
something new. For instance, if one starts from a perturbative framework keeping
renormalizability, then one has to increase the number of symmetries. On the other
hand, when starting from a nonperturbative standpoint, instead, one may have to
establish a new mathematical toolbox which has the potential of being compatible with
Background Independence [44].

In order to cure the UV divergences of gravity, new gravitational interactions can be
taken into account, which might become relevant only at high energies. Examples often
involve new symmetry principles, for example, conformal symmetry. Another option is
to couple gravity to specific matter content, which can represent a finite or an infinite
reservoir of particles or quantum states.
A consistent perturbative approach to Quantum Gravity that tries to unify all interac-
tions is perturbative String Theory . This approach introduces new symmetries such
as supersymmetry by adding an infinite tower of massive particles, which amounts to
requiring extra dimensions. This would provide the required ultraviolet completion. In
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this picture, gravity is not quantized directly, but emerges from the theory via interac-
tions of closed strings at low energies.
In [45] Maldacena conjectured that string theory on an anti-de Sitter (AdS) background
can be described by a Conformal Field Theory (CFT) on the boundary of the AdS

space. This is a duality conjecture, and its most popular application is realized on
an AdS5 × S5 background with an N = 4 Super-Yang—Mills theory on the boundary.
Furthermore, the AdS/CFT correspondence can be considered as a concrete realization
of the holographic principle.

Another class of approaches towards Quantum Gravity can be divided into various
main subclasses following different guiding principles. We present them with examples
of concrete realizations of these principles.

(1) Other fundamental variables. Some theories question whether the metric is
the fundamental field to be quantized. This leads to various formulations of gravity
based on different fundamental variables. For example Canonical Quantum General
Relativity or Loop Quantum Gravity (LQG) [44, 46, 47] introduces new variables,
holonomies and fluxes for directly dealing with gravitational interactions. It is based
on a nonperturbative formulation that proposes the existence of a minimal length scale
in configuration space. The standard formulation is based on canonical quantization of
General Relativity theory in four spacetime dimensions. LQG is manifestly Background
Independent. It focuses on an inherent notion of quantum discreteness of spacetime
which is derived rather than postulated. Among its successes is a certain UV finiteness
result and a promising path integral formulation (spin foams).

(2) Nonperturbative renormalizability. Gravity is perturbatively non-renormal-
izable, but there is evidence that it should be nonperturbatively renormalizable.1 Ac-
cordingly, the formulation of the theory should be nonperturbative from the begin-
ning. Concrete realizations require the existence of an ultraviolet non-Gaussian fixed
point (NGFP) characterized by a finite number of coupling constants that determine all
other coefficients appearing along the renormalization group trajectory.
Asymptotic Safety [49–51], in metric gravity also known as Quantum Einstein Grav-
ity (QEG), requires the existence of an ultraviolet fixed point. The most commonly
employed tool to prove the existence of such a fixed point is the FRG. In the case
of QEG, the FRG takes the metric as the carrier field of the gravitational degrees of
freedom, and the pertinent effective action functionals are required to depend on the
metric in a diffeomorphism-invariant way.
This method it is the subject of the present thesis, and more details will be provided
in later chapters.
1In a paper entitled “Renormalizing the Non-renormalizable” Gawedzki and Kupiainen used a 1/N -
expansion to prove the non-perturbative renormalizability of the Gross–Neveu model in three dimen-
sions [48].
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(3) Spacetime discreteness [52, 53]. It can be assumed that the gravitational met-
ric, and hence its underlying spacetime, is not a continuum. Instead, spacetime can
be considered as discrete (lattice gravity), which introduces a cutoff of the order of the
Planck length in the theory (for instance, discrete Regge calculus [54]). The discrete
nature of spacetime is expected to cure the UV divergences.
Euclidean Dynamical Triangulations (EDT) or its Lorentzian counterpart,Causal
Dynamical Triangulations (CDT) [55–57] are such discrete approaches to gravity.
In its usual formulation, CDT assumes GR with a positive cosmological constant as the
bare action in the path integral. Its dynamical variables are a set of piecewise flat
manifolds and a collection of gluing rules that constrain configuration space in the path
integral. The UV finiteness relies on the possibility of finding an ultraviolet critical
point and a continuum limit.
Another (discrete) example are Causal sets [58, 59]. In this approach one postulates
that at the most fundamental level, spacetime is discrete, with the spacetime continuum
replaced by locally finite causal set of spacetime points, equipped with a proto-causality
ordering. The discreteness is encoded in the local finiteness.

(4) New formulations of Quantum Field Theory. There are debates whether
new formulations of QFT or gauge theory exist (for instance, axiomatic QFT, algebraic
QFT, or non-geometric formulations) that will more easily accommodate dynamical and
arbitrary background geometries [60].
Non-commutative geometry [61] generalizes the notion of Riemannian geometry to
non-commutative geometry in terms of a non-commutative algebra, a Dirac operator
and a Hilbert space; gravity and matter emerge from it using the algebra as an input.

(5) Manifest canonical covariance. The covariant canonical approaches try to com-
bine the advantages of manifest covariance on one side and a well-defined quantization
procedure on the other. Among these approaches there are the covariant phase space
methods [62], multisymplectic ansätze [63] or the history bracket formulation
[64].

Remarks: It has to be stressed that among all these frameworks there exist attempts to
implement and/or derive modifications of General Relativity at low energies. Examples
include Higher derivative gravity [65, 66] and similar modifications of classical gravity.
These modifications have to be relevant within bounds set by observations, as General
Relativity appears to be a correct description in the infrared (IR).

At this stage another remark is in order: in some of the presented approaches, for
computational ease the models have been built in Euclidean signature. In some cases, it
is assumed that performing an analytical continuation should reproduce the Lorentzian
results; for some other approach, a Lorentzian setting is required from the beginning.
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Generally, Lorentzian signature and the associated causal properties represent one
of the main pillars for a quantum theory of gravity. In this thesis we will perform the
first investigations in the field in a curved maximally symmetric Lorentzian geometry,
such as de Sitter (dS) spacetime.

In the next section, we are going to characterize the approach adopted in this thesis
by discussing the three key features of Quantum Gravity, which we will prioritize,
namely Background Independence, diffeomorphism invariance, and nonperturbative
renormalizability.

1.3. Background Independence, diffeomorphism invariance and
nonperturbative renormalizability

(1) Background Independence. Conceptually, the most severe difficulty one en-
counters when dealing with a quantum theory of gravity, one which is not shared by
any conventional matter field theory, is the requirement of Background Independence
[29, 31, 47, 49]. In [24] A. Ashtekar asserted:

The new strategy is to free oneself of the background spacetime that seemed
indispensable for formulating and addressing physical questions; the goal is
to lift this anchor and learn to sail the open seas.

At this stage it is important to distinguish between the principle of “Background Inde-
pendence”, with capital letters, and the “background independence”. The latter, written
with small letters, refers more simply to the independence of some physical quantity
with respect to the background field. Instead, the principle of Background Independence
requires that none of the theory’s ingredients, predictions and assumptions should de-
pend on any given fixed metric. On the contrary physical metrics are self-consistently
resulting from the dynamics of the Quantum Gravity.

In perturbative GR one writes the quantum metric operator as a sum consisting of
a background piece and a perturbation piece around it, obtaining a graviton QFT on a
fixed (usually flat) background. Subsequently, perturbation theory breaks Background
Independence at every finite order. Such attempts end up in a mathematical disaster:
a non-renormalizable theory [18–20] with questionable predictive power [67].2

In principle, one can restore Background Independence by summing up the entire
perturbation series. However, this turns out to be very arduous task.

2Various authors have argued in the EFT framework that even theories with an infinite number of
relevant parameters can be predictive [42, 68, 69].
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Moreover, perturbation theory is not always a good approximation in a non-empty
neighborhood of a given expansion point. For an illustration, consider the example
in [70]: if one starts with a free particle and adds a perturbation potential of the
harmonic oscillator form ω2q2, the exact energy levels of the system are well known to be
discrete. By treating the system perturbatively, starting from the free particle, it would
be extremely hard to track the discrete spectrum displayed by the “nonperturbatively”
quantized harmonic oscillator.

The modern approaches towards Quantum Gravity have incorporated the desidera-
tum of Background Independence in two essentially different ways [24, 44, 71]:

(1) Approaches which literally do not employ a gravitational background in any way.
Here one tries to define the theory, and work out its implications, without ever
employing a background metric or a similar non-dynamical structure. This is
the path taken in LQG and the discrete approaches to Quantum Gravity, for
instance. However, this path seems very hard, if not impossible, to realize it
in a continuum field theory.

(2) Approaches which self-consistently fix a gravitational background by invoking
the fundamental dynamical laws. One takes advantage of an arbitrary classical
background metric at the intermediate steps of the quantization but verifies
at the end that no physical prediction depends on which metric was chosen.
This background field method is at the heart of the continuum-based gravita-
tional average action approach, which we shall employ in our investigation of
Asymptotic Safety.

In this thesis, we will follow the second avenue, the dynamical determination of a
self-consistent background.

(2) Diffeomorphism invariance. Gravity is a gauge theory and transforms covari-
antly under gauge transformations realized by spacetime diffeomorphisms. It is ex-
pected, hence, that in Quantum Gravity as well all interactions must transform under
this common symmetry group, the 4-dimensional diffeomorphism group. This property
renders the definition of local observables particularly striking. However, de facto, we
are able to perform measurements of local fields, and along this thesis, we will show
how to construct a model for diffeomorphism-invariant observables.

(3) Nonperturbative formulation. In this thesis we adopt a nonperturbative formu-
lation, namely in two respects: first, no expansion in powers of the carrier fields (e.g.,
metric fluctuations hµν) has to be performed, second, no expansion in small couplings
is invoked. As we shall discuss, Asymptotic Safety is very likely to render this theory
nonperturbatively renormalizable then.
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Ultimately, we advocate an approach to Quantum Gravity that takes over the fol-
lowing successes of classical General Relativity:

(1) The carrier of the physical degrees of freedom is the metric field gµν .
(2) The theory is diffeomorphism-invariant.
(3) The theory complies with the principle of Background Independence.

In other words, the natural language of Quantum Gravity turns out to be diffeomor-
phism-invariant and nonperturbative, keeping Background Independence as a guiding
principle at every stage of the construction of the theory.

1.4. Structure of this thesis

This thesis is divided into three main parts.

(1) Each part begins with an introductory survey, in which the main techniques em-
ployed and results are presented. We embed the respective research area into the
broader Quantum Gravity arena and display the bibliographical state of the art.

Thereafter, in the opening of the single sections, we report an executive summary
about the content of the specific investigation, including relevant technical details.

The main sections are composed of the author’s original publications, with the ex-
ception of the first, mostly introductory part.

Finally, the last chapter of each part, in case this part includes new research results,
represents a summarizing chapter and contains a discussion on the results, including
them into a broader research context.

The last chapter of this thesis represents a global summary and an overall outlook.
We will relate the investigations performed in the thesis to the questions raised in the
Introduction and present an overview of the progress made in each Part.

The last Part is devoted to a number of Appendices.

(2) The contents of the various parts can be briefly outlined as follows:

Part I of this thesis gives a comprehensive introduction of the Asymptotic Safety
Program. In this approach to Quantum Gravity, the notion of renormalization is defined
via the Functional Renormalization Group Equation (FRGE), which is constructed in
Chapter 3. The regularized, at all scales well-defined path integral for Quantum Gravity
is related to a solution to this equation. We will mainly focus on the RG flow of QEG,
focusing on the single-metric “Einstein–Hilbert truncation”. We will discuss its solutions
on Euclidean and Lorentzian self-consistent backgrounds. Finally, in Chapter 4 the new
developments within the FRG framework are outlined.
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Part II is based on the author’s publications [72–76] (from now on referred to
as [RF1], [RF2], [RF3], [RF4], [RF5]), and analyzes the nonperturbative aspects of
quantum gravitational phenomena on a dS geometry using different techniques.

In Chapter 7 (Project (II.A)) and Chapter 8 (Project (II.B)) we construct the
scale-dependent effective dS spacetimes implied by the FRG in 4-dimensional Quantum
Einstein Gravity.

In Project (II.A) we propose a new “geometrization” of the RG trajectories, em-
bedding the family of emerging 4-dimensional spacetimes into a single 5-dimensional
manifold, which thus encodes the complete information about all scales. The inves-
tigation is performed in both Euclidean and Lorentzian signature; in the latter case
the 5D picture of the resulting picture is interpreted as a novel kind of “AdS/CFT
correspondence”.

Project (II.B) is devoted to the scale-dependent effective geometry of the de Sitter
solution. We employ a novel approach whose essential ingredient is a modified spectral
flow of the metric dependent d’Alembertian. This allows us to identify the scale-depen-
dent field modes that represent the degrees of freedom that define the effective field
theory at the respective scale.

In Chapter 9 (Project (II.C)) we study how the quantum properties of dS space-
time might be uncovered through the computation of scattering amplitudes on this
spacetime. We introduce a new technique to compute the gravity-mediated scattering
of two massive scalar particles in dS spacetime.

Part III deals with the problem of defining diffeomorphism-invariant observables in
Quantum Gravity. Because of this very special symmetry of gravity, observables may
be defined “relationally”. This Part is based on the author’s publications [77, 78] (from
now referred to as [RF6] and [RF7]).

In Chapter 12 (Project (III.A)) we construct a new model for the dynamics of
diffeomorphisms, describing relational observables and cosmological solutions. In Chap-
ter 13 (Project (III.B)), we compute the RG flow of relational observables in asymp-
totically safe gravity, deriving the equation for the flow of the relational effective action.

Finally, Part IV contains the Appendices. In Appendix A, Appendix B, Appen-
dix C, and Appendix D we establish the basic mathematical background needed for the
calculations performed in the FRG approach to Quantum Gravity.

In Appendix E we summarize the main properties of maximally symmetric space-
times, especially of dS space. This collection of results is particularly relevant for Part
II; it also contains a number of new results.
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Appendix F comprises the intermediate steps in the computation of the propagator
in a constantly curved spacetime.

Appendix G discusses the properties of the dynamical diffeomorphisms (Chapter 12)
and compares them with different models.

Finally, Appendix H contains the details of the computation of the flow of the rela-
tional observables from Chapter 13.

1.5. The author’s contribution

Most of the new results presented in this thesis are based on the author’s research
publications [RF1]-[RF7]. The results in the author’s publication [79] ([RF8]) have not
been included in this thesis.

At the beginning of each chapter, it will be stated whether the chapter contains new
research results and if so where they are taken from. In particular, the author of this
thesis has contributed to the publications as follows:

[RF1] R. Ferrero and M. Reuter. “Towards a Geometrization of Renormalization Group
Histories in Asymptotic Safety”. In: Universe 7.5 (2021), p. 125. arXiv: 2103.15709
[hep-th].

and

[RF2] R. Ferrero and M. Reuter. “On the possibility of a novel (A)dS/CFT relationship
emerging in Asymptotic Safety”. In: JHEP 12 (2022), p. 118. arXiv: 2205.12030
[hep-th].

These two publications introduce a novel procedure for the geometrization of RG tra-
jectories. We analyze the options for a geometrization in a Euclidean and a Lorentzian
setting. One of the main results of these papers is that the picture of a certain
“(A)dS/CFT correspondence” emerges from the RG flow, thanks to its Asymptotic
Safety. The framework has been proposed by M. Reuter; he also made the first
steps towards the first illustrative realizations. The investigation about the possible
geometrizations and the analyses about the global geometric structure were performed
by the author. Thereby, she discovered several surprising connections, such as the
global geometric properties related to the specific RG trajectory, and the realization of
the novel (A)dS/CFT correspondence. The crucial numerical test reported in Figure 7.1
and Figure 7.2 was performed by the author (by means of the computer algebra system
Mathematica).

https://arxiv.org/abs/2103.15709
https://arxiv.org/abs/2103.15709
https://arxiv.org/abs/2205.12030
https://arxiv.org/abs/2205.12030
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[RF3] R. Ferrero and M. Reuter. “The spectral geometry of de Sitter space in asymptotic
safety”. In: JHEP 08 (2022), p. 040. arXiv: 2203.08003 [hep-th].

This paper continues a novel research line within Asymptotic Safety established by
C. Pagani and M. Reuter [80, 81] briefly before the author started her PhD project. This
new approach exploits the spectral properties of the scale-dependent kinetic operators
appearing in Asymptotic Safety in the case of Euclidean signature.

In this paper we generalized the spectral analysis to Lorentzian spacetimes, which
involvees a number of essentially new aspects. Concretely we applied the analysis to
the dS spacetimes. A main result of this paper is the thinning out of degrees of freedom
in the UV regime. The other main result is the emergent picture of the dS universe,
consisting of a collection of 3-dimensional coherent patches, which can be individually
described by the effective action occurring along the RG flow. This investigation was
performed by the author, gaining expertise on the representation theory of non-compact
Lie groups. The author made essential use of the little known, non-standard properties
of the special functions associated to such representations. All conclusions presented in
the paper were drawn in joint discussions.

[RF4] R. Ferrero and C. Ripken. “De Sitter scattering amplitudes in the Born approxi-
mation”. In: SciPost Phys. 13 (2022), p. 106. arXiv: 2112.03766 [hep-th].

and

[RF5] R. Ferrero and C. Ripken. “Quadratic gravity potentials in de Sitter spacetime
from Feynman diagrams”. In: JHEP 08 (2023), p. 199. arXiv: 2212.08052 [hep-th].

These publications introduce a new framework for the computation of scattering
amplitudes in dS spacetime. The method itself had been initiated by C. Ripken. He
also made the first step towards the evaluation of the propagator in dS background,
sharing with the author his expertise in the usage of the tensor manipulation package
xAct for Mathematica. The author proposed the evaluation of the amplitude in an
adiabatic expansion. She performed the necessary tensor manipulations and numerical
evaluation of the scattering potential in parallel with C. Ripken. The extension towards
higher derivative gravity and its implications was obtained in joint discussions.

[RF6] R. Ferrero and R. Percacci. “Dynamical diffeomorphisms”. In: Class. Quant.
Grav. 38.11 (2021), p. 115011. arXiv: 2012.04507 [gr-qc].

This paper arose from the continuation of work that had started already during the
author’s Master thesis with Prof. R. Percacci. The model for dynamical diffeomeor-
phisms was proposed by R. Percacci. The author studied its dynamical and kinematical
properties, connecting the model to relational observables and cosmological models.

https://arxiv.org/abs/2203.08003
https://arxiv.org/abs/2112.03766
https://arxiv.org/abs/2212.08052
https://arxiv.org/abs/2012.04507
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[RF7] A. Baldazzi, K. Falls, and R. Ferrero. “Relational observables in asymptotically
safe gravity”. In: Annals Phys. 440 (2022), p. 168822. arXiv: 2112. 02118 [hep-th].

This paper represents the natural attempt to combine the knowledge of the author
about relational observables and about the essential FRG formalism within an Asymp-
totic Safety scenario. The main link was obtained in joint discussion with K. Falls. The
numerical evaluations were performed (via Mathematica) together with A. Baldazzi.

https://arxiv.org/abs/2112.02118
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CHAPTER 2

Introduction and Survey of Part I

The preparatory Part I is devoted to the construction of the gravitational Effective
Average Action and its flow utilized in Part II and in Part III. It consists of the explicit
construction of the FRGE and its application to the gravitational Effective Average
Action (EAA), as well as the presentation of the main approximate solutions. Moreover,
we present novel developments in the field, such as a new essential renormalization group
scheme and the application of the FRGE to the renormalization of composite operators.
The presentation of this part is tuned to introduce the main ingredients which will be
required in the rest of this thesis.

(1) Renormalization Group. As discussed in the Introduction, in Quantum Gravity
the effective action presents ultraviolet and infrared divergences. Consequently, a com-
mon procedure is to readjust each bare divergent contribution (for instance infinities
appearing in Feynman diagrams) by a suitable counterterm to a give a “renormalized”
quantity: this was the early stage of the perturbative renormalization procedure. The
numerical values of the renormalized quantities have to be determined by experiments.
However, in quantized General Relativity it turns out that there should be infinitely
many such renormalized parameters: gravity is perturbatively non-renormalizable [19,
20].

The interpretation of the procedure of “removing infinities” has changed with the
inception of the renormalization group. In this context coupling constants have to vary
and their variation is described by the so-called renormalization group equations: a
scale is introduced in order to determine the measurements of physical quantities. The
renormalization group equations relate different coupling constants at different scales
(typically momentum or cutoff scales).

(1a) The derivation of the scaling properties of interacting theories was first performed,
at a perturbative level, by Callan [82] and Symanzik [83, 84]. They studied the behav-
ior of the renormalized proper vertex functions under a change of the renormalized
mass. In the process of renormalization, a mass scale µ must be chosen. Depending
on it, the field is rescaled by a constant and as a result the bare coupling constant g
is correspondingly shifted to the renormalized coupling constant. Of physical impor-
tance are the renormalized n-point functions G(n)(x1, x1, · · · , xn;µ, g) computed from
Feynman diagrams. For a given choice of renormalization scheme, the computation

17
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of this quantity depends on the choice of the mass, which affects the shift in the cou-
pling. The so-called Callan–Symanzik equation relates these shifts. At one-loop order
of perturbation theory the equation reads(

µ
∂

∂µ
+ β(g)

∂

∂g
+ nγ

)
G(n)(x1, x1, · · · , xn;µ, g) = 0 (2.1)

where β(g) is the beta function and γ encodes the scaling of the wave function renormal-
ization of the field. It is important to remark at that stage, that here only the finitely
many beta functions that are related to the relevant couplings are considered.

(1b) In the 1990s, another, much more general type of RG was developed. The final
purpose was the description of a path in theory space connecting the fundamental
UV theory with its full effective description: Knowing the effective action Γ and the
cutoff scale Λ of the theory, one could directly compute the variation with respect to
the cutoff ΛdΓΛ

dΛ
. It turned out that this functional is finite and provides all the beta

functions of the theory [85]. This construction turned out to be closely related to
the renormalization group concept formulated in quantum and statistical field theory
which combines functional methods with the renormalization group idea by Wilson [86,
87]. The central idea of the renormalization group à la Wilson1 is that the quantum
fluctuations in the path integral can be integrated out progressively. Concretely, the
integration in the path integral is performed dividing the integral into several integration
steps, each step corresponding to a certain “momentum shell” of quantum fluctuations.
This procedure leads to the control of the change of measurements of physical quantities
by smoothing or averaging out microscopic details when going to a lower resolution.
Additionally, in order to obtain the corresponding Green’s functions from which all
physical observables are to be calculated, an integration of the low momentum quantum
fluctuations has to be carried out.

Wilson’s notion of renormalization was originally based on the construction of a
scale-dependent bare action, the Wilson action. This action is defined iteratively in
such a way that lowering the cutoff scale amounts to integrating out those modes in the
functional integral whose momenta are contained in the next momentum shell, giving
rise to a new action defined at the new scale. The variation of Wilson’s action with
respect to the cutoff is then governed by an Exact Renormalization Group Equation
(ERGE). In comparison to the Callan–Symanzik approach, here the ERGE allows a
determination of the complete functional which amounts to completely “solving” the
theory in question.

From a practical point of view, using the Wilson action as the fundamental ob-
ject has the disadvantage that extracting physical information requires performing the
remaining functional integration (over all modes modes down to momentum zero) in

1Wilson was himself inspired by the discrete spin-block averaging procedure by Kadanoff [88].
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order to obtain the corresponding effective action. On the other hand, working with a
scale-dependent effective action would be more suitable for computations and physical
intuition, in particular in the framework of gauge theories. It is exactly for this purpose
that the Effective Average Action was introduced.

(1c) In the 90’s, an alternative way to regularize the path integral and implement the
Exact Renormalization Group had been developed. Its main purpose was to perform
an alternative manipulation of the path integral. Exploiting the language of functional
integrals, based on this intuition a new method had been established: the FRG, and its
related FRGE or Wetterich equation. Instead of computing the running of the scale-de-
pendent bare action à la Wilson, a concrete implementation of the FRGE uses as its
key tool a scale-dependent version of the effective action, the Effective Average Action
(EAA) [50, 85, 89–93]. Additionally, in contrast to the perturbative approach to the
renormalization group it is possible to implement the underlying RG idea already at the
level of the EAA, fully independently of the bare action.2

The functional RG gives rise to a nonperturbative differential equation for the EAA.
Notably, this equation enforces the occurrence of an IR regularization cutoff and has a
structure, such that the IR regularization implicates the UV regularization as well. The
FRGE admits solutions that are predictive, such that only a finite set of parameters to
be taken from experiment are required. Importantly, these solutions are well-defined
both in the IR and UV. This nonlinear equation defines RG trajectories on theory space,
a manifold containing all possible invariants compatible with the required symmetries
and field content, from which only those that emanate from a suitable UV fixed point
are physical relevant. The position of this fixed point defines the fundamental the-
ory, which is thus a prediction of the formalism instead of a mere input. Especially
compelling is that such solutions do exist in theories that are otherwise perturbatively
non-renormalizable. In fact, for Quantum Gravity the existence of the UV fixed point
was proven by M. Reuter [95] in the so-called Einstein–Hilbert truncation. Nowadays
there are strong indications for the existence of such a nonperturbative solutions, even
for higher truncation orders.

(2) Asymptotic Safety. In the EAA approach the search for a Quantum Field Theory
of gravity is guided by the Asymptotic Safety conjecture. Proposed by S. Weinberg [96],
it employs a generalized notion of renormalizability which goes beyond the standard
perturbative ones. The key requirement is the existence of a non-trivial UV fixed point
of the FRGE. Crucially, this trajectory has to have a finite number of relevant directions.
This makes the Asymptotic Safety scenario predictive, i.e., the relevant couplings corre-
spond to the number of free parameters of the theory that must be fixed by experiment.
2In principle, when implementing an UV regularization, one can reconstruct a bare action that then
depends on the chosen UV regularization scheme. However, this procedure is not required for the FRGE
[94].
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Moreover, classical General Relativity is recovered as an effective description in the IR,
and the bare action emerges from the fixed point condition and is thus a prediction
rather than an input. The Asymptotic Safety program then becomes very concrete: It
focuses on the search for a UV-finite trajectory in theory space with an UV fixed point,
from which the UV-finite trajectories originate.

From a technical point of view, the FRGE turns out to be a system of infinitely many
coupled ordinary differential equation for the scale-dependent couplings. In order to
perform such searches for a UV fixed point, approximations of the FRGE are needed. In
order to iteratively attack this differential system, the idea is to project this equation
onto a subset of field monomials, which is denoted a truncation.

(3) Quantum Einstein Gravity. In Quantum Einstein Gravity QEG the physical
field content is given by the equivalence classes of Riemannian metrics under the action
of the diffeomorphism group. This results in a theory space spanned by all diffeomor-
phism-invariant operators depending on a dynamical metric. In the pioneering works
[95, 97] a first truncation of QEG based on a metric field content and diffeomorphism
symmetry was studied for the Einstein–Hilbert functional. The promising result of the
existence of a UV fixed point, hence the evidence of the Asymptotic Safety conjecture,
has been consolidated since then in various truncations and modifications [67, 98–175].

We stress that QEG is not a quantization of classical General Relativity : its bare ac-
tion corresponds to a non-trivial fixed point of the RG flow and is therefore a prediction
rather than an ad hoc input.

(4) Background Independence. Promoting General Relativity to the quantum level
is a very difficult task, since most of the methods available in the construction of
standard quantum field theories on flat space turned out to be inapplicable [29–31,
44, 176]. One of the reasons is that gravity is special because it relates the geometry
of spacetime (its base space) with the structure of its gauge group and thus renders
the geometry as the mediating gauge field. Hence, Background Independence, the
requirement that the formulation should be independent on any background geometry,
is central to all constructions of quantum theories of gravity. Different approaches trying
to circumvent these difficulties brought to light hidden generalized concepts that only
become relevant when gravity enters the game. A conservative approach to Quantum
Gravity and thus to a complete theory is realized in Asymptotic Safety.

In this context Background Independence is realized by analyzing the dynamics of
the fluctuations which depend on the environment they are placed in, the background
metric for instance. It is crucial to know if there exist special backgrounds in which
the fluctuations are particularly ‘tame’ such that, for vanishing external source, they
amount to only small oscillations about a stable equilibrium, with a vanishing expec-
tation value. Such distinguished backgrounds are referred to as self-consistent since, if
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we pick one of those, the expectation value of the field does not get changed by any
violent field excitation. From this point of view, Background Independence is realized
dynamically through the principle of self-consistence of the solutions of the effective
equations of motion.

(5) Euclidean vs. Lorentzian. The FRG is a machinery for nonperturbative QFT

that has found applications in areas as diverse as solid-state physics, QCD, and Quantum
Gravity. However, it is primarily used in Euclidean signature. For certain applications,
however, this standard framework does not convincingly capture the physics situation
one seeks to model. For instance, for the purpose to study QFT on cosmological back-
grounds, it might be crucial to take into account the signature. In fact, cosmological
spacetimes in general do not admit a satisfactory notion of Wick rotation. Furthermore,
solving the flow equations often makes use of a technology, the heat kernel expansion,
whose application to Lorentzian signature operators is mathematically dubious. Conse-
quently, the signature of spacetime represents one of the principal obstacles preventing
a straightforward realistic physical interpretation of the picture emerging from Asymp-
totic Safety.

In [177] a first investigation of Lorentzian gravity was performed in a 3+1 split
setting. For a fixed truncation the resulting Lorentzian renormalization group flow
turned out almost identical to the one obtained in the Euclidean case. Furthermore,
there is also a reason of principle for giving preference to the Euclidean signature in the
functional RG context: In the Euclidean case, the momentum-square of the fluctuations
to be integrated out is positive semi-definite. Hence, concerning the order in which
different fluctuation modes are integrated out along the RG flow, there exists an almost
canonical choice: high momentum first, low momentum later. On the contrary, in
Lorentzian spacetimes, there exists no distinguished ordering of the modes that would
enjoy a similarly canonical status: The question which arises is how to treat separately,
parallelly and distinctively spacelike and timelike modes.

A possible approach consists in relating a hypothetical Lorentzian flow equation and
its solutions to their Euclidean analogs by some sort of analytic continuation, like a
Wick rotation [178–180]. Such a relationship would lead to significant constraints on
the “correct” integration scheme. However, we shall not follow this route here, since in
Quantum Gravity the (standard form of the) Wick rotation is not available, see however
refs. [181, 182]. Another recent approach is a purely spatial coarse graining that would
leave time dependencies untouched [183]. For a different, but likewise state-sensitive
approach, see ref. [184].

In order to bypass the ordering problem, in this thesis we prefer to think of the
piecemeal integrating out of modes, literally, as a procedure of performing the basic
(regularized) path integral in a stepwise fashion, rather than solving a flow equation.
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The advantage of the integral formulation is that after expanding the integration vari-
able, the field in the desired basis of field space the actual integration gives us direct
access to the individual basis modes.

Composite operators

One of the main critiques addressed to Asymptotic Safety [185, 186] lies in the fact
that it does not yet make contact with quantum-gravitational observables, and does
not furnish information about the renormalization behavior of geometric operators. In
fact, these cannot be extracted from the EAA alone.

(1) Observables in gravity (i.e., classical or Quantum Gravity) are challenging to con-
struct because they are required to be invariant under diffeomorphism transformation
[15, 22, 187, 188]. Hence, in order to construct diffeomorphism-invariant observables,
they should for example be constructed as the integral over spacetime of some scalar
density.

Inevitably, one is forced to deal with some sort of non-locality. As a first qualitative
example, we can illustrate with the following observable [189]: Consider the correlation
function of two operators O1 and O2 [190, 191]

G(r) =
1

vol[g]

∫
ddx
√
g(x)

∫
ddy
√
g(y) O1(x) O2(y) δ(r − `g(x, y)) , (2.2)

where vol[g] is the volume of the manifold and `g(x, y) the geodesic length. Importantly,
this observable depends on the geodesics length which is a non-local operator. However,
in practice it turns out to be impossible to include this kind of geometric observables
as operators within a truncation in the FRGE.

Moreover, in a theory of Quantum Gravity, it is rather natural to ask how geometric
quantities, such as the volume of some submanifold, behave at the quantum level [192,
193]. Such geometric properties are crucial for the comparison of different approaches
to Quantum Gravity, especially for the comparison of continuum-based with discrete
approaches.

(2) Within the EAA formalism, all these approaches have a common feature: they
require information about operators which usually are not taken into account in a
truncated EAA, at any realistic level of complexity. For instance, it is hard to imagine
a truncation ansatz for the gravitational EAA to contain information on the geodesic
distance of two given points on the spacetime manifolds.

In order to obtain information regarding an arbitrary operator in a quantum field
theoretic framework one can couple it to an external source so that it can be inserted
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into correlation functions by taking functional derivatives with respect to the source.
This formalism goes under the name of the composite operator formalism. It allows
to define, and compute correlation functions of not only elementary fields, but also of
more complicated local operators at a given spacetime point.3

One of the main tasks of this thesis is to investigate the composite operator formalism
and its application within the framework of the EAA.

To these purposes, initial investigations to gain knowledge about the scaling behavior
of such composite operators have been performed in [134, 194]. Importantly, in the fixed
point regime scale invariance is realized, and one expects the observable (2.2) to scale
as G ∼ r−∆, where ∆ represents a universal scaling dimension.

Starting from the seminal paper [195], C. Pagani developed a formalism to include
composite operators in the EAA framework and discussed a method which allows to
identify the scaling properties of the composite operators at the fixed point: this was
the first appearance of the composite operator flow equation.

Essential Renormalization Group Scheme

The RG provides a framework to iteratively perform a change of integration variables
with the purpose of describing physics at different length scales. This, in practice,
translates into a flow in a space spanned by the couplings which parameterize all possi-
ble interactions between the physical degrees of freedom. However, this mathematical
description might present unphysical redundancies.

(1) Our mathematical descriptions of natural phenomena can contain superfluous in-
formation which does not correspond to any description of Nature. This follows since
we always have the basic liberty to re-express the set of dynamical variables in terms
of a new, simpler, set. In this respect, our mathematical models are said to belong to
two equivalence classes: two models are considered to be physically equivalent if they
are related by a change of variables. Natural phenomena are therefore described by an
equivalence class of effective theories rather than a specific model. However, in practice,
in order to test our models against experiment, we would like to find those models that
reduce the computational effort needed to compute physical observables.

In the RG context this translates into the fact that theory space is divided into
equivalence classes. As a consequence, we do not have to compute the flow of all

3The introduction of composite operators is unavoidable also in many other cases. For example, let us
consider the correlation function between metric operators at different points in the vielbein formalism.
In this case the metric itself is a composite operator which can be meaningfully defined only via a
suitable regularization and renormalization procedure over and above the usual renormalization of
couplings in the EAA.
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coupling constants, but instead, we only need to compute the flow of the so-called
essential couplings, which are those appearing in the expression for physical observables.
Changing the other coupling constants, known as the inessential couplings, amounts to
moving within an equivalence class: inessential couplings are those couplings for which
a change in their value can be reabsorbed by a change of variables. Hence, instead
of computing their flow, one is free to specify the values of all inessential couplings.
The most common example of an inessential coupling is the one related to a simple
linear rescaling or renormalization of the dynamical variables, namely the wave function
renormalization. Beyond this, there are a number of different inessential couplings
related to more general, nonlinear changes of variables.

Being able to identify the inessential coupling and avoiding computing their flow has
then the advantage that one can automatically disentangle the physical information
from the unphysical content encoded. Such a possibility has been advocated indepen-
dently by G. Jona-Lasinio [196] and by S. Weinberg [197]. A perturbative approach had
been put forward in [198], while the first nonperturbative realization within the Exact
Renormalization Group (ERG) framework was performed for the first time in 2021 [199].

(2) In this paper A. Baldazzi, R. Ben Alì Zinati and K. Falls have implemented the
essential renormalization scheme, that scheme for which one only needs to compute
the running of the essential couplings, having specified renormalization conditions that
determine the values of the inessential couplings as functions of the former. One of their
most prominent results regards the fact that at a fixed point, redundant perturbations
are automatically discarded [200]. This makes essential schemes a preferred tool to
access only the necessary, essential physical content.

There is a particular simple essential scheme, referred to as the minimal essential
scheme. In this scheme, all the inessential couplings are set to zero at every scale along
the flow. At this stage some remarks are in order:

(1) Having a scheme of this type at hand provides practical advantages as well as
a clearer physical picture of renormalization.

(2) On the practical side, a major improvement compared to the standard one is
the fact that the form of the propagator maintains a simple form along the
flow.

(3) Conceptually, the essential scheme may also lead to a better understanding of
the equivalence of quantum field theories and the universality of physics models
at the critical points [201–206].

(3) Along the same line A. Baldazzi and K. Falls applied the same scheme to Quantum
Gravity [175]. The potential existence of inessential couplings in the context for gravity
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was already pointed out in [49, 50, 121, 207]. However, in the attempts to find a suit-
able fixed point for all gravitational couplings included in higher order approximations,
a discussion of the incorporation of field reparameterizations into the RG equations was
missing. This was performed for the first time in [175] incorporating field reparameter-
izations in the gravitational RG equations which allow us to eliminate the inessential
couplings from the flow equations.

A. Baldazzi and K. Falls considered the universality class of QEG. In particular,
there is a shift of emphasis to the physical degrees of freedom and the physical essen-
tial couplings will bring our investigation of Asymptotic Safety closer to the original
formulation by S. Weinberg.

Plan of Part I

Chapter 3 begins with the general setup for the construction of the FRGE, describing its
application to QEG, and introducing the Asymptotic Safety scenario for Quantum Grav-
ity. In order to regularize IR divergences of the path integral, we add a scale-dependent
cutoff action ∆Sk to the action of the gravitational path integral, which will play the
role of an infrared cutoff. This cutoff action suppresses the integration of momentum
eigenmodes below a scale k2. Following in a parallel fashion the formal definition of
the standard effective action, from the regularized gravitational path integral one can
derive a scale-dependent effective action, called the Effective Average Action.

The main feature of the Effective Average Action is that this functional, denoted Γk
it fulfills the Functional Renormalization Group Equation

k∂kΓk =
1

2
Tr
[
(Γ

(2)
k +Rk)

−1 k∂kRk

]
, (2.3)

which we are going to explain in Chapter 3. The operators Γ
(2)
k and Rk represent

the Hessian obtained by applying two functional derivatives to the EAA and the cutoff
action, respectively. The cutoff action itself serves as an infrared regulator of the (grav-
itational) path integral, the flow equation is well-defined and regular in the UV as well:
The scale derivative k∂kRk vanishes in the infrared and the UV, regulating the traces
on the right hand side of (2.3).

In this way, the problem of defining and computing the path integral can be formally
replaced by the investigation of solutions to the FRGE. In gravity the equation is
defined on the space of all diffeomorphism-invariant functionals of the fields. These
define the theory space. From a technical point of view, the FRGE turns out to be a
system of infinitely many coupled ordinary differential equation for the scale-dependent
couplings. If there exist a trajectory in the space of all couplings that is well-defined for
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all values of k, the underlying theory is said to be fully renormalized and asymptotically
safe. Crucially, this trajectory has to be embedded in a certain finite-dimensional
hypersurface of theory space. This makes the Asymptotic Safety scenario predictive, i.e.,
the finite dimension of this hypersurface corresponds to the number of free parameters
of the theory that must be fixed by experiment. The Asymptotic Safety program then
becomes very concrete: It focuses on the search for a UV-finite trajectory in theory
space with an UV fixed point, from which the UV-finite trajectories originate.

In order to perform such searches for a UV fixed point, approximation schemes for
the FRGE are needed. To find approximative solutions one usually truncates the theory
space, studying the equation on a reduced space spanned by finitely many basis function-
als. We shall present the main approximative solution of the functional renormalization
group equation of metric gravity, the single metric Einstein–Hilbert truncation. We will
exploit the result of this truncation in the rest of this thesis, particularly in Part II.
The term “Einstein–Hilbert truncation” refers to the 2-dimensional truncation of theory
space that is spanned by the functionals

∫
ddx√g and

∫
ddx√gR. This ansatz is pa-

rameterized by two dimensionless, scale-dependent constants, Newton’s constant g(k)

and the cosmological constant λ(k). In four spacetime dimensions it turns out that the
flow of their RG equations possess a UV fixed point.

Furthermore, we discuss a special class of self-consistent backgrounds which are
determined by the solution of the effective equation of motion of the Einstein–Hilbert
truncation: the running Einstein spaces. Importantly, these self-consistent backgrounds
are equally valid in the Euclidean and the Lorentzian version of our setting.

In Chapter 4, we present two recent developments in the utilization of the FRGE.
Both of them are preparations for the renormalization of relational observables in Chap-
ter 13 of Part III. In fact, relational observables can be treated as composite operators.
We will perform a renormalization of these observables in two schemes: the standard
and the essential scheme.

In the first part of Chapter 4, we discuss how to renormalize composite operators
Ok (i.e., operators built from basic field monomials) via the functional renormalization
group. It allows to define, and actually compute correlation functions of not only elemen-
tary fields, but also of more complicated local operators at a given spacetime point It is
possible to renormalize bare composite operators by coupling them to arbitrary sources
ε, and incorporating them into the gravitational path integral. It is rather straightfor-
ward to derive the composite operator functional renormalization group equation. This
flow equation has a double-layer structure: it consists of the renormalized composite
operators on the left, and the EAA on the right. By invoking a scaling argument we
can identify the anomalous dimension matrix describing the scaling dimensions of the
composite operators in the UV, i.e., in the fixed point regime.
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In the second part of Chapter 4, we present a new renormalization group scheme,
the essential scheme. In general, during the renormalization process all field monomials
compatible with the postulated symmetries of the theory space are generated. However,
not all operators are associated to essential couplings, i.e., couplings that appear in
physical quantities. Some of the couplings are inessential, meaning that they can be
removed by field redefinitions. Hence, a second source of RG scale k-dependence can be
introduced, which takes into account the freedom to perform field reparameterization
along the flow. The effective action then satisfies then a generalized flow equation
which takes into account the k-dependent field reparameterizations. Two important
facts have to be emphasized: from this new equation one recovers the same structure
of the FRGE equation (2.3) and this equation makes explicit that the RG flow can be
reinterpreted as a frame transformation. In order to solve the complete flow, a particular
renormalization scheme can be chosen, which sets to zero all the inessential couplings:
the minimal essential scheme. Finally, we are going to apply the minimal essential
scheme to Einstein–Hilbert gravity.

Seeking a construction of observables within the Asymptotic Safety scenario later
in Chapter 13, we set up a general formalism to evaluate the scaling of the relational
observables, inspired by the well-established composite operator flow equation. We eval-
uate their scaling dimensions at the fixed point, both in the standard renormalization
group scheme and in the essential scheme.





CHAPTER 3

RG flow of Quantum Einstein Gravity and Asymptotic Safety

Executive summary. We review the explicit construction of the Effective Average Ac-
tion and its related flow equation, i.e., the type of functional renormalization group equa-
tion used in Quantum Gravity. On these grounds, we explain the concept of Asymptotic
Safety and its relevance for the nonperturbative renormalizability of gravity. We out-
line an approximation scheme for the effective average action, the Einstein–Hilbert (EH)
truncation, and prove Asymptotic Safety within this ansatz. We classify the solutions of
the functional renormalization group equation provided by the single metric EH trunca-
tion. Finally, in this approximation, we present a family of self-consistent backgrounds.

What is new? The main contents of this chapter is taken from the literature. The
discussion around the Lorentzian self-consistent backgrounds has been taken from a
publication of the author.

Partially based on: Reference [RF3].

Plan of this Chapter. In this chapter, we are going to introduce the general idea
of the Effective Average Action, and we will describe the functional renormalization
group equation upon which it can be constructed. In spirit similar to Wilson’s exact
RG equations, we emphasize that the FRG approach based upon the EAA has also clear
differences from the Wilsonian exact RG.

For simplicity’s sake, we will start with the application to a scalar field in rigid flat
spacetime. Subsequently, in Section 3.4 we will extend it to gravity.

In order to clarify the concept, we start by formally constructing the Effective Aver-
age Action by means of functional integrals. Instead of using a sharp momentum cutoff
to split the functional integration into two domains, one use smooth regulator functions,
producing essentially the same effect but in a continuous way. Different choices of these
functions are possible. These lead to different renormalization group equations, whose
solutions share the feature that they relate bare actions describing the same quantum
system with different cutoff scales.

29
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3.1. Effective Average Action

In this section we introduce the concept of the Effective Average Action [90, 95, 208–
210] in the simplest context: scalar field theory on flat d-dimensional Euclidean space
Rd.

3.1.1. The construction for scalar fields

The central idea of the EAA is to produce a modification of the partition function by
integrating out high momentum modes and simultaneously suppress low momentum
modes. For a real scalar field φ, on Euclidean Rd this is achieved by the addition of a
scale-dependent IR “cutoff functional” ∆Sk[φ] in the exponent of the integrand, leading
to the definition of the modified partition function

Zk[J ] =

∫
Dφ̂ exp

(
−S[φ̂]−∆Sk[φ̂] +

∫
ddxJ(x)φ̂(x)

)
. (3.1)

Here J is an external source, and S denotes the bare action. The mode suppression
term is characterized by a momentum scale k in the following way:

∆Sk[φ̂] =
1

2

∫
ddx φ̂(x)Rk(−�)φ̂(x) . (3.2)

It is required that the cutoff kernel Rk acts as an infrared cutoff. For this purpose it has
to have a functional form, such that it leaves the high momentum modes unaffected,
i.e., they will be integrated out in the partition function, while it generates a mass-like
contribution for the IR modes.

The profile of the function Rk(−�), i.e., Rk(p
2) in a momentum basis is arbitrary

and only has to satisfy certain requirements in the limits p2 � k2 and p2 � k2:

Rk(p
2) ≈

{
k2 for p2 � k2

0 for p2 � k2 .
(3.3)

The first condition leads to a suppression of the small-momentum modes by a mass-like
IR cutoff; the second guarantees that the large-momentum modes are integrated out in
the usual way. HowRk(p

2) interpolates between these two regimes is a matter of calcula-
tional convenience. An example is the exponential cutoffRk(p

2) = p2[exp(p2/k2)− 1]−1,
but other choices are possible (see [49] for other cutoffs and their applications).

The partition function Zk associated to the one parameter family of bare actions
S+∆Sk gives rise to the generating functionalWk[J ] = lnZk[J ]. The next steps toward
the definition of the Effective Average Action are similar to the standard procedure. One
defines the (k-dependent) field expectation value φ = 〈φ〉 = δWk/δJ and computes
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the Legendre transform of Wk[J ] with respect to J(x), at fixed k. If the functional
relationship φ = φ[J ] can be solved for the source to yield J = Jk[φ], it assumes the
form

Γ̃k[φ] =

∫
ddx Jk[φ](x)φ(x) +Wk[Jk[φ]] . (3.4)

Finally, subtracting the cutoff term ∆Sk we arrive at the definition of the EAA Γk:

Γk[φ] = Γ̃k[φ]−∆Sk[φ] =

∫
ddx Jk[φ](x)φ(x) +Wk[φ]−∆Sk[φ] . (3.5)

The EAA is closely related to a generating functional for correlators of field averages,
hence its name. From the EAA it is possible to directly compute all the (k-dependent)
Green’s functions of the quantum theory by functional differentiation of Γk, i.e., without
any additional functional integration.

At the nonperturbative path integral level it suppresses the long-wavelength modes
by a factor exp

(
−1

2
k2
∫

ddx φ2
)
. In perturbation theory, the ∆Sk-term leads to the

modified propagator (p2 +m2 +Rk(p
2))−1, which equals (p2 +m2 + k2)−1, for p2 � k2.

Thus, when computing loops with this propagator, k2 acts indeed as a conventional IR
cutoff if m2 � k2.

The EAA (3.5) has some particularly useful properties:

(1) It represents the scale-dependent version of the standard effective action Γ. In
the UV limit k →∞, it approaches the bare action Γk→∞ → S.

(2) It satisfies the exact integro-differential equation:

e−Γk[φ] =

∫
Dφ̂ exp

{
−S[φ̂] +

∫
ddx
√
ḡ(φ̂− φ)

δ

δφ
Γk[φ]

−1

2

∫
ddx
√
ḡ(φ̂− φ)Rk(φ̂− φ)

}
.

(3.6)

(3) It satisfies the exact FRGE [208]

k∂kΓk[φ] =
1

2
Tr
[
(Γ

(2)
k +Rk)

−1 k∂kRk

]
, (3.7)

where Tr comprises a functional trace that includes an integration over space-
time, Γ

(2)
k represents the Hessian of the effective average action with respect to

the fields.
The FRGE (3.7), often referred to as Wetterich’s equation, has a number of

convenient properties:
(a) It is fully nonperturbative, no approximation is required for its derivation.

In fact, the RHS can be rewritten in a style reminiscent of a one-loop
expression:

k
∂

∂k
Γk =

1

2

D

D ln k
Tr ln

[
Γ

(2)
k +Rk

]
(3.8)
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Here the scale derivative D
D ln k

acts only on the k-dependence of Rk, not
on Γ

(2)
k . The Tr ln(· · ·) = ln det(· · ·) expression in (3.8) differs from a

standard one-loop determinant in two ways: it contains the Hessian of
the actual effective action rather than that of the bare action S and it
has a built-in IR regulator Rk. These modifications make (3.8) an exact
equation.

(b) The trace involved is UV finite (because of the presence of k∂kRk on the
RHS).

(c) The trace involved is IR finite (because of the appearance of Rk in the
denominator).

(4) When treated as a classical action, Γk can provide an EFT description of quan-
tum physics involving typical momenta near k.

3.1.2. Generalization to all types of fields

Historically, the first application of the construnction of the EAA had been performed
for scalar field theories and their potential interactions [208]. Right afterwards, it has
been applied to scalar QED [210], abelian gauge theories [209, 210] and Yang–Mills
gauge theories [90]. In 1996 M. Reuter [95] realized for the first time the construction
of a EAA in a gravitational context.

The form of the EAA and its related FRGE is in fact fully generalizable to all types
of fields and possesses the same structural setting. There are some technical details,
especially related to gauge theories:

(1) The generalization toYang–Mills theory requires a gauge-invariant construc-
tion of the EAA, i.e., introducing the notion of a covariant derivative, a gauge-
fixing term;

(2) Furthermore, the Gravitational Effective Average Action (GEAA) also
has to comply with the requirement of Background Independence.

Implementing these additional properties within the EAA framework leads to a deformed
notion of “averaging”. However, for the following geometrical analysis of the RG flow
generated by the FRGE these details are unimportant. We are going to address them
later on when constructing the Gravitational Effective Average Action.
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3.2. The general (geometric) setting

(1) Theory space. The first step toward setting up the concrete form of the FRGE

consists in fixing the space of functionals over which the equation is supposed to be
defined. It has become customary to refer to this space comprising, in a sense, all
action functionals that are possible in principle, as the theory space T . To describe
it, we shall be slightly more general than in the previous subsection and consider an
arbitrary set of fields denoted collectively by φ(x).

Then the corresponding theory space consists of all effective action functionals A :

φ → A[φ] depending on this set, possibly subject to certain symmetry requirements.
So the theory space {A[φ]} is fixed once the field content and the symmetries are fixed.

The theory space contains in particular the bare action, S, the standard effective
action Γ, and Effective Average Actions Γk for all scales on a completely equal footing.
Concretely one may take theory space to contain all functionals that occur in a deriva-
tive expansion, i.e., arbitrary field monomials, integrated over spacetime, consisting of
any number of fields and derivatives of any order which act on them in all ways possible.

(2) Basis on theory space. Assuming that one can expand the elements of theory
space in basis functionals Pi:

A[φ] =
∞∑
i=1

U iPi[φ] , (3.9)

where the U i are the generalized couplings. The basis {Pi[φ]} will include both local
field monomials and nonlocal invariants, and we may use the generalized couplings
{U i} as local coordinates on T . More precisely, the theory space is coordinatized by
the subset of essential couplings, i.e., those coordinates which cannot be absorbed by a
field reparameterization.

From the geometric point of view, the FRGE for the EAA, i.e., (3.7) generalized for
an arbitrary set of fields, defines a vector field β on theory space. The integral curves
along this vector field are the RG trajectories k → Γk parameterized by the scale k.
They start, for k → ∞, at the bare action S and terminate at the ordinary effective
action at k = 0. The natural orientation of the trajectories is from higher to lower
scales k, the direction of increasing coarse graining.

Expanding Γk as (3.9):

Γk[φ] =
∞∑
i=1

U i(k)Pi[φ] , (3.10)

the trajectory k 7→ Γk is described by infinitely many running couplings k 7→ {U i(k)}.
The system of coupled equations which is generated when inserting (3.9) into eq.(3.7)
consists of infinitely many differential equations. This is in sharp contradistinction to
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Figure 3.1. Illustration of theory space T and its structures: by defini-
tion, the theory space contains all action functionals A[φ] which can be
constructed from a given field content and obey the desired symmetries.
Conventionally, all arrows point towards a lower coarse-graining scale,
i.e., in the direction of integrating out fluctuation modes. The theory
space comes with a vector field, the beta functions β . The curves of this
vector field (RG trajectories) are exemplified by the black solid curve. As
an example, we consider a trajectory which emanates from a fixed point
Γ∗ with one UV-repulsive and one UV-attractive eigendirection. The end-
point of the RG trajectory at k = 0 coincides with the effective action
Γ0.

the perturbative equations of Callan [82] and Symanzik [83]. In standard field theory
terminology one would refer to “bare” parameters U i(k = ∞) and to “renormalized”
parameters U i(k = 0).

Since any point in theory space, i.e., any admissible functional, can be expanded as
a linear combination as in (3.9), then we can derive the scale derivative of the couplings
{Ui(k)} as follows. The RG flow (3.7) in the basis dependent component form basis
reads:

k∂k

∞∑
i=1

U i(k)Pi[φ] =
1

2
Tr

( ∞∑
i=1

U i(k)P
(2)
i [φ] +Rk

)−1

k∂kRk

 . (3.11)

The RHS of this equation is an extremely complicated functional of φ. However,
the theory space, by its very definition, contains all functionals that could possibly
be produced by those algorithms, it follows that the φ-dependence of 1

2
Tr[· · · ] can be
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expanded in the basis {Pi[φ]}:

1

2
Tr[· · · ] =

∞∑
i=1

bi(U1, U2, · · · ; k)Pi[φ] . (3.12)

Here the beta functions bi arise expanding the trace on the RHS of the FRGE in terms
of {Pi[φ]} and comparing the coefficients multiplying the same operator Pi[φ].

We would like to work with dimensionless variables in order to avoid rescaling of
physical lengths. If the coupling U i has canonical dimension di we define the correspond-
ing dimensionless coupling ui(k) = U i(k)k−di :1 Since the Pi are linearly independent,
then the scale dependence of the EAA is completely determined by (infinitely many)
β-functions describing the RG running of the dimensionless couplings:

k∂ku
i = βi(u1, u2, · · · ; k) . (3.13)

Here, the βs represent the associated dimensionless β-functions of the coupling con-
stants implied by the projected FRGE. At this point, RG trajectories k 7→

(
ui(k)

)
≡ u(k)

are represented by arrays of theory space coordinates. Eq.(3.13) represents an au-
tonomous system of coupled differential equations: they have no explicit dependence
on k and define a time-independent vector field on theory space.

(3) RG flow and trajectories. The integral curves of this vector field, k 7→ Γk, are
the RG trajectories, and the pair {T , β} is called the RG flow.

(4) Complete trajectories. In this language, the basic idea of renormalization can
be understood as follows. The boundary of theory space is meant to separate points
with coordinates {ui, i = 1, 2, · · · } with all the essential couplings {ui} well-defined,
points with undefined, divergent couplings. The basic task of renormalization theory
consists in constructing a complete RG trajectory, i.e., a trajectory which lies entirely
within theory space. It neither leaves theory space (that is, develops divergences) in
the k → ∞ limit nor in the k → 0 limit. Every such trajectory defines one possible
quantum theory.

(5) Fixed points. The consistent k →∞ behavior can be ensured by performing the
limit k →∞. The fixed point is a zero of the vector field β ≡ (βi), i.e., βi(u∗) = 0 for
all i = 1, 2, · · · . The running of the RG trajectories stops completely at the fixed point.
As a result, one can ‘use up’ an infinite amount of RG time near/at the fixed point if
one bases the quantum theory on a trajectory which runs into such a fixed point. This
construction ensures that in the UV limit the trajectory ends at an ‘inner point’ of
theory space giving rise to a well-behaved action functional. Thus, we can be sure that,

1By definition, U i(k) ≡ kdiui(k), where di denotes the canonical mass dimension [U i] = −[Pi] ≡ di,
whence [ui] = 0.
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for k → ∞, the trajectory does not develop pathological properties such as divergent
couplings. The resulting quantum theory is ‘safe’ from unphysical divergences.

(6) Linearization about a fixed point. The expansion at linear order the RG

equations (3.13) around the fixed point u∗ is governed by the Jacobi matrix B

k∂ku
i(k) =

∑
j

Bij(ui(k)− ui∗) (3.14)

The Jacobi matrix, denoted also stability matrix, is defined as

Bij(u∗) ≡ ∂jβ
i(u∗) , (3.15)

If the eigenvectors of B form a basis, then a solution to (3.14) reads:

ui(k) = ui∗ +
∑
I

CIV
i
I

(
k0

k

)θI

. (3.16)

Here k0 is a fixed scale, the CIs are the constants of integration that can be expressed
in terms of the initial conditions, and the VIs are the eigenvectors of the Jacobi matrix
with associated negative eigenvalues −θI , i.e.:∑

j

Bj iV I
j = −θIV I

i (3.17)

Since B is not symmetric in general the θIs are not guaranteed to be real. In any
case, we assume that the eigenvectors form a complete system. Its eigenvalues θI are
called critical exponents2 or scaling exponents. Furthermore, the stability matrix can
be decomposed according to

Bij(u∗) = −diδij +Bij(u∗) , (3.18)

where Bi
j(u∗) = ∂

∂ui
bj(u∗) . The first part represent the canonical mass dimension of the

couplings, such that in the end we are left with the quantum corrections to the classical
scaling of the coupling at the fixed point, also denoted as anomalous dimension. B is
therefore called the anomalous dimension matrix. For instance, assuming that B(u∗) is
a fully diagonalizable matrix and can be diagonalized by a matrix A, then we can write∑

l,m

AilBlm(u∗)A
−1
mj = −θiδij = −(di + ηi)δij , (3.19)

where the {−ηi} are the eigenvalues of the diagonalized anomalous dimension matrix
B.

We can now classify the “eigendirection” V I . When lowering k, when flowing from
the UV towards the IR along a trajectory, a basis vector is said to be:

2The reason of this name is due to the fact that when the renormalization group is applied to critical
phenomena (second-order phase transitions) the traditionally defined critical exponents are related to
the θI ’s in a simple way [211].
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(1) relevant, if Re θI > 0, meaning that the component ui(k) − u∗ grows in the
direction of the IR;

(2) irrelevant, when Re θI < 0, i.e., the coupling shrinks towards the IR;
(3) marginal, if Re θI = 0, the coupling stays constant at linear order.

So “relevant” is synonymous to “growing under downward evolution”, and “irrelevant”
means “get damped under downward evolution” from the UV to the IR.

According to this classification, at the fixed point we can decompose the tangent
space of theory space in relevant, irrelevant and marginal subspaces that are spanned
by the set of the eigenvectors of every couplings. In particular, we discussed how the rel-
evant directions play a special role because these determine the UV critical hypersurface
SUV.

From this analysis a classification of fixed point can be performed:

(1) A fixed point is called Gaussian (Gaussian fixed point (GFP)) if its critical
exponents agree with the canonical mass dimensions of the corresponding op-
erators:

θi = di (3.20)

Usually this amounts to the trivial fixed point values ui∗ = 0 for all couplings
and hence B(u∗ = 0) = 0.

(2) A non-Gaussian fixed point (NGFP) is a fixed point which is interacting or
non-trivial, i.e., a fixed point whose critical exponents differ from the canonical
ones:

θi 6= di for at least one i . (3.21)

Usually this requires ui∗ 6= 0 for at least one coupling.

(7) UV critical surface. If ui(k) is to describe a trajectory in SUV, ui(k) must ap-
proach ui∗ in the limit k →∞ and therefore we must set CI = 0 for all I with Re θI < 0.
Hence the dimensionality ∆UV of the UV critical hypersurface equals the number of
B-eigenvalues with a negative real part, i.e., the number of θI ’s with Re θI > 0. The
corresponding eigenvectors span the tangent space to SUV at the NGFP. If we lower the
cutoff for a generic trajectory with all CI nonzero, only ∆UV relevant parameters cor-
responding to the eigendirections tangent to SUV grow, while the remaining irrelevant
couplings pertaining to the eigendirections normal to SUV decrease:

dim SUV = # (relevant directions) (3.22)

Thus near the NGFP a generic trajectory is attracted towards SUV.

(8) Universality of the critical exponents. An important property of the critical
exponents θI is that at the exact, un-truncated level they do not depend on the cutoff
scheme, i.e., on the operator Rk. They are universal quantities [200].
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As an immediate consequence, when we decompose the tangent space in relevant,
marginal, and irrelevant subspaces the respective dimensionalities of those subspaces
are likewise universal. In conclusion, also the defining property of a fixed point (3.20)
or (3.21) is a coordinate-independent statement.

(9) Scaling vs. redundant operators. F. Wegner proved [200] that, at a fixed point
of the RG, there are critical exponents that are entirely scheme-dependent (associated
to redundant operators) and exponents which are not scheme-dependent (related to
scaling operators).

(1) A redundant operator is equivalent to an infinitesimal change of a field variable
(see the connection to the so called inessential couplings in Chapter 4). Wegner
proved order by order in perturbation theory in the couplings that couplings
associated to redundant operators have no consequence on the physics and can
be set to zero.

RG eigenvalues for redundant operators also depend on the choice of the
renormalization group scheme and indeed, by appropriate design of the flow
equation. Therefore there is no invariant meaning to the classification in terms
of relevant or irrelevant when applied to redundant operators.

(2) On the contrary, renormalization group eigenvalues for scaling operators have
universal characteristics of the continuum field theory.

One of the most prominent novel results regards the fact that at a fixed point,
redundant perturbations can be automatically discarded [175], by a minimal essential
renormalization scheme (see Chapter 4).

3.2.1. Cutoff vs. normalization scale

Geometrically speaking a truncation of theory space means neglecting all the compo-
nents of the vector field arising in the FRGE that were not in the subspace of the initial
truncation. The vector field is projected onto the subspace of the truncation: the re-
sulting trajectories won’t coincide with the exact trajectories. The difference appears
exactly in the error in the predictions of the running couplings that we get by truncating
the theory space. In any case, producing an approximation of the exact RG flow the
running of the coupling constants will inherit the nonperturbative nature of the FRGE.

The system (3.13) will have many solutions in general and the question arises how to
label and classify them. Since RG trajectories never cross, we can label every trajectory
by the point u(k)|k=µ ≡ uren which it visits when k equals a certain finite normalization
scale µ. Thus, in dimensionful terms, say, the trajectory k 7→ ui(k) which belongs to the
“renormalized couplings” uiren is parametrized more explicitly by a function U i(k;uren, µ)
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satisfying U i(k) = U i(k;uren, µ) for all k ≥ 0, and U i(µ;uren, µ) = µdiuiren ≡ ūiren. At
the level of actions,

Γ
(uren,µ)
k [ϕ] =

∑
i

U i(k; uren, µ) Pi[ϕ] . (3.23)

Here the pair (uren, µ) serves as an identifier for the specific trajectory in question. How-
ever, uren and µ are not independent: When changing µ, we must also change the point
uren ≡ uren(µ) if the trajectory is to stay the same. This condition, d

dµ
U i(k;uren(µ), µ) =

0, is expressed by the Callan–Symanzik-type equation[
µ
∂

∂µ
+
∑
j

βj(uren)
∂

∂ujren

]
U i(k;uren, µ) = 0 , (3.24)

and a similar one for the full action:[
µ
∂

∂µ
+
∑
j

βj(uren)
∂

∂ujren

]
Γ

(uren,µ)
k [ϕ] = 0 . (3.25)

The relation (3.25) holds true for the standard effective action at k = 0 in particular.
It amounts to the statement that no physics may depend on the value which we have
chosen for the normalization scale µ.

3.3. Asymptotic Safety with the Effective Average Action

(1) Complete RG trajectories. In the previous section we discussed how the scale
dependence of an action is encoded in a running of the coupling constants {U i(k)} (or
their dimensionless version {ui(k) = k−diU

i(k)}) that parametrize the action. This
gives rise to a trajectory in the underlying theory space, describing the evolution of
an action functional with respect to the scale k. The construction of a consistent QFT

amounts to finding a complete RG trajectory. In particular it can be infinitely extended
to the UV, having a well-defined limit Γk→∞.

This limit must give rise to a QFT which respects all basic physical principles which
we consider indispensable (like Background Independence, etc.).

(2) Weinberg’s conjecture. In his seminal paper [96], S. Weinberg formulated a con-
jecture about the existence of the infinite cutoff limit in quantum gravity, which became
known as the Asymptotic Safety Scenario. His initial proposal advocated Asymptotic
Safety as a mechanism which renders physical scattering amplitudes finite (but non-
vanishing) at energy scales exceeding the Planck scale. Applied to a QFT Weinberg’s
conjecture consists of two parts which read as follows:
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(1) The theory space contains a non-trivial fixed point, and this fixed point has a
low-dimensional UV critical hypersurface.

(2) All complete RG trajectories are contained in SUV.

In [95] this conjecture was translated in the EAA language: if both (1) and (2) are
true, a given trajectory has an acceptable UV limit, and hence signals the existence of
a nonperturbatively renormalizable field theory, if and only if its endpoint in the UV is
given by the non-trivial fixed point of the RG flow. This behavior is exactly what gave
rise to the name “Asymptotic Safety”.3

If from the FRGE a complete trajectory can be found, such that the IR fixed point is
continuously connected with the well-defined UV limit (the RG flow has to give raise to
an UV fixed point), then this entails a well-defined description of a QFT. Thereby the
existence of a fundamental theory is strictly correlated to the existence of complete RG

trajectories of the EAA (which of all possible trajectories is realized in nature can be
determined only through measurements). In this frame also the notion of renormalizabil-
ity acquires another meaning compared to the perturbative setting. The corresponding
renormalizability question must be whether the space of all action functionals, which is
usually defined as the theory space T , contains UV fixed point(s) and complete trajec-
tories stemming from those fixed point(s).

This property of the FRGE, providing a complete “solution of the theory”, is in sharp
contradistinction to the various types of RG equations used in perturbation theory.
They are finite in number and control only the coupling constants related to “renormal-
izable interactions”. In fact, perturbation theory can give only a partial answer here,
identifying only the perturbatively renormalizable actions. Therefore, the amount of
information encapsulated in the solutions to their RG equations is insufficient to fully
determine the effective action Γ. However, many potentially interesting physical sys-
tems lie beyond the scope of perturbation theory. Hence an appropriate notion of
nonperturbative renormalizability is needed.

As a matter of fact, the FRG setup for the EAA does not rely on the smallness of the
couplings, asymptotically safe theories can be considered nonperturbatively renormal-
izable.

Summarizing, the Asymptotic Safety Conjecture claims the existence of an appro-
priate fixed point of the RG flow. This is defined as a point in theory space ui∗ where
the running of all dimensionless couplings stops, i.e., functions: βj(ui∗) = 0 for every
j. An additional requirement, is that this fixed point must have a finite number of
relevant directions. If one defines the UV fixed points’ critical surface to consist of all
points in theory space which are pulled into the fixed point for increasing RG scale k,
3In fact, Asymptotic Freedom (well-known from QCD) is a realization of this idea restricted to the case
where the underlying fixed point is the Gaussian one.
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then essentially the second key hypothesis underlying Asymptotic Safety is that only
trajectories lying entirely within the UV critical surface of an appropriate fixed point
can be infinitely extended and thus define a fundamental QFT.

(3) Predictivity. Furthermore, asymptotically safe theories are highly predictive as
infinitely many parameters are fixed by a finite number of measurements. This becomes
manifest if one considers that asymptotically safe theories must have a finite dimensional
UV critical surface: For instance, if the UV critical surface has the finite dimension n, it
is sufficient to perform only n measurements in order to uniquely identify Nature’s RG

trajectory. Once the n relevant couplings are measured, the requirement for Asymptotic
Safety fixes all other couplings since the latter have to be adjusted in such a way that
the RG trajectory lies within the UV critical surface.

Asymptotically safe theories are intended to constitute fundamental QFTs which
remain consistent and predictive even at high momentum scales. This distinguishes
them from Effective Field Theories, which require an increasing number of coupling
constants at high momenta that are in no way constrained theoretically and therefore
must be taken from experiments. On the other hand, Asymptotic Safety can “tame”
this infinitely many undetermined constants and reduce them to just a few parameters
that must be extracted from experiments.

3.3.1. Truncations

Up to this point, our construction did not involve any approximation. However, when
it comes to solving the FRGE and the system of infinitely many differential equations we
clearly must resort to some kind of approximation. An obvious possibility is perturba-
tion theory in one or several couplings which are assumed small; in this way one could
recover the RG equations of perturbative renormalization theory, for instance [212, 213].

The method we adopt here, the method of truncated theory spaces, has the essential
advantage that it can yield nonperturbative approximate solutions. They can go beyond
the realm of perturbation theory by summing up contributions from all orders of the
small coupling expansion or the loop expansion, for instance. Such solutions might even
depend on the small parameters in which perturbation theory is trying to expand in
a non-analytical way so that at any finite order perturbation theory is “blind” to the
corresponding contributions.

(1) Truncated RG flow. The idea is now to truncate the sum of monomials in (3.9)
to an ansatz spanning an N -dimensional subspace only

Γk[φ] =
N∑
i=1

U i(k)Pi[φ] . (3.26)
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When we insert this truncation ansatz in the flow equation (3.7) we obtain

k∂k

N∑
i=1

U i(k)Pi[φ] =
1

2
Tr

( N∑
i=1

U i(k)P
(2)
i [φ] +Rk

)−1

k∂kRk

 , (3.27)

The projected RG flow is described by a set of differential equations for the couplings
{U i(k)}. They arise as follows. Let us assume we expand the φ-dependence of 1

2
Tr[· · · ]

(with the ansatz for Γk[φ] in (3.26) inserted) in a basis {Pi[φ]} of the full theory space
which contains the {Pi[φ]}’s spanning the truncated space as a subset. Note, however,
that in general the Trace on the RHS of (3.27) will give rise to monomials which are
not contained in our truncated theory space. Consequently, when projecting the system
of equation, we set to zero all the prefactors multiplying those contributions, and we
equate the coefficients of the remaining monomials Pi on both sides of (3.27).

(2) Derivative expansion. A natural ordering principle for the interaction terms
entering into the Effective Average Action is provided by their number of derivatives.
The space T contains all functionals that can occur in a derivative expansion, i.e.,
arbitrary field monomials, integrated over spacetime, consisting of any number of fields
and derivatives of any order which act on them in all ways possible.

3.3.2. The Asymptotic Safety Program

(1) The Program. The Asymptotic Safety Program a way of dealing with the latter
conjecture. This may be thought of as a systematic search strategy which identifies
physically acceptable theories as compared with the unacceptable ones plagued by short
distance singularities. Note that the existence of a fixed point allows the asymptotically
safe trajectories to stay in its vicinity for an infinitely long RG time.

Accordingly, the Program furnish a systematic way to search for physically acceptable
theories (and their associated actions) free of divergences in the UV. Geometrically
speaking, and using the dimensionless language, these actions constitute a complete RG

trajectory.

(2) Asymptotic Safety and the EAA. As we shall see, the framework of the Effective
Average Action is well suited to test the Asymptotic Safety Conjecture in a self-con-
tained manner: it is the systematic search for a theory space T , supporting appropriate
NGFP(s). In the EAA framework, they amount to the steps in Figure 3.2.

Following the scheme in Figure 3.2, we will use a fixed point of the RG flow in order
to control the k →∞ limit of the complete RG trajectories.

After a preparation in the previous sections we are now in the position to outline
the key idea of nonperturbative renormalizability and Asymptotic Safety in gravity. In
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Figure 3.2. Algorithmic procedure to test Asymptotic Safety within the
EAA framework.

the first instance, we will consider what is special about gravity and how this particular
property can comply with the FRG setup for the GEAA.

3.4. Gravitational Effective Average Action and its FRGE

In the previous section we emphasized that for non-gravitational theories, given a theory
space, the form of the FRGE and, as a result, the vector field β, are basically completely
fixed, so that the RG flow and in particular its fixed point structure can be studied
without any further input. In the case of gravity, however, it is much harder to make
this program work in a concrete way. In this section we are going to discuss the new
problems which arise specifically in Quantum Gravity when one tries to develop a
renormalization group framework by following the route sketched previously that led
to the Effective Average Action.

3.4.1. The desideratum: Background Independence

(1) The FRG will turn out particularly suitable for the analysis of Quantum Gravity.
The theory of Quantum Gravity we are aiming at should be being compatible with
the principle of Background Independence [29–31, 44, 176] (see the discussion in Sec-
tion 1.3). As in classical GR, no special metric should play a distinguished role. There
is no rigid a priori background such as flat spacetime available: Spacetime has to be
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studied and explained, much more than postulated. Technically speaking, this means
that the metric-structure of spacetime has to be kept fully dynamical.

This requirement is what distinguishes a quantum theory of gravity from any other
theory. In a rather profound way. the requirement of Background Independence goes be-
yond the traditional setting of Quantum Field Theory of matter systems on Minkowski
space whose conceptual foundations heavily rely on the availability of a non-dynamical
Minkowski spacetime as a background structure. In this regard, the correct realization
of Background Independence continue to represent a not-yet addressed challenge for
many theories of Quantum Gravity.

(2) Many more problems arise when one tries to apply the familiar concepts and calcu-
lational methods of quantum field theory to the metric itself without introducing a rigid
background structure. Some of them are conceptually deep while others are of a more
technical nature. A typical difficulty shows up when one tries to conceive an appro-
priate notion of a functional renormalization group in the realm of Quantum Gravity.
In QFT on a rigid background spacetime typical regularization schemes which are used
to make the calculations well-defined both in the IR and the UV make essential use of
the metric provided by this background spacetime. In the absence of an intrinsically
given metric this procedure fails: There is neither a natural, physically motivated way
of choosing the basis of field modes, nor is it clear how to discriminate between IR and
UV modes and to fix the order in which the individual modes belonging to some basis
of field modes should be integrated out.

(3) However, there is a strategy to implement Background Independence that bene-
fits of the fact that all the general concepts and technical tools of conventional back-
ground-dependent QFT are applicable. In fact, one parameterizes the quantum metric
as gµν = ḡµν + hµν around an arbitrary background ḡµν . Subsequently, one quantizes
the fluctuation hµν in essentially the same way one would quantize a matter field in a
classical spacetime with metric ḡµν . This procedure goes under the name of background
field technique. Thus, in a sense, the Background Independent quantization of gravity
amounts to its quantization on all possible backgrounds simultaneously: ḡµν is never
specified concretely.

Note that we are not implying a perturbative expansion here; hµν is not supposed
to be small in any sense.

We distinguish at this point between the principle of “Background Independence”
with capital letters introduced above and the background independence. This latter,
with small letters, refers more simply to the independence of some physical quantity
with respect to the background field. The background field technique in gravity was
first introduced in [17, 214], where for a certain type of gauge fixing the effective action
was expressed as a gauge-invariant functional of its fields. Within the EAA approach
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to Yang–Mills theory a gauge-covariant (Becchi–Rouet–Stora–Tyutin (BRST)) coarse
graining was implemented by M. Reuter and C. Wetterich in 1993 [90, 209].

(4) In 1996 M. Reuter introduced the Gravitational Effective Average Action which
combines the advantages of the EAA with the requirements of Background Independence
and general coordinate invariance demanded by gravity.

Technically, by using the background field method, Background Independence be-
comes not manifest during the intermediate steps. Nevertheless, it can be reestablished
dynamically at the end. The implementation of Background Independence was devel-
oped along three steps:

(1) An arbitrary background is fixed.
(2) The dynamical degrees of freedom are quantized on this background.
(3) The background is re-adjusted in such a way that it becomes self-consistent,

meaning that the expectation value of the fluctuation vanishes, i.e.,
〈h〉self-consistent background = 0.

In this way the background is determined dynamically (see Section 3.6).

3.4.2. Quantum Einstein Gravity

The FRGE furnishes an alternative way of studying QFT and we can forget about the
derivation of the equation from the merely formal functional integral and use the FRGE

as the primary tool to calculate the effective action and to define a QFT.4

(1) In this approach, the only input data to be fixed at the beginning are, first, the kinds
of quantum fields carrying the theory’s degrees of freedom, and second, the underlying
symmetries. This information determines the stage the RG dynamics takes place on,
the theory space, consisting of all possible action functionals that respect the prescribed
symmetry. A prime example is given by the theory space of Quantum Einstein Gravity.

We are going to denote by Quantum Einstein Gravity (QEG), the quantum field
theory whose dynamical degrees of freedom are carried by gµν and whose principal
symmetry is diffeomorphism invariance.

(2) In this section we describe in detail the Effective Average Action for gravity, focusing
mostly on those aspects that are different from the scalar case. The metric field gµν

4Given the fact that the functional path integral is ill-defined and make sense only in the presence of
an UV cutoff, we would like to find out for which measure and bare actions S the limit of an infinite
UV cutoff can be taken consistently. Tackling the so-called reconstruction problem, i.e., the problem of
finding a UV regularized functional integral, which, has a mathematically well-defined continuum limit
and, at the same time reproduces a given RG trajectory, considerable technical and conceptual issues
arise [215].
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lives on a given spacetime manifold with a fixed topological class and smooth differential
structure.

The first step consists in splitting the quantum metric according to

ĝµν = ḡµν + ĥµν , (3.28)

where ḡµν is a fixed, but unspecified, background metric and ĥµν are the quantum
fluctuations around this background which are not necessarily small. This allows the
formal construction of the gauge-fixed (Euclidean) gravitational path integral∫

Dĥ Dξ̂ν D ˆ̄ξν exp
{
−S[ḡ + ĥ]− Sgf[ĥ; ḡ]− Sghost[ĥ, ξ̂,

ˆ̄ξ; ḡ]−∆Sk[ĥ, ξ̂,
ˆ̄ξ; ḡ]

}
(3.29)

Here S[ḡ + ĥ] is a generic action, which depends on gµν only, while the background
gauge fixing Sgf[ĥ; ḡ] and ghost contribution Sghost[ĥ, ξ̂,

ˆ̄ξ; ḡ] contain gµν and ĥµν in such
a way that they do not combine into a full gµν .

Remark. A remark concerning the notations we use for the EAA might be in place here.
The functionals in (3.29) are distinguished by the “semicolon” notation. This notation
helps to keep track of the dependence of the dynamical fields, which is non-trivial
because of the splitting (3.28). We can also express the action in terms of the “comma”
notation as

S
[
ĥ, ξ̂, ˆ̄ξ; ḡ

] ∣∣∣
h=g−ḡ

= S
[
ĝ, ḡ, ξ̂, ˆ̄ξ

]
. (3.30)

Furthermore, we take Sgf[ĥ; ḡ] to be a gauge fixing ‘of the background type’ [216],
i.e., it is invariant under diffeomorphisms acting on both ĥ and ḡ. Clearly there exist
many possible gauge-fixing terms. A convenient choice which has been employed in
practical calculations is the background version of the harmonic coordinate condition
[17]:

Fµαβ[ḡ] =
[
δβµ ḡ

αγ∇̄γ − βgfḡαβ∇̄µ

]
Fµ =

√
2κFµαβ[ḡ]ĥαβ . (3.31)

in the action for the corresponding Faddeev–Popov ghosts

Sgh[ĥ, ξ̂, ˆ̄ξ; ḡ] = −1

κ

∫
ddx ˆ̄ξµḡ

µν ∂Fν

∂ĥαβ
Lξ(ḡαβ + ĥαβ) , (3.32)

where L is the Lie derivative and κ ≡ (32πḠ)−1/2. Accordingly, the gauge-fixing term
takes the form:

Sgf =
1

2αgf

∫
ddx
√
ḡḡµνFµFν . (3.33)

The key ingredient in the construction of the EAA is the coarse graining term
∆Sk[h, ξ, ξ̄; ḡ]. It is quadratic in the fluctuation field,

∆Sk[h, ξ, ξ̄; ḡ] =
κ2

2

∫
ddx
√
ḡ ĥµνRgrav µνρσ

k (−�)ĥρσ +
√

2

∫
ddx
√
ḡ ˆ̄ξµRgh

k (−�)ξ̂µ ,

(3.34)
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Now we promote the integral (3.29) with the source term in order to define a gener-
ating functional

Ssource = −
∫

ddx
√
ḡ
{
tµν ĥµν + σ̄µξ̂

µ + σµ ˆ̄ξµ + Lξ(ḡµν + ĥµν) + τµξ̂
ν∂ν ξ̂

µ
}

(3.35)

where we introduced the sources tµν for ĥµν , σ̄µ for ξ̂µ and σµ for ˆ̄
µξ. The two additional

sources βµν and τµ couple to the BRST variation of ĥµν and ξµ. This leads to a generating
functional having the following dependencies

Wk [tµν , σµ, σ̄µ; βµν , τµ; ḡµν ] ≡ Wk [J ; JBRST; ḡµν ] (3.36)

We see that, in addition to the sources,Wk also functionally depends on the background
metric. Moreover, functional derivatives of Wk with respect to J and JBRST generate
the expectation values of the dynamical fields and BRST variations, respectively:

hµν = 〈ĥµν〉 =
1√
ḡ

∂Wk

∂tµν
, ξµ = 〈ξ̂µ〉 =

1√
ḡ

∂Wk

∂σ̄µ
, ξ̄µ = 〈 ˆ̄ξµ〉 =

1√
ḡ

∂Wk

∂σµ
(3.37)

Note that the expectation value of the full metric:

gµν = 〈ĝµν〉 = ḡµν + hµν , (3.38)

and to consider Γk as a functional of gµν rather than hµν :

Γk
[
h, ξ, ξ̄; β, τ ; ḡ

] ∣∣∣
h=g−ḡ

= Γk
[
g, ḡ, ξ, ξ̄; β, τ

]
(3.39)

The “semicolon variant” emphasizes the point of view that the fluctuations of the metric,
h, may be regarded as matter-like excitations on a classical spacetime with metric ḡ.
Instead, the “comma variant” makes it explicit that the EAA suffers from an extra
ḡ-dependence over and above the one that combines with h to build up a full metric
g = ḡ + h.

The k-derivative with hµν and the ghosts coupled to the appropriate sources, provides
the starting point for the construction of the functional renormalization group equation
for Γk[g, ḡ, ξ, ξ̄; β, τ ].

The flow equation can then be divided as:

k∂kΓk
[
h, ξ, ξ̄; ḡ

]
=

1

2
Tr
[(
k∂kR̂k

)
hh

(
Γ

(2)
k + R̂k

)−1

h̄h

]
− 1

2
Tr
[(
k∂kR̂k

)
ξξ̄

{(
Γ

(2)
k + R̂k

)−1

ξ̄ξ
−
(

Γ
(2)
k + R̂k

)−1

ξξ̄

}]
,

(3.40)

The resulting FRGE turns out to be a suitable tool to investigate the RG flow of
gauge theories in a completely covariant approach. As previously sketched out, com-
bining the methods of the FRGE with the background field formalism and applying it
to metric gravity (including a suitable gauge-fixing term) yields the effective average
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action Γk[g, ḡ, ξ, ξ̄], the primary tool for investigating the gravitational RG flow at the
nonperturbative level. It is a functional of the dynamical metric g and the ghost fields
ξ and ξ̄, but it also has an extra ḡ-dependence.

(3) Most standard FRG analyses rely on single-metric truncations, obtained by projec-
tion onto such invariants that depend on gµν alone. During the computation of the flows
this approximation amounts to identifying background and dynamical metric, ḡ = g

but only after the second functional derivative appearing in the FRGE has been taken.
For “Bi-metric” studies distinguishing the dynamical metric gµν and the background
metric ḡµν for the Einstein–Hilbert truncation we refer to [217].

(4) On account of the large number of independent field components in gravitational
theories, RG computations are particularly complicated. Thus, one has to approximate
the exact flow by reducing the basis to a finite subset, truncating theory space. For
QEG with the aid of computer algebra systems it has been possible to extend these
truncations up to order 71 in the Ricci curvature [218] and computations of the infinite
dimensional f(R)-truncation have been carried out [186, 219].

3.5. The Einstein–Hilbert flow

A first truncation consists in keeping the classical ghost terms but neglecting their
action. This leads to the reduced flow equation

k∂kΓk
[
h, ξ, ξ̄; ḡ

]
=

1

2
Tr

[
k∂kR̂grav

k

Γ
(2)
k [g, ḡ] + R̂grav

k

]
− Tr

[
k∂kR̂gh

k

M [g, ḡ] + R̂gh
k

]
(3.41)

where M [g, ḡ] is the Faddeev–Popov operator obtained from varying (3.32):

M [g, ḡ]µν = ḡµρḡσλ∇̄λ (gρν∇σ + gσν∇ρ)− 2βgfḡ
ρσḡµλ∇̄λgσν∇ρ . (3.42)

Furthermore, here we shall employ the harmonic gauge which fixes βgf = 1/2. Con-
cretely, in this way we pull out the classical gauge-fixing and ghost actions Sgf and Sgh

from Γk, and also assume that the coupling to the BRST variations has the same form
as in the bare action for all k.

The remaining functional Γk depends on both gµν and ḡµν . Performing the decom-
position

Γk[g, ḡ] = Γ̄k[g] + Γ̂k[g, ḡ]

Γ̄k[g] = Γk[g, g]

Γ̂k = Γk − Γ̄k ,

(3.43)

we can separate the restriction of Γk on the diagonal, Γ̄k[g], from the remaining off-diag-
onal term Γ̂k. It is to be stressed out that, by definition, Γ̂k vanishes whenever its two
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arguments are equal, i.e., Γ̂k[g, g] = 0. Furthermore, Γ̂k contains quantum corrections
to the gauge-fixing term, which also will vanish on the background ḡ = g.

At this stage Γk[g, ḡ] is still a general bi-metric functional: it depends on two inde-
pendent metrics g and ḡ. For a first analysis we restrict the truncation ansatz to the
so-called single-metric truncations in which one either sets Γ̂k[g, ḡ] to zero exactly (or at
most allows it to be of the same form as Sgf, even if with a different prefactor Γ̂k ∝ Sgf).
In this way, the only scale dependence in the EAA enters via the functional Γ̄k[g].

Thus far, a determination of the scale dependence of these running constants by
solving the flow equation within a single-metric ansatz is possible. The full truncation
ansatz then reads

Γk[g, ḡ] = Γ̄k[g] + Γ̂k + Sgf , (3.44)

with Γ̂k ∝ Sgf. The projection onto the Einstein–Hilbert action had been first studied
by [95, 97]:

Γk =
1

16πG(k)

∫
ddx
√
g(R− 2Λ(k)) + gauge fixing + ghosts , (3.45)

which consists of the classical Einstein–Hilbert action with running couplings, Newton’s
gravitational constant G(k) and the cosmological constant Λ(k). This represents the
simplest single-metric truncation.

Explicitly, the Einstein–Hilbert truncation amounts to the choice:

Γ̄k[g] =
1

16πG(k)

∫
ddx
√
g
(
−R(g) + 2Λ(k)

)
Γ̂k[g, ḡ] = αgf

(
Ḡ

G(k)
− 1

αgf

)
Sgf[g − ḡ; ḡ]

(3.46)

where αgf is the gauge-fixing parameter that occurs in the prefactor of the gauge-fixing
term (3.33) and Ḡ denotes the k-independent reference value of the Newton’s constant.

The first equation in (3.46) is the generalization of the classical Einstein–Hilbert
action, which now is k-dependent, while the second one entails the possibility to change
the gauge sector by introducing a non-vanishing Γ̂k proportional to the classical Sgf.5

After all, the chosen Γ̂k replaces the constant gauge-fixing parameter αgf in the prefactor
of the original Sgf by the scale-dependent ratio G(k)/Ḡ. However, Sgf[h; ḡ] is bilinear
in the fluctuation h = g − ḡ, so still bi-metric. Hence, by the single-metric hypothesis,
the scale dependence of its coefficient is assumed to be negligible, and to have small
impact on Γ̄k, and consequently on G(k) and Λ(k). In conclusion, it is consistent in the
single-metric ansatz to neglect this effect.

5This particular choice for Γ̂k is motivated by algebraic simplifications.
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With the above ansatz, the calculation of the RG flow of G(k) and Λ(k) will be
simplest if one adopts a special member of the family of gauges in (3.32): There is
a special choice of βgf and αgf which simplifies the algebra: we are free to choose
βgf = 1

2
, which corresponds to the standard harmonic gauge, and in addition to fix the

gauge-fixing parameter to be αgf = 1.

It is convenient to relate the running Newton’s constant to its fixed reference value
Ḡ by means of the following dimensionless function ZN(k) = Ḡ/G(k), such that

G(k) =
Ḡ

ZN(k)
. (3.47)

Exploiting the single-metric ansatz, one can perform contractions with the full metric
or with the fluctuations. Hence we can write Fαβµ gαβ = Fαβµ hαβ in the gauge-fixing
term, and the complete Einstein–Hilbert truncation ansatz then assumes the following
form:

Γk[g, ḡ] =
1

16πḠ
ZN(k)

∫
ddx
√
g
(

2Λ(k)−R(g)
)

+
ZN(k)

32πḠ

∫
ddx
√
ḡḡµνFαβµ gαβFρσν gρσ .

(3.48)

At this stage, the setup to compute the flow of ZN(k) and Λ(k) is set.

3.5.1. Evolution of Newton’s constant and the cosmological constant

Under the trace appearing in the reduced FRGE we need the second functional derivative
of Γk. This leads to a quadratic form in the field fluctuations. In order to partially
diagonalize the quadratic form we decompose the fields as the sum of a traceless tensor
and a trace part (we refer the reader to Appendix D).

The differential equations for ZN(k) and Λk are obtained by comparing the coeffi-
cients of

∫
ddx
√
g and

∫
ddx
√
gR on both sides of the evolution equation at gµν = ḡµν .

For this purpose, we may insert an arbitrary family of metrics ḡµν that is general enough
to identify the terms and to distinguish them from higher-order terms in the derivative
expansion, such as

∫
ddx
√
gR2 or

∫
ddx
√
g∇µ∇νR. These terms might for instance

arise on the RHS of the FRGE. Usually, one exploits the freedom of choosing ḡ by
assuming it to be a maximally symmetric space.

The RHS of the flow equation involves then traces of functions of the covariant
Laplacian acting on traceless symmetric tensors, scalars and vectors. Because we need
only the zeroth and the first order in the curvature scalar we can expand in R and
evaluate the traces by taking advantage of the heat kernel expansion (see Appendix C).

For all these intermediate steps we refer the reader to Appendix C and Appendix D.
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Finally, defining the anomalous dimension related to the running Newton’s constant
as:

ηN(λ(k), g(k)) = −k∂k lnZN(k) , (3.49)

where we introduced the dimensionless variables
g(k) ≡ kd−2 = kd−2ZN(k)−1Ḡ ,

λ(k) ≡ k−2Λ(k) ,
(3.50)

from (D.37) in Appendix D we can obtain the full Einstein–Hilbert flow :

k∂kg(k) = [(d− 2) + ηN(λ(k), g(k))] g(k) ,

k∂kλ(k) =− (2− ηN(k))λ(k) +
1

2
g(k)(4π)1−d/2×

×
[
2d(d+ 1)Φ1

d/2(−2λ(k))− 8dΦ1
d/2(0)− d(d+ 1)ηN(k)Φ̃1

d/2(−2λ(k))
]
.

(3.51)
Here the Φ and the Φ̃ represent the so-called threshold functions introduced and dis-
cussed further in Appendix D, see (D.29).

The system (3.51) involves the anomalous dimension, ηN . From the projected FRGE

it is obtained in the form

ηN(k) =
g(k) B1(λ(k))

1− g(k) B2(λ(k))
, (3.52)

with

B1(λ(k)) = 32π

(
1

4π

)d/2 [
d(d+ 1)

24
Φ1
d/2−1(−2λ(k))− d(d− 1)

4
Φ2
d/2(−2λ(k))

−d
6

Φ1
d/2−1(0)− Φ2

d/2(0)

]
,

B2(λ(k)) = 32π

(
1

4π

)d/2 [
−d(d+ 1)

48
Φ̃1
d/2−1(−2λ(k)) +

d(d− 1)

8
Φ̃2
d/2(−2λ(k))

]
.

(3.53)

In d = 4 using the sharp cutoff introduced in Appendix D and the evaluation of the
threshold functions in eq.(D.33), we obtain the following explicit RG equations [49]:

k∂kλ(k) = −(2− ηN(k))λ(k)− g(k)

π

[
5 ln(1− 2λ(k))− 2ζ(3) +

5

2
ηN

]
,

k∂kg(k) = (2 + ηN(k))g(k) ,

ηN(k) = − 2g(k)

6π + 5g(k)

[
18

1− 2λ(k)
+ 5 ln(1− 2λ(k))− ζ(2) + 6

]
.

(3.54)

We can now display a number of typical RG trajectories obtained by numerically inte-
grating the flows equations (3.54).
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One can solve the resulting coupled differential equations numerically, obtaining the
phase portrait of the involved coupling constants (see Figure 3.3). It was first obtained
in [220] using the so called optimized cutoff (introduced in Appendix C), which has the
advantage that all threshold functions can be evaluated analytically (see Appendix D).

The RG flow is indeed seen to be dominated by two fixed points: the Gaussian fixed
point at g∗ = λ∗ = 0, and the non-Gaussian fixed point with g∗ > 0 and λ∗ > 0 (the
so-called Reuter fixed point). There exist three types of trajectories emanating from
the non-Gaussian fixed point: trajectories of Type Ia and Type IIIa which run towards
negative and positive cosmological constant, respectively, and a single trajectory of
Type IIa (also known as the separatrix ), which hits the Gaussian fixed point for k → 0.

Writing down the linearized renormalization group flow of the coupling constants
λ(k) and g(k) in the vicinity of the Gaussian fixed point, one finds [97]

λ(k) = α1
Λ0

k2
+ α2$G0k

2 + · · ·

g(k) = α2G0k
2 + · · · ,

(3.55)

where α1 and α2 are constants of integration allowing to adjust the solution to given
initial conditions, $ is a numerical constant of O(1), and the infrared values Λ0 ≡
Λ(k = 0) and G0 ≡ G(k = 0) are constants of integration whose values select a specific
RG trajectory in the 2D theory space. Following the parametrization in eq.(3.55), we
can classify the three Types of trajectories and their asymptotic behavior:

Type Sign of α1 Asymptotic behavior when k→ 0

Type Ia α1 < 0 α1-contribution dominates; λ(k)→ −∞

Type IIa α1 = 0 α2-contribution dominates; λ(k)→ 0

Type IIIa α1 > 0 α1-contribution dominates; λ(k)→ +∞

Table 3.1. Renormalization group flow of λ(k) in the vicinity of
the trivial fixed point, depending on the sign of α1.

We discussed how within Asymptotic Safety, the fixed point can be also interacting
or non-Gaussian. A possible scenario for Quantum Gravity is then supplied by the
existence and the analysis of such a non-Gaussian fixed point.

The next sections in this chapter have been assembled from the author’s publication
[RF3].
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Figure 3.3. Part of coupling constant space of the Einstein–Hilbert
truncation with its RG flow. The arrows point in the direction of de-
creasing values of k. The flow pattern is dominated by a non-Gaussian
fixed point in the first quadrant and a trivial one at the origin. (First
obtained in [97]).

3.5.2. The trajectories simplified

The classification of the RG trajectories implied by the ansatz (3.45) on the g-λ−plane
of the dimensionless Newton’s constant g and cosmological constant λ is well known and
has been classified in [97]. As we discussed, they can be divided into three main classes,
i.e., trajectories of Type Ia, Type IIa, and Type IIIa, respectively (see Figure 3.3).

They can be divided into two regimes:

(1) Fixed point regime. All these trajectories possess a non-Gaussian fixed point
(g∗, λ∗) when k → ∞. In particular the dimensionless cosmological constant behaves
as λ(k) = Λ(k)/k2 → λ∗ in the asymptotic region (UV region). Hence

Λ(k) = λ∗ k
2 (k & k̂) (3.56)

is a sufficiently good approximation to the exact trajectory in this regime. The approx-
imation regime extends from “k =∞” down to a scale of the order of the Planck mass
mPl, typically denoted as k̂. We define the Planck mass mPl ≡ G

−1/2
0 = G(k = 0)−1/2

in the conventional way by the running Newton’s constant at k = 0.
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(2) Semiclassical regime. Below a short transition regime near k̂, all trajectories of
the above three types enter a semiclassical regime within which the behavior of Λ(k) can
be approximate again. Qualitatively, the following simple formula provides a reliable
approximation (see (3.55)):

Λ(k) = Λ0 +$ G0 k
4 . (3.57)

The three types of trajectories are classified following the different signs of Λ0. We have
Λ0 < 0, Λ0 = 0, and Λ0 > 0 for trajectories of Type Ia, IIa, and IIIa, respectively (see
Table 3.1).

If Λ0 6= 0 it is convenient to introduce the two length scales

` ≡
(
$ G0

|Λ0|

)1/4

, L ≡
(
λ∗
|Λ0|

)1/2

. (3.58)

Hence, in the semiclassical regime,

Λ(k) = |Λ0|
(
`4 k4 ± 1

)
, (3.59)

where the plus sign (minus sign) applies to the Type IIIa (Type Ia). This function is
required to be continuous at k = k̂ � `−1. As a consequence, the RG data ($, λ∗) and
integration constants (Λ0, G0) determine the transition to occur at

k̂ =

(
λ∗
$G0

)1/2

=

(
λ∗
$

)1/2

mPl . (3.60)

When Λ0 6= 0 the following “caricature” of the function Λ(k) is useful:

Λ(k) = |Λ0| ·

{
`4 k4 ± 1 for 0 ≤ k . k̂

L2 k2 for k & k̂
(3.61)

It should be a reliable approximation, except possibly during a short interval of scales
near k̂ where the transition between the two regimes takes place. We shall investigate
this transition regime separately below.

In the case Λ0 = 0, the corresponding approximation reads instead

Λ(k) = |Λ0| ·

{
$ m−2

Pl k
4 for 0 ≤ k . k̂

λ∗ k
2 for k & k̂

(3.62)

Eq.(3.62) applies to the single trajectory of Type IIa, the separatrix [97].

Later on, we are going to employ those trajectories of the Einstein–Hilbert truncation
which have a positive cosmological constant throughout, the Type IIIa. They are the
theoretically most interesting, and at the same time phenomenologically most relevant
ones. The most important property of the Type IIIa trajectories becomes manifest
when we switch to the dimensionless cosmological constant λ(k) = Λ(k)/k2. Then, in



3. rg flow of quantum einstein gravity and asymptotic safety 55

Figure 3.4. A typical RG trajectory of Type IIIa on the g-λ theory
space. The duality transformation k 7→ k2

T/k is seen to map the scale k1

onto its dual k]1, at which λ assumes the same value.

the semiclassical regime,

λ(k) =
1

2
λT

[(
kT
k

)2

+

(
k

kT

)2
]

(3.63)

Here we introduced the two abbreviations

kT ≡ `−1 ≡
(

Λ0

$ G0

)1/4

, (3.64)

λT ≡ λ(kT ) =
(

4 $ Λ0 G0

)1/2

. (3.65)

Evidently the function λ(k) of eq.(3.63) possesses a minimum. It assumes its smallest
value, λT , at the scale k = kT , i.e., when the trajectory on the g-λ plane passes the
turning point (gT , λT ), see Figure 3.4.

We mostly employ the simple, but analytically tractable caricature of the function
λ(k) in which the semiclassical and the fixed point regimes are simply patched together
[221].:

λ(k) =


1

2
λT

[(
kT
k

)2

+

(
k

kT

)2
]

for 0 ≤ k ≤ k̂

λ∗ for k̂ < k <∞ .

(3.66)
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Eq.(3.66) correctly captures all features of a Type IIIa trajectory that are of conceptual
relevance in the present context. It neglects however the small spirals around the
non-Gaussian fixed point which can be seen in Figure 3.4. They play no essential role
here.

Remark. Here a remark about the truncation is in order. Coming back to the running
cosmological constant within the Einstein–Hilbert truncation, it is easy to generalize
eq.(3.61) in a form which makes the required property manifest. In the semiclassical
regime, say, with the normalization scale introduced in Subsection 3.2.1 µ ∈ [0, k̂] and
the running of G(k) ≈ Gren neglected, we have in the present notation:

Λ(Λren,µ)(k) = Λren + $ Gren(k4 − µ4) . (3.67)

In (3.67) the implicit µ-dependence assigned to Λren by the Callan–Symanzik equation
cancels precisely the explicit one, µ d

dµ
Λ(Λren,µ)(k) = 0, while the FRGE tells us that

k d
dk

Λ(Λren,µ)(k) = 4$Grenk
4 at fixed renormalized parameters.

In the rest of the paper we shall continue to employ the choices µ = 0 and Λren ≡ Λ0

adopted in the previous Subsection.

3.6. Self-consistent backgrounds

As we discussed above, the crucial feature of the GEAA approach is that it complies with
the pivotal requirement of Background Independence by providing the hµν-dynamics si-
multaneously on all backgrounds possible. The correlation functions 〈ĥµν(x1) ĥρσ(x2) · · · 〉ḡ
are then obtained by differentiating repeatedly Γk, with respect to hµν , and they are
functionals of ḡµν .

The expectation value of the full metric operator ĝµν ≡ ḡµν + ĥµν in the quantum
theory of the fluctuations in the ḡµν-background is given by the one-point function
〈ĥµν(x)〉ḡ:

〈ĝµν〉ḡ ≡ ḡµν + 〈ĥµν〉ḡ . (3.68)

In general this expectation value differs from the externally prescribed metric ḡµν . How-
ever, there exist particular backgrounds, so-called self-consistent geometries with met-
rics (ḡ(k)sc)µν , on which the one-point function of ĥµν vanishes. Hence, even when
the quantum fluctuations are switched on, the prescribed self-consistent background
remains unaffected:

〈ĥµν〉ḡ = 0 ⇐⇒ 〈ĝµν〉ḡ = ḡµν for ḡ = ḡ(k)sc . (3.69)
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Self-consistent background metrics are calculated by solving the following tadpole con-
dition6 which is properly an effective Einstein equation:

δ

δhµν(x)
Γk [h; ḡ]

∣∣∣∣
h=0, ḡ=ḡ(k)sc

= 0 . (3.70)

Seemingly, generic solutions (ḡ(k)sc)µν will depend on the RG scale, k. Assum-
ing a smooth k-dependence, it is natural to interpret the map k 7→ (ḡ(k)sc)µν as
a parametrized curve in the space of all metrics, and the generalized RG trajectory
k 7→

(
Γk, (ḡ(k)sc)µν

)
as a curve in its product with theory space.

At this point a remark concerning the advocated principle of Background Indepen-
dence (see Section 1.3) is in order. The principle is implemented in an indirect way:
Rather than working with objects that are literally independent of the background met-
ric, the actions Γk and all the expectation values do have a non-trivial dependence
on ḡµν . However, ḡµν is kept completely arbitrary : at no stage of the calculation it is
identified with any concrete metric “by hand”. On the contrary, it is the dynamics of
the gravitational and matter fluctuations which determines the expectation value of the
metric: this is what is encoded in the tadpole condition (3.70), it selects a specific ḡsck
from the space of all background metrics

{
ḡµν
}
, such that the ĥµν fluctuations are “as

content as possible” about the background metric offered to them. The fluctuations
build up a zero expectation value 〈ĥµν〉ḡ that does not further correct the metric found
by the effective Einstein equation, 〈ĝµν〉ḡ = ḡµν ≡ (ḡsck )µν . It is in this sense that the
framework of the gravitational effective average action complies with the principle of
Background Independence.

3.6.1. Running Einstein spaces

Let us introduce a technically particular convenient class of running self-consistent
metrics whose k-dependence resides entirely in their conformal factor:

gkµν = f(k) gk=0
µν . (3.71)

We assume that we are dealing with pure Quantum Gravity (or matter contributions
are negligible), and that the Einstein–Hilbert truncation is employed: the effective field

6One may wonder what the analogous equations for the ghosts and anti-ghosts are: effectively these
are solved by assigning vanishing expectation values to them [95]. If one further considers matter
coupled gravity, the tadpole condition of the metric is coupled to the respective equations from the
matter sector. De facto, eq.(3.70) as it stands applies only under those circumstances where the matter
expectation values do not influence the geometry significantly.
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equations are Gµν [g
k
αβ] = −Λ(k)gkµν , or equivalently, with Rµ

ν [gkαβ] = (gk)νρRµρ[g
k],

Rµ
ν [gkαβ] =

2

d− 2
Λ(k) δµ

ν . (3.72)

In this setting, the input from the RG equations is the k-dependence of the running
cosmological constant, Λ(k). The latter can be of either sign, and it also might vanish
at isolated scales (see Section 3.5). In full generality, it will be convenient to express it
in the form

Λ(k) = σ |Λ(k)|
with the piecewise constant sign function σ = ±1, and to introduce the Hubble param-
eter

H(k) =

[
2|Λ(k)|

(d− 1)(d− 2)

]1/2

. (3.73)

The absolute value of the cosmological constant is therefore

|Λ(k)| = 1

2
(d− 1)(d− 2) H(k)2. (3.74)

It is known that for every fixed value of k, the solutions to the effective field equation

Rµ
ν [gkαβ] = σ(d− 1) H(k)2 δµ

ν (3.75)

are arbitrary Einstein manifolds [222] with scalar curvature

R[gkαβ] = σ d(d− 1) H(k)2. (3.76)

Among them, in Euclidean signature, there are the distinguished ones which possess a
maximum number of Killing vectors, namely the spheres Sd, pseudo-spheres Hd, and
the flat space Rd (see Appendix E). They exist for σ = +1 and σ = −1 when H(k) 6= 0,
and for H(k) = 0, respectively.

The motivation for the d-dependent factors in the definition (3.73) is as follows.
Comparing (3.76) with the curvature scalar of maximally symmetric spaces reveals
that, when gkµν is maximally symmetric, 1/H(k) is the radius of curvature of the related
sphere or pseudo-sphere. Actually H(k) can be identified with the conventional Hubble
parameter. As a result, for maximally symmetric spacetimes the Riemann tensor is
normalized as follows:

Rµνρσ[gkαβ] = σ H(k)2 [gµρgνσ − gµσgνρ] . (3.77)

In what follows, we stress out that that even if we employ the quantity H(k) de-
fined by (3.73) as a convenient way of rewriting the cosmological constant, we are not
restricting our analysis to maximal symmetry.
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Coming back to the problem of finding solutions to (3.72), let us fix some convenient
reference scale kR at which

Λ(kR) ≡ ΛR ≡
1

2
σ (d− 1)(d− 2) H2

R (3.78)

and let us pick an arbitrary solution gRµν(xρ) of the classical vacuum Einstein equation
involving this particular value of the cosmological constant:

Rµ
ν [gRαβ] = σ(d− 1) H2

R δµ
ν (3.79)

It then follows that the “running metric” given by

gkµν(x
ρ) = Y (k)−1 gRµν(x

ρ) , (3.80)

with gkµν |k=kR = gRµν , and

Y (k) ≡ |Λ(k)|
|ΛR|

≡ H(k)2

H2
R

(3.81)

solves the effective field equation (3.72) on all scales k that are sufficiently close to kR.
This is to say that Λ must not have any zero between k and kR so that σ = sign(Λ(k)) =

sign(ΛR) is a constant function. Equation (3.80) is easily proved by noting that the
Ricci tensor, with mixed indices, behaves as

Rµ
ν [c−2gαβ] = c2Rµ

ν [gαβ] (3.82)

under global Weyl transformations with an arbitrary real c.

3.7. Lorentzian spacetimes

It would be extremely interesting to confront the results from the RG flow analysis
with real Nature. One of the intriguing questions is whether the fixed point has any
implications for the actual Universe, in cosmology for example.

The signature of spacetime represents the principal obstacle preventing a straightfor-
ward realistic physical interpretation of the picture emerging from Asymptotic Safety.
While the existing analyses all deal with effective spacetimes of Euclidean signature,
we need their Lorentzian counterparts in order to determine their potential relevance
to the real world.

3.7.1. Signature change: bare vs. effective level

Switching from Euclidean to Lorentzian signature, two distinct challenges have to be
faced:
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(A) Obtain RG trajectories k 7→ Γk on a theory space which is constituted of
functionals that are constructed on Lorentzian metrics.

(B) Derive, analyze, and interpret the flows of hyperbolic (rather than elliptic) ki-
netic operators, typically of the d’Alembertian (appearing in the Hessian of the
effective action for instance), in the background of the running self-consistent
metrics implied by (A).

The difficulties related to (A) and (B) are related to quite different levels of the theory
that is important to distinguish: Challenge (A) arise because of the Lorentzian signature
of the bare metrics. These technical problems are encountered also in “simple” matter
field theories. Challenge (B) instead is characteristic of Quantum Gravity, because
the novel aspects are due to the Lorentzian character of effective (expectation value)
metrics.

3.7.2. Timelike vs. spacelike fluctuation modes

Regarding the first sector of questions, (A), the following preliminary remarks are in
order. To date, most of the FRG studies in the literature employ Euclidean background
spacetimes. However, there is a reason for preferring the Euclidean signature in the FRG

context: The momentum-square of the fluctuations to be integrated out is positive semi-
definite and the order in which different fluctuation modes are integrated out along the
RG trajectory is canonically established: high (momentum)2 first, low (momentum)2

later.7

In Lorentzian and curved spacetimes, already on a rigid Minkowski space, no dis-
tinguished ordering of the modes with a standard canonical status is given: Momen-
tum-squares can have either sign now, so distinguishing spacelike from timelike fluctu-
ation modes, and already this distinction leads to a variety of different, equally plau-
sible orderings. A first example would be to first integrate out all timelike modes and
thereafter all spacelike ones, or the other way around. A more democratic one would al-
ternate them, timelike-spacelike-timelike-spacelike · · · , and clearly many more schemes
are conceivable.

Most importantly, not all such schemes are equivalent when it comes to consider-
ing nonperturbative continuum limits or when Γk is utilized as the action functional
underlying an effective field theory.

7Recently it has been highlighted, that searching for new universality classes in Euclidean Quantum
Gravity one should also consider different unconventional mode ordering schemes, which do not rely
on the physical momentum [223, 224].
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It has also been proposed to relate a hypothetical Lorentzian flow equation and/or its
solutions to their Euclidean analogs by some sort of analytic continuation, like a Wick
rotation [178, 179, 225]. Such a relationship would strongly constrain the “correct”
integration scheme. However, we shall not follow this route here, since in Quantum
Gravity the standard form of the Wick rotation is not available (nonetheless for an
interested reader we suggest refs.[181, 182, 226]).

Yet another avenue is a purely spatial coarse graining achieved through a spatial
cutoff function. This would leave time dependencies untouched, see ref. [183] for recent
progress in a gravitational context. For a different, but likewise state-sensitive approach,
see ref.[184].

3.7.3. Path integral vs. FRGE

For a mixed sequence of timelike and spacelike modes it may not be straightforward
to characterize the desired ordering by simple bounds (technically speaking, “cutoffs”)
on the momenta of the modes, and to find a pseudo differential operator that would
implement it in a flow equation. Hence, rather than solving a flow equation, which still
has to be constructed, it is best at this stage to think of the piecemeal integrating out
of modes that underlies Γk, as a procedure of performing the regularized path integral
step by step.8

The path integral formulation has a main advantage: after expanding the integration
variable, ĥµν(x), in the desired basis of field space, ĥµν =

∑
n,m anm (χnm)µν , the actual

integration can be performed over the coefficients anm, and this gives direct access to
the individual basis modes χnm.

3.7.4. RG Lorentzian trajectories employed

Here, we are not aiming at the construction of a fully general Lorentzian flow equation
as this exists in Euclidean spacetime. However, the present investigation does not
depend on the explicit form of such an equation. Chapter 7 is devoted to the second
complex of problems, part (B). Thereby we shall work within a truncation of theory
space, the Einstein–Hilbert truncation [95, 97, 114], which is known to yield identical
trajectories in the Euclidean and the Lorentzian setting. As we explained in detail in

8There are a number of ongoing works on domains of “allowable” complex metrics for a path integral
of gravity [181, 227–230] and on applications of Picard–Lefschetz theory to it [231].
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Subsection 3.5.2, an approximation to its RG trajectories is perfectly sufficient for our
purposes.

Their Lorentzian interpretation corresponds to a totally symmetric ordering scheme
for the integrating out of timelike and spacelike modes, respectively. There is one single
parameter k > 0 which defines two independent cutoffs. At the scale k, the modes
which are already integrated out are those with |Fn| ≥ k2, where Fn is the eigenvalue
with respect to the d’Alembertian −�g. Hence,

spacelike modes integrated out: Fn ≥ + k2 ,

timelike modes integrated out: Fn ≤ − k2 .
(3.83)

The use of these trajectories is also motivated by recent work that established the
Asymptotic Safety of Quantum Einstein Gravity on foliated spacetime manifolds [115,
116, 232–235]. Also, the framework is broad enough for a comparison with Monte-Carlo
data from Causal Dynamical Triangulations [236–239], an approach in which Lorentzian
geometries play a critical role, see [100, 240–244].



CHAPTER 4

Recent developments of the FRG

Executive summary. Built on the functional renormalization group equation for
gravity, we follow the derivation of another flow equation that governs the evolution
of renormalized composite operators. This evolution becomes encoded into that of
the composite operators’ anomalous dimensions. Their values in the UV fixed-point
regime can be interpreted as quantum corrections to the classical scaling dimensions of
the composite operators. As a recent technical development, we introduce the essential
scheme. It has been shown that one can restrict the flow to the running of the couplings
appearing in expressions for physical observables, so-called essential couplings. This
freedom can then be exploited to simplify and optimize the calculation of physical
quantities of interest.

What is new? The main results of this chapter are taken from the literature. The
discussion around the role of the source has been extracted from a publication of the
author.

Based on: Partially based on reference [RF7].

Plan of this Chapter. In this chapter, we will introduce recent developments in the
FRG framework, which constitute important building blocks in the program, in order
to construct observables and evaluate their scaling.

To make contact with quantum-gravitational observables, it is required to study the
renormalization behavior of so-called geometric or relational operators which constitute
an important class of composite operators. Inspired by the Effective Average Action
derivation, C. Pagani [195] initiated the program of the renormalization in the FRG

framework by adding a cutoff term to the generator functional for the connected Green
functions of the composite operator. In Section 4.1 we review the derivation of the flow
equation for the composite operators.

Pursuing the goal of the Asymptotic Safety program and generalizing it to the con-
struction of observables, one should get rid of possible redundancies contained in theory
space. In fact, not all couplings appearing in the given basis will also enter into the
observables. In Section 4.2 we explore further details and consequences of this fact,
what appeared under the name of the Essential Renormalization Group.

63
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4.1. Composite operators

The existence of a NGFP controlling the high-energy behavior of gravity (or any other
completion of the gravitational force laws at microscopic scales) raises the intriguing
question how to characterize the properties of spacetime in the quantum regime. A
possible characterization could then be based on the anomalous scaling dimensions
of geometric operators comprising for instance, the volumes of spacetime, volumes of
surfaces embedded into spacetime, the geodesic length, or correlation functions of fields
separated by a fixed geodesic distance.

The key strength of the FRG formalism is that it can be extended to compute the
scaling of composite operators which are not part of the EAA. This approach was
pioneered by C. Pagani [195] and developed further in [192, 245, 246].

Parts of this chapter have been extracted and rearranged from the author’s publication
[RF7].

4.1.1. Flow of composite operators

We will generalize the inclusion of composite operators into the FRG framework con-
structed in Chapter 3. The main result of this subsection will be the composite operator
FRGE which, together with the GEAA, describes the renormalization of composite oper-
ators. In particular, the anomalous dimension matrix of the composite operators can
be computed.

(1) Technically, we will define as composite operator, any operator O, function of the
fields and their derivatives. For example, we could consider the field to some power
n, i.e., O(x) = φn(x). In the functional integral formulation of standard QFT one can
treat composite operators Ô(x) = O[φ̂](x) coupling them to external sources by adding
to the microscopic action a term ∫

ddx Ô(x)ε(x) , (4.1)

where ε(x) denotes the source at the point x. In this way one obtains insertions of
composite operators in correlation functions by taking suitable functional derivatives
of the path integral with respect to the source [195, 246]. For example the expectation
value of the composite operator reads

〈Ô(x)〉 = − δ

δε(x)

∫
Dφ̂ exp

{
−S[φ̂]−

∫
ddx Ô(x)ε(x)

} ∣∣∣∣∣
ε=0

. (4.2)
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Then, analogously to Section 3.4, we define the generating functional W [J, ε] for the
connected Green’s functions of the fields and the connected correlation functions of the
composite operators by

eW [J, ε] ≡

∫
Dφ̂ exp

{
−S[φ̂]−

∫
ddx Ô(x)ε(x) +

∫
ddxJ(x)φ̂(x)

}
. (4.3)

The associated effective action is obtained via a Legendre transform with respect to J
at fixed ε to obtain a functional Γ[φ, ε] where φ is the expectation value of the field φ̂ in
the presence of the source J . The expectation of the composite operator is then given
by expanding the effective action around ε = 0

Γ[φ, ε] = Γ[φ] +

∫
ddx ε(x)〈Ô(x)〉+O(ε2) , (4.4)

(2) As it has been performed in Section 3.4, the effective action Γ[φ, ε] can also be
modified to allow for a regulator Rk which suppresses infra-red fluctuations of the fields
φ around their mean values. In particular, Γk[φ, ε] can be defined by its functional
integro-differential representation (compare with (3.6)):

e−Γk[φ,ε] =

∫
Dφ̂ exp

{
−S[φ̂]−

∫
ddx Ô(x)ε(x)

+

∫
ddx
√
ḡ(φ̂− φ)

δ

δφ
Γk[φ, ε]−

1

2

∫
ddx
√
ḡ(φ̂− φ)Rk[ḡ](φ̂− φ)

}
.(4.5)

The k- and φ-dependent expectation value is given by of Ok(x) ≡ 〈Ô(x)〉 is again given
by expanding Γk[φ, ε] to first order in ε

Γk[φ, ε] = Γk[φ] +

∫
ddx ε(x) Ok(x) +O(ε2). (4.6)

The FRGE (3.7) for Γk[φ, ε] is given by the usual equation [89, 208]:

k∂kΓk[φ, ε] =
1

2
Tr

[(
Γ

(2,0)
k [φ, ε] +Rk

)−1

k∂kRk

]
. (4.7)

Now comparing order by order in ε, the flow equation for composite operators is given
by [195, 247], to lowest order,∫

ddx ε k∂kOk = −1

2
Tr

[(
Γ

(2)
k +Rk

)−1
(∫

ddx εO(2)
k

)(
Γ

(2)
k +Rk

)−1

k∂kRk

]
,

(4.8)
where O(2)

k is the Hessian of the composite operator.

(3) The flow equation for the composite operator Ok must be supplied by an initial
condition at k = Λ. Since, in the limit k →∞ we have that

lim
k→∞
Ok = O|φ̂→φ , (4.9)
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setting the initial condition for Λ → ∞ specifies which composite operator Ô we are
taking the expectation value of. Then by following the flow to k = 0 we obtain the
expectation value

O0 = 〈Ô〉 . (4.10)

In this manner solving the flow equation for the composite operator gives us a concrete
method to compute expectation values of observables.

(4) To concretely solve the equation (4.8), some approximation must be implemented.
In particular, one may expand the composite operator Ok in a basis of k-independent
operators {Oi(x)}

Ok(x) =
∑
i

ai(k)Oi(x) , (4.11)

so that their k-dependence can be parametrized as

k∂kaj =
∑
i

aiγij , (4.12)

It has been shown in [246] that the scaling operators of the theory have dimensions,
with quantum corrections included, given by the eigenvalues of the stability matrix

Sij = diδij + γij . (4.13)

where Sij is a function of the couplings included in the effective action Γk. The anoma-
lous dimension matrix γij can be directly found, inserting the expansion (4.11) in the
flow equation (4.8) and expanding the trace. To lowest order in ε∑

j

γij

∫
ddx ε(x)Oj(x) =

− 1

2
Tr

[(
Γ

(2)
k +Rk

)−1 (
ddx ε(x) O(2)

i (x)
)(

Γ
(2)
k +Rk

)−1

∂tRk

]
.

(4.14)

For the sake of comparison with other results in the literature, it is useful to work
out the relation between scaling operators defined by means of explicit introduction of
the sources and those found by linearizing the RG flow around the fixed point.

4.1.2. Interpretation of the anomalous dimension matrix

We had already defined the anomalous dimension in Chapter 3. In general, given a set
of RG equations, we define the stability matrix as

Sij ≡
∂

∂aj
βi = diδij + γij . (4.15)

One can argue that the negative eigenvalues of γij|u=u∗ at the fixed point are the anoma-
lous scaling dimensions that encode the quantum corrections to the classical scaling
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dimensions of the couplings [195]. If we interpret {O1[g, ḡ](x), · · · , On[g; ḡ](x)} as the
basis of a first truncation for the effective action, we can identify the stability matrix
Bij defined in (3.15) with the beta function matrix Sij [246].

4.1.3. (Non-)constant source

Let us reconsider the role of the source ε(x) in calculating γij. In particular, suppose
we choose to make the source a constant ε(x) = ε. Then, we can factor out ε from the
integral and it appears therefore as a source for the observable integrated over spacetime∫

ddx ε Ok(x) = ε
∑
i

ai(k)

∫
ddx Oi(x) (4.16)

Hence, if the integrated basis operators
∫

ddx Oi(x) are linearly dependent then we
are not able to determine all components of γij. Essentially this means that, in the
absence of boundaries, the flow of all the operators which are total derivatives is lost
by restricting the source to be constant.

Let us therefore employ a basis where all linearly independent boundary operators of
the form Oi = ∂µOµi form a subset of the total basis, the latter being is completed by
adding a set of bulk operators which are linearly independent of all boundary operators.
Then, if i is a boundary index and j a bulk index, then γij = 0.

To see this, note that∫
ddx ε(x)(∂µOµi )(2) = −

∫
ddx (∂µε(x)) Oµi (2) , (4.17)

and thus if Oi(x) = ∂µOµi is inserted into the LHS (4.14), then RHS must be given by
−
∑

j∈boundary indices γij
∫

ddx∂µε(x)Oµj (x). A consequence of this is that by taking the
source to be constant, we project out all the boundary operators. In this way, we are
still able to compute the flow of the bulk terms in a consistent manner.

On the other hand, allowing the source to be non-constant, we are then able to
compute the flow of the boundary operators in addition.

4.2. Essential scheme

Seeking for observables carrying physical information in Quantum Gravity we will now
review a recent development in the FRG framework: the essential renormalization group
scheme. It entails a substantial a simplification of the necessary computations, since
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it disentangles unphysical information (encoded in the inessential couplings) and the
physical content (encoded in the essential couplings).

The essential renormalization group scheme was developed in 2021 by A. Baldazzi,
R. Ben Alì Zinati and K. Falls [175, 199]. We will follow their derivation of the covariant
flow equation and solve it in the so-called minimal essential scheme.

In this section we review the essential RG approach using the case of a single scalar
field [199] to avoid pure technicalities and then we present the generalization for gravity
developed in [175].

4.2.1. Frame covariant QFT

We have discussed in the approach of Chapter 3, which we will now denote as the
standard approach, the EAA obtains a dependence on the RG scale k from only one
source: a momentum-dependent IR cutoff which implements the coarse graining pro-
cedure. In the essential scheme we introduce a second source of k-dependence, which
results from performing scale-dependent field reparameterization along the flow. The
latter are k-dependent diffeomorphisms φ 7→ ϕ̂k[φ] of configuration space, i.e., the space
we integrate over in the functional integral.

In order to analyze the field dependencies, in this subsection, we will state the
principle of frame covariance in QFT. In particular the notion of frame is central.

(1) Frames and frame transformations. In classical field theory the dynamics
is encoded in an action S[φ(x)], which can be considered as a scalar function on the
configuration spaceM. This manifold is viewed as the manifold where the points are
field configurations φ : Rd → R. The dynamical field variable φ(x) represents then a
preferred coordinate system for which the action takes a particular form. The variable
φ(x) is then typically defined as the “field”, if it assumes a straightforward physical
significance, that is, if it can be associated to an easily accessible observable experimen-
tally. From a geometrical point of view, the identification of a field is equivalent to
defining a particular local set of “frames” onM.

The variation of S wrt. φ(x) provides the equations of motion for the field variable
φ. However, it could be the case that the equations of motion are relatively difficult
to solve when written in terms of the original φ. Possibly they can be simplified by
re-expressing the action in terms of different variables ϕ[φ]: Provided the map ϕ[φ] is
invertible, i.e., assuming that the inverse map φ[χ] exists, this amounts to choosing a
different frame. Since the invertibility ensures that the Jacobian between the two frames
is non-singular, the solutions to the two equations of motion are then in a one-to-one
correspondence.
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Formally, actions in two different frames will transform as scalars on M, where
a change of frame is understood as a diffeomorphism from M to itself. Under an
infinitesimal frame transformation φ→ ξ[φ], the action transforms as

S[φ] → S[φ] +

∫
ddx ξ[φ](x)

δ

δφ(x)
S[φ] . (4.18)

Accordingly, classical field theory can be formulated in a language covariant under such
transformation: This allows one to easily pick different convenient frames suitable to
calculate observables.

This freedom is analogous to the freedom to pick a particular gauge condition in GR,
which corresponds to picking a set of local frames on spacetime.

In the following we are going to generalize the notion of general frame transformations
with the aim of developing a frame covariant formulation of Quantum Field Theory.

(3) Frame covariant effective action. Starting with a field frame φ̂, in QFT the
expectation value of an observable

〈Ô〉 =

∫
Dφ̂ O[φ̂] e−S[φ̂] (4.19)

represents a functional of the fields φ̂. In a similar fashion, in order to compute corre-
lation functions, in Section 3.4 we coupled the field φ̂ to a source J , which serves as a
mathematical tool. Note that, in general, there is the possibility to couple the source
to different powers of the field φ̂. Effectively, at this stage we are interested in this
generalization, where the source J is coupled to a composite operator ϕ̂ = ϕ̂[φ̂] such
that we generate the correlation functions of ϕ̂ rather than those of φ̂. In addition to
this, we demand that ϕ̂ to define a diffeomorphism in order to guarantee that these
correlation functions contain the same physical information.

(i) Frame covariance. For the rest of the thesis, we will define as the frame co-
variant (or reparameterization, or field-redefinition covariant) a theory where physical
quantities are independent of the choice of frame. Consequently, in this formalism all
physical couplings, possibly including a coupling to an external field, should be part
of the action. The source represents merely a device to compute correlation functions
such that, after differentiating the generating functional, we are setting the source to
zero.

(ii) How to achieve frame covariance. As we discussed in Section 3.4, we can
construct the generating functionalW [J ] by transformations and the addition of further
sources. In addition to the standard derivation, here we can also consider a bare theory
where S[φ̂] is replaced by S[φ̂]−

∫
ddxJ(x)ϕ̂[φ̂](x) resulting in a physical dependence on

the choice of frame. In practice, source-dependent expectation values can be computed
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as
〈Ô〉 = e−W [J ] Ô

[
φ̂[ϕ̂]

δ

δJ

]
eW [J ] , (4.20)

where φ̂[ϕ̂] is the inverse diffeomorphism of ϕ̂[φ̂]. Now, we adopt the principle of frame
covariance, which demands a frame covariant formalism where physical quantities are
independent of the choice of frame. After differentiatingW [J ], without loss of generality
we can take J = 0. Therefore, physical quantities are expressed by the frame covariant
expression

〈Ô〉 = e−W [J ] Ô
[
δ

δJ

]
eW [J ]

∣∣∣∣∣
J=0

. (4.21)

Working with a frame covariant setup has the advantage that the choice of a specific
frame reduces the complexity of computations for given physical quantities. For many
quantities the specific choice of the frame may simply be ϕ̂ = φ̂; this is the case for the
correlation functions of the physical field φ̂. However, in the case of universal quantities
near the continuous phase transition, or quantities which are computed at vanishing
external field, the choice of frame is highly non-intuitive. Nevertheless, it is important
to emphasize at this stage that in principle we can compute any observable in any frame.
Then in practice we can exploit the frame where computations become most manageable.

(iii) Change of integration variables. Together with the freedom of fixing a frame
by choosing a particular ϕ̂[φ̂] which couples to the source, we have as well the freedom
to make a change of integration variables. Correspondingly, the expectation value of
an observable can be rewritten as:

〈Ô〉 =

∫
Dϕ̂ Ô[ϕ̂] e−S[ϕ̂] . (4.22)

Analogously, for the functional integral of the generating functional W [J ], considering
the simple composite operator ϕ̂[φ̂], also called parameterized field, we can integrate
over ϕ̂

eW [J ] =

∫
Dϕ̂ exp

(
−S[ϕ̂] +

∫
ddxJ(x)ϕ̂[φ̂](x)

)
. (4.23)

Then, the effective action Γϕ̂[ϕ] is obtained by the Legendre transform

e−Γϕ̂[ϕ] =

∫
Dϕ̂ exp

(
−S[ϕ̂] +

∫
ddxJ(x)ϕ̂[φ̂](x)−

∫
ddxJ(x)ϕ(x)

)
, (4.24)

where ϕ = 〈ϕ̂[φ̂]〉. Equivalently, in terms of a integro-differential equation

e−Γϕ̂[ϕ] =

∫
Dϕ̂ exp

(
−S[ϕ̂] +

∫
ddx(ϕ̂− ϕ)

δ

δϕ
Γϕ̂[ϕ]

)
. (4.25)
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In particular, there exist a particular class of generating functionals that generalize the
effective action in the presence of an additional sourceK(x1, x2) for two-point functions:

e−Γϕ̂[ϕ,K] =

∫
Dϕ̂ exp

(
−S[ϕ̂] +

∫
ddx(ϕ̂− ϕ)

δ

δϕ
Γϕ̂[ϕ,K]

−1

2

∫
ddx(ϕ̂− ϕ)K(ϕ̂− ϕ)

)
.

(4.26)

This source K will be identified with the cutoff function Rk, giving rise to a frame
covariant flow equation.

4.2.2. Frame covariant flow equation

(1) Essential vs. inessential. In general, during the renormalization process all
operators compatible with the symmetries of the theory are generated but not all of
them are associated to essential couplings, i.e., couplings that appears in physical quan-
tities. Some of the couplings are inessential meaning that they can be removed by field
redefinitions.

We will define as inessential couplings those couplings that when changing their
values is equivalent to the change induced by a local frame transformation. By contrast,
we define essential couplings to be those which enter physical observables as in (4.22).

(2) Frame covariant EAA. Locally in theory space, we can work in a coordinate
system {gi} = {λa, ζα}, where we denote λa the essential couplings and ζα the inessential
ones. By their very definition, changing the values of the inessential couplings ζ → ζ+δζ

is equivalent to a local frame transformation:

ϕ̂[φ̂]→ ϕ̂[φ̂]− Φ̂[φ̂]ζδζ +O(δζ2) . (4.27)

Then, the generating functional and the effective actions transform respectively as1

W [J ]→ W [J ]−
∫

ddxJ(x)〈Φ̂[φ̂]ζδζ〉J +O(δζ2) (4.28)

Γ[ϕ]→ Γ[ϕ] +

∫
ddx〈Φ̂[φ̂](x)ζδζ〉ϕ

δ

δϕ
Γ[ϕ] +O(δζ2) (4.29)

Γ[ϕ,K]→ Γ[ϕ,K] +

∫
ddx〈Φ̂[φ̂](x)ζδζ〉ϕ,K

δ

δϕ(x)
Γ[ϕ,K]

− Tr

[(
Γ(2)[ϕ,K] +K

)−1 δ

δϕ
〈Φ̂[φ̂](x)ζδζ〉ϕ,KK

]
+O(δζ2) .

(4.30)

1Starting from this point, in order to simplify the notation, we will drop the subscript ϕ̂ in the EAA
Γϕ̂[ϕ].
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In (4.30) the form of the term with the trace comes from the definition of the two-point
function(

Γ(2)[ϕ,K] +K
)−1

(x1, x2) ≡ 〈(ϕ̂(x1)− ϕ(x1)) (ϕ̂(x2)− ϕ(x2))〉ϕ,K . (4.31)

We note that (4.30) has the same form of the classical frame transformation (4.18).
Significantly, then, the derivative of the effective action Γ[ϕ] with respect to an inessen-
tial coupling is proportional to the equations of motion. For some functional Φ[ϕ] it
reads:

ζ
∂

∂ζ
Γ[ϕ] =

∫
ddx Φ[ϕ]

δ

δϕ
Γ[ϕ] , (4.32)

i.e., on-shell
∂Γ

∂ζ
= 0 . (4.33)

This is the origin of the statement that one can may take advantage of the equations
of motion while calculating running of essential couplings [96].

Moreover, a change in the values for the inessential couplings keeping the essential
couplings fixed can be associated to a frame transformation. Specific values of the
inessential couplings fully characterize the frame choice. From this observations the
analogy between frame covariance and gauge symmetry in GR is then manifest: gauge
transformations are analogous to the frame transformations while gauge-fixing condi-
tions are analogous to conditions that specify the inessential couplings.

As for the Γ[ϕ,K],

ζ
∂

∂ζ
Γ[ϕ,K] =

∫
ddxΦ[ϕ,K]

δ

δϕ
Γ[ϕ,K]− Tr

∫ [(
Γ(2)[ϕ,K] +K

)−1 δ

δϕ
Φ[ϕ,K]K

]
,

(4.34)
this transformation includes an additional second term. The first term vanishes on the
equation of motion. We define the operator on the RHS of (4.30) as the redundant
operator conjugate to the inessential coupling ζ (see Section 3.2 for the definition of
redundant operators). We conclude that: every inessential coupling is conjugate to a
redundant operator which is determined by some (quasi-)local field Φ(x) which charac-
terizes the frame transformation.

Note that a derivative with respect to an inessential coupling can be understood as
an “averaged” derivative. While Γ[ϕ] is in this sense a scalar, the averaged derivative
of Γ[ϕ,K] is nonlinear due to the presence of K.

(3) Frame covariant flow equation. In dimensionful variables, the frame covariant
effective average action is obtained by introducing the cutoff scale k and the cutoff
function Rk, which we identify with K:

K = Rk (4.35)
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Explicitly, analogously to (4.26), the EAA action Γk[ϕ] is defined by the functional
integro-differential equation

e−Γk[ϕ] ≡

∫
Dϕ̂ exp

{
−S[ϕ̂] +

∫
ddx

(
ϕ̂k[φ̂]− ϕ

) δ

δϕ
Γk[ϕ]

−1

2

∫
ddx
√
ḡ
(
ϕ̂k[φ̂]− ϕ

)
Rk

(
ϕ̂k[φ̂]− ϕ

)}
,

(4.36)

from which it follows that every given operator O has a ϕ- and k-dependent expectation
value given by

〈Ô〉ϕ,k ≡ eΓk[ϕ]

∫
Dϕ̂ exp

{
−S[ϕ̂] +

∫
ddx(ϕ̂k[φ̂]− ϕ)

δ

δϕ
Γk[ϕ]

−1

2

∫
ddx
√
ḡ(ϕ̂k[φ̂]− ϕ)Rk(ϕ̂k[φ̂]− ϕ)

}
Ô[φ̂] .

(4.37)

The generalized flow equation satisfied by Γk[ϕ] in (4.36) is given by(
k∂k +

∫
ddx Φk[ϕ]

δ

δϕ

)
Γk[ϕ] =

1

2
Tr


(
k∂k + 2

∫
ddx δ

δϕ
Φk[ϕ]

)
Rk

Γ
(2)
k [ϕ] +Rk

 . (4.38)

Herein
Φk[ϕ] := 〈k∂kϕ̂k[φ]〉 (4.39)

is the RG kernel which takes into account the k-dependent field reparameterizations.
Crucial here is the utility of ϕ̂k[φ] that allows us to choose to reparameterize the field to
fix the values of inessential couplings. We note that the flow equation (4.38) reduces to
the standard flow for the EAA (3.7) when Φk = 0. The additional terms arise due to the
k-dependence of ϕ̂k, which assume the form of an infinitesimal frame transformation.

Now the central question is shifted to the search of a criterium to determine Φk[ϕ]. In
fact we can arrive at a closed flow equation for Γk[ϕ] in terms of a yet-to-be determined
Φk[ϕ] in some explicit manner. Crucially, by inverse logic Φk[ϕ] can be determined by
Γk[ϕ] itself. This is the approach pursued in earlier work [248, 249] in order to describe
bound states through flowing bosonization and hadronization in QCD [250, 251]. The
alternative, which we shall pursue, is instead to specify those renormalization condi-
tions that constrain the form of Γk[ϕ] by fixing the values of the inessential couplings
and solve the flow equation for the essential couplings. In this way we can also solve
for the parameters appearing in Φk[ϕ] in order to determine the form of the frame
transformation.

Remark. The RG transformation can be interpreted itself as a frame transformation,
where the RG scale k is the associate inessential coupling. This can be easily seen by
deriving a dimensionless version of the flow equation (4.38) [199].
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One advantage of the flow equations (4.38) is that the regulator is disentangled
from the RG kernel, meaning that the trace will be regularized for any Φk provided Rk

decreases fast enough in the large momentum limit, as usually demanded. Therefore, in
the EAA formulation we have two different independent RG scheme ingredients to tune
in order to analyze a particular physical system.

4.2.3. Standard scheme

As an example, in this section, we focus on the simple case where one eliminates only a
single inessential coupling, namely the wave function renormalization Zk. The removal
of Zk then introduces the anomalous dimension of the field,

ηk = −k∂k log(Zk) . (4.40)

This choice is what is usually called the standard renormalization scheme. Now, we set
in our new framework

Φk[ϕ] = −1

2
ηkϕ ⇐⇒ ϕ̂k = Z

1/2
k ϕ̂ , (4.41)

where we impose Z0 = 1 as boundary condition. The EAA reads:

e−Γk[ϕ] =

∫
Dϕ̂ exp

(
−S[ϕ̂] +

∫
ddx(Z

−1/2
k ϕ̂− Z−1/2

k ϕ)
δ

δϕ
Γk[φ]

−1

2

∫
ddx
√
ḡ(Z

−1/2
k ϕ̂− Z−1/2

k ϕ)ZkRk(Z
−1/2
k ϕ̂− Z−1/2

k ϕ)

}
.

(4.42)

Hence the corresponding flow equation becomes(
k∂k −

1

2

∫
ddx ηkϕ

δ

δϕ

)
Γk[ϕ] =

1

2
Tr

[
k∂kRk − ηkRk

Γ
(2)
k [ϕ] +Rk

]
. (4.43)

It is now manifestly independent of Zk and is equal to (4.38) with Φk given by (4.41).
The terms proportional to ηk have the form of a redundant coupling, and this simply is
the manifestation of the fact that the wave function renormalization was inessential.

(1) Renormalization conditions. The flow equation (4.43) was obtained without
specifying the inessential coupling Zk. This means that we have the freedom to impose
a renormalization condition that constrains the form of Γk[ϕ] by fixing the value of one
coupling to some fixed value. Finally we can solve the flow equation under the chosen
renormalization, determining ηk as a function of the remaining couplings.

A typical choice is to expand the Γk in fields and in derivatives, then identify Zk with
the coefficient of the term

∫
ddx ∂ϕ∂ϕ, and choose it to be 1/2. However this choice

is not the only one possible. For instance, expanding Γk[ϕ] in derivatives, introducing
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two functions of the field Vk(ϕ) and zk(ϕ), one can write

Γk[ϕ] =

∫
ddx

(
Vk(ϕ) +

1

2
zk(ϕ)∂µϕ∂

µϕ

)
+O(∂4) . (4.44)

The essential scheme we are going to present generalizes the renormalization condition

zk

(
ϕ(x) = ϕ̄

)
= 1 (4.45)

for a given x-independent value of the field, ϕ̄.

(2) Gaussian fixed point. It is important to remark that at the Gaussian fixed point
the EAA equals

ΓGFP ≡
1

2

∫
ddx ∂µϕ∂

µϕ , (4.46)

which is quadratic in ϕ. Thus any of the renormalization conditions (4.45), for any
value of ϕ̄, will fix the same inessential coupling at the Gaussian fixed point. Alterna-
tively, one can also fix inessential couplings at a different free fixed point by imposing
an alternative renormalization condition to eliminate Zk. This makes it clear that the
renormalization condition (4.45) is closely related to the kinematics of the Gaussian
fixed.

Note that here we are discussing only a single inessential coupling. In general there is
an infinite number of inessential couplings and by imposing renormalization conditions
we wish to eliminate all of them. We shall then investigate whether there is a systematic
procedure. Next section, is devoted to the minimal essential scheme, the scheme where
this operation is practically performed.

Furthermore, the task of distinguishing the scaling operators (related to the essential
couplings) from redundant operators (related to inessential couplings) at the Gaussian
fixed point is made simpler by the following observation. The redundant operators at
the GFP have the general structure (compare with (4.34)):∫

ddx Φα[ϕ](x)∂2ϕ− Tr

[(
∂2 +Rk

)−1 δ

δϕ
Φα[ϕ](x)

]
. (4.47)

If {ea[ϕ]} is a set of operators which are linearly independent of Φα[ϕ]∂2ϕ, they will
also be linearly independent of the second term in (4.47). Hence, in order not to include
redundant operators, one should eliminate all operators of the form Φ∂2φ.2

2If Φ is a homogeneous function of the field of degree n, then the first term is a homogeneous function
of degree n+ 1, while the second term is a homogeneous function of degree n− 1.
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4.2.4. Minimal essential scheme

In order to solve the flow equation (4.38), we allow Φk to depend on a set of γ functions
{γα}. In particular, one gamma function for each renormalization condition has to be
introduced. Together with the beta functions for the remaining running couplings, the
gamma functions turn out to be functions of the remaining couplings. For example,
we saw that usually (in the standard scheme) one fixes Φk = −1

2
ηkϕ, applying a single

renormalization condition.

Now instead, let us choose for example Φk = γ1(k)ϕ+ γ2(k)ϕ3, imposing two renor-
malization conditions. This choice fixes the values of two inessential couplings then.

Let us parameterize Φk in the general form

Φk[ϕ](x) =
∑
α

γα(t)Ψα[ϕ](x) . (4.48)

In essential schemes we include all possible local operators in the set {Ψα[ϕ]}. Applying
a renormalization conditions for all Ψα[ϕ] then fixes the values of all inessential cou-
plings. For this purpose, we wish to find a practical set of renormalization conditions
that generalize the one applied in the standard scheme.

Following the line of reasoning of the previous section, in the minimal essential
scheme one fixes the values of the inessential couplings at the Gaussian fixed point.
Then, we can write the EAA such that it depends only on the essential couplings λa:

Γk[ϕ] = ΓGFP[ϕ] +
∑
a

λa(k)ea[ϕ] (4.49)

where {ea[ϕ]} are a set of operators which are linearly independent of the redundant
operators associated to the inessential couplings.

Without loss of generality we can assume that the couplings behave as λa(k) =

e−θGkλa(0) + · · · in the vicinity of the Gaussian fixed point. In this case {ea[ϕ]} are the
scaling operators at the Gaussian fixed point, θG the corresponding Gaussian critical
exponents and the essential couplings λa(k) are the scaling fields.

Remark. Having set the renormalization conditions at the Gaussian fixed point, we
know that the couplings λa will be the essential couplings in the vicinity of the Gaussian
fixed point.

Away from the Gaussian fixed point, the form of the redundant operators will change,
since the RG scheme can exclude regions of the theory space. Therefore, adopting the
minimal essential scheme puts a restriction on which theory we can have access to.
However, it is intuitively clear that this restriction has a physical meaning since the
theories in question are those that share the kinematics of the Gaussian fixed point. In
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fact, a remarkable consequence of the minimal essential scheme is that the propagator
evaluated at any constant value of the parameterized field ϕ[φ](x) = ϕ̄ will be of the
form

(p2 + V
(2)
k +Rk(p

2))−1 (4.50)

where V (2)
k is the second derivative of the potential. Let us point out that this does

not imply that the propagator for the physical field ϕ is of this form, but only that the
propagator can be brought into this form by a frame transformation.

(1) Generic fixed points. In the vicinity of fixed points one obtains scaling exponents
which are universal, i.e., independent of the renormalization conditions that distinguish
different schemes. However, there are also critical exponents associated with redundant
operators they are all scheme dependent. We will show the different features of essential
schemes with those of the standard scheme in these respects.

Rewriting the flow equation (4.38) in dimensionless variables yields(
k∂k +

∫
ddx ψk[ϕ̃]

δ

δϕ̃

)
Γk[ϕ̃] = Tr

[∫
ddx δ

δϕ̃
ψk[ϕ̃]R(0)

Γ
(2)
k [ϕ̃] +R(0)

]
, (4.51)

where ϕ̃ denotes the dimensionless field and ψk the dimensionless RG kernel. Further-
more R(0) is understood as a function of the dimensionless Laplacian. Fixed points of
the RG flow are uncovered by searching for k-independent solutions of this equation.
Here the fixed point action Γ∗ and the RG kernel at the fixed point, ψ∗, obey∫

ddx ψ∗[ϕ̃]
δ

δϕ̃
Γ∗[ϕ̃] = Tr

[∫
ddx δ

δϕ̃
ψ∗[ϕ̃]R(0)

Γ
(2)
∗ [ϕ̃] +R(0)

]
. (4.52)

The critical exponents associated with the fixed point are then found by perturbing
the fixed point solution (Γ∗, ψ∗). The critical exponents θ are obtained by looking for
eigenperturbations of the form

δΓk ∝ e−kθO[ϕ̃] , (4.53)

where the eigenvectors O[ϕ̃] is k-independent. We note that the form of O depends on
the frame and hence on the renormalization scheme. This operator can be redundant,
and therefore multiplied by an inessential coupling, or scaling, if it is linearly indepen-
dent from the redundant ones. If the redundant operator is is of the form (4.34), then
the associated critical exponent θ is entirely scheme dependent and carries no physical
information.

In the standard scheme, one removes only a single inessential coupling and thus
one will have an infinite number of redundant eigenperturbations which must be disre-
garded. In essential schemes instead, all inessential couplings are removed and thus we
automatically disregard all redundant eigenperturbations.
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(2) Derivative expansion. In [199] the authors derived the flow equation in the
minimal essential scheme at up to order ∂8 in the derivative expansion. In the minimal
essential scheme, the renormalization condition is generalized such that zk(ϕ) = 1 for
all values of the field and all scales k. Thus, it would be like going from fixing a single
coupling in the standard scheme, to fixing a whole function of the field in the essential
one.

To close the flow equations under this renormalization condition, the authors set the
RG kernel to Φk[ϕ](x) = Fk(ϕ(x)), where Fk(ϕ(x)) is a function of the fields, without
derivatives, constrained such that the flow equation under the renormalization condition
can be solved. The first application was to the 3D Ising model in the vicinity of the
Wilson-Fisher fixed point.

Remarkable is the simplification of the equation due to the reduced number of phys-
ical running coupling to analyze. For instance, at order ∂6 in the derivative expansion,
the number of operators in Γk reduces from 13 in the standard scheme to 4 in the
essential scheme. This reduction comes with an increasing number of renormalization
schemes functions F i

k(ϕ(x)) to be determined (13-4 = 9 F i
k(ϕ(x)) at the order ∂6).

Summary. At a given order ∂s, the procedure of minimal essential scheme can be
summarized as follows:

(1) Apart from the canonical kinetic term with coefficient 1/2, eliminate all op-
erators of the form Φk∂

2ϕ from the ansatz of Γk (because we are expanding
around a Gaussian fixed point);

(2) Insert all the possible terms up to order ∂s−2 into the RG kernel Φk;
(3) Use equation (4.38) to find a set of beta functions for the essential operators

which remain in the EAA, plus a set of equations which determine the functions
appearing in the RG kernel Φk.

The final number of equations which one must solve at each order of the derivative
expansion is the same as in the standard scheme. However, in the minimal essential
scheme we obtain beta functions only for the essential couplings. Moreover, since the
ansatz for EAA becomes simpler in the minimal essential scheme, the complexity in the
calculation is reduced. In particular, the simple form of the propagator (4.50) evaluated
at a constant field configuration is guaranteed.

A. Baldazzi and K. Falls [175] applied the essential renormalization group scheme
also to gravity. Solving the flow equation for the EAA within an essential scheme allows
us to discuss the criteria of asymptotic safety as formulated by Weinberg [96].
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4.2.5. Essentially safe gravity

(1) Weinberg’s formulation of Asymptotic Safety. Weinberg’s criteria necessitate
that we have a UV-complete QFT when there is no UV cutoff, which is achieved if the
theory lies on an RG trajectory that originates from a UV fixed point. However, as
has been emphasized recently by J. Donoghue [185], Weinberg’s formulation is more
precise since it is concentrated on the absence of unphysical UV divergences in physical
quantities. In particular, the scaling behavior of inessential couplings is entirely scheme
dependent and they must not be included in the set of relevant couplings.

In particular, attempts to find a suitable fixed point have required fixed points for
all gravitational couplings, included in a given approximation, instead of incorporating
field reparameterizations into the RG equations and checking which of the couplings
are inessential. In [175] the authors remedied this oversight by incorporating field
reparameterizations in the gravitational flow equations which allow us to eliminate the
inessential couplings from the flow equations. Crucially, it is only the essential couplings
that need to attain a UV fixed point. In fact, inessential couplings are simply not present
in physical observables and, therefore, their behavior is not restricted a priori.

To understand the connection, note that if we supply an initial condition for the flow
at a scale k = µ, the flow equation supplies a function

λphysa = λphysa (λb(µ), µ) (4.54)

We can write every observable which depends on energy scales E and the physical
couplings λphysa as a function

O = O(E, λa(µ), µ) (4.55)

By dimensional analysis, the dimensionless observables will read

O = µDÕ(E/µ, λ̃a(µ)) , (4.56)

where λ̃(µ) = µ−daλa(µ) are the dimensionless couplings. It is clear that its limit
limµ → ∞ only exists if limµ→∞ λ̃a(µ) exists. This is exactly the requirement for
Asymptotic Safety: all the essential couplings λ̃(µ) remain finite at µ → ∞, meaning
that they reach an UV fixed point limµ→∞ λ̃a(µ) = λ∗a.

(2) Universality class: QEG. For a scalar field there are Gaussian fixed points asso-
ciated to kinetic operators (−∂2)s/2 for every even integer s in the derivative expansion.
As such, there is a minimal essential scheme associated to each Gaussian fixed point,
that is physically distinct since they are associated with different degrees of freedom.
Within a given minimal essential scheme, the flow is then constrained to the physical
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theory space associated to those degrees of freedom. In other words, the minimal essen-
tial scheme restricts the RG flow to a universality class that contains the corresponding
Gaussian fixed point.

(2a) For Quantum Gravity, we will consider the universality class of QEG meaning that
it is associated to the quantization of the physical degrees of freedom that are carried by
the metric. More specifically, in this chapter by the Gaussian fixed point in the context
of gravity we refer to the one associated to the linearized Einstein-Hilbert action. In
particular, this specifies also the actual number of physical degrees of freedom. In this
sense, a quantization of higher derivative gravity can be carried out by quantizing the
metric assuming diffeomorphism invariance, but it is a quantization of more degrees of
freedom than Einstein’s theory. This different interpretation about the physical degrees
of freedom and the physical essential couplings will bring our investigation of asymptotic
safety closer to the original formulation.

(2b) For metric Quantum Gravity the EAA is denoted Γk[h, ξ, ξ̄; ḡ]. The diffeomorphism
invariant action has the derivative expansion at second order

Γk[g] =

∫
ddx
√
g

(
Λ(k)

8π
− R

16πG(k)
+ a(k)R2 + b(k)RµνR

µν + c(k)E

)
, (4.57)

with E = RµνρσR
µνρσ − 4RµνR

µν + R2 the Euler density, which in d = 4 represents a
topological invariant.

For gravity the RG kernel now has component for each field Φk = {Φg
k,µν ,Φ

ξµ
k ,Φ

ξ̄
k,µ}.

In the background field approximation, we choose Φξµ
k = 0 = Φξ̄

k,µ, while we choose the
RG kernel for the metric to be given by

Φg
k,µν [g] = γggµν + γRRgµν + γRicciRµν +O(∂4) , (4.58)

where the gamma functions which, along with the beta functions, will be determined as
functions of the couplings that appear in (4.57). Each gamma function allows us to im-
pose a renormalization condition which fixes the flow of one inessential coupling. Thus,
retaining three gamma functions allows us to impose three renormalization conditions
which are constraints on the form of Γk that we impose along the flow.

(2c) Following Subsection 4.2.4, we now choose the minimal essential renormalization
scheme:

(1) As with the derivative expansion for a scalar field, if we work at order ∂s in
the derivative expansion, we include all terms of order ∂s−2 in the RG kernel.

(2) The minimal essential scheme for Quantum Gravity, puts to zero any term that
vanishes when the vacuum Einstein equations

Rµν = 0 (4.59)
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apply apart from the Einstein–Hilbert term itself. The reasoning is that the
fixed point where g = λ = 0 is the analog of the GFP for a scalar field theory.
This means that we can set to zero a(k) and b(k) for Einstein gravity.

(3) We expand the eq.(4.38) to order ∂4 to obtain five flow equations from the
independent tensor structures present in (4.57) using off-diagonal heat kernel
techniques [252]. Having set a(k) and b(k) to zero, we can solve the equations
for γR and γRicci. Which renormalization condition we should apply to freeze
the inessential coupling associated to γg has still to be determined. That must
consist of some combination of G(k) and Λ(k).

This freedom to apply one RG condition afforded by the presence of γg,
makes evident that there is a inessential coupling which needs to be fixed.
In particular, since we will consider trajectories inside the subspace of theory
space which contains the GFP, we will take into account the values of g = λ = 0

at the GFP. Therefore, to determine which dimensionless coupling we should
fix, we analyze the GFP to understand which particular combination of g and
λ is inessential. However, we should understand this limit as the approach to
a free theory on an arbitrary background spacetime where Γk reduces to the
linearized Einstein–Hilbert action. If we decompose the metric

ĝµν = ḡµν + κ(k)ĥµν , (4.60)

and we differentiate wrt. the RG scale k, we obtain

k∂kĝµν =
1

2
ηNκkĥµν + κ(k)k∂kĥµν +O(κ(k)) (4.61)

The GFP corresponds to the theory where κ(k) = 0. The expectation value of
k∂kĥµν is then given by

Φh
k,µν = 〈k∂kĥµν(k)〉 =

1

κ(k)
Φg
k,µν −

1

2
ηNhµν (4.62)

and inserting (4.58) we obtain

Φh
k,µν =

γg
κ(k)

ḡµν −
1

2
ηhhµν , where ηh := ηN − 2γg (4.63)

is the anomalous dimension of the graviton field. Imposing that Φh
k,µν is finite

when κk = 0 (i.e., when G(k) = 0) requires that γg = 0 a the GFP.
Inserting this ansatz in the flow equation, in [175] it was found that also

ηh = ηN = 0 at the Gaussian fixed point. The authors noted that at the GFP,
the dimensionless vacuum energy is constant and its value depends from the
cutoff function:

ρGFP =
λ

g

∣∣∣∣∣
GFP

=
1

8π

∫
dz
k∂kRk(z)

z +Rk(z)
. (4.64)
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We conclude that the GFP is characterized uniquely by g = ηN = γg = 0 and a
scheme-dependent value for the dimensionless vacuum energy ρGFP.

Remarks:

(1) Note that a higher derivative Gaussian fixed point, more analogous to the
fourth order fixed point. At this fixed point the degrees of freedom are those
of Stelle’s higher derivative gravity [65] rather than Einstein gravity. Further-
more, since the equations of motion for higher derivative gravity do not imply
(4.59) the couplings a(k) and b(k) are essential at the higher derivative Gauss-
ian fixed point.

(2) Concerning the vacuum energy, let us note that we could also choose a more
general cutoff scheme allowing for different cut-off functions for the ghosts and
gravitons in such a manner that ρGFP would vanish. At the exact level no
physics should depend on the choice of cutoff so the value of ρGFP should be
of no significance. We can conclude that the vacuum energy is inessential.3

(3) We note that it may seem we could satisfy the flow with Λ(k)/G(k) = k4ρGFP + ρ0

allowing for a non-zero cosmological constant, since ρ0 is a constant of integra-
tion that will not be furnished by the solutions of the flow equations. However,
only with ρ0 = 0 do we have a fixed point.

A remarkable consequence of the vacuum energy being inessential is that we may
simply choose that the vanishing of the vacuum energy is achieved by a renormalization
condition. Thus, at least in pure gravity, there is no fine tuning problem related to the
cosmological constant once we apply this condition. However, this condition dictates the
vanishing of the cosmological constant and by imposing it we are restricting which the-
ories we can have access to. This suggests that there is a universality class of Quantum
Gravity where the cosmological constant is zero. This universality class possesses the
IR GFP where G0 is a constant and ρ0 = 0. Although there may be other universality
classes where the cosmological constant is non-zero.

Importantly, any change in the coupling constants corresponding to a frame transfor-
mation furnishes a physically equivalent theory. Hence, there are directions in theory
space along which all physical quantities remain unchanged. For instance, if we flow
along an inessential direction, we might describe a different action with ρ0 6= 0.

(3) Reuter fixed point and minimal essential scheme. To test the aforemen-
tioned hypothesis, the minimal essential scheme can be carried out at each order in the

3See [253] for a recent analysis of curvature square operators, understood as composites operators,
determining the spectrum of scaling operators at the scale-invariant fixed point.
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derivative expansion.

Γk[g] =

∫
ddx
√
g

(
ρGFPk

4

8π
− R

16πG(k)
+ c(k)E

)
, (4.65)

At order ∂4 the minimal essential flow is characterized by five dimensionless functions
of g: γg(g), βg(g), γR(g), γRicci(g) and βc(g). Expanding them in g, the authors derived
the nonperturbative beta function of g(k): there exists an UV fixed point which can be
identified with the Reuter fixed point.

Summarizing, in [175], performing the FRG analysis for EH gravity including all
diffeomorphism-invariant four derivative terms in the flow equation, in the essential
scheme further evidence in favor of the existence of the UV fixed point was provided.
Furthermore Newton’s constant turns out to be the only relevant essential coupling at
the Reuter fixed point. Although this conclusion could change by including higher-order
terms, this seems unlikely since all higher-order terms are canonically irrelevant and,
thus, the quantum correction to their scaling dimensions would have to be large. Addi-
tionally, the stability of the fixed point going from order ∂2 to order ∂4 indicates that
the approximations do not miss another relevant coupling.





CHAPTER 5

Discussion and Summary of Part I

In order to describe quantum theories, in this Part we followed the route of the
generating functional approach to QFT. Generating functionals are universal applicable
technical objects: they are used to describe the Standard Model (SM) of particle physics
and at the same time they are suitable to discuss statistical and quantum field theories
on different scales. However, their abstract and general structure is at the same time
the source of its severest problems which bother physicists since many decades. To
practically manipulate and address direct computation with the purpose of extracting
physical predictions, a regularization procedure is required. In order to install such
a regularization, instead of direct computations addressing the full integration, one
systematically restricts its evaluation by approximating the underlying measures in an
appropriate way. The hope is that this procedure may lead to predictions beyond the
involved scales, by extrapolating the obtained results. Technically, these techniques
were mostly implemented in the context of perturbation theory.

Perturbation theory has furnished very fruitful insights into a wide range of inter-
actions up to the TeV scale. However, gravitational interactions are still excluded. In
fact, while for the SM interactions the described approximation methods seem to be
appropriate on certain scales, there are severe conceptual issues in studying a quantum
version of General Relativity. The point of view adopted in this thesis is not that the
present results suggest gravity to be not renormalizable, but rather that we have to go
beyond the standard, perturbative, techniques and enter the realm of nonperturbative
effects to judge the UV behavior of gravity.

A deeper understanding of the necessity of the renormalization procedure, and con-
ditions for the existence of fundamental field theories was needed, therefore.

(1) A very successful guiding principle was discovered by the path integral approach
that in certain cases promotes a classical theory to its quantum counterpart and thus
translates physics on macroscopic scales to a microscopic level. However, the technical
difficulties have shown that, in order to take account of the scale dependence of Na-
ture, different methods are necessary that are particularly designed to give rise to a
mathematical realization of the scale-evolution of physical laws.

85
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In this Part we presented a brief introduction into a very promising, intrinsically
nonperturbative method: the Functional Renormalization Group. Its first implementa-
tion was related to the block spin transformations of Kadanoff and its generalization
pioneered by Wilson [86, 87]. Exact RG techniques were developed basing on the idea
of evaluating the path integral not all at once, but in a piecewise manner. Starting
from this idea an RG flow of action functionals can be defined, that describes the same
system at different momentum scales. In the following it was understood that the gen-
eral condition for a theory to be considered fundamental is satisfied whenever its RG

flow approaches a fixed point in the high momentum UV limit.

We focus in this thesis on regularized functional integrals, described indirectly by
the Effective Average Action [85, 208]. The EAA turns out to satisfy an Exact RG

equation in the form of a Functional Renormalization Group Equation. For the block
spin transformation and the Wilsonian RG approach, the idea is to iteratively evaluate a
preexisting UV theory by absorbing the microscopic effects up to a scale k in an effective,
averaged theory and continue this procedure in a subsequent manner down to the
infrared. We will see that within the Asymptotic Safety Program [49, 50] introducing
the Effective Average Action and computing its RG evolution using the FRGE can even
lead to a prediction of the fundamental UV theory, related to the bare action.

In this Part I we introduced the main idea of the exact Renormalization Group,
reviewed a concrete example of a Functional Renormalization Group Equation, and
described a relation between this highly non-trivial differential equation for the EAA

and the path integral procedure based on the generating functional. Thereafter we
addressed the notion of renormalizability in the context of the Exact RG.

(2) The corresponding nonperturbative definition of renormalizability also applies to all
perturbatively renormalizable, fundamental theories, like Yang–Mills theory or QCD, as
these approach the GFP in the UV limit, which corresponds to an asymptotically free,
non-interacting theory. This insight provided raised the question whether perturba-
tively non-renormalizable theories could turn out to be nonperturbatively renormaliz-
able. In this case the RG flow approaches a NGFP, that corresponds to an interacting
theory, which may occur outside the realm of perturbation theory.

(3) These considerations also apply to metric gravity, that might as well be defined as
a QFT only nonperturbatively. Weinberg conjectured in 1979 [96] that a non-Gaussian
fixed point might also exist for gravity in four dimensions. Theories whose continuum
limit is defined at such a NGFP he called asymptotically safe. Unfortunately, at that time
no computational tool was known that would have allowed for a thorough investigation
of this conjecture. It took until the ’90s that such an appropriate tool was found: the
FRGE for the EAA which was first derived for scalar [208] and Yang–Mills theory [90,
209, 210, 254] and later on generalized such that it could be applied to gravity [95].
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This FRGE rendered the investigation of the flow of metric gravity possible in arbitrary
dimensions of spacetime.

(4) The equation for the running effective action functional can typically not be solved
in full generality but allows for nonperturbative approximations by choosing an ansatz
for the form of the action functional, a so-called truncation. Later this route was taken
in numerous studies of different approximations have been carried out, all of which
indicate the existence of a NGFP for metric gravity in d = 4 spacetime dimensions
(see for an overview [49, 50, 67]). Also the inclusion of matter fields, that causes first
divergences in the perturbative approach, has been explored in detail [107].

(5) In this thesis we focus on Quantum Einstein Gravity, the asympototically safe
Quantum Field Theory that takes the metric as the dynamical field variable, whose
symmetry is given by diffeomorphism invariance, and which is Background Independent.
Note that we did not require that the bare theory is given by the Einstein–Hilbert
action necessary; rather it is an output that follows from the fixed point condition.
Nevertheless the simplest truncation of QEG, the Einstein–Hilbert truncation, had been
found in 1996 M. Reuter [95] in order to prove, in this truncation, the existence of an
ultraviolet fixed point, the first approximation to the so-called Reuter fixed point.

(6) The Asymptotic Safety Program is a well-established approach to Quantum Gravity
which is based on a nonperturbative generalization of renormalizability with the funda-
mental requirement of Background Independence within theories of Quantum Gravity.

Within this program, we insisted on two essential requirements a consistent theory
of Quantum Gravity must meet by all means: It must be renormalizable and it must
be Background Independent as the spacetime geometry should be an outcome of the
theory rather than a prescribed input. Traditionally the first of these conditions seemed
to be ruled out quantum GR, being non-renormalizable from the perturbative point of
view.

In the Asymptotic Safety program, however, a more general, nonperturbative notion
of renormalizability is proposed, on the basis of which quantum gravity could be defined
within the framework of conventional QFT. The key ingredient to this approach is given
by the interacting renormalization group fixed point governing the high energy behavior
in such a way that the infinite cutoff limit is well defined.

As for the Background Independence, the presence of a rigid reference metric which
never gets changed and thus conxstitutes an “absolute element” in the RG formalism
would destroy its Background Independence. In the EAA approach to Quantum Einstein
Gravity, no background metric is fixed “by hand” and hence it does comply with the
principle of Background Independence. In the present context we realize Background
Independence by quantizing the fluctuations of the metric in all possible background
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spacetimes at a time. Concretely, we presented a special class of backgrounds, which
“know” about the true “on-shell” metrics of spacetime, the self-consistent background
metrics.

Novel in Part I, is the use of self-consistent backgrounds with Lorentzian signature.
The signature of spacetime represents one of the main obstacles for Asymptotic Safety
to furnish a direct image of the world. This is why the main existing analyses deal with
effective spacetimes of Euclidean signature, their Lorentzian counterparts is needed,
however, if one wants to determine their real physical implications.

Critically, the RG tools (the FRG as well) have no precise prescription about how
to integrate out non semi-definite momentum eigenmodes and hence how to derive
the flow integrating out spacelike or timelike eigenmodes. In this thesis, inspired by
the path integral approach, we adopt a strategy to integrate out in a symmetric way
both timelike and spacelike modes. Following this procedure, we derive the running
Lorentzian self-consistent backgrounds.

(7) In the second half of Part I we presented two recent developments in the FRG

framework to Quantum Gravity, and we reported their main results, to the extent they
will be relevant to our own work later on:

(7a) Composite operator formalism. The longstanding problem of constructing
meaningful observables in Quantum Gravity is still open even in the Asymptotic Safety
scenario. However, studies of the renormalization behavior of composite operators have
been performed. This allows us to resort to such operators when it comes to con-
structing full-fledged observables. Typically such observables are non-local operators,
so realistically it is impossible to include then into a truncation of the FRGE. Hence the
investigation of composite operators in the FRG formalism is further motivated due to
the need to renormalize operators that one usually cannot include as a basis element
into the EAA truncation.

The new composite operator flow equation had been applied to illustrate the renor-
malization and in particular the scaling behavior of composite operators. In this thesis,
we shall come back to this composite operator formalism in Chapter 13, where we will
apply this formalism in order to compute the scaling dimensions of relational observ-
ables.

(7a) Essential Renormalization Group. The RG provides a framework to iteratively
perform a change of variables with the purpose of describing physics at different length
scales. This, in practice, translates into a flow in a space spanned by the couplings
which parameterize all possible interactions between the physical degrees of freedom.
However, the theory space is divided into equivalence classes. As a consequence, we
do not have to compute the flow of all coupling constants, but instead, we only need
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to compute the flow of the essential couplings, which are those eventually appearing
in expressions for physical observables. The other coupling constants, known as the
inessential couplings, can take quite arbitrary values since changing them amounts to
moving within an equivalence class

It follows, therefore, that an inessential coupling is any coupling for which a change
in its value can be reabsorbed by a change of field variables.

The prototypical example of an inessential coupling is the one related to a simple
linear rescaling or renormalization of the dynamical variables, namely, in a field-theo-
retic language, the wave function renormalization. However, there is an infinite number
of other inessential couplings related to more general, nonlinear changes of variables.
Hence, one is free to specify the values of all inessential couplings instead of computing
their flow.

In order to optimize computations, we presented a concrete scheme, the minimal
essential scheme. Essential schemes can be defined more generally as those for which we
only compute the running of the essential couplings, having specified renormalization
conditions that determine the values of the inessential couplings as functions of the
former.

This leads to a precise definition of an inessential coupling and its conjugate redun-
dant operator, whose identification is crucial to the concrete implementation of essential
schemes.

In order to make contact with the previous versions of the exact RG, we reduce
our general equations to the standard scheme where only a single inessential coupling,
namely the wave function renormalization, is specified.

Wegner proved [200] that a fixed point of the RG, critical exponents associated with
redundant operators are entirely scheme dependent. We discussed the corresponding
fixed point equations and how the corresponding critical exponents can be obtained,
contrasting the differences between the standard and (minimal) essential schemes.

Finally we reviewed how the minimal essential scheme devised in [175, 199] can be
employed to remove all inessential couplings in the higher derivative scalar theory and in
pure gravity. We saw this can be carried out order by order in the derivative expansion,
where only terms with up to s derivatives of the fields are included in the Effective
Action. At each order s the minimal essential scheme is implemented by identifying
the inessential couplings at a Gaussian fixed point of the theory and fixing their values,
such that one obtains beta functions for the essential couplings only. For QEG we wrote
down a systematic derivative expansion of the diffeomorphism-invariant part of the RG.
In particular, expanding the EAA to fourth order in derivatives, we analyzed the GFP
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properties: in particular, from this analysis, we calculated that the vacuum energy is
inessential.

Finally, studying the RG flow of QEG in the minimal essential scheme at orders two
and four of the derivative expansion, confirmation of the existence of the Reuter fixed
point is provided.

However, from the known flow diagram of the cosmological constant and Newton’s
constant stemming from the Einstein–Hilbert action (see Figure 3.3), there are RG

trajectories which do not end at the Gaussian fixed point (where Λ0 = 0). Trajectories
of the Type IIIa and Ia possess instead in the IR a cosmological constant Λ0 > 0 and
Λ0 < 0, respectively. Finally, we speculated how this fact could entails two different
physical consequences:

• Either the different trajectories compatible with Λ0 6= 0 are stemming from
effective actions which are parameterized by different field variables with dif-
ferent numbers of degrees of freedom and possibly contain also non-local terms
(this would be equivalent to flowing along an inessential direction of the QEG

universality class; a flow along an essential coupling, aka a field transformation
leading to a different metric, would lead to the same theory with Λ0).
• The distinction between essential and inessential couplings cannot be per-
formed in a gravitational context. This could represent another manifestation
of the very special nature of gravity and its Background Independence.
To investigate more in this direction it would be important to study the flow
of essential couplings in a bimetric truncation.

We shall come back to the essential RG in Chapter 13 where we adopt this scheme
to the analysis of the renormalization of relational observables in asymptotically safe
gravity.
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Fluctuation modes on dS space: geometrized
RG evolution, spectral flows, and scattering

amplitudes





CHAPTER 6

Introduction and Survey of Part II

In Part I we introduced the Asymptotic Safety scenario in a continuum-based ap-
proach, where the ultraviolet completion of Quantum Gravity is realized via a non-triv-
ial fixed point of the renormalization group flow. We now present several novel lines
of research, which explore the implications of nonperturbative renormalizability, Back-
ground Independence and scattering amplitudes for the geometrical aspects of quantum
dynamics in de Sitter spacetime. This Part II is based on the author’s work published
in [RF1], [RF2], [RF3], [RF4] and [RF5].

Cosmological observations suggest that we are living in a Universe with an accel-
erating expansion. Evidence for this is provided by observations of distant galaxies
[255, 256] and the Cosmic Microwave Background [257]. In General Relativity, this is
modeled by a de Sitter Universe: the unique constantly curved solution to Einstein’s
equation with a positive cosmological constant. To understand the interplay between
its geometrical and quantum dynamical aspects is one of the main challenges for Quan-
tum Gravity: Firstly, because it represents the natural arena to address quantum field
theoretical questions in curved spacetime; secondly, because there are a number of
theoretical issues which seem to be special to de Sitter spacetime.

The novel investigations described in the following exploit several different tech-
niques. We make use of the RG trajectories for dynamical gravity, in particular those
supplied by the established apparatus of the functional renormalization group for Quan-
tum Einstein Gravity. At first, we initiate a systematic search for natural geometric
structures which can help to efficiently structure the RG data, understand their physi-
cal interpretation, and consider concrete applications (Project (II.A)). In particular,
we examine the geometrization of the resulting family of solutions of self-gravitating
quantum system living in a 4D scale-dependent de Sitter spacetime.

Furthermore, we explore the scale-dependent effective geometry of the de Sitter solu-
tion by using a new ingredient: the modified spectral flow (Project (II.B)). This tool
is particularly useful to encode the information about the nonperturbative backreaction
of the dynamically gravitating quantum fluctuations on the mean field geometry.

While non-renormalizability of gravity becomes relevant at short distances, defining
quantum observables that include long-distance curvature effects has not been without
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problems either. In this direction, in the third line of research, we set up a new formalism
to consistently construct scattering amplitudes in curved spacetime (Project (II.C)).

Let us be more explicit about these projects and discuss them in turn.

Project (II.A): Geometrization of renormalization group histories: a novel
AdS/CFT correspondence

We saw already that the gravitational Effective Average Action (GEAA) is a versatile
framework of Quantum Field Theory for the Background Independent and generally
covariant quantization of gravity and matter fields coupled to it [95] (see Chapter 3).
The concepts involved in, and practical tools provided by this approach are fully nonper-
turbative and do not assume a pre-existing spacetime. Being rooted in the functional
renormalization group, the GEAA describes gravitational systems in terms of a one-pa-
rameter family of effective field theories. They describe the properties of a dynamically
generated spacetime, and the dynamics of gravitational and matter fluctuations therein
on different resolution scales.

While the bare field representing gravity at the microscopic level is not restricted
to be a metric tensor [117, 258–261], the expectation values encoded in the GEAA

functionals include a scale-dependent spacetime metric [195, 246]. Its dependence on
the coarse graining scale gives rise to a fractal-like picture of the quantum gravity
spacetimes at the mean field level [262]. Thereby the emergence of a classic world
from the quantum regime hinges on whether or not the RG evolution comes to a halt
eventually [49].

As described in Section 3.6, separately for each RG scale k ∈ R+, the respective
GEAA functional Γk implies a quantum corrected variant of Einstein’s equation (self-
consistency equation); its solutions are the resolution dependent metrics gkµν . They are
different for different scales usually, but establish (pseudo-) Riemannian structures on
one and the same smooth manifold,Md.

(1) Geometrization. If we regard the primary RG trajectory on the theory space
under consideration, T , as a map R+ → T , k 7→ Γk, then the “running” solution to
the scale-dependent Einstein equations can be seen as an associated map from R+ into
the space of metrics on Md. Thereby the association k 7→ gkµν describes the family

of (pseudo-) Riemannian structures
(
Md, g

k
µν

)
which quantum spacetime displays for

different values of the RG parameter. Heuristically, we may think of gkµν as the effective
metric which is detected in experiments that involve a typical momentum scale of the
order of k.
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This represents a longstanding conjecture that beyond the RG flow further natural
geometric objects might be “living” on the manifold T . For example, after the advent of
Zamolodchikov’s c-theorem [263, 264], related investigations in more than 2 dimensions
focused on searching for a scalar “c-function” and a metric on T by means of which
the RG flow could be promoted to a gradient flow. Even though this program was not
fully successful in the generality originally hoped for, it ultimately led to important
developments such as the proof of the a-theorem [265].

The conjectured AdS/CFT correspondence “geometrizes” RG flows by a different ap-
proach which identifies the scale variable of the RG equations with a specific coordinate
on a higher-dimensional (bulk) spacetime [45, 229, 266, 267]. In this way the ‘RG scale
(and its related ‘RG time” t ≡ log k) acquires a status similar to the ordinary spacetime
coordinates.

Along a different line of research, the fundamental idea of dimensionally extending
spacetime by scale variables has been developed in considerable generality in the work
of L. Nottale [268]. In his approach the RG time is on a par with the usual spacetime
coordinates, both conceptually and geometrically.

The present investigation is devoted to a different notion of geometrized RG flows.
While it does have certain traits in common with the various theoretical settings men-
tioned above, it is more conservative, however, in that its starting point does not involve
any unproven assumptions. This starting point consists of nothing but the standard RG

trajectories supplied by a functional renormalization group equation (FRGE). We pro-
pose to exploit those RG-derived data, and only those, to initiate a systematic search for
natural geometric structures which can help in efficiently structuring those data and/or
facilitate their physical interpretation or application.1

(2) GEAA-based geometrization. Here we deal with the nonperturbative functional
RG flows of Quantum Einstein Gravity which we reviewed in Chapter 3. We assume
that it is described by an effective action functional Γk[gµν ] which depends both on a
4D spacetime metric gµν , and on some kind of RG scale, k ∈ R+, implemented as an
infrared cutoff, for example. Furthermore, we suppose that we managed to solve the
corresponding FRGE for (partial) trajectories in theory space, i.e., maps k 7→ Γk[gµν ]

whereby the curve parameter k does not necessarily cover all scales k ∈ R+.

For every given value of k, the running effective action Γk implies an effective field
equation for the expectation value of the metric, typically a generalization of Einstein’s
equation. Solutions to those effective Einstein equations inherit a k-dependence from
Γk[·], and we shall denote them gkµν(x

ρ) in the following. More precisely, in this paper
we are going to analyze a situation where the solutions at differing scales are selected

1A first analysis along these lines can be found in [269] where contact was made with the Randall–
Sundrum model.
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Figure 6.1. Geometrization of the RG evolution: For d = 4, the leaves
of the foliation of M5 describe the 4-dimensional spacetime at different
values of the RG scale k.

such that gkµν depends on k smoothly. Therefore, we may regard the map k 7→ gkµν(x
ρ)

as a smooth trajectory in the space of all metrics that are compatible with a given
differentiable manifold, M4. Thus, technically speaking, the output of the functional
RG - and effective Einstein equations amounts to a family of Riemannian structures on
one and the same spacetime manifold:{(

M4, g
k
µν

) ∣∣ k ∈ R+
}
. (6.1)

This represents a new way of analyzing the family of metrics gkµν that furnish the
same, given 4-dimensional manifold M4. The idea is to interpret the 4D spacetimes(
M4, g

k
µν

)
, k ∈ R+, as different slices through a single 5-dimensional (pseudo-) Rie-

mannian manifold: (
M5,

(5)gIJ
)
. (6.2)

Thereby the gkµν ’s are related to the 5D metric (5)gIJ by an isometric embedding of

the 4D slices intoM5. Stated the other way around,
(
M5,

(5)gIJ

)
is a single foliated

manifold, the leaves of whose foliation describe the spacetime at different values of the
RG parameter (see Figure 6.1). If k has the interpretation of an (inverse) coarse graining
scale onM4, thenM5 naturally comes close to a “scale-space-time” manifold [268]. In
addition to the usual event coordinates xµ, its points involve a certain value of the scale
or coarse graining parameter: (k, xµ).
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ActuallyM5, equipped with some metric (5)gIJ can encode more information than
is contained in the underlying family

(
M4, g

k
µν

)
. This is most obvious if we use local

coordinates which are adapted to the foliation by the surfaces of equal scale. The scale
parameter (or an appropriate function thereof) plays the role of a 5th coordinate then,
and the basic trajectory of 4D metrics gkµν(xρ) ≡ gµν(k, x

ρ) is reinterpreted as 10 out of
the 15 independent components which (5)gIJ(k, xρ) possesses.

Our main interest is in its additional components, (5)gµk(k, x
ρ) and (5)gkk(k, x

ρ),
respectively. The question we are going to address is whether those functions can be
determined in a mathematically or physically interesting way such that a single 5D
geometry not only encapsulates or “visualizes” a trajectory of 4D geometries, but also
enriches it by additional information. Schematically,

trajectory of 4D geometries + ? = unique 5D geometry

Loosely speaking, what we are proposing here is a bottom-up approach which starts
out from the safe harbor of a well understood and fully general RG framework and only
in a second step tries to assess whether, and under what conditions there exist natural
options for geometrizing the RG flows.

This approach must be contrasted with top-down approaches like the one based
upon the AdS/CFT conjecture, for instance. They would rather begin by postulating
the geometrization and ask about its relation to standard RG flows at the second stage
only (see Table 6.1).

Top-down approach Bottom-up approach
Postulate a geometry Start from the well understood

and fully general RG framework
Ask about its relation to standard Look for conditions for

RG flows a natural geometrization

Table 6.1. The top-down and bottom-up approached contrasted.

In this thesis, Chapter 7 will be devoted to a detailed exposition of Project (II.A).

Project (II.B): Spectral geometry of de Sitter space

This second research line (Chapter 8) is devoted to the role played by the principle
of Background Independence in Quantum Gravity. Concretely we explore its implica-
tions for the microstructure of de Sitter spacetime and its effective quantum geometry.
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We partly follow ideas from spectral flow methods applied to kinetic operators. This
technique turned out to be a powerful tool for uncovering properties of “quantum space-
times” which, in a generalized sense, are of a geometric nature.

(1) IR vs. UV. In treatises on QFT and its manifold applications, hardly any ter-
minology is as ubiquitous as the pair of opposites “ultraviolet” and “infrared”. And
yet, almost never a precise explanation, let alone a mathematical definition of these
notions is provided. This is particularly noteworthy given the wealth of connotations
these terms have. Often these connotations are intended in order to cut a long argu-
ment short, but sometimes they are not, and this can cause a considerable amount of
confusion.

For a long time the Quantum Field Theory parlance of UV and IR has never been
examined critically. Clearly the reason is that in simple (non-gauge or weakly coupled)
theories that live on an invariable Minkowski spacetime, there is little room for misin-
terpretations. Here, UV (IR) is traditionally considered synonymous to high momentum
(low momentum), and thanks to the relationship ~p = ~ ~k this generalized meaning is
still quite close to the original one in optics, i.e., high (low) wave number |~k| or equiv-
alently small (large) wavelength λ = 2π/|~k|. If one speaks of periods in time rather
than space one similarly associates the UV (IR) with a regime of high (low) frequencies.
Obviously,this jargon is particularly befitting to special relativistic theories that contain
particles (photons) with a massless dispersion relation ω = c |~k|.

A slightly less trivial extension of the meaning attached to UV (IR) consists in gener-
alizing the correspondence UV (IR)⇔ small (large) wavelength from the wavelengths of
photons to arbitrary length scales. Then the UV-IR jargon often is meant to refer to a
general dichotomy of “tiny things” vs. “big things”, i.e., UV (IR) ⇔ small (large) length
scales.

In renormalization group theory yet another, in principle logically independent us-
age of the UV-IR pair is common. RG trajectories on theory space come with a natural
orientation. It is defined by the direction of successively integrating out further fluctu-
ation modes, for instance by the iteration of block spin transformations. This natural
direction is said to be “the direction from the UV to the IR”, the reason being that,
usually, block spin transformations integrate out short wavelength fluctuations first,
and those with larger wavelengths only later. This then motivates the terminology UV

(IR) ⇔ beginning (end) of RG trajectories.

As we shall see later in this thesis, the latter correspondence, when used together
with the other ones, can become the source of severe misconceptions, in particular in
the realm of Quantum Gravity.
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At a more technical level, the various connotations of UV (IR) are meaningful, and mu-
tually consistent, if the physical situation under consideration is essentially determined
by the d’Alembert operator of Minkowski space,2 �η ≡ ηµν∂µ∂ν . Its eigenfunctions are
plane waves which comply with the assumed proportionalities (~p = ~ ~k, ω = c |~k|), and
moreover, the uncertainty principle of classical Fourier analysis establishes the desired
reciprocity small (large) lengths ⇔ high (low) momenta in full generality.

On the other side, the meaning of the labels UV and IR tends to become increasingly
dubious the stronger the phenomena considered deviate from the physics of (quasi-)free
fields or plane waves. A hardly avoidable first step in this direction occurs whenever
local gauge invariances play a role, so that the relevant kinetic operator is now a co-
variantized d’Alembertian, �A = ηµνDµDν + “more”, involving a certain covariant de-
rivative Dµ = ∂µ + iAµ. Then, canonical and kinetic momenta must be distinguished,
and importantly, the spectrum of �A and the properties of its eigenfunctions may differ
substantially from those of the free d’Alembertian.

Similar remarks apply to theories coupled to gravity where the covariantization is
with respect to spacetime diffeomorphisms.

In the worst case, strong Yang–Mills or gravitational fields may ruin the essential
justifications of the UV-IR folklore, the correspondence between short lengths and high
momenta in particular. In extreme cases this can give rise to expressions as rich in con-
notations as “the infrared of QCD”, or “the ultraviolet of Quantum Gravity”. Very often,
rather than describing regimes of well defined physical quantities, they are just meant
to express the very horrors in the respective branches of physics, strong nonperturbative
effects in the first, and lack of fundamental knowledge in the second case.

In Quantum Field Theories coupled to dynamical gravity, the UV-IR terminology
is bound to become problematic almost by definition. When the spacetime metric is
variable, there are now two equally plausible candidates for what one may call “the
ultraviolet”. Namely, first, the term again could describe a regime of high momenta
of some type. But second, it also might stand for a physical situation in which no
momentum assumes any particular value, but rather the dynamically determined metric
coefficients gµν happen to turn out very small so as to render all proper lengths extremely
tiny. It goes without saying that these two notions of “UV-ness” are entirely different.

In fact, in Chapter 8 of this thesis we shall explore asymptotically safe Quantum Ein-
stein Gravity [49, 50, 95, 96] and find that, in a precise sense, the pertinent “ultraviolet
of Quantum Gravity” does indeed satisfy the expectations of one of the two candidates
for “UV-ness”, but not of the other.

2Or the Laplacian on flat Euclidean space.
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Finally, we strictly adhere to the following rule: The denomination UV (IR) is used
exclusively to indicate the limiting regime k →∞ (k → 0) of an RG trajectory, whereby
the parameter value k =∞ (k = 0) corresponds to no (all) modes being integrated out.

This is an unambiguous definition as it does not rely on any properties of the mode
functions (short or long wavelength, etc.). In fact, we shall try to be as unbiased as
possible with respect to the (un-) importance of particular distance or momentum scales
in the effective field theories defined by Γk→∞ in the UV, and Γk→0 in the IR case.

(2) Effective field theory. In the GEAA context, the above “UV-IR confusion” hints
at a severe problem with a nontrivial physics contents since the parameter k gives us
the scale at which the GEAA could possibly define an effective field theory. In fact, the
action functional Γk [hµν ; ḡµν ] introduced in (3.5) defines an effective field theory that
governs the dynamics of hµν on a background spacetime furnished with the metric ḡµν .
This is to say that if an experiment or observation involves only a single characteristic
momentum scale of the order of k, then a tree-level evaluation of Γk can suffice to
describe it reliably. Typically this is the case when the experimental setting gives
rise to a physics-generated cutoff mechanism, at some scale kphys, which then acts as
the true cutoff and renders the integrating-out of further field modes superfluous once
k is lowered below kphys. By this decoupling mechanics [49] the action Γk becomes
approximately k-independent in the IR, i.e., for k . kphys. Hence the standard effective
action Γ = Γk=0 agrees basically with Γk

∣∣
k=kphys

then. In this case the functional integral
is essentially determined by those field configurations which, according to the relative
weights given by ∆Sk, are characterized by the scale kphys. In physical situations which
involve more than one relevant scale the analysis is more involved usually and one is
forced to go beyond the tree level evaluation of Γk.3

(3) Spacetime properties from a spectral flow. In order to prevent this sort of
problems arising from an incomplete implementation of Background Independence, in
this thesis we chose to adopt spectral methods in order to investigate the properties of
quantum spacetime in a Background Independent fashion.

First we review how spectral data of Laplace-type operators can furnish information
about the quantum spacetime within the GEAA framework (in Euclidean signature [270–

3The limitation one encounters if one wants to stay within the class of single-scale problems can be
illustrated by an example from the cosmology of the real Universe: A group of physicists perform in
their terrestrial laboratory experiments that probe a region of spacetime of Planckian size which can
be assumed independent of the rest of the Universe. Furthermore, a group of astronomers explore the
very young, still “small” Universe at the age of about one Planck time. Then, within a single-scale and
tree-level approximation, the findings of both groups are expected to be described optimally by the very
same effective field theory, namely Γk=mPl which reflects the presence of the UV fixed point. In neither
case the descriptions will be perfect, and one may want to improve upon the single-scale, tree level
approximation. Only at this second stage differences will occur between the respective descriptions of
the two physical situations.
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Figure 6.2. Thinning out of degrees of freedom in the UV: The size of
the various spheres indicates the self-consistent radius Lsc(k) at increasing
values of k, and the coordinate grids shown visualize the (first increasing,
then decreasing) angular resolving power of the spherical harmonics.

272]. The authors elaborate in particular on the distinction between the standard (“of-
f-shell”) eigenvalue problem on a rigid background geometry, and the “on-shell” spectral
problems typical of Background Independent Quantum Gravity. They introduced and
applied a number of tools for extracting physics information from the EAA which arises
only after going on-shell, or by choosing the background self-consistently and setting
the fluctuations to zero. They focused on the eigenvalue equation of the background
Laplacian which, when still off-shell, organizes the coarse graining and “integrating out”
of field modes that underlies the functional RG.

Letting the background become self-consistent, the most surprising result was found:
the eigenvalue equation turns into a complicated nonlinear relationship between the
quantum number characteristic of a mode’s “fineness” and the RG parameter k. This
relation is particularly striking: After a particular value, increasing k no longer leads
to a finer resolution of the modes, but rather the opposite, brings one back to coarser
ones. This phenomenon is associated to the RG trajectories drawn in Chapter 3 and is
schematically sketched in Figure 6.2.

In general there exist particular backgrounds, so-called self-consistent geometries,
that are dynamically preferred (see Section 3.6). Concretely, it has been found that
the ultraviolet regime of Quantum Einstein Gravity has far fewer effective degrees of
freedom than (incorrectly) predicted by a background dependent analysis. The “ultra-
violet regime of Quantum Gravity”, defined unambiguously as the k → ∞ limit on an
asymptotically safe RG trajectory, is not at all the realm of probes or “microscopes”
with an unlimited resolving power. In the limit k →∞ in fact, not every point on the
manifold can be distinguished with an infinite precision. Instead, its this regime can be



102 part ii: fluctuation modes on ds space

classified as “IR-like”. This phenomenon can be attributed to the gravitational backre-
action on the quantum system, which breaks the traditional large k, large momentum,
high-resolution association.

The origin of this phenomenon is related to the spacetime properties from the spec-
tral flow. In [271, 272] it was proposed to analyze the physics contents of generalized
trajectories obtained in [97] (see Section 3.5) by means of spectral flow techniques sim-
ilar to those used in index theory, for example [273]. In fact, the action functional
Γk[hµν ; ḡµν ] defines an effective field theory that governs the dynamics of the metric
fluctuations hµν on a background spacetime furnished with the metric ḡµν . We plan to
analyze the physical contents of such generalized trajectories by means of spectral flow
techniques. These involve constructing the associated Laplacian operator and consider
its eigenvalue problem. The central idea is to perform this analysis for all points of the
generalized RG trajectory; if we manage to solve this family of differential equations,
we have an entire trajectory of spectra at our disposal.

Given a metric ḡµν we can construct the associated Laplacian operator�ḡ = ḡµνDµDν

and consider its eigenvalue problem.

Running action ⇒ Running metric ⇒ Running spectrum

Switching to Lorentzian signature, one of the new aspects to be investigated, we
introduce various spectral problems related to the d’Alembertian in curved spacetime
that we shall encounter; In this way, we can analyze the Lorentzian analog of the
Euclidean phenomenon sketched in Figure 6.2.

In particular, we carry out the same analysis on de Sitter space. We study the
d’Alembertian on 4-dimensional de Sitter space and determine the spectrum and the
eigenfunctions. We give a detailed account of the eigenfunction’s resolving power. Sub-
sequently we exploit the RG trajectories of the Einstein–Hilbert truncation that have
a positive cosmological constant throughout. We obtain the spectral flow along these
trajectories in a fully explicit form. We solve the scale-dependent self-consistent con-
dition for all k in de Sitter spacetimes with an appropriate running Hubble parameter
H = H(k). We analyze the Lorentzian analog of the gravitational backreaction phenom-
enon. In the Euclidean setting, the boundedness of the modes implies a fundamental
limitation on the distinguishability of points in spacetime. In the Lorentzian setting
instead, we find no analogous restriction for the resolvability of points on the 3D spa-
tial manifold related to the foliation. However, rather than at very small distances,
quantum phenomena will make their appearance in the regime of macroscopic proper
distances.
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Project (III.C): Scattering amplitudes in de Sitter spacetime

The third research line (Chapter 9) deals with the fully covariant construction of scat-
tering amplitudes in de Sitter spacetime.

(1) Scattering amplitudes and Newtonian potential. While when studying short-
-distance properties of gravity infinities arise, defining quantum observables which in-
clude long-distance curvature effects is also non trivial. In this direction, a consistent
construction of scattering amplitudes in curved spacetime may provide a first hint on
how to make progress in setting up a theory of Quantum Gravity.

Scattering amplitudes in flat spacetime have been applied to understand diverse
aspects of gravity. A classic result is the construction of the Newtonian potential from
the scattering amplitude in the tree-level Born approximation. The potential is then
obtained by taking the Fourier transform in momentum space. Treating gravity as an
effective field theory, loop diagrams will give rise to two types of contributions to the
gravitational potential: classical corrections due to the post-Newtonian expansion of
GR, and purely quantum corrections.

Treating gravity as an effective field theory, loop diagrams will give rise to two
types of contributions to the gravitational potential: classical corrections due to the
post-Newtonian expansion of GR, and purely quantum corrections. The implementation
of extracting quantum corrections from the scattering amplitude of two gravitationally
interacting massive particles has been explored in e.g. [42, 274–276].

An alternative way to compute quantum corrections to the Newtonian potential is
presented in [277–280]. When sources are moving slowly with respect to the speed of
light and the gravitational field is weak, then the metric tensor can be expanded and
expressed in terms of the so-called Bardeen variables. Computing the quantum-cor-
rected equations of motion then allows to compute both post-Newtonian and quantum
corrections to the gravitational potential.

(2) What is special about de Sitter. The computation of scattering amplitudes
in de Sitter spacetime has a long history [281–285]. There are a number of theoretical
issues which seem to be special to de Sitter spacetime, like the choice of the vacuum
(and the coordinate system), the technical problems related to the analytic continuation,
the ill-defined notion of momentum space, the absence of positive-definite energy-like
conserved quantities and asymptotic states.

First attempts to construct such an amplitude gave divergent results [284]. This was
attributed to the large-distance behavior of the graviton propagator [285–287]. Later
work showed that the divergence was a gauge artefact [281, 283, 288–292]. Different
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quantization prescriptions [293–296] and invariance requirements [297, 298] were im-
posed, in order to obtain a finite form for the graviton propagator. In these works, the
graviton propagator was obtained by projecting the two-point function into a complete
basis for symmetric rank-2 tensor fields on the (Euclidean) four-sphere [299] and then
performing an analytic continuation.

There are a number of theoretical issues which seem to be special to dS spacetime (see
e.g. [300–313]). The choice of the vacuum (and of the coordinate system) can furnish
distinct results for the propagator [314–317]. Moreover, in the analytical continuation
of the propagator, different choices of the orientation of the branch cut can be made,
producing different Lorentzian Green’s functions. Finally, in dS spacetime there exists
a separate notion of spatial and temporal Fourier transformations, leading to subtleties
in the representation in momentum space [318, 319].

Closely related to the dS universe is the AdS spacetime. Here, the AdS/CFT corre-
spondence allows one to compute correlators in the boundary CFT [320, 321]. This was
originally formulated for Euclidean signature [322–324]. In such a background, working
in Euclidean signature usually does not lead to any restrictions since the results ob-
tained in Euclidean AdS/CFT can be analytically continued to Minkowski space [325–
329].

The struggle in the construction of observables related to scattering amplitudes also
comprises the effort of computing the S-matrix in a dS background [330–334]. The
relation between the early and late time descriptions of particle states contains a great
amount of dynamical information about the interacting theory. However, in dS space-
time even one-particle states can decay and all particles are unstable [335–338]: there
are no viable asymptotic states. This is related to the fact that there are no positive-def-
inite energy-like conserved quantities. Furthermore, any observer will interact with a
complete set of ingoing and outgoing states. Therefore, the S-matrix is not experimen-
tally accessible to a single observer. Nonetheless, as we will demonstrate in this paper,
it is perfectly possible to generalize Feynman diagrams to curved spacetime. We will
adopt the assumption that the resulting object can still be interpreted as transition
probabilities for scattering processes in dS spacetime.

In our research work, we put forward a novel technique to compute scattering am-
plitudes in de Sitter background. We assume that the resulting object can still be
interpreted as transition probabilities for scattering processes in de Sitter spacetime.
We present the amplitude of gravity-mediated scattering of two massive scalars in de
Sitter spacetime (see Figure 6.3). In this investigation we use two new features. Firstly,
we represent Feynman diagrams by differential operators, generalizing the Minkowskian
notion of momentum: the curvature of spacetime is provided by the noncommutativity
of the differential operators. Secondly, we employ an expansion around infinite scalar
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hµν

χ1 χ2

φ2φ1

1

Figure 6.3. Feynman diagram of the scattering process considered
φχ → φχ mediated by a graviton hµν . Time flows from the left to the
right.

masses, we use this amplitude to compute the de Sitter spacetime generalization of the
Newtonian potential.

(3) Quadratic Gravity. Of particular interest in this context are modified theories
of gravity, such as Quadratic Gravity (QuadG). First, QuadG successfully provides the
dynamics of primordial graviton fluctuations [339, 340]. Its predictions for inflationary
power spectra and spectral indices are in excellent agreement with observational data
[341, 342], and lead to constraints on the gravitational couplings [27, 343–346]. QuadG

is also attractive from a theoretical perspective. As was shown by Stelle [65, 66] it is
perturbatively renormalizable in flat spacetime, in contrast to Einstein–Hilbert gravity.
However, this does not come for free. The addition of four-derivative terms in the
action implies that the resulting Hamiltonian is unbounded from below. Classically,
this leads to the Ostrogradsky instability [347]. At the quantum level, it is signaled by
the appearance of a massive spin-2 ghost [282, 348, 349].

Accordingly, we will extend our formalism to include non-minimal interactions. More
specifically, we consider the tree-level scattering of two scalar fields in QuadG, given
by R2- and C2-terms in the action, in addition to the Einstein-Hilbert action with
cosmological constant. Apart from a kinetic term and mass term, the action for the
scalar fields is given by an Rφφ interaction.

(4) Modified Newtonian Dynamics. Replacing the classical Newtonian potential by
a more general potential falls into the class of Modified Newtonian Dynamics [350–353].
This has been used to successfully account for the observed properties of rotation curves
of galaxies [354–356]. Therefore, it is seen as an alternative to the DM hypothesis. In our
setting, we will test whether the modifications to the Newtonian potential due to QuadG

in de Sitter spacetime give rise to a DM-like Modified Newtonian Dynamics (MOND)
scenario.
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Plan of Part II

In the following table we schematize how this part is structured:

Part II
Project (II.A) Chapter 7 Geometrization of RG histories AdS/CFT
Project (II.B) Chapter 8 Spectral geometry of de Sitter space
Project (II.C) Chapter 9 Scattering amplitudes in de Sitter spacetime

Table 6.2. Plan of Part II.

Finally, an overall Discussion and Summary of this Part can be found in Chapter 10.



CHAPTER 7

Geometrization of renormalization group histories: AdS/CFT

Executive summary. We discuss the geometrization of entire evolution histories
by means of a single, (d + 1)-dimensional manifold furnished with a fixed (pseudo-)
Riemannian structure. We propose a universal form of the higher-dimensional metric
and discuss its properties. In Euclidean signature, under precise conditions, it turns out
that this metric is always Ricci flat and admits a homothetic Killing vector field; if the
evolving spacetimes are maximally symmetric, their (d+ 1)-dimensional representative
has a vanishing Riemann tensor even. The monotonicity requirement for the running
of the cosmological constant, which we test in the case of asymptotic safety, is crucial
to obtain non-degenerate geometrizations.

Further, we admit Lorentzian signature and (d + 1)-dimensional Einstein spaces,
focusing on maximally symmetric metrics. Embedding the resulting family of 4D de
Sitter solutions with a running Hubble parameter, it turns out that there are only two
possible 5D spacetimes: the anti-de Sitter manifold AdS5 and the de Sitter manifold
dS5. Employing the cross-over trajectory connecting the non-Gaussian to the Gaussian
RG fixed point, we show that if the scale invariance of the QEG fixed points extends to
full conformal invariance, the 5D picture of the resulting geometric and field theoretic
structure displays a novel kind of “AdS/CFT correspondence”. While strongly reminis-
cent of the usual string theory-based AdS/CFT correspondence, also clear differences are
found.

What is new? All results of this chapter represent novel research results.

Based on: References [RF1] and [RF2].

Plan of this Chapter. We set up a convenient framework, based upon a generalization
of the Arnowitt–Deser–Misner (ADM) construction, for the embedding of a given family
gkµν in a higher-dimensional geometry. Then, we then provide a simple, yet fully explicit
and sufficiently general class of such families gkµν . They correspond to running Einstein
metrics, and all subsequent demonstrations refer to this class of solutions. A priori
our goal of searching of “interesting” 5D geometries is an extremely broad one; to be
able to make practical progress we therefore narrow its scope to a particular class of
ADM metrics, which we introduce and discuss. Then, we show that, under precise
conditions, the running 4D Einstein spaces can always be embedded in a 5D geometry
which admits a homothetic Killing vector field and is Ricci flat ; should the Einstein

107



108 part ii: fluctuation modes on ds space

spaces be maximally symmetric, it is even strictly, i.e., Riemann flat. The important
point about these options for a geometrization of RG flows is that they neither follow
from pure geometry alone, nor are they “for free” what concerns the properties of the
RG trajectory. Rather, they are a global geometric manifestation of a specific general
feature of the RG trajectory. In the present example, this sine qua non is that the
running cosmological constant Λ(k) is a strictly increasing function of the scale. Finally,
we show that for the asymptotically safe trajectories of QEG this is indeed the case.

In Section 7.4 we are going to investigate the possibility of embedding scale histories
of d-dimensional effective metrics gkµν in a unique (d + 1)-dimensional manifold. In
fact, most discussions in this paper are valid for arbitrary dimensionalities d. Working
within the same class of higher-dimensional metrics (d+1)gIJ , we now investigate the
particularly relevant case where (d+1)gIJ is Einstein, and both gkµν and (d+1)gIJ are
Lorentzian. We impose maximum symmetry on gkµν , and find that under this condition
(d+1)gIJ can be chosen maximally symmetric, too. This leaves us with two potential
candidates for an embedding spacetime, namelyMd+1 = AdSd+1 andMd+1 = dSd+1,
respectively. Moreover, we prove that both options are viable actually, i.e., that there
exists an admissible coordinate transformation that relates the RG parameter k to the
coordinate which labels the leaves of the foliation displayed by (d+1)gIJ . In this step,
essential use will be made of the monotone k-dependence of the running cosmological
constant. Then, we analyze the global properties of the embeddings obtained, and we
show that the picture of a certain “(A)dS/CFT correspondence” emerges from the RG
flow of QEG, thanks to its Asymptotic Safety.

In Section 7.10 we compare this non-standard correspondence to the usual one based
upon string theory, highlighting their similarities and main differences.

Appendix E contains the details regarding the possible geometrization and embed-
ding procedure for maximally symmetric spacetimes.

This chapter is composed by a rearrangement of the author’s publications [RF1],
[RF2].

7.1. From trajectories of metrics to higher dimensions

We start by describing a geometrization procedure of renormalization group trajectories
of d = 4 Quantum Einstein Gravity. The first part of this section is generically valid
in any d and d + 1 dimensions, later on, along the procedure, we will specify to d = 4

trajectories embedded in d = 5. Furthermore, here the indices I, J,K, · · · assume values
in {0, 1, 2, · · · , d}, while Greek indices run from 1 to d only.
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We will start by exploiting the resulting solutions of FRG framework, whose specifics
do not matter here, in order to derive a scale-dependent effective field equation. Let us
assume further that the generalized effective Einstein’s equation can be solved, obtain-
ing families of metrics gkµν labeled by the RG scale k.

In [357, 358] the set {gkµν}k≥0 was associated to a family of different Riemannian
structures. These structures furnish one and the same d-dimensional manifold Md.
Accordingly, we can regard the mapping k 7→ (Md, g

k
µν) for k ∈ R+ as a trajectory in

the space of d-dimensional (Euclidean) spacetimes.

Their associated line elements can be expressed in local coordinates

ds2
d = gkµν(x

ρ)dxµdxν , µ, ν, · · · = 1, 2, · · · , d. (7.1)

The main novelty of this approach is to interpret the RG parameter k, or after a
convenient reparametrization τ = τ(k), as an additional coordinate. This additional
coordinate, together with xµ, coordinatizes a (d+ 1)-dimensional manifoldMd+1. This
corresponds to an isometric k-dependent embedding of the original manifold Md in
Md+1. Hence, through the k-dependence,Md+1 results already equipped with a natural
foliation.

Along these lines, a new picture is emerging: The entire RG trajectory of ordi-
nary spacetimes is described by a single higher-dimensional Riemannian manifold,(
Md+1,

(d+1)gIJ
)
. Its corresponding line element reads

ds2
d+1 = (d+1)gIJ(yK)dyIdyJ (7.2)

Here, yI ≡ (y0, yµ) are generic local coordinates on Md+1 and the indices I, J,K, · · ·
assume values in {0, 1, 2, · · · , d}.

7.1.1. ADM formalism

Since Md+1 is emerging with a natural foliation it will be convenient to exploit the
construction of the ADM formalism [49].

Assume we are given with an arbitrary manifold
(
Md+1,

(d+1)gIJ
)
and we introduce

a scalar “RG time function” y 7→ τ(y) which maps a specific scale to each of its points,
such that the level sets of this function are Στ ≡

{
y ∈ Md+1|τ(y) = τ

}
. We can

interpret them as a stack of standard, d-dimensional spacetimes with associated different
resolution scale τ ≡ τ(k).
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We can construct the gradient nI ≡ N∂Iτ as a vector nI which is everywhere normal
to the slices Στ . We normalize it in such a way that

(d+1)gIJ n
InJ = ε , (7.3)

where the sign ε = ±1 is determined whether the normal vector is space- or time-like.
At this stage, we allow (d+1)gIJ to be a metric of any signature, but gkµν is assumed to
have Euclidean signature. Later on, we shall establish criteria which determine whether
the RG time τ really turns into a time coordinate (ε = −1) and describes a Lorentzian
metric onMd+1, or whether it amounts to a further spatial dimension (ε = +1).

We perform a transformation of the coordinates yI = yI(xJ) to foliation-adapted
ones xI ≡ (x0, xµ) ≡ (τ, xµ), in order that τ labels different “RG time slices” and the
xµs are coordinates on a given Στ . That is to say, by defining a vector field tI such that
tI∂Iτ = 1, requiring that the coordinates xµ are constant along the integral curves of
tI we relate the coordinate systems on neighbouring slices.

At any point ofMd+1 the tangent space can be decomposed into a subspace spanned
by vectors tangent to Στ and its complement. The corresponding basis vectors are given
by derivatives of the functions yI = yI(xJ) = yI(τ, xµ)

eµ
I =

∂

∂xµ
yI(τ, xα), tI =

∂

∂τ
yI(τ, xα) . (7.4)

These vectors describe the embedding of Στ into Md+1. Accordingly, the eµ’s are
orthogonal to n:

(d+1)gIJ n
Ieµ

J = 0 . (7.5)

Furthermore, the embedding induces the following metric from the ambient metric
(d+1)gIJ on the slices Στ :

(d)gIJ = eµ
Ieν

J (d+1)gIJ . (7.6)

Since, in general the vector tI has nonvanishing components in the directions of both
nI and eµ

I , it can be expanded in terms of the lapse function N(τ, xµ) and the shift
vector Nµ(τ, xµ):

tI = NnI +Nµeµ
I (7.7)

The relation between the two coordinate systems is given by the definitions (7.4). Using
(7.7):

dyI = tIdτ + eµ
Idxµ = NnIdτ + eµ

I(dxµ +Nµdτ) , (7.8)

and inserting (7.8) into ds2
d+1 = (d+1)gIJdyIdyJ the line element in terms of the ADM

variables {N,Nµ, (d)gµν} is obtained:

ds2
d+1 = εN(xI)2dτ 2 + (d)gµν(x

I)
[
dxµ +Nµ(xI)dτ

][
dxν +N ν(xI)dτ

]
. (7.9)
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7.1.2. Contact with RG

The connection with the RG approach is established by identifying in (7.9) the metric
(d)gµν with the output of the FRGE computation:

(d)gµν(τ, x
ρ) = gkµν(x

ρ)
∣∣∣
k=k(τ)

. (7.10)

Here k(τ) amounts to be an optional and physically irrelevant redefinition of the original
scale parameter in terms of a convenient RG time τ . A typical example is τ = ln(k/κ),
or even simpler, τ = k/κ.1

In the following we will assume that both gkµν(xρ) and k(τ) are known, established
functions, given from the RG. Thus, what is still lacking in order to fully specify
the higher-dimensional line element (7.9) are the lapse and shift functions N and Nµ,
respectively, as well as the sign ε. These quantities do not follow from the flow equations
and are properties of the metric onMd+1. We will look for general reasons or principles,
above those inherent in the RG framework, that determine those missing ingredients in
a meaningful and physically relevant way.

Remark. It is important here to emphasize that the possibility of performing coordi-
nate transformations has been exhausted already in solving the k-dependent effective
field equations. This means that we cannot change N and Nµ in an arbitrary way.
From the RG side, the ADM framework in d+ 1 dimensions establish concrete functions
gkµν(x

ρ) , referring to a specific set of coordinates. We do not allow those functions
to be changed by a Diff(Md+1) transformation, we allow the functions N and Nµ of
any form in the gauge picked by gkµν . As a consequence, we first must find a certain
triple {N,Nµ, ε} which completes the specification of ds2

d+1, before to be free to perform
general coordinate transformations.

7.1.3. Focusing on the lapse function

Our aim is to explore the theoretical possibilities of fixing the missing ingredients of the
higher-dimensional metric, {N,Nµ, ε}, in a way that is physically or mathematically
relevant.

In a first approach it can help to narrow down the setting in order to make the
problem technically more clear-cut, and the physics interpretation more transparent.

1We adopt the conventions of dimensionless coordinates (see Section A.1), while all metric coefficients
have mass dimension −2. Since the scale [k] = +1, then also the constant κ must have [κ] = +1.
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(1) For this reason we will focus in the following on a vanishing shift vector and on
lapse functions that depend only on τ : Nµ(xI) = 0, N(xI) = N(τ). As a consequence
eq.(7.9) boils down to

ds2
d+1 = ε N(τ)2 dτ 2 + (d)gµν(τ, x

ρ)dxµdxν . (7.11)

This simplified form of the ADM metric is still sufficiently rich, but yet simple enough
to allow for our purposes, in order to make contact with RG data.

(2) Regarding the RG input, we now insert the explicit trajectory of Einstein metrics
described in Section 3.5:

ds2
d+1 = ε N(τ)2 dτ 2 + Y (k(τ))−1 g(0)

µν (xρ)dxµdxν . (7.12)

If there exist a yet to be discovered general principle, with information which goes
beyond the input data provided by the RG equations, that impart a specific metric on
Md+1 , this information must reside in the lapse function N(τ).

Again, it is important to remember that the gRµν is externally prescribed and we do
not want to change it by coordinate transformations. Hence, the particular functional
form τ 7→ N(τ) refers to an already fully gauge fixed metric, the corresponding gauge
being selected in the process of solving the effective field equations.

(3) With this parameterization at hand we now face the following question: What is a
single Riemannian or pseudo-Riemannian manifold

(
Md+1,

(d+1)gIJ
)
capable of doing

for us that would not already be possible using the original stack of unrelated manifolds{(
Md, g

k
µν

) ∣∣k ∈ R+
}
?

For instance, this parameterization can ascribe proper lengths to curves in Md+1

which are not confined to a single slice of the foliation. Such curves explore not only
different points of spacetime, but also different scales. In other words, this integral
allows us to answer questions like: “What is the distance between an object at high-scale
and an object at low-scale corresponding to one and the same spacetime event (xµ)?”

As an example let us consider a curve C(P1, P2) connecting two points P1,2 ∈Md+1.
In the coordinate system of (7.12), they are assumed to possess the same xµ-, but
different τ -coordinates, namely τ1 and τ2, respectively. Furthermore, we assume that
xµ = const is constant along C(P1, P2), so that the curve projects onto a single point of
Md. Then, if ε = +1 say, the metric in eq.(7.12) tells us that this curve has the proper
length

∆sd+1 ≡
∫
C(P1,P2)

√
ds2

d+1 =

∫ τ2

τ1

dτN(τ) . (7.13)
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Furthermore, this parameterization is of particular interest in cosmology. One could
for instance ascribe ∆sd+1 to have a physical meaning, by relating it to the results of
certain measurements. A well known model for achieving this on ordinary spacetimes
equipsMd with a set of scalar fields φµ whose observable values represent xµ then (see
the Chapter 13 on observables [77]). In this case one must invoke an additional field
(in cosmology one might think of a local temperature field, for instance) which allows
to determine the scale k(τ).

In fact, as already mentioned, there is freedom in the choice of the function k(τ). For
instance, the proper time ∆sd+1 in (7.13) is independent of this choice. Assume that two
such functions belong to the same foliation, i.e., k(τ) = k = k̄(τ̄), and the respective
RG times are related by the coordinate transformation τ = τ(τ̄). This coordinate
transformation latter belongs to the foliation-preserving subgroup of Diff(Md+1), and
it acts on the lapse function according to [49]

N̄(τ̄) = N(τ)

(
dτ
dτ̄

)
. (7.14)

As a result, N̄(τ̄)dτ̄ = N(τ)dτ , and (7.13) is invariant.

7.2. Distinguished higher-dimensional geometries

The crucial geometrization question is what kind of physical or mathematical principle
determining the higher-dimensional metric. Furthermore, we ask what are the universal
geometric features of the manifold

(
Md+1,

(d+1)gIJ
)
which result from the given princi-

ples. Using the prescribed coordinate system of eq.(7.12), and the information coming
from the RG trajectory, what is left to be determined by this principle are N(τ) and ε.

We start by postulating that the RG trajectories under consideration possess the
following monotonicity property:

(P) The cosmological constant Λ(k) is a strictly increasing function of k. (7.15)

Assuming (P), we can show that it is always possible to complete the specification of
the (d + 1)-dimensional (pseudo-) Riemannian geometry in such a way that it enjoys
universal features2:

(G) The higher-dimensional metric (d+1)gIJ is Ricci flat: (d+1)RIJ = 0. (7.16)

2This property is universal in the sense that it pertains to arbitrary k-dependent Einstein metrics
gkµν(xρ).
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If we further assume that the d-dimensional Einstein metrics gkµν(xρ) happen to be
maximally symmetric (see Appendix E), then (G) can be replaced by the stronger
statement:

(G') The higher-dimensional metric (d+1)gIJ is Riemann flat: (d+1)RI
JKL = 0. (7.17)

(P) is necessary such that (G) and (G') are made possible. De facto, this principle
allows to postulate a highly distinguished and universal form of (d+1)gIJ . In the end we
will investigate whether the postulated property (P) is actually realized in Asymptotic
Safety.

7.2.1. The Hubble length as a coordinate

We consider k-intervals with different signs of Λ(k) separately, as they occur along the
Type Ia trajectories. Let us start by considering Λ(k) > 0. Then (P) implies that Y (k)

and H(k) are monotonically increasing with the scale, while the Hubble length

LH(k) ≡ 1

H(k)
=

[
(d− 1)(d− 2)

2|Λ(k)|

]1/2

(7.18)

is a decreasing function of k. If instead Λ(k) < 0, the postulate (P) requires Y (k) and
H(k) to decrease, and LH(k) to increase with k. In either case the postulated strict
monotonicity implies the invertibility of the function LH(k), meaning the relationship
between k and LH is one-to-one. As a consequence, we may regard the map k 7→ LH(k)

as a concrete example of an RG time τ = τ(k). While up to this stage, the τ -k
relationship has been kept arbitrary free, at this point we make a specific choice for this
coordinate, appealing to the RG trajectory itself.

For clarity we denote this special RG time coordinate related to the Hubble length by
ξ. The corresponding coordinate transformation k = k(ξ) is determined by the implicit
condition

ξ ≡ LH
(
k(ξ)

)
. (7.19)

Its inverse is known and reads

ξ(k) =

[
(d− 1)(d− 2)

2|Λ(k)|

]1/2

(7.20)

In the expression of ds2
d+1 in terms of ξ appears the conformal factor

Y (k(ξ))−1 = H2
0 H(k(ξ))−2 = H2

0 LH(k(ξ))2 = H2
0 ξ

2 . (7.21)

As a consequence, in the new system of coordinates the dependence on the RG time
turns out to be very simple, since the second term on the RHS of eq.(7.12) is just
proportional to ξ2.
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After having set up the convenient coordinates3 xI ≡ (x0, xµ) ≡ (ξ, xµ), the principle
that should determine the (d + 1)-dimensional geometry must be realized through a
unique function ξ 7→ N(ξ), which will allow to completely specify the line element
ds2

d+1 ≡ (d+1)gIJ(xK)dxIdxJ in eq.(7.12).

In order to prove that the postulate (P) indeed allows us to achieve (G) or (G'),
respectively, we establish a simple rule: the coordinates realizing the “proper RG time
gauge” are required to coincide with those which employ the Hubble length as the scale
coordinate. This means:

(R) In the (ξ, xµ) system, the lapse function must assume the simplest

form possible, namely N(ξ) = 1. (7.22)

The rule (R) completes (d+1)gIJ and enforces that the higher-dimensional metric is
explicitly given by

ds2
d+1 = ε (dξ)2 + ξ2 H2

0 g(0)
µν (xρ)dxµdxν . (7.23)

The line element is now completely determined except for the sign ε.

It is important to stress out that the property (P) is a key property for making the
rule (R) valid. The requirement of strict monotonicity of Λ(k) allow to replace k with
ξ ∝ |Λ(k)|−1/2 in its role as a coordinate.4

Note that the metric (7.23) is remarkably universal : There is no explicit dependence
on the function Λ(k). In the (ξ, xµ) coordinate system, the proposed metric “remembers”
Λ(k) only through the implicit requirement (made through (P) that ξ ↔ |Λ(k)|−1/2

must be one-to-one. In this system, the information about the actual RG evolution
enters only in the “time function” k = k(xI) ≡ k(ξ, xµ): This describes how the slices
Στ ≡ Σξ are embedded into Md+1. Through the rule (R) we enforced that the time
function has no dependence on xµ, and boils down to k = k(ξ). It is this function
that, by imposing ξ = LH(k(ξ)), has been adjusted in (8.25). Since the inverse function
ξ = ξ(k) is given by (7.20), we recover the time function belonging to the line element
(7.23) by solving ξ ∝ |Λ(k)|−1/2 for k = k(ξ).

Finally, Eq.(7.23) is our proposal for the single higher-dimensional metric which
“geometrizes” the entire RG history of the original metrics.5 In the following subsections
we are going to discuss which equivalent forms can be derived from our specific proposal,
clarifying the motivations for our choice.
3Conventionally we chosed dimensionless coordinates, however, the special RG time ξ and its “con-
formal” analogue η are the only exceptions to our conventions. While [xµ] = 0, ξ and η have the
dimension of a length: [ξ] = [η] = −1.
4For a similar discussion of coordinate transformations on the g-λ theory space see ref.[121].
5It is interesting to note that the metric (7.23) appears to be a distinguished one also in the 5D
“space-time-matter theory” à la Wesson in [359–361].
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7.2.2. Equivalent forms of the postulated metric

Choosing a particularly simple, but still physically relevant lapse function, namely
N = 1, we derived a special system of coordinates (ξ, xµ). After having set up the metric
(d+1)gIJ we may transform it to any convenient other coordinate system x̄I ≡ (x̄0, x̄µ),
provided it only involve foliation preserving transformations. Here we mention two
simple applications.

(1) The conformal RG time. In practical computations it is often convenient to
transfer the scale dependence from the conformal factor of g(0)

µν to the overall conformal
factor of (d+1)gIJ . This is achieved by the transformation trading ξ ∈ R+ for η ∈ R via
ξ = H−1

0 eH0η, or vice versa,

η = H−1
R ln(HRξ) = LR

H ln
(
ξ/LR

H

)
, (7.24)

with LR
H ≡ H−1

R ≡ LH(kR). Note that this transformation is xµ-independent. The
new coordinate η is positive (negative) if the length ξ is of super- (sub-) Hubble size,
according to the metric at the reference scale kR. In the (x0 ≡ η, xµ) system the line
element (7.23) assumes the desired form:

ds2
d+1 = e2HRη

[
ε (dη)2 + gRµν(x

ρ)dxµdxν
]
. (7.25)

In its original form in (7.23) the variable ξ remembers the cosmological time in a
Friedmann–Lemaître–Robertson–Walker (FLRW) metric. Then the new variable η would
have the interpretation of the corresponding conformal RG time.

(2) The IR cutoff as a coordinate. Both in the (ξ, xµ) and the (η, xµ) system
of coordinates the metric does not contain the expression for Λ(k), even if the time
functions k = k(ξ) and k = k(η) know about it. We can reverse the situation and
introduce directly the cutoff k (or the dimensionless LR

H k) as the new coordinate,
making the time function trivial. The change of coordinates ξ → k defined by (7.20)
brings the metric (7.23) to the form

ds2
d+1 =

∣∣∣∣ ΛR

Λ(k)

∣∣∣∣
{
ε

(
1

2
∂k ln |Λ(k)|

)2 (
LR
H dk

)2
+ gRµν(x

ρ)dxµdxν
}
, (7.26)

which depends manifestly Λ(k).

It immediately stands out that in this form of the metric (7.26), a degeneracy appears
when ∂kΛ(k) = 0, hinting at the importance of principle (P) again. We emphasize
furthermore that the proposed metric ascribes at the same xµ to high- and low-scale
objects nonzero distances only if ∂kΛ(k) 6= 0, i.e., only when there is a non-trivial RG
running: The effective spacetimes acquire fractal properties [100, 240].
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7.2.3. Self-similarity

The (d + 1)-dimensional geometry described by equation (7.23), or equivalently by
(7.25), has a particular feature: it admits a homothetic Killing vector field X ≡ XI∂I .
With LX denoting the Lie derivative along X, this vector field satisfies the defining
equation

LX
(d+1)gIJ = 2 C (d+1)gIJ (7.27)

for C = HR. Note how (7.27) differs from the condition for a generic conformal Killing
vector field because C is a constant rather than an arbitrary function on Md+1 as it
would have been sufficient for a Killing vector [362, 363].

In this particular metric the homothetic vector field is explicitly given by

X =
∂

∂η
= HR ξ

∂

∂ξ
. (7.28)

It is easily checked therefore that it generates xµ- independent rescalings of the metric.
The existence of such a vector field is the distinctive feature of self-similarity in the
General Relativity [364]. This manifestation is coordinate independent and is proper
of the underlying foliation with self-similar leaves.

7.2.4. Ricci flatness

Finally, we turn to the curvature of the postulated higher-dimensional geometry. In
order to better appreciate its rather unique character, we generalize the form of the
conformal time metric (7.25) . We consider a general overall conformal factor Ω2(η)

and hence the following slightly more general class of metrics:

(d+1)gIJ(xK)dxIdxJ = Ω2(η)
[
ε(dη)2 + gRµν(x

ρ)dxµdxν
]
. (7.29)

Here we employ the same coordinates xK ≡ (x0 = η, xµ) as in eq.(7.25).

Working out the Ricci tensor of (7.29) one finds (see Section A.1 for the conventions):

(d+1)R0
0 = −ε d Ω−2

Ω̈

Ω
−

(
Ω̇

Ω

)2
 (7.30a)

(d+1)R0
µ = 0, (d+1)Rµ

0 = 0 (7.30b)

(d+1)Rµ
ν = Ω−2

Rµ
ν − ε δµν

Ω̈

Ω
+ (d− 2)

(
Ω̇

Ω

)2
 (7.30c)
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Here Rµ
ν denotes the Ricci tensor of gRµν(xρ), and the dot indicates derivative with

respect to η.

Now let us ask under what circumstances (7.29) is Ricci flat:
(d+1)RI

J = 0 . (7.31)

The component (7.30a), to be zero, i.e., demanding (d+1)R0
0 = 0, implies a necessary

and sufficient condition on the conformal factor, which in particular has to satisfy the
following differential equation Ω Ω̈ = (Ω̇)2. This most general solution for Ω(η) is given
by

Ω(η) = eB(η−ηR) , (7.32)

where B and ηR represent arbitrary real constants. On the other hand, the third group
of components in (7.30c), the demanded condition (d+1)Rµ

ν = 0 is found to be equivalent
to

Rµ
ν − ε(d− 1) B2 δµν = 0 . (7.33)

Up to this point, gRµν(xρ) has not been specified and so also its related Ricci tensor
Rµ

ν . When we now exploit the requirement that gRµν(xρ) actually should describe an
Einstein space complying with eq.(3.79), the condition (7.33) reduces to the simple
equation σH2

R − εB2 = 0, having as unique solution ε = σ and B = HR.

Finally the conclusion is that for every d-dimensional metric with gRµν describing an
Einstein space, there exist a Ricci flat higher-dimensional metric of the form (7.29).This
is what is postulated in (G). In addition to this, the higher-dimensional metric is unique
and is obtained by plugging

ε = σ and Ω(η) = eHR(η−ηR) (7.34)

into the family of line elements (7.29):

ds2
d+1 = e2HR(η−ηR)

[
σ (dη)2 + gRµν(x

ρ)dxµdxν
]
. (7.35)

At this stage we can set ηR = 0 go back to the metric (7.25) which we set out
to investigate. However, we gained an additional piece of information: originally we
had admitted an arbitrary sign ε = ±1, now instead we see that Ricci flatness can
be achieved only if we allow the sign of the cosmological constant σ = ΛR/|ΛR| to
determine the signature of (d+1)gIJ . If the cosmological constant is positive (negative)
the scale parameter becomes a spacelike (timelike) coordinate.
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7.2.5. Strict flatness

Let us go one step further, look at the postulate (G'), asking under what conditions
metrics of the form (7.29) are not only Ricci flat but even strictly, i.e., Riemann flat:

(d+1)RI
JKL = 0. (7.36)

Modulo the usual symmetries, the Riemann tensor of (7.29) has only the following
nonzero components:

(d+1)R0µ
0ν = ε Ω−2

(Ω̇

Ω

)2

− Ω̈

Ω

 δµν (7.37a)

(d+1)Rµν
ρσ = Ω−2

Rµν
ρσ − ε

(
Ω̇

Ω

)2 [
δµρδ

ν
σ − δµσδνρ

] (7.37b)

Here Rµν
ρσ is the Riemann tensor that belongs to gRµν(xρ).

Demanding that (d+1)R0µ
0ν = 0, eq.(7.37a) reproduces the requirement Ω Ω̈ = (Ω̇)2

and (7.32) as its general solution, as in the Ricci flat case. Inserting this solution
into the mixed components (7.37b), the vanishing of the second set of components,
(d+1)Rµν

ρσ = 0, implies the following condition on the curvature tensor of gRµν(xρ):

Rµν
ρσ = εB2

[
δµρδ

ν
σ − δµσδνρ

]
(7.38)

The tensor structure on the RHS of (7.38) is the hallmark of a maximally symmetric
manifold, see eq.(3.77). We conclude therefore that if, first, Ω(η) and ε are fixed accord-
ing to (7.34), and second, the running Einstein metric at k = kR, i.e., gRµν , corresponds
to a maximally symmetric d-dimensional space, then the metric (7.29) is strictly flat.

This completes our demonstration that, under this symmetry constraint, the geo-
metric feature (G) of the higher-dimensional manifold can be tightened to (G').

It is quite remarkable that the inclusion of the scale variable has “flattened” the
curved spacetime. In the case at hand, the metric (7.23) becomes

ds2
d+1 = (dξ)2 + ξ2 dΩ2

d (ΛR > 0) (7.39)

ds2
d+1 = −(dξ)2 + ξ2 dH2

d (ΛR < 0) (7.40)

where dΩ2
d and dH2

d are the line elements for, Sd and Hd with unit length scale, respec-
tively. Both of these higher-dimensional metrics are well known to be flat: Eq.(7.39)
describes (d + 1)-dimensional spherically sliced Euclidean space. Here ξ plays the role
of the radial variable, Md+1 ≡ Rd+1 being foliated by d-spheres of radius ξ. Here the
RG time has become a spacelike coordinate.
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Similarly the metric (7.40) describes Minkowski spaceM1,d. The RG time has become
a genuine time coordinate in this case. Here Minkowski space is foliated by hyperbolic
d-spaces whose radius of curvature is given by ξ. For d = 3, eq.(7.40) is nothing but
the metric of Milne’s universe.

7.3. Asymptotic Safety

In the previous section we saw that the “principle” or “property” (P) is a necessary con-
dition for being able to define (d+1)gIJ as a (Ricci) flat metric in the higher-dimensional
space. In this section we are going to test the actual monotonicity of Λ(k) within the
concrete setting of pure quantum gravity in d = 4 dimensions.

We employ the prototypical Einstein–Hilbert truncation of the Effective Average
Action, the one traditionally used to demonstrate Asymptotic Safety [95, 97, 114].
The truncation is based upon the ansatz (3.45). The resulting RG equations for the
running couplings G(k) and Λ(k) were obtained in [95] and solved numerically in [97]
(see Section 3.5). In the following we are particularly interested in the properties of the
function Λ(k) along typical RG trajectories.

7.3.1. Mode counting functions

Analyses and considerations about 5D representations of the histories of 4D geometries
have already led to scrutinize the monotonicity properties of Λ(k). In fact, in ref. [146],
even if for different reasons, the monotonicity of the dimensionless product G(k) Λ(k),
has been explored already, for different reason though. In this context a c-function-like
quantity C (k) has been proposed in 4D quantum gravity. This function, when evaluated
exactly, should be monotonically decreasing along RG trajectories, and be stationary at
fixed points. In simple truncations C (k) turns out to be proportional to the product[
G(k) Λ(k)

]−1. In spirit close to Zamolodchikov’s c-function, C (k) can be interpreted
to count the number of the fluctuation modes already integrated out: this would explain
its monotonicity when evaluated exactly. As for approximate calculations, it was found
however that the above Einstein–Hilbert truncation is not precise enough to render
C (k) monotonic, while it does turn out monotone if we use more general truncations
[147] of the bi-metric type [103, 365, 366].

Consequently we expect that Λ(k) might have similar or better mode counting prop-
erties. Ultimately, in the most naive picture every bosonic fluctuation mode which
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is not suppressed by the cutoff gives a positive zero-point energy contribution to the
cosmological constant and therefore the fluctuations should add to Λ(k).

Regarding the monotonicity, we observe that, whenever (3.61) and (3.62) are ap-
plicable, the dimensionful cosmological constant Λ(k) is indeed a strictly monotonic
function of k, and all trajectories of the Types Ia, IIa, and IIIa do satisfy the property
(P).

7.3.2. The signature

A second important piece of information concerning Λ(k) is that it is a function with
piecewise constant sign σ(k) ≡ Λ(k)/|Λ(k)|. Eqs.(3.61) and (3.62) yield

for Type Ia: ε(k) =

{
−1 for 0 ≤ k < `−1

+1 for k > `−1
(7.41)

for Type IIa: ε(k) = +1 for all k ≥ 0 (7.42)

for Type IIIa: ε(k) = +1 for all k ≥ 0 (7.43)

Thus we conclude that everywhere along RG trajectories of the Types IIa and IIIa
the RG “time” amounts to a spatial coordinate actually. Starting out from a Euclidean
spacetimeM4 with signature (+ + + +), the proposed geometrization of the RG flow
leads us unavoidably to a manifold M5 having (+ + + + +). For trajectories of the
Type Ia the situation is more interesting. They possess an intermediate scale k = `−1

at which the cosmological constant vanishes, Λ(`−1) = 0 and changes sign. When k

passes this given scale, the solutions to the effective field equations undergo a change
of topology. Coming from higher to lower scales k, the scalar curvature changes from
R[gkαβ] > 0, via R[g

1/`
αβ ] = 0, to R[gkαβ] < 0. In the maximally symmetric case, for

example, this topology change corresponds to a sequence of spaces S4 → R4 → H4.

We have to emphasize that currently Asymptotic Safety cannot yet describe topology
change processes dynamically at this stage of the development of the theory, neither in
physical time nor in RG time. For this reason one may follow a conservative approach
here and consider the two branches of the Ia trajectories as two unrelated (but incom-
plete) trajectories, the first having Λ(k) > 0 and the second Λ(k) < 0, respectively.
We will study them separately: The upper branch (k > `−1) of a Type Ia trajectory
augments the EuclideanM4 to a EuclideanM5 with signature (+ + + + +), while its
lower branch (k < `−1) geometrizes to a Lorentzian 5D manifold with (− + + + +),
effectively adding a time coordinate. It is a very compelling conjecture that an RG
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trajectory of this kind could explain a mechanism of chronogenesis, namely a time in
an a priori purely Euclidean system is emerging.

7.3.3. The coordinate change

The dimensionless function Y (k) can be written as

Y (k) =
|Λ(k)|
|ΛR|

=
H(k)2

H2
R

=

(
LR
H

LH(k)

)2

(7.44)

with ΛR = 3H2
R in d = 4, and LR

H ≡ 1/HR. Hence eq.(3.61) yields the following
“running Hubble length” LH(k) = LR

HY (k)−1/2. By taking the limit k → 0 we can take
the reference value to be the k → 0 limit: hence, along the trajectories of Type IIIa
(plus sign) and of Type Ia (minus sign), respectively:

LH(k) = L0
H ·


1√

|`4 k4 ± 1|
for 0 ≤ k . k̂

1

L k
for k & k̂

(7.45)

This function is sketched in Figure 7.1.

For the Type IIIa trajectories, the Hubble length LH(k) is found to be a strictly
decreasing function of the scale for all k ∈ (0,∞). Therefore, it is one-to-one, and so
ξ = LH(k) is a well-defined change of coordinates on the interval (0,∞). The same is
true for the Type IIa case, i.e., in the limiting case Λ0 ↘ 0. Type Ia trajectories on the
other hand has to be decomposed into two branches with k ∈ (0, `−1) and k ∈ (`−1,∞),
respectively, and treated separately. Then, on each branch, setting ξ = LH(k) is an
allowed change of coordinates: on the upper (lower) branch the RG time ξ becomes a
strictly decreasing (increasing) function of k.

7.3.4. The transition region

Finally let us deal more carefully with the monotonicity requirement in the transition
region near k̂ = O(mPl). For a first orientation the RG flow linearized about the fixed
point (g∗, λ∗) can be used. The linearization is governed by a pair of complex conjugate
critical exponents θ1,2 = θ′± iθ′′, with θ′, θ′′ ∈ R+, which give rise to the spiral shaped
trajectories k 7→ (g(k), λ(k)) encircling the fixed point. The latter is typically located
in the first quadrant of the g-λ−plane for pure gravitational systems: g∗ > 0, λ∗ > 0.
In the linear regime the condition ∂kΛ(k) > 0, or equivalently k∂kλ(k) + 2λ(k) > 0,
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Figure 7.1. The scale-dependent Hubble length along trajectories of
Type IIIa (left) and Type Ia (right), respectively.

assumes the form

λ∗ + ζ

(
k0

k

)θ′

cos
(
θ′′ ln(k/k0) + α

)
> 0 (7.46)

Here α and ζ are dimensionless parameters which depend on the constants of inte-
gration, or, in other words, on the trajectory under consideration, as well as on the
eigenvectors of the stability matrix.6 For k sufficiently large eq.(7.46) shows that the
monotonicity condition is always satisfied since the potentially negative cosine is mul-
tiplied by a too small coefficient in comparison with the positive value of λ∗. However,
once the scale is low enough for ζ(k0/k)θ

′ to be of order unity, there exist parameters
α, ζ for which (7.46) could be violated. On the other hand, it is also true that at those
low scales the linear approximation is not any longer necessarily reliable. If by then
the trajectory is already in the semiclassical regime, the trajectory is well described by

6See eq.(5.30) of ref.[114] for a discussion about this point.
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the “caricature” trajectory (see Subsection 3.5.2) and monotonicity is guaranteed; but
if not, violations may occur.

Detailed numerical analysis demonstrate on reality that in the transition region
there are no such violations of monotonicity: One finds that on all scales ∂kΛ(k) > 0

for all three types of trajectories. In Figure 7.2 we represent the numerical result
for Λ(k) and compare the outcome with the product G(k) Λ(k) and the anomalous

dimension of Newton’s constant, ηN(k) = k
∂

∂k
lnG(k), along the same exemplary Type

IIIa trajectory (since the plot focuses on the transition region it would look basically the
same for the other types). It is really remarkable to notice that, even in the transition
regime, Λ(k) is indeed perfectly monotonic. This is not the case for G(k) Λ(k) and
ηN(k), in the transition regime they display significant oscillations.

This completes the demonstration that the asymptotically safe trajectories of QEG

in 4 dimensions do indeed satisfy the general property (P) and, applying the rule (R),
they are eligible for a geometrization.

Here we conclude the first part dealing with the geometrization of RG trajectories
in Euclidean signature. In the following, we are going to extend these investigations in
two directions: First, we allow the higher-dimensional manifoldM5 to be an arbitrary
Einstein space, and second, we admit the possibility that the spacetimes to be embed-
ded,

(
M4, g

k
µν

)
, have a Lorentzian signature. As a first example we will consider a

stack of de Sitter spaces dS4 with a k-dependent Hubble parameter.

7.4. Embedding in Einstein manifolds

To place the metric of the embedding manifold
(
Md+1,

(d+1)gIJ

)
in a broader context,

we start from (d+ 1)-dimensional line elements of the same form as in (8.20), namely:

(d+1)gIJ(xK) dxI dxJ = Ω2(γ)
[
ε (dγ)2 + gRµν(x

ρ) dxµ dxν
]
. (7.47)

The sign factor ε = ±1 allows the scale variable γ to be introduced either as a
time or a space coordinate. For now, this choice is unrelated to the signature of the
d-dimensional “reference metric”, gRµν(xρ). In fact, this signature is left upon at this
point, and gRµν(xρ) can be a Lorentzian or a Euclidean metric.

In either case, the components of the Ricci tensor (d+1)RI
J of the above metric

(d+1)gIJ have been computed in (7.30a), (7.30b) and (7.30c).
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Figure 7.2. Numerical results for Λ(k), the product G(k) Λ(k), and the
anomalous dimension ηN(k) along a typical Type IIIa trajectory.

7.4.1. The reference metric

Concerning the family of metrics
{
gkµν(x

ρ) | k ∈ R+
}

delivered by the GEAA, we as-
sume that they are related to a trajectory of Type IIIa or IIa of the Einstein–Hilbert
truncation (we won’t consider Type Ia trajectories at this stage). The GEAA entails
the classical-looking effective field equation Gµν [g

k
αβ] = −Λ(k)gkµν , whose solutions gkµν
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are d-dimensional Einstein metrics. Since gkµν is related to gRµν by the xρ-independent
conformal factor Ω2, we can make the following assumptions about the k-independent
reference metric:

(i) The d-dimensional reference metric gR
µν(x

ρ) is Einstein, meaning that the Ricci
tensor has the form:

Rµ
ν

[
gRαβ
]

=
2

(d− 2)
ΛR δ

µ
ν (7.48)

(ii) The corresponding cosmological constant is strictly positive:

ΛR > 0 . (7.49)

Often it will be convenient in the following to trade ΛR for the Hubble parameter

HR ≡

√
2 ΛR

(d− 1)(d− 2)
, (7.50)

In therms of the Hubble parameter the cosmological constant is ΛR ≡ 1
2
(d−1)(d−2)H2

R,
and the Ricci tensor and scalar

Rµ
ν

[
gRαβ
]

= (d− 1) H2
R δ

µ
ν , (7.51)

R
[
gRαβ
]

= Rµ
µ

[
gRαβ
]

= d (d− 1) H2
R . (7.52)

For the special case of the de Sitter solution, the parameter HR happens to coincide
with its Hubble constant. However, for the time being we consider fully generic Einstein
metrics gRµν .

7.4.2. The Einstein condition

Let us now impose the condition that the embedding metric in d + 1 dimensions,
eq.(7.12), too, is an Einstein metric. This means that the Ricci tensor is proportional
to a delta function:

(d+1)RI
J = C δIJ . (7.53)

Here C is essentially the higher-dimensional cosmological constant: C =
(

2
d−1

)
(d+1)Λ.

The Einstein condition leads to the following constraints on ε and Ω(γ):

ε d Ω̇2 − ε d Ω Ω̈ = C Ω4 , (7.54a)

(d− 1) H2
R Ω2 − ε (d− 2) Ω̇2 − ε Ω Ω̈ = C Ω4 . (7.54b)

To proceed, it is advantageous to replace these differential equations by their sum and
difference, respectively, and to express them in terms of the function

ω(γ) ≡ 1/Ω(γ) . (7.55)
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We obtain, respectively,

(d+ 1) ω̇ ω̈ − 2 d ω̇2 + ε (d− 1) H2
R ω

2 = 2 ε C , (7.56a)

ω̈ − ε H2
R ω = 0 . (7.56b)

The second equation above is easily solved. Depending on whether γ is a space or a
time coordinate, we obtain, with integration constants α1 and α2:

ε = +1 : ω(γ) = α1 sinh(HR γ) + α2 cosh(HR γ) ,

ε = −1 : ω(γ) = α1 sin(HR γ) + α2 cos(HR γ) .

(7.57)

(7.58)

For practical calculations it is often better not to use the explicit solutions but simply
to exploit that (7.56b) admits the first integral

ω̇2 − ε H2
R ω

2 = const ≡ E . (7.59)

If desired, one can express the γ-independent “energy” E in terms of the integration
constants α1 and α2 according to

E =
(
α2

1 − ε α2
2

)
H2

R . (7.60)

Therefore, turning to the first differential equation (7.56a) now, we are entitled to
make the following substitutions there:

ω̇2 = E + ε H2
R ω

2 and ω ω̈ = ε H2
R ω

2 . (7.61)

As a result, the dependence on ω(γ) drops out completely from (7.56a). What remains
is a condition that relates C to the constants of integration:

C = −ε d E (7.62)

= d
(
− ε α2

1 + α2
2

)
H2

R (7.63)

In terms of the conventionally normalized cosmological constant in (d+ 1) dimensions,
(d+1)Λ, this value of C amounts to

(d+1)Λ =
1

2
(d− 1) C (7.64)

=
1

2
d (d− 1)

[
− ε α2

1 + α2
2

]
H2

R . (7.65)

Obviously, (d+1)Λ can have either sign, depending on the relative magnitude of α1 and
α2, and on the factor ε.

The case of a vanishing (d+1)Λ = 0 is included here as well, and it leads us back to
the Ricci flat metrics considered in Subsection 7.2.5. By eq.(7.65), this case is seen to
require that ε = +1 and α1 = ±α2. Hence, from (7.57), we obtain ω(γ) ∝ exp (±HRγ),
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and choosing the upper sign this yields the metric given in (7.35) for the presently
assumed positive sign of ΛR, σ = +1.

However, while the discussion in the previous sections assumed Euclidean metrics
gkµν , we now see that under the same conditions it is possible to embed also Lorentzian

spacetimes
(
Md, g

k
µν

)
in a Ricci flatMd+1.

The point to be noted here is that the above investigation of differential equations
is of a local nature and hence yields criteria for the existence of local embeddings only.
But, importantly, in trying to extend a local embedding to a global one, the signature
of
(
Md, g

k
µν

)
is of crucial importance.

In this sense, the spacetimesMd+1 found above merely have the status of candidates
for a global embedding.

Before turning to specific solutions, let us look at the Riemannian tensor (d+1)RIJ
KL

of the higher-dimensional metrics (d+1)gIJ based upon an arbitrary d-dimensional Ein-
stein metric gRµν . For metrics of the type (7.12), its only nonzero components, up to the
usual symmetries, are

(d+1)R0µ
0ν = C d−1 δµν , (7.66a)

(d+1)Rµν
ρσ = C d−1

[
δµρ δ

ν
σ − δµσ δνρ

]
+

{
Rµν

ρσ −H2
R

[
δµρ δ

ν
σ − δµσ δνρ

]}
ω(γ)2 . (7.66b)

Here Rµν
ρσ is the Riemann tensor of the d-dimensional metric gRµν(xρ). While we assume

the latter to be Einstein, all other properties of gRµν(xρ), in particular its Riemann
tensor, are still completely unconstrained. In particular no assumptions about possible
symmetries of

(
Md, g

R
µν

)
have been made.

7.4.3. Maximum symmetry

If
(
Md, g

R
µν

)
happens to be maximally symmetric, its curvature tensor satisfies

Rµν
ρσ = H2

R

[
δµρ δ

ν
σ − δµσ δνρ

]
, (7.67)

and as a result, the components (7.66b) simplify correspondingly. In this case it is not
difficult to see that, in higher-dimensional language, the equations (7.66a) and (7.66b)
with (7.67) read:

(d+1)RIJ
KL = C d−1

[
δIK δJL − δIL δJK

]
. (7.68)

This leads us to the following conclusion:

For every choice of
{
ε, α1, α2} and of the d-dimensional Einstein metric gRµν , the

(d+ 1)-dimensional metric (d+1)gIJ(γ, xµ) defined by eq.(7.12) is maximally symmetric
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if, and only if, gRµν(xρ) is maximally symmetric. In this case, gRµν has 1
2
d(d + 1) Killing

vectors, while (d+1)gIJ has 1
2
(d+ 1)(d+ 2).

Recall also that in the present paper we have fixed the sign of the cosmological
constant from the outset: σ ≡ Λ(k)/|Λ(k)| = +1. Hence, in the maximally symmetric
case, we are bound to consider families of spheres or de Sitter spacetimes, Md = Sd

or Md = dSd, respectively, depending on whether the to-be-embedded manifolds are
Euclidean or Lorentzian.

Furthermore, let us emphasize that this alternative,Md being Euclidean or Lorentzian,
did not get linked to the sign ε in the course of the above calculations, neither by re-
quiring (d+1)gIJ to be Einstein, nor by demanding maximum symmetry.

7.5. The candidates: AdSd+1 and dSd+1

Let us return to the question raised in Section 6: Which principles and criteria can
constrain or, in the ideal case, determine uniquely a manifold Md+1 that geometrizes
a given trajectory, now in of Lorentzian spacetimes

(
Md, g

k
µν

)
?

(1) Symmetry. A natural principle of this kind, which we shall adopt here, is the
following: The higher-dimensionalMd+1 should display the maximum amount of sym-
metry that is consistent with the symmetry properties of the lower-dimensional metrics
gkµν .

This principle unfolds its power in full if Md+1 can be required to be maximally
symmetric. But, as we know, this will be possible only for generalized RG trajectories
where already the originalMd’s possess a corresponding symmetry.

Since it is our goal to find examples in which
(
Md+1,

(d+1)gIJ

)
is constrained as

strongly as possible, we henceforth insist on maximally symmetric embedding manifolds
Md+1.

To make sure that the latter can actually arise, we assume that, on all scales,(
Md, g

k
µν

)
is a maximally symmetric, and Lorentzian Einstein space with a positive

cosmological constant. Hence from now on
(
Md, g

k
µν

)
amounts to de Sitter spacetimes

dSd with a running Hubble parameter H = H(k).

The k-dependent effective field equation tells us that gkµν ∝ 1/Λ(k), and so we may
write the running de Sitter metrics as follows:

gkµν = Y (k)−1 gRµν where Y (k) ≡ Λ(k)

ΛR
. (7.69)
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This identifies the reference metric gRµν used above with the running metric gkµν evaluated
at some arbitrary k ≡ kR > 0.

AdSd+1 and dSd+1 arise. At this point, the basic problem has boiled down to a
question that we addressed already in the previous section, namely: Given a stack of
de Sitter spaces

(
Md = dSd, Y (k)−1gRµν

)
, i.e., a family of spacetimes whose members

are all Lorentzian and maximally symmetric, in which manifolds
(
Md+1,

(d+1)gIJ

)
can

they be embedded if we demand that the higher-dimensional scale-space-time, too, is
Lorentzian and maximally symmetric?

The demand of being Lorentzian fixes the signature ofMd+1 in the form (−+ + +

· · · ), thus avoiding the (exotic and potentially problematic) situation with two times,
(− − + + · · · ). Hence the only time direction ofMd+1 is the one inherited fromMd,
and so the scale coordinate is determined to be a spatial one.

As a consequence, we must set ε = +1 in our above catalog of possible local embed-
dings.

The remaining freedom lies in the choice of the integration constants (α1, α2) then.
It leaves us with only two principally different cases, namely (α1, α2) = (1, 0) and
(α1, α2) = (0, 1), respectively. According to (7.65), the resulting cosmological constant
ofMd+1 is negative in the first, and positive in the second case:

(d+1)Λ(1,0) = −1

2
d (d− 1) H2

R = −
(

d

d− 2

)
ΛR ,

(d+1)Λ(0,1) = +
1

2
d (d− 1) H2

R = +

(
d

d− 2

)
ΛR .

(7.70)

(7.71)

Thus, insisting that Md+1 is maximally symmetric narrows down the possibilities to
just two cases, namely Md+1 is either the anti-de Sitter spacetime AdSd+1, or the de
Sitter spacetime dSd+1 (see Table E.3 and Table E.4 in Appendix E).

7.5.1. Scale coordinates γ vs. ξ

Our conclusions are easily checked explicitly on the basis of the conformal factors given
by (7.57):

Ω(1,0)(γ) = 1/ sinh(HR γ) , (7.72)

Ω(0,1)(γ) = 1/ cosh(HR γ) . (7.73)

(1a) In the (1,0) case the line element (7.12) assumes the following form:

(d+1)gAdSIJ (xK) dxI dxJ =
1

sinh2(HR γ)

[
(dγ)2 + dΣ2

d

]
, γ ∈ (−∞, 0) . (7.74)
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Here we introduced the special notation

dΣ2
d ≡ gRµν(x

ρ) dxµ dxν (7.75)

for the metric of the d-dimensional de Sitter space dSd with the Hubble parameter HR.
By the coordinate transformation γ ↔ ξ with

ξ(·) : (−∞, 0) → (0, ∞), γ 7→ ξ(γ) = −H−1
R ln tanh

(
−1

2
HR γ

)
(7.76)

the metric (7.74) can be brought to the alternative form
(d+1)gAdSIJ (xK) dxI dxJ = (dξ)2 + sinh2(HR ξ) dΣ2

d , ξ ∈ (0, ∞) (7.77)

The line element (7.77) is known to describe a patch of the AdSd+1 manifold by slicing
it with d-dimensional de Sitter spaces.7

(1b) In the (0,1) case we are similarly led to

(d+1)gdSIJ (xK) dxI dxJ =
1

cosh2(HR γ)

[
(dγ)2 + dΣ2

d

]
, γ ∈ (−∞, ∞) (7.78)

which, by means of a different coordinate transformation,

ξ(·) : (−∞, ∞) → (0, π H−1
R ), γ 7→ ξ(γ) = 2H−1

R arctan
(
eHRγ

)
, (7.79)

can be brought to the form
(d+1)gdSIJ (xK) dxI dxJ = (dξ)2 + sin2(HR ξ) dΣ2

d , HR ξ ∈ (0, π) (7.80)

Eq.(7.80) is nothing but the well known metric of dS-sliced de Sitter space [369].

Note that in the above both γ and ξ have the dimension of a length, [γ] = [ξ] = −1,
being the only exceptions to our convention that coordinates should be dimensionless.

(2) (A)dSd+1 cases combined. It is convenient to combine the two relevant metrics,
(7.77) and (7.80), respectively, in the following fashion:

(d+1)g
AdS/dS
IJ (xK) dxI dxJ = (dξ)2 + F (HR ξ)

2 dΣ2
d . (7.81)

Herein, the function F is given by

F (x) =

{
sinh(x) for AdSd+1

sin(x) for dSd+1 ,
(7.82)

and, as before, dΣ2
d stands for a dSd metric with the Hubble parameter HR.

7This AdS metric is used comparatively rarely; exceptions include [367, 368].
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7.5.2. Global coordinates on dSd

So far the system of coordinates within the ξ = const surfaces has been left unspeci-
fied. When explicit coordinates are needed, we shall choose them in a way such that
xµ ≡ (t, σi), with spatial coordinates σi and the time coordinate t, covers the maximal
extension of de Sitter space. In such global coordinates the dSd metric reads [369]:

dΣ2
d =

1

H2
R

[
− dt2 + cosh2(t) dΩ2

d−1

]
. (7.83)

Here dΩ2
d−1 denotes the line element of a unit (d− 1)-sphere coordinatized by the σi’s.

7.5.3. Dimensionless scale coordinate ξ̄ = HRξ

Adopting the line element dΣ2
d from eq.(7.83), the combined metrics (7.81) assume the

form
(d+1)g

AdS/dS
IJ (xK) dxI dxJ = H−2

R ds2
d+1

∣∣∣
ξ̄=HR ξ

(7.84)

where ds2
d+1 denotes the dimensionless line element

ds2
d+1 = (dξ̄)2 + F (ξ̄)2

[
− dt2 + cosh2(t) dΩ2

d−1

]
. (7.85)

It depends on dimensionless coordinates only. They include

ξ̄ ≡ HR ξ (7.86)

which labels the leaves of the foliation. This dimensionless scale coordinate amounts
to the original one, ξ, when expressed in units of the Hubble length LR

H ≡ H−1
R in the

reference spacetime.

7.6. Relating foliation and RG scale

The spacetime
(
Md+1,

(d+1)gIJ

)
is foliated by leaves with ξ = const which we would

like to interpret as surfaces of equal RG scale k. By eq.(7.81), our two candidates
Md+1 = AdSd+1 andMd+1 = dSd+1 induce certain metrics on those d-dimensional leaves.
We insist that these metrics coincide exactly with those delivered by the renormalization
group:

(d+1)g
AdS/dS
IJ dxI dxJ

∣∣∣
dξ=0

= F (HR ξ)
2 dΣ2

d
!

= Y (k)−1 dΣ2
d (7.87)
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This condition leads us to the following fundamental requirement for the viability of
the suggested embeddings:

F (HR ξ) = Y (k)−1/2 , k ∈ R+ (7.88)

The all-decisive question is whether eq.(7.88) gives rise to an acceptable relationship
between ξ and k, namely an admissible coordinate transformation ξ = ξ(k)↔ k = k(ξ).

Note that by virtue of

Y (k) =
Λ(k)

ΛR
=
H(k)2

H2
R

and Y (k)−1/2 =
HR

H(k)
=
LH(k)

LR
H

(7.89)

the requirement (7.88), when expressed in terms of the respective Hubble lengths
LH(k) = 1/H(k) and LR

H = 1/HR, writes

F̂ (ξ) = LH(k) where F̂ (ξ) ≡ LR F

(
ξ

LR
H

)
. (7.90)

It can be observed that this condition is a “deformation” of the one occurring in the
Ricci flat case studied in Section 7.2. There, the simpler condition ξ = LH(k) had
appeared instead of (7.90). However, as one might expect, at small arguments F̂
approaches F̂ (ξ) = ξ + O

(
(ξ/LR

H)3
)

for the “deformed” functions of (7.82), F̂ (ξ) =

LR sin(h)
(
ξ/LR

)
.

In the sequel we investigate the properties of the relationship (7.88) for the most in-
teresting case of d = 4, i.e., the embedding of 4-dimensional scale-dependent spacetimes
into a 5-dimensional manifoldM5.

In the rest of this paper, in discussions of a general nature that do not depend on
the input from the RG flow, we shall continue to leave the dimensionality d arbitrary,
however.

7.6.1. Information from the RG

To decide about the viability of an embedding, essential use must be made of the
properties of the function Y (k)−1/2 ≡

√
ΛR/Λ(k). The latter is determined by the RG

trajectories of the Einstein–Hilbert truncation, concretely those of Type IIIa if Λ0 > 0,
and of Type IIa for Λ0 = 0, respectively. Their investigation by both analytical and
numerical means has revealed the following properties that are going to be relevant [95,
97] [RF1]:

(a) Case Λ0 > 0: The function Y (·)−1/2 : R+ → R+, k 7→ Y (k)−1/2 is a smooth,
strictly decreasing function which maps the k-interval (0,∞) invertibly on the interval
(0, y−1).
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Figure 7.3. The schematic behavior of the function Y (k)−1/2 for Λ0 > 0
(solid line) and Λ0 = 0 (dashed line).

Here we introduced the parameter y2 ≡ Y (0) = Λ0/ΛR > 0, or equivalently,
y = H(0)/HR = LR

H/LH(0), employing the standard definitions LH(k) ≡ 1/H(k) and
LR
H ≡ 1/HR.

(b) Case Λ0 = 0: The function Y (·)−1/2 : R+ → R+, k 7→ Y (k)−1/2 is a smooth,
strictly decreasing function which maps the k-interval (0,∞) invertibly on the interval
(0,∞).

In either case, the domain and the codomain of Y (·)−1/2 are always R+. The two
cases differ however with respect to the actual image of R+ under Y (·)−1/2: If Λ0 > 0,
the image consists of the interval (0, y−1) only, while it comprises all of R+ for Λ0 = 0.
This is related to the fact that Y (k)−1/2 approaches a finite limit limk→0 Y (k)−1/2 = y−1

when Λ0 > 0, but it diverges to +∞ if we let k → 0 for Λ0 = 0.

In Figure 7.3 we schematically depict the behavior of Y (k)−1/2 ≡ Z(k) in the two
cases. The relevant characteristics of this function are also well described by the analytic
approximation (3.61).

It is obvious from Figure 7.3 that, for Λ0 > 0, Z(k) = Y (k)−1/2 possesses a monotone
inverse function Z−1 : (0, y−1) → R+, and that the image of (0, y−1) under Z−1 is the
full R+, i.e., the complete half-line of scales k. If instead Λ0 = 0, the inverse is a certain
function Z−1 : R+ → R+, but again, Z−1 is monotone and has an image that covers
the entire R+ of k-values.
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7.6.2. The k-ξ transformation: the AdS5 candidate

As a step towards establishing the viability of the AdSd+1 ≡ AdS5 embedding, let us now
try to satisfy the requirement

sinh (HR ξ) = Y (k)−1/2 ≡ Z(k) (7.91)

by some monotone function ξ = ξ(k), or k = k(ξ), respectively.

(1) Existence. Solving the relation (7.91) for ξ yields a function which is well defined
for all k ∈ R+, and assumes values in R+:

ξ(·) : R+ → R+, k → ξ(k) = H−1
R arsinh

(
Y (k)−1/2

)
. (7.92)

The key observation in the previous subsection, namely that Y (·)−1/2 has an everywhere
negative derivative, for both Λ0 = 0 and Λ0 > 0, implies that the function (7.92) is
strictly decreasing, too: d

dk
ξ(k) < 0 for all k > 0. This is precisely as it must be if the

k-ξ relationship is to qualify as an orientation reversing8 diffeomorphism.

As for the inverse map ξ 7→ k(ξ), we solve (7.91) for k this time:

k(ξ) = Z−1

(
sinh

(
HR ξ

))
. (7.93)

The monotonicity of Z−1(·) and sinh(·) implies that, as expected, d
dξ
k(ξ) < 0 every-

where. From the properties of Z−1 we furthermore infer the domain of the function
defined by the expression (7.93):

k(·) :
(

0, ξmax(y)
)
→ R+, ξ 7→ k(ξ) for Λ0 > 0 (7.94)

k(·) : R+ → R+, ξ 7→ k(ξ) for Λ0 = 0 (7.95)

Here we introduced the y-dependent interval boundary

ξmax(y) ≡ H−1
R arsinh

(
y−1
)
. (7.96)

Since the image of k(·) equals R+ in both cases, we can conclude that it is sufficient
to draw ξ-values from the interval (0, ξmax) in the first, and from R+ in the second case,
in order to parameterize all scales k ∈ R+ ≡ (0, ∞) in a smooth and invertible manner.

This proves the existence of an admissible transformation ξ ↔ k which possesses the
desired properties of a one-dimensional diffeomorphism. It entails the viability of an
embedding into the 5-dimensional anti-de Sitter space AdS5, and this is what we wanted
to establish.

8The orientation reversing character of the coordinate transformation k → ξ is a trivial consequence
of ξ being a length, while k is a momentum.
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(2) Asymptotic form. Within the approximation of eq.(3.61), we can write down the
coordinate transformation relating ξ and k in closed form. In the asymptotic scaling
regime near the UV fixed point, k & k̂, we obtain for the Type IIIa and IIa trajectories
alike:

ξ(k) ≈ H−1
R arsinh

(
1

Lk

)
≈ 1

HR Lk
(7.97)

Using the definitions of HR and L in d = 4, this relation becomes

ξ(k) ≈
(
λ∗
3

)1/2
1

k
. (7.98)

It expresses a perfect inverse proportionality between the RG parameter k and the value
of the (dimensionful) coordinate ξ.

In the semiclassical regime 0 < k . k̂, the properties of the corresponding transfor-
mation

ξ(k) ≈ H−1
R arsinh

([
y2 + (` k)4

]−1/2
)

(7.99)

depend on the type of the RG trajectory in a significant way.

For Type IIIa trajectories, y2 ≡ Λ0/ΛR is non-zero, and the ξ coordinate correspond-
ing to the limit k ↘ 0 is finite:

ξ(k = 0) ≈ H−1
R arsinh

(
y−1
)
. (7.100)

For the Type IIa trajectory, on the other hand, y = 0 implies the following behavior of
ξ at low RG scales k � `−1:

ξ(k) ≈ H−1
R arsinh

(
1

`2 k2

)
≈ H−1

R ln

(
2

`2 k2

)
. (7.101)

Hence ξ(k) approaches +∞ when k decreases towards zero.

7.6.3. The k-ξ transformation: the dS5 candidate

Let us return to the fundamental requirement (7.88) with a generic function F (·) appear-
ing on its LHS. Since, first, Y (k)−1/2 was found to be monotone, and second, k = k(ξ)

was demanded to be monotone, it follows that the requirement (7.88) can be satisfied
only if F (HRξ) on its LHS has a monotone dependence on ξ.

Above, in the AdS case, this has indeed been the case, thanks to the monotonicity of
the sinh-function in eq.(7.91).

For the second candidate, the de Sitter space dSd+1, the requirement reads

sin(HR ξ) = Y (k)−1/2 ≡ Z(k) , (7.102)

and here the situation is different, for two reasons:
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(a) The line element (7.80) is non-degenerate only for HRξ ∈ (0, π). Therefore, right
from the outset we must restrict the range of the ξ coordinate to the interval ξ ∈
(0, π)H−1

R .

(b) On this latter interval, the LHS of (7.102), sin(HRξ), is not a monotone function
of ξ. As a way out, we restrict ξ even further, namely to only half of the original range:

ξ ∈
(

0,
π

2

)
H−1

R . (7.103)

For coordinate values in the interval (7.103), the metric (7.80) is well defined, and
at the same time the LHS of (7.102) is monotone with respect to ξ. Hence we can hope
to find a diffeomorphism relating ξ to k.

A discussion analogous to the one above shows that there is indeed such a coordinate
transformation, albeit only for certain values of y.

(1) Existence for y > 1. Clearly, when it exists (y > 1), the transformation has the
form

ξ(k) = H−1
R arcsin

(
Z(k)

)
⇐⇒ k(ξ) = Z−1

(
sin(HRξ)

)
(7.104)

and every RG scale k ∈ R+ gets related in a 1-1 way to a unique ξ ∈
(
0, ξmax(y)

)
whereby

ξmax(y) = H−1
R arcsin

(
y−1
)
. (7.105)

For the expressions in (7.104) to make sense, the argument of the arcsin-function
must satisfy Z(k) ≡ Y (k)−1/2 ∈ (0, 1) for all k ∈ R+. A quick glance at Figure 7.3
reveals that this is the case if, and only if y > 1. Recalling the definition of the
parameter y,

y ≡ Y (0)1/2 =
(

Λ0/ΛR

)1/2

= H(0)/HR = LR
H/LH(0) , (7.106)

we see that y > 1 imposes a constraint on the value of the Hubble length at the
trajectory’s endpoint, LH(0) ≡ limk→0 LH(k), in relation to the Hubble radius of the
reference metric:

y > 1 ⇐⇒ LR
H > LH(0) ⇐⇒ Λ0 > ΛR . (7.107)

If the constraint (7.107) is satisfied, (7.104) does indeed define a diffeomorphic map
ξ(·) : R+ →

(
0, ξmax

)
, k 7→ ξ(k), as it is necessary for the embedding in dS5 to exist.

In the opposite case, y < 1, no such map exists.9

9This is obvious from the relation (7.102) already: Its RHS, Y (k)−1/2, assumes values between zero
and y−1 > 1, while the magnitude of the LHS, sin(HRξ), never exceeds unity.
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(2) Asymptotic form. For the k-ξ relationship at asymptotically large and small RG
parameters, the analytic approximation (3.61) yields, respectively,

ξ(k) ≈
(
LR
H
L

)
1
k

(L k →∞) , (7.108)

ξ(k) ≈ ξmax(y)− LR
H`

4

2y2
√
y2 − 1

k4 (` k → 0) . (7.109)

The y-dependence in the prefactor of the k4 term in (7.109) makes it quite clear that
y = 1 amounts to a threshold that cannot be crossed. We shall come back to it towards
the end of the next section.

In this section we saw that ξ, the coordinate that labels the leaves of the foliation,
and k, the RG scale, are indeed related by an admissible coordinate transformation. The
next question we must address is how much of the total (A)dSd+1 manifold is actually

covered by the embedded spacetimes
{(
Md, g

k
µν

)
, k ∈ R+

}
from the renormalization

group. We consider the casesMd+1 = AdSd+1 andMd+1 = dSd+1 in turn.

7.7. Global structure and AdS connection

7.7.1. The AdS embedding

We start by discussing the geometrization of the RG flow by means ofMd+1 = AdSd+1.
According to eq.(7.85), the dS-sliced AdS metric reads, in dimensionless form:10

ds2
d+1 = (dξ)2 + sinh2(ξ)

[
− dt2 + cosh2(t) dΩ2

d−1

]
(7.110)

If we leave the relation of ξ to k aside for a moment, the maximal range of the coordinate
values at which (7.110) can be applied is given by

t ∈
(
−∞, +∞

)
and ξ ∈

(
0, ∞

)
. (7.111)

(1) Relationship ξ-k disregarded. At first instance we will disregard the relation-
ship ξ-k. To find out how (7.110) is connected to the global AdS spacetime, and also
in order to derive the corresponding Penrose diagram, let us perform the coordinate
transformation (ξ, t)→ (r, τ) given by

r = sinh(ξ) cosh(t) ,

tan(τ) = tanh(ξ) sinh(t) .
(7.112)

10For simplicity, we omit the overbar from ξ̄ in this subsection, i.e., now ξ is understood to be measured
in units of the reference Hubble length H−1

R .
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Figure 7.4. The Penrose diagram of (the universal cover of) the AdSd+1

spacetime. The shaded triangle corresponds to the part where the metric
(7.110) applies when its maximum coordinate range (7.111) is exploited.

This transformation turns the line element (7.110) into

ds2
d+1 = −

(
1 + r2

)
dτ 2 +

dr2

1 + r2
+ r2 dΩ2

d−1 (7.113)

which is the well known AdSd+1 metric in global coordinates, and for a unit Hubble
parameter. The latter metric can be applied for the coordinate ranges

τ ∈
(
−∞, +∞

)
and r ∈

(
0, ∞

)
, (7.114)

which actually correspond to the universal cover of the AdSd+1 spacetime. The causal
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Figure 7.5. The shaded triangle of the AdSd+1 Penrose diagram in Fig-
ure 7.4 is redrawn. On the τ -ψ plane, various coordinate lines are shown
on which ξ = const (solid lines) or t = const (dashed lines). In the lim-
its ξ = const → ∞, and ξ = const → 0, the surfaces of constant scale
are seen to approach the line segment B1B2, and the null cone B1AB2,
respectively.

structure of the global manifold becomes manifest after an additional coordinate trans-
formation r → ψ:

tan(ψ) = r . (7.115)

It converts (7.113) to the manifestly conformally flat metric

ds2
d+1 =

1

cos2(ψ)

[
− dτ 2 + dψ2 + sin2(ψ) dΩ2

d−1

]
. (7.116)

This metric is applicable for τ ∈ (−∞,∞), ψ ∈
(
0, π

2

)
.

In Figure 7.4 we sketch the Penrose diagram obtained from (7.116) after multiplica-
tion by cos2(ψ). In this diagram, every point on the τ -ψ plane corresponds to a sphere
Sd−1 with radius sin2(ψ).



7. geometrization of renormalization group histories: ads/cft 141

It can be checked that the original metric (7.110) with coordinate ranges (7.111)
covers only a part of the entire manifold. In Figure 7.4 the corresponding patch is
indicated by the shaded triangle.

Furthermore, in Figure 7.5, various coordinate lines having constant t- or ξ-values
are shown within this triangular region. Every line with ξ = const represents one of the
d-dimensional spacetimes

(
dSd, gkµν

)∣∣∣
k=k(ξ)

which were supplied by the renormalization
group.

(2a) Relationship ξ-k imposed: Type IIIa. In Section 7.6 we concluded that, if
Λ0 6= 0, the scale coordinate ξ = ξ(k) ∈ (0, ξmax) does not exhaust the full range of
theoretically possible values, ξ ∈ (0,∞):{(

dSd, gkµν
)
, k ∈ R+

}
=

{(
dSd, gk(ξ)

µν

)
, ξ ∈

(
0, ξmax(y)

)}
. (7.117)

As a consequence, the entirety of all spacetimes that occur along a complete Type
IIIa trajectory require for their embedding only a part of the triangular region in the
τ -ψ plane. It is given by the shaded area of the Penrose diagram in Figure 7.6. This
area is coordinatized by ξ ∈ (0, ξmax(y)), t ∈ (−∞,∞).

(2b) Relationship ξ-k imposed: Type IIa.If Λ0 = 0 on the other hand, i.e., for
the Type IIa trajectory, the complete shaded triangle of Figure 7.4, but not more than

that, is needed in order to embed the entire stack of spacetimes
{(

dSd, gkµν

)
, k ∈ R+

}
.

See Figure 7.7 for an illustration of this case.

7.8. The possibility of a non-standard AdS/CFT

We started out from a stack of de Sitter spacetimes which emerged as solutions to the
scale-dependent effective field equations derived from Type IIIa and IIa trajectories
of running actions, k 7→ Γk, k ∈ R+. We tried to interpret them as the leaves of a
(d + 1)-dimensional manifold that carries a natural foliation induced by the RG scale.
We demanded that its metric (d+1)gIJ should, (i), be Einstein and Lorentzian, (ii),
have vanishing shift vector and xµ-independent lapse when presented in “scale-ADM”
form, and (iii), possesses as many Killing vectors as it is compatible with the other
requirements and the symmetries of the input metrics gkµν .

We have then shown that, besides the dS candidate to be discussed below, an em-
bedding into AdSd is the only option. Moreover, at least for d = 4, the properties of the
RG flow are indeed such that the viability of the program can be demonstrated, i.e.,
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Figure 7.6. The shaded area in this diagram indicates the part of the
AdS5 Penrose diagram in Figure 7.4 andFigure 7.5 that is needed in order
to embed all 4D spacetimes occurring along an RG trajectory of Type
IIIa. The area is bounded by the ξ = const line with ξ = ξmax(y) given
in eq.(7.96).

there exists a scalar function k = k(xI) on the embedding manifold which describes the
foliation by leaves of constant scale in a (in principle) coordinate independent manner.

We demonstrated that embedding the set of all spacetimes (7.117) does not exhaust
the entire AdS5 manifold. The part of the latter which actually comes into play is
represented pictorially in the causal diagrams of Figure 7.6 and Figure 7.7. They apply
to 4D cosmological constants Λ0 > 0 and Λ0 = 0, respectively.

As for the interpretation, let us begin with the case Λ0 = 0, i.e., the Type IIa
trajectory. It is special in that it terminates in the GFP, and that limk→0 Λ(k) = 0.11

As a result, at the endpoint of the IIa trajectory the solution of the field equation
changes from dS4 to Minkowski space.

11For recent work that independently hints at a special status of the Type IIa trajectory see [224, 370,
371].
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Figure 7.7. Penrose diagram illustrating the portion of the AdS5 man-
ifold that is necessary to embed all dS4 spacetimes along the Type IIa
trajectory. The gray shading indicates the local value of k. Dark (light)
regions correspond to low (high) values of the RG parameter k.

7.8.1. Geometry

In Figure 7.7, the triangle represents the part of AdS5 covered by the embedding, and
its causal properties in a global fashion. We denote this part as AdSemb

5 in the following.
We also recall that all points of the diagram are actually representatives of 3-dimen-
sional spatial spheres. In Figure 7.7, the τ -ψ projection of the boundary of AdSemb

5 is
seen to comprise 3 components: the lightlike ones AB1 and AB2, and a timelike one,
B1B2, residing at spatial infinity. While the line segments AB1 and AB2 consist of inner
points of the full AdS5 manifold12, the segment B1B2 is a boundary of both AdSemb

5 and
the total AdS5.

12except for the points A, B1, and B2.
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7.8.2. Quantum field theory à la GEAA

Now let us switch from geometry to quantum field theory, formulated in GEAA language.
For this purpose we decorated the Penrose diagram in Figure 7.7 with information
concerning the local value of k(xI) by means of a variable gray shading. It highlights
the following properties of the foliation carried by AdSemb

5 :

(i) In the UV limit k → ∞ ⇔ ξ → 0, the leaves of constant scale which describe 4D
spacetime at a given resolution, get squeezed into the null cone B1AB2: the smaller is
ξ, the more the lines with ξ = const approach the diagonals AB1,2 in the τ -ψ plane, see
Figure 7.5. As a result, those particular (spacelike!) leaves whose internal dynamics is
ruled by the GEAA in the “bare” limit, Γk→∞ ∼ S, are situated infinitely close to the
null cone B1AB2, the lightlike boundary of AdSemb

5 .

(ii) Conversely, in the physical limit k → 0, i.e., when the IR cutoff is removed, the
4D dynamics is governed by the ordinary effective action limk→0 Γk = Γ. This is the
relevant action for the effective theory on the leaves in the limit ξ → ∞ when dS4

approaches Minkowski space. In Figure 7.7, those leaves are represented by almost
straight, essentially vertical lines connecting B1 and B2. They get infinitely close to the
(perfectly straight) vertical line B1B2 at ψ = π/2, the timelike boundary of AdSemb

5 at
spatial infinity.

7.8.3. The novel AdS/CFT correspondence

Thus, taking the above remarks together we are led to the picture of a 5-dimensional
geometry with certain QFT’s attached to it in a specific way. It is strikingly similar to
the AdS/CFT correspondence proposed in the literature [45, 229, 266]. In the string the-
ory-related correspondence, too, a theory involving gravity, namely full-fledged string
theory or a low energy approximation thereof, lives on the bulk of AdS5 and is “holo-
graphically” related to a CFT on the boundary, whereby the isometry group of the 5D
manifold, SO(4, 2), acts as the conformal group on the 4D boundary [372–376].

The analogies to the picture based upon the functional renormalization group are
obvious. In particular the task of defining a theory of quantum gravity beyond the
confines of perturbation theory is taken over by Asymptotic Safety now, replacing string
theory.

The analogy is particularly striking if the field theory that is defined by the asymp-
totically safe Type IIa trajectory

{
ΓIIa
k , k ∈ R+

}
is conformal, i.e., if limk→0 Γk ≡ Γ

defines the action of a 4-dimensional CFT. As we mentioned in the Introduction, for
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the time being this is unproven in d = 4, but has already been established in two
dimensions, where also the unitarity of the CFT was shown [377].

In this regard it is also important to note that recently it has been demonstrated
that 4D quantum gravity based upon the action

∫
d4x
√
g R, linearized about Minkowski

space, is indeed conformal, rather than merely scale invariant at the IR fixed point [378].
The pertinent CFT, having no stress tensor, and no relevant or marginal scalar operators,
is of a non-standard type which is defined at the level of the correlation functions. This
result is consistent with our expectation that the endpoint of the Type IIa trajectory
is indeed a CFT.13

7.8.4. Meaning of holography in the GEAA approach

Within the framework of the gravitational Effective Average Action there exists a natu-
ral and perfectly general notion of holography. It is exemplified by the above AdS/CFT
picture, but its scope is much broader.

Loosely speaking, the corresponding “holographic principle” conjectures, purely at
a 4D level, that all actions Γk at k > 0, including the bare one, S ∼ Γk→∞, can be
reconstructed from the standard effective action Γk=0 = Γ.

This is equivalent to saying that the functional RG equation defines a meaningful
initial value problem also when the direction of the k-evolution is changed from “down-
ward” to “upward”, and the initial condition Γk=0

!
= Γ is imposed in the IR rather than

UV.

A solution to this “inverse quantization problem” extends the dynamics from the
“holographic screen”, aka, the foliation’s leave at k = 0, into the “bulk” comprised of
the leaves with k > 0.

In general, it may be problematic to give a mathematical meaning to such a func-
tional variant of a boundary value problem. Along asymptotically safe RG trajectories,
followed in the reversed direction, this should be possible though. A first proof of
principle has appeared in refs.[94, 215, 379] already.

13Note however that while the limit k → 0 renders Minkowski space a solution of the effective field
equation, as such it does not linearize the equation: Near the GFP, the dimensionless Newton constant
scales like g(k) ≈ G0k

2 with a nonzero renormalized Newton constant G0 6= 0 in general.
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7.8.5. Nonzero IR cosmological constant

In the Type IIIa case, having Λ0 6= 0, the situation is different in that dS4 continues to
be a solution of the effective Einstein equation even when k is strictly zero. Contrary
to the IIa case discussed above, the limit k → 0 involves no change from the de Sitter
solution to Minkowski space at k = 0 at the final point of the trajectory.

Comparing Figure 7.6 and Figure 7.7 shows that a non-zero value Λ0 6= 0 prevents
the boundary of AdSemb

5 to get close to the timelike boundary of the full AdS5. It always
remains crescent-shaped when Λ0 6= 0, and this spoils the analogy to the AdS/CFT
picture.

7.9. Global structure and dS connection

7.9.1. The dS embedding

A geometrization of the RG flow by means of our second candidate, Md+1 = dSd+1,
would rely upon the (dimensionless) de Sitter metric

ds2
d+1 = (dξ)2 + sin2(ξ)

[
− dt2 + cosh2(t) dΩ2

d−1

]
. (7.118)

As before, let us begin by investigating the spacetime furnished with (7.118) for the full
range of coordinate values for which the metric is non-degenerate:

ξ ∈
(
0, π

)
and t ∈

(
−∞, +∞

)
. (7.119)

So, for a moment, we ignore the constraints due to the matching of ξ with k.

(1) Relationship ξ-k disregarded. To begin with, disregarding the ξ-k relationship,
we trade ξ and t for new coordinates, ψ and τ , by means of a transformation

(0, π)× R → (0, π)×
(
−π

2
, +

π

2

)
,

(ξ, t) 7→
(
ψ(ξ, t), τ(ξ, t)

)
,

(7.120)

which is defined by the following functions:14

ψ(ξ, t) = arccos

 cos(ξ)√
1 + sin2(ξ) sinh2(t)

 , (7.121a)

τ(ξ, t) = arctan
(

sin(ξ) sinh(t)
)
. (7.121b)

14All inverse trigonometric functions are understood to be principal values.
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Figure 7.8. The Penrose diagram of dSd+1 on the τ -ψ
plane. Every point corresponds to a sphere Sd−1 of ra-
dius sin2(ψ). The shaded square indicates the part of the
de Sitter manifold which is covered by the ξ-t coordinate system.

This transformation recasts the metric (7.118) in the manifest conformally flat form

ds2
d+1 =

1

cos2(τ)

[
− dτ 2 + dψ2 + sin2(ψ) dΩ2

d−1

]
. (7.122)

Further useful properties of this coordinate transformation include

ξ ∈
(

0,
π

2

)
=⇒ ψ ∈

(
0,
π

2

)
,

ξ ∈
(π

2
, π
)

=⇒ ψ ∈
(π

2
, π
)
, (7.123)

as well as sign
(
τ(ξ, t)

)
= sign(t), and

τ(ξ, t = 0) = 0, ψ(ξ, t = 0) = ξ , ∀ ξ ∈ (0, π) , (7.124)

ψ
(
ξ = π

2
, t = 0

)
= π

2
, ∀ t ∈ R . (7.125)

If one allows ψ and τ to freely and independently draw values from the intervals
ψ ∈ (0, π) and τ ∈

(
−π

2
,+π

2

)
, respectively, (7.122) amounts to the familiar de Sitter

metric in global coordinates, from which the Penrose diagram can be deduced in the
usual way [369]. However, the actual image of the above coordinate transformation is
smaller than the codomain written in (7.120). Thus, the original ξ, t coordinates do not
cover the de Sitter manifold fully.
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Figure 7.9. The part of the dSd+1 Penrose diagram that is covered by
ξ-t coordinate systems. Coordinate lines with ξ = const (solid lines) and
t = const (dashed lines) are shown.

In Figure 7.8 we draw the Penrose diagram of dSd+1 on the ψ-τ plane, and we indicate
which part of spacetime is actually covered by the ξ, t coordinate system. It corresponds
to the shaded square.

Furthermore, Figure 7.9 focuses on this particular portion of spacetime and addi-
tionally shows the net of coordinate lines with ξ = const and t = const, respectively.

(2) Imposing the ξ-k relationship. Now we impose the ξ-k relationship. In Subsec-
tion 7.6.3 we concluded that the dS5 embedding is viable for y > 1 only, in which case
the coordinate ξ assumes values in the interval

(
0, ξmax(y)

)
. Using (7.106) in (7.105),

we can express the upper boundary of this interval as

ξmax(y) = LR
H arcsin

(
y−1
)

= LR
H arcsin

(
LH(0)

LR
H

)
(7.126)

Regarding its dependence on y, the values assumed by ξmax(y) range from ξmax = 0 in
the limit y →∞, to

lim
y↘1

ξmax(y) =
(π

2

)
LR
H , (7.127)

when the threshold at y = 1 is approached.
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(a) (b)

Figure 7.10. The shaded area indicates the part of the de Sitter mani-
fold which is needed in order to fully geometrize a Type IIIa trajectory
with, respectively Λ0 > ΛR (left diagram) and Λ0 = ΛR (right diagram).

Also in the case of the de Sitter candidate dS5, the embedding of all dS4-spacetimes
along a complete Type IIIa trajectory covers only a part of the 5-dimensional manifold.
Henceforth denoting it by dSemb

5 , let us now determine this part of the de Sitter manifold.

In Subsection 7.6.3 we saw already that, for monotonicity reasons, we must restrict
the range of ξ, namely from the original interval (0, π) to

(
0, π

2

)
, in units of LR

H ≡ H−1
R .

Using the properties (7.124) and (7.125), this restriction is seen to imply a corresponding
restriction for the newly introduced ψ coordinate, namely ψ ∈

(
0, π

2

)
.

In geometrical terms this means that, in the Penrose diagram of Figure 7.8, only that
subset of the shaded square is available for the geometrization which lies to the left of
the vertical line at ψ = π

2
, τ ∈

(
−π

2
, π

2

)
. Thus the dSemb

5 part of dS5, embedding all
4D spacetimes, must fit into a triangular region with corners at (τ, ψ) = (0, 0),

(
π
2
, π

2

)
,

and
(
π
2
, −π

2

)
, respectively.

Furthermore, taking advantage of Figure 7.9 in order to translate the condition ξ <
ξmax to the τ -ψ coordinate system, it becomes clear that only a subdomain of the above
triangle is actually required for the embedding. In the Penrose diagram of Figure 7.10a,
the subdomain is represented by the shaded crescent-shaped area. This diagram refers
to a y-value strictly larger than unity, implying a ξ̄max value strictly smaller than π

2
. On

the τ -ψ plane, this latter value is responsible for the curved boundary of the subdomain.
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Figure 7.11. Penrose diagram highlighting the triangular portion of the
dS5 manifold that embeds all dS4 spacetimes along the Type IIa trajec-
tories in the limit y = (Λ0/ΛR)1/2 ↘ 1. The gray shading indicates the
local value of the RG scale k(xI).

On the other hand, if we perform the limit y ↘ 1, then ξ̄max ↗ π
2
, and as a conse-

quence the curved boundary of the crescent approaches a vertical line at ψ = π
2
. In this

limit, the full triangular region is needed for the embedding. This case is depicted in
Figure 7.10b.

7.9.2. The Λ0 = 0 problem

Note that despite a superficial similarity of the triangular regions in, respectively, Fig-
ure 7.10b and its anti-de Sitter analog for Λ0 = 0, the running cosmological constant
on the boundary line B1B2 does not vanish for the de Sitter embedding. It rather
equals the cosmological constant of the reference spacetime, Λ(k)

∣∣∣
k=0
≡ ΛR > 0, so

that gk=0
µν = gRµν has nonzero curvature. The consequence is that, strictly speaking, the

embedding fails for the Type IIa trajectory: The limit Λ0 → 0 cannot be taken while
ΛR is held fixed.
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However, since ΛR can be given a value as small as we like, the embedding can at
least approximate the geometrization of the complete Type IIa trajectory at any desired
level of accuracy.

7.9.3. Interpretation and dS/CFT connection

The status of the dS5-candidate is less obvious than it has been for its anti-de Sitter
counterpart. This concerns in particular its role in a possible dS/CFT correspondence.

First of all, there is the following crucial difference. As illustrated in Figure 7.11, the
boundary components of dSemb

5 include a 4D timelike component with RG parameter
k = 0, as did those of AdSemb

5 . Now, while in the anti-de Sitter case this component
was a boundary of both AdSemb

5 and the complete AdS5 manifold, this is not so in the de
Sitter case: The Penrose diagram of Figure 7.11 represents the component in question
by the (open) line segment B1B2, and obviously it entirely consists of inner points of
dS5 only.

As a consequence, there seems to be no natural way of linking the fully quantized
asymptotically safe theory, governed by Γk→0, to the boundary at spatial infinity of de
Sitter space proper.

This fact motivates invoking the early and late time boundaries of dS5 instead. In-
deed, in Figure 7.11, the two horizontal lines represent the spacelike past and future
infinity of dS5, respectively. The triangle representing dSemb

5 touches them in the points
B1 and B2, which amount to 3-spheres actually.

The remarkable situation in the 3D spaces at B1 and B2 is appreciated best in
Figure 7.9, where the t- and ξ-coordinate lines are shown on the τ -ψ plane. On the one
hand, the S3’s at B1 and B2 are seen to correspond to the early and late time limits
t→ ±∞. But on the other hand, also all the ξ = const lines accumulate at B1 and B2,
i.e., the leaves of constant scale. This includes even the limiting leave of the foliation,
ξ = const→ 0, which is ruled by the NGFP action Γk→∞.

From the effective field theory perspective, it is quite remarkable that the actions Γk
with k = k(ξ) and t→ ±∞, ξ ∈

(
0, π

2

)
all seem to “meet” at B1 and B2. It is natural

to interpret this situation by saying that all effective actions Γk, k ∈ R+, are equally
relevant there, and that therefore the geometry and matter fluctuations of all scales
must be equally important. Clearly this is nothing but the standard characterization
of a critical phenomenon at some RG fixed point.

Thus, if we hypothesize again that the QEG fixed points are conformal, the overall
conclusion is that the S3 spaces at t → ±∞ indeed carry a 3D conformal field theory
related to the GEAA in its early/late time regime.
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Remarkably, this type of a “dS/CFT correspondence” which emerges here as a special
solution to the QEG flow and field equations has essentially the same general structure
as the one proposed in the literature on the basis of entirely different arguments [380].

7.10. The standard AdS/CFT correspondence: a comparison

Above we saw that the result of the proposed geometrization procedure has a number of
features in common with the usual AdS/accft correspondence based upon string theory.
Nevertheless, there are also marked differences between the string theory- and the
GEAA-based picture, respectively. In this subsection we are going to compare the two
approaches in some detail, highlighting their similarities and dissimilarities. We focus
on the anti-de Sitter case here; for the dS/CFT correspondence the situation is analogous
in most regards.

7.10.1. More than pure kinematics

It is a well-known fact, predating the AdS/CFT correspondence, that the conformal group
of a CFT in d-dimensions is realized by isometries of a (d + 1)-dimensional hyperbolic
space. Therefore any construction that starts out from a CFT, adds an extra dimension,
and furnishes the higher-dimensional spacetime with (standard) gravity while preserving
the symmetries, is bound to find an anti-de Sitter space [381].

It is important to emphasize that the GEAA approach goes beyond this simple kine-
matic realization of the symmetries present, for the following reasons:

(i) Our main result, the fact that the RG trajectory considered geometrizes by means
of an AdS5 space, was obtained without any assumption about whether or not the scale
invariance at the NGFP and the GFP extends to full conformal symmetry. It does not
rely on the boundary theory being a CFT, and is equally true in the (unlikely) case that
the NGFP, or the GFP, or both are not conformal. Hence the geometrization which we
found reveals first of all a general AdS/QFT relationship which may or may not be a
AdS/CFT one, depending on the properties of the GFP.

(ii) Conversely, our construction does depend on critical properties of its input from
the FRG. The latter encodes information about the theory’s dynamical properties. In
particular, the choice of a Type IIa trajectory, and the monotonicity of its running Λ(k)

were indispensable in order to obtain AdS5.
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(iii) Unlike the standard AdS/CFT correspondence, our approach to the geometrization
of RG flows does not yield 5D Einstein–Hilbert gravity on AdS5. Rather, every 4-dimen-
sional leave of the AdS5 foliation carries its own copy of 4D Einstein–Hilbert gravity,
with parameter values G(k) and Λ(k) depending on the leave.
By contrast, in the usual AdS/CFT correspondence, applying the holographic RG to the
energy momentum tensor perturbation in a flat boundary O(N) model (without grav-
ity!) is known to give rise to a propagating graviton in the bulk - something that is not
found here. Within the geometrization construction the 5D Einstein equation does not
play any particular role. The basic field equations rather consist of an infinite stack of
4D Einstein equations labeled by k.
As a consequence, instead of one 5D graviton, we deal with an infinite family of 4D
gravitons, which do not get coupled by the field equations. Rather, it is the FRG flow
equation that connects the leaves of the foliation and their respective gravitons at dif-
ferent scales k and k + dk. Since our entire geometrization is based upon one single
solution to the FRG equation, namely the selected RG trajectory chosen as the input,
the relation between neighboring leaves appears to be “non-dynamical” from the point
of view of the field equations.

(iv) In this context we also mention that from the GEAA viewpoint of the present
paper the astonishing “miracle” behind the standard AdS/CFT correspondence is that,
under very special conditions, the universally applicable but enormously complicated
FRG equation can be replaced with something much simpler, namely the 5D Einstein
equation.15 One of the motivations for the present work is the hope that ultimately one
might be able to actually derive what these specific conditions are, and thus understand
better why the usual AdS/CFT correspondence works for some gravity-matter systems
but not for others.

7.10.2. Duality

A key property of the standard AdS/CFT correspondence is that it constitutes a duality,
in the sense that the boundary values of the gravity etc. fields that live in the bulk act as
sources of the boundary operators. The duality provides a map between two dynamical
theories that are described by two actions that look very different and involve different
degrees of freedom. One of them includes dynamical gravity, the other does not. The
map leads to a one-to-one relationship between gravity fields and operators of a flat
space QFT on the boundary [382].

15Clearly in most other connections one hardly would call Einstein’s equation “simple”. And yet it is
true that the FRGE is a by far more complex mathematical object: It is a functional equation, it is
highly non-local, and it is an integro-differential equation.
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Within the GEAA-based geometrization approach, no duality of this sort has emerged
so far, at least not within the specific example worked out in the present paper.

The situation may change however once in the future more complex RG trajectories
are considered which include a nontrivial matter part added to the running gravitational
action. At least in principle, something comparable to a duality in the sense above is
given a chance then to arise dynamically, provided one employs the generalized FRG

approach, already well developed for flat space, which allows for a continuous change
of the dynamical variables during the RG evolution. A typical example of this kind is
in QCD the transition from quarks and gluons to hadrons [248, 383].

Whether or not this extended framework is employed, there always remains a main
difference between standard AdS/CFT and the GEAA geometrization approach: In the
former case the boundary theory is a pure matter theory on flat space, while in the
latter it includes dynamical gravity, quantum gravity even.

In fact, the present approach deals with dynamical, quantized gravity in the bound-
ary, and this goes beyond what is done in the usual AdS/CFT correspondence. For
technical simplicity the scale-dependent actions considered here are even only for grav-
ity, containing no matter fields for the time being (see below).

7.10.3. Holographic RG

The idea of combining the AdS/CFT setting with the RG, interpreting the additional
dimension as the RG scale, is an old one [373, 384, 385]. In the usual AdS/CFT corre-
spondence, one considers an UV-CFT “living” on the boundary and one perturbs this
fixed point field theory by relevant operators, thus generating an RG flow towards the
IR.

In the GEAA geometrization approach the situation is different. In the first step we
derived an “AdS/QFT correspondence” which involves

(i) a UV-QFT given by the NGFP, i.e., the fixed point related to the nonperturbative
renormalizability;

(ii) an IR-QFT which is defined by the GFP and lives on the boundary.

Then we argued that both the UV-QFT and the IR-QFT are likely to be CFT’s, but
this has not been proven yet. Clearly the similarity with the traditional string theory
related setting is strongest if at least the IR-QFT is conformal; it would then define the
“CFT” appearing in the designation “AdS/CFT”.
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By contrast, our UV-QFT as given by the NGFP has no counterpart in the traditional
AdS/CFT correspondence. The existence of the NGFP is the very hallmark of Asymptotic
Safety which, rather than string theory, provides the UV completion in the present case.

7.10.4. Internal space

Besides the UV completion, string theory plays yet another role in the usual AdS/CFT
scenario: In addition to AdS5, the string theory construction in 10 dimensions supplies
an additional internal space, for example S5 in the simplest case. The internal space
fixes further symmetries beyond conformal symmetry and thus determines the field
content of the theory involved.

On the GEAA side, a similar role is played by the choice of the theory space the func-
tional RG equation is operating upon. For different such choices, the pertinent function-
als Γk [gµν ,matter fields, · · · ] depend on different sets of matter fields, and therefore en-
tail RG flows that are to be computed from different functional RG equations. Hence, the
component form of the functional RG trajectories, k 7→ (G(k),Λ(k), · · · , u1(k), u2(k), · · · ),
will include additional running couplings and masses, ui(k). They reflect the invariants
that can be built from the specific set of matter fields chosen.

In the present paper we analyzed the geometrization in the simplest case only, namely
for pure gravity, since its RG flow is fairly well understood by now [49]. However, it
will be interesting to explore also possible geometrizations of matter-coupled gravity
in future work. The above AdS5×S5 example, for instance, determines the boundary
CFT to be N = 4 Super-Yang-Mills theory. It is highly intriguing that this theory may
emerge from the GEAA approach as a k → 0 limit. For the time being this system
is still beyond our computational possibilities, but steady progresses are made in this
direction [186].





CHAPTER 8

Spectral flows in Asymptotic Safety

Executive summary. Within the functional renormalization group approach to Back-
ground Independent Quantum Gravity, we explore the scale-dependent effective geom-
etry of the de Sitter solution dS4. The investigation employs a novel approach whose
essential ingredient is a modified spectral flow of the metric dependent d’Alembertian,
or of similar hyperbolic kinetic operators. The corresponding one-parameter family of
spectra and eigenfunctions encodes information about the nonperturbative backreac-
tion of the dynamically gravitating vacuum fluctuations on the mean field geometry
of the quantum spacetime. Used as a diagnostic tool, the power of the spectral flow
method resides in its ability to identify the scale-dependent subsets of field modes that
supply the degrees of freedom which participate in the effective field theory description
of the respective scale. A central result is that the ultraviolet of Quantum Einstein
Gravity comprises far fewer effective degrees of freedom than predicted (incorrectly)
by background dependent reasoning. Exploring the quantum spacetime’s spatial ge-
ometry carried by physical fields, we find that 3-dimensional space disintegrates into a
collection of coherent patches which individually can, but in their entirety cannot be
described by one of the effective average actions occurring along the renormalization
group trajectory. A natural concept of an entropy is introduced in order to quantify this
fragmentation effect. Tentatively applied to the real Universe, surprising analogies to
properties of the observed cosmic microwave background are uncovered. Furthermore, a
set of distinguished field modes is found which, in principle, has the ability to transport
information about the asymptotic fixed point regime from the ultraviolet, across almost
the entire “scale history”, to cosmological distances in the observed Universe.

What is new? All results of this chapter represent novel research results.

Based on: Reference [RF3].

Plan of this Chapter. Firstly, we introduce the various spectral problems related
to the d’Alembertian in curved spacetime that we shall encounter; we elaborate in
particular on the distinction between the standard (“off-shell”) eigenvalue problem on a
rigid background geometry, and the “on-shell” spectral problems typical of Background
Independent quantum gravity. Then we focus on the d’Alembertian on 4-dimensional
de Sitter space, dS4. Keeping its only free parameter, the Hubble constant H, fixed at
this stage, we determine the spectrum and the eigenfunctions, and in particular we give
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a detailed account of the eigenfunction’s resolving power (fineness). Furthermore, we
introduce the special type of (Lorentzian as well as Euclidean) RG trajectories we are
going to employ later on, namely those of the Einstein-Hilbert truncation which have a
positive cosmological constant throughout, the Type IIIa. Then we obtain the spectral
flow along trajectories of this kind in fully explicit form, whereby the scale-dependent
tadpole conditions, for all k, are solved by de Sitter spacetimes with an appropriate
running Hubble parameter H = H(k).

On the basis of the spectra and eigenfunctions thus obtained, we determine the
cutoff modes by finding their scale-dependent principal quantum number. We discuss
them further in Section 8.6 where we analyze the Lorentzian analog of the phenomenon
sketched in Figure 6.2.

Moreover, we compute the proper wavelength of the cutoff modes at the time when
they leave the harmonic regime. It constitutes an important second length scale along-
side the Hubble distance, LH(k).

In Section 8.8 we advocate for the idea of physics-based geometry, and explore which
kinds of geometric patterns can be “drawn” on 3D space by the dynamical fields which
are governed by Γk.

Using a different approach, this question further investigated. There, we also demon-
strate that for quantum spacetimes like the one under consideration there exits a re-
markable similarity between the usual cosmological histories with respect to ordinary
time, and “scale histories” with respect to RG time. In Section 8.10 we briefly describe
a surprising analogy between the features of the quantum spacetime that has emerged,
and the thermal gas of the CMBR photons in the present Universe.

Parts of this this chapter have been taken and rearranged from the author’s publica-
tion [RF3].

8.1. Spacetime properties from a spectral flow

Henceforward, we will assume that we solved the RG flow equation and have a certain
trajectory k → Γk in our hands. Furthermore, using this running action as an input,
we can solve the tadpole equation (3.70) and find a family of running (self-consistent
metrics) gsck . At every point of the generalized RG trajectory, we can use this metric to
construct the associated Laplacian �gsck (see Section 3.6). For every given value of k the
corresponding Laplacian gives rise to an eigenvalue equation. Finally, this eigenvalue
problem can be solved for the spectrum, furnishing a running spectrum. In [271, 272]
it was proposed to analyze the physics contents of generalized trajectories obtained
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in [97] (see Section 3.5) by means of spectral flow techniques similar to those used in
index theory, for example [273]. Given a (Euclidean, to start with) metric ḡµν we can
construct the associated Laplacian operator �ḡ = ḡµν∇µ∇ν and consider its eigenvalue
problem. The idea is to do this at all points of the generalized RG trajectory, that is,
to find and to analyze the solutions of the equation

−�ḡsck χnm(x; k) = Fn(k) χnm(x; k) (8.1)

at all k ∈ [0,∞). If we manage to solve this family of differential equations, we have an
entire trajectory of spectra at our disposal, i.e., a spectral flow k 7→ {Fn(k)}, as well as
the associated eigenbases {χnm(x; k)}.

In refs.[271, 272] it has been shown how this spectral flow can be employed in order
to gain information about the physics and the spacetime geometry of the Quantum
Gravity system under consideration. One of the questions that has been investigated
in this manner is under what conditions Γk can define a useful effective field theory.
More precisely, if we assume that the physical situation, or process under consideration
can be described by a classical (tree level) evaluation of such an action functional, what
then is the optimum value of k to choose?

A first hint is known to come from the properties of the so-called Cutoff mode (COM)
[270, 271]. By definition, they are those eigenfunctions χnm(x; k) whose eigenvalue
Fn(k), at every scale k, equals precisely k2. Their principal quantum number nCOM(k),
i.e, the one which determines the eigenvalue, is found by solving the implicit equation

Fn(k)|n=nCOM(k) = k2 . (8.2)

For typical choices ofRk, the cutoff modes are located precisely at the threshold between
“already integrated out at RG scale k”, and “not yet integrated out”. Thus we may expect
that the x-dependence of the mode functions χnm(x; k)|n=nCOM(k) contains information
about the circumstances under which Γk has a chance of providing a satisfactory effective
field theory.

8.1.1. Limitations on the distinguishability of spacetime points

In ref.[271], the spectral flow of an analytically tractable class of Euclidean solutions
to the effective Einstein equations has been scrutinized in detail, namely self-consistent
spheres S4(L). Their radius L ≡ Lsc(k) follows from the tadpole condition, hence it
“knows” about the underlying RG trajectory, while the rest of the metric (ḡsck )µν is fixed
by symmetry.
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Figure 8.1. The principal quantum number of the cutoff modes, nCOM,
in dependence on the RG scale k. The size of the various spheres indicates
the self-consistent radius Lsc(k) at increasing values of k, and the coordi-
nate grids shown visualize the (first increasing, then decreasing) angular
resolving power of the spherical harmonics with n = nCOM(k).

On S4(L), the eigenvalues of the tensor Laplacian −� are labeled by an angular
momentum-like quantum number, a positive integer n. When n� 1 they are approxi-
mately given by Fn(L) ≈ n2/L2, and within this approximation, they are the same for
tensor harmonics of any rank. As a result, the n-quantum number of the corresponding
cutoff modes is given by

nCOM(k) ≈ k Lsc(k) . (8.3)

Figure 8.1 shows a schematic plot of this function as obtained from a typical RG trajec-
tory (of Type IIIa) in asymptotically safe Quantum Einstein Gravity [95, 97, 99, 102,
114].

The behavior of nCOM(k) is quite remarkable and perhaps irritating at first sight.
For a proper interpretation, it is best to start off near the trajectory’s endpoint, k =

0. There, in the classical regime, nCOM(k) increases with k, implying that the cutoff
modes are S4-harmonics of increasing angular momentum which, therefore, possess a
continuously improving resolving power of order 2π/nCOM(k). The interpretation of
this part of the trajectory (0 ≤ k < kT , see Figure 3.4) is the one we are familiar
with from non-dynamical flat space: A higher scale k implies a “probe” or “microscope”
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(i.e., cutoff modes) with higher momenta, smaller wavelengths, and therefore a better
angular resolving power with respect to angular distances on the sphere.

In Figure 8.1 this general trend is visualized by the increasingly fine meshes of the
coordinate nets on the various spheres. The circles shown can be thought of as nodal
lines of the tensor harmonics with n = nCOM(k).

At a critical RG scale, kT , the behavior changes, however. Once scales k > kT

are reached, the angular momentum of the relevant spherical harmonics, nCOM(k),
has become a decreasing function of k. This entails a decreasing number of maxima,
minima, nodes etc. displayed by the harmonics, and therefore an increasingly poor
angular resolution.

In fact, in the limit k →∞, i.e., in the extreme UV according to our nomenclature,
we are in the regime which is governed by the non-Gaussian fixed point, and there the
resolving power of the cutoff modes is almost as poor as in the extreme IR, k → 0.
Thanks to Asymptotic Safety, nCOM(k) approaches a finite limit limk→∞ nCOM(k) ≡
n∗COM at the fixed point. As explained in [271], this indicates that the field modes
(spherical harmonics) which constitute the degrees of freedom governed by the effective
field theory Γk→∞, possess an angular momentum quantum number n ≈ n∗COM, and
this number is bounded above. As a result, they are unable to distinguish points in
spacetime which have an angular separation smaller than about 2π/n∗COM.

This fundamental fuzzyness of spacetime is an instance of the “UV-IR confusion” we
tried to warn the reader of at the beginning of this Introduction: The “ultraviolet of
Quantum Gravity”, defined unambiguously as the k →∞ regime on an asymptotically
safe RG trajectory, is not at all the realm of probes or “microscopes” with an unlim-
ited resolving power. Quite the reverse, its properties in this respect would rather be
classified “IR-like” by the traditional jargon.

8.1.2. Gravitational backreaction

There exists a general mechanism which can destroy the traditional association large
k ⇔ large momenta ⇔ high resolution very easily, namely the dynamical backreaction
of the spacetime’s geometry on the quantum system which it accommodates. In the
example at hand this backreaction is indeed responsible for the unusual k →∞ behav-
ior: For growing k > kT , the self-consistent radius Lsc(k) shrinks faster than ∝ k−1,
with the result that nCOM(k) = k Lsc(k) never reaches the unlimited resolving power of
nCOM =∞, the traditionally expected hallmark of “the ultraviolet”.
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In the following we are going to address the question whether the fuzzyness of the
self-consistent spheres, their impossibility to distinguish spacetime points that are too
close. In order to assess potential implications to the real world, we need a Lorentzian
generalization (see Section 3.7 for a discussion of the Lorentzian counterpart).

8.2. From off-shell to on-shell spectra

In this section we prepare the stage for the eigenvalue problems we are going to consider
later in this article. In particular we emphasize the difference between those based
upon rigid unchanging background geometries, and the more complex ones relying on
dynamically generated self-consistent background metrics.

8.2.1. Off-shell spectra

(1) Rigid spectral problems. Let us assume we are given an arbitrary Lorentzian
manifold furnished with an invariable metric ḡµν .We construct the associated covariant
d’Alembertian �ḡ = ḡµν∇̄µ∇̄ν and set up its eigenvalue equation:

−�ḡ χnm[ḡ](x) = Fn[ḡ] χnm[ḡ](x) (8.4)

Both the eigenfunctions χnm and the eigenvalues Fn are considered functionals of the
externally provided metric ḡµν . They are enumerated by continuous or discrete (multi-)
indices n and m, whereby the “principal quantum number” n determines the eigenvalue,
while m is a degeneracy index.

For a reason that will become clear below, we shall refer to {Fn[ḡ]} as the off-shell
(rigid) spectrum of the d’Alembertian related to the metric ḡµν .

(2) Organizing the eigenfunctions, first stage. At this stage, we can start orga-
nizing the eigenfunctions.

Taking account of the indefiniteness of �ḡ, we consider the set of its eigenfunctions,
denoted Υ[ḡ] ≡ {χnm[ḡ]}, and decompose it according to Υ = Υ+ ∪ Υ0 ∪ Υ−, thereby
introducing the subsets

Υ+[ḡ] ≡ {χnm[ḡ] | Fn[ḡ] > 0} ,

Υ0[ḡ] ≡ {χnm[ḡ] | Fn[ḡ] = 0} , (8.5)

Υ−[ḡ] ≡ {χnm[ḡ] | Fn[ḡ] < 0} .
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Using the “mostly plus” metric convention, these subsets comprise the eigenfunctions
which we refer to as spacelike, null, and timelike, respectively.

(3) Organizing the eigenfunctions, second stage. Now let us assume that in
addition to the metric we are given a positive constant k > 0 with the dimension of
a mass. This allows us to further classify the eigenfunctions according to whether the
modulus of their eigenvalue is smaller, larger or equal to k2, i.e., |Fn| < k2, |Fn| > k2,
or |Fn| = k2. This distinction implies a refined decomposition of the space- and timelike
sectors:

Υ±[ḡ](k) = Υ±>[ḡ](k) ∪ Υ±=[ḡ](k) ∪ Υ±<[ḡ](k) . (8.6)

Explicitly, the subsets are given by, in the spacelike case,

Υ+
>[ḡ](k) ≡

{
χnm[ḡ] | Fn[ḡ] ∈ (k2,∞)

}
,

Υ+
=[ḡ](k) ≡

{
χnm[ḡ] | Fn[ḡ] = + k2

}
, (8.7)

Υ+
<[ḡ](k) ≡

{
χnm[ḡ] | Fn[ḡ] ∈ (0, k2)

}
,

and similarly for the timelike eigenfunctions:

Υ−>[ḡ](k) ≡
{
χnm[ḡ] | Fn[ḡ] ∈ (−∞,−k2)

}
,

Υ−=[ḡ](k) ≡
{
χnm[ḡ] | Fn[ḡ] = − k2

}
, (8.8)

Υ−<[ḡ](k) ≡
{
χnm[ḡ] | Fn[ḡ] ∈ (−k2, 0)

}
.

This particular refinement of the decomposition should be considered merely an exam-
ple; it is motivated by the symmetric cutoff scheme (3.83).

(4) Interpretation. To see the relevance of the above ḡ-dependent eigenvalue problem,
recall that in the Euclidean setting a generic effective average action Γk[φ; ḡ], governing
a set of dynamical fields φ ≡ 〈φ̂〉, derives from a path integral of the kind (3.1).

The bilinear mode suppression term ∆Sk in eq.(3.2) involves a ḡ-dependent pseu-
do-differential operator which is usually a function of the corresponding Laplacian,
Rk[ḡ] ≡ Rk(−�ḡ). The profile of the function Rk(·) is such that, after expanding φ in
a basis of −�ḡ eigenfunctions, φ =

∑
nm anm χnm, the modes with eigenvalues . k2

are given a “mass term” ∝ k2 |anm|2, which counteracts its being “integrated out”.
Conversely, modes with eigenvalues & k2 remain unaffected and are integrated out as
usual.

In the computation of Γk[φ; ḡ], at a fixed set of arguments, within the Euclidean
framework, those eigenmodes of the Laplacian that satisfy

−�ḡ χeucl = k2 χeucl (8.9)

are particularly interesting: They are situated precisely at the threshold between being,
and not being integrated out. Their importance resides in the fact that the resolution
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properties of those χ’s (typical distances of extrema, etc.) determine at which scale,
and under what conditions, the action Γk[φ; ḡ] defines a reliable effective field theory,
see [49] for further details.

Returning to the Lorentzian setting, the eigenmodes of the d’Alembertian in Υ±=[ḡ](k),
having Fn = ±k2, should be regarded as the analogs of the χeucl’s in (8.9), coming with
the additional feature of a spacelike-timelike discrimination.

More generally, we note that the metric ḡµν appearing in the “off-shell” eigenvalue
problem (8.4) should be thought of as the second argument of Γk[φ; ḡ]. Therefore,
loosely speaking, this eigenvalue problem refers to the off-shell world under the path
integral, and this is in fact what motivates its name. The solutions χnm[ḡ](x) to eq.(8.4)
constitute the natural basis of field space to expand the integration variables φ̂ in, when
it comes to computing the functional φ̂ 7→ Γk[φ; ḡ] in the Lorentzian context.

8.2.2. Rigid and flat: Minkowski space

Before continuing, let us have a brief look at the most familiar example of a Lorentzian
manifold, namely Minkowski space with ḡµν = ηµν . In cartesian coordinates, we denote
xµ ≡ (t, ~x) and pµ ≡ (ω, ~p), with |~p| ≡ p. The wave operator reads then

−�η = −ηµν∂µ∂ν = ∂2
0 −∇2 . (8.10)

Its eigenfunctions are plane waves χ = ei pµx
µ

= ei (−ωt+~p·~x) characterized by a 4-vector
pµ = (ω, ~p), the eigenvalues being F = pµp

µ = −ω2 + ~p2. Clearly an eigenfunction is
spacelike, timelike, or null, respectively, if the vector pµ is so.

To be in accord with the (n,m) enumeration employed above we label the χ’s directly
by their eigenvalue F =̂ n, alongside with a degeneracy index m whose character
depends on the case considered. Decomposing Υ[η], we have at the first stage:

Υ+[η] ≡
{
χF,ω,~m(x) = exp

(
i
[
−ωt+ ~m · ~x

√
ω2 + F

])∣∣∣ F > 0, ω ∈ R, ~m ∈ S2
}
,

Υ0[η] ≡
{
χ

0,~p
(x) = exp

(
i [−|~p|t+ ~p · ~x]

) ∣∣∣ ~p ∈ R3
}
, (8.11)

Υ+[η] ≡
{
χF,~p(x) = exp

(
i
[
−
√
~p2 + |F| t+ ~p · ~x

]) ∣∣∣ F < 0, ~p ∈ R3
}
.

As for the spacelike modes, ~m denotes a unit 3-vector, ~m · ~m = 1.1

Picking a number k > 0, the refined classification of the Minkowski eigenfunctions is
also easily worked out. Instead of presenting formulas we sketch the results in Figure 8.2
which shows a quadrant of the ω-p plane.

1Note also that in our conventions an ordinary, i.e., non-tachyonic free Klein–Gordon field of mass M
satisfies (−�+M2)χ = 0, thus corresponding to a timelike eigenfunction with a negative F = −M2.
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Figure 8.2. Refined classification of the plane wave eigenfunctions on a
part of ω-p space. The two hyperbolas are given by ω =

√
p2 ∓ k2.

8.2.3. On-shell spectra

The spectra {Fn[ḡ]} discussed above and their eigenfunctions are referred to as “of-
f-shell” since they are based upon an arbitrary externally prescribed metric ḡµν . Generi-
cally, this metric is different from the true metric that would be selected by the internal
dynamics of the quantum gravitational system. The state in which the system settles
down after turning on the quantum effects is partially described by a particular self-
consistent background metric (see Section 3.6). It has the defining property that, in
this state, the operator ĝµν − ḡµν ≡ ĥµν has zero expectation value: 〈ĥµν〉ḡ = 0.

As we reviewed in Chapter 3 already, this tadpole condition plays the role of a
quantum-corrected generalization of Einstein’s equation. It governs the dynamics of
the expectation value gµν = 〈ĝµν〉. In the framework of the effective average action
it assumes the concrete form of the k-dependent equation (3.70). Typically it admits
many solutions (ḡsck )µν at every k. We are free to select any of them, the only constraint
we impose is that the resulting map k 7→ ḡsck is a smooth curve in the space of metrics.
Picking one such curve of solutions is analogous to selecting an RG trajectory on theory
space in the first place. We combine the two into a generalized RG trajectory on the
product space, k 7→ (Γk, ḡ

sc
k ).

(1) The running spectral problem. Henceforth we assume that we selected a certain
generalized RG trajectory k 7→ (Γk, ḡ

sc
k ) which we keep fixed in the sequel. We define
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the related running covariant d’Alembertian

�k ≡ �ḡ|ḡ=ḡsck , (8.12)

and set up the associated one-parameter family of eigenvalue equations that are labeled
by the curve parameter k:

−�k χnm(x; k) = Fn(k) χnm(x; k) (8.13)

We refer to {Fn(k)} and {χnm(· ; k)} ≡ Υ [ḡsck ] as on-shell spectra and eigenfunc-
tions, respectively. Since the generalized RG trajectory is never varied, they are simply
functions of k, rather than functionals of ḡµν .

Let us now classify the eigenfunctions:

(2) Classifying eigenfunctions, first stage. For every fixed value of the curve
parameter k, we now decompose Υ [ḡsck ] = Υ+(k) ∪ Υ0(k) ∪ Υ−(k) with the following
k-dependent sets of spacelike, null, and timelike modes:

Υ+(k) ≡ {χnm(· ; k) | Fn(k) > 0} ,

Υ0(k) ≡ {χnm(· ; k) | Fn(k) = 0} , (8.14)

Υ−(k) ≡ {χnm(· ; k) | Fn(k) < 0} .

(3) Classifying eigenfunctions, second stage. Now let us refine the classification
by distinguishing eigenmodes for which |Fn(k)| is, respectively, smaller, larger, or equal
to a given positive constant, κ2, say: |Fn(k)| < κ2, |Fn(k)| > κ2, or |Fn(k)| = κ2.

In principle the number κ is completely unrelated conceptually to the curve param-
eter k. However, as it will turn out, the most relevant and interesting information is
obtained by choosing κ = k. With this identification, the scale k acquires a double
meaning: it is both a curve parameter along the generalized RG trajectory, and it is
the divide between the (<)-type and (>)-type eigenfunctions. In fact, choosing κ = k

here, we now introduce, for the spacelike eigenfunctions,

Υ+
>(k) ≡

{
χnm(· ; k) | Fn(k) ∈ (k2,∞)

}
,

Υ+
COM(k) ≡

{
χnm(· ; k) | Fn(k) = + k2

}
, (8.15)

Υ+
<(k) ≡

{
χnm(· ; k) | Fn(k) ∈ (0, k2)

}
,

and similarly for the timelike modes:

Υ−>(k) ≡
{
χnm(· ; k) | Fn(k) ∈ (−∞,−k2)

}
,

Υ−COM(k) ≡
{
χnm(· ; k) | Fn(k) = − k2

}
, (8.16)

Υ−<(k) ≡
{
χnm(· ; k) | Fn(k) ∈ (−k2, 0)

}
.
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Thus, we are led to the following decomposition of the Υ+ and Υ− sectors, respectively:

Υ±(k) = Υ±>(k) ∪ Υ±COM(k) ∪ Υ±<(k) . (8.17)

8.2.4. The COMs

The on-shell counterpart of the (=)-type eigenfunctions is commonly referred to as the
cutoff modes [270, 271]. Explicitly, they are solutions to the differential equation

− �ḡ|ḡ=ḡsck χCOM = ± k2 χCOM . (8.18)

At a fixed scale, k = k1, say, this equation can be looked at in two different ways:
First, as the “running” or “on-shell” spectral problem at the point k = k1 on the RG

trajectory, and second, as the off-shell problem underlying the computation of the
functional Γk1 [φ̂; ḡ] at a particular value of the second argument, namely ḡ = ḡsck1

. Thus
we see that the elements in Υ±=

[
ḡsck1

]
(k1) and Υ±COM(k1), respectively, are actually the

same function.

This explains the importance of the cutoff modes: On the one side, they can be
obtained from an effective action, Γk1 , while on the other side, in the expansion of the
bare metric fluctuation ĥµν they are precisely those modes that get integrated out at
the point k1 of the trajectory, if the fluctuations propagate on a background which is
self-consistent at k1.

Therefore, the cutoff modes are a valuable link between the bare off-shell world under
the path integral, and the effective level of the on-shell expectation values.

8.3. Spectrum and eigenfunctions on rigid dS4

This section is devoted to another prerequisite of our investigation, namely the spectral
problem of the scalar d’Alembertian on a rigid de Sitter space. Its Hubble parameter
is considered a fixed constant here; the scale dependence of H will be introduced at a
later stage only.
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8.3.1. De Sitter spacetime

Throughout this paper we focus on the expanding Poincaré patch of the 4D de Sitter
manifold (see conventions in Appendix E). When expressed in terms of the (dimension-
ful) cosmological time t, its metric reads

ds2 = − dt2 + a(t)2 d~x2 with a(t) = a0 e
Ht , (8.19)

while it turns into

ds2 = b(η)2
[
− dt2 + d~x2

]
=
− dt2 + d~x2

H2 η2
(8.20)

with the scale factor
b(η) = − 1

Hη
=

1

H |η|
(8.21)

when the (dimensionless) conformal time

η = − 1

a0 H
e−Ht ∈ (−∞, 0) (8.22)

is introduced.

Given a certain comoving, or coordinate length ∆x on de Sitter space, we denote
the associated proper length by

L∆x(η) ≡ b(η) ∆x . (8.23)

When ∆x = 2π/|~p| ≡ ∆xp is in particular the coordinate wavelength of a wave function
ei~p·~x with comoving 3-momentum ~p, we write the associated proper wavelength as

Lp(η) ≡ b(η) ∆xp ≡ (H |η|)−1 2π

|~p|
≡ 2π

|~pphys|
, (8.24)

with ~pphys the proper or “physical” counterpart of the coordinate momentum ~p.

Proper distances are conveniently expressed in units of the Hubble distance,

LH ≡ H−1 . (8.25)

Dividing (8.24) by (8.25) the Hubble parameter drops out and we obtain the ratio

Lp(η)

LH
=

2π

|η| p
. (8.26)

This is a very useful relation. Often also occurring in the form

η2 p2 =

(
2π

LH
Lp(η)

)2

, (8.27)

it will play a prominent role later on when H becomes scale dependent.

Note that even though Lp(η) and LH are proper quantities, eq.(8.26) fully deter-
mines their ratio in terms of coordinate time and coordinate momentum. Conceptually
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speaking, the latter two quantities come into being already at the level of spacetime’s
smooth (and not only pseudo-Riemannian) structure. They have no logical relation to
a metric which one may, or may not put on the spacetime manifold. In the example at
hand where we furnish it with a de Sitter metric of a specific Hubble parameter H, the
value of H cannot have any bearing therefore on η, p, and hence Lp(η)/LH .

This simple, yet powerful fact allows us to characterize sub- and super-Hubble size
spatial structures, say wavelengths Lp < LH and LH > Lp, respectively, by:

sub-Hubble size proper wavelength: |η| p > 2π

super-Hubble size proper wavelength: |η| p < 2π
(8.28)

This requires no explicit reference to the value of the Hubble parameter.

8.3.2. Mode functions and their eigenvalues

Writing the metric as in eq.(8.20), the eigenvalue equation on dS4,

−�dS4 χν,~p(η, ~x) = Fν χν,~p(η, ~x) (8.29)

is satisfied by mode functions of the form

χν,~p(η, ~x) = −η vν,p(η) ei~p·~x , (8.30)

provided vν,p, where p ≡ |~p|, is a solution to the differential equation

v′′ν,p(η) +

[
p2 −

(
2 +
Fν
H2

)
1

η2

]
vν,p(η) = 0 . (8.31)

Primes denote derivatives with respect to η here. The principal quantum number,
traditionally denoted ν in this case, enumerates the eigenfunctions together with the
3-vector ~p ∈ R3; the latter plays the role of a degeneracy index here. If we set

Fν
H2

+ 2 ≡ ν2 − 1

4
, (8.32)

whence

ν ≡
√

9

4
+
Fν
H2

, (8.33)

the eigenvalues are indeed determined by the first quantum number of χν,~p alone:

Fν =

(
ν2 − 9

4

)
H2 (8.34)

In this manner also the similarity of the differential (8.31) with Bessel’s equation be-
comes manifest:

v′′ν,p(η) +

[
p2 − ν2 − 1/4

η2

]
vν,p(η) = 0 . (8.35)
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The general solution to (8.35) reads

vν,p(η) = (p |η|)1/2

[
Ap Jν (p |η|) +Bp Yν (p |η|)

]
. (8.36)

Here Jν and Yν denote the Bessel functions of the first and the second kind, respectively
[386], while Ap and Bp are arbitrary constants.

In standard quantum field theory on de Sitter space the quantity ν is a constant which
is fixed once and for all by the particle mass, ν =

√
9
4
− m2

H2 . In the spectral problem at
hand, ν is a variable however, a continuous quantum number in one-to-one correspon-
dence with the eigenvalues. For us it is important therefore to scan the properties of
vν,p for all ν that are compatible with real eigenvalues of either sign, −∞ < Fν < +∞.

Eq.(8.32) shows that ν is either real, namely when Fν ≥ −9/4 H2, or it is purely
imaginary, for Fν < −9/4H2. The transition occurs at ν = 3/2⇔ Fν = 0.

When ν is imaginary, we set ν = −iν̄ with ν̄ real, and we replace (8.36) with2

vν,p(η) = (p |η|)1/2
[
Ap J̃ν̄ (p|η|) +Bp Ỹν̄ (p|η|)

]
(8.37)

Here J̃ and Ỹ denote the Bessel functions of imaginary order as defined in [386]:

J̃ν(x) = sech
(

1

2
πν

)
Re (Jiν(x)) (8.38)

Ỹν(x) = sech
(

1

2
πν

)
Re (Yiν(x)) (8.39)

These definitions apply for all ν ∈ R and x ∈ (0,∞).

Table 8.1 summarizes the various cases of timelike (F < 0), null (F = 0), and
spacelike (F > 0) eigenfunctions, displaying in particular the respective domains of the
quantum numbers and eigenvalues.

Type Eigenvalue Fν/H2 + 2 Index

spacelike: F > 0 Fν ∈ (0,∞) H2 ν2 − 1
4
∈ (2,∞) ν ∈

(
3
2
,∞
)

null: F = 0 Fν = 0 ν2 − 1
4

= 2 ν = 3
2

timelike: F < 0 Fν ∈
(
−9

4
, 0
)
H2 ν2 − 1

4
∈
(
−1

4
, 2
)

ν ∈
(
0, 3

2

)
Fν ∈

(
−∞,−9

4

)
H2 ν2 − 1

4
∈
(
−∞,−1

4

)
i ν ≡ ν̄ ∈ (0,∞)

Table 8.1. The types of eigenvalues of −� on de Sitter space.

2The constants Ap, Bp in (8.37) and similar equations below are not the same as those in (8.36).
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8.3.3. The “dispersion relation”

Sometimes it is helpful to write (8.31) in the style3

v′′(η) + ω2(η) v(η) = 0 (8.40)

with a time dependent “frequency” given by

ω2(η) = ~p2 −
(

2 +
F
H2

)
1

η2
, (8.41)

or, when (8.32) is used,

ω2(η) =
1

η2

[
η2~p2 −

(
ν2 − 1

4

)]
≡ ω2

ν,~p(η) . (8.42)

It is instructive to solve (8.41) for the eigenvalue and to express η in terms of the
scale factor b(η). One obtains

F =
−ω(η)2 + ~p2

b(η)2
− 2H2 (8.43)

This is nothing but the de Sitter analog of F = −ω2 + ~p2 valid on Minkowski space.
Besides the time dependence of ω, there are two main differences: First, 3-momentum
and frequency are red-shifted by a factor of b(η), and second, the eigenvalue is shifted
by an amount −2H2.

8.3.4. Limiting forms of the eigenfunctions

The functions v(η) show a simple limiting behavior if either the first or the second term
in the square brackets of eq.(8.42) dominates ω2(η). We discuss the two cases in turn.

(1) The harmonic regime. Dealing with eigenfunctions χν,~p whose quantum numbers
ν and p = |~p| are such that

η2 p2 �
∣∣∣∣ν2 − 1

4

∣∣∣∣ =

∣∣∣∣FνH2
+ 2

∣∣∣∣ (8.44)

during a certain η-interval, we can approximate ω2(η) ≈ p2. The resulting simplified
equation v′′(η) + p2v(η) = 0 has the obvious general solution, with A and B constants,

v(η) = A cos (p |η|) +B sin(p |η|) . (8.45)

We refer to the regime where (8.45) applies as the harmonic regime.

3Where dispensable we suppress the indices ν and p.
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The solution (8.45) follows also by inserting the well known x→∞, ν fixed, limiting
forms of the Bessel functions [386] into eq.(8.36):

Jν(x) ≈
√

2

π x
cos
(
x− ν π

2
− π

4

)
, Yν(x) ≈

√
2

π x
sin
(
x− ν π

2
− π

4

)
. (8.46)

These formulae cover the case of real ν’s. For ν imaginary, the corresponding ones for
J̃ν̄ and Ỹν̄ are

J̃ν̄(x) ≈
√

2

π x
cos
(
x− π

2

)
, Ỹν̄(x) ≈

√
2

π x
sin
(
x− π

2

)
, (8.47)

thus yielding the same asymptotics [386].

(2) The power and log-oscillatory regimes. In the opposite range of (ν, p)-quantum
numbers where

η2 p2 �
∣∣∣∣ν2 − 1

4

∣∣∣∣ =

∣∣∣∣FνH2
+ 2

∣∣∣∣ (8.48)

we may approximate ω2(η) ≈ −(ν2−1/4)/η2. The solutions of the resulting differential
equation v′′ − (ν2 − 1

4
)η−2v = 0 involve powers of η that are controlled by ν:

v(η) = C+ |η|1/2+ν + C− |η|1/2−ν . (8.49)

For ν real, they have a power and and inverse power dependence on |η|, while they
display a logarithmic oscillatory (or “log-periodic”) behavior when ν̄ ≡ iν is real instead:

v(η) = |ν|1/2
[
A cos

(
ν̄ ln (|η|)

)
+B sin

(
ν̄ ln (|η|)

)]
. (8.50)

We refer to the corresponding regimes as the power and the log-oscillatory regimes,
respectively.

The same behavior of the eigenfunctions obtains also from the x → 0, ν ∈ R fixed,
limiting forms of the Bessel functions,

Jν(x) ≈ 1

Γ(ν + 1)

(
1

2
x

)ν
, Yν(x) ≈ −

(
Γ(ν)

π

)(
1

2
x

)−ν
. (8.51)

and their slightly more complicated counterparts for J̃ν̄ and Ỹν̄ :

J̃ν̄(x) ∝ cos

(
ν̄ ln

(
1

2
x

)
− γν̄

)
, ν̄ ≥ 0, (8.52)

Ỹν̄(x) ∝ sin

(
ν̄ ln

(
1

2
x

)
− γν̄

)
, ν̄ > 0 , (8.53)

Ỹ0(x) ≈ 2

π

[
ln

(
1

2
x

)
+ γ

]
. (8.54)

For the x-independent prefactors in (8.52) and (8.53) and the definition of the phase
angle γν̄ we must refer to [386].
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Figure 8.3. The ν-p plane of the eigenfunctions χν,~p. The vertical axis
corresponds to the spectrum of the d’Alembertian. It is labeled in three
different ways, each convenient in its own right. The horizontal axis
represents the square of the degeneracy index ~p (multiplied by η2). The
two diagonals separate the power-, harmonic-, and logarithmic oscillation
regimes, respectively. The horizontal line at ν = 3/2 separates spacelike
from timelike modes.

(3) Regime boundaries. For a rough orientation, we may assume that the regimes of
(ν, p) space within which either the first or the second contribution to ω2(η) dominates
are sharply separated by the curve along which η2 p2 =

∣∣ν2 − 1
4

∣∣ =
∣∣Fν
H2 + 2

∣∣. Since
ν2 − 1

4
can be both positive and negative, two cases must be distinguished.

Case ν2 − 1/4 > 0: The curve is a straight line of positive slope, namely the solid
diagonal in the diagram of Figure 8.3: ν2 = 1

4
+η2p2. The frequency vanishes everywhere

on this line, ω(η)2 ≡ 0. The power (harmonic) regime sets in above (below) the line.

Case ν2 − 1/4 < 0: A straight line with negative slope obtains, ν2 = 1
4
− η2 p2, the

dashed diagonal in Figure 8.3. On this line, η2 p2 and ν2− 1/4 are equal in magnitude,
but their signs differ, resulting in a nonzero ω(η)2 = 2 η2 p2. Above (below) the line the
harmonic (log-oscillatory) regime extends.
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8.3.5. The ν-p plane

The diagram in Figure 8.3, and similar ones that will follow are useful tools for visual-
ization purposes. We refer to them as a representation of the “ν-p plane” even though
the Cartesian axes drawn carry linear scales not for ν and p directly, but rather simple
functions thereof. Plotting ν2 − 1

4
versus η2p2 has not only the practical advantage of

rendering the regime boundaries straight lines, it also allows us to interpret the diagram
in several different ways, and each one of them is useful in its own right:

(i) We can look at the diagram for a fixed time, η = 1, for example. Then every
point of the ν-p plane is seen to represent a particular eigenfunction χν,~p, modulo the
direction of ~p (since p = |~p|). Hence, loosely speaking, the ν-p plane is the space of all
eigenmodes for a given ~p-direction.

(ii) We may shift the perspective and interpret the diagram for a fixed comoving
momentum, p = p1, say, so that the horizontal axis has the character of a time axis now.
The coordinate (wave-)length 2π/p1 is then seen to be represented by a point which
moves horizontally from right to left when conformal time progresses from η = −∞
towards η = 0.

(iii) The interpretation of this motion comes from yet another property of the dia-

gram. Thanks to eq.(8.27), i.e., η2 p2 =
(

2π LH
Lp(η)

)2

, the scale on the diagram’s horizon-
tal axis is also a measure of the proper length Lp in Hubble units. As a consequence,
the above horizontal motion of the point corresponding to the fixed comoving momen-
tum p1 describes precisely how the associated physical wavelength Lp1(η) increases with
time.

In the sequel we shall find it helpful to freely switch back and forth between these
interpretations.

8.3.6. Crossing the regime boundaries

Let us consider the subspace of all those eigenfunctions

χν,~p(η, ~x) = |η| vν,p(η) ei~p·~x (8.55)

which possess a prescribed eigenvalue Fν , i.e., a given principal quantum number ν.
Their degeneracy index ~p ∈ R3 is left arbitrary instead. Its magnitude p = |~p| can vary
between p = 0 and p =∞, respectively.

In Figure 8.3 the collection of those eigenfunctions is represented by a horizontal line
at the corresponding value of ν. For instance, if ν = 3/2 ⇔ Fν = 0, this line happens
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to coincide with the demarcation line drawn in the Figure to separate the domains of
positive and negative eigenvalues, respectively.

(1) Let us assume that ν > 1/2 first. Then, moving from left to right in the Figure,
every ν = const line starts out in the power regime for sufficiently small p, at a certain
point intersects the transition line, and then enters the harmonic regime for large p. It
depends on η whether a given p is “sufficiently small” for the power-, or already large
enough for the harmonic regime. Clearly the association of a given eigenfunction with
one of the regimes is a time dependent one.

By eq.(8.27), a ν = const line crosses the transition line at the time when Lp(η), the
spatial proper wavelength of χν,~p, assumes the value

Ltrans
ν =

2π LH[
ν2 − 1

4

]1/2 =
2π LH[Fν

H2 + 2
]1/2 (8.56)

This equation shows that if ν is a number of order unity, and only then, the wavelength
at the transition is of the order of the Hubble length. Stated differently, the eigenmode
then changes its behavior just when it “crosses the horizon”.

In general this is not true, however. Eigenfunctions pertaining to large eigenvalues
Fν � H2, i.e., ν � 1, possess a proper wavelength at the transition which is much
shorter than the Hubble radius:

Ltrans
ν ≈ 2π LH

ν
(8.57)

They cross over to the new regime “deeply inside the horizon”. This effect is illustrated
in Figure 8.4.

Here we encounter a characteristic difference between the general spectral investiga-
tion on the one hand, and a textbook-style quantization of a (massless, say) scalar field
on the other. The latter requires only the eigenfunctions with ν = 3/2, i.e., F = 0,
when it comes to, say, expanding the Heisenberg field operator in terms of creation and
annihilation operators. In the present context we are instead particularly interested in
very large quantum numbers ν � 1.

As a consequence, the setting is more involved, but at the same time much richer
from the physics point of view. The Hubble and the transition lengths, LH and LH/ν,
constitute two vastly different scales typically, and the interplay of those two scales will
be a recurring theme in the sequel.

One of the novel features one encounters at large eigenvalues is that the crossover
between the regimes develops into an increasingly pronounced, drastic change of the
eigenfunctions’ behavior. While the crossover is fairly smooth for the familiar ν = 3/2

modes, it has an increasingly sudden and abrupt appearance when ν →∞.



176 part ii: fluctuation modes on ds space

Figure 8.4. The ν-p plane of eigenfunctions as in Figure 8.3. The ver-
tical line at |η| p = 2π delineates the boundary between sub- and su-
per-Hubble size proper wavelengths, respectively. The modes with ν = ν1

are seen to cross over from the harmonic to the power regime well within
the Hubble horizon.

We illustrate this phenomenon for a mode function of the B = 0 type. For (ν, p)

fixed, eqs.(8.36) and (8.55) yield for them:

χν,~p(η, ~x) ∝ ei~p·~x y3/2 Jν(y)
∣∣∣
y≡p|η|=2πLH/Lp(η)

. (8.58)

For ν � 1, the qualitative properties of these modes are entirely determined by the
Bessel functions Jν . The latter switch between their limiting forms (8.46) and (8.51),
respectively, when the argument is of the order of the index, y ≈ ν.

Figure 8.5 shows the graph of Jν for ν = 100. Obviously J100(y) assumes rather tiny
values, and it varies only little in the power regime 0 ≤ y . 100. Near y ≈ 100 a clear
“phase transition” can be seen which marks the onset of the harmonic oscillations.

Thus we observe that the temporal resolving power of χν,~p in the harmonic regime
(y & ν) is as perfect as it possibly could be, comparable to a sine or cosine, but it
deteriorates tremendously in the power regime, y . ν.
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Figure 8.5. The Bessel function J100(y). It displays a transition from
the power- to the harmonic regime near y = 100.

In the above example the proper wavelength of the function χν,~p at the transition
is 100 times smaller than the Hubble radius, and its eigenvalue is about Fν ≈ 104H2.
Needless to say that for modes with even larger eigenvalues the disparity between the
Hubble- and the transition scale grows unboundedly.

(2) In the second case ν2 − 1
4
< 0, similar remarks apply to the divide between

the log-oscillatory and the harmonic regimes, the dashed diagonal in Figure 8.3. It is
intersected by all ν = const lines having real ν ∈

(
0, 1

2

)
, or imaginary ν with ν̄ > 0.

Eigenfunctions with large negative eigenvalues Fν � −9
4
H2 show a characteristic

transition between harmonic and logarithmic oscillation at a proper wavelength

Ltrans
ν̄ ≈ LH

ν̄
. (8.59)

The pertinent eigenfunctions of the B = 0 type are similar to (8.58), with Jν(y) re-
placed by the Bessel functions J̃ν̄(y) though, which determine the essential features.
In Figure 8.6 we plot the example of J̃ν̄(y) with ν̄ = 20. Over the entire range of
y ≡ 2πLH

Lp
there are no strong changes in the amplitude of the oscillations. Their fre-

quency, however, is constant (proportional to log(y)) for y above (below) the transition
point y ≈ ν̄.
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Figure 8.6. The Bessel function of imaginary order J̃20(y). Lowering
y, it displays a transition from harmonic to logarithmic oscillations near
y = 20.

8.4. The RG trajectories, and a duality transformation

In the sequel we study the concrete spectral flows arising from the GEAA in the Ein-
stein–Hilbert truncation [95]. It is based upon the ansatz and the associated trajectories
described in Section 3.5.

8.4.1. Lorentzian signature

An explicit inspection of the derivation of βg and βλ from the FRGE in ref.[95] reveals
that, within the Einstein-Hilbert truncation, the flow equation and the calculation of
βg and βλ are meaningful both in the Euclidean and Lorentzian case, and that the
resulting beta functions agree for the two signatures.

In fact, this holds true more generally within all truncations whose projection on
the corresponding truncated theory space is based upon the asymptotic short time
expansion of the traced heat kernel Tr

[
e−Kτ

]
or the Schrödinger kernel, Tr

[
e−iKτ

]
.

Here, typically, K ≡ −�g + curvature terms, or generalizations thereof. The functional
trace of the FRGE has a representation in terms of a proper time integral involving the
Schrödinger kernel. Contrary to its heat kernel based counterpart, is not restricted to
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positive operators K, and therefore also applies to the Lorentzian signature case, see
[95] and [182] for more detailed discussions.4

Concerning the relative ordering of timelike and spacelike modes in these RG equa-
tions, it can also be observed that the corresponding cutoff scheme is a “maximally
democratic” one. That is, the effective action Γk[h; ḡ] has all �ḡ-eigenmodes with
|Fn[ḡ]| > k2 and either sign of Fn integrated out, but no others.5 This is the property
anticipated in (3.83).

Despite the formal character of these arguments, the Einstein-Hilbert trajectories
are well motivated examples for a first “proof of principle” of the new spectral methods.
Indeed, only rather limited information about the trajectory enters the analysis. The
function G(k) is entirely irrelevant, for example, and regarding Λ(k) a very schematic
and robust “caricature” of the actual scale dependence suffices (see Subsection 3.5.2).
Moreover, most aspects of our results do not even depend on the asymptotic safe com-
pletion of Quantum Einstein Gravity.

8.4.2. High-low scale duality

The dimensionless cosmological constant in eq.(3.63) is invariant under an intriguing
duality transformation that relates small and large RG scales [270]. Within its domain
of validity, the semiclassical cosmological constant (3.63) assumes every given value
λ > λT precisely twice. In fact, we have λ(k) = λ(k]) for any k and its dual partner
scale

k] =
k2
T

k
. (8.60)

If k is smaller than kT , the associated k] is larger, and vice versa.

Let us mention that also the scale k̂ which marks the end of the semiclassical regime
towards the UV, has an IR partner, k̂]. It satisfies

λ(k̂]) = λ(k̂) = λ∗ , (8.61)

4Note also that the applicability of Schrödinger kernel-based propertime representations to compu-
tations in Lorentzian signature is well established since the early days of Quantum Electrodynamics
already. In ref.[387], Schwinger introduced the idea of proper time regularization on Minkowski space,
and building on that, proper time RG equations have been successfully employed for several decades
both in perturbative and nonperturbative applications, see ref.[388] for examples.
5An easy way to see this is to recall from [122] that within the Einstein-Hilbert truncation the FRGE
with a generic higher derivative cutoff operator Rk[ḡ] is very well approximated by a proper time
RG equation. This includes the simplest type of proper time flow equations, which have the struc-
ture k∂kΓk = 1

2Tr exp
(
−i Γ

(2)
k /k2

)
in the Lorentzian setting. Since in the case at hand Γ

(2)
k equals

essentially −�ḡ, this structure implies that a mode with eigenvalue Fn makes a contribution to the
trace proportional to exp

(
−i Fn/k2

)
. Hence the cutoff affects modes with Fn < −k2 and Fn > +k2,

respectively, in a symmetric fashion. (See ref. [388] for explicit calculations in this framework.)
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and is explicitly given by

k̂] =

(
Λ0

λ∗

)1/2

≡
(

3

λ∗

)1/2

H0 . (8.62)

In (8.62) we introduced already the mass parameter

H0 ≡
(

Λ0

3

)1/2

. (8.63)

For the de Sitter solution, it will acquire the interpretation of the Hubble constant.

By (8.60), the three scales k̂], kT , and k̂ are interrelated by

kT

k̂]
=

k̂

kT
⇐⇒ kT

H0

=

(
3

$

)1/2
mPl

kT
. (8.64)

Hence, on a logarithmic scale, k̂] is as far away from kT as is k̂, in the opposite direction
though. Their (inverse) ratio can be expressed as

kT

k̂]
=

k̂

kT
=

(
λ2
∗

$ Λ0 G0

)1/4

(8.65)

when (3.60) and (3.64) are used.

We mentioned already that the two sets of data, the RG predictions {$, λ∗} and the
integration constants {Λ0, G0}, respectively, have a different logical status.

(i) The dimensionless numbers $ and λ∗ are an explicitly computable output of the
RG differential equations. They depend on the coarse graining scheme and the field
contents of the matter system, if any [49, 50]. For pure Quantum Gravity, and with all
plausible matter system admitting Type IIIa solutions, they are known to be of order
unity,

$ = O(1), λ∗ = O(1) . (8.66)

By (3.60) and (8.62) this fact entails that k̂ and k̂] coincide essentially with the Planck
and the Hubble scale, respectively:

k̂ = O(mPl), k̂] = O(H0) . (8.67)

(ii) The dimensionful quantities Λ0 and G0 are constants of integration which appear
only in the solutions to the RG equation. Their value selects one specific RG trajectory
from the set of all solutions to the RG equations. They can be chosen freely.

A special class of choices which is of particular interest both theoretically and phe-
nomenologically is characterized by values of Λ0 and G0 whose product is extremely
tiny:

G0 Λ0 � 1 . (8.68)
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Under this condition, eq.(8.65) yields a pronounced double hierarchy for the triple of
mass scales

(
k̂], kT , k̂

)
, and likewise for (H0, kT ,mPl):

k̂] = O(H0) � kT � k̂ = O(mPl) . (8.69)

See Figure 3.4 for an illustration of this hierarchy.

It is also amusing to note that the values of G0 and Λ0 measured in real Nature yield
roughly G0Λ0 ≈ 10−120, such that

kT

k̂]
=

k̂

kT
≈ 1030 (8.70)

and kT ≈ 10−30mPl ≈ 1030H0, see also refs. [221, 389, 390].

8.5. The spectral flow

In the following we consider the two dimensional theory space of the Einstein–Hilbert
truncation, coordinatized by dimensionless pairs (g, λ), and select a certain RG tra-
jectory on it, i.e., a solution k 7→ (g(k), λ(k)) of the dimensionless RG differential
equations [95]. This solution implies a corresponding trajectory of the dimensionful
couplings, k 7→ (G(k),Λ(k)) ≡ (g(k)/k2, λ(k)k2), and a trajectory of Lorentzian action
functionals, k 7→ Γk, given by (3.45). In the following spectral flow analysis we keep
the trajectory fixed once and for all. We assume that it is of the Type IIIa and also,
but merely for the sake of a transparent presentation, that it features a clearcut double
hierarchy (8.69).

Following the scheme in Section 8.1:

(1) Running Einstein equation. Let us now embark on a journey through theory
space, thereby always walking along the Type IIIa trajectory we are provided with.
At each point of our route we encounter a new action functional then. We derive its
associated effective field equation, find its solutions, and select one of them. Within the
Einstein-Hilbert truncation this equation happens to have the structure of the classical
Einstein equation, but with scale-dependent coupling constants:

Gµν

[
gkαβ
]

+ Λ(k) gkµν = 0 + · · · (8.71)

Here the dots symbolize terms that might come from the matter sector.

We restrict the analysis to pure Quantum Gravity, or matter-coupled gravity in
a vacuum dominated regime. Within the latter, stress tensor contributions from the
matter sector are negligible relative to the cosmological constant term in the Einstein
equation (8.71), whence its RHS equals zero effectively.
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(2) Scale-dependent dS4 solutions. Clearly eq.(8.71) in vacuo and with a fixed k
admits many solutions, well known from classical General Relativity. Here we select on
all scales the unique maximally symmetric one with Λ(k) > 0, i.e., de Sitter spacetime.
More precisely, as before, we consider the expanding Poincaré patch of dS4. Using the
(η, xi) coordinates again, its metric writes

gkµν dxµ dxν =
− dη2 + d~x2

η2 H(k)2
(8.72)

It has the interpretation of an effective, or mean-field metric of spacetime at scale k.
Its Hubble parameter is determined by the point in theory space we just stay at:

H(k) =

√
Λ(k)

3
(8.73)

We are now equipped with a generalized trajectory k 7→
(
g(k), λ(k), gkµν

)
which,

besides the running couplings, comprises a specific solution to the k-dependent field
equations, namely dS4 with H = H(k).

The Hubble parameter H(k) defines a corresponding k-dependent Hubble length:

LH(k) ≡ 1

H(k)
. (8.74)

Furthermore, since we employ the same system of coordinates at all k, a fixed (i.e.,
k-independent) comoving length ∆x gives rise to a whole “trajectory of proper lengths”,
k 7→ L∆x(η, k). By (8.23) with (8.21), it entangles a scale with a time dependence:

L∆x(η, k) =
∆x

|η| H(k)
. (8.75)

For example, a mode with a position dependence proportional to ei~p·~x has the proper
(aka, physical) wavelength

Lp(η, k) =
2π

p |η| H(k)
. (8.76)

A nontrivial k-dependence of such proper quantities is the very hallmark of an effectively
fractal-like spacetime [100, 240, 270].

(3) Scale-dependent spectrum. Given the metrics (8.72), we construct the associ-
ated d’Alembert operators all along the trajectory:

�k ≡ �g
∣∣∣
gµν=gkµν

. (8.77)

SinceH(k) enters gkµν only by a xµ-independent conformal factor, � ≡ gµνDµDν depends
on the Hubble parameter by a multiplicative constant only:

�k =

(
H(k)

H(k0)

)2

�k0 . (8.78)
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The next step is to solve the spectral problem of �k for all k. Because of (8.78), the
solutions to its eigenvalue equation at any scale k ≥ 0,

−�k χν,~p(x; k) = Fν(k) χν,~p(x; k) , (8.79)

can be expressed in terms of those at an arbitrary normalization scale k0, as follows:

Fν(k) =

(
H(k)

H(k0)

)2

Fν(k0) , (8.80)

χν,~p(x; k) = χν,~p(x; k0) . (8.81)

Taking advantage of (8.34) we see therefore that the spectra of �k, for all k, are given
by

Fν(k) =

(
ν2 − 9

4

)
H(k)2 =

(
ν2 − 9

4

)
Λ(k)

3
(8.82)

This is the sought-for running spectrum. A map like k 7→ spec (−�k) = {Fν(k)} is
commonly referred to as a spectral flow [273].

While the result (8.82) involves no approximation beyond the Einstein-Hilbert trun-
cation, the simplified caricature trajectory (3.61) makes it fully explicit

Fν(k) = H2
0

(
ν2 − 9

4

)
×

{
[1 + `4 k4]−1 for 0 ≤ k ≤ k̂

(L k)−2 for k̂ ≤ k <∞
(8.83)

When working with this trajectory we choose k0 = 0 and identify Λ(0) ≡ Λ0, H(0) ≡
H0.

According to eq.(8.83) the eigenvalue Fν(k), for every fixed quantum number ν,
increases monotonically with the scale k ∈ [0,∞). Obviously, this particular spectral
flow displays no level crossing.

(4) The cutoff modes. Knowing the spectral flow, let us determine the cutoff modes
of all spectra along the trajectory. We denote their k-dependent principal quantum
numbers by ν+

COM(k) and ν−COM(k), respectively, in the sectors with Fν(k) > 0 and
Fν(k) < 0. The defining property of the COMs, eq.(8.18), yields an implicit equation
which determines the quantum numbers:

Fν(k)|ν=ν±COM(k) = ±k2 . (8.84)

From the spectra (8.82) we obtain the following condition for ν±COM(k):

ν±COM(k)2 − 9

4
= ± 3k2

Λ(k)
(8.85)

Noting that the ratio Λ(k)/k2 ≡ λ(k) is nothing but the usual dimensionless cosmolog-
ical constant, we see that the quantum numbers of the cutoff modes are given by

ν±COM(k)2 =
9

4
± 3

λ(k)
(8.86)
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The equation (8.86) is the main result of this section. On the branch of positive eigen-
values (spacelike modes) it is to be used with the upper, i.e., plus sign, while the lower
sign applies to the F<0-part of the spectrum (timelike modes).

8.6. Evolving sets of cutoff modes

By definition, the cutoff modes are those eigenmodes of the running d’Alembertian −�k
whose eigenvalues equal to k2 or −k2, respectively. In the previous section we obtained
their ν-quantum numbers. Taking also the degeneracy into account, we can write

Υ±COM(k) =
{
χν,~p

∣∣∣ ν = ν±COM(k), ~p ∈ R3
}
. (8.87)

The real or purely imaginary functions ν±COM(k) are given by (8.86) or, equivalently,

ν±COM(k)2 − 1

4
= 2± 3

λ(k)
. (8.88)

In particular when dealing with diagrams like that in Figure 8.3, the equation (8.88) is
the natural one to use.

Note that the square root

ν±COM(k) =

√
9

4
± 3

λ(k)
(8.89)

is always real in the spacelike case of ν+
COM(k), whereas in the timelike case, ν−COM(k) is

real for scales such that λ(k) > 4
3
, but purely imaginary when λ(k) < 4

3
.

8.6.1. Explicit result

Obviously the running COM quantum numbers ν±COM(k) are related to the input of
our analysis, the RG trajectory k 7→ (g(k), λ(k)), in a quite direct way, and so it is
straightforward to obtain the precise functions ν±COM(k) by solving the RG equations
numerically. Here we take advantage of the simplified caricature trajectory instead.
With λ(k) approximated as in (3.66), eq.(8.88) assumes the explicit form

ν±COM(k)2 − 1

4
= 2± 3×


(

2

λT

)
k2
T k

2

k4
T + k4

for 0 ≤ k ≤ k̂

λ−1
∗ for k̂ < k <∞

(8.90)

The functions (8.90) are plotted in Figure 8.7. We observe that, say, ν+
COM(k) is essen-

tially constant at very low scales k � kT , but then increases ∝ k2 until it reaches a
maximum at k = kT . Thereafter it decreases ∝ 1/k4 up to the scale k = k̂ where it
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Figure 8.7. The functions ν+
COM(k)2− 1

4
(upper graph) and ν−COM(k)2− 1

4
(lower graph), respectively. The dashed lines are their classical analogs
for a scale independent geometry.

reaches the end of the semiclassical regime. Beyond this point, in the fixed point regime,
λ and hence ν±COM are constant, assuming finite, nonzero fixed point values there:

ν±∗ ≡ lim
k→∞

ν±COM(k) =

√
9

4
± 3

λ∗
(8.91)

Note that the graph of ν−COM(k)2 it is obtained from ν+
COM(k)2 by a reflection at the

horizontal axis, plus a constant shift.

The shape of (8.90) has some important features:

(1) UV-IR duality In Figure 8.7 we also indicate the scale k̂] at which λ and, as a
consequence, ν±COM assume their respective fixed point values for a second time:

ν±COM(k̂]) = ν±∗ at k̂] =

(
3

λ∗

)1/2

H0 (8.92)

We recall that k̂] = (3/λ∗)
1/2H0 is the IR dual of the UV scale k̂ = (λ∗/$)1/2mPl.

(2) Double hierarchy. We choose the integration constants Λ0 and G0 such that
Λ0G0 � 1. As we discussed in connection with (8.62) already, this leads to a clear
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separation of the three relevant scales
(
k̂] � kT � k̂

)
, making k̂] an extremely low

mass scale situated far in the IR. By (3.65) this choice also implies a very small value
of

λT ≡ λ(kT )� 1 (Λ0 G0 � 1) (8.93)

at the trajectory’s turning point.

(3) Upper bound on ν+
COM. Both in the spacelike and the timelike case the extremum

of the function (8.90) occurs at k = kT , i.e., at the turning point of the RG trajectory
where λ(k) has its minimum. At this scale,

ν±COM(kT )2 =
9

4
± 3

λT
. (8.94)

Therefore, specializing for the parameter regime (8.93) and using (3.65), we obtain the
following maximum value of ν+

COM:

ν+
COM, max = ν+

COM(kT ) ≈
(

3

λT

)1/2

=

(
9

4 $ Λ0 G0

)1/4

(8.95)

Furthermore, ν−COM(kT ) = i ν+
COM, max.

Thus we arrive at the conclusion that along the entire RG trajectory, there do not oc-
cur any spacelike cutoff modes having principal quantum numbers larger than ν+

COM, max.

While ν+
COM, max � 1 is large6 when Λ0G0 � 1, finding a finite upper bound

ν+
COM(k) ≤ ν+

COM, max <∞ for all k ∈ [0,∞) (8.96)

is strikingly different from all expectations based upon standard background dependent
field theory. We shall discuss the origin of this Quantum Gravity effect in a moment.

(4) Timelike case. As for the timelike cutoff modes, the situation is similar. Since∣∣ν−COM(kT )
∣∣ ≈ ∣∣ν+

COM(kT )
∣∣ when λT � 1, there is an analogous bound on this modulus:∣∣ν−COM(k)

∣∣ . (3/λT )1/2. Note that in the parameter range we are mostly interested in,
λT � 1, the quantum number ν−COM is always purely imaginary.

(5) The subsets Υ±≷(k). According to Section 8.2, the eigenfunctions in Υ±>(k) and
Υ±<(k) are those that possess principal quantum numbers ν such that |Fν(k)| > k2 and
|Fν(k)| < k2, respectively. As the COMs sit just in-between these two cases, and since
we know their quantum numbers, ν±COM(k), the sets Υ±≷(k) are fully determined now.
In Figure 8.8a we represent them graphically on the ν-p plane.

6For instance, the example of Λ0G0 ≈ 10−120 leads to ν+
COM, max ≈ 1030.
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(a) The subspaces Υ0(k) and Υ±≷(k), respectively. In the example shown,
the quantum number ν−COM(k) is real.

(b) Determination of the transition times η±COM(k, p). In the example
shown, the quantum number ν−COM(k) is purely imaginary.

Figure 8.8. The space of eigenfunctions represented as in Figure 8.3.
For a specific scale k, the refined subsets of space- and timelike UV modes
Υ±≷(k) are shown. The lightlike Υ0 modes correspond to the ν = 3/2
line. In the second diagram, spacelike (timelike) cutoff modes, indicated
by the upper (lower) wiggly line, transit from the harmonic to the power
(log-oscillating) regime at the conformal time η+

COM (η−COM).
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8.6.2. Classical vs. Quantum Gravity

To illuminate the physical significance of the bound (8.96) it is instructive to contrast
ν+
COM(k) with its classical counterpart. To this end we turn off the quantum effects for
a moment and repeat the above discussion for the “classical RG trajectory”

λclass(k) =
Λ0

k2
⇐⇒ Λclass(k) = Λ0 = const . (8.97)

It describes a scale independent dimensionful cosmological constant. The effective
spacetime is a classical manifold then, showing no fractal features, and the entire spec-
tral flow refers to one and the same operator, namely the d’Alembertian for dS4 with
k-independent Hubble parameter

√
Λ0/3.

Using (8.97) in (8.88) the classical trajectory is seen to imply[
ν±COM(k)2 − 1

4

]
class

= 2± 3
k2

Λ0

≡ 2± k2

H2
0

(8.98)

As it should be, this equation agrees with the classical relationship between F and ν,
i.e., Fν =

(
ν2 − 9

4

)
H2

0 , if one parametrizes the eigenvalues as Fν = ±k2.

In Figure 8.7 the two functions (8.98) are represented by the dashed curves. In the
spacelike case, say, the quantum number ν+

COM, class(k) is monotonically increasing and
approaches a linear k dependence at large scales:

ν+
COM, class(k) ≈ k

H0

(k � H0) . (8.99)

Obviously (8.99), relevant on a rigid spacetime manifold, is markedly different from the
result for dynamical gravity displayed in Figure 8.7.

8.6.3. Physical interpretation

According to eq.(8.82), there are two different mechanisms by means of which we can
increase a (positive, say) eigenvalue Fν : First, by increasing the index ν which controls
the “fineness” of the eigenfunctions, and second, by increasing the Hubble parameter
H(k) so as to shrink the entire spacetime.

In classical gravity, where the metric is fixed, only the first option is available: The
COM-condition Fν = k2 must be satisfied by increasing the ν-index ∝ k2 at fixed H0,
and this is what eq.(8.99) expresses.

In Background Independent Quantum Gravity on the other hand, the more complex
k-dependence of νCOM(k) is the result of an interplay between both of these mechanisms.
Thereby the first (second) mechanism is the dominant one when k < kT (k > kT ). The
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regime k > kT is exceedingly non-classical in that a higher eigenvalue comes with an
eigenfunction of lower fineness, i.e., fewer zeros or nodal lines.

This apparent paradox is explained by the rapid shrinking of spacetime caused by
the enormous growth of H(k) for k → ∞. This shrinking scales up all eigenvalues so
strongly that Fν = k2 can only be solved by a function ν ≡ ν±COM(k) which decreases
when k →∞.

This basic mechanism is very similar to what occurs in Euclidean gravity [271, 272]
and was reviewed in connection with Figure 8.1 in Subsection 8.1.1.

8.6.4. The AS modes

The following remark concerns specifically the asymptotic safe completion of Quantum
Gravity. As it is obvious in Figure 8.7, the comparatively small set of modes χν,~p with
ν2 − 1

4
in the interval

[
2− 3

λ∗
, 2 + 3

λ∗

]
enjoys a special status: At all scales k ≥ k̂], and

this includes of course the fixed point regime k ≥ k̂, these modes constantly belong to
Υ+
<(k) or Υ+

COM(k), if they are spacelike, and to Υ−<(k) or Υ−COM(k), if they are timelike.
At no scale k ≥ k̂] they would show up in Υ+

>(k) and Υ−>(k), respectively. We refer
to those distinguished eigenfunctions as the Asymptotic Safety modes or, for brevity,
Asymptotic Safety (AS) modes.

Being a bit vague, one could say that the AS modes participate as degrees of freedom
in all effective field theories given by Γk, with k ranging from the extreme IR, k = k̂],
up to the asymptotic scaling regime and the fixed point ultimately; they never get
“integrated out” all along these scales.

In a way, the AS modes are the only available “eyewitnesses” to the unusual physics
in the fixed point regime.

As an example, let us consider the modes χν,~p with ν =
(

9
4

+ 3
λ∗

)1/2

≡ ν+
∗ . In the

asymptotic scaling regime k > k̂, precisely these eigenfunctions play the role of the
spacelike cutoff modes.

For an order of magnitude estimate, we can take λ∗ = 0.1 as a typical value, yielding
ν+
∗ ≈ 5.7. As this value is not overly large, the ν-quantum numbers of the AS modes
are still of order unity, typically, and so their η-dependence is correspondingly slow.7

7It is also interesting that, for the same value λ∗ = 0.1, the IR scale k̂], when converted to a distance,

amounts to about the 18% of the Hubble radius L0
H = 1/H0, i.e.,

(
k̂]
)−1

≈ 0.183 L0
H .
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8.7. The characteristic COM proper length scale

Let us study the spacelike (k, ~p)-cutoff modes in more detail now, i.e., the eigenfunctions
χν,~p(x) with ν = ν+

COM(k) for some fixed scale k ∈ R+ and wave vector ~p ∈ R3. In order
to do so, we will introduce some scale-dependent quantities:

(1) Transition time. For any choice of k and ~p there always exists a time, η+
COM(k, p),

at which this mode transits from the harmonic into the power regime, see Figure 8.8b.
Since, in this diagram, the regime boundary (ω2 = 0 line) is at 45 degrees, we read off
that at the moment of the transition the equality ν2 − 1

4
= η2 p2 must hold. It implies

the transition time

η+
COM(k, p) = −1

p

√
ν+
COM(k)2 − 1

4
= −1

p

√
2 +

3

λ(k)
(8.100)

where also (8.94) has been used in the second equality.

(2) Proper wavelength. The (k, ~p)-cutoff mode possess the time independent coor-
dinate wavelength

∆xp =
2π

p
≡ 2π

|~p|
. (8.101)

It is most natural to employ the running metric at the scale chosen for the COM, i.e.,
gkµν , in order to associate a proper wavelength to the mode. It reads

Lp(η, k) ≡ bk(η) ∆xp = 2π
bk(η)

p
=

2π

|η| p H(k)
, (8.102)

and it is both time- and scale- dependent.

(3) Transition wavelength. A scale of special physical interest is the proper wave-
length of the (ν, ~p) cutoff mode at the moment when it transits from the harmonic to
the power regime. We denote it by

L+
COM(k) ≡ Lp

(
η+
COM(k, p), k

)
(8.103)

and obtain from (8.102) with (8.100):

L+
COM(k) =

2π

k

√
3

3 + 2 λ(k)
(8.104)

This result can also be expressed as

L+
COM(k) =

2π

H(k)

√
λ(k)

3 + 2 λ(k)
(8.105)
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Hence we find that the dimensionless ratio of the COM’s transition wavelength and the
running Hubble radius at the same scale, LH(k) ≡ 1/H(k), is given by

L+
COM(k)

LH(k)
= 2π

√
λ(k)

3 + 2 λ(k)
(8.106)

(4) Interpretation. The relation (8.106) can also be read off directly from Figure 8.8b
by intersecting the (diagonal) ω2 = 0 line with the (wiggly) COM line, and projecting
the point of intersection down on to the horizontal axis, thus confirming that(

2π LH(k)

L+
COM(k)

)2

= 2 +
3

λ(k)
. (8.107)

This construction illustrates the precise physical interpretation of the COM length scale:
L+
COM(k) is the largest possible proper wavelength a cutoff mode can posses while in

the oscillatory regime.

Importantly, while L+
COM(k) depends on k, it is independent of η. Hence, L+

COM(k)

is a time independent proper distance characteristic of the spacetime at scale k.

Let us analyze the different regimes:

(5a) UV and IR limits. At the terminal points of the RG trajectory, the relation
(8.106) asymptotes to

lim
k→∞

L+
COM(k)

LH(k)
= 2π

√
λ∗

3 + 2λ∗
, lim

k→0

L+
COM(k)

LH(k)
= 2π . (8.108)

In both the UV and the IR limit the COM scale agrees with the Hubble length basically.
(5b) Near the turning point. At intermediate points of the RG trajectory, LCOM/LH
is extremely tiny on most scales, as it becomes obvious when (8.106) is expressed in
terms of the COM quantum number (8.94):

L+
COM(k)

LH(k)
=

2π√
ν+
COM(k)2 − 1

4

≈ 2π

ν+
COM(k)

(8.109)

The second, approximate equality in (8.109) applies at intermediate scales where ν+
COM(k)

is large. In fact, the ratio assumes its maximum at the turning point scale:(
L+
COM(k)

LH(k)

)
max
≈ 2π

ν+
COM(kT )

≈ 2π

(
λT
3

)1/2

= 2π

[
4

9
$ G0 Λ0

]1/4

. (8.110)

Here we also used (8.95). Thus, the smaller is Λ0G0, the larger the disparity between
the Hubble and the COM scale can become maximally.

(6) Timelike case, higher spin operators. As it is obvious from Figure 8.8b, we can
define a proper length analogous to L+

COM also for timelike cutoff modes. While L+
COM

and L−COM are different in principle, they become essentially identical in the regime
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which we consider usually, namely when
∣∣ν±COM(k)

∣∣� 1:

L−COM(k) ≈ L+
COM(k) . (8.111)

See also Figure 8.9, which refers to this case.

In the regimes of either large real or purely imaginary quantum numbers with |ν| �
1, the above discussions carry over unmodified in yet another direction, namely to more
general kinetic operators of the form −� + (curvature terms). On the dS4 background
the curvature terms evaluate to a constant number times the identity operator, hence
they cause only a simple constant shift of the eigenvalues: Fν → Fν + C. As a result,
the effect of the curvature terms becomes negligible when |Fν | � |C|, i.e., |ν| � 1, so
that we are back then to the pure d’Alembertian.

This remark concerns not only the kinetic operator of the metric fluctuations hµν ,
but also that of gauge fields, fermions, and conformally coupled scalars, for instance.
Hence, the range of validity of our results extends well beyond minimally coupled scalar
test fields.

(7) Classical vs. Quantum Gravity. We also mention that the classical analog of
the ratio (8.106) is given by

L+
COM(k)

LH(k)

∣∣∣∣
class

=
2π√

2 + 3 k2

Λ0

(8.112)

Hence the classical variant of L+
COM(k)

LH(k)
is seen to vanish in the limit k → ∞, in sharp

contradistinction to the Quantum Gravity case, where the gravitational backreaction
and Asymptotic Safety bestows us with a well defined nonzero ratio, (8.108).

8.8. Spatial geometry, effective field theory, and COMs

We are still on our journey through theory space along a certain Type IIIa trajectory.
At each point visited we have solved the effective field equations related to the action
Γk[hµν , A, · · · ; ḡµν ] which we encountered there. Next we ask about the geometrical
features that could possibly be displayed by the “on-shell” mean field configurations
thus obtained, notably by the metric gµν ≡ 〈ĝµν〉, or by the vacuum expectation value
of some optional matter field, A(x).
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8.8.1. Geometry by means of physical fields

In principle, we would like to find exactly those geometrical features which, intuitively
speaking, have a size that is comparable to the length scale at which Γk defines a “good
effective field theory”. Clearly it is not possible to make the latter notion fully precise
in a general way. Therefore we follow a closely related, yet simpler and more clearcut
strategy [270].

Namely, we consider the set of all cutoff modes at a given scale, Υ+
COM(k)∪Υ−COM(k),

form arbitrary linear combinations of those functions, and investigate the geometric
properties of the field configurations that are accessible in this manner.

The overall outcome constitutes what can be regarded as an effective quantum ge-
ometry at scale k, with some justification.

8.8.2. Resolving structures on a time slice

We emphasize that while the special eigenfunctions χν,~p(η, ~x) collected in

Υ±COM(k) =
{
χν,~p

∣∣∣ ν = ν±COM(k), ~p ∈ R3
}
, (8.113)

have a definite ν-quantum number to enforce the eigenvalue Fν = ±k2, their degener-
acy index ~p is an arbitrary coordinate 3-momentum of any direction and magnitude.
Since all eigenmodes have a ~x-dependence χν,~p(η, ~x) ∝ ei~p·~x, it follows therefore that
by superimposing basis functions, from Υ+

COM(k) or Υ−COM(k) alone, it is possible to
manufacture field configurations with any desired ~x-dependence at some fixed time η:

A(η, ~x) =

∫
R3

d3p α(~p) χν±COM,~p
(η, ~x) . (8.114)

These field configurations satisfy

−�k A(η, ~x) = ±k2 A(η, ~x) (8.115)

for any choice of the coefficients α(~p). And in fact, it is perfectly possible to choose
α(~p) in such a way that A(η, ~x) has nontrivial structure on arbitrarily small distance
scales in ~x-space. In other words: For every fixed time η and scale k, field configurations
spanned by Υ±COM(k) possess an unlimited resolving power for spatial structures on the
respective 3D time slice of the dS4 manifold.

This Lorentzian result should be contrasted with the analogous one in Euclidean
gravity which was reviewed in the Introduction and illustrated in Figure 8.1: There, we
did actually encounter a limited resolution, not in space, however, but in 4D spacetime.
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(1) Spatial geometry vs. time dependence. The above seemingly unlimited re-
solving power comes at a price, however. Namely, insisting on the eigenfunctions prop-
erty (8.115), we have no way of controlling the η-dependence of the COM-superposition
(8.114) if we use up all our freedom of choosing α(~p) by optimizing the spatial resolution.
The time dependence of A(η, ~x), with α(~p) designed so as to describe a given purely
spatial geometry, might however be physically unacceptable, say undetectable because
the detector setup is “too slow” to follow it, or because of other experiment-related
constraints.

To avoid such unwanted η-dependencies it may be necessary to impose further con-
ditions on the space of admissible basis modes.

Let us try to put this issue into a broader context. (2) Hypotheses underlying
field-based geometry. It is important to emphasize that the (as to yet, hypothetical)
geometry which we try to uncover is carried by physical fields. It follows therefore that
this kind of geometry cannot be a property of the “quantum spacetime” alone, but
rather must depend also to some extent on the experimental setup that is used in order
to observe or probe it.

At this point, we are not embarking on a detailed physical description of this setup
and of the “detectors” or “microscopes” it employs. To proceed, we instead formulate
certain plausible but still very general model assumptions about the experimental set-
ting, and we explore their implications. Every set of such assumptions, or “axioms” will
then define a clearcut model of a field-based geometry.

Typical model assumptions include, for instance, a specification of the time depen-
dence which detectable mean fields like A(η, ~x) are allowed to display. The importance
of this specification stems from the fact that we want to learn about the structure of
space here, and not of spacetime. Clearly this is impossible if, say, the η-dependence is
too fast for the detector to follow it so that it averages over a stack of time slices.

We stress that by no means we are constraining the mean field configurations which
are occurring. We are neither modifying the RG trajectory, nor the running solutions to
the effective field equations. The restrictions concern only the “test” or “spectator” sys-
tems corresponding to a physically realistic measurement or observation. Nevertheless,
every physics-based geometry will depend on them to some degree.

8.8.3. The models A and B

In the sequel we explore the implications of two prototype models. We specify them by
means of the following k-dependent conditions on the COMs which can be registered by
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Figure 8.9. The cutoff modes, and the respective subsets of the COMs
which are detected according to Models A and B. The black dot indicates
the detected modes of Model A, the wavy double lines those of Model B.
The diagram assumes that λ(k)� 1, in which case L−COM(k) ≈ L+

COM(k).

the respective detectors:

Model A: For every fixed k, only η-independent cutoff modes

and combinations thereof are registered.

All observed structures of field configurations A(η, ~x) ≡ A(~x) are strictly time indepen-
dent then.8

This model comes closest to the ideal of reducing the wealth of physical patterns and
processes to precisely the eternal geometric properties one would ascribe to 3D space
as such.

Model B: For every fixed k, only cutoff modes in the harmonic regime

and combinations thereof are registered.

For k2 = 0 (k2 = −m2), the COMs selected in Model B are a generalization of the
familiar sub-horizon modes on classical de Sitter spacetime. They are solutions to the

8The precise assumption is that vν,p = const, allowing for the prefactor ∝ η in eq.(8.30).
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massless (massive) Klein-Gordon equation, and yet are almost unaffected by curvature
effects.

Model B is motivated by the strong qualitative changes the eigenmodes undergo
when crossing the regime boundaries. See Figure 8.5 for example, where the resolving
power of the respective mode is seen to deteriorate dramatically outside the harmonic
regime.

In Figure 8.9, the COMs that are detectable according to these two models are rep-
resented on the ν-p plane.

8.8.4. Implications of the detector models A and B

Detection through Models A or B have different physical implications:

Model A. A necessary condition for the time independence of a certain vν,p is that the
corresponding frequency ω2

ν,p vanishes. Specializing for cutoff modes, the eqs.(8.42) and
(8.86) tell us that

ω2
ν±COM(k),p

(η) =
1

η2

[
η2 p2 −

(
2± 3

λ(k)

)]
. (8.116)

Focusing on the λ(k)� 1 regime again, eq. (8.116) makes it manifest that ω2 = 0 can
be achieved for spacelike COMs only. For them, eq. (8.116) reads, in “proper” terms,

ω2
ν+
COM(k),p

(η) =

(
2π

η

)2 (
LH
L+
COM

)2
[(

L+
COM

Lp

)2

− 1

]
. (8.117)

Hence we conclude that according to Model A the experiment is sensitive to precisely
those modes χν±COM,~p

(η, ~x) which possess the proper wavelength Lp = L+
COM(k) at the

time of the measurement.

Note that the condition which defines the subset of detectable modes,

Lp = L+
COM(k) (Model A) (8.118)

is actually a time independent one if expressed in physical, i.e., proper quantities. It
is only in coordinate (comoving) language that it appears η-dependent. In fact, with
(8.100), the comoving wave number p is seen to require a time dependence such that

p =
1

|η|

(
2 +

3

λ(k)

)1/2

⇐⇒ η+
COM(k, p) = η . (8.119)

Having now fixed both their ν-quantum number and, by (8.119), the magnitude of
~p, the left-over modes, χν±COM,~p=p~n

, possess only two remaining free parameters, angles
θ and φ, say, which specify the direction of ~p by a unit vector ~p/p = ~n(θ, φ).
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Hence the detectable modes are just sufficient to represent, by superposition, an
arbitrary function on the unit two-sphere S2. The S2 has a natural interpretation
as the celestial sphere of an observer located at some fixed ~x, and perceiving certain
distributions A(θ, φ) inscripted in the sky.

Model B. For the second model the situation is similar except that the condition
ω2 = 0 is replaced by the weaker requirement ω2 > 0, and that timelike COMs are
admitted as well. Since we assume λ(k) � 1, there is no essential difference between
L+
COM and L−COM though. Instead of the strict equality (8.118), we now have the upper

bound
Lp ≤ L+

COM(k) ≈ L−COM(k) (Model B) (8.120)

for the proper wavelengths Lp of the detected modes.

On the ν-p plane, the subset of COMs eligible for Model A is found by intersecting the
horizontal ν = ν+

COM line with the upper diagonal on which ω2 = 0, see Figure 8.9. In
this diagram, the corresponding modes are symbolized by the black dot, thus confirming
the condition for their detectability: Lp = L+

COM(k).

In the case of Model B, we intersect both the ν+
COM- and the ν−COM-line with the

two diagonals at ±45o, i.e., the regime boundaries. The relevant subset, indicated
by the wavy double lines in the Figure, is given by all COMs to the right of the
intersection point then. Hence the detectable modes are seen to be those satisfying
Lp ≤ L+

COM(k) ≈ L−COM(k).

8.8.5. Maximum size of patterns describable by effective field theory

We interpret L+
COM(k) as the physical length scale at which Γk, for the same value of

k, provides the best description possible in terms of an effective field theory. According
to both detector models considered, the proper wavelengths Lp of the modes that carry
the quantum geometry satisfy Lp ≤ L+

COM(k).

Next let us construct superpositions like (8.114) of such modes only, and let us
investigate the ~x-dependence of the functions A(η, ~x) that can be fabricated in this
manner. We consider in particular a situation in which the distribution of the field
amplitude A(η, ~x) over the time slice features a distinguished proper length scale, which
we denote by L.

Now, since the proper wavelengths Lp of all partial waves contributing to A(η, ~x) are
bounded above by L+

COM(k), it follows that also typical features displayed by A(η, ~x)
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cannot be too much larger than L+
COM(k). This implies that the ~x-dependence of physi-

cally detected field configurations A(η, ~x) cannot display geometric structures with proper
sizes L that are (much) larger than L+

COM(k):

L ≤ L+
COM(k) ≈ L−COM(k) (Models A and B) (8.121)

This upper bound is one of our main results. It expresses a limitation of the cutoff
mode’s resolving power under realistic experimental conditions. However, contrary to
the Euclidean example reviewed in the Introduction, here the COMs are “blind” towards
too large, rather than too small structures.

Let us furthermore recall that, by (8.106), L+
COM(k) is a much shorter length scale

than the Hubble radius if λ(k) � 1, which holds true on virtually all scales. This
implies that our upper bound on the proper size of observed patterns, L, is much more
stringent than a conceivable (causality-related) bound given by the Hubble scale:

L ≤ L±COM(k)� LH(k) (Models A and B) (8.122)

Concerning the physical interpretation of the running Hubble radius LH(k), the follow-
ing remark is in order.

8.8.6. Causality and k-dependent Hubble radius

In the classical theory, the sphere with Hubble radius L0
H ≡ H−1

0 is known to represent
an event horizon of de Sitter space. Note however that the classical concept of horizons
relies upon a notion of causality whose physical underpinning are the laws of light
propagation, and that in an effective theory it cannot be taken for granted that those
are the same still [258].

Nevertheless, being a massless particle, the on-shell photon with zero virtuality is un-
affected by the virtuality cutoff at k > 0 which we consider here. As a consequence, we
can establish the same notion of causality on each one of the k-dependent dS4 spacetimes
(8.72). Thereby the Hubble length LH(k) ≡ H(k)−1 acquires the interpretation of a
horizon distance in the effective theory for the scale k, too.

Summarizing, if we define the “quantum geometry of 3D space” to encompass all
spatial structures that are detected by time independent, or by harmonically oscillating
physical fields, then the proper size L of those observed geometric patterns which are
describable by a certain effective theory Γk is bounded above by L+

COM(k). Typically
the latter length scale is significantly shorter than the radius of the de Sitter horizon
for the same RG parameter k.
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Figure 8.10. Filling a Hubble volume with L+
COM-size cubes. Every

such cube contains a single evaluation point ~xj of the function A(~x), see
Subsection 8.8.7.

8.8.7. Coherence length of Γk-describable detected structures

The consequences of the above bound on the spatial proper lengths of the detected
structures, describable by Γk, can be visualized in several ways. The following one
prepares at the same time also the stage for a discussion of entropy-related aspects
later on.

(1) Counting boxes. Let us fix an arbitrary time slice of de Sitter space at scale
k, and let us furthermore consider a set of little cubic boxes in this 3D space whose
physical, proper edge length is equal to L+

COM(k). Then, loosely speaking, all objects
detected by the model detectors A or B would fit into such a box.

Now let us ask how many of those “COM boxes” in turn would fit into one Hubble
volume, or more precisely, into a cube with physical edge length LH = H(k)−1, see
Figure 8.10. According to eqs.(8.106) and (8.109), the number of COM boxes within a
Hubble cube, Nb(k) =

(
LH(k)/L+

COM(k)
)3, is given by

Nb(k) =
1

(2π)3

[
ν+
COM(k)2 − 1

4

]3/2

=
1

(2π)3

[
2 +

3

λ(k)

]3/2

(8.123)

The number Nb is of order unity for both k → 0 and k → ∞, while it assumes its
maximum value Nmax

b � 1 at the turning point k = kT . With (8.110) we obtain
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explicitly

Nmax
b = Nb(kT ) ≈

(
ν+
COM(k)

2π

)3

≈ 1

(2π)3

[
4

9
$ G0 Λ0

]−3/4

(8.124)

Using the figures provided by real Nature for an illustration, G0Λ0 ≈ 10−120, we find
that Nb can become as large as approximately

Nmax
b ≈ 1090 , (8.125)

which corresponds to the quantum number ν+
COM(kT ) ≈ 1030. Up to factors of order

unity, the hierarchy between the Hubble and the COM scale comprises 30 orders of
magnitude at the maximum:

LCOM(kT ) ≈ 10−30 LH(kT ) ≈ 10−30 H−1
0 . (8.126)

For H0 the Hubble parameter of the real Universe, this COM scale is in the range of
millimeters.

We come back to the number Nb in Section 8.9 where we put it in a proper perspec-
tive.

(2) Fragmentation of space and a coherence length. For clarity, let us adopt the
most “canonical” definition of a spatial geometry now, i.e., the strict time independence
requested by Model A.

Then, for every given RG parameter k, the Γk-describable experiments (“detectors”,
“microscopes”, ...) see only objects of size L = L+

COM(k) sharply. If the running of
Γk, and hence L+

COM(k), happens to be slow, also objects with a typical proper size
L slightly above, or slightly below L+

COM(k) might still yield a fairly sharp picture.
However, generically, the image of spatial structures with size L will be strongly blurred
if either L� L+

COM(k) or L� L+
COM(k).

In this precise sense, the running proper length L+
COM(k) has the interpretation of a

coherence length. This coherence length is characteristic of the effective spatial geometry
which pertains to a specific RG parameter value k.

It goes without saying that the existence of this distinguished length scale per se
does not imply that the (vacuum) spacetimes obtained from Γk necessarily would show
any regular or even periodic structure (like the above “cubulation”, for example).

Nevertheless, our findings suggest a certain fragmentation of the 3-dimensional space.
It should have the appearance of a patchwork consisting of many small patches with
a size of about L+

COM, or smaller. While physics and geometry within a patch is well
described by one of the effective field theories {Γk}k≥0, this is not the case for the entire
patchwork.
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In fact, the present spectral flow analysis leads to the following prediction for the
vacuum dominated epochs of cosmology:

Since no effective theory describes coherent patches with L & L+
COM(k), and since

the COM scale is bounded above, L+
COM(k) . (2π/ν+

COM(kT ))LH(k) by (8.110), patterns
actually observed in the Universe should display a maximum size which is significantly
smaller than the Hubble radius, the scale ordinarily considered the ultimate bound.

8.9. The scale history of quantum de Sitter space

In this section we change our vantage point and describe quantum de Sitter space from
an evolutionary perspective in which the RG parameter k plays a role which is almost
on a par with the conformal time η. Among other insights, this “scale history” will lead
to a better understanding of the spatial fragmentation encountered above.

While until now the focus was on distances smaller than the coherence length,
L < L+

COM, our interest now lies in the regime L+
COM < L < LH , that is, in the en-

tire “patchwork” rather than the individual patches.

8.9.1. Dimensionless logarithmic variables

To display the scale structure of quantum de Sitter space with its entangled η and k

dependencies in a transparent way, the use of dimensionless logarithmic variables is
helpful. We introduce in particular:

(1) The logarithmic RG time:

τ(k) ≡ − ln

(
k

kT

)
(8.127)

Its normalization is such that τ is negative (positive) for all scales above (below) the
turning point k = kT . Along a RG trajectory with natural orientation, the decreasing
dimensionful k = +∞· · · , kT , · · · 0 corresponds to an increasing τ = −∞· · · , 0, · · ·+∞
then.9

(2) The logarithmic Hubble length:

LH(τ) ≡ ln

(
LH(k)

L0
H

)
= − ln

(
H(k)

H0

)
= −1

2
ln

(
Λ(k)

Λ0

)
(8.128)

9The definition (8.127) differs by a sign from the convention used in [221].
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The normalization is relative to L0
H ≡ H−1

0 . Exploiting that Λ(kT ) = 2Λ0 by (3.61), we
obtain for the logarithmic Hubble length in terms of λ(τ) ≡ λ(k(τ)):

LH(τ) = τ − 1

2
ln

(
2
λ(τ)

λT

)
(8.129)

Since the running Hubble parameter now can be written as

H(k) = H0 e
−LH(τ) , (8.130)

it is often convenient to express the scale factor bk(η) = (|η| H(k))−1 in the form

bk(τ)(η) = b0(η) eLH(τ) (8.131)

where b0(η) = (|η| H0)−1 denotes the scale factor at k = 0, and k(τ) = kT e
−τ .

(3) The logarithmic proper length related to a coordinate distance ∆x with asso-
ciated proper distance L∆x(k, η) = bk(η) ∆x:

L∆x(τ, η) ≡ ln

(
L∆x(k, η)

L0
H

)
. (8.132)

Taking advantage of (8.131), eq.(8.132) can be cast in the form

L∆x(τ, η) = LH(τ)− ln (|η|) + ln(∆x) (8.133)

In the case of comoving wavelengths ∆x = ∆xp ≡ 2π/|~p| we also use the notation

Lp(τ, η) ≡ L∆xp(τ, η) = LH(τ) + ln

(
2π

p|η|

)
. (8.134)

The benefit of the logarithmic representation (8.133) is that it nicely disentangles
the three factors which determine a proper length, namely the scale-dependent size of
the Universe as a whole, LH(τ), the moment of time, η, and most importantly, certain
data characteristic of the actual physical system under consideration, which is ∆x here.

In various discussions it will be convenient to combine the latter two contributions
to L∆x into a new quantity, ξ, letting

L∆x(τ, η) = LH(τ) + ξ, with ξ ≡ ln

(
∆x

|η|

)
. (8.135)

Since ∆x
|η| = H0 L∆x(η, k = 0), we see that

ξ ≡ ln

(
L∆x(η, k = 0)

L0
H

)
= L∆x(τ =∞, η) (8.136)

is a logarithmic measure for the IR proper length, i.e., the one ascribed to ∆x by the
k = 0 metric.
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(4) The logarithmic transition lengths,

L ±
COM(τ) ≡ ln

(
L±COM(k)

L0
H

)
, (8.137)

where L±COM(k) is the proper wavelength of the cutoff modes by the time they leave the
harmonic regime.

8.9.2. Results (piecewise linear approximation)

(1) Cosmological constant. The dimensionless cosmological constant λ(τ) ≡ λ(k(τ)),
simplified as in (3.66), reads in dependence on the logarithmic RG time:

λ(τ) =

{
λ∗ = λT cosh(2τ̂) for τ ∈ (−∞, τ̂)

λT cosh(2τ) for τ ∈ (τ̂ ,+∞)

(8.138)

(8.139)

Here τ̂ = τ(k̂) denotes the “moment” of RG time at which the trajectory passes from the
UV fixed point regime to the semiclassical regime. Explicitly, from (3.60) with (3.64),

τ̂ = −1

4
ln

(
λ2
∗
$

)
+

1

4
ln(G0 Λ0) . (8.140)

Since we assume G0Λ0 � 1 and λ∗, $ = O(1), the first term on the RHS of (8.140) is
negligible usually.10 Hence, τ̂ is always negative, and |τ̂ | = −τ̂ � 1 when G0Λ0 is tiny.
Recall also that the function λ(k) given in (3.66) is continuous at k = kT . Therefore
the same is true for λ(τ) at τ = τ̂ , and this explains the second equality of (8.138).

The semiclassical part of λ(k) is invariant under the duality transformation k 7→ k] =

k2
T/k. In terms of the RG time τ , the latter assumes the form of a reflection symmetry
τ 7→ τ ] = −τ , since

τ(k]) = −τ(k) . (8.141)

Being an even function of τ , the cosmological constant in (8.139) is invariant clearly.

The IR scale k̂], at which λ(k) equals λ∗ again, corresponds to the very “late” RG

time
τ̂ ] ≡ τ(k̂]) = −τ(k̂) ≡ −τ̂ � 1 . (8.142)

It is the negative of the “early” time at which the trajectory departed from the fixed
point.

10The example G0Λ0 = 10−120 yields τ̂ = −30 ln(10) ≈ −69.



204 part ii: fluctuation modes on ds space

Figure 8.11. Schematic scale history of the Hubble length (dashed line)
and the COM proper transition wavelength for spacelike modes (solid line)
at fixed conformal time. The shaded triangle contains sub-Hubble &
super-COM proper length scales.

(2) Hubble scale. For the Hubble radius we obtain from the caricature trajectory:

LH(τ) =


τ − 1

2
ln
(

2 cosh(2τ̂)
)
≈ τ̂ + τ for τ ∈ (−∞, τ̂)

τ − 1

2
ln
(

2 cosh(2τ)
)

for τ ∈ (τ̂ ,+∞)

(8.143)

(8.144)

The second equality of (8.143) is valid if |τ̂ | � 1, which we assume satisfied in the
following. Leaving relatively short transition periods aside, the following three “scale
epochs” can be distinguished in the course of the τ -evolution:

−∞ < τ < −|τ̂ | : LH(τ) ≈ τ̂ + τ

−|τ̂ | < τ . 0 : LH(τ) ≈ 2τ

τ & 0 : LH(τ) ≈ 0

(8.145)

(8.146)

(8.147)

In Figure 8.11 the behavior of LH(τ) is sketched in this piecewise linear approximation.

(3) COM scale. For the simplified RG trajectory, eq.(8.137) yields in the spacelike case

L +
COM(τ) = τ − 1

2
ln

(
1 +

2

3
λ(τ)

)
+ τ̂ + ln

(
2π

√
λ∗
3

)
(8.148)
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with λ(τ) given by (8.138), (8.139). To see the main features of (8.148), we continue
to neglect constants of order unity relative to τ̂ , and to employ the piecewise linear
approximation. The resulting graph of the function L +

COM(τ) is depicted schematically
in Figure 8.11. Its characteristic behavior in the various scale epochs is as follows:

−∞ < τ . +|τ̂ | : L +
COM(τ) ≈ τ̂ + τ

τ & +|τ̂ | : L +
COM(τ) ≈ 0

(8.149)

(8.150)

In particular, at the turning point scale, L +
COM(0) ≈ τ̂ ≡ −|τ̂ |.

To obtain a particularly clear qualitative picture, and to avoid a clutter of inessential
constants in the formulas, we are going to mostly utilize the piecewise linear approxima-
tions (8.145)-(8.147) and (8.149), (8.150) from now on, rather than the exact relations.

(4) Sub-Hubble & super-COM distances. Spatial proper lengths L∆x(τ, η) above
the COM transition scale, yet below the Hubble radius at the respective scale, LH(τ),
are of special interest. We refer to them as “sub-Hubble & super-COM” lengths. In
Figure 8.11, they constitute a triangle-shaped region on the L -τ plane.

8.9.3. Leaving and re-entering the harmonic regime

In 3D space, let us consider an arbitrary comoving (i.e., coordinate) distance ∆x. Its
precise physical role, if any, is irrelevant for now. The essential point is only that the
associated proper length L∆x(τ, η) = LH(τ) + ξ(∆x, η) depends on both the ordinary
conformal time η and the RG time τ .

Note that by eq.(8.135) the auxiliary quantity ξ ≡ ln (∆x/|η|) is independent of the
RG time. As a result, the τ -dependence of L∆x parallels exactly that of LH , as the two
functions differ by an additive constant only.

(1) Let us consider several distances ∆x′,∆x′′, · · · at one and the same arbitrary, but
fixed ordinary time, η = η1, say. Hence we can faithfully represent them by means of
their respective ξ-values, ξ′ = ln (∆x′/|η1|) , ξ′′ = ln (∆x′′/|η1|) , · · · . The τ -evolution of
the related proper lengths L∆x′ ,L∆x′′ , · · · is fully determined by that of the Hubble pa-
rameter then. As shown in Figure 8.12, the graphs of all functions τ 7→ L∆x′,∆x′′,···(τ, η1)

run everywhere parallel to LH , with differing offsets ξ′, ξ′′, · · · though.

(2) Figure 8.12 also illustrates that qualitatively different scale histories τ 7→ L∆x(τ, η1)

can occur, depending on the size (ξ-value) of the structure under consideration:

(i) Very large structures, like the one with ξ = ξ′ in the Figure, are super-Hubble sized
at all RG times, L∆x′(τ) > LH(τ), ∀τ ∈ (−∞,+∞).
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Figure 8.12. Scale history analogous to Figure 8.11. The proper length
scales L∆x(τ) of various geometric structures are depicted in addition;
they evolve parallel to LH(τ), having different offsets ξ though. The struc-
ture with comoving size ∆x′′′ is seen to go super-COM between τ−(ξ′′′) and
τ+(ξ′′′), respectively. It always remains of sub-Hubble size, however.

(ii) Very small structures, such as the one having ξ = ξ′′ in Figure 8.12, are sub-COM

sized at any RG time, meaning that L∆x′′(τ) < L +
COM(τ), ∀τ ∈ (−∞,+∞).

(iii) Structures of intermediate magnitude ξ′′′ can be sub-Hubble on all scales, and
simultaneously sub-COM sized on all scales except for a finite interval of RG times
during which they go “super-COM”:

L +
COM(τ) < L∆x′′′(τ) < LH(τ), ∀τ ∈

[
τ−(ξ′′′), τ+(ξ′′′)

]
⊂
[
− |τ̂ |,+|τ̂ |

]
(8.151)

In Figure 8.12, the proper lengths of all such structures pass through the shaded triangle
pertaining to the sub-Hubble & super-COM length scales. At the times τ−(ξ′′′) and
τ+(ξ′′′) the structures, respectively, exit and re-enter the range of the sub-COM scales,
i.e., the harmonic regime.

(3) Exit and re-entry times τ±(ξ′′′). Let us compute the RG times τ− and τ+,
respectively, at which a certain geometric structure of the third type leaves and re-enters
the harmonic regime. We can characterize the structure by, equivalently, its coordinate
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length ∆x′′′, the proper length L∆x′′′(τ, η), or its ξ-parameter ξ′′′ = ln (∆x′′′/|η|), the
ordinary time η being held fixed.

The exit/entry RG time is determined by the requirement L∆x (τ±(ξ′′′), η) = L +
COM (τ±(ξ′′′)).

Upon using (8.135) it reads

L +
COM (τ±(ξ′′′))−LH (τ±(ξ′′′)) = ξ′′′ . (8.152)

Note that the sought-for RG times τ± depend on ∆x and the usual time η only via
the combination ∆x/|η| ≡ eξ. The condition (8.152) could easily be solved exactly
after inserting eq.(8.144), as well as eq.(8.148) with (8.139). For our purposes the
piecewise linear approximations (assuming |τ̂ | � 1) are sufficient though, yielding for
ξ′′′ ∈ (−|τ̂ |, 0):

τ−(ξ′′′) ≈ −|τ̂ | − ξ′′′ ∈ (−|τ̂ |, 0)

τ+(ξ′′′) ≈ +|τ̂ |+ ξ′′′ ∈ (0,+|τ̂ |)

(8.153)

(8.154)

There are no solutions to the exit/entry condition if ξ′′′ < −|τ̂ | or ξ′′′ > +|τ̂ |.

(4) Histories sub-Hubble & super-COM at RG time τ1. Now we change the
perspective and, rather than ξ, freeze the RG time, at τ = τ1 ∈

[
− |τ̂ |, |τ̂ |

]
, say. In this

case the question is: Which scale histories τ 7→ L∆x(τ, η) ≡ LH + ξ, when evaluated
at τ = τ1, yield a proper length in the sub-Hubble & super-COM regime? Concretely,
what are the ξ-values that characterize such histories?

The answer is easily read off from Figure 8.12: At the RG time τ = τ1, precisely
those scale histories of proper lengths are in the sub-Hubble & super-COM range which
possess a parameter value ξ ≡ ξsubHsuperC in the interval

ξsubHsuperC ∈ [ξmin(τ1), 0] where ξmin(τ1) ≡ −|τ̂ |+ |τ1| (8.155)

In particular, ξmin(−|τ̂ |) = 0 = ξmin(|τ̂ |), and ξmin(0) = −|τ̂ |, as it should be.

8.9.4. Space probed by sub-Hubble & super-COM waves

In the previous subsection, ∆x was a generic distance or length without a particular
physical interpretation. Now we are more specific and interpret ∆x ≡ 2π/|~p| as the
spatial coordinate period of the function ei~p·~x. Thereby we regard the latter as a member
of the 3D momentum eigenbasis

B ≡
{
ei~p·~x, ~p ∈ R3

}
. (8.156)

Importantly, we shall now consider those plane waves in their own right, that is, unre-
lated to any �-eigenfunctions or COMs. This allows us in particular to admit proper
wavelengths larger than L+

COM.
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Taking advantage of the basis B we can expand any functions over a fixed time slice:

A(~x) =

∫
R3

d3p a(~p) ei~p·~x . (8.157)

By eq.(8.135), every basis element ei~p·~x comes with an associated ξ-value. It parametrizes
the comoving and physical period lengths, and the comoving wave number by, respec-
tively,

∆x =
2π

|~p|
= |η| eξ, L∆x(τ, η) = LH(τ) + ξ , p =

2π

|η|
e−ξ . (8.158)

It should be kept in mind that henceforth the ordinary time is considered frozen at
some arbitrary given value η.

(1) Sets of 3D plane waves. In a self-explaining notation, it is natural to decompose
the 3D plane wave basis B as follows:

B = BsubC(τ) ∪ BsubH
superC(τ) ∪ BsuperH(τ) (8.159)

In this order, the three subsets comprise exponentials having proper wavelengths in the
ranges L∆x < L +

COM, L +
COM ≤ L∆x ≤ LH , and L∆x > LH , respectively.

The decomposition (8.159) depends on the RG time τ (and on η). Figure 8.12 shows
that BsubH

superC(τ) is non-empty for τ ∈
[
− |τ̂ |, |τ̂ |

]
only.

On such scales, the plane waves in the subsets BsubC(τ), BsubH
superC(τ), and BsuperH(τ),

in this order, are characterized by the following ξ-intervals:

ξ ∈
(
−∞ , ξmin(τ)

)
, ξ ∈

[
ξmin(τ) , 0

]
, and ξ ∈

(
0 , +∞

)
. (8.160)

Here ξmin(τ) ≡ −|τ̂ |+ |τ |, see eq.(8.155).

The equivalent intervals for the coordinate wave numbers p = |~p| of the exponentials
in the respective sets are, again in the same order,

p ∈
(

2π

|η|
e|τ̂ |−|τ | , +∞

)
, p ∈ 2π

|η|

[
1 , e|τ̂ |−|τ |

]
, and p ∈

(
0 ,

2π

|η|

)
. (8.161)

In writing down (8.160) and (8.161) we relied again on the piecewise linear approxima-
tion.

In Figure 8.12, the basis elements in BsubH
superC(τ) are precisely those that have physical

wavelengths L∆x(τ, η) which are inside the shaded triangle at the respective RG time
τ .11

(2) The span of sub-Hubble & super-COM plane waves. The class of func-
tions A(~x) which can be expanded in terms of basis elements from BsubC(τ) alone

11We omit the primes on ∆x from now on.
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were discussed already in the context of �-eigenmodes in the harmonic regime and the
A/B-models.

Next we are going to explore the spatial properties of quantum de Sitter space on
physical distance scales between the COM and the Hubble scale.

It is therefore natural to ask about the properties of those functions which can be
constructed by superposing plane waves from BsubH

superC(τ) alone. At the RG time τ , they
are given by the Fourier integrals

A(~x) =

∫
|~p|∈[p1, p2]

d3p a(~p) ei~p·~x , (8.162)

[p1, p2] ≡ 2π

|η|

[
1 , e|τ̂ |−|τ |

]
, (8.163)

whose τ -dependent range of contributing momenta projects on plane waves of the sub-
Hubble & super-COM brand.

Inspired by the methodology of non-commutative geometry [61, 391], we expect that
the space of functions defined by (8.162), (8.163) reflects properties of the “quantum
manifold” the functions are defined upon, in this case quantum de Sitter space12 on
length scales between L+

COM and LH . As we saw in the previous section, this regime is
a terra incognita for the effective field theory.

(3) The information content of A(x). It will prove instructive to ask how much
information can be “stored” in functions of the form (8.162), or what amounts to the
same, how much information is needed in order to uniquely specify a function A within
the class (8.162).

We would like to quantify the information contents by the number N of points
~xj, j = 1, · · · ,N , at which a given A(~x) must be evaluated in order to identify the
function unambiguously. If N such evaluations are needed, the entire information
carried by the function A is encoded in the array of complex numbers

(
A (~xj) , j =

1, · · · ,N
)
∈ CN .

Equivalently, it should be possible to identify a unique function A from the class
(8.162) if we are given the same number of Fourier coefficients,

(
a(~pj), j = 1, · · · ,N

)
,

so that we can replace the ~p-integral in (8.162) by a discrete Fourier sum over momenta
with |~pj| ∈ [p1, p2].

To make this counting and reconstruction well defined we discretize the ~p-spectrum
by defining A(~x) over a compact domain, namely a huge 3-dimensional ball B3 within

12Recall that in our approach the “quantum” property of spacetime resides in its scale dependence, not
in modified geometric properties of the underlying smooth manifold at fixed τ .
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the η-slice. Assuming a large radius, very many discrete momenta will lie in the interval
(8.163).

Then, by standard statistical mechanics, the sought-for number N of independent
(distinguishable) functions A(~x) is obtained by integrating the measure

1

(2π)3

3∏
k=1

dpk ∧ dxk (8.164)

over the respective volumes in coordinate and momentum space. In an expanding
universe one must be careful though not to confuse comoving and physical quantities:
The measure (8.164) applies if, either, pk and xk are both comoving (aka, coordinate)
quantities, or, pk and xk are both physical (aka, proper) quantities.

8.9.5. N (τ): derivation

At this point we decide to evaluate N by integrating over comoving variables13 at fixed
η and τ , whence

N =

(
1

2π

)3 ∫
|~p|∈[p1, p2]

d3p

∫
coord-Vol[B3]

d3x . (8.165)

Concretely, we are going to consider a ball B3 in position space whose proper radius
is given by the Hubble length, Lprop = LH(k), implying the proper volume

proper-Vol[B3] =

(
4π

3

) (
1

H(k)

)3

(8.166)

Its coordinate radius and volume, on the other hand, are Lcoord = LH(k)/bk(η) = |η|,
since bk(η)−1 = |η|H(k), and

coord-Vol[B3] =

(
4π

3

)
|η|3 . (8.167)

Note that while the proper Hubble volume is scale- but not time-dependent, the coor-
dinate Hubble volume is time-, but not scale-dependent.

Thus eq. (8.165) turns into

N =

(
1

2π

)3

× 4π

∫ p2

p1

dp p2 ×
(

4π

3

)
|η|3

=

(
4π

3

)2 (
|η|
2π

)3 [
p3

2 − p3
1

]
(8.168)

13It can be verified that consistently employing proper integration variables leads to the same result.
See also ref. [392, 393] for a similar calculation on de Sitter space, as well as a discussion of its
subtleties.
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Obviously, N is time dependent for generic wave numbers p1 and p2. But if we now
insert the interval boundaries in question, (8.163), the conformal time is seen to drop
out completely, yielding for all τ ∈

[
− |τ̂ |, +|τ̂ |

]
,

N (τ) =

(
4π

3

)2 (
e3|τ̂ |e−3|τ | − 1

)
(8.169)

This is our final result for the number of independent 3D plane waves having physical
wavelengths in the sub-Hubble & super-COM regime. Remarkably enough, this number
is completely independent of the ordinary time η.

(1) N (τ ): upper bound. While time independent, the number N does depend on
the RG time. The behavior of N = N (τ) is consistent with Figure 8.12: N (τ) vanishes
for τ ≤ −|τ̂ |, it increases between τ = −|τ̂ | and τ = 0, reaches its maximum at τ = 0

then, thereupon decreases for τ between τ = 0 and τ = +|τ̂ |, and finally vanishes again
for all τ ≥ +|τ |.

Importantly, the numberN (τ) is bounded above. Assuming, as always, that |τ̂ | � 1,
the upper bound, its maximum value Nmax = N (0), is given by

Nmax =

(
4π

3

)2

e−3τ̂ =

(
4π

3

)2
(
k̂

kT

)3

(8.170)

Note that N (τ) is largest at the RG time when the trajectory runs through its turning
point, τ = 0. Making use of (8.140) we can express (8.170) more explicitly as14

Nmax =

(
4π

3

)2 (
G0 Λ0

)−3/4

(8.171)

It is interesting to observe that the value of Nmax is controlled by the dimensionless
product G0Λ0 only, and that the latter appears with a characteristic exponent (−3/4).
Comparable counts on the basis of Euclidean 4-spheres would yield the exponent (−1)

instead [270, 271].

(2) N (τ ) vs. Nb(k). Comparing (8.171) to (8.149), we observe that Nmax agrees
basically with the maximally possible number of COM boxes in a Hubble volume, Nmax

b ,
which we computed in Subsection 8.8.7 along different lines. Up to factors of order
unity,

Nmax ≈ Nmax
b ≈ [G0 Λ0]−3/4 . (8.172)

For the example of G0Λ0 = 10−120, say, Nmax ≈ Nmax
b ≈ 1090.

14Note that strictly speaking (8.140) would yield e−τ̂ ≡ k̂/kT =
[
$ G0Λ0/λ

2
∗
]−1/4. However, consis-

tency requires to approximate e−τ̂ ≈ [G0Λ0]
−1/4 here, since in the derivation of (8.170) we always

neglected the factors of order unity multiplying G0Λ0 ≪ 1.
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Furthermore it is easily checked that, within the approximations, the number of boxes
equals the number of independent functions on all scales even: Nb(k(τ)) = N (τ).

8.9.6. Interpretation and summary

Next, we analyze and interpret the results obtained in the previous subsection. At the
same time, we put them in the broader context of our earlier findings, which we also
briefly summarize here.

(1) Granularity of space. We set out to study functions expandable in the sub-basis
BsubH

superC(τ) in order to learn about the properties of quantum de Sitter space between
the COM and the Hubble scale. Such properties are not described by any single Γk-based
effective theory.

(i) At every fixed RG time τ , we found that the span of BsubH
superC(τ) comprises

N (τ) ≤ Nmax <∞ independent functions A. Hence a certain A ∈ Span BsubH
superC(τ)

is fully characterized by the values which it assumes at N (τ) evaluation points {~xj}.
As a consequence, the information carried by a field A ∈ Span BsubH

superC(τ), at the scale
τ , amounts to a vector of complex numbers

(
A(~x1), A(~x2), · · · , A(~xN (τ))

)
∈ CN (τ), with

N (τ) given in eq.(8.169).

(ii) Spatial geometric structures of de Sitter space involving length scales between L+
COM

and LH , should they exist, must be described by functions A ∈ Span BsubH
superC(τ). As a

result, the state space related to possible sub-Hubble & super-COM structures is contained
in CN (τ).

This suggests to interpret the function τ 7→ N (τ) as a scale-dependent, yet time
independent measure of the largest possible structural complexity or geometric fineness
quantum de Sitter space can display at the respective scale. In fact, it is natural to
regard N as (the negative of) a certain kind of entropy.

(iii) In Subsection 8.8.7, along a different line of reasoning, we used arguments from
effective field theory and two natural detector models to demonstrate that on quantum
de Sitter space coherent geometric structures, features that are describable by Γk for
some k, can exist only if their typical proper size does not exceed L+

COM(k).

We were led to the picture that the 3D time slices of quantum de Sitter space are split
up in L+

COM-sized coherent domains (“boxes”). While physics within a given domain is
describable by some Γk, this is not possible for the patchwork of many coherent domains,
such as all those that make up a Hubble volume.

For the time being we have no information about a distinguished shape of the coher-
ent domains, if any. For visualization purposes we assumed them to be little cubic boxes.
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We found that Nb(k) of them can be placed within one Hubble-size cube, the number
Nb(k) being given by eq.(8.123). (It goes without saying though that the shapes of the
domains and the Hubble volume are irrelevant here; we consider the regime Nb � 1

and neglect pre-exponential O(1) factors such as those that would distinguish cubes
from spheres, say.)

(iv) The results obtained in the present section corroborate the picture in (iii) of
a fragmented 3D time slice which splits up in many L+

COM-size, coherent fragments.
These results rely directly on the resolving power of plane waves in the sub-Hubble &
super-COM regime, while earlier on the latter regime had only been approached from
the sub-COM side.

In particular it turned out that the number of independent plane waves N (τ), ob-
tained in (8.169) of the present section, coincides with the number of coherent fragments
contained in a Hubble volume, Nb(k), found in Subsection 8.8.7. This counting confirms
that the boxes of the first approach, and the special class of plane waves employed in
the second, actually hint at one and the same phenomenon: The time slices of quan-
tum de Sitter space have a fragmented, granular structure, the grains being constituted
by small coherent domains, meaning that within each of them physics and spacetime
geometry are well described by one of the effective field theories {Γk}k≥0.

(2) Interpretation of the entropy uncovered. Given the equivalence of the two
approaches, it is natural to relate the boxes of the first approach, in a one-to-one
manner, to the evaluation points {~xj| j = 1, · · · ,N (τ)} that we can choose freely in the
second. The values of some function A ∈ Span BsubH

superC(τ) at those points are sufficient
to reconstruct it, and to find A(~x) for all ~x ∈ R3, i.e., everywhere on the time slice.

By this choice, every coherent domain contains one, and only one, point ~xj. In the
visualization of Figure 8.10, for example, we can think of ~xj as the center of the small
cube with edge length L+

COM(k). This illustrates the following fact which is generally
true:

Functions A ∈ Span BsubH
superC(τ) assign on average one complex number to every co-

herent domain, and this is just the largest amount of information that can be encoded
in a function of this class.

(i) Since all plane waves in BsubH
superC(τ) possess proper wavelengths above L+

COM, it is
clear that the information or entropy they carry can have nothing to do with the internal
structure of the coherent domains. It rather relates to the patchwork of domains making
up a Hubble volume as a whole.

(ii) The numbers N (τ) and Nb quantify a novel “inter-domain entropy”, as opposed
to the (familiar) “intra-domain entropy”. The inter-domain entropy is perfectly finite;
both at very early and late RG times (|τ | > |τ̂ |) it vanishes identically even.
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Since a typical patch has many internal states, its description requires more than
a single complex number. Therefore, the intra-domain entropy of one patch is usually
much bigger than the average inter-domain entropy per patch, which is of order unity.
The relative smallness of the inter-domain entropy suggests that there should exist no
extended coherent structures on length scales between L+

COM and LH .

(3) A cautionary remark. It should not be forgotten that the spectral flow analysis
presented here made essential use of the assumed vacuum domination of the cosmolog-
ical evolution. Above all else it is valid for pure gravity. In the case of matter coupled
gravity, it applies only under the condition that the matter term 8πG(k)〈Tµν〉k which,
in principle, is present in the effective Einstein equation (8.71), is negligibly small in
comparison to the Λ(k) term.

In everyday life this condition is violated usually. There the relevant gravitational
fields are almost entirely due to scale independent, and large, matter energies and
stresses. Therefore, the above fragmentation phenomena cannot be observed in this
environment.

8.10. The CMBR photons: more than an analogy?

One may wonder whether the picture of quantum spacetime that we have drawn so
far, while still rudimentary, can be matched already against the cosmology of the real
Universe. In this regard the following point deserves being mentioned perhaps.

(1) If we model the present accelerating phase of the Universe by a de Sitter spacetime,
the observed cosmological constant yields the order of magnitude estimate G0Λ0 ≈
10−120 for this all-decisive integration constant. If we furthermore assume, as always,
that the output of the RG equations, $, λ∗, · · · , are numbers of order unity, then we are
led to consider a Type IIIa trajectory with a turning point located at gT ≈ λT ≈ 10−60,
and visited at the RG time kT ≈ 10−30mPL ≈ (10 µm)−1.

At this scale, the COM quantum number, as well as the number of sub-Hubble &
super-COM plane waves, assume they respective maxima:

νCOM(kT ) ≈ 1030, Nmax ≈ 1090 (8.173)

Furthermore, eq.(8.109) predicts a proper COM coherence length at the turning point
which is in the range of micro-meters:

L+
COM(kT ) ≈

(
1030H0

)−1 ≈
(
10−30mPl

)−1 ≈ 10 µm (8.174)

Now, the emerging picture of about 1090 milli- or micro-meter size coherent fragments
which are fitted into one Hubble volume is strikingly reminiscent of the CMBR which
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pervades the observed (late, Λ-dominated) Universe. This thermal photon gas has a
black body spectrum at a temperature TCMBR ≈ 2.73 K whose spectral radiance in
wavelength peaks at about λpeak ≈ 1.06 mm. Given our liberal approximations, this
length agrees basically with the smallest occurring COM scale, eq.(8.174).

(2) To illuminate the deeper analogy, will recall that for thermal photons both the total
number density N/V , and the entropy density S/V , are proportional to T 3. Their ratio
is the universal constant S(T, V )/N(T, V ) = 2π4kB/45ζ(3). It assigns to each photon
a temperature independent entropy of about 3.6 kB on average, or equivalently an
information of 3.6/ ln(2) ≈ 5.2 bits.

The energy density of the CMBR photons, like that of all other forms of matter is
irrelevant for the cosmic expansion at late times. It is essentially Λ-driven, and this
matches precisely the assumption underlying the spectral analysis.

As for the entropy of the present Universe, the photons are relevant, however. Within
a Hubble volume, the total entropy equals roughly

S ≈ 1090 kB , (8.175)

and this entropy stems almost entirely from the CMBR photons.

It is striking that (within the approximations) the thermodynamic entropy (8.175),
in units of kB, agrees precisely with the inter-domain entropy Nmax = Nb(kT ) which
we obtain. Fundamentally, the latter has a statistical mechanics character, being the
result of counting plane waves and boxes, and having the interpretation of the entropy
due to the fragmented structure of space.15

(3) The analogy between the CMBR and the fragmented ~x-space of a de Sitter uni-
verse goes even further. Considering a thermal photon gas, the standard formulas for
N/V and Wien’s displacement law can easily be combined in order to eliminate the
temperature, and to express the total number of photons in the following suggestive
fashion:

N(T, V ) =
V

[1.27 λpeak(T )]3
. (8.176)

This relation shows that, on the average, each photon can claim a small volume of
order λ3

peak for itself. If visualized as a cube, its edge length at T = 2.73 K equals
1.27 λpeak ≈ 1.35 mm.

Clearly this size reminds us again of the milli- or micro-meter length scale set by
L+
COM(kT ). And even more than that, the way of dividing up the total volume into

coherent subsystems, each one carrying a rather small, universal share of the total

15Note that for an order of magnitude estimate it makes no difference whether we evaluate N and Nb
at k = 0 or at k = kT . After all, Λ0 and Λ(kT ) = 2Λ0 are very close on the logarithmic scale.
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entropy or information (5.2 bits here), is strongly reminiscent of the spectral flow based
picture of quantum de Sitter space which we have drawn above.

This analogy seems to motivate a scenario in which the CMBR traces out coherent
grains of space. It remains to be seen whether the similarity is purely coincidental or
there is a deeper reason for it. We hope to come back to this question elsewhere.



CHAPTER 9

Scattering amplitudes in de Sitter spacetime

Executive summary. We present a covariant framework to compute scattering ampli-
tudes and potentials in a dS background. In this setting, we compute the potential of a
graviton-mediated scattering process involving two very massive scalars. Although the
obtained scattering potential reproduces the Newtonian potential at short distances, on
Hubble-size length scales it is affected by the constant curvature: effectively, it yields
a repulsive force at sub-Hubble distances. This can be attributed to the expansion of
the dS universe. Beyond the dS horizon, the potential vanishes identically. Hence, the
scattering amplitude unveils the geometric properties of dS spacetime in a novel and
nontrivial way.

Further we generalize the formalism to non-minimally coupled scalar fields in qua-
dratic gravity in a de Sitter background. We study this scattering amplitude in the
adiabatic limit, and construct the Newtonian potential. At short distances, the flat-s-
pacetime Yukawa potential is reproduced, while the curvature gives rise to corrections
to the potential at large distances. Beyond the Hubble radius, the potential vanishes
identically, in agreement with the causal structure of de Sitter spacetime. For sub-
-Hubble distances, we investigate whether the modifications to the potential reproduce
Modified Newtonian Dynamics.

What is new? All results of this chapter represent novel research results.

Based on: References [RF4], [RF5].

Plan of this Chapter. Firstly, we show by means of a Gedankenexperiment which
is the experimental applicability of our investigation. We then start with a warmup
computation, reviewing the derivation of the Yukawa potential from the scattering
amplitude in the Born approximation.

Thereafter, we present the new computation of the scattering amplitude of a tree-level
graviton-mediated scalar-to-scalar scattering process in a de Sitter background in both
classical GR and QuadG. We describe how to compute the Feynman diagram in a curved
background geometry. The tree-level scattering amplitude associated to the diagram
in Figure 6.3 is obtained by contracting the graviton-scalar-scalar 3-point vertices with
the graviton propagator.

217
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In Section 9.4, we compute the adiabatic expansion of the scattering amplitude. We
study the properties of the amplitude in this limit. For simplicity, we will limit our-
selves to the case d = 4 only. By performing a Fourier transform, we can compute the
scattering potential in the adiabatic limit. Furthermore, we consider its phenomenolog-
ical properties. To this end, we will regard the potential as the source of a Newtonian
force. This allows to straightforwardly interpret the potential in terms of potential en-
ergies, and the scaling of the force with distance. The main result of this section is the
scattering potential presented in Section 9.5. We discuss its short- and long-distance
properties by considering full QuadG. We expect to recover the Newtonian potential
(including the Yukawa contributions due to higher curvature terms) for small radii and
curvature modifications at large distances.

In order to reproduce a DM-like scenario in the spirit of the Modified Newtonian
Dynamics, we mimic the additional mass density by modifying the potential such that
one obtains an additional attractive force. We consider whether such a modification can
arise from the obtained potential by an appropriate choice of higher derivative coupling
constants. We distinguish four different regimes: pure GR, R2-, C2-gravity and QuadG.

The essentials of dS spacetime, introducing conventions, coordinates and curvature
relations can be found in Appendix E. Details regarding the computation of the prop-
agator in curved spacetime, commutation relations in constantly-curved spacetime and
technical steps in order to evaluate the scattering amplitude in the adiabatic expansion
are relegated to Appendix F.

The sections of this chapter have been extracted from the author’s publications [RF4],
[RF5].

9.1. Gedankenexperiment: Collision of Bunch–Davies waves

In this section, we will briefly discuss the interpretation of scattering amplitudes from
the experimental or observational point of view. Scattering amplitudes represent a
technical tool developed with the purpose to connect QFT and collider experiments.
However, we previously mentioned, that due to the lack of a description of an S-matrix
in QFT in curved spacetime, the generalization to possible collision experiments in
general spacetimes has not been performed yet.

Thanks to our new findings related to the construction of a scattering amplitude in
de Sitter spacetime in a fully covariant way, we can mimic the connection to experi-
ments generally used in Minkowski spacetime. In this way we circumvent the lack of
S-matrix elements in dS. For the sake of simplicity, here we will restrict the discussion
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to GR interactions, considering in the gravitational action only the Einstein–Hilbert
term (neglecting higher curvature interactions).

(1) In order to furnish an explicit “expression” for the scattering process encoded in A,
we can perform an adiabatic expansion of the fields in conformal coordinates.

(1a) Adiabaticity. In a cosmological context adiabaticity assumes that the curvature
of spacetime is much smaller than the scales associated to the processes taking place in
it, in this case the scattering process. Assuming that the mass of the particles involved
is larger than the inverse Hubble length, is then a sufficient condition for adiabaticity.

(1b) Conformal coordinates. At the same time the conformally flat (aka spatially
flat) metric is

ds2 =
1

(Hη)2

(
− dη2 + d~x2

)
. (9.1)

This covering is also called the expanding Poincaré patch. The expanding Poincaré
patch has a peculiarity in its geometry. The spatial part of their metric has the con-
formal factor 1/(Hη)2. Due to its presence, every wave experiences strong blue shift
towards the past infinity patch.

(1c) Bunch–Davies waves. The Bunch–Davies waves are the wave functions solving
to the wave equation in the expanding Poincaré patch. The Bunch–Davies vacuum
instead is such a state that has no positive energy excitations at the past infinity of the
expanding Poincaré patch. In fact near the boundary we can define what we mean by
particle and what we mean by positive energy, because every momentum experiences
infinite blue shift towards the past of the patch. Here, high energy harmonics are not
sensitive to the comparatively small curvature of the background space and behave as
if they are in flat space.

(1d) Accessible position space. Due to the spatial homogeneity of the conformally
flat patch and also of the initial states that we consider, it will be natural to perform
the Fourier transformation along the ~x directions. The explicit computation of the
scattering amplitude will allow us to pass from momentum space to position space and
to construct the scattering potential.

(2) The resulting picture is the following: two emitters emit heavy-mass Bunch–Davies
waves, which scatter, giving rise to two outgoing waves. These outgoing waves can be
in turn expanded in terms of Bunch–Davies waves, performing a heavy-mass expansion
(see Figure 9.1).

(3) As discussed in the Introduction, the Newtonian potential passes experimental
gravitational tests at small separations. Hence, for small separations between the emit-
ters, we expect the resulting potential to agree with the Newtonian result. In fact, in
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Figure 9.1. Gedankenexperiment: two emitters emit Bunch–Davies
waves and they scatter. The scattering process is encoded in the scat-
tering amplitude functional A. The process gives wise to outgoing waves,
which can be expanded themselves in Bunch–Davies waves.

this regime the expansion of the Bunch–Davies wave function reproduces the free wave
function on Minkowski space.

More interestingly, we question whether the potential presents some modifications
for larger separations due to the curvature of the background spacetime. In particular,
these modifications could give rise to modification in the Newtonian force, possibly
fitting the unexplained rotation profiles of galaxy curves.

Finally, de Sitter spacetime is known for its causal structure: particles separated by
distances larger than the Hubble distance don’t interact, being causally disconnected.
Therefore, if the emitters are separated by distances larger than the Hubble radius, the
potential should vanish, meaning that nothing can be observed. This would represent
the substantial experimental manifestation of the de Sitter horizon.
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Figure 9.2. Tree-level scalar-to-scalar φ3-scattering amplitude for the
process φ1χ2 → φ3χ4 (t-channel). Time flows from the left to the right.

9.2. Warmup: the Yukawa potential

Before constructing the scattering amplitude of a graviton mediated scalar-to-scalar pro-
cess, we will set the stage and follow the standard derivation of the the Yukawa potential
for a massive φ3-scalar theory scalar-to-scalar scattering process in flat spacetime.

The Yukawa potential can be derived as the lowest order amplitude of the interaction
of a pair of scalars. The Yukawa interaction couples them to another exchanged scalar
field with the interaction term g φ3. The action of the three scalars then reads

S =

∫
ddx

(
1

2
∂µφ∂

µφ− m2

2
φ2 + g φ3

)
(9.2)

The scattering amplitude for two scalars, one with initial momentum p1 and the
other with momentum p2, exchanging a scalar with momentum k (see Figure 9.2), is
constructed applying the Feynman rules:

(1) For each vertex associate a factor of g with the amplitude; since this diagram
has two vertices, the total amplitude will have a factor of g2;

(2) The Feynman rule for a particle exchange is to use the propagator; the propa-
gator for a scalar with mass m is − 4π

k2+m2 ;
(3) Thus, we see that the Feynman amplitude for this interaction is nothing more

than
V (k) = −g2 4π

k2 +m2

m�|~k|
= −g2 4π

|~k|2 +m2
(9.3)

where in the last equality we have applied the so-called Born approximation
and assumed that the mass is much greater than the exchanged 3-momentum.
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This is seen to be the Fourier transform of the Yukawa potential. By examining its
Fourier transform:

V (r) =
g2

(2π)3

∫
ei~k·~r 4π

|~k|2 +m2
d3~k = −g2 e

−m r

r
(9.4)

The potential is monotonically increasing in r and it is negative, implying that the force
is attractive.

9.2.1. Gravitational potential around flat spacetime

In the following subsection we will extend this computation also to gravitational inter-
actions [42] and sketch the derivation of the Newtonian potential, and to the Quadratic
Gravity action. Here, both cases are treated in flat spacetime, the generalization to
curved spacetime represents one of the objectives of this Project.

(1a) Newtonian potential. In [42] sketched how the Newtonian 1/r-potential could
be derived by performing the Born approximation to the following scattering process:
they considered a two-to-two-scalars graviton mediated scattering amplitude. Due to
the masslessness of the exchanged graviton, this resulted in a 1/r interaction potential.

(1b) Yukawa terms from Quadratic Gravity. Analogously, by studying the propa-
gating modes corresponding to Quadratic Gravity around flat spacetime, the same sort
of Yukawa terms should arise [394, 395]. Consider the four-derivative action (in the
metric ĝµν) in 4 dimensions

S[ĝ] =
1

16πG

∫
ddx

√
−ĝ
(
− 2Λ + R̂ +

αR
6
R̂2 − αC

2
ĈµνρσĈ

µνρσ

)
. (9.5)

By expanding this action around Minkowski space ĝµν = ηµν + hµν and choosing the de
Donder gauge fixing, the action takes the form

SMink[ĝ] =
1

16πG

∫
ddx

√
−ĝ
(
− 2Λ +

1

2

(
hTTµν �h

TT, µν + ∂µφ∂
µφ
)

+
1

3αR
(�φ)2 − 4

3αC
�hTTµν �h

TT, µν

)
.

(9.6)

where we used the decomposition of the field in terms of the transverse-traceless mode
hTT and the scalar trace mode φ = hµµ. From this action S0 we can recognize in the
scalar-mode propagator a massive contribution with m2 = 1

αR
. As for the spin-2 part,

there is an additional mass pole at m2 = 1
αC

.

The related potential can be obtained by performing the Fourier transform. We
obtain

VMink(r) ∝ G

(
−1

r
− 1

3

1

r
e−r/

√
αR +

4

3

1

r
e−r/

√
αC

)
(9.7)
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~k1 ~k2

hµν

~p2~p1

χ1 χ2

φ2φ1

1

Figure 9.3. Tree-level graviton mediated scattering amplitude for the
process φ1χ1 → φ2χ2 (t-channel). Time flows from the left to the right.

The first term represents the Newtonian contribution, while the other two terms are
the Yukawa potentials arising due to the presence of quadratic interactions.

Remark. It is important to emphasize, that the two additional Yukawa contributions
appear with two opposite signs. The αC term has a positive sign, meaning that it com-
petes with the Newtonian contribution and is repulsive. Demanding that the potential
should reproduce the Newtonian behavior at short distances will impose constraints on
the value of αC .

9.3. The scattering amplitude functional

Having set the stage, we will now turn to the computation of a scattering amplitude.
We will consider the graviton-mediated scattering of two particle species φ and χ. In
flat spacetime, at tree level this amplitude is described by a single t-channel Feynman
diagram, depicted in Figure 9.3. In this section, we generalize this Feynman diagram
to dS spacetime by promoting propagators and vertices to noncommuting differential
operators. Taking into account curvature contributions leads to the main result of this
section, given in equations (9.26).

9.3.1. Action

Before we describe how to compute the scattering amplitude in dS spacetime, let us for
concreteness first introduce the action. We will take an action that is a functional of
the (dynamical) spacetime metric ĝ and two scalar fields φ and χ. Furthermore, we
employ the background field method, depending on the background metric ḡ.
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(1) The action is then of the following form:

S = Sgrav[ĝ] + Sgf[ĝ; ḡ] + Ssc[φ, ĝ] + Ssc[χ, ĝ] . (9.8)

Let us now explicitly formulate each contribution to the action. For the gravitational
interaction Sgrav, we take the four-derivative action

Sgrav[ĝ] =
1

16πG

∫
ddx

√
−ĝ
(
− 2Λ + R̂ + αR

d− 2

4(d− 1)
R̂2

− αC
d− 2

4(d− 3)
ĈµνρσĈ

µνρσ +
1

2(d− 3)(d− 4)
αEE4

)
.

(9.9)
Here, we have denoted by a hat those quantities that are defined with respect to the
dynamical metric ĝ. For the time being, no specification of the sign of the cosmological
constant Λ is required.

In (9.9), E4 is the Euler density in four dimensions:

E4 = R̂2 − 4R̂µνR̂
µν + R̂αβγδR̂

αβγδ . (9.10)

For d = 4, the integral over E4 is a topological invariant. Thus, for this dimension
we set αE to zero, since it will not contribute to any dynamical quantity. In a similar
fashion, the C2 and R2 are non-dynamical for d ≤ 3 and d ≤ 2 dimensions, respectively.
We therefore set the αC and αR couplings to zero in these dimensions, too. We have
discussed how in flat spacetime, the αR and αC couplings induce massive spin-0 and
spin-2 poles in the graviton propagator. We have chosen the normalization in such a
way that in flat spacetime, αR denotes the inverse mass of the spin-0 pole, while αC
denotes the inverse mass of the spin-2 pole [65].

(2) Next, we specify in (9.8) a de Donder type gauge-fixing action, necessary to obtain
a well-defined graviton propagator:

Sgf[ĝ; ḡ] = − 1

16πG

1

2αgf

∫
ddx
√
−ḡ ḡµνFµ[ĝ, ḡ]Fν [ĝ, ḡ] , (9.11)

where the gauge fixing operator is defined as

Fµ[ĝ, ḡ] = δβµ ḡ
ρσ∇̄ρĝσβ − βgfḡαβ∇̄µĝαβ . (9.12)

Here the gauge fixing parameters αgf and βgf generalize the de Donder gauge, and allow
to track gauge dependence explicitly. The Faddeev–Popov ghosts will not contribute
to the scattering amplitude, for the reason that they do not couple to the scalar fields.
The specific form of their action is therefore not needed for our purposes.

(3) Finally, the matter sector is given by non-minimally coupled massive scalar fields
φ and χ, whose action takes the form

Ssc[φ, ĝ] = −1

2

∫
ddx

√
−ĝ φ

(
−�̂+m2

φ + αφR̂
)
φ . (9.13)
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Here we have expressed the covariant d’Alembertian by �̂ = ĝµν∇̂µ∇̂ν .

9.3.2. Vertices and propagators

We will now describe how to compute the Feynman diagram from Figure 9.3 in the
presence of a curved background metric ḡ using the operator method.

(1) Propagators. The tree-level scattering amplitude associated to the diagram in
Figure 9.3 is obtained by contracting the graviton-scalar-scalar 3-point vertices with
the graviton propagator. These are computed by taking functional derivatives of the
action S with respect to the fields, and projecting onto a solution to the equation of
motion. For the scalar fields, the equation of motion is given by the (non-minimal)
Klein–Gordon equation:

�̂φ = (m2
φ + αφR̂)φ , �̂χ = (m2

χ + αχR̂)χ . (9.14)

We observe that φ = χ = 0 is a solution to the equation of motion. The equation of
motion for the metric is that of QuadG. We will look for dS solutions, which means that
the constant Ricci scalar is the only nonzero curvature tensor. The Ricci scalar R is
then given by the quadratic equation

R =
2d

d− 2
Λ− d− 4

4(d− 1)
αRR

2 . (9.15)

We write
ĝµν = ḡµν + hµν , (9.16)

where ḡµν is a dS metric whose Ricci scalar R̄ satisfies (9.15). Functional derivatives
with respect to ĝ are then conveniently computed by expanding around ḡµν .

(2) Vertices. By taking one functional derivative with respect to the metric and two
with respect to the scalar fields, we obtain the three-point vertices. Subsequently, we
set all fields to their background values. Thus, we define

T (hφφ) =
δ3S

δhδφδφ

∣∣∣∣ ĝ=ḡ
φ=χ=0

, T (hχχ) =
δ3S

δhδχδχ

∣∣∣∣ ĝ=ḡ
φ=χ=0

. (9.17)

The graviton propagator is given by the inverse of the two-point function:

G(hh) =

[
δ2S

δhδh

]−1
∣∣∣∣∣ ĝ=ḡ
φ=χ=0

. (9.18)

Note that in order to make the inversion well-defined, it was necessary to include the
gauge fixing action Sgf in (9.8).
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We note that the three-point vertices are formally linear operators acting on a gravi-
ton fluctuation and two scalar fluctuations, whereas the graviton propagator is a linear
operator acting on two graviton fluctuations.

9.3.3. Computation of the propagator

Here we will give a brief description of how to compute the graviton propagator.

(1) By general covariance, the propagator can be written as a linear combination of func-
tions of � and R, multiplied by an appropriate tensor structure mapping a symmetric
rank-two tensor to a symmetric rank-two tensor. Since we are working in dS spacetime,
we can choose a specific ordering of propagator functions and tensor structures. We
choose to sort all propagator functions to the right, i.e., we write

G(hh) =
∑
i

TiGi(�, R) . (9.19)

Here, Ti are six tensor structures that span a basis of operators on rank-two tensors,

[Ti]
ρσ

µν ∈
{
δρ(µδ

σ
ν), gµνg

ρσ, gµν∇(ρ∇σ),∇(µ∇ν)g
ρσ,∇(µδ

(ρ
ν)∇

σ)
,∇(µ∇ν)∇(ρ∇σ)

}
, (9.20)

and the functions Gi are the propagator functions that are to be computed.

(2) We compute the propagator functions by demanding that[
δ2S

δhδh

] ρσ

µν

[
G(hh)

] αβ

ρσ
=
[
1
] αβ

µν
= δα(µδ

β
ν) . (9.21)

(3) We compute this in practice by acting with this equation onto a symmetric fluctu-
ation hαβ. Next, we sort all occurrences of � to the right, so that they act first on hµν .
In this way, together with the functions Gi they form differential operators with the ap-
propriate index structure of an operator mapping symmetric two-tensors to symmetric
two-tensors. Finally, we symmetrize all derivatives so that we map the result onto the
basis (9.20). The propagator functions can then be read off; since their expressions are
rather lengthy, we will not display them here, and refer to the Section F.2 for additional
details.

9.3.4. Computation of the amplitude functional

It remains to compute the amplitude functional by contracting the propagator with the
three-point operators.

(1)We bring the amplitude to a standard form by sorting the contracted derivatives. In
order to commute the contracted derivatives with the propagator functions, we employ
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the commutation techniques described in Section F.1. These techniques were developed
in the context of affine gravity in [396]. Using integration by parts, we can manipu-
late on which scalar field each derivative acts. Finally, we can simplify the amplitude
significantly by using the equation of motion (9.14) for the scalar fields.

The tree-level scattering amplitude associated to the diagram in Figure 9.3 is now
obtained by contracting the three-point vertices with the graviton propagator. Rather
than treating the amplitude as a multilinear operator acting on fields, it is convenient
to contract the amplitude with four test fields:

A[χ1, χ2, φ1, φ2] =

∫
ddx
√
−ḡ

[
T (hχχ) (χ1, χ2)

]µν [G(hh)
] ρσ

µν

[
T (hφφ) (φ1, φ2)

]
ρσ

.

(9.22)
Here the T (hχχ)(χ1, χ2) denotes the three-point vertex (9.17) acting on two test fields
χ1 and χ2. The object A will be referred to as amplitude functional. Since (9.22) only
contains objects in the dS background, to simplify the notation, we will omit the bar to
denote the background metric and its derived objects.

Remark. At this point, the following remark is in order. In our operator method
setup, we will regard the vertices and propagator as noncummuting differential opera-
tors, acting on scalar fields and metric fluctuations. This slightly formal point of view is
in contrast to two common implementations of computing scattering amplitudes. First,
in flat spacetime one has the Fourier transform at one’s disposal. This allows to replace
any derivatives with momenta reducing the scattering amplitude to a numerical quan-
tity straightaway. In curved spacetime, such a Fourier transform is in general absent,
and one has to take into account noncommutative derivatives. Secondly, the opera-
tor viewpoint has an advantage over a description in terms of position-space integral
kernels. Regarding vertices and propagators as operators greatly simplifies composi-
tion and contraction of Feynman diagram elements, as opposed to computing lengthy
integrals over dS spacetime.

(2)We computed the amplitude functional (9.22) using the Mathematica tensor algebra
package xAct [397–400]. We used the procedure outlined in Subsection 9.3.3 to construct
the graviton propagator and to sort and contract the covariant derivatives.

The amplitude functional (9.22) consists of covariant derivatives acting on the scalar
fields, and scalar curvatures. The amplitude can be simplified using the on-shell condi-
tions (9.14), integration by parts and the commutation techniques developed in [396].

(3) These methods can be used to bring the amplitude functional to a standard form.
We will require that the amplitude functional is manifestly symmetric in the external
fields. Since the vertices contain at most two uncontracted derivatives, we infer that
the amplitude can be built using a scalar vertex structure, and a symmetric rank-two
tensor vertex structure.
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(3a) Scalar vertex. For the scalar vertex, it is convenient to define

V [φ1, φ2] =

[
m2
φ − (d− 1)

(
αφ −

d− 2

4(d− 1)

)
�

]
φ1φ2 , (9.23)

where the d’Alembertian acts on the product φ1φ2.

(3b) Tensor vertex. For the tensor vertex we choose

Tµν [φ1, φ2] = (∇(µφ1)(∇ν)φ2)−1

d
gµν(∇γφ1)(∇γφ2)−αφ

[
∇µ∇ν −

1

d
gµν�

]
φ1φ2 . (9.24)

(3c) Rank-r ropagators. Finally, it will be convenient to define the operators

Gr(�; ζ) =
(
−�+

(
r(r + d− 2) + ζ

)
H2
)−1

. (9.25)

Here we define the Hubble parameter by H2 = R
d(d−1)

, following the conventions from
Appendix E. We will refer to the operator Gr(�; ζ) as propagator. The label r denotes
the rank of the tensor it acts upon. We will refer to the dimensionless number ζ as the
mass parameter; using slightly sloppy terminology, it parameterizes the graviton mass
and can be related to the unitary irreducible representations of the graviton degrees of
freedom [401–406].

9.3.5. Result

We will now present the resulting amplitude functional. This constitutes the first major
result of this paper.

(1) Quadratic Gravity. The amplitude functional (9.22) is given by

A = 16πG c(αR, αE)

[
− ζC + d

ζC − ζh

(
A2(ζh)−A2(ζC)

)
+

1

d(d− 1)

ζC
ζC − ζh

(
A0(ζh)−A0(ζC)

)
+

1

(d− 1)(d− 2)

(
A0(ζh)−A0(ζR)

)]
.

(9.26)

Here we have defined the partial amplitude functionals

A0(ζ) =

∫
ddx
√
−g V [χ1, χ2]G0(�; ζ)V [φ1, φ2] , (9.27)

A2(ζ) =

∫
ddx
√
−g Tαβ[χ1, χ2]G2(�; ζ)Tαβ[φ1, φ2] , (9.28)
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the dimensionless mass parameters

ζR =
1

αRH2
+

1

2
d(d− 4) +

αE
αR

, ζh = −2(d− 1) ,

ζC =
1

αCH2
− d+

1

2
d(d− 2)

αR
αC

+
αE
αC

.
(9.29)

and the coefficient

c(αR, αE) =
1

1 + αEH2

ζR − 1
2
d(d− 4)

ζR + d
. (9.30)

(2) Einstein-Hilbert gravity. We can present the result for the Einstein-Hilbert
gravity case:

A = 16πG

[
−A2(ζh) +

2

d(d− 2)
A0(ζh)

]
. (9.31)

Flat limit. Finally, we can perform a sanity check by taking the flat-spacetime limit
by setting R = 0 and replacing all covariant derivatives by flat-spacetime derivatives.
In this case the graviton masses zi become actual masses which vanish, making the
masslessness of the graviton manifest. Furthermore, going to momentum space, and
introducing the standard Mandelstam variables, we find in d = 4

A =
2πG

3

−
(
s2 − 4su+ u2 + 2(m2

φ −m2
χ)2
)

+ (t− 2m2
φ)(t− 2m2

χ)

t
. (9.32)

This is in agreement with the standard result [407, 408].

9.3.6. Discussion

From the amplitude functional (9.26), the following observations can be made straight-
away.

(1) Gauge independent. First, we note that the scattering amplitude does not
depend on the gauge parameters αgf and βgf. This shows that the on-shell scattering
amplitude is gauge fixing independent, conform the expectation that the scattering
amplitude is related to an observable.

(2) Conformal coupling. Second, we note that the scalar vertex V [φ1, φ2] vanishes
for a conformally coupled scalar field mφ = 0, αφ = d−2

4(d−1)
. This greatly simplifies the

scattering amplitude. For this reason, the conformally coupled scalar field has been
studied widely [279, 280, 409–411].

(3) Massive propagators. Third, we observe that the amplitude (9.26) depends
on three mass parameters ζh, ζR and ζC . In the limit H → 0, these correspond to
masses of zero, α−1

R and α−1
C , respectively. Hence, these mass parameters correspond

to the massless graviton, and the spin-0 and spin-2 mass poles. At first inspection, the
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negative value of ζh may seem to yield a tachyonic particle. However, it is important to
keep in mind that due to the nonzero curvature the correspondence between the sign
of the mass and the causal behavior is not obvious [401, 402].

(4) GR, R2− and C2-gravity. Fourth, it is now relatively simple to obtain the am-
plitudes of GR, R2-gravity and C2-gravity from this expression, by taking the following
limits:

GR: αC → 0, αR → 0 ; (9.33)

R2-gravity: αC → 0 ; (9.34)

C2-gravity: αR → 0 . (9.35)

(5) Flat limit. Furthermore, we obtain the scattering amplitude in Minkowski space-
time by taking the limit

Minkowski spacetime: H → 0 . (9.36)

Let us first consider the latter limit. We note that the mass parameters ζC and ζR go
to infinity; we then find the following limits for the coefficients:

lim
H→0

c(αR, αE) = lim
H→0

ζC + d

ζC − ζh
= lim

H→0

ζC
ζC − ζh

= 1 . (9.37)

The propagators reduce to

lim
H→0
G0(�; ζh) = lim

H→0
G2(�; ζh) = −�−1 ,

lim
H→0
G0(�; ζC) = lim

H→0
G2(�; ζC) =

(
−�+ α−1

C

)−1

,

lim
H→0
G0(�; ζR) =

(
−�+ α−1

R

)−1

.

(9.38)

This is consistent with the amplitude found in [65, 276]. Inspecting the propagators
(9.38), we see that the Minkowski spacetime amplitude corresponds to a massless spin-0
and spin-2 particle, corresponding to the graviton, and in addition a massive spin-0
particle of mass α−1

R and a massive spin-2 particle of mass α−1
C [65, 66].

In a similar fashion, we consider R2- and C2-gravity. Taking the limit αR → 0 and
αC → 0, we find that ζR and ζC are linearly divergent, respectively. Hence, provided
that the coefficients of the propagators remain finite, we conclude that the propagators
G0(�; ζC) and G2(�; ζC) are suppressed in R2-gravity, corresponding to a decoupling of
the spin-2 Stelle particle, while in C2-gravity the propagator G0(�; ζR) is suppressed,
corresponding of a decoupling of the spin-0 massive particle from the theory. It remains
to check that the coefficients of the propagator stay finite; we compute

lim
αR→0

c(αR, αE) =
1

1 + αEH2
, lim

αC→0

ζC + d

ζC − ζh
= lim

αC→0

ζC
ζC − ζh

= 1 . (9.39)



9. scattering amplitudes in de sitter spacetime 231

This justifies the assertion that the massive particles decouple in R2- and C2-gravity.

9.4. Scattering amplitude in the adiabatic expansion

We will now inspect the amplitude functional in more detail.

Since the amplitude functional is given by abstract differential operators on dS space-
time, it is not easy to draw conclusions about its physical properties. Therefore, we
resort to expansion methods to turn (9.26) into a concrete numerical expression. We
employ an expansion around the scalar masses µ = m/H = ∞. This is a specific real-
ization of the so-called adiabatic expansion [412–431]. This can be understood from the
observation that an expansion around µ =∞ implies that the evolution of dS spacetime
is much slower than the Compton frequency of the scalar fields.

This section is structured as follows. After a brief review of quantization of scalar
fields, we will discuss the adiabatic of the scalar mode functions. We will then apply this
expansion to the different objects in the amplitude functional. In Subsection 9.4.2, we
describe the algorithm used to compute the adiabatic limit of the amplitude functional.
The properties of the resulting amplitude are studied in Subsection 9.4.4. Section F.3
is devoted to the numerical techniques to obtain the amplitude in the adiabatic limit.

9.4.1. Scalar field quantization and the adiabatic expansion

In this section we compile several facts about the adiabatic expansion in dS. In general,
adiabaticity assumes that the curvature of spacetime is much smaller than the scales
associated to the processes taking place in it [412–431]. For quantum field theory in
curved spacetime, the adiabatic expansion has the advantage that it does not rely on a
strict definition of asymptotic states [332]. This is of particular interest in our work.

In the case of scalar particle scattering in dS spacetime, the adiabatic expansion is
implemented concretely by performing an expansion in µ−1 = H/m, where m is the
mass of the scalar field and H the Hubble parameter. Essentially, in this expansion the
Compton frequency of the scalar fields is assumed to be much larger than the expansion
rate of dS spacetime.

(1) Quantization of scalars in Minkowski. Let us briefly remind ourselves of the
quantization of scalar fields in Minkowski spacetime. The one-particle Hilbert space of a
scalar field ϕ with mass m is constructed from solutions to the Klein–Gordon equation,



232 part ii: fluctuation modes on ds space

whose solutions are plane waves parametrized by the spatial momentum ~p:

ϕ~p = a+ e~p + a− e~p , e~p(t, x) = ei(−ωpt+~p·~x) . (9.40)

Here, a± are constants and ωp =
√
p2 +m2, with p = ‖~p‖ the standard Euclidean norm

on spatial vectors, and denoted complex conjugation by a bar. The standard Minkowski
vacuum is chosen by promoting a+ to the annihilation operator â and a− to the creation
operator â†, corresponding to particles with positive energy ωp.

We point out two peculiar features of the Minkowski vacuum.

(1a) First, the choice of mode functions e~p is the unique choice of solutions to the
flat-spacetime Klein–Gordon equation such that the general solution can be written as
the sum of e~p and its complex conjugate, as in (9.40).

(1b) For the second property, we define the function

Ẽ(m) := i
∂tϕ~p
ϕ~p

= ωp
a+e~p − a−e~p
a+e~p + a−e~p

. (9.41)

We now note that in general, Ẽ has an essential singularity at m = ∞, due to the
appearance of ωp in the complex exponential. The exception to this when a+ = 0 or
a− = 0, i.e., in the Minkowski vacuum. In that case, we have

Ẽ(m) = ±ωp = ±
(
m+

p2

2m

)
+O(m−2) , (9.42)

which is just the nonrelativistic expansion of the particle’s energy. This analytic behav-
ior allows to consistently take the heavy-mass limit as an expansion around m =∞.

(2) Quantization of scalars in de Sitter space. We will now extend our analysis
to de Sitter spacetime. The procedure runs completely analogous to flat-spacetime
quantization. For convenience, we will use conformal coordinates. 1 First, we solve the
Klein–Gordon equation in dS spacetime. Again, the solutions are labeled by ~p, which
is now promoted to a comoving momentum. The solution is well-known [316]:

ϕ~p = a+h~p,µ + a−h~p,µ , h~p,µ(η, ~x) = η
d−1

2 H
(1)

i
√
µ2−( d−1

2 )
2(−pη)ei~p·~x . (9.43)

Here we denoted by H(1)
ν (z) the Hankel function of the first kind [437], and introduced

the dimensionless quantity µ = m/H. Note that for z > 0 and ν ∈ R, the Hankel
function of the second kind is given by H(2)

iν (z) ∝ H
(1)
iν (z), which motivates the usual

expansion in terms of Hankel functions of first and second kind. We now quantize by
promoting a+ to the annihilation operator â and a− to the creation operator â†. This

1Note that different foliations, which correspond to different boundary conditions, lead to different
quantization schemes, see for instance [432–436]. Using different coordinate systems, the labeling of
the quantum numbers and hence the unitary representation is different: these are related through a
non-trivial transformation between the relative complete basis. In fact, the scattering amplitude and
the potential are not affected by the choice of the foliation.
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prescription leads to the Bunch–Davies vacuum [438]. This is the canonical generaliza-
tion of the Minkowski vacuum, in the sense that h~p,µ reduces to a plane wave as t→ −∞
(the Bunch–Davies boundary condition) [315, 316, 438], and in the limit H → 0 [303].

(2a) Bunch–Davies as generalization of the Minkowski vacuum. In this work,
we emphasize that the Bunch–Davies vacuum also generalizes the Minkowski vacuum
concerning the properties mentioned above: it is the unique choice of mode functions
such that the coefficients of a± are each other’s complex conjugates, and are the unique
choice of modes that admit an expansion around µ =∞.2 The first property is obvious;
for the second property, we define the function

E(µ) = i
∂ηϕ~p
ϕ~p

. (9.44)

In order to compute the heavy-mass limit, we need to compute the expansion of H(1)
iµ (z)

for large µ. To this end, we note that the Hankel functions are defined to be solutions
to Bessel’s equation,

z2H ′′(z) + zH ′(z) + (z2 + µ2)H(z) = 0 , (9.45)

The expansion is computed by making the ansatz that the derivative of H can be
expressed in terms of H itself, i.e.,

H ′(z) = f(z)H(z) . (9.46)

Inserting this into Bessel’s equation (9.45) gives the nonlinear equation

z2f ′(z) + z2f(z)2 + zf(z) + z2 + µ2 = 0 . (9.47)

In analogy with the Minkowski vacuum, we will now look for a solution that has at
most a simple pole in µ−1. Thus, we make the following ansatz for f :

f(z) = µ
∑
n≥0

fn(z)µ−n . (9.48)

Plugging this into (9.47) allows to solve the differential equation order by order in µ.
The first few equations read

0 = 1 + z2f 2
0 , 0 = f0 + 2zf0f1 + zf ′0 ,

0 = z2 + z2f 2
1 + 2z2f0f2 + z2f ′1 , 0 = f2 + 2zf1f2 + 2zf0f3 + zf ′2 .

(9.49)

Solving these equations gives

f±(z) = ± iµ

z
± iz

2µ
− z

2µ2
−± iz(4 + z2)

8µ3
+O(µ−4) . (9.50)

2The requirementm� H is a special case of the adiabatic approximation [419]. In general, adiabaticity
assumes that the curvature of spacetime (here signified by H) is much smaller than the wavelength
of the particle (given by the particle’s mass). We refer to future work for a detailed discussion of the
expansion in large mass in connection to the adiabatic approximation.
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We compute this expansion to higher orders. We note that for z > 0, the two solutions
are each other’s complex conjugate. We now have to show that this solution of (9.47)
indeed gives an expansion of the Hankel functions. To this end, we expand H(1)

iµ (z) first
around z = 0, and subsequently around µ =∞. This gives

H
(1)
iµ (z) =

iµ

z
+O(z, µ−1) . (9.51)

We see that this matches exactly the leading term of f+; hence, we conclude that f+

is indeed the expansion of H(1)
iµ . Plugging this into the definition of E in (9.44), we see

that also in de Sitter space, E has a simple pole in m if and only if a+ or a− is zero.
This motivates the definition of the Bunch–Davies vacuum as the de Sitter spacetime
generalization of the Minkowski vacuum.

(2b) Heavy-mass ingoing and outgoing states. We are now in the position to
define the ingoing and outgoing states, and their respective heavy-mass limits. We
associate an outgoing scalar field with the mode function h~p,µ and an ingoing scalar
field with the mode function h~p,µ. Using the expansion (9.50), we can express their
derivatives with respect to η in terms of h~p,µ:

∂ηh~p,µ = −i E(µ)h~p,µ =

[
iµ

η
+
d− 1

2η
+ i

(
1

2
p2η2 − (d− 1)2

8η

)
1

µ
+O(µ−2)

]
h~p,µ .

(9.52)
With this definition at hand, we finally define the wave functions of the scalar fields to
be:

φ1 = h~p1,µφ , φ2 = h~p2,µφ , χ1 = h~k1,µχ
, χ2 = h~k2,µχ

, (9.53)

where we have defined the dimensionless masses µϕ = mϕ/H. This completes our
definition of the scalar wave functions.

This formulas lie at the basis of the expansion of, e.g., the action of the graviton
propagator G(�) on the vertex tensors V and Tµν used in this work.

9.4.2. Computation of the scattering amplitude

Let us begin with formalizing the adiabatic expansion. The adiabatic limit is imple-
mented by performing an expansion in the dimensionless parameters

µφ = mφ/H , µχ = mχ/H . (9.54)

around infinity. Using the results in Subsection 9.4.1, we are able to expand the solutions
to the wave equation in powers of µφ and µχ. We use this evaluate the amplitude
functional. We observe that in order to expand (9.26), it suffices to compute the
adiabatic limit of A0 and A2. Following the argument in F.3, we find that the leading
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terms are proportional to µ2
φµ

2
χ. Thus, we define:

A0 =

∫
ddx
√
−g A0(q; ζ)χ1χ2φ1φ2 +O(µχ, µφ) ,

A2 =

∫
ddx
√
−g A2(q; ζ)χ1χ2φ1φ2 +O(µχ, µφ) .

(9.55)

Here the amplitude functionals Ai are determined by the integration kernels Ai(q; ζ).
These are functions of the proper momentum transfer ~q = −η~q = −η (~p1 − ~p2), where ~p1

is the momentum of φ1 and ~p2 is the momentum of φ2. We will refer to Ai as scattering
amplitudes.

(1) We now discuss the general strategy to compute Ai. While all expressions in
Section 9.3 are valid in any coordinate basis, we will now work explicitly in conformally
flat coordinates. This allows to go to momentum space for spatial derivatives.

In these coordinates, we can assert from covariance that the propagator G0(�, ζ)

acting on the product φ1φ2 can be parameterized by

G0(�; ζ)φ1φ2 =
[
G0(η; ζ) +O

(
µ−1
φ

)]
φ1φ2 , (9.56)

for some function G0. The latter is found as follows. Acting with the inverse propagator
G−1

0 (�; ζ) = (−�+ ζH2) should give the identity operator. Distributing the derivatives
gives the second-order inhomogeneous differential equation3

η2G′′0 + dηG′0 + (q2η2 + ζ)G0 =
1

H2
, (9.57)

where the primes denote derivatives wrt. η. Following the argument in Section F.3, we
require that G0 is analytic in η for any dimension d. Since the homogeneous solution to
(9.57) is in general not analytic in η, G0 is simply given by the inhomogeneous solution:

G0(η; ζ) =
1

ζH2 1F̃2

(
1;
d+ 3

4
,
ν(ζ)

2
;−q2

4

)
. (9.58)

Here we defined 1F̃2 (a; b, c; z) = 1F2 (a; b− c, b+ c; z) in terms of a generalized hyperge-
ometric function. In addition, we defined the parameter

ν(ζ) =

√(
d− 1

2

)2

− ζ . (9.59)

We thus find

A0(q; ζ) =
µ2
φµ

2
χH

2

ζ
1F̃2

(
1;
d+ 3

4
,
ν(ζ)

2
;−q2

4

)
. (9.60)

This completes our calculation of A0. Computing the action of � on χ1χ2 using (9.52),
we find that the vertex V [χ1, χ2] expands to

V [χ1, χ2] =
[
H2µ2

χ +O
(
µ0
χ

)]
χ1χ2 . (9.61)

3An equation of this type was also derived and solved with similar techniques in [439].
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Thus, the terms A0(ζ) will each contribute to leading order µ2
χ to the scattering ampli-

tude.

(2) For A2, we take into account the tensor structure of Tαβ. Having studied the
adiabatic limit of a single scalar field in Subsection 9.4.1, we now consider the adia-
batic expansion of the vertex tensor Tµν . For the tensor vertex Tµν , we compute the
components

T00[χ1, χ2] =

[
d+ 1

d

1

η2
µ2
χ +O

(
µ0
χ

)]
χ1χ2 ,

T0i[χ1, χ2] =

[
1

2η
(k1,i + k2,i)µχ +O

(
µ0
χ

)]
χ1χ2 ,

Tij[χ1, χ2] =

[
1

dη2
δij µ

2
χ +O

(
µ0
χ

)]
χ1χ2 .

(9.62)

where Latin indices denote spatial coordinates. Note that the (00)-component and the
(ij)-components are of order µ2

χ. Therefore, only these will contribute to the leading
order in the adiabatic expansion of A2(ζ).

9.4.3. Expansion of the propagator

We proceed by showing that the action of the propagator on the scalar fields also has
a well-behaved adiabatic expansion. We will show this explicitly for the scalar vertex
V ; for the tensor vertex Tµν , the procedure is completely analogous.

(1) First, we show that f(−�)φ1φ2 has an expansion in µ−1
φ for any analytic function

f . Since f has a Taylor series expansion, it suffices to show that the expansion exists
for (−�)nφ1φ2. This is shown by an inductive argument. First, we note that for n = 0,
we have trivially

(−�)nφ1φ2 = φ1φ2 ≡
[
α0(η) +O

(
µ−1
φ

)]
φ1φ2 , (9.63)

namely for α0(η) = 1. We now make the inductive assumption that (9.63) holds for
n ≥ 0. Then acting with one more d’Alembertian gives

(−�)n+1φ1φ2 = −� (αn(η)φ1φ2) =
[(
q2η2αn + dηα′n + η2α′′n

)
H2 +O

(
µ−1
φ

)]
φ1φ2 .

(9.64)
Here, the prime denotes a derivative with respect to η. By induction, it follows that
(−�)nφ1φ2 is O

(
µ0
φ

)
φ1φ2 for any n. Therefore, for any function f that admits an

analytic expansion, f(−�)φ1φ2 can be expanded to zeroth order in µ−1
φ .

Analogously, one proves that f(−�)Tµν has a well-defined expansion, by taking care
of the tensor structure of Tµν . Here, the leading order is O

(
µ2
φ

)
, cf. (9.62).
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We note from (9.64) that (−�)nφ1φ2 also contains n powers of q2η2 = q2. Thus, we
conclude that the expansion of f(−�)φ1φ2 is automatically analytic in q.

In particular, this is true for the propagator. Representing (−�+z)−1 as a geometric
series,

(−�+ z)−1 =
1

z

∞∑
n=0

(
�
z

)n
, (9.65)

we see that for z 6= 0 the propagator has an analytic expansion. Thus, we require the
adiabatic expansion of the propagator in µ−1

φ to be analytic in q.

As a consequence, the solution to the differential equation (9.57) is fixed.

Remark. Since this is a second-order inhomogeneous differential equation, one would
expect the solution to be formed an inhomogeneous solution, accompanied by a two-di-
mensional homogeneous solution space. However, since the homogeneous solutions are
generally not analytic, we will discard these in this thesis.

(2) For A2, we take into account the tensor structure of Tαβ. Due to the two-derivative
structure of Tαβ, the leading order will be of order µ2

φ as shown in (9.62). We then make
the following ansatz for the propagator acting on Tαβ:

G2(�; ζ)T00[φ1, φ2] =
[
G00(η)µ2

φ +O(µφ)
]
φ1φ2 ,

G2(�; ζ)T0i[φ1, φ2] =
[(
G1(η)p1,i +G2(η)p2,i

)
µ2
φ +O(µφ)

]
φ1φ2 ,

G2(�; ζ)Tij[φ1, φ2] =
[(
G(12)(η) (p1,ip2,j + p1,jp2,i) +Gδ(η)δij

+G11(η)p1,ip1,j +G22(η)p2,ip2,j

)
µ2
φ +O(µφ)

]
φ1φ2 .

(9.66)

Acting on these expressions with G−1
2 (�; ζ) = (−�+ (ζ + 2d)H2) gives a set of coupled

differential equations. Using the expansion above and the results in Section F.3, we
find

A2(q; ζ) =
H4η2

d
µ2
φµ

2
χ

[
− p2

1G11(η)− p2
2G22(η)− 2p1 · p2G(12)(η)

(d− 1) (G00(η)−Gδ(η))
]
. (9.67)

By making linear combinations gi(q) =
∑

j aijGj(η), the system can be partially de-
coupled. Since the exact linear combination is rather complicated, we will refrain from
reproducing it here. We refer to the Appendix F for details on how to compute this.
At this point, it suffices to note that A2 is given by

A2(q; ζ) =
µ2
φµ

2
χH

2q2

2d

(
(d− 2)g1(q) + dg2(q)

)
. (9.68)
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Here the functions g1 and g2 satisfy the differential equations

q2g′′1 + (d+ 4)qg′1 + (q2 + ζ + 3d+ 2)g1 =
1

q2
+ dg2 ;

q2g′′2 + (d+ 4)qg′2 + (q2 + ζ + 3d)g2 =
1

q2
+ (d− 2)g1 + 4iqg3 ;

q2g′′3 + (d+ 4)qg′3 + (q2 + ζ + 3d)g3 = 4iqg2 .

(9.69)

We solve this system of equations by inserting a power series ansatz [440]:

gi(q) = qνi
∑
j≥0

bijq
j . (9.70)

Requiring that A2 is analytic in η then implies that νi ∈ Z, and that the gi are fixed
by the inhomogeneous solution to (9.69). Inserting this ansatz into the differential
equations (9.69) allows to resolve νi and the coefficients bij, after which we can resum
the power series. The solution can be written as

A2(q; ζ) = Areg
2 (q; ζ) + Asing

2 (q; ζ) . (9.71)

Here the term Areg
2 is regular for ζ = ζh:

Areg
2 (q; ζ) =

µ2
φµ

2
χH

2

ζ + d

[
1

d− 1
1F̃2

(
1;
d− 1

4
,
ν(ζ)

2
;−q2

4

)
+

[
d− 3

ζ
− 1

d

]
1F̃2

(
1;
d+ 3

4
,
ν(ζ)

2
;−q2

4

)
+

2

ζ
1F̃2

(
2;
d+ 3

4
,
ν(ζ)

2
;−q2

4

)]
.

(9.72)

Special care has to be taken into the case ζ = ζh. This is summarized in the function
Asing

2 (q; ζ), which is given by

Asing
2 (q; ζ 6= ζh) =

µ2
φµ

2
χH

2

ζ + d

d− 2

d− 1
1F̃2

(
1;
d− 1

4
,
ν(ζ − ζh)

2
;−q2

4

)
(9.73)
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for ζ 6= ζh. For the special value ζ = ζh we find

Asing
2 (q; ζ = ζh) = −

µ2
φµ

2
χH

2

2

[
0F1

(
d+ 1

2
;−q2

4

)
− (d− 3)(61 + 252d− 14d2 − 12d3 + d4)

12(d− 1)2(d+ 1)(d+ 5)
0F1

(
d− 3

2
;−q2

4

)
+

(d− 3)(−11− 26d+ d2)(−11 + 2d+ d2)

12(d− 1)2(d+ 1)(d+ 5)
0F1

(
d− 1

2
;−q2

4

)
+

2

d− 1

(
1F

(0;0,1;0)
2

(
1; 1,

d− 1

2
;−q2

4

)
− 1F

(0;0,1;0)
2

(
2; 1,

d− 1

2
;−q2

4

))
− 2

d− 1

(
1F

(0;1,0;0)
2

(
1; 1,

d− 1

2
;−q2

4

)
− 1F

(0;1,0;0)
2

(
2; 1,

d− 1

2
;−q2

4

))]
.

(9.74)
This completes the computation of A0 and A2. The total amplitude can now be written
as

A(q) = 16πG c(αR, αE)

[
− ζC + d

ζC − ζh

(
A2(ζh)− A2(ζC)

)
+

1

d(d− 1)

ζC
ζC − ζh

(
A0(ζh)− A0(ζC)

)
+

1

(d− 1)(d− 2)

(
A0(ζh)− A0(ζR)

)]
.

(9.75)

In (9.75), A2(ζh) is given by (9.74), A2(ζC) by (9.73), and A0(ζ) by (9.60).

9.4.4. Analysis of the amplitude

In this section, we study the properties of the amplitude computed above. For simplicity,
we will limit ourselves to the case d = 4 only. We will first list several features of the
amplitude and we discuss their interpretation.

(1) Properties of the Ai. In order to get a feeling for the behavior of the Ai, we plot
the amplitude A0 in Figure 9.4 for several values of ζ. In Figure 9.5, the amplitude A2

is shown.

We distinguish two features of the amplitude. First, we note that since the hyperge-
ometric function 1F2 is bounded, the amplitude is bounded too. In particular, it attains
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Figure 9.4. The amplitude A0(q; ζ) in d = 4 for several values of ζ. Left
panel: A0(ζ = 1). Right panel: A0(ζ = ζh). For q = 0, the amplitude
attains the finite value given in (9.76). For large q, the amplitude behaves
as ∼ q−2 (1− α cos(q)), as computed in (9.79). This approximation is
depicted by the dashed blue lines.
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Figure 9.5. The amplitude A2(q; ζ) in d = 4 for several values of ζ.
Left panel: A2(ζ = 1). Right panel: A2(ζ = ζh). Solid line: the total
amplitude A2. Dashed blue line: Areg

2 . Dotted red line: Asing
2 . For q = 0,

the amplitude attains the finite values given by (9.77) and (9.78). For
large q, the amplitude behaves as ∼ cos(q), as computed in (9.80) and
(9.81).

a finite value for q→ 0. For A0, we find

A0(q = 0; ζ)

H2µ2
φµ

2
χ

=
1

ζ
. (9.76)

For A2, we first consider the regular part Areg
2 . The limit q→ 0 reads

Areg
2 (q = 0; ζ)

H2µ2
φµ

2
χ

=
2

3

1

ζ + 4
+

3

4

1

ζ
, (9.77)
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while for the singular part Asing
2 , we compute

Asing
2 (q = 0; ζ)

H2µ2
φµ

2
χ

=
2

3

1

ζ + 4
, (9.78)

holding both for ζ 6= ζh and for ζ = ζh.

The second feature that we study is the behavior at large q. Expanding around
q =∞, we obtain for A0:

A0(q; ζ)

H2µ2
φµ

2
χ

∼ 1

q2
+

4√
πζ

Γ
(

7
4
− ν(ζ)

2

)
Γ
(

7
4

+ ν(ζ)
2

) 1

q2
cos (q) . (9.79)

Expanding Areg
2 around large momentum transfer, we find

Areg
2 (q, ζ)

H2µ2
φµ

2
χ

∼ − 1

3
√
π

Γ
(

3
4
− ν(ζ)

2

)
Γ
(

3
4

+ ν(ζ)
2

)
ζ + 4

cos (q) . (9.80)

The large-q expansion of Asing
2 reads

Asing
2 (q; ζ)

H2µ2
φµ

2
χ

∼


2

3
√
π

Γ
(

3
4
− ν(ζ−ζh)

2

)
Γ
(

3
4

+ ν(ζ−ζh)
2

)
ζ + 4

cos (q) , ζ 6= ζh

397− 360 log(2)

1080
cos (q) , ζ = ζh

. (9.81)

We therefore find the following behavior: for large q, the scattering amplitudes are
oscillating. Restoring dimensionful quantities, we find that the oscillating terms are
suppressed by H2. Carefully taking the limit H → 0, which we will not further discuss
here, allows to recover the flat-spacetime 1/~q2 behavior.

(2) Interpretation of the scattering amplitude. We will now briefly discuss the
interpretation of the limits q→ 0 and q→∞.

Let us first consider the small-momentum limit, which we find to be finite. This
behavior is in line with the expectation that z = ζH2 acts as a mass, similar to the
limit ~q → 0 for a flat-spacetime massive propagator ∝ 1

~q2+z
. A special case arises when

ζ = ζh. Then (9.76), (9.77) and (9.78) are manifestly finite. In flat spacetime, on the
other hand, we have a massless propagator, 1

~q2 , which is divergent in the limit ~q → 0.
We therefore conclude that the background curvature acts as an infrared regulator.

The oscillations in the large-momentum limit are also observed in the context of
GR. As discussed there, the oscillations are typical for propagators in dS spacetime
[311]. Furthermore, the discrete values where the amplitude vanishes has an interesting
interpretation in terms of a probability density. A node at momentum q0 then implies
that the exchange of a graviton with this momentum is forbidden. These momenta are
equidistantly separated with distance ∆q = 2π. This discrete behavior is reminiscent
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of discrete transition probabilities associated to particles in a box. In this context, the
Hubble volume then acts as the boundary within which gravitons can propagate.

9.5. Scattering potential in the adiabatic expansion

The scattering amplitude A(q) represents the transition probability of the scattering
process φχ → φχ with momentum transfer q. Converting to position space, we find
the transition amplitude of the same scattering process, where the external states are
now localized at well-determined spacetime positions. As a generalization of the Born
approximation in flat spacetime, we interpret this object as the scattering potential.

9.5.1. Computation of the scattering potential

We obtain the transition amplitude in position space by taking the Fourier transform
of (9.75).

(1) Preparing particle φ1 at position ~x1 and particle χ1 at position ~x2, the transition
probability arising from the amplitude Ai is given by

Vi(~x1, ~x2) =
1

2µφµχ

∫
dd−1~k1

(2π)d−1

dd−1~p1

(2π)d−1
ei~p1·~x1ei~k1·~x2Ai(q; ζ) . (9.82)

Here the dimensionless proper momenta ~p1 = −η~p1 and ~k1 are integrated over to obtain
an invariant expression. In addition, the prefactor of the integral is chosen such that
the resulting potential is correctly normalized.

Performing the integral over~k1 and the spherical part of ~p1, we find the dimensionless
potential:

Vi(~x1, ~x2) = δd−1(H~x2)Vi(r) , (9.83)

Vi(r) =
1

2µφµχ

22−dπ
1−d

2

Γ
(
d−1

2

) ∫ ∞
0

dq qd−2
0F1

(
d− 1

2
;−q2r2

4

)
Ai (q) . (9.84)

Here, r = ‖η(~x1 − ~x2)‖ denotes the proper distance between the particles φ1 and χ1.
Central in this computation is the integral∫ ∞

0

dx xs−1
0F1 (α;−ax) 1F2 (n; β1, β2;−bx) . (9.85)

This has the structure of a Mellin transform, and was studied in [441]. In order to
compute the Fourier transform of the functions 1F

(0;i,j;0)
2

(
a; b, d−1

2
;− q2

4

)
in (9.73) and
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(9.74), we express the derivatives as the limit of a finite difference. Exchanging the
Fourier transform with the limit, the finite difference is of the form (9.85).

(2) The potential is given by a discontinuous function,

Vi(r) =

V r<1
i (r) r < 1

0 r > 1
. (9.86)

The potentials V r<1
i are conveniently expressed in terms of the following functions, valid

for r < 1 and non-negative integers n and m:

Vnm(r; ζ) =
22−dπ

1−d
2

Γ
(
d−1

2

) ∫ ∞
0

dq qd−2
0F1

(
d− 1

2
;−q2r2

4

)
1F̃2

(
n;
d− 1

4
+m,

ν(ζ)

2
;−q2

4

)

= π
1−d

2
Γ
(
d−1

2
− n

)
Γ(n)

Γ
(
d−1

4
+m− ν(ζ)

2

)
Γ
(
d−1

4
+m+ ν(ζ)

2

)
Γ
(
d−1

4
+m− n− ν(ζ)

2

)
Γ
(
d−1

4
+m− n+ ν(ζ)

2

)×
r1−d+2n

2F̃1

(
5− d

4
−m+ n,

ν(ζ)

2
;
3− d

2
+ n; r2

)

+ π
1−d

2
Γ
(

1−d
2

+ n
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(9.87)
In this expression, we defined 2F̃1 (a, b; c; z) = 2F1 (a− b, a+ b; c; z) in terms of a hy-
pergeometric function. Before we start analysing the properties of the potential, let
us remark that the appearance of 2F1 hypergeometric functions is in accordance with
existing computations [300, 442]. This is a signature of the virtual graviton propagator,
which written as an integration kernel in position space is proportional to 2F1.

It is now straightforward to express the V r<1
i in terms of Vnm. For V0, we find

V r<1
0 (r; ζ) =

µφµχ
2ζ
V1,1(r; ζ) . (9.88)

Similar to A2, the potential V r<1
2 splits into a regular and a singular part:

V2(r; ζ) = V reg
2 (r) + V sing

2 (r) . (9.89)

The regular part is given by

V reg
2 (r; ζ) =

µφµχ
2(ζ + d)

[
1

d− 1
V1,0(r; ζ) +

[
d− 3

ζ
− 1

d

]
V1,1(r, ζ) +

2

ζ
V2,1(r; ζ)

]
, (9.90)
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while the singular part becomes

V sing
2 (r; ζ) =



µφµχ
2(ζ + d)

d− 2

d− 1
V1,0(r; ζ − ζh) , ζ 6= ζh

−µφµχ
2

[
1

d− 1
V1,0(r; 0) +

π
1−d

2

2
Γ

(
d+ 1

2

)]
, ζ = ζh

. (9.91)

The function V sing
2 (r; ζ = ζh) reduces to the rational function

V sing
2 (r; ζ = ζh) =

µφµχ
2

π
1−d

2 Γ

(
d− 1

2

)
r3−d + 1

4
− r2 − 1

4
(d+ r2 − dr2)2

(d− 1)(r− 1)2(r + 1)2
. (9.92)

The total, dimensionful scattering potential for QuadG can easily be expressed in terms
of the Vi. For r < 1, we have

V r<1(r) = 16πGH3 c(αR, αE)

[
− ζC + d

ζC − ζh

(
V2(r; ζh)− V2(r; ζC)

)
+

1

d(d− 1)

ζC
ζC − ζh

(
V0(r; ζh)− V0(r; ζC)

)
+

1

(d− 1)(d− 2)

(
V0(r; ζh)− V0(r; ζR)

)]
,

(9.93)

while the potential is equal to zero for r > 1.

9.5.2. Properties of the potential

Having computed the potential for QuadG in (9.93), we will now consider its phenomeno-
logical properties. To this end, we will regard the potential as the source of a Newtonian
force. This allows to straightforwardly interpret the potential in terms of potential en-
ergies, and the scaling of the force with distance.

(1) The short-distance regime. We will first consider the regime r � 1. In this
region, spacetime can be approximated as locally flat, so that we expect curvature effects
to be negligible. Hence, in this limit we should recover the behavior of the potential in
Minkowski spacetime. The Yukawa-like potential of QuadG is easily obtained from the
Minkowski-spacetime scattering amplitude, and reads

VMink(r) = Gmφmχ

(
−1

r
− 1

3

1

r
e−r/

√
αR +

4

3

1

r
e−r/

√
αC

)
(9.94)

For dS spacetime, there are four cases to be considered:
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(1a) General relativity. In this case, the higher-derivative couplings αR and αC are
both zero. Upon expanding around r = 0, we then find

VGR(r) ∼ −GH3µφµχ
r

. (9.95)

Hence, we reproduce Newton’s law. In the remainder of this paragraph, we will set
d = 4. We can then plot V (r), which is given in Figure 9.6. The plot shows several
remarkable features. First, we expand around r = 0. This gives the approximation

V (r)

H3Gµφµχ
∼ Vapp(r) = −1

r
+ 5− 4r . (9.96)

This approximation is shown by a dashed blue line in Figure 9.6. As can be seen from
the residual plot, this captures the behavior of V (r) very well. From the (9.96), we see
that the leading-order term is exactly the flat-spacetime Newtonian potential. This is
in accordance with the observation that at small distances, the background curvature
of spacetime can be neglected.

Classically, the Newtonian force is given by the derivative of the potential. This
gives

F ∝ − V ′(r)

H3Gµφµχ
∼ − 1

r2
+ 4 . (9.97)

Hence, we conclude that the correction to the Newtonian potential gives rise to an
approximately constant repulsive force. This is in agreement with the interpretation
of the expansion of the universe screening the attractive gravitational force between
the two particles. As a matter of fact, we observe that the expanding force dominates
at large distances, demonstrated by a maximum of the potential at rmax ≈ 0.4998,
where the potential takes the value V (rmax) ≈ 1.0420H3Gµφµχ. To large extent, this is
dominated by the leading-order terms in (9.96), which yields an approximate maximum
at r = 1

2
at Vapp(1/2) = 1 · H3Gµφµχ.

(1b) R2-gravity. We continue with R2-gravity, obtained from the limit (9.34). In this
case, the r→ 0 behavior reads

VR2(r) ∼ −4

3

ζR
ζR + 4

GH3µφµχ
r

. (9.98)

This is in agreement with the short-distance behavior for R2-gravity in flat spacetime,
determined by (9.94).

Remark. At this point, a remark about Newton’s constantG is in order. The numerical
value of G can be defined as the coefficient of the 1/r law, which can be obtained e.g.
from a Cavendish experiment. For relativistic theories, one then determines numerical
prefactors by taking the appropriate Newtonian limit, and comparing coefficients. The
prime example of this is the prefactor 8πG on the right-hand side of the Einstein
equation. Therefore, in the case of R2-gravity, we can renormalize the constant G such
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that we obtain exactly the Newtonian potential.4 Hence, setting

Ĝ =


4
3

ζR
ζR+4

G , 0 < ζR <∞

G otherwise

, (9.99)

we conclude that also R2-gravity yields a Newtonian force law at distances small com-
pared to the Hubble length.

(1c) C2-gravity. We proceed with C2-gravity, given by the limit (9.35). Expanding
around r = 0 gives

VC2(r) ∼ +
1

3
GH3µφµχ

r
, (9.100)

which is the same as what we find from (9.94). In contrast to GR and R2-gravity, we
find that C2-gravity yields a repulsive force-law at short distances.

(1d) Quadratic gravity. We finish our discussion of the short-distance regime by
considering full QuadG. Here we find that the potential does not possess a pole at
r = 0, similar to what we find by evaluating (9.94) at r = 0. The absence of such
a short-distance singularity can be seen as the classical analogue of the perturbative
renormalizability of QuadG, c.f. [65, 66].

(2) The dS horizon. The second property of the potential that we discuss is the
regime r ∼ 1. As we have seen in (9.86), the potential vanishes at distances r > 1.
This is a natural manifestation of dS horizon: since particles that are separated by the
horizon are not in causal contact, their scattering potential must be identically zero.

In order to further study the discontinuity, we interpret V as the source of a Newto-
nian force. We will be interested in the dimensionless quantity

F = − V ′(r)

ĜH3µφµχ
, (9.101)

which can be seen as the Newtonian force expressed in Hubble units.

It is clear that for radii r > 1, the force F is zero. Approaching r = 1 from below, the
discontinuity in F can be computed. We find that the discontinuity lies in the interval

lim
r↗1

Fζ→0 ≤ lim
r↗1

F ≤ lim
r↗1

FGR , (9.102)

4Note that the sign of (the derivative of) V is connected to the direction of the corresponding force.
Thus, one can only renormalize by a positive number.
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Figure 9.6. Plot of the large-mass limit tree-level scattering potential
in dS spacetime. Top panel: the potential V is shown by a solid black line.
The dashed blue line shows the approximation Vapp from (9.96). Bottom
panel: the residual values V − Vapp. We observe that the residual values
are . 0.1, indicating that the approximation captures the behavior of V
well.

where FGR is the force for General Relativity and Fζ→0 is the force of QuadG in the limit
ζC , ζR → 0. These values can be computed exactly:

lim
r↗1

Fζ→0 = −17

24
−
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3
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≈ 1.647 ;

lim
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FGR =
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+
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(

3
4
− ν(ζh)

2

)
Γ
(

3
4

+ ν(ζh)
2

)
3
√
π

≈ 3.443 .
(9.103)

We notice that both values are positive. Hence, at the dS horizon, the net gravitational
force is repulsive, in contrast to classical Newtonian gravity. We interpret this as an
effect of the positive curvature: the expansion of the universe manifests itself as a
repulsive effective force.

(3) Modified Newtonian Dynamics from Quadratic Gravity. We now study F

in the intermediate regime 0 < r < 1. We will pay special attention to the comparison
to the classical Newtonian force Fcl = −r−2. Any deviation from this potential can be
seen as an instance of Modified Newtonian Dynamics. In recent years, phenomenological



248 part ii: fluctuation modes on ds space

0.2 0.4 0.6 0.8 1.0


-20

-10

10

20



(a)

0.2 0.4 0.6 0.8 1.0


-20

-10

10

20



(b)

Figure 9.7. Dimensionless forces F in R2- and C2-gravity. In both pan-
els, the black curve denotes FGR, while the dashed gray curve shows
the classical Newtonian force Fcl = −r−2 for reference. Left panel: F
in R2-gravity. Scanning over ζR, the curves FζR fill the shaded blue re-
gion, bounded by FGR and FζR→0 (dashed blue curve). Right panel: F
in C2-gravity. Scanning over ζC fills the shaded blue region, bounded by
FGR and FζC→0 (dashed blue curve). For typical finite values of ζC , F is
drawn using dotted blue curves. Both for R2- and C2-gravity, the force is
strictly larger than Fcl, indicating that a dark matter MOND-like scenario
is excluded.

models of MOND have been constructed to explain rotation curves of galaxies, which do
not correspond to classical Newtonian gravity [351–354, 443–447]. MOND is therefore
an alternative to DM models, which explain the discrepancy of galactic rotation curves
by the existence of non-luminous cold matter.

In order to reproduce a DM-like scenario using MOND, one mimics the additional
mass density by modifying the potential such that one obtains an additional attractive
force. In this section, we will consider whether such a modification can arise from F by
an appropriate choice of ζC and ζR. Again, we distinguish four different regimes.

(3a) General Relativity. We begin with GR. The force FGR is shown by the black
curve in Figure 9.7. Comparing FGR to the classical Newtonian force Fcl = −r−2

(the dashed gray curve in Figure 9.7), we observe that the two coincide for small r,
as discussed previously. Also the discontinuity is clearly visible. Furthermore, we
observe that FGR is strictly larger than Fclass. Hence, the spacetime curvature causes an
additional expanding force, coinciding with the expectation that dS spacetime models
an expanding universe.

(3b) R2-gravity. Turning on the coupling αR, we find that the addition of anR2-interaction
gives a modification to General Relativity. Letting ζR run from 0 to ∞, we find that
the curves F fill the shaded blue region in the left panel of Figure 9.7. Here the dashed
blue line denotes the limiting case FζR→0. We find that the R2 modification causes F
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to be lower than FGR. Hence, the R2-interaction effectively causes an attractive force
on top of the force due to GR. However, the modification is nowhere strong enough to
give rise to DM-like MOND.

(3c) C2-gravity. In the right panel of Figure 9.7, the force arising from C2-gravity
is shown. Similar to R2-gravity, varying ζC traces out a region bounded by FGR and
FζC→0. In contrast to R2-gravity, F is always positive for sufficiently small r, due to the
+r−1-like behavior of the potential. In fact, below r ≈ 0.770, F is strictly larger than
FGR. Therefore, in this regime the effect of the C2-interaction can be interpreted as
an additional repulsive force on top of General Relativity. Thus, C2-gravity cannot be
matched to a MOND-potential suitable to explain DM.

(3d) Quadratic Gravity. Finally, we consider full QuadG As we have seen, since the
potential of QuadG is finite at r = 0, there will be no r−2-like behavior of F. Instead,
we find that F ∼ −3

2
− ζC

2
+ ζR

8
for small r. Thus, by an appropriate choice of ζC and

ζR, the force F can reach any finite value at r = 0. This includes F = 0, which can
be related to force laws arising from spacetimes with higher regularity [448]. We find
that F is mostly bounded by FζR→0 and FζC→0 (the shaded blue region in Figure 9.8).
For r & 0.770, the force is bounded by FGR and Fζ→0, obtained by taking the limit
limζC ,ζR→0 F. This is shown in detail in the right panel of Figure 9.8.

Thus, we conclude that no choice of ζC and ζR gives rise to an effective force that is
more attractive than the classical Newtonian force. Instead, we find in the entire param-
eter space a repulsive contribution to the gravitational force. Therefore, dS curvature
corrections to QuadG cannot explain galactic rotation curves.
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Figure 9.8. Dimensionless forces F in QuadG. The black curve denotes
FGR. The dashed gray curve shows the classical Newtonian force Fcl =
−r−2. For any point in the shaded blue region, there exist values of ζC ,
ζR such that this point is reached by FζC ,ζR . In particular, for any ζC , ζR,
F reaches a finite value at r = 0. The shaded blue region is bounded
by FGR, FζR→0, FζC→0 (dashed blue lines), and Fζ→0 (dashed-dotted red
line). The right panel shows a detail of the left panel, clarifying the
boundary of the shaded region near the dS horizon.



CHAPTER 10

Discussion and Summary of Part II

De Sitter spacetime plays a vital role in our current understanding of the Universe
at different epochs. In early-time cosmology, de Sitter spacetime provides an accurate
description of an inflationary universe, with evidence provided by the CMBR [257]. Also
at late cosmic times, observations of distant supernovae suggest an accelerated expan-
sion of the universe, modeled by a de Sitter spacetime [255, 256]. In General Relativity,
this universe is uniquely modeled by a constantly curved solution to Einstein’s equation
with a positive cosmological constant, the de Sitter Universe.

On the other hand, there are still significant open questions regarding dS spacetime.
De Sitter spacetime arises in GR as the solution to Einstein’s equation including a
cosmological constant Λ. Usually attributed to the so-called “dark energy” or an intrinsic
“vacuum energy”, the origin of the cosmological constant and its small present-day value
of 67.66 (km/s)/Mpc = 10−122 `2

P [449] remain a mystery [450].

This set of problems related to de Sitter spacetime are special of it curved and
Lorentzian nature. We speculated that a better understanding of the quantum dynamics
in such a geometry can shed light on its yet-to-be-clarified properties.

In order to explore the quantum dynamics of de Sitter geometry, we opened three
new research lines in Part II of this thesis based on different technical tools. The three
project share a first analysis of the mode decomposition of fields in a de Sitter spacetime.
In Project (II.A) and Project (II.B) we employed the fluctuation modes in order to
study the RG trajectories in dS: In the first project we investigated the geometrization
of RG histories in a 4D de Sitter spacetime; in the second project, we analyzed the
Background Independent quantum dynamics of the dS geometry by means of spectral
methods. In Project (II.C) instead, the fields on dS are involved in a scattering
process and we performed the first computation of a covariant scattering amplitude in
this spacetime.

251
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Project (II.A): Geometrization of RG histories: a novel AdS/CFT correspondence

The RG equations of QFT are formulated in a mathematical setting, which is rather
simple and, in a way, structureless from the geometric point of view. The only ingredi-
ents involved are a manifold T , often referred to as the theory space, and a vector field
spanned by the beta functions. The data (T , β) suffice to describe what is called the
RG flow.

When applied to quantum systems that are able to predict the geometry of the
spacetimeMd they live in, the scale-dependent actions Γk provided by the functional
renormalization group imply a set of coupled effective field equations that govern the
expectation values of the gravitational and matter fields. Their scale-dependent solu-
tions include an effective metric tensor gkµν . Heuristically, it can be regarded as the
description of a coarse-grained, fractal-like spacetime on a variable resolution scale,
determined by the value of the RG parameter k.

Separately for each RG scale k ∈ R+, the respective GEAA functional Γk implies a
quantum corrected variant of Einstein’s equation; its solutions are the resolution-de-
pendent metrics gkµν . They are dependent on the scale usually, but establish (pseudo-)
Riemannian structures on one and the same smooth manifoldM4.

Typically different generalized RG trajectories (solutions to the combined RG + Ein-
stein equations) will lead to different (d + 1)-dimensional manifolds. It is therefore an
intriguing question which types of such embedding manifolds can actually occur in a
given fundamental theory of quantum gravity.

(1) In Chapter 7 we proposed a new way of representing and analyzing the family
of metrics gkµν that furnish the same, given 4-dimensional manifold M4. The idea is

to interpret the 4D spacetimes
(
M4, g

k
µν

)
, with k ∈ R+, as different slices through

a single 5-dimensional (pseudo-) Riemannian manifold
(
M5,

(5)gIJ

)
. We then posed

the question about the additional 5 components of (5)gIJ that are not provided by
the 4D flow. First we discussed the possibility that there could exist mathematically or
physically distinguished ways of fixing these additional components, the idea being that
the (then unique) 5D geometry encapsulates not only the entirety of the 4D geometries,
but enriches them by additional physics contents.

Within a first, restricted Euclidean setting we were indeed able to identify an addi-
tional piece of physics information, namely the property that the running cosmological
constant Λ(k) is a monotonically increasing function of k, which gets encoded by the
very existence of

(
M5,

(5)gIJ

)
of a certain type.



10. discussion and summary of part ii 253

Assuming the monotonicity of Λ(k), we showed that 4D Euclidean spacetimes can
always be embedded in a manifoldM5 that is Ricci flat, or even Riemann flat should
the 4D spacetimes be maximally symmetric.

(2) In a second stage, we extended these investigations in two directions. Being par-
ticularly interested in the physically relevant case of 4D Lorentzian spacetimes, in the
present thesis we examine the most natural generalization beyond flat and Ricci flat
M5s, namely 5D Einstein spaces. We addressed this question within 4D Quantum Ein-
stein Gravity which (almost certainly) is asymptotically safe (see Chapter 3). It owes its
nonperturbative renormalizability to a non-Gaussian fixed point. Its RG flow also fea-
tures a second, Gaussian fixed point. While the fixed point theories are scale invariant,
and while their full conformal invariance is likely, it has so far not been demonstrated.

Concretely, we allowed the higher-dimensional manifoldM5 to be an arbitrary Ein-
stein space, and second, we admit the possibility that the spacetimes to be embedded,(
M4, g

k
µν

)
, have a Lorentzian signature. A prime example would be a stack of de Sitter

spaces dS4 with a k-dependent Hubble parameter. Then, imposing maximum symmetry
on them, we demonstrated that from Asymptotic Safety there arise two solutions for
the embedding space, namely certain parts of the AdS5 and the dS5 manifold, which
we denoted AdSemb

5 and dSemb
5 , respectively.

The 5-dimensional picture that emerges is particularly striking when combined with
the assumption that the QEG fixed points are indeed conformal. Then the foliation fur-
nishing (A)dSemb

5 establishes a relationship between quantum theories in the bulk and on
the boundary of (A)dS5. This exhibits exactly the same structure as in the well-known
AdS/CFT correspondences that have been extensively discussed in the literature.

(3) One of the motivations for the research program was our conjecture that there
should be rather a close relationship between Asymptotic Safety on the one side, and
the string theory-based AdS/CFT correspondence on the other [45, 229, 266]. Given
the scope of the GEAA approach and its applicability to arbitrary systems of fields,
it is clear that it also addresses the questions about the CFT on the AdS5 boundary
which the AdS/CFT framework answers by holographic means. Therefore, a presumably
harder, but in principle exact GEAA-based calculation should be able to come up with
specific answers to the same questions, and clearly it would be extremely interesting to
see whether the respective answers agree.

(4) Closely related is the discussion concerning the relationship between the Asymptotic
Safety and the AdS/CFT frameworks in general. Hence, we addressed another, more
restricted question, namely whether it is possible to “derive” a certain kind of, possibly
non-standard version of AdS/CFT correspondence. This involves applying the GEAA

approach to a specific system of 4D gravity + matter fields, computing its running
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actions Γk and background spacetimes gkµν by solving the functional RG and effective
Einstein equations, and then embedding the 4D metrics into a 5D one.

It is an intriguing possibility that by following these steps of the geometrization
program one might be led to a specific solution of the general GEAA flow and field
equations which describes a 5D setting with a bulk/surface relationship similar to that
of the well-known AdS/CFT conjecture. In Chapter 7 we presented a first indication
which indeed points in precisely this direction.

(5) Both the AdS/CFT and the Asymptotic Safety approach rely on a specific UV com-
plete gravity theory in the bulk. While in the standard framework one invokes string
theory for this purpose, in our case this role is played by QEG, nonperturbatively renor-
malized. In particular we found out that the full conformal invariance is established
by means of the Type IIa trajectory, i.e., the one that crosses over from the NGFP to
the GFP. Its endpoint has a vanishing cosmological constant, and so the correspond-
ing solution to Einstein’s equation is (3+1)-dimensional Minkowski space. Hence the
effective action which has all fluctuation modes integrated out should amount to a CFT

which lives on flat space.

In the anti-de Sitter case, the habitat which the foliation allocates to this CFT is
the timelike 4D spatial boundary of AdS5. For the de Sitter embedding, it consists
instead of the S3 spaces (without time) located at the spacelike past and future infinity
of dS5. The properties of the emergent bulk/boundary connections have been detailed
and discussed in Sections 7.8 and 7.9 already.

Some of the more specific properties of the QEG fixed points still remain to be es-
tablished. We discussed for instance, that it is an open question whether their scale
invariance extends to a full-fledged conformal invariance. In the special case of d = 2

spacetime dimensions, however, this question has been already answered in the affir-
mative. Moreover, a unitary 2D CFT has been identified which governs the fixed point
theory [377].

Outlook. In summary, our findings strongly support the idea that, at least in principle
it may be possible to discover various forms of “(A)dS/CFT correspondences” as specific
solutions to the flow and field equations of matter-coupled QEG. While this may include
the known examples1, the present approach has the potential of identifying new ones
also. In practice such an endeavor is beset with a large number of technical difficulties.
In particular much more general truncations in theory space must be used which also
should be able to discriminate between different matter systems. Nevertheless, this
approach may ultimately help in better understanding the raison d’être of the known
bulk/boundary correspondences.

1At the level of a field theory approximation to string theory.
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Project (II.B): Spectral flows in de Sitter space

In Chapter 8 we considered the prototypical example of a kinetic operator for a quan-
tum field on a Lorentzian manifold, the d’Alembertian. We determined its on-shell
spectral flow along the functional RG trajectories of a particularly relevant type, and
we showed how to utilize this spectral flow in order to gain physical information about
asymptotically safe Quantum Einstein Gravity. As it is demanded for a hyperbolic op-
erator, the respective RG trajectories were chosen to be valid also within a Lorentzian
framework of effective average actions.

We displayed the various types of spectral problems that are naturally connected to
the d’Alembertian within the gravitational average action approach. We emphasized
that there is a crucial difference between the standard, or off-shell, eigenvalue problem
of the operator in a fixed geometry, and the one-parameter family of on-shell spectral
problems which one encounters in Background Independent Quantum Gravity.

The key physical effect which is captured by their pivotal difference is that in the
second case the inhabitants of spacetime are granted the right to self-determine the
metric structure of their habitat. It is the backreaction of graviton and matter vacuum
fluctuations on the spacetime geometry that is encapsulated in the novel type of spectral
flow proposed here.

Project (II.B) provided a first proof of principle showing that the information
hidden in the spectral flow can be uncovered systematically, and can provide us with
valuable physical insights.

(1)We started the analysis by first studying the eigenvalue problem of the d’Alembertian
on an invariable de Sitter background with a scale independent Hubble parameter. After
obtaining its spectrum {Fν} and the eigenfunctions χν,~p, we investigated the eigenfunc-
tions’ “resolving power”, i.e., their structural wealth that decides about the fineness of
the patterns which can be drawn on spacetime by superimposing such eigenfunctions.

We saw that, depending on their quantum numbers (ν, ~p) and the conformal time
argument η, the eigenfunctions can belong to three different regimes of behavior with
correspondingly different resolution properties. In these regimes, they display harmonic
oscillations, power law behavior, and log-periodic oscillations, respectively.

The first two cases are generalizations of what in classical cosmology occurs for,
respectively, sub- and super Hubble size wave solutions of the massless Klein–Gordon
equation. The main difference is that in the present context the attention is not re-
stricted to eigenfunctions with zero eigenvalue, Fν = 0. Rather, all eigenmodes are
relevant, having arbitrary eigenvalues Fν ∈ R. In particular the extremely large ones,
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Fν � H2 having ν � 1, are essential to determine the maximum resolving power, and
for detecting a possible microscopic fuzzyness of the effective quantum spacetimes.

We saw that the harmonic (power law) regime has ideal (very poor) resolution prop-
erties, and showed that for principal quantum numbers ν � 1, the transition from the
harmonic to the power law regime is extremely sharp and sudden. It appears more
phase-transition-like than the gradual horizon crossing of the massless modes in stan-
dard cosmology (see Fig. 8.5 for an illustration).

(2) Along the (simplified) Type IIIa trajectories, we obtained the spectral flow of
the on-shell d’Alembertian in a fully explicit form. We solved the effective Einstein
equations at all scales k ∈ [0,∞) by a dS4 spacetime with a running Hubble parameter
H = H(k).

Then we solved the running eigenvalue problem and, having obtained the spectrum
{Fν(k), χν,~p(x; k)}k≥0, we determined the corresponding cutoff modes, χνCOM,~p(x; k).
Their resolving power is given by the wave number ~p and the running principal quantum
number of the cutoff modes, νCOM(k). It determines the range of applicability of the
effective field theory defined by Γk, for the same value of k.

(3) Having found the quantum number νCOM(k) at all scales k ≥ 0, we saw that as
a consequence of the fluctuations’ backreaction on the geometry, the function νCOM(k)

never exceeds its value at the turning point of the RG trajectory: νCOM(k) ≤ νCOM(kT ).
Therefore, the fineness and resolving power of the cutoff modes no longer improves when
k is increased beyond kT . Rather, it deteriorates quite considerably when k approaches
the Planck scale, until Asymptotic Safety establishes a constant fixed point value ν∗ 6= 0

for k →∞.

While this behavior of νCOM(k) is strikingly different from what would happen in
standard matter field theories on flat space, it is similar to that of its discrete analog
nCOM(k) related to the Euclidean S4 spacetimes that we reviewed in connection with
Figure 8.1.

(4)Nevertheless, in contrast to the Euclidean setting where the boundedness of nCOM(k)

implies a fundamental limitation on the distinguishability of points in spacetime, the
boundedness of νCOM(k) in the Lorentzian setting was shown to imply no analogous
restriction for the resolvability of points on the 3D spatial manifold related to the
foliation considered. At first sight this may seem surprising as in some naive sense dS4

is related to S4 by an analytic continuation. It should be noted, however, that it leads
to a non-compact manifold on which the kinetic operator is defined. Moreover, the
Euclidean results refer to the distinction of points in 4D spacetime, and a momentum
square of the symbolic form p2 = p2

0 + ~p2, while the new results pertain to 3D space,
embedded in a spacetime on which, likewise symbolic, p2 = −p2

0 + ~p2. In the latter
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case, thanks to the negative −p2
0 we can make the spatial ~p2 as large as we like without

increasing the 4D square p2, simply by choosing p0 appropriately.

(5) Regarding the possibility of a nonperturbative, quantum gravity-generated vacuum
structure of the three dimensional space, seen as a slice through dS4, the main result of
the spectral flow analysis is that, despite the above, such a structure does indeed exist.
However, rather than at very small distances, the corresponding quantum phenomena
make their appearance in the regime of macroscopic proper distances.

(5a) In a nutshell, the basic mechanism can be understood by recalling the familiar
textbook discussion of massless Klein–Gordon modes in cosmology which, at some mo-
ment, “leave the horizon” or “enter the horizon”. In more precise terms, what is referred
to here is a transition from the harmonic to the power law regime. For �χ = 0 fields,
the modes’ proper wavelength at the moment of the transition is of the order of the
Hubble scale LH = 1/H.

(5b) In Section 8.7 we saw that the equality of the two length scales is a coincidence,
in the following sense: If, rather than �χ = 0, the scale-dependent on-shell equation
(�+ Fν)χ = 0 for generic eigenfunctions, and the COMs in particular, is considered,
then the two scales are extremely different if ν � 1. We showed that the cutoff modes’
proper wavelength at the transition, L+

COM(k), is of the order of LH(k)/νCOM(k). As
a consequence, the characteristic COM length scale L+

COM(k) is far smaller than the
Hubble radius LH(k) on almost all scales.

(5c) Thus, the familiar picture of modes “leaving the horizon” gets replaced by a tran-
sition which, first, occurs already at a much shorter distance scale L+

COM(k) � LH(k)

that lies “deeply within the horizon”, and second, amounts to a much more pronounced
change of the modes’ behavior. They switch from an η-dependence with perfect tem-
poral resolution properties (harmonic regime) to a behavior with basically no resolving
power at all (power regime).

(6) Furthermore, we interpreted the results of the spectral flow analysis from the per-
spective of a physics-based spatial geometry. We argued that any kind of geometric
pattern seen in the Universe is ultimately “drawn” on space by physical fields. We there-
fore asked on which scales such patterns can occur if we require that they are amenable
to a description by one of the effective field theories from the collection {Γk}k≥0. In
answering this question we made essential use of the resolution properties of the COMs.
In brief, it turned out that Γk-describable geometric structures displayed by position-de-
pendent expectation values of quantum fields can exist only on length scales smaller
than L+

COM(k). This confers the status of a coherence length to the running COM scale.

(7) In Section 8.9 we investigated the length scales between L+
COM(k) and LH(k), which

are unaccessible to effective field theory, by a partially independent method, namely
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the direct analysis of the function space SpanBsubH
superC(τ). There, we also introduced

“scale histories” and the corresponding evolution diagrams to synoptically represent the
structure of the quantum spacetime.

(8) It emerged the overall picture of 3D space as a fragmented patchwork of many
small, basically unrelated, yet internally coherent patches. Within each patch, physics
is describable by one of the actions Γk. When observed at scale k, the patches possess
a typical proper size of the order L+

COM(k), whose scale dependence endows space with
fractal properties. We refer in particular to Subsection 8.9.6, where we have already
presented a detailed interpretation and summary of this picture.

(9) On a more statistical note, we also explored the information content that is nat-
urally ascribed to the individual patches, and to the patchwork in its entirety. To
quantify the latter, we introduced a special entropy function.

As an application, this led us in Section 8.10 to point out an intriguing analogy
between the patchwork structure coming from quantum gravity, and the thermal photon
gas of the Cosmic Microwave Background Radiation CMBR which inhabits the present
Universe. Based upon this analogy and the measured value G0Λ0 ≈ 10−120 as our only
(!) experimental input, we predicted for the CMBR photons within a Hubble volume an
entropy of about SCMBR ≈ 1090kB. Given the inherent approximations, this number is
in perfect agreement with the established value.

Outlook. In future work an obvious generalization of our investigation is towards a
nonzero matter stress tensor in the effective field equations, so as to lift the restriction to
a vacuum dominated Universe. Furthermore, we saw that there are modes that, due to
the presence of the NGFP never get integrated out. It is a highly intriguing possibility,
which deserves being studied further, whether these modes carry information about
the fixed point regime, and whether they “paint” it on the sky at the cosmological
distances where the late Universe is vacuum dominated. Finally, future work will have
to analogously scrutinize the role of the timelike modes in more detail, in particular in
the context of scattering processes, desirably making contact in this manner with our
work on scattering amplitudes in de Sitter space (Project (II.C)).

Project (II.C): Scattering amplitudes in de Sitter space

Scattering amplitudes in curved spacetime may provide insight into how to construct a
consistent theory of Quantum Gravity. Being at the basis of observables in Quantum
Field Theory, a proper understanding of scattering amplitudes in a gravitating back-
ground may help to uncover how to incorporate long-distance curvature effects into
quantum theory.
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(1) In Chapter 9 we presented the amplitude of gravity-mediated scattering of two
massive scalars in dS spacetime. In the pure-gravity sector, we included all terms in
the action up to four derivatives of the metric, while we also allowed for a non-minimal
Rφφ-coupling between the scalar fields and the Ricci scalar. Our main new finding is
that the Newtonian potential receives corrections due to the background curvature. In
GR, these corrections should be suppressed by the inverse de Sitter radius, in accord
to all observational tests on length scales ranging from table-top to solar system. In
QuadG, moreover, we analyzed how the new coupling constants induced additional length
scales, leading possibly to corrections to the potential at much smaller lengths. Thus,
our computation of the Newtonian potential in QuadG allowed us to put additional
constraints on the non-minimal couplings.

Novel in our work are two techniques:

(1a) First, we represented vertices and propagators as differential operators, rather
than through integral kernels. We referred to this method as operator method. This
generalized the Minkowski spacetime concept of momentum. Spacetime curvature was
encoded in the noncommutativity of these operators. This came with the additional
advantage that the resulting expressions remain fully covariant.

(1b) Secondly, in order to convert the expressions in terms of abstract differential
operators into numerical quantities, we employed an expansion around infinite scalar
masses. This is achieved by expanding in the dimensionless parameter µ = mc2

~H , where
m is the particle’s mass and H = 68 km/sec/Mpc is the Hubble constant. We referred
to this expansion as adiabatic limit.

Taking the limit H → 0, we retrieved the nonrelativistic limit in flat spacetime. It is
worth noticing that the expansion around µ =∞ has a slightly different status than the
nonrelativistic limit in flat spacetime. In the latter case, a large-mass expansion is typ-
ically achieved by expanding around the dimensionless quantity m/p, or p � m. This
explicitly breaks Lorentz invariance, since one explicitly refers to the frame-dependent
spatial momentum. The expansion around m/H =∞, however, is a Lorentz-invariant
procedure.

(2) We presented our results in Section 9.3. The amplitude functional is explicitly
gauge-independent, and reduces to the well-known flat-spacetime scattering amplitude
in the flat limit. Interesting is the appearance of operators of the form (−� + z)−1,
resembling massive propagators. This hints towards a regularization of the graviton
propagator in the infrared regime, opposed to the 1/q2 divergence in Minkowski space-
time. Furthermore, we found that one of the masses comes with a negative sign: this
fact raised questions about the tachyonic nature of the graviton. However, we showed
that the nontrivial curvature effects conspire to give a fully regular IR behavior.
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For Quadratic Gravity we organized the propagator and vertices in such a way that
an effective mass-pole structure for rank-0 and rank-2 vertex tensors could be identified.
The poles are modified due to the de Sitter curvature. We observed that in the case of
conformally coupled scalars, only the rank-2 vertex contributes.

(3) We extracted the tree-level scattering amplitude and potential from the abstract
amplitude functional. Central in this computation was the application of the heavy-
mass limit of the scalar fields, allowing us to obtain the distribution of the graviton
propagator over the product of two scalar fields.

(3a) From the scattering amplitude, we constructed the following compelling physical
picture.

(1) First, we observed that the amplitude has a finite limit as the transferred
graviton momentum goes to zero. This is in contrast to the Minkowski-space-
time amplitude, which exhibits an IR divergence due to the masslessness of the
graviton. We therefore provided evidence for the regularization of the graviton
propagator due to corrections from the curved background.

(2) Second, a striking feature of the scattering amplitude is its oscillating behavior
as a function of the momentum. We showed that the scattering probability
vanishes for discrete values of the graviton momentum, pointing towards dis-
crete transition probabilities. In the cosmological context, this would translate
to graviton exchange being bounded by the Hubble volume.

(3) Thirdly, we performed this analysis for any mass parameter of the graviton
propagator, necessary to cover Quadratic Gravity. It turned out that the mass
parameter associated to the massless graviton in a de Sitter spacetime is special,
in the sense that the amplitude for this mass parameter is not continuously
connected to the amplitude corresponding to different masses.

(3b) These physical features also appeared in the scattering potential:

(1) For small values of the radius, we reproduced the Newtonian 1/r potential.
(2) At larger distances, modifications due to the background curvature induce

corrections to the potential, which to leading order can be captured by a con-
stant repulsive force. For distances of approximately half the Hubble radius,
this force dominates the attractive Newtonian force, such that particles are
repelled. This is in line with the interpretation of the de Sitter Universe as an
expanding spacetime.

(3) As the radius approaches the de Sitter horizon, the potential reaches a finite
value, before vanishing identically for r > 1. Hence, the potential has bounded
support while remaining bounded from above.
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(4) Finally, the vanishing of the potential at super-Hubble distances is completely
in agreement with the causal properties of the de Sitter spacetime, which forbid
any causal interaction of particles beyond the horizon.

(5) In case of QuadG, we found for small proper separations r a potential that is in
agreement with the flat-spacetime Yukawa potentials. Interpreting the scatter-
ing potential as the source of a Newtonian force, we investigated whether the
modified potentials in QuadG could give rise to Modified Newtonian Dynam-
ics corresponding to dark-matter-like rotation curves. However, we reported
that the de Sitter curvature leads to an effective repulsive force that cannot be
matched to a dark-matter-like scenario.

We showed how scattering amplitudes and the non-relativistic Newtonian potential
should be modified on a de Sitter spacetime due to (higher) curvature corrections to
General Relativity. In particular, this is done by computing the amplitude associated
to the amputated diagram with Bunch–Davies boundary conditions. We followed the
standard quantum field theoretical procedure, regardless of the unicity of the vacuum.
Exactly this point renders non-trivial the interpretation of the amplitude and the po-
tential in the curved case. We plan to further investigate these open questions in future
work.

Outlook. Concerning scattering in de Sitter space, a challenge to be taken up in
future work is the analysis of the de Sitter horizon. The novel techniques allows to
probe the horizon properties of a more general geometry with two masses inside. This
may shed light on the outstanding problem of defining a horizon temperature in a
Schwarzschild–de Sitter spacetime. In analogy with classical electrodynamics, the dis-
continuity may be interpreted as a surface energy density situated at the horizon. In
a semi-classical interpretation, the discontinuity would allow for tunneling of particles.
It would be interesting to study both explanations, and try to make contact with a
thermodynamic description of the de Sitter horizon.

Moreover, the first natural extension is to compute higher-order corrections in the
heavy-mass expansion in order to include angular and spin-dependence, and to include
quantum corrections (loop diagrams). A convenient scheme to capture these is the form
factor formalism, which can be extended to curved spacetime. Furthermore, it would be
interesting to extract the amplitude and potential for conformally coupled scalar fields.
An initial investigation of this system shows that this gives rise to a modification of the
differential equations determining the amplitude. Currently it is unknown whether this
system of equations can be solved. Finally, this covariant construction of scattering
amplitude functionals can be extended to other curved backgrounds that also admit
an adiabatic expansion, such as FLRW spacetimes. In particular, it can be applied in
slow-roll inflationary spacetimes. A comparison with n-point functions imprinted on
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the Cosmic Microwave Background would allow to make contact with astrophysical
observations.



Part III

Dynamical diffeomorphisms and
scale-dependent relational observables





CHAPTER 11

Introduction and Survey of Part III

As explained in the Introduction, one of the greatest issues for a theory of gravitation
is how to generalize the notion of local observables because of the very nature of its
underlying symmetries. Part III, based on the author’s publications [RF6] and [RF7],
is mainly devoted to the study of this symmetry, diffeomorphism invariance, and to
the construction of relational observables and the evaluation their quantum corrections
(Project (III.A)). In Chapter 12 we construct models of dynamical diffeomorphisms,
discussing the possibility of describing relational observables. In Chapter 13, we open a
new line of research computing the renormalization group flow of relational observables
in asymptotically safe gravity by using the composite operator formalism (Project
(III.B)).

(1) Physicists turn reality into numbers. They process these numbers using mathe-
matics, and turn them into predictions about other numbers. The mapping between
physical reality and mathematical models is not at all straightforward. It involves a
lot of arbitrary choices. When we perform an experiment, we take the readings of our
instruments and create one particular parameterization of Nature. There are usually
many equivalent parameterizations of the same process and this is one of the sources of
redundancy in our description of nature: The Universe does not care about our choice
of units or coordinate systems.

This indifference, after we plug the numbers into our models, is reflected in symme-
tries of our models. A change in the parameters of our measuring apparatus must be
compensated by a transformation of our model, so that the results of calculations still
match the outcome of the experiment.

But there is an even deeper source of symmetries in physics. The model itself may
introduce additional redundancy in order to simplify the calculations or, sometimes,
make them possible. It is often necessary to use parameter spaces that allow the
description of non-physical states, states that could never occur in reality.

(2) If you ask physicists what the foundations of physics are, often they will answer:
symmetry. Depending on their area of research, they will start talking about various
symmetry groups, like SU(3), U(1), SO(3, 1), general diffeomorphisms, etc. The foun-
dations of physics are built upon fields and their symmetries. For physicists this is

265
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Figure 11.1. Maps between two different manifolds and how maps could
be composed. We can use of maps to carry along tensor fields from one
manifold to another.

such an obvious observation that they assume that the goal of physics is to discover
the symmetries of Nature. But are symmetries the property of Nature, or are they the
artifact of our tools? This is a difficult question, because the only way we can study
Nature is through the language of mathematics. Mathematical models of reality defi-
nitely exhibit lots of symmetries, and it is easy to confuse this with the statement that
Nature itself is symmetric.

Some crucial terminology

Attempts to understand the significance of diffeomorphism invariance in General Rel-
ativity have been obstructed by the confusion surrounding definitions such as active
vs. passive transformations, invariance vs. (general) covariance, as well as background
independence vs. Background Independence. Let us clarify these notions. First of
all, a diffeomorphism ϕ is a smooth map of manifolds with smooth inverse. Diffeo-
morphisms can act on tensor fields on a manifold as well by a map called the pull-
back ϕ∗ (see Figure 11.1). If we consider two manifolds M and M′ with coordinate
systems xµ and yα, respectively. We imagine that we have a map (diffeomorphism)
ϕ: M → M′. The name makes sense, since we think of ϕ∗ as “pulling back” a given
function f fromM′ toM.

(1) Symmetries vs. redundancies. A symmetry is a map that transforms physical
states or histories of a physical system to other, physically distinguishable states or his-
tories. A symmetry group of a physical system is a group comprised of transformations
that leave the system invariant.
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Redundancies or synonymously gauge symmetries instead map one state or history
to a physically indistinguishable state or history. A gauge group of a system is a set
of transformations that leave physical states invariant. What this means is that the
actual states of the system are equivalence classes of orbits of the gauge group. The
reason physicists work with gauge groups in the first place is that the description of the
system may simplify after introduction of additional “redundant” parameters that “see”
into the equivalence class.

(2) Invariance vs. covariance. A quantity is invariant under a transformation if it
remains unchanged under it; that is, if F is a functional of the fields φ, and we make
the transformation φ → φ′, then F [φ] = F [φ′] means that F is invariant under this
transformation. Effectively, invariant quantities transform as scalars.

Covariance or synonymously form invariance states that the form of physical laws
does not change under a given transformation.

General covariance is the special case, in which their form is invariant under arbitrary
(differentiable) coordinate transformations.

For example, the action of a scalar field φ is invariant under Lorentz transformations,
while the Klein–Gordon equation is Lorentz covariant (meaning that if φ satisfies the
equation of motion, then so will φ′).

Note that a symmetry is automatically a covariance; while, in general, a covariance
does not necessarily correspond to a symmetry.

It becomes clear then, that considering laws which can be derived from a scalar
quantity such as the action S, the symmetries of these laws are equivalent to the
invariances of this scalar quantity.

(3) Active vs. passive transformation. A passive transformation is merely a
change of coordinates. In the case of the Lorentz group, which takes xµ to x′µ = Λµ

νx
ν ,

we define φ′(x) = φ(x′) = φ(Λx). In other words, we think of φ and φ′ to be the same
field configuration, such that the new function in the original coordinates is the same
as the original function in the new coordinates.

Active transformations, even if more abstract, are formally easier to understand.
Consider two manifolds M and M′, respectively equipped with coordinate charts x
and x′. Let φ : M → Rd, and φ′ : M′ → Rd. Now consider a diffeomorphism
ϕ : M → M′. Then the original field φ gets related to the transformed field φ′ via
the pullback, φ(x) = (ϕ∗φ′)(x) ≡ (φ′ ◦ ϕ)(x). In general, φ(x) and φ′(x′) may map to
different points in Rd. But if we demand φ′(x′) = φ(x), we impose that the new field
configuration (on the new manifold) nonetheless maps to the same point in Rd.
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In part for this reason, we shall henceforth take the unqualified term “diffeomor-
phism” to mean an active diffeomorphism, and relegate “passive diffeomorphism” to
“coordinate transformation” (see Figure 11.2).

For instance, φ′(x) = φ(x′) = φ(Λx) is a passive (Lorentz) transformation, while
φ′(x′) = φ(x) =⇒ φ′(x) = φ(Λ−1x) is an active (Lorentz) transformation. The former
amounts to a mere coordinate redefinition, while the latter specifies an entirely new
field configuration.

(4) The example of GR. When discussing diffeomorphism invariance, general co-
variance, or background independence in the context of GR, the above distinction is of
crucial importance. In particular, the salient feature of (active) diffeomorphisms is that
they generate new metrics, while (passive) coordinate transformations merely re-express
the original metric in new terms.

(5) Background Independence vs. diffeomorphism invariance. When Einstein
first introduced GR, he emphasized its Background Independence (“no prior geometry”)
under the guise of general covariance. But as alluded to above, all laws of physics,
properly formulated, are generally covariant! Thus to emphasize general covariance as
the defining or special feature of GR is both misleading and rather void of content.
Misner, Thorne, Wheeler’s classic textbook suggests that at the time, mathematics
was not sufficiently advanced to properly distinguish Background Independence from
coordinate independence, so Einstein’s choice of phrasing is only confusing in retrospect
[451]:

Mathematics was not sufficiently refined in 1917 to cleave apart the demands
for “no prior geometry” and for a “geometric, coordinate-independent for-
mulation of physics”. Einstein described both demands by a single phrase,
“general covariance”. The “no-prior-geometry” demand actually fathered
general relativity, but by doing so anonymously, disguised as “general co-
variance”, it also fathered half a century of confusion.

Rather, the special feature of GR is that it is Background Independent: the metric is a
dynamical variable. This is what is meant by “no prior geometry”.

However, it is also important to emphasize that diffeomorphism invariance is not the
same as Background Independence. In Einstein’s equation the metric is a dynamical
variable, and thus the background is a solution to the equations rather than something
given externally at the outset. Thus diffeomorphism invariance simply means that the
manifold on which the theory is formulated is irrelevant (modulo isomorphisms) to the
underlying physics (or, to take the passive view, that we can choose any coordinate
patch we like). Background Independence is the by far stronger statement that the
manifold itself is not fixed a priori. And this is exactly what makes GR special.
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Figure 11.2. Diagrammatic representation of the crucial terminology
used along Part III.

The problem of local observables

It is important to understand what physical principle distinguishes GR from other theo-
ries, such as a field theory formulated in a fixed spacetime. This is particularly necessary
in order to properly understand how to construct observables in GR. Crucially, gen-
eral covariance is not the what distinguishes GR from a theory formulated in a fixed
non-dynamical spacetime. Let’s analyze this by means of two different models.

(1) Model 1: Generally covariant but non-predictive. There are models
other than GR which can be formulated in a generally covariant manner even if they
have a physically equivalent non-covariant formulation. The claim originates from the
observation that we can formulate say a scalar field theory on a flat spacetime in a
covariant manner by writing a generally covariant equation of motion for the scalar
coupled to a metric tensor and then imposing the constraint equation that the Riemann
tensor is zero. However, in such a construction we cannot predict the values of the scalar
field in the future even given its values in the past. By general covariance any scalar
field history that agrees in the past and is related by a diffeomorphism in the future
would be a possible history and thus no unique prediction can be made.

(2) Model 2: Predictive but not generally covariant. To understand this failure
we can consider a scalar field model where we pick a particular flat metric tensor and
write the equation of motion for the scalar with that metric tensor. This model is not
generally covariant and hence it will make predictions about the value of the scalar at
a point in spacetime.
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This mismatch between the predictive power of the two models can be understood
by the fact that the models are incomplete: The fact that the second model predicts
the value of the field for any value of the coordinates can only be tested if we know
what it means for the coordinates to take different values. So if we want to actually
measure the field at the point where all the coordinates vanish we must be able to tell
where this point is located. This means that there must be some other physical objects
which is not parameterized by the scalar field which gives the meaning to the values of
the coordinates. Since the second model does not mention these objects, these variables
must be absolute objects that have a fixed dynamic.

(3) The completion. We now insist on a completion of the second model with absolute
objects. We can proceed by incorporating the absolute physical objects of the second
model into the generally covariant model by including more variables in the model
which parameterize them. The dynamics of the complete theory then dictates that
the variables corresponding to the absolute objects are fixed up to diffeomorphisms. In
particular for any two points there is a diffeomorphism that relates the two sets of
values of the absolute variables to each other. Since in this model the metric is also an
absolute object we can include its components.

The observables that correspond to the values of the scalar field in the non-generally
covariant model can be constructed in the generally covariant model in the following
way. In order for a measurement at a point in spacetime P to be performed we must be
able to distinguish the point P based on the history of the absolute objects. This means
that for each point P that is distinguishable there must be a set of scalars. For a field
theory the variables are components of various fields which depend on the coordinates.
Now, whichever set of variables we are using we can always make a change of variables
to use a different set of fields which are functionals of the first set of variables.

(4) Coordinate-free is not enough. Evidently physical systems do not come with
a set of coordinates. Coordinates are therefore not a part of physical system but rather
a way in which we label points in space and time by a set of numbers within a model.
Any observable of the physical system that we can measure can therefore be formulated
in a manner that does not refer to coordinates. For example if we ask what is the value
of a field at a point in spacetime, in order for the question to be well posed, we must
give the location of the point in relation to some physical objects or the behavior of a
field.

We discussed how some models are formulated with the help of a fixed coordinate
system where the physical objects or fields which give the meaning to the coordinates
in this manner are non-dynamical. However, we can incorporate those non-dynamical
elements into an equivalent model of the same physical system such that the resulting
model is generally covariant. In the resulting generally covariant model we allow in
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the set of possible dynamical evolutions all those that are obtained from performing an
active diffeomorphism on all elements of the model from any other possible evolution.
This is the defining feature of general covariance. All models have such a generally
covariant version. These share the property of General Relativity that observables that
can be predicted from the theory are invariant under diffeomorphisms.

(5) No absolute objects. What distinguishes General Relativity from other theories
is therefore the lack of absolute elements which can be used to construct a non-dynamical
coordinate system. General covariance is hence not the right physical principle.

Therefore, it is in fact the lack of certain absolute objects that forbids local observables
in GR and not the requirement of diffeomorphism invariance, which is a property of all
physical systems and of all generally covariant models of those systems.

To understand this properly it is essential to understand why and in what sense
observables are non-local in General Relativity. Since we can construct local observables
in field theory on a fixed spacetime when formulated in a non-covariant manner, we
should be able to construct the same local observables in a generally covariant manner.
When we consider General Relativity we must then find that the same observable looses
its local qualities since the absolute object now becomes dynamical.

(5) Physical consequences. From the previous observations we can draw the follow-
ing conclusions:

(1) First, one should understand how physical models are modeling actual physical
systems.

(2) Consequently, any model needs to be consistent with a set of equations that
relate certain variables, or more generally functions of the variables, to elements
of the real world.

(3) Only then can we test the model and thus only then can the model be consid-
ered as part of Nature.

We typically have differential equations which are obeyed by the variables of the model
which determine the possible dynamical evolutions of the system.

(7) Matter is needed. According to GR, as soon as the concept of observables is
introduced, the presence of matter fields is required, either to identify spacetime points
or to define the spacetime manifold itself. Einstein noted [452]:

Es ist schon eine harte Zumutung, daß man dem Raum überhaupt physika-
lische Realität zuschreiben soll, insbesondere dem leeren Raume.

and also:

Gemäß der allgemeinen Relativitätstheorie dagegen hat der Raum gegenüber
dem “Raum-Erfüllenden”, von den Koordinaten Abhängigen, keine Son-
derexistenz. Man habe z.B. ein reines Gravitationsfeld durch die gik (als
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Funktionen der Koordinaten) beschrieben durch Lösung der Gravitations-
gleichungen. Wenn man das Gravitationsfeld, d.h. die Funktionen gik
weggenommen denkt, so bleibt überhaupt nichts übrig, auch kein “topolo-
gischer Raum”. Denn die Funktionen gik beschreiben nicht nur das Feld, son-
dern gleichzeitig auch die topologische und metrische Struktur-Eigenschaften
der Mannigfaltigkeit. Ein solcher Raum ist im Sinne der allgemeinen Rela-
tivitätstheorie nicht etwa ein Raum ohne Feld, sondern ein Spezialfall des
gik-Feldes, für welchen die gik (für das verwendete Koordinatensystem, das
an sich keine objektive Bedeutung hat) Werte haben., die nicht von den
Koordinaten abhängen; einen leeren Raum, d.h. einen Raum ohne Feld,
gibt es nicht.

(8) Relational physics. For some models spacetime coordinates may have themselves
a physical meaning such that when we give the values of the coordinates there is some
way to know where that point is in the physical system. Clearly this can only be
done if the values of coordinates are related to physical objects in some fashion. Said
differently, in physics the location of something is always defined in relation to physical
objects.

The hole argument

In order to fully elaborate on the concepts discussed in the previous section, let us start
reviewing the hole problem that Einstein faced in 1914 when contemplating generally
covariant theories.

(1) Coordinate scaffolding. The aim is to introduce coordinates that have an op-
erational meaning. We shall refer to the material system used for such a purpose as
the coordinate scaffolding [453], without further specification about its constitution. In
general, an event is characterized by the values of a large number of physical quantities
of the scaffolding, most of which are irrelevant for the purpose of extracting coordi-
nates. The coordinates are thus obtained by generating four real numbers out of these
physical quantities. From this perspective, the coordinates can be viewed formally as
real functions on the set of events. If one now uses these functions to define a chart
on a manifold, the latter is easily interpreted as the set of all events, identified through
convenient physical labels on the scaffolding.

(2) The hole problem. Assume that the gravitational field equations are generally
covariant and consider a solution to these equations in which the gravitational field is
described by the metric g. Assume that there is a hole, a region of the Universe without
matter. Assume further that inside the hole there is a point A where the gravitational
field corresponds to flat space, and a point B where it is not flat. Consider a map
ϕ : M → M s.t. ϕ(A) = B. Let g′ = ϕ∗g be the pullback of g under ϕ. The two
metrics g and g′ are both solutions of the field equations, but have different properties at
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Figure 11.3. Hole argument: The diffeomorphism moves the non-flat
region as well as the intersection point of the two particles from the point
A to the point B.

B. So we are led to conclude that the field equations do not determine the physics at the
spacetime point B. This is in contrast with the fact that classical gravitational physics
is deterministic. Hence, in a theory whose equations are diffeomorphism invariant the
assumption that points of the manifold have operational meaning becomes untenable.
Since the Einstein’s diffeomorphism-invariant field equations are valid, we conclude
that there is no meaning in talking about physical spacetime at a point A. There is no
meaning in referring to the point A or the event A, without referring to the coordinate
system.

(3) The resolution. We are now presenting a resolution of the problem, namely by
introducing matter. Assume that in the Universe there also exist two particles (i = 1, 2)
and that their wordlines intersect at a point A. Given initial conditions, their worldlines
are determined by the gravitational field: they are both geodesics of g. These wordlines
are no geodesics of the metric g′, hence the described motion of the particles will be
different.

However, we can still find the motion of the particles determined by g′, because the
complete set of equations is generally covariant. We can act with an active diffeomor-
phism on the gravitational field s.t. the new worldlines are given by xi(t)′ = ϕ−1(xi(t)).
They will now intersect in B = ϕ−1(A). The gravitational field is now non-flat at the
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Figure 11.4. A change of coordinates can be viewed as an infinitesimal
diffeomorphism transformation φ: M→M, after which the coordinates
would just be the pullbacks (ϕ∗x)µ : M → Rd (“move the points on the
manifold, and then evaluate the coordinates of the new points”).

point in which the particles meet.

It turns out that the prediction about the curvature is indeed deterministic, since
the curvature R at this point reads:

R′ = R′(xi(t)) = R(ϕ(x′i(t))) = R(ϕ(ϕ−1(xi(t)))) = R(xi(t)) = R (11.1)

Einstein called these spacetime coincidences : the gravitational theory predicts what
happens at locations determined by dynamical elements of the theory itself.

The two sets of geodesics are distinguished by their localization on the manifoldM;
they are different since they assign different properties to the points. However, if we
define localization only with respect to the metric and particles themselves, then we
are not able to distinguish between the two solutions physically: the theory is gauge
invariant under active diffeomorphisms. A state of the Universe does not correspond to
a configuration of fields onM, it corresponds to an equivalence class of field configura-
tions under diffeomorphisms; a diffeomorphism changes localization of the field onM.
Therefore, localization onM is physically irrelevant.

Looking for a more precise analysis of the relationship between the properties of
diffeomorphism invariance, Background Independence, and existence of local observ-
ables, we opened two new lines of research presented in Project (III.A) and Project
(III.B), respectively. Let us summarize the two projects in turn.

Project (III.A): Dynamical diffeomorphisms

In this Project we discuss a possible role of diffeomorphisms as dynamical variables.
The motivations and inspiration for our modes were essentially two:
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(1a) Modeling dark energy. Modeling dark energy is important both for early
and late cosmology. A term in the action proportional to the volume of spacetime
is the simplest explanation, but it has drawbacks. For this reason a more dynamical
origin is often preferred. It turns out that in field theory (and cosmology) a generic
non-dissipative medium can be effectively described by the theory of four derivatively
coupled scalar fields. These four scalar fields can be interpreted as comoving coordinates
of a cosmological medium.

We will link these results to the theory of EFT for fluids or solids, showing how grav-
itational interactions may be encoded in the interactions of a self-interacting medium.
The dynamics follows straightforwardly via standard effective field theory logic once we
identify the correct internal symmetries. Such an effective field theory description has
first been considered in [454–456].

(1b) No local observables. Another motivation for our study is the absence of
local observables in (quantum) gravity. For a field theory in flat spacetime we can
consider simply the values of the fields at a point in spacetime, or products thereof,
as constituting observables. However, as we discussed extensively, since in gravity
the gravitational field is itself dynamical, no absolute objects are present, rendering
the localization of observables non-straightforward. One of the greatest issues for a
quantum theory of gravitation is how to generalize this notion of local observables [187,
188, 453, 457–466].

However, one can follow the line developed by Dirac in the context of gauge theory,
thus treating this aspect of GR similarly to a gauge theory. This then winds up to the
conclusion that observables in (quantum) gravity are quantities which are diffeomor-
phism invariant, with the diffeomorphism group Diff acting fromM toM.

Remark. One should note that with respect to physical observations this entails no
violation of determinism. An observer can never really observe two different metric
fields on one and the same spacetime manifold. She will use a fixed measurement
apparatus, using rods and clocks in e.g. a local inertial frame, where special relativity
applies locally, and then extend the results to general coordinate frames.

Note also that not even scalars are invariant in general in the above sense, i.e., not
even the Ricci scalar is observable. Thus, adopting this point of view implies that the
class of admissible observables is usually pretty small.

However, this is in blatant contradiction to the fact that we routinely perform mea-
surements of local fields: for example, one can measure the components of the Riemann
tensor near the surface of the earth [467].

(2) “Physical coordinates” and relational observables. A main concept that we
shall need in the following is the notion of a material reference system or, equivalently,
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a physical coordinate system. By a material reference system we mean an ensemble of
physical bodies, dynamically coupled to gravity, such that these bodies can be used to
define the spacetime points in a sense that will be specified. By using this concept, we
shall argue that the “local point of view” can be obtained from the “non-local point of
view” in the context of a certain approximation.

(2a) Measurements are made possible by the existence of matter. The matter fields
can be understood precisely as representing the readings on some physical coordinate
scaffolding. By definition, a physical coordinate frame constitutes four independent
spacetime scalars that are composed of the dynamical fields and their derivatives.

For example, the Ricci scalar R at a point x is not diffeomorphism invariant: under
a diffeomorphism φ, the scalar is transformed by the pullback

R(x) 7→ φ ∗R(x) = R(φ(x)) . (11.2)

As a result, the Ricci scalar is not an observable. However, if X denotes the (spacetime)
position of a particle, a diffeomorphism will map X 7→ φ−1(X). Thus R(X), the Ricci
scalar at the position of the particle, is diffeomorphism invariant, and hence observable
[468–470].

(2b) Following this argument, and invoking a bunch of infinitesimally close particles,
one can construct a local frame at X, and thus give physical meaning to the components
of any tensor at X [468–470]. In a cosmological setting, for example, a dense dust
of particles [471, 472], which in the continuum limit becomes a continuous fluid, is
commonly used to set up a physical coordinate system, and so give a physical meaning
to a continuous tensor field, which can be measured in some region of spacetime.

Further examples of physical frames include curvature scalars formed from the Rie-
mann tensor in pure gravity [468–470, 473], massless scalar fields [474] and scalars
derived from cosmological perturbation theory [475, 476]. For a review and recent
applications see [477].

(2c) All measurements of tensor or scalar fields, referring to such “physical” coordinate
systems, can be thought of as measurements of certain relational observables. They
have been abundantly discussed in the literature [187, 188, 453, 457–466].

(2d) Given that the matter content in the Universe represents a reference system, or
actually a reference medium, with respect to which the points of the target space are
defined, the following question arises: What is the dynamics of these fields?

In many applications the “coordinate infrastructure” is sufficiently rarefied that its
effect on the geometry can be safely ignored. In general, however, this is not the case and
the backreaction of the “coordinate infrastructure” on the geometry must be accounted
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for, as for example in cosmology. Even if in the classical limit we could assume that
the coordinate fluid is as “diluted” as one wants, but not in the quantum theory.

From these remarks we can draw two general conclusions:

(1) In order to meaningfully talk about local observables in the theory of gravity
one has to include a form of matter as a coordinate system, and this matter
will always back-react onto the geometry.

(2) At least some of the conceptual issues that arise in (quantum) gravity are in
fact the result of this unphysical abstraction, namely neglecting the existence
of matter.

These observations represent another motivation for studying models of gravity endowed
with physical coordinates.

In the Hamiltonian framework, they involve what is commonly called “deparametriza-
tion”. The most popular models of this type contain some form of dust [471]. There
is a close analogue of this in gauge theories, where gauge-invariant observables can be
constructed by suitably dressing local operators [464].

(2e) After these motivations, we remark that treating diffeomorphisms as dynamical
variables gives rise to a theory with rather unique features not shared by any other.
Ordinary matter propagating in spacetime can be represented either by maps into
spacetime, such as the world-lines of point particles or the worldsheets of strings, or
maps from spacetime into some other “internal” space, as is the case with all the usual
matter fields.

Here instead we are in a peculiar situation where the “matter” field is both a map
on spacetime and in spacetime.

Project (III.B): Relational observables in Asymptotic Safety

We discuss that diffeomorphism invariance is usually a concept which goes beyond
covariance: it demands that also the content of the equations must be left unchanged
by coordinate transformations. In this sense, invariance is achieved imposing that all
constants that appear in the equations remain exactly the same. In this context, by
constants we mean not only those things that are numerical constants, but also any
quantity independent of the state of matter [22, 453]. We will call these constant objects
observables.

(1) Classical and quantum. By drawing quantum mechanics and gravity together,
we may infer that the spacetime structure undergoes quantum fluctuations at small
scales. How to detect these fluctuations? In classical physics, spacetime points are
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determined by material bodies like particles; but particles themselves are subject to
quantum fluctuations. So how can fluctuating particles define a fluctuating spacetime
structure down to the Plank scale? The very concept of spacetime points seems to
become fuzzy in such a context. The observable quantities in the quantum theory
should be the same as in the classical theory, or at least a subset of these. Rather
remarkably, the problem of what precisely is observable is far from trivial even in
classical General Relativity.

(2) Spacetime points and reference system. Assume that we are given a specific
spacetime modelM. Although the correspondence between manifold points and values
of physical fields is not observable, the correspondence between values of physical fields
and values of other physical fields is physically meaningful. This is what we define as
point-coincidences. This correspondence contains everything one needs to know, as it
was already clearly expressed by Einstein [7]:

Alle unsere zeiträumlichen Konstatierungen laufen stets auf die Bestimmung
zeiträumlicher Koinzidenzen hinaus. [...] Die Einführung eines Bezugssys-
tems dient zu nichts anderem als zur leichteren Beschreibung der Gesamtbeit
solcher Koinzidenzen.

To define observable quantities, we then need to construct, among all the physical and
geometrical fields in our model, four coordinate fields, and express any other quantity
in terms of these.

The matter in the Universe, which, in particular, may be so dense that the corre-
sponding points form a continuum, represents a reference system with respect to which
the points of the target space are defined. Such a system was postulated by DeWitt
[15], and recently reconsidered by Rovelli [22].

(3) Events and fields. There are two basic building blocks of modern relativistic
cosmology: a manifold of events, and fields defined on it.

Consider our Universe, which relativistic cosmologies attempt to model. Its space-
time is the entirety of all space through all time. The events of this spacetime are
generalizations of the dimensionless points of ordinary spatial geometry. A geometric
point in ordinary spatial geometry is just a particular spot in the space and has no
extension. Correspondingly, an event in spacetime is a particular point in a cosmolog-
ical space at a particular moment of time. To be a 4-dimensional manifold, the set of
events must be a little bit more organized. In a real spacetime, we have the idea that
each event sits in some local neighborhood of events. This neighborhood sits inside
a larger neighborhood of events, and so on. That extra organization comes from the
requirement that we can smoothly label the events with four numbers - or at least we
can do this for any sufficiently small part of the manifold. These labels form coordinate
systems.
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In specifying that events form a four dimensional manifold, there is still a lot we
have not said about the events. We have not specified which events lie in the future
and past of which other events, how much time elapses between these events, which
events are simultaneous with others so that they can form three dimensional spaces,
what spatial distances separates these events and many more related properties.

These additional properties are introduced by specifying the metric field. The mini-
mum information we need is the temporal and spatial distance between each event and
all those (loosely speaking) infinitesimally close to it. That information is what the
metric field provides. It is a “field” since that information belongs just to one event. We
can then piece together temporal and spatial distance along any curve just by summing
all the distances between successive infinitesimally close points along the curve.

(4) Relational quantum observables as composite operators. We have discussed
in Section 4.1 how within the FRG framework the flow equation for composite operators
[195, 245, 247, 478] can be applied to investigate the scaling behavior of couplings in
Quantum Gravity. This formalism allows us to compute the expectation of observables
by solving a flow equation with running parameter the IR cutoff scale k. The initial
condition at the UV cutoff scale k = Λ is given by the expression of the observable
as a function of the microscopic fields. At the end point of the flow at k = 0 the
observable has evolved to the expectation value expressed as a function of the mean
field. Crucially, in Asymptotic Safety the UV cutoff can be taken to infinity and hence
the initial condition is defined in the limit k →∞ due to the existence of an interacting
Reuter fixed point [95, 153, 220, 479]. Thus, this formalism allows the computation of
observables in an asymptotically safe theory of Quantum Gravity.

First applications have been performed considering powers of the Ricci scalar inte-
grated over spacetime [480, 481]. However these terms would also naturally appear as
terms in the effective action.

On the other hand, the composite operator formalism allows us to compute the flow
of terms which are not simply scalar quantities integrated over spacetime. Therefore it
provides a formalism to compute quantities that are in principle measurable by a local
experiment.

Relational observables are natural candidates for composite operators, which can be
studied in Asymptotic Safety.

The research project (III.B) of this thesis is devoted to a construction of observables
within the Asymptotic Safety program. We are going to set up a general framework for
relational observables by introducing a set of four scalar fields1 X̂ µ̂(x) (µ̂ = 0, 1, 2, 3).

1We denote the fields with a hat when they represent fields living in the “material” (physical) frame.
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These fields will represent the physical coordinate system upon which tensorial quan-
tities can be evaluated and “measured”. Inspired by the well-established composite
operator flow equation, we build a formalism to evaluate the scaling of the relational
observables. In addition, we furnish a definition for a relational effective action .

(5) Scaling dimension. Alongside the flowing effective average action, which inter-
polates between the microscopic fixed point action and the full effective action, our
approach will allow access to flowing observables. Through this flow equation, we will
compute the scaling dimension of a selection of observables described in the relational
action. This set of observables will be chosen in order to self-consistently close the
composite operator flow and to keep the truncation under control within a derivative
expansion. It will turn out that only tensorial quantities with upper indices satisfy
this truncation requirement. In particular, we will select the inverse relational metric
ĝµ̂ν̂(x̂) and the relational scalar curvature R̂(x̂), where x̂µ̂ = X̂ µ̂(x). On the other hand,
tensorial quantities with lower indices, such as the relational metric, are not generated
at any finite order in derivative expansion.

At the Reuter fixed point the corresponding composite operators will have univer-
sal scaling exponents. Since they are observables, we expect them not to depend on
unphysical elements of the scheme such as the gauge fixing conditions and choice of
regulator. Physically these exponents should appear in the scaling behavior of correla-
tion functions of relational observables at small distances less than the Planck length
where effects of the fixed point scaling are expected. However, once approximations
are made, we expect some dependence on the scheme. As such the computation of
these exponents can serve as a way to compare with different approaches to Quantum
Gravity and allow us to test the reliability of approximations. The aim of Chapter 13
is to develop the appropriate formalism which allows these investigations.

Plan of Part III

In the following table we schematize how this part is structured:

Part III
Project (III.A) Chapter 12 Dynamical diffeomorphisms
Project (III.B) Chapter 13 Relational observables in AS

Table 11.1. Plan of Part III.

An overall Discussion and Summary of this Part can be found in Chapter 14.



CHAPTER 12

Dynamical diffeomorphisms

Executive summary. We construct a general effective dynamics for diffeomorphisms
of spacetime, in a fixed external metric. Though related to familiar models of scalar
fields as coordinates, our models have subtly different properties, both at kinemati-
cal and dynamical level. The energy-momentum tensor consists of two independently
conserved parts. The background solution is the identity diffeomorphism and the ener-
gy-momentum tensor of this solution gives rise to an effective cosmological constant.

What is new? All results of this chapter represent novel research results.

Based on: Reference [RF6].

Plan of this Chapter. We begin by writing a class of actions for diffeomorphisms of
a manifold to itself. They differ from the models that have been considered previously
because the metrics in the domain and in the target space are one and the same (i.e.,
g = h). We derive the equation of motion (EOM) and show that the energy-momentum
tensor (EMT) contains new terms that had not been considered previously, to the best
of our knowledge. Interestingly, these new terms are conserved independently of the
rest. We show that the equation of motion of the scalar is generically equivalent to the
conservation of the EMT, but not always. We discuss the identity solution as a model
for dark energy and its stability. Finally we return to the motivations given above and
discuss the extent to which the models may provide satisfactory answers.

Appendix G contains a detailed proof of the diffeomorphism invariance of the action,
and a demonstration that models where the domain and target space are not identified
have different properties from those discussed in the main text. However, they can be
related under some additional conditions.

The following sections of this chapter have been taken and rearranged from the au-
thor’s publication [RF6].

12.1. Motivation: models for dark energy

Modelling dark energy is important both for early and late cosmology. A term in the
action proportional to the volume of spacetime is the simplest explanation, but it has

281
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drawbacks. For this reason a more dynamical origin is often preferred. 1 The most
popular models are based on the potential of dynamical scalars. There are also many
models of scalar fields with derivative interactions.

(1) Dynamics of the coordinates. The models we will discuss in this chapter can be
seen as a special subclass of the latter, where the fields are restricted kinematically to
be diffeomorphisms of spacetime. The idea of using the dynamics of coordinates or dif-
feomorphisms to generate an effective cosmological constant goes back at least to [483–
485], where it was used to induce spontaneous compactification of certain directions in
higher-dimensional theories.

(2) Massive gravity. More recently, it has been used extensively in the literature on
massive gravity [486]. A mass term for the graviton breaks diffeomorphism symmetry,
but the theory can still be written in a diffeomorphism-invariant way by introducing
four “Stückelberg” fields, much in the same way as massive QED can be written in a
gauge-invariant way by introducing one real scalar field [487]. In an influential paper,
Arkani-Hamed, Georgi and Schwartz [488] have constructed the effective field theory of
the four Goldstone bosons that are used to restore diffeomorphism invariance in massive
gravity. The theory is formulated in terms of two separate “sites”, that can be viewed
as two copies of spacetime, each endowed with a separate diffeomorphism invariance,
and a field linking the two sites. As with all Goldstone bosons, the Lagrangian of the
fluctuation of the linking field is shift-invariant and therefore contains only derivative
couplings.

(2a) The problem of the ghost. The major issue with this idea is that one of the
four scalars (namely the one associated to the time coordinate) is a ghost.2 This is
because the target space of the scalar fields has a Minkowskian metric. In the original
model, the ghost starts propagating at energy scales higher than (1000km)−1 [489, 490],
leading to strong conflict with observations.

(2b) Possible solutions. This problem can be circumvented in two different ways:

(1) The first goes back to the fully non-linear version of the massive Fierz-Pauli
theory, constructed as a bi-metric theory with a specific potential [491–496].
This theory can be made diffeomorphism-invariant by adding suitable scalar
fields and is ghost-free. In vacuo it is reliable up to energies of order ∼ mm−1;
above this scale, it becomes invalid due to strong coupling effects. In the
presence of sources the situation is much worse.

(2) The second is to construct a ghost-free theory reducing diffeomorphism invari-
ance to foliation-preserving diffeomorphisms [497–500]. This is perhaps not too

1See [482] for a review of many possible alternatives.
2In the models of [483–485], the problem of ghosts did not arise because the compactified dimensions
are spacelike.
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high a price to be paid, since in the cosmological context a preferred foliation
is singled out anyway. 3 The resulting models can be interpreted as describing
the dynamics of a medium filling the Universe. We refer the reader to [502–508]
for later developments and applications to accelerating cosmological models.

We will show that the models we consider in this thesis share the same issues (and
hence the same resolutions) as the theory of massive gravity.

12.2. Models for dynamical diffeomorphisms

(1) Nonlinear sigma models. Technically, the models we shall discuss are very
similar to nonlinear sigma models, except that the domain and the target space are the
same manifoldM. In spite of this identification, we still need to distinguish two types
of geometric objects: tensors evaluated at a point x and tensors evaluated at ϕ(x). In
order to better keep track of the difference, in component formulas, we shall use letters
from the middle greek alphabet for the former and letters from the beginning of the
greek alphabet for the latter. The pullback transforms tensors at ϕ(x) to tensors at x,
for example given a covariant vector ω (a one-form), its pullback is

(ϕ∗ω)µ = ∂µϕ
αωα(ϕ) (12.1)

and
(ϕ∗g)µν = ∂µϕ

α∂νϕ
βgαβ(ϕ) (12.2)

is the pullback of the metric. We will always use this notation: a tensor like ω without
argument is understood to be evaluated at some point x, whereas ω(ϕ) has to be
understood as a tensor evaluated at ϕ(x).

Remark. In this setting the use of covariant derivatives requires a little explanation.
The covariant derivative of tensors at x will be called ∇. It involves only Christoffel
symbols with indices µ, ν, ρ etc. Tensors evaluated at ϕ(x) have to be treated as scalars
(they are inert under changes of frame at x). Thus for example ∇νgµν = 0 as usual,
but

∇νgβα(ϕ) = ∂νϕ
γ∂γgβα(ϕ) . (12.3)

There is also a notion of covariant derivative on tensors at ϕ. We will write D for this
type of covariant derivative. For example

Dµωα(ϕ) = ∂µϕ
γDγωα ; Dγωα = ∂γωα − Γγ

β
αωβ(ϕ) . (12.4)

3We recall that the same symmetry reduction is also present in Hořava-Lifshitz gravity [501], and is
sufficient to reconcile ghost freedom with perturbative renormalizability.



284 part iii: diffeomorphism-invariant observables

Note that in spite of carrying an index, ϕα are not vectors. Their covariant derivative
is the same as the ordinary partial derivative. Thus we will use interchangeably the
notation ∂µϕα and ∇µϕ

α, but when the derivative index is raised we always use ∇, so
gρµ∂µϕ

α = ∇ρϕα.

We shall also encounter objects that have indices of both types. For example, ∇µϕ
α

is a covariant vector at x and a contravariant vector at ϕ(x).4 In this case we find it
convenient to use a covariant derivative ∇ that covariantizes only the index µ, while D
is the full covariant derivative that covariantizes both indices:

∇ρ∇µϕ
α = ∂ρ∇µϕ

α − Γρ
σ
µ∇σϕ

α . (12.5)

Dρ∇µϕ
α = ∇ρ∇µϕ

α + ∂ρϕ
γΓγ

α
β∇µϕ

β , (12.6)

(2) The building block. Let gµν be a metric onM. The basic dynamical variable ϕ
is a diffeomorphism ofM to itself. The basic building block of the action is the tensor

Bµ
ν = gµρ(ϕ∗g)ρν = gµρ∂ρϕ

βgβα(ϕ)∂νϕ
α . (12.7)

In the RHS we have written the factors in a particular order that calls for the use of
matrix notation. If we denote Jµα = ∂µϕ

α the Jacobian of ϕ, we can write (12.7) in the
form

B = g−1 (ϕ∗g) = g−1Jg(ϕ)JT . (12.8)

This notation is often convenient in calculations.

Let us now construct scalars out of this tensor. Since B is assumed to transform as
a mixed tensor, the invariants are traces of products of powers of B. Only four such
terms are algebraically independent. An arbitrary scalar can be expressed, generally
in a nonlinear way, via four chosen independent scalars. The natural choice of four
independent scalars is

τk = Tr(Bk) , k = 1, 2, 3, 4 . (12.9)

Our action is then
S =

∫
ddx
√
gL(τ1, τ2, τ3, τ4) , (12.10)

where L is the Lagrangian, an arbitrary function of the traces. In the following we will
sometimes consider the simplest case

L = −1

2
f 2τ1 , (12.11)

where f is a coupling. In mathematical literature (where g is a Riemannian metric)
the stationary points are the harmonic maps [509]. Another particularly interesting

4It is a section of T ∗M⊗ϕ∗TM. The connection in this bundle is the tensor product of the Levi-Civita
connection in T ∗M and the pullback of the Levi-Civita connection in TM.
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Lagrangian is the quadratic Lagrangian

L = c (τ 2
1 − τ2) . (12.12)

We shall discuss some of its properties later on.

(2) Invariances. Let us now discuss the invariances of the theory. As long as ϕ are
the only dynamical fields, and g is a fixed metric, the only symmetries of the action
are the isometries of g. Thus, generically, there are no symmetries. Even though we
will not discuss dynamical gravity here, we shall consider the invariances of the action
when the metric is allowed to transform. This becomes relevant when one couples the
fields to a dynamical metric, and will also be important later in the discussion of the
energy-momentum tensor and its conservation.

A diffeomorphism ψ acts on tensors on M in the standard way, in particular the
action on covariant tensors is by pullback. For example, the metric g is transformed to
g′ = ψ∗g. The action on ϕ can be either by left or by right composition. Under right
composition

ϕ 7→ ϕ′ = ϕ ◦ ψ (12.13)

we have
ϕ∗g 7→ ϕ′∗g′ = ψ∗ϕ∗ψ∗g , (12.14)

which is not the correct transformation of a covariant tensor. Thus B does not transform
properly as a mixed tensor. Similarly under left composition

ϕ 7→ ϕ′ = ψ−1 ◦ ϕ , (12.15)

we find that the pullback of g is invariant:

ϕ∗g 7→ ϕ′∗g′ = ϕ∗ψ−1∗ψ∗g = ϕ∗g . (12.16)

Thus again B does not transform properly. This was to be expected, because right
composition (pullback) is the natural transformation for maps on spacetime (i.e., maps
having spacetime as domain) and left composition is the natural transformation for
maps into spacetime (i.e., having spacetime as target).

(3a) Diagonal subgroup. Since a diffeomorphism ϕ is simultaneously a map on and
in spacetime, one should act both ways. Indeed, consider now the “diagonal subgroup”
acting by conjugation

ϕ 7→ ϕ′ = ψ−1 ◦ ϕ ◦ ψ . (12.17)

In this case we find that the pullback of the metric transforms as a covariant tensor:

ϕ∗g 7→ ϕ′∗g′ = ψ∗ϕ∗ψ−1∗ψ∗g = ψ∗ϕ∗g . (12.18)
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This leads to the correct transformation of B. We have established that the action
functional S[ϕ] is invariant under Diff(M), acting on the metric by pullback and on ϕ
by conjugation.

(3b) Free and transitive: relation to other models. It is important to appreciate
the following point: whereas the actions of Diff(M) on itself by left and right compo-
sition are transitive (every ϕ ∈ Diff(M) can be mapped to any other ϕ′ by a right-
or left-composition) and free (there are no fixed points), the diagonal action is not. In
fact, the diagonal action leaves the identity map invariant.

In Appendix G we discuss closely related models where the domain and target spaces
are kept separate, and show that the action functional is separately invariant under left-
and right-diffeomorphisms. In contrast to those models, neither of these group actions
leaves the action functional (12.10) invariant.

Remark. Finally we observe that the identification of the spacetime and target space
metrics leads to peculiar properties also from the point of view of dimensional analysis.
Since the two metrics appearing in B are functions of x and ϕ(x), respectively, it is
most natural to assume that the fields ϕα have the same dimension as the coordinates
xµ.5

We will assume this throughout this thesis. Then, the tensor Bµ
ν is dimensionless,

and so are the traces τn. The couplings f 2 and c in the Lagrangians (12.11) and (12.12)
have mass dimension equal to the spacetime dimension d. 6 In fact, the coefficient of
any monomial in the τn must have dimension d. Since the Lagrangian L must have
dimension d, we could extract an overall factor f 2 with dimension d and write L = f 2L̃,
where L̃ is a purely numerical function. As usual, one expects that L̃ does not contain
exceedingly large or exceedingly small coefficients. Then, f 2 is the only characteristic
scale of the theory and it will be related to the scale of the cosmological constant.

12.2.1. Equation of motion of ϕ

(1) The equation of motion. Let ϕ(t) be a one-parameter family of mapsM→M.
The derivative

dϕα(t)

dt

∣∣∣∣∣
t=0

= vα (12.19)

5It is generally the case that when the Lagrangian contains non-polynomial interactions, the fields
should be dimensionless. This, together with [ϕ] = [x] leads to dimensionless coordinates, a choice
that we find most natural also for other reasons. However, we do not need to commit to this choice
here.
6Note that in ordinary nonlinear sigma models f2 would have dimension d − 2 and c would have
dimension d− 4. The difference is due to the identification h = g. Also note that one could absorb f2

in the metric, thereby making it dimensionless.
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is a section of the vector bundle ϕ∗TM. The equation of motion is obtained by setting
to zero the directional derivative of the action functional (12.10) along an arbitrary
vector v:

0 = vS =
dS[ϕ(t)]

dt

∣∣∣∣∣
t=0

=

∫
ddx
√
g
∑
n

n
∂L
∂τn

TrBn−1∂B

∂t

∣∣∣∣∣
t=0

=

∫
ddx
√
g
∑
n

n
∂L
∂τn

(Bn−1)σν
(
2∂νv

βgβα(ϕ) + ∂νϕ
βvγ∂γgβα(ϕ)

)
∂σϕ

α .

(12.20)

We used the fact that (Bn−1)σν is symmetric. In the first term we have to extract the
variation v from the derivative. We use that ∂νvβ = ∇νv

β and use the standard rules
for integration by parts. In this way we find

0 = vS=

∫
ddx
√
g vα

{
−∇µ

[
2
∑
n

n
∂L
∂τn

(Bn−1)µρg
ρτ∂τϕ

βgβα(ϕ)

]

+
∑
n

n
∂L
∂τn

(Bn−1)µρg
ρτ∂τϕ

β∂αgβγ(ϕ)∂µϕ
γ

}

= −2

∫
ddx
√
g vαgαβ(ϕ)Dµ

[∑
n

n
∂L
∂τn

(Bn−1)µν∂νϕ
β

]
.

(12.21)

In the last step, we used (12.3) in the terms where ∇µ hits gβα(ϕ). The resulting
terms combine with the second line to produce a Christoffel symbol that enters in the
covariant derivative Dµ. Thus the equation of motion reads

Dµ

[∑
n

n
∂L
∂τn

(Bn−1)µν∂νϕ
β

]
= 0 . (12.22)

(2) Special cases. One can be more explicit in special cases. For example, in the
case of the action (12.11), the only term in the sum has ∂L

∂τ1
= 1 and B0 = 1, or

(B0)µν = gµν . Using the aforementioned rules, and recalling that ∂µϕα = ∇µϕ
α, this

leads to the equation for harmonic maps:

Dµ∇µϕ
β = 0 . (12.23)

Applying this to the other special case (12.12), the equation of motion becomes

Dµ[τ1∇µϕβ −Bµν∂νϕ
β] = 0 . (12.24)

It will be useful to rewrite (12.23) in another way. Expanding the covariant deriva-
tives one has

0 = gµν
(
∂µ∂νϕ

α − Γµ
ρ
ν∂ρϕ

α + ∂µϕ
βΓβ

α
γ∂νϕ

γ
)
. (12.25)
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Since ϕ is a diffeomorphism, from the transformation properties of the connection we
can rewrite the first two terms as

∂µJν
α − Γµ

ρ
νJρ

α = −JµβJνγΓ′βαγ (12.26)

where we defined Jµα = ∂µϕ
α, and therefore the equation for harmonic diffeomorphisms

amounts to the statement that

0 = g′βγ
(
Γβ

α
γ − Γ′β

α
γ

)
, (12.27)

where g′βγ = gµν∂µϕ
β∂νϕ

γ and Γ′ are the Christoffel symbols of g′. Since the difference
of two connections is a tensor, this is a covariant statement.

12.2.2. Energy-momentum tensor

(1) Energy-momentum tensor. Next, we vary the action functional with respect of
gµν(x):

δS =

∫
ddx
√
g

{
1

2
gµνδgµνL+

∑
n

n
∂L
∂τn

TrBn−1δB

}

=

∫
ddx
√
g

{
1

2
gµνδgµνL+

∑
n

n
∂L
∂τn

(Bn−1)σµ×

×
(
− gµρδgρτgτλ∂λϕγgγδ(ϕ)∂σϕ

δ + gµλ∂λϕ
αδgαβ(ϕ)∂σϕ

β

)}
.

(12.28)

We can obtain the energy-momentum tensor by straightforwardly using the rules of
variational calculus and evaluating

T µν =
2
√
g

δS

δgµν
. (12.29)

It is perhaps more instructive to observe that in the last term the variation appears in
the combination ∂λϕα∂σϕβδgαβ(ϕ) = (ϕ∗δg)µν(x). We exploit the fact that the integral
does not change if we replace the integrand by its transform under a diffeomorphism.
Let x′α = ϕα(x), and denote by a prime all transformed tensors. Covariant tensors are
pulled back by ϕ−1 and contravariant tensors are pushed forward with ϕ: A′ = ϕ∗A,
g′ = ϕ−1∗g, and (ϕ∗δg)′ = δg. Then the last term can be manipulated as follows:∫

ddx
√
g(x)Aµν(x)(ϕ∗δg)µν(x) =

∫
ddx′

√
g′(x′)A′αβ(x′)δgαβ(x′) , (12.30)
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where x′ is to be regarded as independent integration variable. Then, from the definition
given above, we obtain

T µν =gµνL − 2
∑
n

n
∂L
∂τn

(Bn−1)σµ∇νϕγgγδ(ϕ)∇σϕ
δ + 2

√
g′
√
g

∑
n

n

(
∂L
∂τn

)′
(B′n−1)µν .

(12.31)

(2) Special cases. In particular for the Lagrangian (12.11)

T µν = f 2

[
∇µϕα∇νϕβgαβ(ϕ)− 1

2
gµνgρσ∇ρϕ

α∇σϕ
βgαβ(ϕ)−

√
g′
√
g
g′µν
]
, (12.32)

whereas for (12.12)

T µν = c gµν(τ 2
1−τ2)−4c(τ1g

σµ−Bσµ)∇νϕγgγδ(ϕ)∇σϕ
δ+4

√
g′
√
g
c(τ ′1g

′µν−B′µν) . (12.33)

12.2.3. Diffeomorphism invariance, EOM and EMT conservation

(1) Infinitesimal diffeomorphism transformation. Let us begin by recalling the
general argument relating diffeomorphism invariance to EMT conservation. Given an
action S[ϕ, g] for the “matter” fields ϕ coupled to a metric g, its variation under an
infinitesimal diffeomorphism ξ is

δξS =

∫
ddx

[
δS

δϕα
δξϕ

α +
δS

δgµν
δξgµν

]
. (12.34)

We define the equation of motion

Eα =
1
√
g

δS

δϕα
. (12.35)

An infinitesimal diffeomorphism is defined by

δξx
µ = −ξµ(x) , (12.36)

where ξ is a vector field. The infinitesimal variation of ϕ is

δξϕ
α(x) = ξλ∂λϕ

α − ξα(ϕ) , (12.37)

where the first term comes from the right composition and the second from the left
composition. The variation of any tensor T is its Lie derivative δξT = LξT . For the
metric

δξgµν = ξρ∂ρgµν + gµρ∂νξ
ρ + gρν∂µξ

ρ = ∇µξν +∇νξµ . (12.38)

Inserting these formulae and (12.29) in (12.34), invariance of the action implies

0 =

∫
d4x
√
g [(ξτ∇τϕ

α − ξα(ϕ))Eα − ξµ∇νT
µν ] . (12.39)
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We find, as expected, that Eα = 0 implies EMT conservation.

(2) What is special about dynamical diffeomorphisms. In the case of our theory
of diffeomorphisms, there is more to be learned. We observe that for a generic ϕ,
the coefficient of Eα is non-vanishing and therefore, conversely EMT conservation also
generically implies the EOM. This makes sense, because both statements amount to
four second order differential equations for the fields. However, for the identity map
ϕα = xα, the coefficient of Eα vanishes and therefore this implication does not hold.
This is a consequence of the identity map being a fixed point of the action of the
diffeomorphism group.

(3) Conservation of the EMT: left and right EMT. One could further explicitly
compute the divergence of the EMT. This calculation is very complicated in general,
but we can do it in the case of the Lagrangian (12.11). It turns out to be useful to split
the EMT in two parts:

T µν = T µν(R) + T µν(L) , (12.40)

where the first part arises from the variations with respect to gµν and consists of the
first two terms in (12.32), the second part comes from variation with respect to gαβ(ϕ)

and consists of the third term in (12.32). Interestingly, these two parts are separately
conserved. The conservation of T µν(R) works exactly as for a nonlinear sigma model:

∇µT
µν
(R) = f 2∇2ϕα∇νϕβgαβ(ϕ)+f 2

(
∇µϕα∇νϕβ∇µϕ

γ − 1

2
∇µϕα∇µϕ

β∇νϕ
γ

)
∂γgαβ(ϕ) .

(12.41)
The two terms in parentheses reconstruct a Christoffel symbol, and the whole expression
is then seen to be proportional to the EOM, written in the form (12.25).

For the second part,

∇µT
µν
(L) = −f 2 1

√
g
∇µ(

√
g′g′µν)

= −f 2 1
√
g

(
∂µ(
√
g′g′µν) +

√
g′ Γµ

ν
ρg
′µρ
)

= −f 2

√
g′
√
g
gµρ
(
Γµ

ν
ρ − Γ′µ

ν
ρ

)
(12.42)

which vanishes due to the EOM written in the form (12.27).

While these statements are easy to check in the case of the Lagrangian (12.11),
calculating the divergence of the EMT in the general case is very complicated. Still, the
preceding statements remain true. One can see this by following in detail the proof of
invariance of the action under infinitesimal diffeomorphisms, which is given in Appendix
G. One can see there that the terms coming from variations of gµν (i.e. the divergence
of T µν(R)) and those coming from variations of gαβ(ϕ) (i.e. the divergence of T µν(L)) cancel
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separately against terms coming from the variation of ϕ (i.e. the EOM). More precisely,
the differential identity (12.39) can be seen as the sum of two separate identities∫

d4x
√
g
[
ξτ∇τϕ

αEα − ξµ∇νT
µν
(R)

]
= 0 , (12.43)∫

d4x
√
g
[
−ξα(ϕ)Eα − ξµ∇νT

µν
(L)

]
= 0 . (12.44)

This is surprising, because the invariance group of the action has four parameters
but it seems to imply eight differential identities. This can be explained by looking
at the models as special cases of theories with different domain and target space. In
these cases, as explained in Appendix G, the invariance group consists separately of
left and right diffeomorphisms and therefore implies eight differential identities. The
models with identical domain and target space are obtained by choosing a preferred
diffeomorphism, and this does not invalidate the identities.

12.3. The identity solution

The identity ϕ = IdM is represented, in any local coordinate system, by

ϕα = xα . (12.45)

In this case the Jacobian reduces to ∂µϕα = δαµ , Bµν = gµν and all the traces become
constant: τn = 4 for n = 1, 2, 3, 4. Thus L and its derivatives are just constants and
the EOM (12.22) are satisfied.

(1) Effective cosmological constant. The energy-momentum tensor of the solution
becomes proportional to the metric. The last two terms in (12.29) cancel out and

T µν = gµνL − 2
∑
n

n
∂L
∂τn

gµν + 2
∑
n

n
( ∂L
∂τn

)
gµν = gµνL(4, 4, 4, 4) . (12.46)

We can therefore interpret this energy-momentum tensor as an effective cosmological
constant Λ = 8πGL(4, 4, 4, 4). As already anticipated, if we assume that L̃(4, 4, 4, 4) is
a number of order one, the effective cosmological constant is Λ ≈ 8πGf 2.

(2) Stability of the solution. We will now discuss the stability of the identity solu-
tion. This can have two possible meanings: in Euclidean signature one asks whether
the action has a minimum at the solution; in Lorentzian signature one asks whether
the energy has a minimum. We begin by discussing the simpler problem of Euclidean
stability. Since the Euclidean action is also identical to the energy of a static field config-
uration (in one dimension more) this analysis also says something about the stability of
static configurations under static deformations. Full Lorentzian stability will be briefly
discussed in Section 12.3.3, where we shall refer to existing results in the literature.
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12.3.1. The second variation

(1) The Hessian at the identity. Here we compute the Hessian of the action at the
identity solution. This is needed to establish whether a Euclidean solution is stable, and
is also needed in the study of linearized perturbations. Let ϕ(t, s) be a two-parameter
family of maps. We take the double derivatives at t = s = 0. We let

dϕα(t, s)

dt

∣∣∣∣∣
t=s=0

= vα ,
dϕα(t, s)

ds

∣∣∣∣∣
t=s=0

= wα . (12.47)

The Hessian is defined by

H(v, w) =
∂2S[ϕ(t, s)]

∂t∂s

∣∣∣∣∣
t=s=0

= −2
∂

∂s

∫
ddx
√
g
∂ϕα

∂t
gαβ

(
Dµ
∑
n

n
∂L
∂τn

(Bn−1)µν∂νϕ
β

)∣∣∣∣∣
t=s=0

.

(12.48)

The derivatives with respect to s of the terms ∂ϕα

∂t
and gαβ are proportional to the EOM,

and since we are interested in the variation around a solution, we can neglect them.
Acting with the s-derivative on all the remaining occurrences of ϕ, and evaluating at
t = s = 0, which correspond to ϕ = IdM, the round bracket becomes∑

n

n
∂L
∂τn
Dµ∂µwβ +

∑
n

n
∂L
∂τn
Dµ

(
∂

∂s
(Bn−1)µβ

∣∣∣∣∣
s=0

)
+
∑
n,m

n
∂2L

∂τn∂τm
Dβ

(
∂τm
∂s

∣∣∣∣∣
s=0

)

+
∑
n

n
∂L
∂τn

gµδ
(
∂µw

γΓγ
β
δ + wε∂εΓµ

β
δ

)
.

(12.49)
Now consider the general formula

DµDνw
δ = ∇µ∇νw

δ +∇µ∇νϕ
γΓγ

δ
βw

β + ∂νϕ
γ∂µϕ

β∂βΓγ
δ
εw

ε

+∂νϕ
γΓγ

δ
β∂µw

β + ∂µϕ
γΓγ

δ
ε

(
∂νw

ε + ∂νϕ
ζΓζ

ε
βw

β
)

(12.50)

and specialize to the identity map. Comparing this with the preceding formula, and
using ∇µ∇νϕ

β = −Γµ
β
ν , we see that the first and the last term in (12.49) combine to

give ∑
n

n
∂L
∂τn

(
DµDµw

β +Rβ
γw

γ
)
. (12.51)

At the identity, we can convert all indices to µ, ν etc and DµDµ = ∇2. In the remaining
two terms we have

∂

∂s
(Bn−1)µν

∣∣∣∣∣
s=0

= (n− 1) (∇µwν +∇νwµ) (12.52)
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and
∂τm
∂s

∣∣∣∣∣
s=0

= 2m∇µw
µ . (12.53)

Putting everything together, the second variation of the action around the identity is

H(v, w) = 2

∫
ddx
√
g

[∑
n

n2 ∂L
∂τn

vµ
(
−∇2gµν −Rµν

)
wν

+

(∑
n

n(n− 1)
∂L
∂τn

+ 2
∑
m,n

mn
∂2L

∂τn∂τm

)
(∇µv

µ)(∇νw
ν)

]
.

(12.54)

(2) Self-adjoint differential operator. We can write H(v, w) = 〈v, Lw〉, where 〈 , 〉
is the natural inner product in the space of sections of ϕ∗TN and L represents the
differential operator

L =
∑
n

n2 ∂L
∂τn

(
−∇2gµν −Rµν

)
−

(∑
n

n(n− 1)
∂L
∂τn

+ 2
∑
m,n

mn
∂2L

∂τn∂τm

)
∇µ∇ν .

(12.55)

Note that the factors involving L are constants. Using the rules for integrations by
parts, one sees that the Hessian is symmetric:

H(v, w) = H(w, v) (12.56)

which also means that the differential operator L is self-adjoint.

(3) Special cases: harmonic diffeomorphisms and quadratic Lagrangian.
Clearly, stability hinges on the form of the Lagrangian. As a first example consider
the action for harmonic diffeomorphisms (12.11). Its Hessian is [510, 511]:

H(v, w) = 2

∫
ddx
√
g vµ

(
−∇2gµν −Rµν

)
wν . (12.57)

Hence we have to study te spectrum of the Laplace-type operator

L1 = −gµνD2 −Rµν . (12.58)

This spectrum is known for spheres. It consists of transverse and longitudinal fields. The
lowest transverse eigenfunctions are the d(d+1)/2 Killing vectors, which are zero modes.
This is related to the fact that every isometry is harmonic. The lowest longitudinal
eigenfunctions are

wiν = ∂νφ
i , (12.59)

where φi are cartesian coordinates of the flat Euclidean space in which the sphere is
embedded. These are conformal Killing vectors and have eigenvalue − d−2

d(d−1)
R and

multiplicity d+ 1. In d = 2 they are zero modes; this is related to the fact that in d = 2
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conformal isometries are harmonic [512]. All other eigenvalues are positive. Thus, the
identity is unstable as a harmonic map of spheres in d > 2; in d = 2 it is stable and
belongs to a six-parameter family of degenerate solutions.

As another example we consider the model (12.12). In this case the Hessian is

H(v, w) = 4

∫
ddx
√
g

[
(d− 2)vµ

(
−∇2gµν −Rµν

)
wν + (∇µv

µ)(∇νw
ν)

]
(12.60)

and, integrating the second term by parts, the associated operator reads

L2 = (−∇2gµν −Rµν)−
1

d− 2
∇µ∇ν . (12.61)

Clearly the spectrum on transverse vectors is the same as that of L1, but it may differ
on longitudinal vectors, and the new contribution is positive, so that the identity may
become stable. In fact, the additional non-minimal term, acting on the eigenfunctions
(12.59), gives R/(d− 1)(d− 2), so that the eigenvalue becomes − d−4

d(d−2)
R. It is negative

in all dimensions except four, were it is zero. Also in this case, the zero modes are
related to the infinitesimal isometries and conformal isometries.

12.3.2. Global Euclidean bounds

The second variation of the action gives information about the local stability of a
solution, but there are some cases where absolute bounds on the action can be derived.
In this section we assume that M is compact without boundary. We use the totally
antisymmetric tensor ηµ1...µd =

√
g εµ1...µd where ε is the tensor density with components

±1. It is the volume form onM, such that V =
∫
M η =

∫
ddx
√
g is the volume.

(1) Winding number. The winding number is

W =
1

d!V

∫
ddx
√
g ηµ1...µdJµ1

α1 . . . Jµd
αdηα1...αd (12.62)

and is equal to one for orientation-preserving diffeomorphisms.

(2) Harmonic maps in d = 2. The action for harmonic maps in two Euclidean
dimensions is S = 1

2
f 2
∫
d2x
√
g τ1. We define the double dual ∗J∗ by ∗J∗µα = ηµ

ρJρ
γηγ

α.
Integrating the square of J ±∗J∗ one obtains the well-known bound S ≥ V f 2|W |, [513]
and since |W | = 1 for diffeomorphisms,

S ≥ V f 2 . (12.63)

The absolute minima are the maps for which J = ±∗J∗. Indeed, the identity solves this
equation.
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(3) Quadratic Lagrangian in d = 4. There is a parallel example in four Euclidean
dimensions. This time we consider the Lagrangian (12.12). Defining the antisymmetric
tensor Kµν

αβ = J[µ
[αJν]

β], and the inner product

(K,K ′) =
1

2

∫
d4x
√
g gµρgνσKµν

αβK ′ρσ
γδgαγgβδ , (12.64)

the action functional associated to (12.12) can be rewritten

S = 4c||K||2 ≡ 2c

∫
d4x
√
g gµρgνσKµν

αβKρσ
γδgαγgβδ . (12.65)

We can define ∗K∗, the double dual of K, by

∗K∗µν
αβ =

1

4
ηµν

ρσηαβγδKρσ
γδ . (12.66)

Since ||∗K∗||2 = ||K||2, we have

0 ≤ ||K ±∗K∗||2 = 2||K||2 ± 2(K,∗K∗) =
1

2c
S ± 6VW [ϕ] , (12.67)

where W is the winding number of ϕ. Since diffeomorphisms have |W | = 1, we have
the absolute bound

S ≥ 12 cV . (12.68)

The bound is saturated by maps for which H is double-self-dual, and the identity has
this property.

For a generic metric, the identity will be an isolated solution. In the presence of
isometries and/or conformal isometries, it will be an element of continuous degenerate
families of solutions, as we have seen in the end of the preceding section.

12.3.3. Lorentzian stability

(1) The timelike ghost. As long as we restrict ourselves to dynamical diffeomor-
phisms in a fixed external metric, there is no difference, regarding the issues of Lorentzian
stability, between the models considered here, where the target space is spacetime itself,
and those where the target space is another manifold, as in nonlinear sigma models, or
a copy of the same manifold. In all cases, when the target space metric has Minkowski
signature (− + ++), the scalar associated to the time coordinate has a kinetic term
with opposite sign of those associated to the space coordinates. Assuming that the sign
of the Lagrangian is such that the latter have the correct dynamics, the timelike scalar
will be a ghost.

(2) The resolutions in massive gravity. As already mentioned, these issues have
been discussed extensively in the literature on massive gravity, where two different
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strategies have been developed in order to avoid ghost instabilities: the de Rham–-
Gabadadze–Tolley (dRGT) models [491], that preserve spacetime covariance, and Lorentz-break-
ing models [497]. Both strategies can be used also for our models.

In the context of dRGT models of massive gravity, it has been observed that certain
nonlinear sigma models with Minkowskian target space and special actions built out of
Tr(
√
B)n will be ghost-free [514]. By expanding B = 1+X in terms of X, one can write

Tr(
√
B)n as an infinite series of TrBn. Hence, these actions can be viewed as special

cases of our action and the same construction can be applied also to our models.

In Lorentz-breaking massive gravity, one gives up Lorentz invariance and preserves
only Euclidean symmetry of 3-dimensional space. Dubovsky and Rubakov [497, 498]
extended the nonlinear Stückelberg trick to Lorentz-violating massive gravity using
the pullback of a 3-dimensional target space metric hab. Similarly, we can construct
ghost-free (but Lorentz-violating) dynamics of the diffeomorphisms of space, rather
than spacetime. The target space metric h(ϕ) would be only 3-dimensional in that
case. The solution ϕ = IdΣ is again a solution of the EOM and it generates an effective
cosmological term in the space directions.



CHAPTER 13

Relational observables in Asymptotic Safety

Executive summary. We introduce an approach to compute the renormalization
group flow of relational observables in Quantum Gravity which evolve from their mi-
croscopic expressions towards the full quantum expectation value. This is achieved by
using the composite operator formalism of the functional renormalization group. These
methods can be applied to a large class of relational observables within a derivative
expansion for different physical coordinate systems. As a first application we consider
four scalar fields coupled to gravity to represent the physical coordinate frame from
which relational observables can be constructed. At leading order of the derivative
expansion the observables are the inverse relational metric and the relational scalar cur-
vature. We evaluate their scaling dimensions at the fixed point, both in the standard
renormalization group scheme and in the essential scheme. This work represents the
first steps to describe running observables within Asymptotic Safety; the treatment can
be generalized to other observables constructed from different tensors.

What is new? All results of this chapter represent novel research results.

Based on: Reference [RF7].

Plan of this Chapter. We briefly review the ideas leading to the construction of
relational observables through a physical coordinate system. We introduce a general
formalism to translate the composite operator setting to relational observables and we
comment about a natural criterion of choice of observables within a derivative expan-
sion. In Section 13.3 we perform the first application to the flow of two relational ob-
servables corresponding to the inverse metric and the scalar curvature. In this example
the physical coordinate system is composed of four massless scalar fields. The corre-
sponding observables are those which are found at the leading order in the derivative
expansion. In Section 13.4, after having reviewed the matter flow within asymptotically
safe gravity, we derive the flow of various physical matter systems (the Standard Model
and modifications thereof) allowing for the spacetime metric to be renormalized. Here
we consider two schemes, one in which the anomalous dimension of the metric is set to
zero, and another one in which we adopt the minimal essential scheme (see Section 4.2),
where we fixed the value of the cosmological constant by a renormalization condition.

297
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We then compute the scaling of the chosen observables and calculate their scaling di-
mensions on the fixed points. In Section 13.5 we present the consistent extension of our
application to the next order in the derivative expansion.

In Appendix H we apply this to scalar tensor theories, deriving the flow equations,
we compute the Hessian of the observables and we perform the calculations leading to
the numerical results for the scaling dimension of the couplings of the observables.

This chapter has been taken from the author’s publication [RF7].

13.1. Relational observables in the quantum theory

As discussed extensively in the Introduction to this Part the situation concerning ob-
servables for classical GR can be understood relationally. The method of relational ob-
servables implements the intuitive idea that observables in a background independent
theory should encode relations between dynamical quantities. However, for Quantum
Gravity the situation of observables is less clear. To a large extent, this is due to the fact
that a unique well-established theory of Quantum Gravity does not exist yet. Depend-
ing one’s point of view concerning the construction of Quantum Gravity the problem
of quantum observables takes slightly different forms.

Within the Asymptotic Safety scenario, the UV completion for Quantum Gravity
is provided by the UV fixed point: the corresponding observables will have universal
scaling exponents at the fixed point. Physically these exponents should appear in the
scaling behavior of correlation functions of relational observables at small distances less
than the Planck length where effects of the fixed point scaling are expected.

13.2. Physical coordinate frame and relational observables

13.2.1. Physical coordinate frame

(1) Physical coordinate frame. In order to construct relational observables we need
a physical coordinate frame in which to evaluate tensors, or other diffeomorphism-invari-
ant objects, such that when we transform both the tensor and the coordinate system the
total transformation leaves the tensor invariant. In other words a physical coordinate
frame is a way to label a spacetime point P not by abstract coordinates xµ, but by the
values which physical quantities take at P . Thus, for example the scalar curvature R(x)

is not an observable since the coordinates x do not mean anything physically. However,
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if the point P is specified as the point where a particular physical event happens, then
the scalar curvature at P is an observable. If φa(x) denotes the full set of dynamical
fields, which includes the components of the metric tensor gµν as well as matter fields,
we construct a set of four scalars from the dynamical fields and their derivatives

X̂ µ̂(x) = X̂ µ̂(φ(x), ∂φ(x), . . .) , (13.1)

which constitute our physical coordinate frame with µ̂ = 0, 1, 2, 3.1 As a result a point
P in spacetime is labeled by the values the scalar fields X̂ µ̂(x) take at P .

Since the X̂’s are scalars, they transform, under a diffeomorphism of the dynamical
fields φ → φξ, as X̂ µ̂(x) → X̂ µ̂

ξ (x) = X̂ µ̂(ξ(x)), where here φξ is the transformed
dynamic field.

In order that (13.1) constitutes a set of coordinates, they must constitute a diffeomor-
phism from the manifoldM to another manifold M̂ with coordinates x̂µ which is the
space of all values that the scalar fields X̂ can take. Invertibility of the diffeomorphism
means that the equation

X̂ µ̂(x) = x̂µ̂ , (13.2)

can be solved for x. We denote the solution

xµ = Xµ(x̂) , (13.3)

such that X = X̂−1 is the inverse of the map X̂ (see Figure 13.1). Whether this
property holds depends on the configuration φ and the choice of scalars X̂ µ̂. Thus, a
given choice of the scalars X̂ µ̂ may define a physical coordinate system for a subset of
all possible field configurations φ.

(2) Frame fields. Given the set of scalars (13.1) one has a set of four covariant vectors

eµ̂µ(x) = ∂µX̂
µ̂(x) . (13.4)

The frame fields eµµ̂ are the inverse of the above eµ̂µ and transform as contravariant
vectors on the spacetime such that

eµ̂µ(x)eµν̂ (x) = δµ̂ν̂ , eµµ̂(x)eµ̂ν (x) = δµν . (13.5)

The frame fields eµµ̂(x) can be obtained by differentiating the mapsXµ(x̂) and evaluating
the derivative at x̂ = X̂(x). This follows since

δµν = ∂νx
µ = eµ̂ν (x)

∂

∂x̂µ̂
Xµ(X̂(x)) (13.6)

and hence we can write the frame field as

eµµ̂(x) =
∂

∂x̂µ̂
Xµ(X̂(x)) . (13.7)

1In this chapter we use the hat ˆ to identify fields living in the physical coordinate system. Note that
they will play a similar role to the ϕα’s of Chapter 12.
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Figure 13.1. Maps between spacetimeM and physical field frame M̂.

(3) Invariant volume element. Since we assume eµ̂µ is invertible it allows us to define
an invariant volume element on spacetime d4x ẽ where

ẽ = det
(
eµ̂µ
)
. (13.8)

This allows us also to write the following identity between Dirac delta functions:

δ(X(x̂), x) = ẽ(x) δ(x̂, X̂(x)) . (13.9)

It is important to note that Xµ(x̂) is itself a functional of the dynamical fields. Let
us change the field configuration φ → φ′ and we induce a change in X̂(x) → X̂ ′(x)

obtained by replacing φ by φ′ in (13.1). Since the coordinates x are held fixed, we have
that X(x̂)→ X ′(x̂) such that

X ′(X̂ ′(x)) = X(X̂(x)) = x . (13.10)

If we consider the case where φ′ is obtained by a diffeomorphism of φ such that φ′ = φξ,
we have that X̂ ′(x) = X̂ξ(x) = X̂(ξ(x)). We can then infer from (13.10) that X ′(x̂) =

Xξ(x̂) is given by
Xξ(x̂) = (ξ−1 ◦X)(x̂) . (13.11)

where ξ−1 is the inverse function and f ◦ g denotes the composition of two functions.

13.2.2. Relational observables

(1) Diffeomorphism invariance. Given a field φa(x), let us denote its transformation
under a diffeomorphism ξµ(x) by

φaξ = T a[φ, ξ] , (13.12)
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which is a functional of both the field φ and the diffeomorphism ξµ(x). For example a
scalar field ψ transforms to

ψξ(x) = ψ(ξ(x)) , (13.13)

while components of the metric transform as

g(ξ)µν(x) = ∂µξ
λ(x)∂νξ

ρ(x)gλρ(ξ(x)) . (13.14)

The functionals T a[φ, ξ] satisfy the composition identity

T a[φξ, ξ
′] = T a[φ, ξ ◦ ξ′] , (13.15)

which follows from the properties that imply diffeomorphisms form a group where the
group product is given by (ξ′ · ξ)(x) = ξ(ξ′(x)).

For example, if we consider a scalar ψ(x), then applying first the diffeomorphism ξ

we have T [ψ, ξ] = ψξ(x) = ψ(ξ(x)), then applying ξ′ we have T [ψξ, ξ
′] = ψξ(ξ

′(x)) =

ψ(ξ(ξ′(x))). Therefore the action of applying first ξ and then ξ′ to ψ is the same as
applying the composition in the reverse order ξ ◦ ξ′.

To obtain the gauge-invariant fields, we transform the dynamical fields φa(x) into
the physical coordinate frame

φ̂â(x̂) = φâX(x̂) (13.16)

such that it now depends on the coordinates x̂. The fields φ̂â(x̂) are then functionals
φ̂â[φ] of the original fields and constitute a set of local observables at each point x̂. As
functionals of the fields φ we have that

φ̂â = T â[φ,X] . (13.17)

For example, the relational observable corresponding to the spacetime metric is given
by the following three equivalent expressions:

ĝµ̂ν̂(x̂) = ∂µ̂X
µ(x̂) ∂ν̂X

ν(x̂) gµν(X(x̂)) (13.18)

=

∫
d4x δ(x,X(x̂)) eµµ̂(x) eνµ̂(x)gµν(x) (13.19)

=

∫
d4x ẽ(x) δ(x̂, X̂(x)) eµµ̂(x)eνµ̂(x) gµν(x) . (13.20)

To see that φ̂â are observables, i.e., that they are diffeomorphism-invariant, we compute

φ̂âξ = T â[φξ, Xξ] (13.21)

= T â[φξ, ξ
−1 ◦X] (13.22)

= T â[φ,X] = φ̂â , (13.23)

where to arrive at the second line we used (13.11) and to arrive on the third line we
used (13.15).



302 part iii: diffeomorphism-invariant observables

We can also take any composite operator O[φ] which transforms as O[φξ] = Oξ[φ]

and obtain a diffeomorphism-invariant operator

Ô[φ] = OX [φ] = O[φ̂] (13.24)

for any O and any set of physical coordinates. The operators Ô[φ] constitute relational
observables.

(2) A selection of relational observables.

(1) For example, if A = R(x) is the Ricci scalar then

R̂(x̂) = R(X(x̂))

=

∫
ddx δ(X(x̂), x) R(x)

=

∫
ddx ẽ(x) δ(x̂, X̂(x)) R(x)

(13.25)

is the corresponding relational observable which we dub the ‘relational Ricci
scalar’.

(2) If O = gµν(x) is the inverse metric, then

ĝµ̂ν̂(x̂) = eµ̂µ(X(x̂)) eν̂ν(X(x̂)) gµν(X(x̂)) (13.26)

is the relational observable corresponding to the inverse metric or the ‘relational
inverse metric’, and

ĝµ̂ν̂(x̂) =

∫
ddx δ(X(x̂), x) gµν(x)

=

∫
ddx ẽ eµ̂µ(X(x̂)) eν̂ν(X(x̂)) δ(x̂, X̂(x)) gµν(x) .

(13.27)

Thus, given any diffeomorphism-invariant composite operator O[φ], the relational ob-
servable Ô[φ] can be dubbed the relational O. If the invariant composite operator OI(x)

depends on the coordinates x and some set of indices spacetime I indices, e.g. I = µν,
the corresponding relational observable ÔÎ(x̂) instead depend on x̂ and hatted indices
e.g. Î = µ̂ν̂. In general, if OI is a tensor, we can express the corresponding relational
observable as

ÔÎ(x̂) =

∫
d4x ẽ(x)δ(x̂, X̂(x))E Î

I (x)OI(x) , (13.28)

where E Î
I (x) is a product of eµµ̂ and eµ̂µ depending on I, for example E Î

I (x) = eµ̂µe
ν̂
ν when

OI = gµν .

Remarks. A few remarks are now in order:

(1) Given a relational tensor ÔÎ(x̂) we can also take derivative of the observable
with respect to x̂ to get a new relational observable. IfDµ denotes the covariant
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derivative compatible with eµ̂µ
2 derivative with and DnOI

µ1...µn
:= Dµ1 ...DµnO

I

is the nth derivative of the gauge-invariant composite operator O[φ], then one
can show that

∂µ̂1 ...∂µ̂nÔ
Î = D̂nO

Î

µ̂1...µ̂n
(13.29)

simply by differentiating (13.28), using that ∂µ̂δ(x̂, X̂(x)) = −eµµ̂Dµδ(x̂, X̂(x))

and integrating by parts repeatedly.
(2) Up till now we have assumed that O is a tensor. However, we can consider rela-

tional observables which are not related to tensors. For example the Christoffel
symbol Γλµν transforms inhomogeneously. As a result the relational Christoffel
symbol is given by

Γρ̂µ̂ν̂(x̂) =

∫
d4x ẽ δ(x̂, X̂) eµµ̂e

ν
ν̂

(
eρ̂ρ Γρµν − ∂µ∂νX̂ ρ̂

)
=−

∫
d4x ẽ δ(x̂, X̂) eµµ̂e

ν
ν̂ ∇µ∇νX̂

ρ̂ ,

(13.30)

which is diffeomorphism-invariant. However, we observe that this is the rela-
tional observable corresponding to the tensor −∇µ∇νX̂

ρ̂.

From these considerations we see that there are many different relational observables
that one can construct since there is a immense freedom in both choosing the physical
coordinate system and choosing which composite operator O[φ] to transform into the
chosen coordinate system. From this point of view, there is no lack of observables in
Quantum Gravity, but rather perhaps a lack of guiding principles that help finding the
observables which are most relevant among the large number of relational observables
we can consider.

13.2.3. The composite operator formalism applied to relational observables

To apply the composite operator formalism reviewed in Section 4.1 to relational observ-
ables ÔÎ(x̂) and their derivatives, we consider a composite operator Ok(x̂) which can
be any function of relational observables at the point x̂. This can be decomposed as

Ok(x̂) =
∑
i

aÎi(k) ÔÎi
i (x̂) , (13.31)

where the index i runs over different relational observables, taking into account that
the observables can mix under the RG flow. We note that in general each component
of each observable can have a separate coupling aÎi(k).

2This means that Dµ is the covariant derivative compatible with the metric eµ̂µδµ̂ν̂eν̂ν . Thus the con-
nection for ∇µ is the Levi-Civita connection for gµν and the connection for Dµ is the Levi-Civita
connection for eµ̂µδµ̂ν̂eν̂ν .
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(1) Diffeomorphism-invariant volume element The source term for Ok can then
be written as an integral over x̂ as in eq.(13.28)∫

d4x̂ ε(x̂)Ok(x̂) =
∑
i

aÎi(k)

∫
d4x̂ ε(x̂)ÂÎii (x̂) . (13.32)

However, we can also express the source term as an integral over the coordinates x by
using ∫

d4x̂ ε(x̂)Ok(x̂) =

∫
d4x ẽ(x) ε(X̂(x))

∑
i

aÎi(k) E Îi
iIi

(x) OIi
i (x) . (13.33)

Now since ε(x̂) is independent of the dynamical fields, it is clear that variations of the
source term with respect to dynamical fields must be proportional to the undifferen-
tiated source ε(x̂). However, in the form (13.33) ε(X̂(x)) depends on the dynamical
fields through the physical coordinate system. Thus, in computing the Hessian of the
observable with a non-constant source we pick up terms from the variation of ε(X̂(x))

and thus are proportional to the derivative of the source. This is consistent since by
using the identity

∂

∂X̂ µ̂(x)
ε(X̂(x)) = eµµ̂(x) ∂µε(X̂(x)) , (13.34)

and integrating by parts we can always write the variation such that it is proportional
to ε(X̂(x)).

According to our considerations in the last section, we can consider constant sources
if we concentrate on relational observables which are linearly independent of total deriva-
tives ÔÎi

i (x̂) = ∂µ̂Ô
Îiµ̂
i (x̂). Indeed, working with integrals over x̂ the arguments of the

last section go through unchanged. Let us note that when we switch to the form (13.33)
we have that∫

d4x̂ ε(x̂) ∂µ̂O
Î(x̂) =

∫
d4x ẽ(x) ε(X̂(x)) E Î

I (x) eµµ̂ DµO
I(x) , (13.35)

where the LHS is a boundary term when ε(X̂(x)) is a constant. So as with any composite
operator the computation of scaling dimensions of the subset of observables which are
not total derivatives can be calculated at constant source.

(2) Relational Effective Average Action. Taking the source constant, we can define
the relational EAA by

Γrel
k ≡

∫
d4x ẽ(x) Lrel

k (x) :=

∫
d4x ẽ(x)

∑
i

aÎi(k) E Îi
iIi

(x) OIi
i (x) , (13.36)

where we note that the defining feature that separates terms in Γrel
k from terms in the

standard effective action is that the former is written as an integral over x with the
volume element given by ẽ(x) rather than the usual density √g. Thus, for constant
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source, we can take the total EAA to be given by

Γk[g, . . . ; ε] = Γk[g, . . .] + εΓrel
k [g, . . .] +O(ε2) . (13.37)

Implicit in the construction of the relational EAA is that ẽ is non-singular. The form
(13.36) gives us two different starting points. On the one hand, we can consider a basis
of relational observables and give each one a source. On the other hand, we can simply
write down some form for Lrel

k (x) as a basis of scalars and the non-singular nature of ẽ
means we can construct these scalars with the vectors eµµ̂ and there derivatives.

For a non-constant source we instead have the more general form

Γk[g, . . . ; ε] = Γk[g, . . .] +

∫
d4x ẽ(x) ε(X̂(x))Lrel

k (x) +O(ε2) , (13.38)

which allows for the calculation of scaling dimensions for relational observables which
are total derivatives and hence do not appear in the relational EAA.

13.2.4. Derivative expansion for the relational EAA

(1) Flow equation. Applying the composite operator formalism (in particular eq.(4.8))
to the relational EAA to order ε we have that

k∂kΓ
rel
k = −1

2
Tr
[(

Γ
(2)
k +Rk

)
−1
(

Γ
rel(2)
k

)(
Γ

(2)
k +Rk

)
−1 k∂kRk

]
(13.39)

where Γ
rel(2)
k is the Hessian of the relational EAA.

(2) Consistent closure. An important question is how to close approximations to eq.
(13.39) in a consistent manner. A natural nonperturbative choice is to take Lrel

k (x) to
have a derivative expansion and be approximated by terms with only a finite number of
derivatives. However, this only makes sense if ∇µX̂

µ̂ is polynomial in derivatives since
otherwise ẽ would be non-polynomial. This provided, we can pick X̂ µ̂ to involve only
a finite number of derivatives, and we can close our approximation for the relational
EAA by picking terms with a up to a finite number of derivatives. This then gives us a
natural basis of relational observables which we project onto when we use the derivative
expansion.

(3) Only upper indices. In particular, these observables are formed from tensors OI

with all indices in the upper position, such as gµν , R, Rµν etc., since the corresponding
E Î
I are products of ∇µX̂

µ and thus finite order in derivatives. Each order s of the
derivative expansion then corresponds to keeping only terms with up to s derivatives in
Lrel
k (x). At each finite order in the derivative expansion, we do not find relational observ-

ables corresponding to tensors with lower indices, e.g. gµν , which are non-polynomial
in derivatives.
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13.3. A first application

(1) Dynamical fields. We are now ready to apply the composite operator formalism
to the investigation of relational observables in Asymptotic Safety. Here we employ the
background field approximation to the action (3.48). Rather than working with pure
gravity we take Γ̄k in (3.46) to depend also on matter fields from which we construct
the physical coordinate system X̂ µ̂(x) that enters the relational observables. A simple
example is the inclusion of a set of four massless scalar fields minimally coupled to
gravity (see [120] for gravity coupled to matter in Asymptotic Safety and [174] for a
more recent analysis of the fixed point existence)3:

Γ̄k =

∫
ddx
√
g

(
− 1

16πG
(R− 2Λ) +

1

2
δAB g

µν ∂µϕ
A ∂νϕ

B

)
+ Additional matter ,

(13.40)
where the index A,B, · · · = 1, 2, 3, 4 run over the internal space of the scalar fields and
δAB is a flat field space metric.

(2) Four scalars as the physical coordinate system. For the system described by
(13.40) there are in principle many choices for the scalars X̂ µ̂(x), here we identify the
physical coordinate system with the four scalars ϕA(x) such that

X̂ µ̂(x) = ϕµ̂(x) . (13.41)

In this case the physical coordinate system is just composed for fundamental scalars
rather than composite fields. After having made the identification (13.41), we simply
denote the scalar fields by X̂ µ̂(x) and always use the hatted indices µ̂ such that the
field space metric is δµ̂ν̂ .

Let us note that the action (13.40) is invariant under shifts ϕA(x) → ϕA(x) + c

and under a global O(4) symmetry. For simplicity, we consider observables that are
invariant under these symmetries also. Since these symmetries are not broken by the
regularization, the flow of symmetric composite operators is closed. One can consider
observables which break these global symmetries however we do not do so here.

13.3.1. Inverse relational metric and relational curvature

We shall use the composite operator formalism to compute the scaling dimensions of
relational observables corresponding to the inverse metric and the scalar curvature
where the physical coordinates X̂µ(x) are taken to be a set massless minimally coupled

3Here the anomalous dimension of the matter fields has been neglected and only one-loop results have
been considered. In a more recent paper [107] the running of the anomalous dimension of all the
involved matter fields has been taken into account.
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scalars. To do so, it suffices to consider the integral of the relational observables over
field space. In particular, we take the relational EAA to be linear in the relational
inverse metric and the relational curvature integrated over the x̂ coordinate

Γrel
k =

∫
d4x̂

(
a0(k) + aR(k) R̂(x̂) + a1(k) δµ̂ν̂ ĝ

µ̂ν̂(x̂)
)
, (13.42)

where δµ̂ν̂ is the Kronecker delta which is the same the metric on field space that appears
in the EAA. In this case, the sources which couple to the relational inverse metric and
the relational curvature are taken to be equal to δµ̂ν̂ and 1 respectively.

We note that the first term in (13.42) represents the volume of the field space which
is independent of the dynamical fields. However, we see that a0(k) has a flow which
may depend on the other two couplings a1(k) and aR(k) which couple to the relational
observables. We can then rewrite Γrel

k in the form (13.36) where by (13.9) we have

Γrel
k =

∫
d4x ẽ

(
a0(k) + aR(k)R + a1(k) δµ̂ν̂ g

µν (∂µX̂
µ̂)(∂νX̂

ν̂)
)
. (13.43)

We note that the corresponding Lrel
k (x) contains terms with up to two derivatives of the

field. Apart from the difference in the volume element the terms in Γrel
k are the same as

Γk indicating a consistency in the approximation of both functionals. Moreover, Lrel
k (x)

contains all terms with up to two derivatives compatible with the symmetries of the
action Γk. Thus, here we are working at order ∂2 in the derivative expansion.

Let us remark that since the relational action includes the volume element ẽ one has
that ∫

d4x ẽ δµ̂ν̂ g
µν(∂µX̂

µ̂)(∂νX̂
ν̂) 6= −

∫
d4x ẽδµ̂ν̂ X̂

µ̂ �X̂ ν̂ , (13.44)

since integrating by parts leads to terms where the covariant derivatives act on ẽ.
However, the term on the RHS, which can be expressed as

−
∫

d4x ẽ δµ̂ν̂ X̂
µ̂ �X̂ ν̂ =

∫
d4x̂ δµ̂ν̂ x̂

µ̂ ĝρ̂λ̂ Γ̂ν̂
ρ̂λ̂
, (13.45)

is not symmetric under the shift symmetry of the scalar field and so we do not consider
it here.

13.3.2. Flow of the relational observables

(1) We are now ready to compute the flow of the relational action (13.43) by using
(13.39) where the EAA is given by (13.40). We use a cutoff with the same profile
function Rk but now with −� as its argument (so-called type I cutoff, for more details
see [50]) for which the regulated Hessian is

Γ
(2)
k +Rk = Γ

(2)
k (−�→ Pk) , (13.46)
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where Pk = −�+Rk(−�2).

The trace in (13.39) is split into two contributions: the trace over the graviton
fluctuations and the trace over the scalar fluctuations. Within our approximation,
there are no contributions from the ghosts or any additional matter fields. An improved
approximation would include terms in (13.43) containing ghosts and additional matter
fields since such terms would be generated by the flow equation.

All the intermediate steps which lead to the following expressions can be found in
Section H.3 of the Appendix H. Here we use the off-diagonal heat kernel techniques to
evaluate the traces.

(2) We also allow for a non-zero anomalous dimension of the metric tensor gµν and the
scalar fields X̂ µ̂. This has two effects on the flow eq.(13.39). On the LHS we replace

k∂kΓ
rel
k → k∂kΓ

rel
k −

1

2
η̂k

∫
d4xX̂ µ̂(x)

δΓrel
k

δX̂ µ̂(x)
+ γg

∫
d4xgµν(x)

δΓrel
k

δgµν
(x) , (13.47)

where η̂ is the anomalous dimension of scalar fields and γg accounts for the anomalous
dimension of the metric tensor. On the RHS of (13.39) the derivative of the cutoff for
the metric fluctuations is replaced by

k∂kRk → k∂kRk + 2γgRk , (13.48)

while the derivative of the cutoff for the scalar fluctuations is replaced by

k∂kRk → k∂kRk − η̂kRk . (13.49)

(3) The flow of the coefficients a0, aR and a1 is given by

k∂ka0 = − a1

2π2
Q3

[
(k∂k − η̂k)Rk

P 2
k

]
− 12aRG

π
Q3

[
(k∂k − ηh)Rk

(Pk − 2Λ)2

]
, (13.50)

k∂kaR − γg aR = − a1

24π2
Q2

[
(k∂k − η̂k)Rk

P 2
k

]
− 5aRG

3π
Q2

[
(k∂k − ηh)Rk

(Pk − 2Λ)2

]
+

12aRG

π
Q3

[
(k∂k − ηh)Rk

(Pk − 2Λ)3

]
, (13.51)

k∂ka1 − (γg + η̂k) a1 = −4a1G

π
Q2

[
(k∂k − ηh)Rk

(Pk − 2Λ)2

]
− 5a1G

8π
Q3

[
(k∂k − η̂k)Rk

P 3
k

]
− 6aRG

2Q3

[
(k∂k − ηh)Rk

(Pk − 2Λ)3

]
. (13.52)

Here, we used the definition of the Q-functionals (C.11) in Appendix C. Furthermore,
ηh denotes the anomalous dimension of the graviton field :

ηh = ηN − 2γg , where ηN =
k∂kG(k)

G(k)
. (13.53)
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The first terms on the RHS of (13.50)-(13.52) originate from the cutoff dependence
on G(k)−1 and the second terms arise due to the replacement (13.48). The anomalous
dimension ηh can be understood as the anomalous dimension of the metric’s fluctuations
hµν defined by

gµν = δµν +
√

32πG(k)hµν . (13.54)

Here δµν is the flat metric and the factor
√

32πG(k) ensures that hµν has a canonically
normalized kinetic term.

Remark. In four dimensions, the scalars have the canonical mass dimension [X̂] = 1,
the metric has dimension [gµν = −2], s.t. for the determinant [ẽ] = 4, and the inverse
relational metric has [δ̂µ̂ν̂g

µν∂µX̂
µ̂∂νX̂

ν̂ ] = 4. In 4 dimensions the coefficients have
[a0] = −4, [aR] = −6 and [a1] = −8, and are classical irrelevant, therefore.

(4) Going to dimensionless variables4 and specializing the Q-functionals in (13.51) to
the optimized cutoff (see Equation D.27)

Rk(−�) = (k2 +�)θ(k2 +�) , (13.55)

we can compute the beta functions (βa = k∂ka):

β0 = 4a0 −
a1

6π2
+
aRg(ηφ − 4)

π(1− 2λ)2
, (13.56)

βR = aRγg + 6aR −
a1

24π2
+
aRg(10ηhλ+ 4ηh − 30λ− 21)

9π(2λ− 1)3
, (13.57)

β1 = a1γg + 8a1 −
aRg

2(ηh − 4)

2(2λ− 1)3
+
a1g(ηh − 3)

6π(1− 2λ)2
− 5a1g

24π
. (13.58)

Here we have set the anomalous dimension to zero η̂k = 0.

(4) We can write down the stability matrix (4.13) as S = ∂βi/∂aj:

S =

4 g(ηh−4)
π(1−2λ)2 − 1

6π2

0 6 + γg + g(10ηhλ+4ηh−30λ−21)
9π(2λ−1)3 − 1

24π2

0 −g2(ηh−4)
2(2λ−1)3 8 + γg + g(ηh−3)

6π(1−2λ)2 − 5 g
24π

 . (13.59)

We now can present our main results:

(1) As expected, since the dynamics of the fields will not be affected by the coef-
ficient a0, the stability matrix always has one critical exponent equal to the
canonical dimension of a0, θ0 = −4.

(2) The operators instead mix and contribute to the flow of all the other coeffi-
cients. Consequently, those other two critical exponents, θ1 and θR, generally

4Here, we passed to dimensionless variables and we continue denoting as ai the dimensionless couplings.
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do have quantum corrections. These quantum corrections vanish at the Gauss-
ian fixed point, i.e., g = γg = λ = 0, where the critical exponents reduce to the
canonical dimensions of the corresponding operators, θR = −6 and θ1 = −8.

(3) When the couplings λ and g are of order unity the dependence of the critical
exponents θ1 and θR on γg is approximately linear. The corrections are as
small as 10−7 provided we stay sufficiently far from the pole at λ = 1/2. Thus,

θi = θcanonicali + c1,i(λ, g) + c2,i(λ, g) γg +O(γ2
g) . (13.60)

Numerically c2,i(λ, g) ' −1. Therefore for every value of g and λ there is a
critical value of γg for which the quantum correction of the critical exponents
vanishes. Increasing γg always makes the critical exponents more irrelevant.

In the plots in Figure 13.2 we are showing the critical exponents for θR and θ1 in the
whole g-λ-plane. We set ηN = −2 and γg = 0 for the plots on the left and ηN = −2

and γg = 0.3197 for the plots on the right. These values correspond to the non-trivial
fixed point values in two different renormalization schemes (see Section 13.4).

We noticed that when γg = 0 the quantum corrections are negative, making the
exponent more relevant, while when γg = 0.3197 the quantum corrections are positive,
making the exponent more irrelevant. Note that along the axis g = 0 the quantum
corrections vanish if γg = 0 but remain for γg = 0.3197 since the scaling dimension of
the metric remains anomalous.

13.4. Asymptotic Safety

13.4.1. Matter in asymptotically safe gravity: standard and essential scheme

Here we compute general expression for the scaling dimensions of the relational ob-
servables in dependence on the dimensionless Newton’s constant g and cosmological
constant λ. The exact position of the fixed point depends on which matter fields we
include. We consider NS scalars, ND fermions, NV vectors and ND Dirac fermions
minimally coupled to gravity, but not interacting otherwise.

This is the first computation in the essential renormalization group scheme: we will
furnish the first numerical values of scaling dimensions of matter coupled to gravity in
the minimal essential scheme.

(1) Setup. In order to write down the beta functions, we have to define the cutoff:
for a type II cutoff we choose a real function Rk

(
S

(2)
matter

)
where S(2)

matter is the inverse
propagator of the matter field (for more details see e.g. [50]).
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Figure 13.2. Plot of the critical exponents θR (up) and θ1 (down) of the
stability matrix S in the λ− g - plane. The plots on the left are for ηN =
−2 and γg = 0; the plots on the right are for ηN = −2 and γg = 0.3197
(these are the fixed points values which we discuss in Subsection 13.4.2).
The dashed region has been excluded from the plot because the critical
exponents begin to diverge in this region due to the vicinity of a pole in
the propagator. The black points represent the fixed point in the standard
scheme with the Standard Model matter content.

In d = 4 the beta functions for the dimensionless Newton’s coupling g and the
dimensionless cosmological constant λ with a type II cutoff for the matter fields become:

k∂kλ = λ(−2γg + ηN − 2)

+
g

12π

(
5(−2γg + ηN − 6)

2λ− 1
+ 2ηN − 12ND + 3NS + 6NV − 24

)
,

k∂kg = g(γg + 2)

− g2

6π

(
5(2γg − ηN + 4)

4λ− 2
+

3(2γg − ηN + 6)

(1− 2λ)2
− 3ηN

2
+ND −NS +NV + 14

)
.

(13.61)
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In the standard renormalization scheme γg = 0. Since we neglect the anomalous dimen-
sions of all the additional matter degrees of freedom (η̂k = 0), we do not consider the
effect of the anomalous dimension of the scalars X̂’s. In this approximation the beta
functions have a non-trivial fixed point (k∂kg∗ = 0 and k∂kλ∗ = 0). Furthermore, the
Newton’s constant is experimentally constrained to be positive, this puts a constraint
on the matter content which possess a nontrivial fixed point.

(2) Essential scheme: new results. As it is explained in [199] and previously
reported in Section 4.2, the essential scheme allows the fields to be reparameterized
along the RG flow using the RG kernel. At order ∂2 the RG kernel of the metric and
of the scalars X̂ contain both one gamma function, γg for the metric and minus one
half times the anomalous dimension for the X̂s. The anomalous dimension takes into
account the normalization of the kinetic term of the X̂s, fixing their wave function
renormalization constant to one. The γg can be used to fixed the vacuum energy
ρ ≡ λ/g to the value it takes at the GFP (g, λ) = 0, which is given by

ρ ≡ λ/g =
2− 4ND +NS + 2NV

16π
. (13.62)

The anomalous dimension γg is determined as a function of g by setting k∂k(λ/g) =

0, in addition to (13.61), with the vacuum energy fixed to the value (13.62) for all
scales. Indeed, at this order of the derivative expansion, the vacuum energy is the only
inessential coupling, see [199], and its flow can be fixed. Therefore, in the standard
scheme, where we follow the flow of (g, λ), we get that ηN = k∂kG/G ≡ ηh is equal to
−2 at the Reuter fixed point. Using the essential scheme, instead, ηh = ηN−2γg, where
ηN and γg are both functions of g, because of the renormalization condition that fixes
the vacuum energy.

(3) Fixed points. For the Standard Model and physically relevant modifications
thereof, the fixed points have been computed in the standard and in the essential
renormalization scheme (see Table 13.1 and Table 13.2, respectively). For the Standard
Model, in order to investigate the cutoff dependence, we considered both a type II and
a type I cutoff. Furthermore, we added an extra Scalar Field (SF), that could be a
Dark Matter particle or an inflaton [515], for example, and the three neutrinos (3 ν)
[516] to the Standard Model matter content.

Let us remark that γg is positive for the fixed points displayed in Table 13.1 and
Table 13.2, where Standard Model like matter content were considered. This ia in
contrast with the case of pure gravity where γg is found to be negative at the Reuter
fixed point [175].
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Matter content NS ND NV λ∗ g∗ ηh γg

SM (type II) 4 45/2 12 -1.11626 0.834855 -2 0

SM (type I) 4 45/2 12 -3.58874 2.59505 -2 0

SM + SF (type II) 5 45/2 12 -3.79874 2.77608 -2 0

SM + 3 ν (type II) 4 24 12 -4.83385 3.19355 -2 0

Table 13.1. Non-Gaussian fixed points in the standard scheme. For
every model we define the matter content (number of scalars NS, number
of Dirac fields ND and number of vectors NV ). At the right part of the
table we show the fixed point values of the coupling constants and scaling
dimensions in the standard scheme. The graviton anomalous dimension
is denoted as ηh here, while γg takes into account the contribution of the
anomalous dimension of the graviton in the the relational EAA.

Matter content NS ND NV λ∗ g∗ ηh γg

SM (type II) 4 45/2 12 -3.63186 3.04262 -2.63939 0.319697

SM (type I) 4 45/2 12 -1.11795 0.936571 -2.464896 0.232448

SM + SF (type II) 5 45/2 12 -1.14584 0.959934 -2.470238 0.235119

SM + 3 ν (type II) 4 24 12 -1.07367 0.899477 -2.456218 0.228109

Table 13.2. Non-Gaussian fixed points in the essential scheme. For
every model we compute the fixed point values of the coupling constants
and scaling dimensions in the minimal essential renormalization scheme.

Standard scheme Essential scheme

Matter content θ0 θR θ1 θ0 θR θ1

SM (type II) -4 -5.97643 -7.92358 -4 -6.28653 -8.10472

SM (type I) -4 -5.97467 -7.8177 -4 -6.20271 -8.14459

SM + SF (type II) -4 -5.97505 -7.80603 -4 -6.20467 -8.14593

SM + 3 ν (type II) -4 -5.98015 -7.78084 -4 -6.1996 -8.14236

Table 13.3. Critical exponents θi of the operators associated to the
relational observables. In the central and right part of the table we show
the values of the exponents for the standard and the minimal essential
scheme, respectively.
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13.4.2. Results

We can now evaluate the scaling exponents on the NGFP which are displayed in Ta-
ble 13.3. The scaling exponent of the field space volume term is not affected by any
correction and keeps the canonical dimension 4. The other two scaling exponents are
affected by quantum corrections: θR and θ1 both become less irrelevant in the standard
scheme, while they become more irrelevant in the essential one. This effect is due to
the presence of γg in the essential scheme, which pushes the scaling exponents in being
more irrelevant (see (13.60)). In any case, it is remarkable that the quantum corrections
are very small in both schemes.

13.5. Higher order observables

In this section, we want to show how the procedure can be generalized to higher order
observables. In fact, if we try to go to higher order in the derivative expansion, also
terms at fourth order in derivative generated along the flow have to be taken into
account.

By plugging the observable (13.43) in the composite operator flow equation, higher
order relational observables are generated on RHS of the composite operator flow
eq.(13.39). For example we can consider higher powers of the relational metric. For
this purpose we consider the building block matrix 5 M

Mµ̂
ν̂ (x) = gµν(x) ∂µX

µ̂(x) ∂νX
ρ̂(x) δ̂ν̂ρ̂ (13.63)

is related to the relational inverse metric by

M̂µ̂
ν̂ (x̂) = Mµ̂

ν̂ (X(x̂)) = ĝµ̂ρ̂(x̂)δν̂ρ̂ . (13.64)

For instance, at fourth order we come across terms like tr[M2] and tr[M]2. However,
at that order we also encounter other terms. Imposing the O(N) and shift symmetry

5This matrix is reminiscent of the B matrix in Chapter 12.
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constraints we have the following terms6

Γrel
k =

∫
ddxẽ

(
a0 + a1tr[M] + aRR + a1,2(tr[M])2 + a2tr[M2]

+a�M�(trM) + a∂4X4,1δµ̂ν̂(�X̂
µ̂)(�X̂ ν̂) + a∂4X4,2δµ̂ν̂(∇ν∇µX̂

µ̂)(∇ν∇µX̂ ν̂)

+aRMR tr[M] + aRicciR
µν(∇νX

ν̂)(∇µX
µ̂)δµ̂ν̂

+aR2R2 + aRicci2R
µνRµν + aRiemann2RµναβRµναβ + a�R�R

)
.

(13.65)
On the first line we have included the lower order terms already present in (13.42) and
the two terms which are quadratic in M which therefore involve four powers of the
scalar fields X̂. On the second line we include all terms with two powers of X̂ and four
derivatives, of which there are three linearly independent terms. In the last line we
have terms which involve scalars which are fourth order in derivatives with no powers
of the fields X̂.

Now we want to express the terms in the relational action as relational observables
integrated over x̂. One can introduce the connection

Γ̂ρ̂µ̂ν̂ = −eµµ̂e
ν
ν̂∇µ∂νX̂

ρ̂ . (13.66)

The expression of (13.65) in terms of relational observable is given by

Γrel
k =

∫
x̂

(
a0 + a1δµ̂ν̂ ĝ

µ̂ν̂ + aRR̂ + a1,2(δµ̂ν̂ ĝ
µ̂ν̂)2 + a2δµ̂ν̂ ĝ

ν̂ρ̂δρ̂λ̂ĝ
λ̂µ̂

−2a�MΓρ̂ρ̂µ̂ĝ
µ̂λ̂Γ̂τ̂

λ̂σ̂
ĝσ̂κ̂δκ̂τ̂ + a∂4X4,1δµ̂ν̂(ĝ

ρ̂λ̂Γ̂µ̂
ρ̂λ̂

)(ĝτ̂ σ̂Γ̂ν̂τ̂ σ̂) + a∂4X4,2δµ̂ν̂Γ̂
µ̂

ρ̂λ̂
ĝρ̂τ̂ ĝλ̂σ̂Γ̂ν̂τ̂ σ̂

+aRM R̂ δµ̂ν̂ ĝ
µ̂ν̂ + aRicciR̂

µ̂ν̂δµ̂ν̂

+aR2R̂2 + aRicci2R
µνRµν

∧
+ aRiemann2RµναβRµναβ

∧

+ a�R�̂R
)
. (13.67)

Note that the canonical dimension of the last two terms of the first line and the terms
in the second line is −12, the canonical dimension of the third line is −10 and the
canonical dimension of the last line is −8. As we see, the terms in the second line are
all expressed as different contractions of two powers of the relational inverse metric and
two powers of the relational Christoffel symbol. While for the other terms the transition
to relational observables is straight forward, the first term on the second line deserves
some explanation. First we note that expanding ẽ�(trM) we have

ẽ�(trM) = ẽgµν�(∂µX̂
µ̂∂νX̂

ν̂ δ̂µ̂ν̂),

6It is important to emphasize that some terms which are absent in a O(N) scalar model (see [517] for
a complete derivative expansion) in this context cannot be omitted since they do not represent total
derivatives. This is due to the different volume element ẽ.
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which involves three derivatives acting on X̂. However, we can instead integrate by
parts to obtain

ẽ�(trM) + boundary terms = −∇µẽ∇µ(trM) = −2∇ρẽg
µν∇ρ(∂µX̂

µ̂)∂νX̂
ν̂ δ̂µ̂ν̂ ,

which now involves only one or two derivatives acting on each X̂. In terms of Christoffel
symbols

∇µẽ = −ẽeµ̂µΓ̂ρ̂µ̂ρ̂, ∇ρ∂νX̂
µ̂ = −eρρ̂e

ν̂
νΓ̂

µ̂
ν̂σ̂ĝ

ρ̂σ̂ . (13.68)

It is then straightforward to see that this expression can be written in terms of the
relational observables as in (13.67).

Remark. One last remark is in order. the scalar term ẽ�R appearing in (13.67) could
also be expressed as a relational observables linear in R̂ and in the connection. In fact,
adding boundary terms and integrating by parts

ẽ�̂R + boundary terms = −∇µẽ∇µR̂ = ẽeµ̂µΓ̂ρ̂µ̂ρ̂∇
µR̂ (13.69)

one obtains the term containing the relational connection and a derivative of the rela-
tional Ricci.



CHAPTER 14

Discussion and Summary of Part III

The problem of observables in classical and quantum gravity has generated a lot of
discussions in the more recent past [187]. Historically the problem is closely related to
some of the consequences of diffeomorphism invariance in GR. The central question is
the physical meaning of the points of the event manifold underlying GR.

In contrast to pure mathematics this is a non-trivial point in physics. While in
pure differential geometry one simply decrees the existence of, for example, a (pseudo-)
Riemannian manifold with a differentiable structure (i.e., an appropriate cover with
coordinate patches) plus a (pseudo-) Riemannian metric gµν , the relation to Physics is
not a simple one.

This was the main motivation to investigate the inclusion and the analysis of the
dynamics of diffeomorphisms in Project (III.A) and the incorporation of relational
observables within an Asymptotic Safety scenario in Project (III.B).

Project (III.A) Dynamical diffeomorphisms

(1) Diffeomorphism invariance. In textbooks about GR it is frequently stated
that all diffeomorphic (spacetime) manifoldsM are physically indistinguishable. This
becomes particularly striking in the Einstein hole problem, which is reviewed in Chap-
ter 11.

We argued then that the class of observable quantities have to be drastically reduced
in a gravitational theory: observables are only those quantities which are invariant under
a diffeomorphism transformation. In fact, with this definition not even scalars, such as
the Ricci curvature scalar, are observables.

On the other hand, many authors consider the Ricci scalar at a point to be an
observable quantity. This discussion winds up to the question whether GR is a true gauge
theory or perhaps only apparently so at a first glance, while on a more fundamental
level it is something different.

(2) Physical reference system. The reason for this apparent mismatch stems from
the role reference systems are assumed to play in GR. One could argue that the gauge
property of general covariance is only of a formal nature. In the hole argument it is for
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example argued that it is important to add some particle trajectories which cross each
other, thus generating concrete events onM. As these point events transform accord-
ingly under a diffeomorphism, the distance between the corresponding coordinates x, y
equals the distance between the transformed points φ(x), φ(y), which is therefore an
observable. On the other hand, the coordinates x or y are not observables.

Reference systems are needed in order to specify the spacetime points in which
the measurements are performed and cannot be considered as independent from the
gravitational field. In the classical theory one can always work in an approximation in
which the effects and the dynamics of the material reference systems are neglected; in
the quantum theory, however, they lead to far reaching consequences. Hence, the main
conclusion is that gravitational physics cannot be properly understood unless one takes
into account the physical nature and the gravitational interactions of the bodies that
form the reference system.

(2) Dynamics of the diffeomorphisms. In Chapter 12 we have constructed a dy-
namical theory for diffeomorphisms of the spacetime manifold, which is closely related
to models of dynamical coordinates. We modeled diffeomorphisms as maps from space-
time to itself.

From a geometrical point of view, coordinates are (locally defined) maps of spacetime
into a fixed Euclidean space. Thus, our novel analysis of dynamical diffeomorphisms
naturally differ from dynamical coordinates because of the identification of spacetime
with the target space. Another main motivation given in the Introduction was that in
general, coordinates are only defined locally and to cover a manifold with nontrivial
topology several coordinate patches are needed. We attempted to overcome this prob-
lem by considering generalized models with a target space that is homeomorphic to
spacetime itself, rather than flat Euclidean space, constructing a theory of diffeomor-
phisms from one copy of spacetime into another.

Our model differ from the Nonlinear Sigma Model (NLSM), as we identified the
spacetime and target space, and their respective metrics. This lies at the root of all
the other differences that we have encountered: along our analysis we found differences
both in the kinematics and in the dynamics:

(2a) First we recovered differences in the kinematics. For diffeomorphisms, maps of
spacetime into itself, a diffeomorphism transformation must act at both ends, resulting
in an action by conjugation, which is neither transitive nor free. Our finding is in
contrast with the characteristics of dynamical coordinates, thought of as scalar fields
on spacetime. Then diffeomorphisms act on them by right composition. On the other
hand, if the coordinates are viewed as a map into spacetime (e.g. as a fluid, analogous to
comoving coordinates in cosmology), diffeomorphisms act on them by left composition.
In both cases, the action of the group is free and transitive.
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(2b) These kinematical differences inevitably give rise to differences in the dynamics:
we found that the energy-momentum tensor of diffeomorphisms has an additional term
that is not present in the theories of dynamical coordinates, and this term is conserved
separately from the rest.

Our analysis of the kinematics and dynamics of diffeomorphisms allowed us to test
the physical meaning and application of our class of models:

(1) In the spirit of modeling dark energy, and an effective accelerating solution,
we tested that the identity map is always a solution. For our dynamical diffeo-
morphisms, it is given just by the term that comes from the variation of √g
in the action. Our model could then represent a dynamically-generated dark
energy model.

(2) As for the observables, the lesson to be drawn from our model is that it is not
useful to consider diffeomorphisms of the spacetime manifold to itself in order
to construct relational gravitational observables. One has to keep the domain
and target space separate. The configuration space of this field must be a copy
of the gauge group. This is the case for our models, but more is required: the
action of the gauge group on the fields must be free and transitive. To see this,
it is enough to consider again the simple example of a reference fluid, already
mentioned in the Introduction.

Outlook. We have shown that diffeomorphisms of spacetime to itself cannot define
relational observables. However, if there is a field that maps spacetime diffeomorphically
(perhaps just locally) on another space, then such a field can be used to set up a
physical coordinate system and to define relational coordinates. In future work we plan
to specialize to the case when the spacetime is the cosmological FLRW spacetime and
the target space is the Standard Model metric. In the Standard Model, the vacuum
manifold arises due to a non-vanishing vacuum expectation value of the Higgs field and
is homeomorphic to the 3-sphere. On the other hand, the spatial section of the Universe
is a 3-sphere (assuming a FLRW-Universe with positive spatial curvature). Moreover,
the Standard Model has solitonic states where the Higgs field has nontrivial winding
number at fixed time. We plan to consider static and time-dependent solutions of the
field equations. In fact, if the Standard Model Higgs field is in such a state, it could be
used as a physical coordinate system, whose backreaction is negligible.
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Project (III.B) Relational observables in Asymptotic Safety

(1) Relational observables as composite operators. The investigation performed
in Chapter 13 represents the first approach to construct observables within an Asymp-
totic Safety scenario for Quantum Gravity. The technical tool we exploited is the
composite operator formalism. Relational observables represent natural candidates for
composite operators, which can be studied in Asymptotic Safety. Importantly, as dis-
cussed in Chapter 3, at the UV fixed point the composite operators corresponding to
physical observables will have universal scaling exponents. Physically these exponents
should appear in the scaling behavior of correlation functions of relational observables
at small distances less than the Planck length where effects of the fixed point scaling
are expected.

(2) Renormalization group scheme. A crucial role in our analysis has been played
by the renormalization group scheme. The scheme allows to sort the physical running
coupling and to individuate those who enters the value of physical observables. For this
reason, it is crucial to simplify the calculations and consider only the flow of couplings
contributing to describe the actual physical system: this is the line of reasoning adopted
in the essential renormalization scheme.

In the essential scheme (see Section 4.2), changes of variables can be understood
geometrically as local frame transformations on configuration space. Field theory can
be formulated in a covariant language allowing one the freedom to easily pick different
frames to calculate observables. In Section 4.2, it is made manifest that observables are
invariant under such frame transformations [199]. The essential scheme allows the fields
to be reparameterized along the RG flow. This led to a precise definition of inessential
couplings and its conjugate redundant operators, whose identification is crucial to the
concrete implementation of GR, which amounts to picking a set of local frames on
spacetime.

(3) Relational Effective Average Action. In Chapter 13, in order to construct
observables within the Asymptotic Safety framework, we set up a general formalism
for relational observables by introducing a set of matter fields. In this context, we
performed for the first time an analysis of the RG flow of matter systems coupled to
gravity in the minimal essential scheme. In particular, we coupled the gravitational
system with the Standard Model matter content and physically relevant modifications
thereof. As new intermediate results associated to this analysis we reported the fixed
point values of the gravitational couplings (λ∗, g∗) in the standard and in the minimal
essential scheme. These can be found in Table 13.2 and can be compared with the
values of the fixed points in the standard scheme in [107].
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The main new developments and results of our investigation can be summarized as
follows:

(1) Inspired by the well-established composite operator flow equation, we set up
a formalism to evaluate the scaling of the relational observables. This new
framework is fully general and can be applied to any kind of relational observ-
able, constructed from any arbitrary physical field. We furnish a definition
for a relational action and derive an equation describing its flow. Therefore,
alongside the flowing effective average action, which interpolates between the
microscopic action fixed point action and the full effective action, we also have
access to flowing observables.

(2) Through this flow equation, we computed the scaling dimension of a selection
of observables described in the relational action. This set of observables was
chosen in order to self-consistently close the composite operator flow and to
keep the truncation under control within a derivative expansion. It turned
out that only tensorial quantities with upper indices satisfied this truncation
requirement. In particular, we selected the inverse relational metric and the
relational scalar curvature. Tensors with lower indices instead are not generated
at any finite order in derivative expansion.

(3) We computed the scaling of the relational volume, the relational inverse metric
and the relational Ricci curvature. We noted that the scaling exponent of the
field space volume term is not affected by any correction and keeps the canon-
ical dimension 4. The other two scaling exponents are affected by quantum
corrections: θR and θ1 both become less irrelevant in the standard scheme,
while they become more irrelevant in the essential one (see Table 13.3). This
effect is due to the presence of the metric’s anomalous dimensions γg in the
essential scheme, which pushes the scaling exponents to be more irrelevant. In
any case, it is remarkable that the quantum corrections are very small in both
schemes.

Outlook. The formalism we developed allows us access to universal critical exponents
within any asymptotic safe quantum theory of gravity, beyond those that can be found
by studying the flow of the effective action. This is important since it provides a new
window through which we can compare different approaches to Quantum Gravity. For
example the same exponents could be computed in Causal Dynamical Triangulations,1

Tensor Field Theories and within a perturbative expansion around two dimensions.

It is also important to study the dependence of the critical exponents on the choice of
regulator and on the choice of gauge. For simple approximatiosn we might expect these

1See [71, 518] for curvature profiles, and [519] for a recent analysis including four scalar fields
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dependencies to be strong and it will therefore be important to extend the current ap-
proximation by including more terms in the effective action beyond the Einstein–Hilbert
action. We note however, that the value of critical exponents for the Newton’s coupling
is stable in the essential scheme, comparing the Einstein–Hilbert approximation and
the approximation where all terms with four derivatives are taken into account in the
flow equation [175].

We have applied our formalism within a simple approximation and taken the physical
system to be a set of four scalar fields. This investigation can be extended in a number of
ways. Firstly, we could enlarge the set of observables in a consistent manner by going to
higher orders in a derivative expansion. Furthermore, a more general set of observables
is accessible both by including terms which break the shift and O(N) symmetry and by
including a non-constant source (see Subsection 4.1.3). Finally, alternative coordinate
systems can be constructed from other fields which allow access to an array of different
relational observables [477].



CHAPTER 15

Summary, Discussion and Outlook

(1) The gravitational Asymptotic Safety program is a conservative approach to Quan-
tum Gravity in the sense that it seeks for a consistent and predictive theory of the
gravitational interactions within the framework of QFT by invoking a nonperturbative
high-energy completion. Its core assumption is that the gravitational degrees of freedom
are encoded in the spacetime metric. Under the program’s hypothesis one stipulates
that these ingredients give rise to an interacting RG fixed point, called the Reuter fixed
point. Phenomenologically, one also requires that the flow emanating from the Reuter
fixed point connects to a low-energy regime where the dynamics matches the one of
General Relativity to good approximation.

The existence of the Reuter fixed is the central element of the program. Impor-
tantly, it is not an input. It has been established based on first-principle computations.
The Reuter fixed point can manifest itself in (approximate) solutions of the Functional
Renormalization Group equation for the Effective Average Action, the Wetterich equa-
tion [208]. The adaptation to gravity and first application was performed by M. Reuter
in 1996 [95].

The framework of the Gravitational Effective Average Action is well suited for explor-
ing the quest for nonperturbative renormalizability in a self-contained manner. In the
GEAA framework, we are confronted with a mathematically well-defined, but very com-
plicated, functional differential equation which contains nonperturbative information.
In particular, the global properties of its solutions decide about the renormalizability.

Importantly, the approach based on the Gravitational Effective Average Action com-
plies with the principle of Background Independence. This principle represents the first
and foremost property of classical General Relativity: any pre-exisiting spacetime ge-
ometry that could serve as the “habitat” of the dynamical degrees of freedom is absent.
It is the geometrical information describing spacetime itself that is rather subject to
quantization. Hence the highly “precious” tool of a spacetime metric, indispensable
in all developments of standard QFT, is available at best on the level of expectation
values only. In the approach to Quantum Gravity based upon the gravitational EAA,
Background Independence is built into the formalism by reinterpreting the quantization
of a given set of fields without a distinguished background spacetime as equivalent to
simultaneously quantizing those fields on all possible backgrounds. This is technically
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achieved implementing the background field method. In this sense, a (single) Back-
ground Independent quantum field theory has the complexity of an infinite family of
background dependent QFTs.

(2) Comparing in detail the consequences of the Asymptotic Scenario with observations
and/or different approaches represents one of the main challenges in Quantum Gravity.
On the other side, theoretical physicists agree on the fact that the physical behavior of
a system has to be probed through observables. Their definition and construction is in
general very difficult on curved spacetimes. Already in classical gravity diffeomorphism
invariance makes the notion of a spacetime point unphysical, and hence implies that
there cannot exist any local observables.

(3) From a technical perspective, the main theme of this thesis followed the objective to
open up avenues to unexplored aspects of Quantum Gravity starting from the safe har-
bor of asympotically safe gravity. Furthermore, developing new methods for extracting
its physical contents, we made advancements in the direction of exploring consequences
and connections for the quantum theory underlying (asymptotically safe) gravity and
of making contact with different approaches to Quantum Gravity.

Concretely, we summarize the projects of this thesis schematically in Table 15.1.

Part I Review
Chapter 3 RG and Asymptotic Safety
Chapter 4 Recent developments of the FRG

Part II
Project (II.A) Chapter 7 Geometrization of RG histories AdS/CFT
Project (II.B) Chapter 8 Spectral geometry of de Sitter space
Project (II.C) Chapter 9 Scattering amplitudes in de Sitter space

Part III
Project (III.A) Chapter 12 Dynamical diffeomorphisms
Project (III.B) Chapter 13 Relational observables in AS

Table 15.1. Plan of this Thesis.

15.1. Part I of this Thesis

(1) In Part I, we focused on the path integral regularization implied by the Effective
Average Action. This Part provided a basic introduction to the ideas underlying the
gravitational Asymptotic Safety program, after having reviewed the Wetterich equation,
and the FRGE for gravity. We illustrated how this tool is used in practical computations
by working out the example of the Einstein–Hilbert truncation.
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Original in this Part is the construction of self-consistent backgrounds for Lorentzian
signature. The existing analyses mostly dealt with effective spacetimes of Euclidean
signature. In Lorentzian signature a number of mathematical issues translate in the
FRG context in a lacking prescription about how to integrate out momentum eigenmodes
of kinetic operators built from Lorentzian metrics. Among the eigenmodes there are
spacelike, timelike and null eigenmodes, and it is not a priori clear in which order they
should be integrated out.

Inspired by the path integral approach, we chose to integrate timelike and spacelike
modes in a symmetric fashion, deriving for the first time running Lorentzian self-con-
sistent backgrounds, in particular Lorentzian Einstein spaces.

(2) The second half of Part I was devoted to two recent developments in the FRG frame-
work, with particular focus on our later application to Quantum Gravity: the composite
operator formalism and the essential renormalization group scheme. We chose to intro-
duce those frameworks in order to emphasize the necessity to investigate observables to
make Quantum Gravity “testable”, and discussed possible classes of observables.

(2a) Composite operators and FRG. Observables cannot be directly included in the
expansion ansatz of the effective action. In the traditional RG strategy, the renormalized
trajectories give the bare coupling constants as functions of the running cutoff. Though
one can extract useful information from the trajectories, it remains somehow qualitative
because the running parameters of Γk are not in general observable quantities.

This is the motivation for considering the inclusion of composite operators:

(i) Firstly, the results are important for the comparison of the different approaches
towards Quantum Gravity. In the discrete as well as in the continuum-based approaches,
similar analyses of the anomalous dimensions have been performed.

(ii) Secondly, the results presented in Chapter 13 also make an important first step to-
wards the construction of observables within Quantum Gravity. Concretely, the anoma-
lous dimensions presented in Part III will inherit some dependence on the gauge-fixing
parameters and on the cutoff action. This makes the construction of a full-fledged
observable for Quantum Gravity technically more involved. However, it is clear that
composite operators will play a crucial role in the construction of a suitable observable
for Quantum Gravity.

In Project (III.B) we applied for the first time this framework to asymptotically
safe gravity-matter systems with the purpose of exploring the scale dependence of rela-
tional observables.

(2a) Essential Renormalization Group. Ultimately, the goal of the Asymptotic
Safety program is the construction of observables. From this perspective, it turns out
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that the theory space spanned by all possible interaction monomials contains redundan-
cies in the sense that not all couplings appearing in this basis will also enter into the
observables. In this thesis, we explored a renormalization group scheme which allowed
us to take into account the consequences of such redundancies. This is referred to as
the Essential Renormalization Group. On this basis, we distinguished between essen-
tial couplings, which enter into the expressions for physical observables, and inessential
couplings, whose values can be changed without affecting the predictions of the theory.

(i) We showed how a change in an inessential coupling can be absorbed into a reparam-
eterization of the dynamical variables. It turned out that in general operators which
are proportional to the equations of motion can be removed by a field redefinition and
are thus linked with inessential couplings.

We re-examine the use of the frame covariant flow equation in combination with
the minimal essential scheme. Their combination may lead to significant technical
simplifications when constructing solutions to the flow equation. In practice, these
simplifications could be exploited systematically by parameterizing the field redefinition
in k-dependent γ-functions. The freedom gained in this way could then be used to fix
the inessential coupling constants to specific values. The scale dependence of the theory
was captured by

(1) the β-functions, governing the k-dependence of the essential couplings,
(2) the γ-functions, governing the k-dependence of the inessential ones.

Both sets of equations depend on the essential couplings only, and this simplified the
search for RG fixed points significantly.

(ii) Furthermore, we reviewed the nonperturbative renormalizability of gravity taking
care to disregard the running of inessential couplings. There are three main conse-
quences of this investigation:

(1) Calculations are much simpler in the minimal essential scheme.
(2) Only Newton’s constant is essential and relevant in the considered approxima-

tion.
(3) The evidence in favor of the existence of the Reuter fixed point has been

strengthened.

Perhaps most profoundly, in the universality class we have investigated, the vacuum
energy is inessential both at the GFP and the Reuter fixed point. Hence, no physical
meaning can be attributed to its flow.

(iii) To properly address the cosmological constant problem one should understand the
situation when matter is coupled to gravity. This has been done for the first time in
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Project (III.B). What will remain true even in the presence of matter is that there
is an inessential coupling related to a rescaling of the spacetime metric.

The compromise between the inessentiality of the vacuum energy and the appear-
ance of trajectories with different values of the cosmological constant, and hence of
the vacuum energy, is still subject of debate. The definition of what which coupling is
essential and which is not is not unanimous and still ambiguous, and depends on the
given truncation. In fact, different orders of truncation will generate beta functions con-
taining different mixing of the couplings. However, it might be possible to disentangle
those dependencies in the beta functions, clarifying which couplings are essential.

In any way, what is univocal is the identification of which operator(s) is (are) redun-
dant, because of the appearance of operators which are proportional to the equations
of motion.

A possible way how the disentanglement between essential and inessential couplings
in gravity, possibly through the use of observables, represents an ongoing project of the
author together with K. Falls.

For the first steps in the computation of critical exponents associated to observables
in the minimal essential scheme we refer the reader to Project (III.B).

15.2. Part II of this Thesis

This Part was aimed at studying certain aspects of QFT in de Sitter spacetime, us-
ing different techniques and theoretical frameworks. In Project (II.A) and Project
(II.B) we analyzed in two novel ways the results stemming from the functional RG

approach to Quantum Gravity and its Asymptotic Safety. In Project (II.C) instead,
we developed a technique to compute scattering amplitudes directly in de Sitter space-
time. Throughout this Part, we made great use of the mode decomposition of fields in
de Sitter spacetime. In fact, the Lorentzian signature and the non-zero curvature of the
geometry are encoded in this mode decomposition. The results of this Part represent
novel research results based on [RF1], [RF2], [RF3], [RF4] and [RF5].

(1) From a theoretical point of view, the high level of symmetry exhibited by the
de Sitter geometry makes it an important and tractable model of spacetime. At the
same time, observations suggest that the evolution of our Universe is described by a de
Sitter geometry both during the early inflationary phase as well as during the current
accelerated phase of expansion. While it is still debatable whether quantum effects
should play a serious role in the current phase of the expansion, they probably play



328 15. summary, discussion and outlook

an important role during the early evolution of the Universe. This was part of the
motivation to study QFT in the de Sitter background.

(2) Technically speaking, de Sitter spacetime requires us to work in a curved Lorentzian
geometry. From the quantum field theoretical perspective, this introduces a number of
additional challenges due to the unavailability of several mathematical tools commonly
used in a Euclidean (flat) setting. On the other hand, it is exactly these crucial points
that encode effects and physical implications typical of de Sitter space. In Part II we
investigated how precisely the very Lorentzian and curved nature of de Sitter space is
giving rise to observable physical features characteristic of Quantum Gravity in such a
background.

Project (II.A) deals with the investigation of possible geometrizations of RG tra-
jectories in 4D de Sitter spacetime, Project (II.B) is devoted to the study of the
spectral properties of quantum de Sitter spacetime and finally in Project (II.C) we
constructed scattering amplitudes in curved spacetime.

Project (II.A): Geometrization of RG histories and AdS/CFT correspondence

A long-term goal of the Asymptotic Safety program is ultimately trying make contact
with “top-down” formalisms like the AdS/CFT approach which also invoke scale-space-
times, but bear no obvious relation to the Effective Average Action and its functional
RG flows. In Project (II.A) we addressed this question within 4D Quantum Ein-
stein Gravity. This theory displays a non-Gaussian fixed point by means of which the
UV limit can be taken in the asymptotically safe way, guaranteeing nonperturbative
renormalizability. Its RG flow also features a second, Gaussian fixed point.

(1) We proposed a new way of representing and analyzing the family of metrics that
furnish the same, given 4-dimensional manifold. The idea is to interpret the 4D space-
times through a single 5-dimensional (pseudo-) Riemannian manifold. Stated the other
way around, we question whether there exists a single foliated manifold, the leaves of
whose foliation describe the spacetime at different values of the RG parameter.

(2) We assumed that the RG evolution of the 4D metrics is purely multiplicative, and
that it is governed by the Einstein–Hilbert truncation of the Effective Average Action.
In this setup, we proved that:

(2a) In Euclidean setting : it was always possible to complete the specification of the
5D geometry in such a way that it possesses the following distinctive features: First, the
metric onM5 admits a homothetic Killing vector field as an intrinsic characterization
of its self-similarity, and second, the metric onM5 is Ricci flat. In the special case of
maximally symmetric 4D spacetimes it even could be chosen strictly flat.
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From a more physics oriented point of view we emphasized that in order to be well-de-
fined, i.e., non-degenerate, the proposed metric requires the cosmological constant Λ(k)

to be a strictly increasing function of the cutoff k. In other words, the coefficient Λ(k) in
the Effective Average Action must have properties similar to a c-function that “counts”
the number of fluctuation modes which get integrated out when k is changed. This
remarkable feature can be related to the interpretation of the cosmological constant
evaluated as a summing up of modes contributing to the vacuum energy.

(2b) In Lorentzian setting : Imposing maximum symmetry on the embedding space, we
demonstrated that from Asymptotic Safety there arise two solutions for the embedding
space, namely certain parts of the AdS5 and the dS5 manifold.

We demanded that its (d+ 1)-dimensional metric should

(1) be Einstein and Lorentzian;
(2) have vanishing shift vector and xµ-independent lapse when presented in “scale-ADM”

form;
(3) possess as many Killing vectors as it is compatible with the other requirements

and the symmetries of the input 4D metrics.

As a first result, we demonstrated that embedding the set of all de Sitter spacetimes
did not exhaust the entire AdS5 manifold, depending on which trajectory of the flow
diagram we are considering. As for an interpretation in the spirit of an AdS/CFT cor-
respondence, we considered the trajectory that terminates in the Gaussian fixed point,
having limk→0 Λ(k) = 0. At the endpoint of this trajectory, the solution of the field
equation changes from dS4 to Minkowski space. We found that exactly the endpoint
k → 0, when the 4D dynamics is governed by the ordinary effective action Γ, corre-
sponds to the timelike boundary of AdS5 at spatial infinity. Crucially at the timelike
boundary, AdS5 possesses conformal symmetry. Similar to the AdS/CFT correspon-
dence proposed in the literature, especially in the string theory-related correspondence,
too, a theory involving gravity lives in the bulk of AdS5, and is “holographically” related
to a CFT on the boundary.

Comparing with the standard AdS/CFT correspondence, our approach to the ge-
ometrization of RG flows did not yield 5D Einstein–Hilbert gravity on the bulk. Rather,
every 4-dimensional leave of the foliation of the bulk carried its own copy of 4D Ein-
stein–Hilbert gravity, with parameter associated parameter G(k) and Λ(k) for each
leave. By contrast, in the usual AdS/CFT correspondence, the energy momentum ten-
sor perturbation in a flat boundary O(N) model, which does not include gravity, was
giving rise to a propagating graviton in the bulk.

Furthermore, in our approach, no duality between gravity fields and operators of a
flat space QFT on the boundary has emerged so far. To test this possibility, further
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investigation including higher order truncations and eventually matter systems have
still to be performed.

(3) These findings strongly suggested that, at least in principle, it may be possible to
recover various forms of “(A)dS/CFT correspondences” as specific solutions to the flow
and field equations of matter-coupled QEG. This could be achieved by including higher
order truncations in the Effective Average Action. Moreover, the present approach can
also be used in order to discover new forms of correspondences.

It is intriguing to speculate that ultimately the envisaged geometrization encodes
global information about the underlying flows that is not easily seen at the FRGE

level. Hence future work will have to focus on painting a more complete picture by
relaxing some, or perhaps all of our assumptions. On the other hand, by discriminating
between different matter systems in order to obtain systematic geometrizations, this
approach may help in better understanding the meaning of the known bulk/boundary
correspondences.

Finally, further investigations to show full conformal invariance of the fixed point
theories have to be carried out.

Project (II.B): Spectral flow of de Sitter space

The analysis performed in Project (II.B) sheds light on striking consequences of the
connection between the RG flow and the spectral properties of the geometry, and the
emerging physical picture. The interpretation of the RG flow, generated by introducing
a cutoff in the spectrum of the kinetic operator of the scalar field, is strongly modified if
the metric itself is subject to a non-negligible induced scale dependence. Disregarding
this effect may lead to incorrect physical pictures. This is what happened along different
attempts to perform scale identifications or RG improvements.

(1) We showed how the main procedure for extracting physics information from the
EAA arises only after going on-shell, or as in our case, by choosing the background
self-consistently. Upon considering the scale-dependent d’Alembertian, the eigenvalue
equation turned into a complicated nonlinear relationship between the quantum number
characteristic of a mode’s “fineness” and the RG parameter k. This relation turned out to
be particularly counter-intuitive, the reason being the turning point of the dimensionless
cosmological constant. Increasing k above the turning point no longer leads to a finer,
more structured cutoff mode function, but rather brings one back to coarser ones with
a lower “principal quantum number”.

(2) We explained and interpreted this phenomenon in terms of the spectral flow along
the generalized RG trajectory generated in the Einstein–Hilbert truncation in a de Sitter
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spacetime. In particular, we exploited for the first time the mode decomposition of de
Sitter spacetime and we discovered that the same picture about the effective resolution
cannot be drawn, the reason being that the eigenmodes depended also on the time. On
the other hand, the spectral analysis allowed us to uncover some new properties as an
effective field theory at the scale k.

Technically speaking, dealing for the first time with a Lorentzian geometry and its
associated problem of ordering the eigenmodes, we preferred to think of the piecemeal
integrating out of modes as a procedure of performing the basic (regularized) path
integral in a stepwise fashion, rather than solving a flow equation. We adapted a fully
symmetric ordering scheme for integrating out timelike and spacelike modes. One single
parameter k thereby defined two (in principle independent) cutoffs.

(3) The main novel results of Project (II.B) can be summarized by the following
physical picture that emerged from the investigations:

(3a)We defined the “quantum geometry of 3D space” to encompass all spatial structures
that are detected by time independent, or by harmonically oscillating physical fields.
We remarkably found that the proper size of those observed geometric patterns which
are describable by a certain effective theory resulted to be bounded above by the length
related to the cutoff mode. Typically the latter length scale is significantly shorter than
the radius of the de Sitter horizon (the length associated to the causal properties of de
Sitter) for the same RG parameter k. Consequently, we could conclude that taking into
account the flow of the geometry in Asymptotic Safety puts constraints on the effective
macroscopic causal features of spacetime.

(3b) We were led to the picture that the 3D time slices of quantum de Sitter space are
split up in coherent domains or “boxes”, whose size is determined by the cutoff mode.
While physics within a given domain is describable by some effective action at a scale
k, this turns out to not be possible for the patchwork of many coherent domains, such
as all those that make up a Hubble volume. This outcome critically puts into question
the scale identification, along whose procedure one would just relate at a given scale k
the entire effective dynamics.

The picture of the Universe derived in this investigation is constituted of a frag-
mented 3D time slice which splits up in many coherent boxes. In particular it turned
out that the number of independent plane waves coincides with the number of coherent
fragments contained in a Hubble volume.

(3c) Along our analysis we introduced for the first time the highly distinguished class
of modes, the so-called asymptotically safe modes. We interpreted them as witnesses of
the cosmological evolution: When the dust of the other modes has settled, they might
resurface at cosmological distance scales, being the only relevant modes again. In fact,
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they are the only modes excited at the interacting fixed point and as such, they might
carry information about the non-Gaussian fixed point. Finally, we speculate how they
could carry this information along until the Universe is vacuum dominated again.

(4) In Project (II.B) we have assumed that the cosmological evolution was dominated
by the vacuum energy. In the case of matter coupled gravity, this assumption applies
only under the condition that the matter contribution can be neglected with respect to
the cosmological constant. In everyday life this condition is usually violated. There, the
relevant gravitational fields are almost entirely due to scale independent, large matter
energies.

Up to now we were mainly interested in the spatial geometry and, as a consequence,
in the spacelike eigenfunctions of the d’Alembertian. Hence future work will have to
analogously scrutinize the role of the timelike modes in more detail, in particular in
the context of scattering processes, perhaps making contact in this manner with our
construction of scattering amplitudes in de Sitter space (see Project (II.C)).

Project (II.C): Scattering amplitudes in de Sitter space

Scattering amplitudes are at the basis of observables in Quantum Field Theory. In
Project (II.C) we investigated how the curvature of spacetime might affect the long-dis-
tance behavior of scattering amplitudes.

(1) We performed the first computation of scattering amplitudes directly in de Sitter
space. We circumvented the lack of well-defined momentum space by working directly
with differential operators, rather than through integral kernels.

Our exposition focused on the gravity-mediated scattering of two distinguishable,
massive scalar particles. As a starting point we considered the scalar-gravity action
in a constantly curved Lorentzian signature spacetime. By definition the scattering
amplitudes was constructed from a tree-level Feynman diagram involving the vertices
and propagators obtained from the variation of the action.

In this way, we developed a totally new covariant framework to compute scattering
amplitudes and potentials in de Sitter spacetime, including non-minimal interactions.
More specifically, we considered the tree-level scattering of two scalar fields in gravity
and Quadratic Gravity, given by R2- and C2-terms in the action, in addition to the
Einstein–Hilbert action with cosmological constant.

(2)We constructed the amplitude functional for this scattering process. We emphasized
some interesting features on both the physical and the formal level. These can be
summarized in the following points:
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(1) The amplitude is fully covariant;
(2) The on-shell amplitude functional is explicitly gauge-independent;
(3) Organizing the propagator and vertices, we can identify an effective mass-pole

structure for rank-0 and rank-2 vertex tensors could be identified. Novel in this
setting are corrections to the poles due to the de Sitter curvature. We observed
that in the case of conformally coupled scalars, only the rank-2 vertex tensor
contributes.

(3) In order to extract the explicit expression of the tree-level scattering amplitude, we
considered the adiabatic limit of the amplitude functional. This limit was implemented
as an expansion in a large mass of the scalar fields compared to the Hubble constant.
This expansion was heavily based on the mode decomposition and allowed to use spatial
momentum techniques to evaluate the amplitude functional. The amplitude in the
adiabatic limit presented two physically interesting properties:

(3a) The amplitude is oscillating as a function of the proper transferred momentum,
giving rise to an amplitude vanishing for periodic discrete values. This feature was
attributed to the presence of the horizon in a de Sitter spacetime: the particles are
bounded to interact within an Hubble volume.

(3b) It is finite for vanishing transferred momentum, similar to the behavior of a
mass term in a flat-spacetime massive propagator. This is found to be in contrast to
the flat-spacetime case, where a massless graviton propagator gives rise to a divergent
amplitude.

(4) We then took the Fourier transform of the amplitude to obtain the scattering
potential:

(1) For small proper separations, we found a potential that is in agreement with
the flat-spacetime Newtonian potential and Yukawa potentials for pure gravity
and quadratic gravity, respectively.

(2) The potential at super-Hubble distances is exactly zero: there is no causal
interaction between particles separated by the de Sitter horizon.

(3) At the horizon, there is a coupling-dependent discontinuity in the potential.

Furhermore, we investigated whether the modified potentials in Quadratic Gravity
could give rise to Modified Newtonian Dynamics corresponding to dark-matter-like
rotation curves. However, we concluded that the de Sitter curvature gives rise to an
effective repulsive force that cannot be matched to a dark-matter-like scenario.

(5) At this point, we look ahead to further implications of the adiabatic limit. This
approximation differs significantly from the usual derivation of the Newtonian potential
in GR, where the “test particle” is assumed to be light, such that the backreaction of
the geometry can be neglected. This explained the fact that only to a limited extent,
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the scattering potential reproduces the classical GR potential. Instead, taking the scat-
tering amplitude as a tool to reconstruct the backreaction of matter on spacetime, we
concluded that the amplitude probes an effective geometry where both a cosmological
constant Λ and two heavy (black-hole) masses are present. For such a geometry, no
explicit solutions of Einstein’s equations are known.

The results found along Project (II.C)may also have profound consequences for the
properties for the de Sitter horizon. It famously has a temperature [520], comparable to
the Bekenstein–Hawking temperature of a black hole [442]. The investigation allowed
us to probe the horizon properties of a more general geometry with two masses inside.
This may shed light on the outstanding problem of defining a horizon temperature in
a Schwarzschild–de Sitter spacetime.

A different line to follow is to connect the novel formalism introduced here to more
established methods to compute de Sitter correlators.

On the technical level, this approach can be extended in a number of interesting
ways. First, we could go higher order in the adiabatic limit expansion, in order to gain
information about the angular dependence of the amplitude. Furthermore, one could
also apply the machinery to loop diagrams, in order to compute quantum corrections.
Finally, the formalism developed in this work can be extended to other curved back-
grounds. Of particular interest in cosmology would be to extend the de Sitter metric
to a generic FLRW background.

In conclusion, in this thesis we showed how scattering amplitudes in curved spacetime
can give a fascinating outlook on gravitational observables. They provide a set of
methods to understand the quantum nature of spacetime and its contents. We believe
that the techniques developed in Project (II.C) will be an important instrument of
this toolbox.

15.3. Part III of this Thesis

Part III is devoted to the analysis of the very special symmetries and properties of
gravity and its implications towards the construction of observables. The results of this
Part represent novel research results based on [RF6] and [RF7].

(1) In this thesis we discussed how the standard picture of GR suggests an interpretation
of the manifold as an independently existing “container” for the histories of fields and
particles. Usually, the points are considered as existing independently of geometrical
properties and of the fields themselves. Although this point of view may be pleasing
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mathematically, we discuss how physically these points in spacetime are in fact distin-
guished either by local events or non-locally, for example by following the path of a
particle from some initial event for a fixed amount of proper time.

Alternatively to this construction, in this thesis we considered spacetime to be a set
of intrinsically distinguishable events. Spacetime can be then identified with the total
collection of events constructed out of the actual physical and geometrical fields, and
its existence (we can observe it!) trivially requires the presence of such fields. Hence,
more generally, for the points of the manifold to be in one-to-one correspondence with
events there has to be a complete lack of symmetry.

(2) More concretely, we started Project (III.A) and Project (III.B) from the fol-
lowing observation: If we view spacetime as a manifold then a scalar quantity at a point
P is not an observable, that is, it cannot be determined as a prediction of the theory.
An event at a point P in a manifold moves to other points in the manifold under a
diffeomorphism. On the other hand local observables in spacetime certainly do exist
(just take a look around to check!).

In the Projects of Part III we clearly identified and distinguished which is the prop-
erty of GR giving rise to such a striking situation. In particular, we focused on the
possibility of constructing diffeomorphism-invariant quantities which constitute observ-
ables.

Project (III.A): Dynamical diffeomorphisms

In this thesis, we showed how it is possible to turn any field theory into an empirically
equivalent and generally invariant theory by reformulating it on a suitable manifold of
parameters, which amounts to parametrizing the coordinates themselves.

(1) Usually one constructs a diffeomorphism-invariant theory, considering the coordi-
nates xµ as four scalar matter fields on some manifold diffeomorphic to R4 on which one
can introduce coordinates ξµ. Since the above trick of parametrizing the coordinates
can be carried out for any tensorial equation, we conclude that all field theories can be
made diffeomorphism-invariant.

The dynamics of the coordinates can be associated to the so-called Nonlinear Sigma
Models. Specifically, since physics must be independent of the choice of coordinates
on the target space, we force the action to be a functional constructed with tensorial
structures on this space. In Project (III.A), inspired by kinematically nonlinear
theories, we constructed a nonlinear model describing for the first time the dynamics
of diffeomorphisms.
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(2) Practically, we considered the peculiar situation where the scalar matter fields
are both a map on spacetime and in spacetime. The main novelty of our treatment
was that we identified the target space with spacetime. This gave rise to significant
differences compared to the dynamics of ordinary matter fields, and also to the dynamics
of coordinates, regarded as scalar fields on spacetime:

(2a) At the level of kinematics, we replaced the target space R4 by spacetime itself.
Quite aside from the topological aspect, this subtly changed the invariance group.

(2b) We discovered also dynamical differences. Our new model possesses a new de-
pendence on the metric that affects the definition of the energy-momentum tensor of
the scalars, and has further consequences on the relation between the equations of mo-
tion and energy-momentum conservation. In particular, the energy-momentum tensor
consists of two pieces that are separately conserved.

(3)We emphasized how the new class of models have interesting physical consequences:

(1) The background solution is the identity diffeomorphism and the energy-mo-
mentum tensor of this solution gives rise to an effective cosmological constant.
This turned out to be highly reminiscent of solutions resulting from cosmolog-
ical fluid models.

(2) We found that the action of the gauge group on the scalar fields must be free and
transitive. Hence, in order to construct diffeomorphism-invariant observables,
it is not sufficient to demand that the configuration space of the fields must
be a copy of the gauge group. One has to keep the domain and target space
separate. Consequently, taking into account the dynamics of diffeomorphism
is not useful to construct observables.

Summarizing, the model for dynamical diffeomeorphisms introduced in Project
(III.A) is not suited to describe relational observables: we cannot use the diffeomor-
phisms as physical coordinate scaffolding. However, on a more phenomenological point
of view, we proved that dynamical diffeomorphisms can be considered a special class of
cosmological self-gravitating medium giving rise to an effective accelerated dynamics of
the Universe.

Project (III.B): Relational observables in Asymptotic Safety

In Project (III.B) we reviewed how in gravitational theories measurements are pos-
sible due to the presence of additional matter fields which provide a preferred frame
of reference. Indeed, the matter fields can be understood as representing the readings
on some physical coordinate scaffolding. All measurements of tensor or scalar fields
referring to such physical coordinate systems represent relational observables.
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(1) On a conceptual level, we discussed how freedom to construct a physical frame
from the involved dynamical matter fields translates in the freedom to construct many
different relational observables since there is a immense freedom in both choosing the
physical coordinate system and choosing which (composite) operator to transform into
the chosen coordinate system. Hence, even if we considered the technical difficulties to
construct diffeomorphism-invariant observables in Quantum Gravity, from the point of
view of the relational observables we concluded that there is no lack of observables, but
rather perhaps a lack of determining which observables are most relevant. Concretely,
the question was then shifted to the quest of a guiding principle which provides a natural
selection of observables for our physical system. In this exploration we claimed that it
is the Renormalization Group flow equation which selects “good” classes of observables,
by demanding the existence of a self-consistent closure of the flow equations.

(2) Equipped with this ingredients, in Project (III.B) we performed the first analysis
of the scaling of relational observables within the Asymptotic Safety scenario. Tech-
nically, we exploited two main developments established recently within the FRG and
reviewed in Part I:

(2a) The composite operator formalism represents the natural framework to embed
relational observables in an asymptotically safe gravitational scenario. Coupling mat-
ter to gravity, we constructed upon the physical matter system a physical coordinate
system. In particular, we considered four scalar fields to constitute the four physical
coordinates.

(2b) The essential renormalization group [199] disentangles the physical information
from the redundancies arising from the freedom to perform reparameterization of the
fields. In order to compute the scaling of observables, it is crucial to keep only track of
the scaling contributions stemming from physical information.

(3) We defined a relational action and a related equation describing its flow. Therefore,
besides the flowing Effective Average Action, we also disposed of information about the
the flow of observables constructed upon dynamical matter fields, whose dynamics is
described in the EAA. The recipe includes the following steps:

(1) We chose the field content and their symmetries. Following this choice, we
truncate the Effective Average Action, considering the gravitational interac-
tions, the matter interactions and the coupling between matter and gravity.
In particular, we considered the Einstein–Hilbert action coupled to a Standard
Model - like matter action. Furthermore, using the FRGE we computed their
fixed points in the standard and in the minimal essential scheme.

(2) We identified the physical coordinate system from the matter fields. In par-
ticular, as a first application, we chose four scalar fields to represent the four
dynamical coordinates.
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(3) We constructed the relational observables upon these physical coordinate sys-
tem. We truncated the expansion following a derivative expansion of the rela-
tional EAA: at any finite order of the expansion, we are furnished with a finite
number of relational observables. At first order, we were left with three observ-
ables: the relational volume term, the relational Ricci term and the relational
inverse metric. Furthermore, inserting this ansatz into the flow equation for the
relational observables (derived from the composite operator flow equation), we
computed the running of the couplings associated to the relational observables.

(4) We evaluated the scaling dimension of the relational observables at the fixed
points. This furnished us the main results of this investigation: We computed
the scaling of the relational volume, the relational inverse metric and the rela-
tional Ricci curvature. We noted that the scaling exponent of the field space
volume term is not affected by any correction, since this term is purely topo-
logical. The other two scaling exponents are affected by quantum corrections:
the quantum corrections are very small in both schemes. The scaling expo-
nents become less irrelevant in the standard scheme, while they become more
irrelevant in the minimal essential scheme. This effect is due to the presence
of the metric’s anomalous dimensions in the latter, which pushes the scaling
exponents in being more irrelevant.

(4) The formalism introduced in Project (III.B) provides a new window through
which we can compare different approaches to Quantum Gravity. For instance the
same exponents could be computed in other discrete theories of gravity, such as Causal
Dynamical Triangulations or Tensor Field Theories.

It is important to extend the current investigation by including more terms in the
effective action beyond the Einstein–Hilbert action. Moreover, we have applied our
formalism within a simple approximation and taking the physical system to be a set of
four scalar fields. There is a wide range of investigation which has to be explored, in
order to construct an array of different relational observables. For instance, by going
to higher orders in a derivative expansion, one could enlarge the set of observables in a
consistent manner. Finally, alternative coordinate systems can be constructed from a
different set of fields.

What comes next

While much has been achieved through in the Asymptotic Safety scenario, it has also be-
come clear that remaining key open questions in Quantum Gravity might be addressed
by making contact with different approaches, understanding the specific properties of
gravity and facing the challenge of constructing observables.
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The novel lines of research presented above are in prospect of playing paramount
roles in the development of applicable methods. The underlying key open question that
we addressed can be parted into three main categories: Firstly, the geometrical and
dynamical meaning of the Renormalization Group flow equation in a broader context
(such as in connection to old and new AdS/CFT correspondences), secondly, the in-
vestigation of nonperturbative Background Independent quantization of gravity, and,
thirdly, the construction of observables for Quantum Gravity. Regarding the first it
will be imperative to explore also possible geometrizations of matter-coupled gravity.
It is highly intriguing that the string theory internal space may emerge from the RG

approach in a given limit. Additionally, for a better understanding of the correspon-
dence, it would be instructive to study a possible relationship between gravity fields and
operators of a flat space QFT on the boundary. Regarding the second, a first step is to
further study the meaning and the cosmological implications of a minimal length in a
de Sitter spacetime, longing for a connection with results coming from noncommutative
geometry. Regarding the last, it will necessary to construct new observables, such as
new scattering amplitudes in curved spacetimes. Of particular interest in cosmology
would be to extend the de Sitter metric to a generic FLRW background. In a different
direction, a treatment of scattering in a Schwarzschild black-hole background would
be relevant to a number of open problems, such as e role of unitarity, and the process
of black hole evaporation. Moreover, further investigation has to be devoted to the
construction and properties of diffeomorphism-invariant observables, a prime example
being relational observables.
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APPENDIX A

Conventions and Notation

In this appendix we list a number of mathematical conventions and notations relevant
to this thesis.

A.1. Canonical mass dimensions

Throughout this thesis, we use natural units in which ~ = c = 1. Canonical mass
dimensions can follow the conventions of dimensionless coordinates, i.e., [xµ] = 0, [∂µ] =

0, [gµν ] = −2 and [gµν ] = +2 etc., or of a dimensionless metric tensor, i.e., [gµν ] = 0,
[gµν ] = 0, [xµ] = −1, [∂µ] = +1.

We model spacetime as an d-dimensional Riemannian manifold M with associated
metric g of Euclidean signature (+ + · · ·+) or Lorentzian mostly-plus signature (− +

· · ·+).

We denote as ∇µ the covariant derivative containing the Levi-Civita connection
acting on a spacetime point. The Laplacian is accordingly defined as � = gµν∇µ∇ν .

Furthermore, we will make of the covariant derivative Dµ ≡ ∇µ+Aµ, which, in addic-
tion to the Levi-Civita connection implicit in ∇µ, also includes a Yang–Mills connection
Aµ, if present.

A.2. Curvature conventions

Throughout this thesis we employ the following curvature conventions:

Rσ
ρµν = ∂µΓσµρ − ∂νΓσµρ + ΓσµτΓ

τ
νρ − ΓσντΓ

τ
µρ (A.1)

Rµν = Rσ
µσν (A.2)

R = gµνRµν . (A.3)
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The Riemann tensor satisfies the identities

[∇µ,∇ν ]V
σ = Rσ

ρµνV
ρ for vectors (A.4)

[∇µ,∇ν ]Aρ = −Rσ
ρµνAσ for 1-forms (A.5)

[∇µ,∇ν ]Hαβ = −Rτ
αµνHτβ +Rτ

βµνHατ for (0, 2)-tensors (A.6)

A.3. Conventions for the scalar field in curved spacetime

In this section we summarize some important conventions for the representation of
operators, such that the position space representation of a scalar field in a classical
gravitational field. We model classical spacetime as an d-dimensional Riemannian man-
ifold M with metric g and we build a framework to handle scalars on a Riemannian
manifolds, i.e. the space of square-integrable functions L2(M, g).

A.3.1. Position space representation in curved spacetime

We define, the delta function is defined by δ(x− y) ≡
∏i

i=1 δ(x
i − yi), with x, y ∈ Rd.

Attached to (M, ḡ) is the Hilbert space L2(M, ḡ) of square-integrable functions.
Now, we assume that there exist vectors |x〉 which form a “dirac-normalized” basis (the
position basis) for the Hilbert space satisfying

〈y|z〉 =
δ(y − z)√

ḡ(y)
=
δ(y − z)√

ḡ(z)
(A.7)

Next, for each |ψ〉 in the Hilbert space, we define the position basis wavefunction ψ
corresponding to the state |ψ〉 as

〈x|ψ〉 ≡ ψ(x) (A.8)

The bra-ket notation is particularly useful in function spaces which have an inner prod-
uct that allows Hermitian conjugation and identifying a vector with a continuous linear
functional, that is a ket with a bra, and vice versa

〈ψ1|ψ2〉 = 〈ψ1|1|ψ2〉 =

∫
ddx
√
ḡ(x)〈ψ1|x〉〈x|ψ2〉 =

∫
ddx
√
ḡ(x)ψ∗1(x)ψ2(x) (A.9)

where we used the unit operator as

|z〉 = 1|z〉 =

∫
ddy
√
g(y)|y〉〈y|z〉 ≡

∫
ddy|y〉

√
g(y)〈y|z〉 (A.10)



(1) Position eigenbasis {|x〉}. Summarizing, in the bra-ket notation, the basis of
states in the position representation of the Hilbert space satisfies following two proper-
ties.

(1) Orthogonality:

〈x|y〉 = 1xy =
δ(x− y)√

ḡ(y)
(A.11)

(2) Completeness: ∫
ddy
√
ḡ(y)|y〉〈y| = 1 (A.12)

(2) Generic basis {|n〉}. Again we derive the properties also in a generic basis {|n〉}:

(1) Orthogonality
〈n|m〉 = δnm (A.13)

(2) Completeness ∑
n

|n〉〈n| = 1 (A.14)

For consistency, we can pass to the position space basis taking the x-y matrix element∑
n

〈x|n〉〈n|y〉 = 〈x|1|y〉 (A.15)

and recovering the orthogonality relation (A.11)∑
n

φn(x)φ∗n(y) =
δ(x− y)√

ḡ(y)
(A.16)

(3) Relation {|x〉} ⇐⇒ {|n〉}. We define matrix elements of an operator A on
L2(M, ḡ) by considering the n-m matrix element:∫

ddy
√
ḡ(y)〈n|y〉〈y|m〉 = 〈n|1|m〉 (A.17)

We can therewith confirm consistency,∫
ddy
√
ḡ(y)ψ∗n(y)ψm(y) = δnm (A.18)

(4) Operators. We can also define the matrix elements of the operator A in position
space by

Axy = 〈x|A |y〉 (A.19)

The matrix multiplication of A with another operator B is then given by

(A B)xy ≡
∫

ddz
√
ḡ(z)AxzBzy (A.20)



The operator trace of A is given by

Tr(A) ≡
∫

ddz
√
ḡ(z)Azz (A.21)

These two operations can be also expressed in bra-ket notation as

〈x|A B|y〉 =

∫
ddz
√
ḡ(z)〈x|A|z〉〈z|B|y〉 (A.22)

Tr(A) =

∫
ddz
√
ḡ(z)〈z|A|z〉 (A.23)

Exploiting (A.11) can check that

(A 1)xy ≡
∫

ddz
√
ḡ(z)Axz1zy =

∫
ddz
√
ḡ(z)Axz

δ(z − y)√
ḡ(z)

= Axy (A.24)

A.3.2. The differential operator associated to Axy

A differential operator Âdiff.op. associated to the abstract operator A is defined as

(A f)x ≡
∫

ddy
√
ḡ(y)Axy fy :=

(
Âdiff.op. f

)
(x) (A.25)

for f ∈ L2(M, g).

If we consider for instance the matrix operator

Axy = F
(
∇̄y
µ

) δ(x− y)√
ḡ(y)

(A.26)

with F
(
∇̄y
µ

)
an arbitrary function (no symmetry between x↔ y is assumed), then the

associated differential operator reads

(A f)x ≡
(
Âdiff.op. f

)
(x) =

∫
ddy

√
ḡ(y)f(y)F

(
∇̄y
µ

) δ(x− y)√
ḡ(y)

=

∫
ddy

δ(x− y)√
ḡ(y)

F
(
−∇̄y

µ

)√
ḡ(y)f(y)

=

∫
ddy δ(x− y)F

(
−∇̄y

µ

)
f(y) = F

(
−∇̄x

µ

)
f(x)

(A.27)

Hence, we can list the following two identities:

Axy = F
(
∇̄y
µ

) δ(x− y)√
ḡ(y)

=̂ Âdiff.op. = F
(
−∇̄µ

)
(A.28)

Axy = F
(
−�̄y

) δ(x− y)√
ḡ(y)

=̂ Âdiff.op. = F
(
−�̄
)

(A.29)



A.4. Example: Hessians

In this section we compute the position space matrix elements of the Hessian-operator.

We start defining the mean field value as the functional derivative of the generating
functional Wk wrt. the source J(x)

φ(x) = 〈φ̂(x)〉 =
1√
ḡ

δWk

δJ(x)
[J, g, ḡ] . (A.30)

Adding a source term to Wk, we define

Γ̃k ≡
∫

ddx
√
ḡ(x)J(x)φ(x)−Wk = Γk + ∆Sk , (A.31)

where Γk is the Effective Average Action and ∆Sk the smooth cutoff term. The source
can then be obtained as

1√
ḡ

δΓ̃k
δφ(x)

[φ, g, ḡ] = J(x) . (A.32)

Differentiating two times Γ̃k and Wk wrt. the field and the source, respectively, we
obtain the two following identities, defining respectively, the Green function and the
Hessian of Γ̃k x-y-matrix elements:(

Γ̃
(2)
k

)
xy
≡
(

Γ
(2)
k

)
xy

+ (Rk)xy ≡ 〈x|Γ̃(2)
k |y〉

≡ 1

ḡ(y)

δJ(x)

δφ(y)
=

1√
ḡ(x)

√
ḡ(y)

δ2Γ̃k
δφ(x)δφ(y)

,
(A.33)

Gxy ≡ 〈x|G|y〉 ≡
1

ḡ(y)

δφ(x)

δJ(y)
=

1√
ḡ(x)

√
ḡ(y)

δ2Wk

δJ(x)δJ(y)
. (A.34)

Now, exploiting the chain rule, we can write the delta function as

δ(x− z) =

∫
dy
δφ(x)

δJ(y)

δJ(y)

δφ(z)
. (A.35)

Or alternatively, combining (A.33) and (A.34), we arrive at

δ(x− z)√
ḡ(z)

=

∫
dy
√
ḡ(y)

(
1√
ḡ(y)

δφ(x)

δJ(y)

)(
1√
ḡ(z)

δJ(y)

δφ(z)

)

=

∫
dy
√
ḡ(y)

(
1√

ḡ(x)
√
ḡ(y)

δ2Wk

δJ(x)δJ(y)

)(
1√

ḡ(y)
√
ḡ(z)

δ2Γ̃k
δφ(y)δφ(z)

)
(A.36)

Finally, we can write

δ(x− z)√
ḡ(z)

=

∫
dy
√
ḡ(y)Gxy

(
Γ̃

(2)
k

)
yz
≡
∫

dy
√
ḡ(y) 〈x|G|y〉〈Γ̃(2)

k |z〉 (A.37)



and in the bra-ket notation (A.37) we obtain the identity

δ(x− z)√
ḡ(z)

≡ 〈x|G Γ̃
(2)
k |z〉 ⇒ G =

[
Γ̃

(2)
k

]−1

=
[
Γ

(2)
k +Rk

]−1

. (A.38)

relating the inverse of the Hessian operator to the Green function.



APPENDIX B

Metric variations

In this appendix we list mathematical conventions and notations relevant to this
thesis.

We consider general variations of the metric, gµν → gµν+δgµν , and note the response
of various derived geometrical quantities:

δgµν = −gµαgνβδgαβ (B.1)

δg = ggµνδgµν (B.2)

δ
√
g =

1

2

√
ggµνδgµν (B.3)

δ2√g =
1

2

√
g
(
gµνgαβδgµνδgαβ − gµαgνβδgαβδgµν

)
(B.4)

δΓσµν =
1

2
gσβ (∇µδgνβ +∇νδgµβ −∇βδgµν) (B.5)

δRσ
ρµν =

1

2

(
−gσβRα

µσνδgαβ +Rα
νδgµα +∇σ∇µδgνσ

−gσα∇ν∇ρδgαµ +∇ν∇λδgµρ −∇µ∇λδgνρ
)

(B.6)

δRµν =
1

2

(
−gσβRα

µσνδgαβ +Rα
νδgµα +∇σ∇µδgνσ

−gσα∇ν∇µδgσα +∇ν∇σδgσµ −∇σ∇σδgνµ) (B.7)

δR = −Rµνδgµν +∇µ(∇νδgνµ − gνα∇µδνα) (B.8)

δ2R = gσαRµνδgµαδgσν −Rµνρσδgνρδgµσ + 2gσαδgµν∇µ∇νδgσα

+2gµαgνβδgαβ∇σ∇σδgµν − 3gµαδgαν∇ν∇σδgσµ

−gναδgµα∇σ∇µδgσν − 2gµα(∇νgαν)(∇σδgσµ)

−gνα(∇σgµα)(∇µδgσν) + 2gσα(∇µgαν)(∇σδgσα)

+
3

2
gµαgνβ(∇σδgµν)(∇σδgαβ)− 1

2
gµνgαβ(∇σδgµν)(∇σδgαβ) (B.9)
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APPENDIX C

Heat kernel expansion

In this Appendix we introduce the heat kernel and present an asymptotic expan-
sion formula for its trace. Traces of the form Tr[W (−�)], where W is a function that
decreases sufficiently fast to ensure convergence of the trace, can be evaluated efficien-
tkly by means of heat kernel techniques. These have been extensively employed in the
literature.

LetM be a d-dimensional manifold without boundary and H a second order partial
differential operator onM of the Laplace type, i.e., constructed from covariant deriva-
tives in contracted with the metric, and the internal index structure of the second
derivative term is trivial. We can write then H as

H = gµνDµDν + E = D2 + E (C.1)

where E represents an endomorphism, that is, a function onM, acting on internal in-
dices, and Dµ ≡ ∇µ+Aµ is a covariant derivative which, in addiction to the Levi-Civita
connection implicit in ∇µ, may also include a Yang–Mills connection Aµ.

The heat kernel K ≡ K(s;x, y) are defined as a solution to the heat equation

∂K

∂s
= HK, with initial condition K = (s = 0;x, y) =

1
√
g
δ(x− y) . (C.2)

The formal solution to this equation is

K(s;x, y) = esH
[

1
√
g
δ(x− y)

]
. (C.3)

Here, we skip the details and focus on the formula for the early time expansion of the
diagonal K(s;x, x), a power series in terms of s around the value s = 0. This can be
found by taking the coincidence limit y → x

K(s;x, x) =

(
1

4πs

)d/2 ∞∑
n=0

sn tr an(x) . (C.4)

353



The first three coefficients in eq.(C.4) are

a0(x) = 1 (C.5)

a1(x) = E +
1

6
R 1 (C.6)

a2(x) =
1

180

(
RµνρσR

µνρσ +RµνR
µν +D2 R

)
1

+
1

2
(E +

1

6
R 1)2 +

1

12
[Dµ, Dν ][D

µ, Dν ] +
1

6
D2

(
E +

1

6
R 1

)
(C.7)

The trace of the heat kernel is of our particular interest since it can be used to
compute operator traces. In fact, from eq.(C.4) follows

Tr
[
esH
]

=

(
1

4πs

)d/2 ∞∑
n=0

sn
∫

ddx
√
g tr an(x) . (C.8)

In order to compute traces of the form Tr [W (−H)], we assume that W (−H) is given
by a Laplace transform

W (−H) =

∫ ∞
0

ds esHW̃ (s) . (C.9)

Subsequently, we can insert the early time expansion for Tr
[
esH
]
in (C.8) and finally

integrate over s separately each term of the expansion

Tr [W (−H)] =

(
1

4π

)d/2 ∞∑
n=0

Qd/2−n[W ]

∫
ddx
√
g tr an(x) , (C.10)

where we introduced the Q-functionals (or generalized Mellin transforms) to be defined
as:

Qm[W ] =


1

Γ(m)

∫ ∞
0

dz zm−1W (z) for m > 0

(−1)−mW (−m)(0) for m ≤ 0 .

(C.11)

For a vanishing endomorphism E, the heat kernel expansion can be expressed in terms
of the Q-functionals as

Tr
[
W (−D2)

]
=

(
1

4π

)d/2
tr(1)

{
Qd/2[W ]

∫
ddx
√
g +

1

6
Qd/2−1[W ]

∫
ddx
√
gR

}
,

(C.12)
up to higher order terms in the curvature. If there is a covariant derivative, the first
terms in the expansion read

Tr [DµW (−H)] =

(
1

4π

)d/2
Qd/2−1[W ]

∫
ddx
√
g tr

{
1

12
DµR +

1

2
DµE −

1

2
Dµ[Dν , Dµ]

}
.

(C.13)



APPENDIX D

RG equations equations of the Einstein–Hilbert truncation

In this appendix we provide the intermediate steps leading from (3.48) to (3.54) of
the main text.

In order to determine the functions ZN(k) and Λ(k) in (3.48) we project the space
spanned by the operators

∫
ddx√g and

∫
ddx√gR.

The LHS of the flow equation reads:

k∂kΓk[g, g] =
1

16πḠ

∫
ddx
√
g [−R(g)k∂kZN(k) + 2k∂k (ZN(k)Λ(k))] . (D.1)

On the right hand side of the flow equation can perform a derivative expansion and
consider only terms proportional to the monomials

∫
ddx√g and

∫
ddx√gR, being able

to compare proportional to the same operator and write down the system of differential
equations for ZN(k) and Λ(k).

D.1. The Hessian

In order to obtain the second functional derivative of Γk[g, ḡ] appearing under the trace
of the flow equation, we need to expand1

Γk[ḡ + h, ḡ] = Γk[ḡ, ḡ] +O(h) + Γquad
k [h; ḡ] +O(h3) ,

Γquad
k [h, ḡ] = ZN(k)

1

32πḠ

∫
ddx
√
ḡhµν

[
−Kµν

ρσ �̄+ Uµν
ρσ

]
hρσ .

(D.2)

Where the tensors K and U are, respectively:

Kµν
ρσ =

1

4

[
δµρ δ

ν
σ + δµσδ

ν
ρ − ḡµν ḡρσ

]
(D.3)

Uµν
ρσ =

1

4

[
δµρ δ

ν
σ + δµσδ

ν
ρ − ḡµν ḡρσ

]
(R̄− 2Λ(k)) +

1

2

[
ḡµνR̄ρσ + ḡρσR̄

µν
]

− 1

4

[
δµρ R̄

ν
σ + δνσR̄

µ
ρ + δνρR̄

µ
σ + δνσR̄

µ
ρ

]
− 1

2

[
R̄ν

ρ
µ
σ + R̄ν

σ
µ
ρ

]
,

(D.4)

where we made use of the variations in Section A.1.

1From this point on the indices are lowered and raised by means of the background metric ḡµν .
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The quadratic form in (D.2) can be diagonalized by decomposing the metric fluctu-
ation hµν as the sum of a traceless tensor hTT and a trace part h = gµνhµν as follows

hµν = hTT +
1

d
ḡµνh . (D.5)

The quadratic action becomes

Γquad
k [h; ḡ] = ZN(k)

1

32πḠ

∫
ddx
√
ḡ
{
hTTµν

[
−�̄− 2Λ(k) + R̄

]
hTTµν

+

(
d− 2

4d

)
h

[
−�̄− 2Λ(k) +

d− 4

d
R̄

]
h

−R̄µνh
TTνρhTTµρR̄αβνµh

TTβνhTTαµ +
d− 4

d
hR̄µνh

TTµν
}
.

(D.6)

In the following we will assume that the background ḡµν is maximally symmetric,
i.e., its Riemann and Ricci tensor are proportional to the curvature scalar R̄ and have
the form (see Appendix E)

R̄µνρσ =
1

d(d− 1)
[ḡµρḡνσ − ḡµσḡνρ] R̄

R̄µν =
1

d
ḡµνR̄ .

(D.7)

Here R̄ should not be interpreted as a functional of the metric, but as an externally
prescribed parameter. For such spacetimes (D.6) reduces to:

Γquad
k [h; ḡ] =

1

2
ZN(k)

1

32πḠ

∫
ddx
√
ḡ
{
hTTµν

[
−�̄− 2Λ(k) + CTR̄

]
hTTµν

+

(
d− 2

2d

)
h
[
−�̄− 2Λ(k) + CSR̄

]
h

}
1 ,

(D.8)

where we have introduced the dimensionless constants

CT =
d(d− 3) + 4

d(d− 1)
, CS =

d− 4

d
. (D.9)

At this stage we can specify the form of the cutoff operators Rgrav
k and Rgh

k . In order
to combine with the kinetic term of each mode, the cutoff terms can be expressed as

Rk[ḡ] = Zkk2R(0)
(
− �̄
k2

)
, (D.10)

Inspecting (D.8), we can deduce the following form

(Zgrav
k )µνρσ =

[
(1− Ph)µνρσ −

d− 2

2
P µνρσ
h

]
ZN(k) , (D.11)



where we used the unity 1 on the space of symmetric rank-two tensors and the projector
Ph on the trace part of the metric

1µν
ρσ =

1

2

(
δρµδ

σ
ν + δρνδ

σ
µ

)
, Ph,µν

ρσ =
ḡµν ḡ

ρσ

d
. (D.12)

For the trace h this normalization is considered, while the traceless tensor has Zgrav =

ZN(k)1. With this cutoff in the two sectors we obtain the following operators:2(
1

32πḠ
Γ
quad,(2)
k [g, g] +Rgrav

k

)
hTThTT

= ZN(k)

[
−�+ k2R(0)

(
−�
k2

)
− 2Λ(k) + CTR

]
(

1

32πḠ
Γ
quad,(2)
k [g, g] +Rgrav

k

)
hh

= −d− 2

2d
ZN(k)

[
−�+ k2R(0)

(
−�
k2

)
− 2Λ(k) + CSR

]
.

(D.13)

Finally we need to introduce the Faddeev–Popov operator, This is, with ḡ = g being a
maximally symmetric spacetime:

M[g, g]µν = δµν�+Rµ
ν = −δµν [−�+ CVR] , CV = −1

d
. (D.14)

Neglecting the renormalization of the ghost action, we can set Zgh
k = 1 and we obtain

−M+Rgh
k = −�+ k2R(0)

(
−�
k2

+ CVR

)
. (D.15)

D.2. Evaluation of the trace

Equipped with the Hessian and the Faddeev–Popov term we can now evaluate the trace
on the left hand side of the flow equation in (3.41).

In order to us define the operators:

A ≡ −�+ k2R(0)

(
−�
k2

)
− 2Λ(k)

N ≡ 1

2ZN(k)
k∂k

[
ZN(k)k2R(0)

(
−�
k2

)]
=

[
1− 1

2
ηN(k)

]
k2R(0)

(
−�
k2

)
+�R(0)′

(
−�
k2

)
,

(D.16)

where we introduced the anomalous dimension related to the Newton constants ηN =

−k∂kZN(k). The primes denote the derivative with respect to the respective argument.

2From now on we omit the bar from the metric and the curvature setting ḡ = g.



Furthermore let’s denote
A0 = A(Λ(k) = 0)

N0 = N (ηN(k) = 0) ,
(D.17)

such that we can write the left hand side of (3.41) as

TrT
[
N (A+ CTR)−1

]
+ TrS

[
N (A+ CSR)−1

]
− 2TrV

[
N0(A0 + CVR)−1

]
. (D.18)

This expression can be further simplified by expanding in R:

TrT
[
NA−1

]
+ TrS

[
NA−1

]
− 2TrV

[
N0A−1

0

]
−R
(
CTTrT

[
NA−2

]
+ CSTrS

[
NA−2

]
− 2CVTrV

[
N0A−2

0

] )
+O(R2)

(D.19)

Finally we evaluate the traces by taking advantage of the heat kernel expansion
(C.8).

Tr
[
e−is�

]
=

(
i

4πs

)d/2
tr(1)

∫
ddx
√
g

{
1− 1

6
isR

}
+O(R2) (D.20)

where tr(1) refers to the number of independent field components in each space of fields.
We have in particular

trS(1) = 1

trV(1) = d

trT(1) =
(d− 1)(d− 2)

2

(D.21)

In terms of the Q-functional the expansion of the trace is defined in (C.11).

Comparing the coefficients of
∫ √

g we obtain the following equation

k∂k (ZN(k)Λ(k)) =
1

64πḠ

(
1

4π

)d/2 {
trT(1)Qd/2 [N /A]

+trS(1)Qd/2 [N /A]− 2trV(1)Qd/2 [N0/A0]
}
.

(D.22)

Analogously, comparing terms proportional to
∫
ddx√gR, we read off the following

equation

k∂k (ZN(k)) =
1

192πḠ

(
1

4π

)d/2 {
trT(1)

[
Qd/2−1 [N /A]− 6CTQd/2

[
N /A2

]]
+trS(1)

[
Qd/2−1 [N /A]− 6CSQd/2

[
N /A2

]]
−2trV(1)

[
Qd/2−1 [N0/A0]− 6CVQd/2

[
N0/A2

0

]]}
.

(D.23)



D.3. Mode cutoffs and threshold functions

Here we introduce two possible cutoff shape function which is used in this thesis: the
sharp cutoff and the optimized cutoff. We define “threshold functions” and evaluate
them for these cutoffs.

The cutoff operator Rk can be written in terms of the cutoff shape function R(0):

Rk(−�) = Zkk2R(0)(−�/k2) . (D.24)

where the function Zk is usually chosen to be the wave function renormalization. In
order to represent an IR cutoff we demand the shape function to satisfy following
requirements

(i) R(0)(0) = 1 (D.25)

(ii) lim
z→∞

R(0)(z) = 0 (D.26)

Specifically, we consider: the optimized cutoff

R(0)(z) ≡ (1− z) θ(1− z) (D.27)

and the sharp cutoff

R(0)(z) ≡ R̂ θ(1− z), where R̂→∞ (D.28)

where the limit R̂→∞ is performed after the z-integration. Throughout this thesis it
will be convenient to re-express the Q-functionals in terms of the “threshold functions”.
These are defined as

Φp
n(w) :=

1

Γ(n)

∫ ∞
0

dz zn−1R
(0)(z)− zR(0)′(z)

(z +R(0)(z) + w)p
(D.29)

Φ̃p
n(w) :=

1

n

∫ ∞
0

dz zn−1 R(0)(z)

(z +R(0)(z) + w)p
(D.30)

Using the above mentioned cutoff shape functions, the threshold functions can in fact
be analytically evaluated and one obtains for the optimized cutoff

Φp
n opt(w) =

1

Γ(n+ 1)

1

(1 + w)p
(D.31)

Φ̃p
n opt(w) =

1

Γ(n+ 2)

1

(1 + w)p
(D.32)



and for the sharp cutoff

Φ1
n sc(w) = − 1

Γ(n)
ln (1 + w)p (D.33)

Φp
n(w)sc =

1

Γ(n)

1

p− 1

1

(1 + w)p−1
for p > 1 (D.34)

Φ̃1
n sc(w) =

1

Γ(n+ 1)
(D.35)

Φ̃p
n sc(w) = 0 for p > 1 (D.36)

Exploiting the definitions of the threshold functions, we can rewrite eq.(D.22) and
eq.(D.23) as

k∂k (ZN(k)Λ(k)) =
1

256πḠ

(
1

4π

)d/2
kd
[
2d(d+ 1)Φ1

d/2

(
−2Λ(k)

k2

)
−8dΦ1

d/2(0)− d(d+ 1)ηN Φ̃1
d/2

(
−2Λ(k)

k2

)]
k∂k (ZN(k)) =

1

384πḠ

(
1

4π

)d/2
kd−2×[

d(d+ 1)

(
Φ1
d/2−1

(
−2Λ(k)

k2

)
− 1

2
ηN Φ̃1

d/2−1

(
−2Λ(k)

k2

))
− 6d(d− 1)

(
Φ2
d/2

(
−2Λ(k)

k2

)
− 1

2
ηN Φ̃2

d/2

(
−2Λ(k)

k2

)
− 4dΦ1

d/2−1(0)− 24Φ2
d/2(0)

)]

(D.37)

Finally, we can obtain the form of the dimensionless RG equations formulated in terms
of the dimensionless running couplings:

Defining the anomalous dimension related to the running Newton’s constant as:

ηN(λ(k), g(k)) ≡ −k∂k lnZN(k) (D.38)

Introducing the dimensionless variables :

g(k) ≡ kd−2 = kd−2ZN(k)−1Ḡ

λ(k) ≡ k−2Λ(k)
(D.39)

We obtain the flow equations (D.37) in the form

k∂kg(k) = [(d− 2) + ηN(λ(k), g(k))] g(k) ,

k∂kλ(k) = −(2− ηN(k))λ(k) +
1

2
g(k)(4π)1−d/2

[
2d(d+ 1)Φ1

d/2(−2λ(k))

− 8dΦ1
d/2(0)− d(d+ 1)ηN(k)Φ̃1

d/2(−2λ(k))
]
.

(D.40)



This system depends on the anomalous dimension, which for convenience can be
rewritten as

k∂kηN(k) =
g(k) B1(λ(k))

1− g(k) B2(λ(k))
, (D.41)

with

B1(λ(k)) = 32π

(
1

4π

)d/2 [
d(d+ 1)

24
Φ1
d/2−1(−2λ(k))− d(d− 1)

4
Φ2
d/2(−2λ(k))

−d
6

Φ1
d/2−1(0)− Φ2

d/2(0)

]
B2(λ(k)) = 32π

(
1

4π

)d/2 [
−d(d+ 1)

48
Φ̃1
d/2−1(−2λ(k)) +

d(d− 1)

8
Φ̃2
d/2(−2λ(k))

]
(D.42)





APPENDIX E

Maximally symmetric spacetimes

E.1. Constant scalar curvature

In this Appendix we discuss some aspects of what are known as maximally symmetric
spacetimes. The results reported are useful for the geometrization procedure performed
in Chapter 7.

Maximally symmetric spacetime are spaces that admit the maximum number of
Killing vectors (which turns out to be d(d + 1)/2 for a d-dimensional space). We
will show how maximal symmetry fixes the curvature tensor: a space is maximally
symmetric if and only if its scalar curvature R is constant [521].

Complying with the Cosmological Principle, such spaces, which are simultaneously
homogeneous (“the same at every point”) and isotropic (“the same in every direction”),
provide a description of space in a cosmological spacetime.

In order to understand how to define and characterize maximally symmetric spaces,
we need to obtain some more information about how Killing vectors can be classified.
A Killing vector field Kµ(x) is completely and uniquely determined everywhere by the
values of Kµ(x0) and ∇µKν(x0) at a single point x0. Since, in a d-dimensional space
there can be at most d linearly independent vectors Kµ(x0) (related to translations) at a
point, and at most d(d− 1)/2 independent anti-symmetric matrices ∇µKν(x0) (related
to rotations, to the Lie algebra of SO(d)), we reach the conclusion that a d-dimensional
space can have at most d(d+ 1)/2 independent Killing vectors. A spacetime with this
maximal number of Killing vectors is called maximally symmetric. A homogeneous and
isotropic space is maximally symmetric.

On the basis of these simple considerations we can already determine the form of the
Riemann curvature tensor of a maximally symmetric space. If the metric is supposed to
be isotropic at a fixed point x0, then the curvature tensor at the origin must be invariant
under Lorentz rotations. Now we know that the only invariants of the Lorentz group
are the metric tensor, the Kronecker-delta, and the Levi-Civita tensor. Furthermore,
imposing the symmetries of the Riemann tensor we conclude that it has the structure

Rµνρσ = C(gµρgνσ − gµσgνρ) . (E.1)
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Imposing the Bianchi identity, we are led to require C to be a constant. Then

Rµν = C(d− 1)gµν , (E.2)

so that a maximally symmetric spacetime is automatically a solution to the vacuum
Einstein equations with a cosmological constant.

In terms of the conventionally defined cosmological constant Λ, the Ricci curvature
tensor and the Ricci curvature scalar of dS spacetime are given by

Rµν =
R

d
gµν , R =

2d

d− 2
Λ , (E.3)

while the Weyl tensor vanishes.

In Lorentzian signature, the three cases Λ = 0,Λ > 0 and Λ < 0 correspond to
Minkowski Md, de Sitter dSd, and anti-de Sitter spacetime AdSd, respectively. In the
Euclidean setting, we are dealing with the flat Rd, spheres Sd, and hyperbolic spaces
Hd instead.

The d-dimensional dS spacetime is uniquely characterized as the maximally symmet-
ric Lorentzian manifold with constant positive scalar curvature. It is the maximally
symmetric solution of the vacuum Einstein equations including a positive cosmological
constant Λ.

For a given Λ > 0, it is convenient to introduce the associated Hubble constant H
by:1

R = d(d− 1)H2 , H2 =
2

(d− 1)(d− 2)
Λ . (E.4)

E.2. Embeddings

A way of explicitly constructing the maximally symmetric spacetimes which makes their
symmetries manifest is by invoking an auxiliary d+1-dimensional embedding spacetime.
The embedding recipe:

(1) Construct the ambient (d+ 1)-dimensional (pseudo-)Riemannian space;
(2) Impose the condition on the points of the (d+1)-dimensional (pseudo-)Riemannian

space;

1Recall that in this thesis we use the mostly-plus convention for the metric. For the Riemann tensor,
we use the convention R δ

αβγ = −∂αΓδβγ + ∂βΓδαγ + ΓδβζΓ
ζ
αγ − ΓδαζΓ

ζ
βγ . The Ricci tensor is given by

Rαγ = R β
αβγ .



(3) Solve this condition. Crucial here is that different parameterizations of the
solution can be given, corresponding to different d-dimensional coordinate sys-
tems. In fact, any coordinate transformation that keeps the condition in (2)
invariant is a representation of the internal symmetries of that given space;

(4) Write the induced line element ds2
d in the given coordinate system.

Let us concretely apply this to the maximally symmetric spacetimes in both Eu-
clidean and Lorentzian signature:

(1) Sphere Sd. As an example, we can realize the (unit-radius) sphere Sd by embedding
it into Rd+1 equipped with Euclidean line element

ds2 = dx2
0 + dx2

1 + · · ·+ dx2
d (E.5)

The condition to impose is

(x0)2 + · · ·+ (xd)
2 = +1 . (E.6)

We note that, as we equip Rd+1 with the standard Euclidean metric, which is invariant
under translations and rotations SO(d + 1) of Rd+1, the defining equation above is
invariant under the SO(d+ 1)-rotations, and the induced metric on Sd will therefore be
SO(d+ 1)-invariant.
At this stage we show how to satisfy the condition (E.6) in two different ways:

(1) If we choose to eliminate x0 from (E.6), then

ds2
d+1 = dx2

1 + · · ·+ dx2
d +

(x1 dx0 + · · ·+ xd dxd)
2

1− x2
1 − · · · − x2

d

(E.7)

By exploiting the rotational invariance we can write: x1 = r cosϕΩd−1, xd =

r sinϕΩd−1, with r2 = x2
1 + · · · + x2

d, such that x1 dx1 + · · · + xd dxd = r dr,
obtaining:

ds2 = dr2 + r2 dΩ2
d−1 +

r2 dr2

1− r2
=

dr2

1− r2
+ r2 dΩ2

d−1 (E.8)

(2) Another option is to parameterize the coordinates as

x0 = cosϕ1

x1 = sinϕ1 cosϕ2

x2 = sinϕ1 sinϕ2 cosϕ3

...

xd−1 = sinϕ1 · · · sinϕd−2 cosϕd−1

xd = sinϕ1 · · · sinϕd−2 sinϕd−1

(E.9)



Inserting this parameterization in (E.5), we obtain:

ds2 = dθ2 + sin2 θ dΩ2
d−1 (E.10)

This gives rise to the standard SO(d+ 1)-invariant line element dΣd. We note
that the two induced metric are related by a coordinate transformation, i.e.,
r = sin θ.

The dimension of the isometry group of Sd with the above matrix is (d+ 1)d/2. This is
the same as the dimension of the Poincaré (or Euclidean) group in d dimensions, and
thus the Sd equipped with this metric is maximally symmetric.

(2) Hyperbolic space Hd. Likewise, we can realize the (unit curvature radius) hy-
perboloid Hd by embedding it into a higher-dimensional pseudo-Riemannian manifold.
We will now correspondingly choose the embedding space to be R1,d, i.e. the space
equipped with the Lorentz-signature metric

ds2
d+1 = −(dx0)2 + (dx1)2 + ...+ (dxd)

2 , (E.11)

via the condition
− (x0)2 + ...+ (xd)

2 = −1 (E.12)

Its isometry group is the (d+ 1)-dimensional Poincaré group, which has dimension (d+

1)(d+2)/2. The equation defining Hd is left invariant by its SO(d, 1) Lorentz-subgroup
which has dimension (d+ 1)d/2, and thus the metric induced on Hd by the Minkowski
metric on the embedding space will have isometry-group SO(d, 1) and is maximally
symmetric. Note that this metric has Euclidean signature because the (−1) on the
right-hand side of (E.12) allows one to completely eliminate the timelike direction x0.

Let’s analyze some parameterizations and related coordinate systems:

(1) Let us parameterize

x0 = coshϕ1

x1 = sinhϕ1 cosϕ2

x2 = sinhϕ1 sinϕ2 cosϕ3

...

xd−1 = sinhϕ1 · · · sinϕd−2 cosϕd−1

xd = sinhϕ1 · · · sinϕd−2 sinϕd−1

(E.13)

Inserting this parameterization into the line element (E.11) we obtain:

ds2 = dθ2 + sinh2 θ dΩ2
d−1 (E.14)



(2) If we instead choose the parameterization

x0 = sinhϕ1

x1 = coshϕ1 sinhϕ2

x2 = coshϕ1 coshϕ2 cosϕ3

...

xd−1 = coshϕ1 · · · coshϕd−2 cosϕd−1

xd = coshϕ1 · · · coshϕd−2 sinϕd−1

(E.15)

Inserting this parameterization into the line element (E.11) we obtain:

ds2 = dρ2 + cosh2 ρ dΩ2
d−1 (E.16)

(3) De Sitter dSd. If we change the sign on the right-hand side of eq.(E.12), the
induced metric will still be invariant under SO(d, 1), but now the induced metric will
be Lorentzian instead of Euclidean and we obtain a realization of a maximally symmetric
spacetime, namely de Sitter space

− (x0)2 + (x1)2 + ...+ (xd)
2 = +1. (E.17)

De Sitter spacetime can be parameterized by various coordinate systems. Of particular
importance in cosmology are comoving coordinates, which explicitly show that the uni-
verse is spatially homogeneous and isotropic. This property is encoded in the FLRW-like
(or exponentially expanding) line element:

ds2 = −dt2 + e2Ht(dx2
1 + · · ·+ dx2

d−1) . (E.18)

Introducing conformal time η = −e−Ht/H, the metric is manifestly conformally flat:

ds2 =
1

(Hη)2
(−dη2 + dx2

1 − · · · − dx2
d−1) . (E.19)

Here, cosmic time t runs from −∞ to +∞, while conformal time η runs from −∞ to
0, corresponding to past and future infinity, respectively.

For a presentation on other possible parametrizations and coordinate systems (see
steps (3) and (4) of the recipe), we refer to Table E.3.

(4) Anti-de Sitter AdSd. By the same token, we can obtain a maximally symmetric
Lorentzian signature spacetime from the embedding into a flat ambient space equipped
with

ds2
d+1 = −(dx0)2 − (dx1)2 + ...+ (dxd)

2 , (E.20)

by imposing the condition

− (x0)2 + (x1)2 + (x2)2 + ...+ (xd−1)2 − (xd)
2 = −1 (E.21)



Since this equation is SO(d − 1, 2)-invariant, this spacetime will have isometry group
SO(d−1, 2) induced from the signature (2, d−1) metric on the embedding space R2,d−1.
The dimension of SO(d−1, 2) is also d(d−1)−2, just like that of SO(d, 1) or SO(d+1),
and this defines the maximally symmetric anti-de Sitter space.
A table with the parametrizations and coordinate systems of the induced AdS, we will
refer to Table E.4.

In the following tables we summarize the main properties and embeddings of the
maximally symmetric Euclidean and Lorentzian spaces, respectively.

Space Embedding Curvature Isometry Coset

Rd ds2
d+1 = dx2

0 + dx2
1 + ...+ dx2

d R = 0 ISO(d) ISO(d)
SO(d)

x2
0 + x2

1 + ...+ x2
d = 0

Sd ds2
d+1 = dx2

0 + dx2
1 + ...+ dx2

d R = d(d− 1) SO(d+ 1) SO(d+1)
SO(d)

x2
0 + x2

1 + ...+ x2
d = 1

Hd ds2
d+1 = dx2

0 − dx2
1 + ...+ dx2

d R = −d(d− 1) SO(d+ 1) SO(d,1)
SO(d)

x2
0 − x2

1 + ...+ x2
d = −1

Table E.1. Explicit embedding, isometry group and representation as a coset
for the maximally symmetric geometries in the Euclidean setting with vanish-
ing, positive and negative curvature, respectively.

Space Embedding Curvature Isometry Coset

Md ds2
d+1 = − dx2

0 + dx2
1 + ...+ dx2

d R = 0 ISO(d− 1, 1) ISO(d−1,1)
SO(d−1,1)

−x2
0 + x2

1 + ...+ x2
d = 0

dSd ds2
d+1 = − dx2

0 + dx2
1 + ...+ dx2

d R = d(d− 1) SO(d, 1) SO(d,1)
SO(d−1,1)

−x2
0 + x2

1 + ...+ x2
d = 1

AdSd ds2
d+1 = − dx2

0 − dx2
1 + ...+ dx2

d R = −d(d− 1) SO(d− 1, 2) SO(d−1,2)
SO(d−2,2)

−x2
0 − x2

1 + ...+ x2
d = −1

Table E.2. Explicit embedding, isometry group and representation as a coset for the
maximally symmetric geometries in the Lorentzian setting with vanishing, positive and
negative curvature, respectively.



Steps (3) and (4) for de Sitter and anti-de Sitter are summarized in Table E.3 and
Table E.4. In these tables we show how to satisfy the conditions for dS and AdS in
Table E.2 using different parameterizations.
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APPENDIX F

Propagators in curved background

This appendix is devoted to details and computations leading to the results in Chap-
ter 9. After having derived the commutation relations in a background with constant
curvature, we will provide the expressions of the graviton propagator in such a space-
time. In the last section, we will report the details about the resolution of differential
equations related to the rank-two tensor sector in the adiabatic expansion. All along
this appendix, we have made an extensive use of the tensor manipulation package xAct
in Mathematica.

F.1. Commutation relations in constantly-curved spaces

In order to compute the propagator and to bring the amplitude functional to a canon-
ical form, we need to compute the commutator of the operator f(−�) with covariant
derivatives in a de Sitter background. The following appendix directly follows [396];
here the formalism has been adapted to metric gravity.

(1) We want to obtain a formula of the form

f(�)∇αX = ∇αf − f(�)X + . . . , (F.1)

where f is an arbitrary function and X is a tensor of rank (0, n),

X = Xµ1···µn . (F.2)

To derive an equation of the form (F.1), we employ a standard trick: we express the
function f as an inverse Laplace transform, so that we can use the Baker–Campbell–
Hausdorff formula,

f(�)∇αX =

∫ ∞
0

dsf̃(s) e−s�∇αX =

∫ ∞
0

dsf̃(s)
∑
`≥0

(−s)`

`!
[�,∇α]` e−s�X . (F.3)

Here we used the multi-commutator, which is defined recursively by

[A,B]n = [A, [A,B]n−1] , [A,B]0 = B . (F.4)
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In order to compute the multi-commutator, let us first calculate the standard commu-
tator. Assuming that we are working in dS spacetime, we find

[�,∇α]Xµ1···µn = +
R

d
∇αXµ1···µn −

2

d− 1

R

d

n∑
k=1

[
ḡαµk∇βXµ1···µk−1βµk+1···µn

∇µkXµ1···µk−1αµk+1···µn
]

≡C βν1···νn
αµ1···µn ∇βXν1···νn .

(F.5)

We observe that the commutator is a multiplication with a covariantly constant tensor
C, so that structurally we find

[�,∇]k X = Ck∇X . (F.6)

We can plug this back into the original equation (F.3), so that we are left with

f(�)∇X =

∫ ∞
0

ds f̃(s) Texp[−sC]∇e−s�X , (F.7)

where Texp is the tensor exponential. This can be defined in terms of its power series.

(2) Since the computation of this exponential for a tensor of arbitrary rank becomes
rather complicated, we will illustrate how the procedure works for scalars and vectors.
For a scalar, we find

[�,∇α]X =
R

d
∇αX , (F.8)

such that for C, we obtain

C β
α =

R

d
δ β
α . (F.9)

Consequently, inserting this into (F.7), we have

f(�)∇αX = ∇αf

(
�+

R

d

)
X . (F.10)

The same procedure can be applied for vectors. First, we find for C

C βν
αµ =

R

d
δ β
α −

2

d− 1

R

d
gαµg

βν +
2

d− 1

R

d
δ β
α δ ν

µ , (F.11)

which gives for (F.7)

f(�)∇αXµ =∇(αf

(
�+

d+ 1

d− 1

R

d

)
Xµ) +

1

d
gαµ∇β

[
f

(
�− R

d

)
− f

(
�+

d+ 1

d− 1

R

d

)]
Xβ

+∇[αf

(
�+

d− 3

d− 1

R

d

)
Xµ] .

(F.12)
The formula for the rank-two tensor can be found in the same fashion. However, since
this is very lengthy, we will not display it here.



F.2. The propagator operator in a curved background

In this section, we will provide the explicit expressions for the propagator G(hh) used in
Subsection 9.3.3. The propagator is of the form

G(hh) =
∑
i

TiGi(�, R) . (F.13)

Here the index i = 1, . . . , 6 runs over the set of tensor structures given in (9.20). We
will now present the functions Gi(�, R). For simplicity, we will restrict ourselves to the
case d = 4. Nontrivial in this computation are the gauge parameters αgf and βgf, which
we will keep arbitrary. The functions Gi are given by

3

32πGN

G1(�, R) = − (αgf − 1)RG
(

1
6

)2 − 2αgfG
(

1
6

)
+ 2

αgf − βgf
βgf − 3

RG
(

2
3

+ 1
βgf−3

)2

+ 2 (αgf − 3)G
(

2
3

+ 1
βgf−3

)
,

1

16πGN

G2(�, R) =
1

6
(αgf − 1)RG

(
1
6

)2
+

1

3
(αgf − 1)G

(
1
6

)
− 1

3

αgf − βgf
βgf − 3

G
(

2
3

+ 1
βgf−3

)2

−
αgf − 7− 6

βgf−3

3
G
(

2
3

+ 1
βgf−3

)
− 2

βgf − 3
G
(

1
βgf−3

)
,

9

128πGN

G3(�, R) = (αgf − 1)G
(

1
6

)2 − 2αgf − 15

R
G
(

1
6

)
+ 2

αgf − βgf
βgf − 3

G
(

2
3

+ 1
βgf−3

)2

+
(2αgf − 15)

R
G
(

2
3

+ 1
βgf−3

)
,

1

128πGN

G4(�, R) = − 2

9
(αgf − 1)G

(
1
6

)2
+

1

9

4αgf − 3

R
G
(

1
6

)
− 1

9

(αgf − βgf)(4βgf − 3)

(βgf − 3)2
G
(

2
3

+ 1
βgf−3

)2

− 1

9

4αgf − 3

R
G
(

2
3

+ 1
βgf−3

)
+

αgf − βgf
(βgf − 3)2

G
(

1
βgf−3

)2

,

9

128πGN

G5(�, R) = − (αgf − 1)G
(

1
6

)2
+ 11

αgf − 3

R
G
(

1
6

)
− 11

αgf − βgf
βgf − 3

G
(

2
3

+ 1
βgf−3

)2

− 11
αgf − 3

R
G
(

2
3

+ 1
βgf−3

)
,

1

256πGN

G6(�, R) =
αgf − 1

R
G
(

1
6

)2 − 2
αgf − 3

R2
G
(

1
6

)
+ 2

αgf − βgf
βgf − 3

G
(

2
3

+ 1
βgf−3

)2

+ 2
αgf − 3

R2
G
(

2
3

+ 1
βgf−3

)
.

(F.14)



Here, we defined the shorthand notation Gν = (−�+ νR)−1. In the de Donder gauge,
αgf = 1, βgf = d

2
− 1, this reduces to

G1(�, R)

16πGN

= −4G
(

1
6

)
,
G2(�, R)

16πGN

= G
(
−1

2

)
+G

(
1
6

)
, G3 = G4 = G5 = G6 = 0 .

(F.15)

F.3. Differential equations for (−�+ z)−1Tµν

In this appendix, we collect several details regarding the calculation of the propagator
in the 2-derivative sector (Subsection 9.4.3).

We begin with a complete list of the differential equations for the propagator func-
tions occurring in the ansatz (9.66). These differential equations read

η2G′′00 + (d+ 4)ηG′00 +
(
q2η2 + ζ + 4

)
G00 =

1

H2η2
− 2(d− 1)Gδ − 4~p1 · ~p2G(12)

− 2p2
1G11 − 2p2

2G22 + 4iη(p2
1 − ~p1 · ~p2)G1 − 4iη(p2

2 − ~p1 · ~p2)G2 ;

η2G′′1 + (d+ 4)ηG′1 +
(
q2η2 + ζ + d

)
G1 = 2iη

(
G00 −Gδ

− (p2
1 − ~p1 · ~p2)G11 + (p2

2 − ~p1 · ~p2)G(12)

)
;

η2G′′2 + (d+ 4)ηG′2 +
(
q2η2 + ζ + d

)
G2 = 2iη

(
−G00 +Gδ

− (p2
1 − ~p1 · ~p2)G(12) + (p2

2 − ~p1 · ~p2)G22

)
;

η2G′′11 + (d+ 4)ηG′11 +
(
q2η2 + ζ + 2d

)
G11 = −4iηG1 ;

η2G′′22 + (d+ 4)ηG′22 +
(
q2η2 + ζ + 2d

)
G22 = 4iηG2 ;

η2G′′(12) + (d+ 4)ηG′(12) +
(
q2η2 + ζ + 2d

)
G(12) = 2iη (G1 −G2) ;

η2G′′δ + (d+ 4)ηG′δ +
(
q2η2 + ζ + 2d

)
Gδ = −2G00 .

(F.16)
We now perform linear transformations such that the system of differential equations
becomes partially decoupled. Defining q = −qη, we choose coefficients aij such that



gi(q) =
∑

j aijGj(η), and the differential equations are cast in the following form:

q2g′′1 + (d+ 4)qg′1 + (q2 + ζ + d+ 2)g1 =
1

q2
+ dg2 ;

q2g′′2 + (d+ 4)qg′2 + (q2 + ζ + d)g2 =
1

q2
+ (d− 2)g1 + 4iqg3 ;

q2g′′3 + (d+ 4)qg′3 + (q2 + ζ + d)g3 = 4iqg2 ;

q2g′′4 + (d+ 4)qg′4 + (q2 + ζ + 2d)g4 = −2iqg5 ;

q2g′′5 + (d+ 4)qg′5 + (q2 + ζ + d)g5 = −2iqg4 ;

q2g′′6 + (d+ 4)qg′6 +
(
q2 + ζ + 2(d+ 1)

)
g6 =

1

q2
;

q2g′′7 + (d+ 4)qg′7 + (q2 + ζ + 2d)g7 = 0 .

(F.17)

Note that there are now four decoupled systems: {g1, g2, g3}, {g4, g5}, and the separate
equations for g6 and g7. For brevity, we will refrain from displaying the coefficients aij
here; these can be computed in Mathematica.

F.3.1. Details regarding solving for g1,2,3

We will now focus on the subsystem of equations in (F.17) for g1,2,3, since these con-
tribute to the function G00 in the leading-order expansion in µχ. This system is solved
by inserting the ansatz

gi,ν(q) = qν
∑
k≥0

ai,kq
n . (F.18)

Solving differential equations in this way is also known as the Frobenius method [440,
523–526]. Inserting the ansatz in the differential equations, and collecting powers of q
allows to read off the following coupled recursion relations for the coefficients ai,k:

0 = a1,k−2 +
(
(k + ν)2 + (d+ 3)(k + ν) + ζ + d+ 2

)
a1,k − da2,k ;

0 = a2,k−2 +
(
(k + ν)2 + (d+ 3)(k + ν) + ζ + d

)
a2,k − (d− 2)a1,k − 4ia3,k−1;

0 = a3,k−2 +
(
(k + ν)2 + (d+ 3)(k + ν) + ζ + d

)
a3,k − 4ia2,k−1 .

(F.19)

These equations can be decoupled by substituting one equation into the other. Eventu-
ally, this yields three equations that each depend on ai,k, ai,k−2, ai,k−4, ai,k−6. We solve
these equations using Mathematica’s RSolve method. The resulting power series can
be resummed in terms of generalized hypergeometric functions:

gi,ν(q) = qν
∑
j=1,2,3

ci,ν,j
∑
`=1,2,3

αi,j,`1F̃2

(
βi,j,`; γi,j,`, δi,j,`;−

q2

4

)
, (F.20)



where βi,j,` ∈ {1, 2}, while αi,j,`, γi,j,` and δi,j,` depend on ν and ζ. Their values can
be found in Mathematica. The coefficients ci,ν,j are free parameters, that remain to be
fixed.

The system of three second-order linear differential equations has a six-dimensional
solution space. We will consider only the inhomogeneous solution; adding a homoge-
neous solution will generically lead to non-analyticities. The inhomogeneous solution is
given by

g1(q) = g1,−2(q) , g2(q) = g2,−2(q) , g3(q) = g3,−3(q) + g3,−1(q) . (F.21)

At this stage, a remark on the parameter values ν ∈ {−3,−2}, ζ = 2 is in order. The
functions (F.20) are singular at these values. This is linked to the massless nature of the
graviton. The divergence is removed by carefully choosing part of the parameters ci,ν,j;
the other parameters are fixed by inserting the functions (F.21) into the differential
equation. For ζ 6= 2, the inhomogeneous solution to the differential equation is given by
g3 = g3,−1, while g1 and g2 in (F.21) remain unaltered. In this case, all of the coefficients
ci,ν,j can be found by inserting the gi into the differential equation.

Returning to the case ζ = 2, we have now found the solution to the differential
equation. These are given in terms of generalized hypergeometric functions, as well as
derivatives thereof with respect to their parameters.



APPENDIX G

Nonlinearly realized diffeomorphisms

In this section we derive the explicit computations of identities reported in the main
text. In the first part of this appendix, we perform a variation of the action under
infinitesimal diffeomorphisms and prove the related identities; in the second part, we
embed our model of dynamical diffeomorphisms in a broader context, comparing it with
the nonlinear sigma models (NLSM).

G.1. Variation under infinitesimal diffeomorphisms

In this subsection we prove the invariance of the action (12.10) under infinitesimal
diffeomorphisms.

(1) There are variations of g and variations of ϕ:

δξS =

∫
ddx
√
g

{
1

2
gµνδξgµνL −

∑
n

n
∂L
∂τn

(Bn−1)σµδξgµν∇νϕγgγδ(ϕ)∇σϕ
δ

+
∑
n

n
∂L
∂τn

(Bn−1)σµg
µλ∇λϕ

αδξgαβ(ϕ)∇σϕ
β

+
∑
n

n
∂L
∂τn

(
2∇νδξϕ

βgβα(ϕ)∇σϕ
α(Bn−1)σµg

µν

+ (Bn−1)σµg
µν∇νϕ

βδξϕ
α∂αgβγ(ϕ)∇σϕ

γ

)}
(G.1)
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δξS =

∫
ddx
√
g

{
− 2ξν∇µ

[
1

2
gµνL −

∑
n

n
∂L
∂τn

(Bn−1)σµ∇νϕγgγδ(ϕ)∇σϕ
δ

]

+ 2Dαξβ(ϕ)
∑
n

n
∂L
∂τn
∇σϕ

β(Bn−1)σµg
µλ∇λϕ

α

+ ξτ∇τϕ
α

[
−∇µ

(
2
∑
n

n
∂L
∂τn

(Bn−1)µρg
ρτ∇τϕ

βgβα(ϕ)

)

+
∑
n

n
∂L
∂τn

(Bn−1)µρg
ρτ∂τϕ

β∂αgβγ(ϕ)∂µϕ
γ

]

− ξα(ϕ)

[
−∇µ

(
2
∑
n

n
∂L
∂τn

(Bn−1)µρg
ρτ∇τϕ

βgβα(ϕ)

)

+
∑
n

n
∂L
∂τn

(Bn−1)µρg
ρτ∂τϕ

β∂αgβγ(ϕ)∂µϕ
γ

]}
.

(G.2)

The first, third and fourth lines are the same as one would have in an ordinary nonlinear
sigma model in curved space, where the target space metric is not affected by spacetime
diffeomorphisms. By explicitly taking the derivatives of the first line, one finds that
they cancel the third and the fourth line.

The second, fifth and sixth lines are novel. They are characterized by the fact that
the infinitesimal parameter ξ is evaluated at ϕ(x). The second line can be expanded as
follows:

2(∂αξβ(ϕ)− Γλαβ(ϕ)ξλ(ϕ))
∑
n

n
∂L
∂τn

(Bn−1)σλ∇λϕ
α∇σϕ

β .

As recalled earlier, ξλ(ϕ) is a scalar under diffeomorphisms, so by the chain rule its
covariant derivative is ∂λϕα∂αξβ(ϕ) = ∇λξβ(ϕ). Therefore the first term can be inte-
grated by parts and we obtain

− 2ξβ(ϕ)∇λ

(∑
n

n
∂L
∂τn

(Bn−1)σλ∇σϕ
β

)
− 2Γλαβ(ϕ)ξλ(ϕ)

∑
n

n
∂L
∂τn

(Bn−1)σλ∇λϕ
α∇σϕ

β

(G.3)
Next, in the fifth line we separate the covariant derivative acting on gαβ(ϕ) from the
rest, and we get

2ξβ(ϕ)∇µ

(∑
n

n
∂L
∂τn

(Bn−1)µτ∇τϕ
β

)
+ 2ξα(ϕ)

∑
n

n
∂L
∂τn

(Bn−1)µτ∇µϕ
γ∇τϕ

β∂γgαβ(ϕ)

(G.4)
The first term cancels the first term of (G.3). The second term combines with the sixth
line to reconstruct a Christoffel symbol, and the result cancels with the second term in
(G.3). In this way also these terms cancel out, and we have proven the invariance of
the action.



(2)We can now also see the differential identities that follows from Diff(M)-invariance.
To this end, we have to work a little more on the second line of (G.2). Namely, as in
the derivation of the EMT, we want to have the infinitesimal parameter ξ evaluated at x
rather than ϕ(x). This is dealt with by the method already used in Section 12.2 namely
changing coordinates from x to x′ = ϕ(x). Then the second line becomes∫

ddx
√
g′
∑
n

n

(
∂L
∂τn

)′
(B′n−1)αβ∇αξβ

= −
∫

ddx
√
g ξβ∇α

(√
g′
√
g

∑
n

n

(
∂L
∂τn

)′
(B′n−1)αβ

)
.

(G.5)

Note that ∇ is the connection obtained from the metric g, so ∇ρgµν = 0, but ∇ρg
′
µν is

not zero in general. We recognize that the content of the round bracket is the tensor
T µν(L) consisting of the last term in (12.31), whereas the round bracket in the first line of
(G.2), is just the tensor T µν(R) consisting of the first two terms of (12.31). On the other
hand, the expression in square brackets in the third and fourth lines, and in the fifth
and sixth lines is nothing but the EOM. Therefore (G.2) is just (12.39) written more
explicitly, and where we recognize the separate conservation of T µν(R) and T

µν
(L).

G.2. Models with different domain and target

In this section we discuss models of dynamical diffeomorphisms where, in contrast to the
models discussed in the main text, the domainMR and the target spaceML are viewed
as different manifolds, and consequently also their metrics are different. Of course since
the manifolds are diffeomorphic one can also view them as “the same manifold”, but this
presupposes a preferred identification, whereas here we will not assume one, at least
not to begin with.

The formalism lends itself to two rather different interpretations. In the “field theo-
retic” interpretation, MR is spacetime and ML is some internal space, endowed with
a fixed metric. In the “brane” interpretation, MR is the brane worldsheet andML is
spacetime.

G.2.1. Left and right diffeomorphisms

We denote Diff the space of diffeomorphisms ofMR toML. The diffeomorphisms of
MR and ML into themselves will be denoted Diff(MR) and Diff(ML) respectively
(see Figure G.1). They act in the usual way on tensors onMR andML respectively.



Figure G.1. Nonlinear sigma models: the domainMR and the target
spaceML are considered different manifolds. The diffeomorphism ϕ acts
from MR to ML, while the diffeomorphisms acting into themselves are
denoted as ψR and ψL, respectively.

The groups Diff(MR) and Diff(ML) act on Diff by right and left composition

ϕ 7→ ϕ′ = ϕ ◦ ψR ,

ϕ 7→ ϕ′ = ψ−1
L ◦ ϕ . (G.6)

Each of these actions is free and transitive. In particular, Diff(ML)×Diff(MR) acts
transitively on Diff , so we can transform any ϕ ∈ Diff to any other ϕ′. Now pick some
fixed ϕ̄ ∈ Diff . It defines an isomorphism ι : Diff(MR)→ Diff(ML) by

ι(ψR) = ϕ̄ ◦ ψR ◦ ϕ̄−1 . (G.7)

The stabilizer of ϕ̄ is the “diagonal” subgroup ∆Diff consisting of transformations
(ψL, ψR) ∈ Diff(MR)×Diff(ML) of the form

(ψL, ψR) = (ι(ψ), ψ) .

The diagonal subgroup acts on Diff as follows: for f ∈ Diff(MR),

f : ϕ 7→ ι(f−1) ◦ ϕ ◦ f = ϕ̄ ◦ f−1 ◦ ϕ̄−1 ◦ ϕ ◦ f (G.8)

and indeed under such action ϕ̄ is invariant

f : ϕ̄ 7→ ϕ̄ ◦ f−1 ◦ ϕ̄−1 ◦ ϕ̄ ◦ f = ϕ̄ .

We have shown that the configuration space Diff can be regarded as a homogeneous
space

(Diff(MR)×Diff(ML))/∆Diff . (G.9)



All this bears a striking similarity to chiral models of particle physics, but here the
groups are infinite dimensional.

G.2.2. Dynamics

Let us denote g and h the metrics in MR and ML, respectively. The actions we are
interested in have the form

S =

∫
MR

ddx
√
gL(σ1, σ2, σ3, σ4) , (G.10)

where σn = trBn and Bµ
ν is given by (12.7). The usual action for nonlinear sigma

models corresponds to L = −1
2
σ1 and one may keep this example in mind in the

following.

Remark. As long as the metrics g and h are kept fixed, the action has, generically,
no symmetries. In the field theoretic interpretation the target space metric h can be
interpreted as an infinite set of coupling constants. Symmetries of a theory correspond
to transformations that act on the dynamical variables leaving the couplings fixed,
so left diffeomorphisms are not symmetries, unless h has some isometries. The proper
interpretation of left (target space) diffeomorphisms is as field redefinitions. In the brane
interpretation, h represents the spacetime metric and its dynamics, in the quantum
theory, comes from the beta functions of the worldsheet quantum field theory. Once
again, left (spacetime) diffeomorphisms cannot be interpreted as symmetries. We shall
use the word “invariances” for transformations that leave the action invariant, from a
mere mathematical viewpoint, and irrespective of their physical interpretation.

With these cautionary remarks in mind, the action is separately invariant under
Diff(MR) and Diff(ML), as we shall now see. Under a right-diffeomorphism the
metric g is pulled back but the metric h is invariant. The pullback ϕ∗h transforms like
an ordinary tensor onMR:

ϕ′∗h′ = (ϕ ◦ ψR)∗h = ψ∗R(ϕ∗h) .

Since the integrand of the action is a scalar density onMR, the action is Diff(MR)-invariant.

On the other hand under a left-diffeomorphism h gets pulled back but g is invariant.
The pullback ϕ∗h is invariant, because:

ϕ′∗h′ = (ψ−1
L ◦ ϕ)∗(ψ∗Lh) = ϕ∗ ◦ ψ−1∗

L ◦ ψ∗Lh = ϕ∗h .

Since g is also invariant, the action is trivially Diff(ML)-invariant.

The equation of motion of these models has the form (12.22), except that B is given
by gµρ∂ρϕβhβα(ϕ)∂νϕ

α instead of (12.7), i.e., gαβ(ϕ) is replaced everywhere by hαβ(ϕ)



and the Christoffel symbol appearing in (12.5) is the Christoffel symbol of hαβ (whereas
∇µ in (12.6) is still constructed with the Christoffel symbols of gµν). The EMT defined
by (12.29) is equal to (12.31), but the last term is absent. It thus agrees with what we
called T µν(R). Separately, we define the tensor

Tαβ(L)(y) =
2√
h(y)

δS

δhαβ(y)
. (G.11)

In the next subsections we consider the infinitesimal versions of these transformations
and the differential identities that follow from the invariances of the action.

G.2.3. Consequences of right diffeomorphism invariance

A right diffeomorphism acts on points of MR by x 7→ x′ = ψ−1(x). The infinitesimal
version is

δxα = −ξα(x) .

The variation of any tensor T onMR is its Lie derivative δξT = LξT . For the metric

δξgµν = ξρ∂ρgµν + gµρ∂νξ
ρ + gρν∂µξ

ρ = ∇µξν +∇νξµ .

The infinitesimal variation of ϕ is

δξϕ
ρ(x) = ξλ∂λϕ

ρ (G.12)

and δξhαβ = 0. Now varying the pullback we have

δξ(ϕ
∗hµν) = δξ(∂µϕ

α∂νϕβhαβ(ϕ))

= ∂µδϕ
α∂νϕ

βhαβ(ϕ) + ∂µϕ
α∂νδϕ

βhαβ(ϕ) + ∂µϕ
α∂νϕ

β∂γhαβ(ϕ)δϕγ .

Inserting the above formulae for the variation and expanding, one arrives after a few
steps at

ξρ∂ρ(ϕ
∗h)µν + (ϕ∗h)µρ∂νξ

ρ + (ϕ∗h)ρν∂µξ
ρ = Lξ(ϕ∗h)µν . (G.13)

which just confirms that ϕ∗h transforms as a tensor.

As usual, from the diffeomorphism invariance one can obtain a differential identity.
The derivation follows the steps of the previous section, but with some terms now
absent. In the end one obtains

0 =

∫
d4x
√
g
[
ξτ∂τϕ

αEα − ξµ∇νT
µν
(R)

]
. (G.14)

In contrast to (12.39), since ∂τϕα is nondegenerate, the coefficient of the EOM is al-
ways nonzero and therefore we find that the EOM and EM conservation are completely
equivalent. This is a consequence of the action of the group being free and transitive.



G.2.4. Consequences of left diffeomorphism invariance

A left diffeomorphism acts on points of ML by x 7→ x′ = x and ϕ(x) 7→ ψ−1(ϕ(x)).
The infinitesimal versions are

δξx
µ = 0 , δξϕ

α(x) = −ξα(ϕ(x)) .

The variation of any tensor T on ML is its Lie derivative δξT = LξT , and tensors
onMR are invariant. For the metric inML

δξhαβ = ξρ∂ρhαβ + hαρ∂βξ
ρ + hρβ∂αξ

ρ = Dαξβ +Dβξα , (G.15)

where we used the notation (12.4). Now varying the pullback and using this formula
we have

δξ(ϕ
∗hµν) = δξ(∂µϕ

α∂νϕ
βhαβ(ϕ))

= ∂µδξϕ
α∂νϕ

βhαβ(ϕ) + ∂µϕ
α∂νδξϕ

βhαβ(ϕ)

+∂µϕ
α∂νϕ

βδξϕ
γ∂γhαβ(ϕ) + ∂µϕ

α∂νϕ
βδξhαβ(ϕ)

= 0 . (G.16)

As we have already seen at the level of finite transformations, both g and ϕ∗h are
invariant, and therefore the invariance of the action is trivial.

Since the metric g is unaffected by these transformations, no consequence can be
derived from Diff(ML)-invariance concerning the energy-momentum tensor T µν(R). Nev-
ertheless, we can obtain another differential identity involving the tensor (G.11).

Since in the action the metric h always appears evaluated at ϕ(x), it is convenient
to change integration variable from x to x′ = ϕ(x), and write

S =

∫
ddx′

√
g′(x′)L′(x′) .

Since L is a given function of the trace invariants L(x) = F (τ1(x), τ2(x), τ3(x), τ4(x)),
the transformed Lagrangian L′ will be the same function of the transformed invariants
L′(x′) = F (τ ′1(x′), τ ′2(x′), τ ′3(x′), τ ′4(x′)) and since τ ′n(x′) = τn(x), also L′(x′) = L(x).

For example, for the Lagrangian (12.11), we can write

L′(x′) = −1

2
(ϕ∗g

−1)αβ(x′)hαβ(x′)

and therefore
Tαβ(L)(y) = −f 2

√
g′√
h
g′αβ(y) ,



where we write g′αβ for the push-forward of the inverse metric, (ϕ∗g
−1)αβ(x′). In general

Tαβ(L)(y) = 2

√
g′√
h

4∑
n=1

n

(
∂L
∂τn

)′
(B′n−1)αβ(y) , (G.17)

Using the infinitesimal variation (G.15) and the invariance of the action under left
diffeomorphisms, one finds that

0 = δξS =

∫
ddx′

√
h(x′)

[
−ξα(x′)Eα(x′) + ξβ(x′)DαT

αβ
(L)(x

′)
]

(G.18)

and therefore, on shell
DαT

αβ
(L) = 0 . (G.19)

G.2.5. Relation to the models in the main text

Even though the manifoldsMR andML are, by assumption, diffeomorphic, there will
in general be no relation between the respective metrics. Consider the special case in
which there exists a diffeomorphism ϕ̄ such that:

ϕ̄∗h = g . (G.20)

If h and g have isometries, ϕ̄ will not be unique. We disregard this case here. We can
use ϕ̄ to define a preferred identification of MR and ML and, via equation (G.7), a
preferred identification of the respective diffeomorphism groups.

Since ϕ̄ is a diffeomorphism, without loss of generality we can choose atlases onML

andMR to be related by ϕ̄. This means that on any chart, if xα are the coordinates
of a point x and yα are the coordinates of ϕ̄(x), then

yα = xα . (G.21)

If we use ϕ̄ to identifyMR andML, we have only one manifoldM, ϕ̄ can be thought
of as the identity mapping of M to itself and the action (G.8) becomes conjugation.
Since ϕ̄ is now a fixed element of the theory, the original invariance under Diff(MR)×
Diff(ML) is broken to ∆Diff , acting by conjugation. In this way we recover the models
of the main text (see Figure G.2).



Figure G.2. The models in the main text have only one manifoldM.
Here ϕ̄ can be thought of as the identity mapping ofM to itself.





APPENDIX H

RG equations of the relational observables

H.1. Flow equations of the scalar-tensor theory

In the standard approach the EAA that contains all terms at first order in the derivative
expansion for a general scalar-tensor theory1 in Euclidean signature [527] is

Γk =

∫
ddx
√
g

[
ρk
8π
− ZNR +

1

2
Zkδµ̂ν̂∇µX̂

µ̂∇µX̂ ν̂

]
+ gauge fixing + ghosts , (H.1)

In view of the application of the essential scheme, here we parameterized ρk = Λ(k)/G(k)

and ZN = 1/(16πG(k)). Using the essential scheme we can choose the RG kernel in
order to impose the following renormalization conditions along the RG flow

ρk = ρGFP =
8π

d(4π)d/2

∫ ∞
0

dz z
d
2
−1 k∂kRk(z)

z +Rk(z)
, Zk = 1 . (H.2)

The first condition fixes the k-dependent vacuum energy to the value of the vacuum
energy in the pure gravity GFP, while the second one is the standard renormalization
condition for the wave function renormalization in order to canonically normalize the
kinetic term. To achieve this, the RG kernels are

Ψg
µν = γg gµν , Ψµ̂ = − η̂k

2
X̂ µ̂ , (H.3)

and in this way the EAA takes the following form

Γk =

∫
ddx
√
g

[
ρGFP

8π
− ZNR +

1

2
δµ̂ν̂∇µX̂

µ̂∇µX̂ ν̂

]
+ gauge fixing + ghosts . (H.4)

Using the previous RG kernels, on the RHS of (4.38) we get∫
ddx

(
δΓ

δX̂ µ̂
Ψµ̂(x) +

δΓ

δgµν(x)
Ψg(x)µν

)
=

=

∫
ddx
√
g

{
d ZNΛγg +

[
− η̂k

2
+
d− 2

4
γg

]
δµ̂ν̂∇µX̂

µ̂∇µX̂ ν̂ +
2− d

2
ZNγg R

}
.

(H.5)

In order to evaluate the LHS of (4.38), we use the background field method with linear
parameterization

gµν → gµν +
1√
ZN

hµν , X̂ µ̂ → X̂ µ̂ + δX̂ µ̂ , (H.6)

1For a recent analysis about scalar-tensor theories in Asymptotic Safety see [174].
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where both fluctuations around the background have the same dimensions. Because of
the presence of 1/

√
ZN in front of hµν , the ghost are expanded in following way

Ξµ → Z
−1/4
N ξµ , Ξ̄µ → Z

−1/4
N ξ̄µ , (H.7)

and we have

Ψh
µν = −1

2
(ηN − 2γg) hµν , Ψξµ = −ηN

4
ξµ , Ψξ̄

µ = −ηN
4
ξ̄µ . (H.8)

Using de Donder gauge, the Hessian evaluated at zero value of the fluctuations reads

1
√
g

δ2Γk
δhµνδhρσ

= Kµν,ρσ (−�− 2Λ) + Uµνρσ +
1

ZN
Sµνρσ , (H.9)

1
√
g

δ2Γk
δx̂µ̂δx̂ν̂

= −δµ̂ν̂� , (H.10)

1
√
g

δ2Γk
δx̂µ̂δhµν

= − 1√
ZN

Kµν,ρσ∇ρX̂µ̂∇σ , (H.11)

1
√
g

δ2Γk
δhµνδx̂µ̂

=
1√
ZN

Kµν,ρσ∇ρX̂µ̂∇σ −
1

2
√
ZN

(gµν�+ 2∇µ∇ν) X̂µ̂ , (H.12)

where

Uµν
ρσ = Kµν

ρσR +
1

2
gµνRρσ +

1

2
Rµνgρσ − δ(µ

(ρR
ν)
σ) −R

(µ
(ρ
ν)
σ) , (H.13)

Sµν,ρσ = δµ̂ν̂∇αX̂
µ̂∇βX̂

ν̂× (H.14)(
−1

2
Kµν,ρσgαβ + gα(µ 1ν)βρσ − 1

4
gµνgραgσβ − 1

4
gρσgµαgνβ

)
,

Kµν,ρσ =
1

4
(gµρgνσ + gµσgνρ − gµνgρσ) , (H.15)(

K−1
)µν,ρσ

= gµρgνσ + gµσgνρ − 2

d− 2
gµνgρσ . (H.16)

Since we have mixed terms in the Hessian, we can proceed in different ways that differs
by the renormalization scheme procedure.

H.1.1. First possibility

We are dealing with a Hessian of the form
1
√
g

(
Γ(2)
)AB

= −δABgµν∇µ∇ν − 2ΓABµ∇µ + EAB , (H.17)



where

Γσ =
1

2
√
ZN

Kµν,ρσ∇ρX̂µ̂

0 −1

1 0

 , (H.18)

E =

−2ΛKµν,ρσ + Uµνρσ + 1
ZN
Sµνρσ 0

0 0

 . (H.19)

Defining

DABσ ≡ δAB∇σ + ΓABσ , (H.20)

such that this derivative applied to the fluctuations gives

(Dh)αβ,µ ≡ ∇µhαβ + Γαβ,µ̂,µδx̂
µ̂ , (H.21)

(DDh)αβ,µν ≡ ∇µ∇νhαβ + Γαβ,µ̂,µΓµ̂,γδνhγδ +∇µ

(
Γαβ,µ̂,νδx̂

µ̂
)

+ Γαβ,µ̂,µ∇νδx̂
µ̂ ,

(H.22)

(Dδx̂)µ̂ µ ≡ ∇µδx̂
µ̂ + Γµ̂,αβµhαβ , (H.23)

(DDδx̂)µ̂ µν ≡ ∇µ∇νδx̂
µ̂ + Γµ̂αβ,µΓαβν̂,νδx̂

ν̂ +∇µ

(
Γµ̂,αβνhαβ

)
+ Γµ̂,αβµ∇νhαβ , (H.24)

we can express the previous operator in the form

OAB = −gµνDACµDCBν + ẼAB , (H.25)

ẼAB = EAB +∇µΓABµ + ΓACµΓC
Bµ , (H.26)

ΩAB
µν ≡

[
DACµ,DCBν

]
= ∇µΓABν −∇νΓ

AB
µ + ΓACµΓC

B
ν − ΓACνΓC

B
µ . (H.27)

Note that Ẽ and Ω have the following structures

Ẽ =

−2ΛKµν,ρσ + Uµνρσ + 1
ZN
Sµνρσ + (Γ2

11)
µνρσ ∇αΓν̂ρσ,α

∇αΓµνµ̂,α (Γ2
22)

µ̂ν̂

 (H.28)

Ωαβ =

Γµνµ̂αΓµ̂
ρσ
β − Γµνµ̂βΓµ̂

ρσ
α ∇αΓν̂ρσβ −∇βΓν̂ρσα

∇αΓµνµ̂β −∇βΓµνµ̂α Γµ̂µναΓµν
ν̂
β − Γµ̂µνβΓµν

ν̂
α

 (H.29)

where (
Γ2

11

)µν
αβ ≡ ΓACµΓCB

µ
∣∣∣
A=µν,B=αβ

= − 1

4ZN
Kµν,ρσKαβ

γ
σ∇ρX̂µ̂∇γX̂

µ̂ , (H.30)(
Γ2

22

)µ̂
ν̂ ≡ ΓACµΓCB

µ
∣∣∣
A=µ̂,B=ν̂

= − 1

4ZN
Kµν,ρσKµν

α
σ∇ρX̂

µ̂∇αX̂ν̂ . (H.31)



It is important to stress out that the mixed terms of Ωαβ are total derivatives.
We then insert the regulator in such a way that

−gµνDACµDCBν → Pk
AB ≡ −gµνDACµDCBν +Rk

AB .

Thus, the propagator has the following form

Gk =
1
√
g

Ggg 0

0 GXX

 , (H.32)

where

(Ggg)µνρσ =
(
K−1

)
µνρσ

1

Pk − 2Λ

− 1

Pk − 2Λ

[
K−1 ·

(
U +

1

ZN
S + Γ2

11

)
·K−1

]
µνρσ

1

Pk − 2Λ
, (H.33)

(GXX)µ̂ν̂ = δµ̂ν̂
1

Pk
− 1

Pk

(
Γ2

22

)
µ̂ν̂

1

Pk
, (H.34)

modulo four derivative terms, coming from squares of the curvature and derivatives of
X̂. The LHS of (4.38) is composed by three traces, which read the following

Thh =
1

2
Tr

[
1

Pk − 2Λ
(H.35)

− K−1

Pk − 2Λ

(
U +

1

ZN
S + Γ2

11

)
1

Pk − 2Λ

]
K−1 (k∂k − ηN + 2γg)Rhh

k ,

Txx =
1

2
Tr

[
1

Pk
− 1

Pk
Γ2

22

1

Pk

]
(k∂k − η̂k)Rxx

k , (H.36)

Tc̄c = −Tr

[
1

Pk
+Ricci

1

P 2
k

] (
k∂k −

ηN
2

)
Rc̄c
k , (H.37)

and the regulator is chosen in the following way2(
Rhh
k

)µν,αβ
=
√
g Kµν,αβRk , (Rxx

k )νµ =
√
g δ̂ν̂µ̂Rk , (Rc̄c

k )
ν
µ =
√
g δνµRk . (H.38)

2Note that the factor √g in the propagator and in the regulator cancels when they are multiplied.



Defining ηN = −k∂k lnZN , the traces for a generic regulatorRk and generic dimensions
are

Thh =
1

2(4π)d/2

∫
dd x
√
g

{
d(d+ 1)

2
Qd/2

[
(k∂k − ηN + 2γg)Rk

Pk − 2Λ

]
+
d(d+ 1)

12
RQd/2−1

[
(k∂k − ηN + 2γg)Rk

Pk − 2Λ

]
−
(
d(d− 1)

2
R− 1

ZN

(
(d+ 1)(d− 4)

4
+

d

16

)
∇µX̂µ̂∇µX̂ µ̂

)
×

× Qd/2

[
(k∂k − ηN + 2γg)Rk

(Pk − 2Λ)2

]}
, (H.39)

Txx =
1

2(4π)d/2

∫
dd x
√
g

{
NS Qd/2

[
(k∂k − η̂k)Rk

Pk

]
+
NS

6
RQd/2−1

[
(k∂k − η̂k)Rk

Pk

]

+
1

ZN

3d− 2

64
∇µX̂µ̂∇µX̂ µ̂Qd/2

[
(k∂k − η̂k)Rk

P 2
k

]}
, (H.40)

Tc̄c = − 1

(4π)d/2

∫
dd x
√
g

{
dQd/2

[(
k∂k − ηN

2

)
Rk

Pk

]
+
d

6
RQd/2−1

[(
k∂k − ηN

2

)
Rk

Pk

]

+RQd/2

[(
k∂k − ηN

2

)
Rk

P 2
k

]}
. (H.41)

Putting everything together, the flow equations are

(2k∂k + dγg)ZNΛ =
1

2(4π)d/2

{
d(d+ 1)

2
Qd/2

[
(k∂k − ηN + 2γg)Rk

Pk − 2Λ

]

+NS Qd/2

[
(k∂k − η̂k)Rk

Pk

]
− 2dQd/2

[(
k∂k − ηN

2

)
Rk

Pk

]}
, (H.42)

−
(
k∂k +

d− 2

2
γg

)
ZN =

1

2(4π)d/2

{
d(d+ 1)

12
Qd/2−1

[
(k∂k − ηN + 2γg)Rk

Pk − 2Λ

]
−d(d− 1)

2
Qd/2

[
(k∂k − ηN + 2γg)Rk

(Pk − 2Λ)2

]
+
NS

6
Qd/2−1

[
(k∂k − η̂k)Rk

Pk

]
−d

3
Qd/2−1

[(
k∂k − ηN

2

)
Rk

Pk

]
− 2Qd/2

[(
k∂k − ηN

2

)
Rk

P 2
k

]}
, (H.43)

− η̂k
2

+
d− 2

4
γg =

1

2(4π)d/2
1

ZN

{(
(d+ 1)(d− 4)

4
+

d

16

)
×

Qd/2

[
(k∂k − ηN + 2γg)Rk

(Pk − 2Λ)2

]
+

3d− 2

64
Qd/2

[
(k∂k − η̂k)Rk

P 2
k

]}
.(H.44)



H.1.2. Second possibility

We insert the regulator in such a way that −�→ Pk ≡ −�+Rk(−�), i.e., eq.(H.38),
and then we calculate the inverse regularized propagator at first order in the curvature
and second order in derivative of the scalars. The regularized Hessian takes the form

1
√
g

(
Γ

(2)
k +Rk

)
=

 Kµν
ρσ (Pk − 2Λ) + Uµν

ρσ + 1
ZN
Sµν

ρσ − 1√
ZN
Kµν

γδ∇γX̂µ̂∇δ

1√
ZN
Kρσγδ∇γX̂µ̂∇δ δ̂µ̂ν̂Pk


(H.45)

and its inverse is
√
g

[(
Γ

(2)
k +Rk

)−1

11

]
ρσ

αβ =
1

Pk − 2Λ

(
K−1

)
ρσ

αβ

− 1

(Pk − 2Λ)2

(
K−1

)
ρσ

γδ

(
U +

1

ZN
S

)
γδ

εη
(
K−1

)
εη
αβ

− 1

ZN

1

Pk (Pk − 2Λ)2

(
K−1

)
ρσ

γδKγδ
εη∇εX̂µ̂K

τφλω∇λX̂
µ̂
(
K−1

)
τφ

αβ∇η∇ω ,

√
g

[(
Γ

(2)
k +Rk

)−1

12

]
ρσµ̂

=
1√
ZN

1

Pk (Pk − 2Λ)
Kρσ

λω∇λX̂µ̂

(
K−1

)
ρσ

αβ∇ω ,

√
g

[(
Γ

(2)
k +Rk

)−1

21

]αβ
µ̂ = − 1√

ZN

1

Pk (Pk − 2Λ)
Kρσλω∇λX̂µ̂

(
K−1

)
ρσ

αβ∇ω ,

√
g

[(
Γ

(2)
k +Rk

)−1

22

]
µ̂ν̂

= δ̂µ̂ν̂
1

Pk
− 1

P 2
k (Pk − 2Λ)

Kαβ
εη∇εX̂µ̂K

τφλω∇λX̂ν̂

(
K−1

)
τφ

αβ∇η∇ω .

(H.46)
Then the traces read

Thh =
1

2(4π)d/2

∫
dd x
√
g

{
d(d+ 1)

2
Qd/2

[
(k∂k − ηN + 2γg)Rk

Pk − 2Λ

]
+
d(d+ 1)

12
RQd/2−1

[
(k∂k − ηN + 2γg)Rk

Pk − 2Λ

]
−
(
d(d− 1)

2
R− 1

ZN

(d+ 1)(d− 4)

4
∇µX̂µ̂∇µX̂ µ̂

)
Qd/2

[
(k∂k − ηN + 2γg)Rk

(Pk − 2Λ)2

]
+

1

ZN

(
d+ 1

2
− 1

d− 2

)
∇µX̂µ̂∇µX̂ µ̂Qd/2+1

[
(k∂k − ηN + 2γg)Rk

Pk (Pk − 2Λ)2

]}
, (H.47)

Txx =
1

2(4π)d/2

∫
dd x
√
g

{
NS Qd/2

[
(k∂k − η̂k)Rk

Pk

]
+
NS

6
RQd/2−1

[
(k∂k − η̂k)Rk

Pk

]
+

1

ZN

d

8
∇µX̂µ̂∇µX̂ µ̂Qd/2+1

[
(k∂k − η̂k)Rk

P 2
k (Pk − 2Λ)

]}
, (H.48)



Tc̄c = − 1

(4π)d/2

∫
dd x
√
g

{
dQd/2

[(
k∂k − ηN

2

)
Rk

Pk

]
+
d

6
RQd/2−1

[(
k∂k − ηN

2

)
Rk

Pk

]

+RQd/2

[(
k∂k − ηN

2

)
Rk

P 2
k

]}
. (H.49)

H.2. Hessian of the observable

In this section, we present the details of the calculation of the Hessian of the observable

Γrel
k =

∫
ddxẽ (A0 + aRR + a1 tr [M]) . (H.50)

The first and second variations read

δẽ = ẽ eµµ̂∂µδX̂
µ̂ , (H.51)

δ2ẽ = 2ẽ e
[µ
µ̂ e

ν]
ν̂ ∂µδX̂

µ̂∂νδX̂
ν̂ , (H.52)

δtrM = 2gµν δ̂µ̂ν̂∂µδX̂
µ̂∂νX̂

ν̂ + δgµν δ̂µ̂ν̂∂µX̂
µ̂∂νX̂

ν̂ , (H.53)

δ2trM = 2gµν δ̂µ̂ν̂∂µδX̂
µ̂∂νδX̂

ν̂ + 4δgµν δ̂µ̂ν̂∂µδX̂
µ̂∂νX̂

ν̂ + δ2gµν δ̂µ̂ν̂∂µX̂
µ̂∂νX̂

ν̂ . (H.54)

Since it holds

∇µẽ = ẽeαµ̂∇αe
µ̂
µ = −ẽeµ̂µ∇αe

α
µ̂ =⇒ ∇µ

(
ẽ eµµ̂
)

= 0 , (H.55)

then ∫
ddxδẽ =

∫
ddx∂µ

(
ẽ eµµ̂δX̂

µ̂
)
. (H.56)

Thus, the variation of the term coupled to A0 is identically zero: this is a consequence
of the fact that this term is a total derivative and so it behaves like a topological term.
Moreover, the following identities hold

δ

∫
ddxẽ S =

∫
ddxẽ

(
δS − eµµ̂δX̂

µ̂∂µS
)
, (H.57)

δ2

∫
ddxẽ S =

∫
ddxẽ

(
δ2S − 2eµµ̂δX̂

µ̂∂µδS + 2e
[µ
µ̂ e

ν]
ν̂ ∂µδX̂

µ̂∂νδX̂
ν̂ S
)
. (H.58)

Using the essential scheme on the LHS we have the following additional contribution3∫
ddx

δΓrel

δgµν
Ψg
µν +

δΓrel

δX̂ µ̂
Ψx
µ̂ =

∫
ddxẽ {−γg aRR− (γg + η̂k) a1 trM} . (H.59)

3Note that using eqs.(H.57) and (H.56) the variation of ẽ gives no contribution.



The Hessian of the term associated to a1 is

1

ZN
gραgσβ

δ2

δgµνδgαβ

∫
ddxẽ trM = 2ẽ δ

(µ
(ρ g

ν)αδβσ)δ̂µ̂ν̂∂αX̂
µ̂∂βX̂

ν̂ , (H.60)

δ2

δX̂ µ̂δX̂ ν̂

∫
ddxẽ trM = ẽ

{
−2δ̂µ̂ν̂�− 2gµν δ̂µ̂ν̂ e

α
ρ̂∇µ∇αX̂

ρ̂∇ν (H.61)

−4gµν δ̂ρ̂(µ̂e
α
ν̂)∂µX̂

ρ̂∇ν∇α − 4gµν δ̂ρ̂(µ̂e
α
ν̂)∇µ∇αX̂

ρ̂∇ν

}
,

1√
ZN

δ2

δX̂ µ̂δgµν

∫
ddxẽ trM = ẽ1µναβ

{
−2 δ̂µ̂ν̂∂αX̂

µ̂∇β (H.62)

−δ̂ν̂ρ̂eρµ̂∂αX̂
ν̂∂βX̂

ρ̂∇ρ − 2δ̂ν̂ρ̂e
ρ
µ̂∇α∇ρX̂

ν̂∂βX̂
ρ̂ + 2δ̂ν̂ρ̂e

ρ
µ̂∇α∇ρX̂

ν̂∂βX̂
ρ̂
}
,

1√
ZN

δ2

δgµνδX̂ µ̂

∫
ddxẽ trM = ẽ1µναβ

{
2 δ̂µ̂ν̂∂αX̂

µ̂∇β + 2 δ̂µ̂ν̂∇α∇βX̂
ν̂ (H.63)

+2 δ̂µ̂ν̂e
ρ
ρ̂∇α∇ρX̂

ρ̂∂βX̂
ν̂ + δ̂ν̂ρ̂e

ρ
µ̂∂αX̂

ν̂∂βX̂
ρ̂∇ρ + 2δ̂ν̂ρ̂e

ρ
µ̂∇α∇ρX̂

ν̂∂βX̂
ρ̂
}
.

The Hessian of the term associated to aR is

1

ZN
gραgσβ

δ2

δgµνδgαβ

∫
ddxẽR = ẽ

{
1

2
(1µνρσ + gµνgρσ)�

−2δ
(µ
(ρ g

ν)αδβσ)∇(α∇β) + δ
(µ
(ρ R

ν)
σ) +R(µ

(ρ
ν)
σ)

}
(H.64)

+ ẽeδµ̂

(
∇γ∇δX̂

µ̂
){
−3

2
1µνρσ∇γ −

1

2
gµνgρσ∇γ

}
+ ẽeδµ̂

{
3δ

(µ
(ρ g

ν)αδβσ)

(
∇δ∇(αX̂

µ̂
)
∇β)

}
−
(
1µναβgρσ + 1ρσ

αβgµν
) (
∇δ∇(αX̂

µ̂
)
∇β) ,

δ2

δX̂ µ̂δX̂ ν̂

∫
ddxẽR = 0 , (H.65)

1√
ZN

δ2

δX̂ µ̂δgµν

∫
ddxẽR = ẽ eρµ̂1

µναβ {∇α∇β − gαβ�−Rαβ}∇ρ , (H.66)

1√
ZN

δ2

δgµνδX̂ µ̂

∫
ddxẽR = −ẽ eρµ̂1

µναβ {∇ρ∇α∇β − gαβ∇ρ�−Rαβ∇ρ} . (H.67)

H.3. Calculations of the flow of the observables

In this section we report the calculations outsourced from Subsection 13.3.2. For the ac-
tion in eq.(H.1), in Subsection H.1.1 we define the new covariant derivative in eq.(H.20)
in order to have the propagator in the form given in (H.32). The same must be done
also in the Hessian of the observable. Therefore, we change the “free” derivatives acting
on the right with the new covariant derivative (H.20).



Using the following identities of the Heat kernel machinery [252] (see Appendix C)

H =
1

(4πs)2
(A0 + sA1) , (H.68)

Hµ =
1

(4πs)2
(DµA0 + sDµA1) , (H.69)

H(µν)(x, s) =
1

(4πs)2

(
− 1

2s
gµνA0 −

1

2
gµνA1 +D(µDν)A0

)
, (H.70)

where s represents the proper time and

A0 = 1 , DµA0 = 0 , D(µDν)A0 = 1
6
Rµν , . . . (H.71)

A1 = 1
6
R , DµA1 = −1

2
∇µE + 1

6
∇νΩ

ν
µ + 1

12
∇µR , . . . (H.72)

it is clear that all the terms in the Hessian of the observables with one derivative acting
on the right contribute to order ∂4 since they are proportional to the curvature or to
at least one derivative of the scalar fields. The terms with three derivatives contains as
well higher order terms.

Analyzing in a schematic way the core of the RHS of eq.(13.39), we have

Tr
[
Gk ·

(
Γ

rel(2)
k

)
· Gk · k∂kRk

]
=

= Tr

1

g

Ggg 0

0 GXX

 ·

(

Γ
rel(2)
k

)
gg

(
Γ

rel(2)
k

)
gX(

Γ
rel(2)
k

)
Xg

(
Γ

rel(2)
k

)
XX

 ·
Ggg · k∂kRhh

k 0

0 GXX · k∂kRxx
k




= Tr

1

g

 Ggg ·
(

Γ
rel(2)
k

)
gg
· Ggg · k∂kRhh

k Ggg ·
(

Γ
rel(2)
k

)
gX
· GXX · k∂kRxx

k

GXX ·
(

Γ
rel(2)
k

)
Xg
· Ggg · k∂kRhh

k GXX ·
(

Γ
rel(2)
k

)
XX
· GXX · k∂kRxx

k




= Tr

[
1
√
g
Ggg ·

(
Γ

rel(2)
k

)
gg
· Ggg · k∂k

(
Rhh
k√
g

)]
+ Tr

[
1
√
g
GXX ·

(
Γ

rel(2)
k

)
XX
· GXX · k∂k

(
Rxx
k√
g

)]
. (H.73)

We can see that defining the covariant derivative (H.20), it is possible to simplify
the analysis also for the flow of the observable since we don’t need the mixed terms of
the Hessian at second order in derivative.

In eq.(H.73) then the propagators must be expanded using eqs.(H.33) and (H.34)
keeping only terms at order ∂2.

Moreover, note that the first factor 1/
√
g simplifies with the factor √g coming from

the heat kernel coefficients, while the second factor 1/
√
g under the regulators cancels

using the eq.(H.38), which is needed to have the form (H.32) for the propagator. This



implies that in all the integrals we find only the factor ẽ in the measure, like the RHS
of (H.50).
At this point, we are ready to calculate the RHS of (13.39) using (H.73).

The contributions on the RHS proportional to a1 from graviton

−a1G

2π

(∫
ddxẽ 8 tr M

)
Q2

[
(k∂k − ηh)Rk

(Pk − 2Λ)2

]
. (H.74)

The contributions on the RHS proportional to a1 from scalar

− a1

16π2

(∫
ddxẽ 8

)
Q3

[
(k∂k − η̂k)Rk

P 2
k

]
− a1

16π2

(∫
ddxẽ

2

3
R

)
Q2

[
(k∂k − η̂k)Rk

P 2
k

]
(H.75)

− a1G

π

(∫
ddxẽ

5

8
tr M

)
Q3

[
(k∂k − η̂k)Rk

P 3
k

]
.

The contributions on the RHS proportional to aR from graviton

− aRG

π

(∫
ddxẽ 12

)
Q3

[
(k∂k − ηh)Rk

(Pk − 2Λ)2

]
(H.76)

− aRG

2π

(∫
ddxẽ

10

3
R

)
Q2

[
(k∂k − ηh)Rk

(Pk − 2Λ)2

]
(H.77)

+
aRG

π

∫
ddxẽ

(
12R− 3

8
16πG tr M

)
Q3

[
(k∂k − ηh)Rk

(Pk − 2Λ)3

]
.

The contributions on the RHS proportional to aR from the scalars are zero.
Therefore, putting all the contributions together

k∂kA0 = − a1

2π2
Q3

[
(k∂k − η̂k)Rk

P 2
k

]
− 12aRG

π
Q3

[
(k∂k − ηh)Rk

(Pk − 2Λ)2

]
, (H.78)

k∂kaR − γg aR = − a1

24π2
Q2

[
(k∂k − η̂k)Rk

P 2
k

]
− 5aRG

3π
Q2

[
(k∂k − ηh)Rk

(Pk − 2Λ)2

]
+

12aRG

π
Q3

[
(k∂k − ηh)Rk

(Pk − 2Λ)3

]
, (H.79)

k∂ka1 − (γg + η̂k) a1 = −4a1G

π
Q2

[
(k∂k − ηh)Rk

(Pk − 2Λ)2

]
− 5a1G

8π
Q3

[
(k∂k − η̂k)Rk

P 3
k

]
− 6aRG

2Q3

[
(k∂k − ηh)Rk

(Pk − 2Λ)3

]
. (H.80)
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