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Summary 

Non-equilibrium systems cover a tremendously wide range of different 
systems, in experiments and in simulations as well as in the real world. The 
fact that these systems are not in thermodynamic equilibrium is in many 
cases responsible for unique effects and behavior. A fundamental 
understanding of non-equilibrium systems is crucial to gain insights into such 
behavior and exploit it in a manifold of use cases. A recent growth in 
attention to non-equilibrium systems is a consequence. Especially deep 
insights into the nature of certain non-equilibrium systems can be gained 
through the study of phase behavior in these very systems. To do so, this 
thesis utilizes computer simulations of different systems: Discrete and 
continuous active matter systems on the one hand and skyrmion lattices on 
the other hand. 

The active matter systems being discussed in this work consist of active 
particles. These particles are not only subject to Brownian motion but they 
are in addition “actively” performing directed motion, which drives the 
systems out of equilibrium. Active lattice gas models are studied as a 
discrete realization of such particles with comparably low computational 
effort. At sufficiently high activity they undergo a motility induced phase 
separation (MIPS) that closely resembles the gas-liquid transition known 
from equilibrium. However, a determination of critical points and exponents 
for different model realizations performed in this work showed some model 
dependent deviations from 2D Ising universality class. This raises the 
question, whether the concept of universality holds for active matter and 
non-equilibrium systems at all. 

The critical behavior of active Brownian particles (ABPs) around MIPS has 
already been studied before and showed even stronger deviations. In this 
work additional focus is put on quenches of ABPs from homogeneous phase 
right into the phase separated regime and to the critical point. Following the 
quench, the systems far-from-steady-state dynamics, structure growth and 
aging can be studied. Results obtained in this work appear to be similar to 
those observed during phase separation in the 2D Ising model. However, for 
the active lattice models, there are deviations in the case of quenches inside 
the coexistence regions. 

Skyrmion lattices consist of densely packed skyrmions. These topologically 
stabilized whirls of magnetization can be described as quasiparticles. By 
modelling them as soft disks similar to ABPs, the underlying interaction 
potential of experimental skyrmions was determined with the help of 
computer simulations in this work. Furthermore, different experimental 
skyrmion lattices were characterized according to their phase state and 
degree of hexagonal order with the help of a newly developed parameter. 
Thereby the onset of a hexatic phase was found.  
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Introduction and overview 

In order to outline the common theme throughout this thesis, I will start with a 
brief overview about the non-equilibrium nature of the systems examined. 
This will be followed by a closer look on the properties and phenomena 
related to their phase behavior. By subsequently addressing each system 
and publication individually, I will provide more details about the 
commonalities and findings. My main contribution in all publications is 
focused on writing and performing simulations in addition to analyzing the 
data generated by them.  

This work is primarily based on the broad field of non-equilibrium systems 
and especially the phase behavior in these systems. Prominent examples of 
non-equilibrium systems are our atmosphere and the weather in it as well as 
all living creatures, including human bodies. Unlike equilibrium systems, non-
equilibrium systems are not in thermodynamic equilibrium. This is true for 
most of the real-world systems, since there are many drivers, that can bring 
a system out of equilibrium. Nevertheless, many of these real-world systems 
are still close enough to equilibrium to apply equilibrium concepts to 
describe them. But as soon as the systems are “far enough” out of 
equilibrium, new effects and significant deviations from equilibrium systems 
can be found. Therefore, it is important to keep in mind, that concepts 
derived from equilibrium assumptions do not necessarily hold in non-
equilibrium systems. Precise analysis and carefully drawn conclusions are 
essential to find the real underlying nature of the examined system. 

Even though the common classical theory of equilibrium systems (shaped by 
Clausius, Gibbs, Boltzmann, and others) exists in essential parts since more 
than hundred years (not considering quantum statistics), there is still no 
comparable theory of non-equilibrium systems. A development of such a 
theory is for sure a "Grand Challenge" of statistical physics to which the work 
performed within the framework of this thesis aims to add small contributions 
by looking into various non-equilibrium systems. 

The variety of possible systems and drivers to bring them out of equilibrium 
is immense. To account for that, three different approaches are presented in 
the publications [A1]-[A3]. In [A1] and [A2] active matter systems are the 
primary subject, where [A1] models active matter in the framework of lattice 
gas models and [A2] additionally examines continuous systems that consist 
of active particles. The particles in these continuous systems (and 
equivalently in the lattice gas systems) are not only subject to Brownian 
Motion as in the equilibrium case but are additionally actively propelled along 
a certain direction. This additional directed velocity component solely drives 
the systems out of equilibrium. In [A2] the systems are on top of that brought 
out of steady state with sudden quenches. These immediate changes of 
parameters for example quench the system from a mixed state to a phase 
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separated state, inducing a nucleation process which can be studied 
subsequently. Finally, [A3] covers systems of skyrmions – topologically 
stabilized whirls of magnetization that can be described as quasiparticles. 
One can easily argue that these magnetic whirls are intrinsic non-equilibrium 
systems as they are only stabilized due to their topological structure. They 
can be propelled by electric currents or quenched into different phases. In 
[A3], systems of skyrmions in a liquid phase are rapidly driven into a densely 
packed hexagonal structure (so called skyrmion lattices) by increasing their 
diameter and thus increasing the system’s density. The emerging structures 
and the underlying interaction potential are examined with the help of 
computer simulations.  

Figure 1  Examples of experimental systems under consideration in this work: (a) Suspension of 
synthetic photoactivated colloidal particles, that show active behavior when illuminated by blue light. 
The big picture shows living crystals assembled from a homogeneous distribution (inset) under 
illumination by blue light [7]. (From Jeremie Palacci et al., Living Crystals of Light-Activated Colloidal 
Surfers. Science 339, 936-940 (2013). DOI: 10.1126/science.1230020. Reprinted with permission from 
AAAS.). (b)  – a hexagonal order 
is visible [A3]. Except for the difference in overall density, the two examples (a) and (b) look very 
similar even though they are completely different systems.

In this work, the active matter systems are solely studied through simulations 
and the skyrmion lattices are studied through experiments as well as 
corresponding simulations. While the active matter systems show clear non-
equilibrium dynamics, this is less so for the skyrmion systems. In fact, it is 
shown that the examined skyrmion lattices can be described in a coarse-
grained way with the help of classical equilibrium physics. Besides these 
differences, all of the systems undergo phase transitions and are studied for 
the case of two spatial dimensions only. But there is more that makes the 
skyrmion lattices in [A3] methodically even more similar to the ABPs in [A2]: 
In skyrmion lattices the individual skyrmions can be modelled coarse-grained 
as soft disks. They follow two dimensional Brownian dynamics with an 
additional term (the Magnus force for skyrmions, similar to the active force 
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for ABPs) and exhibit a purely repulsive potential. Figure 1 shows 
experimental realizations of these two classes of systems with (a) showing an 
active matter system similar to active Brownian particles and (b) showing a 
skyrmion lattice that is also simulated in [A3]. Even though the underlying 
nature of these two systems is fundamentally different, the dominating soft 
disk character makes them visually and structurally similar. 

The goal of the research performed in the framework of this thesis is to 
better understand basic fundamentals in non-equilibrium systems. To do so, 
a strong focus is put on phase transitions and critical behavior of the 
examined systems. Determination of phases, phase transitions and in 
particular critical points, turns out to be very challenging in non-equilibrium 
systems for various reasons. A big part of the work performed therefore 
includes development and evaluation of new methods to tackle the many 
challenges occurring in the measurement of quantities in the considered 
non-equilibrium systems. 

Knowledge about phase transitions and critical behavior in a given system 
does not only significantly broaden the understanding of the system. It is also 
crucial for many applications and some of the most important properties of 
the system. Besides the obvious applications, there are also lesser-known 
ones: Systems in the state of critical behavior, like supercritical fluids, are a 
very versatile tool for processing materials [8]. An everyday example is the 
extraction of caffeine with supercritical carbon dioxide to produce 
decaffeinated beverages and pharmaceuticals [9]. 

Active matter and skyrmions both promise unique behavior and new 
applications. It is well worth the effort to better understand them. Active 
particles for example are interesting for effective drug delivery [10] or self-
assembly of materials and technical systems [11]. Even contraceptive use 
cases come to mind as sperm cells are actually self-propelled active 
particles [12], [13]. Skyrmions are potentially useful for computer memory 
and logic devices [14]. Even though it is easy to move them with external 
electric currents or fields [15], their movement does not move any matter or 
induce any direct currents, as skyrmions are only quasiparticles. This is an 
advantage compared to classical computational devices that rely on moving 
electrons and thus inducing currents and heat – the reason why CPUs need 
to be cooled. 

Phase transitions and critical phenomena 

Phases are well known from everyday life, as everyone is familiar with the 
solid, liquid and gas phase of water and the transitions between them 
(melting / freezing, boiling / condensation and sublimation / deposition). The 
critical point as well as the triple point of water are also quite prominent 
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examples, that can of course not only be found in water. At the critical point, 
the differences between liquid and gas phase vanish and water becomes a 
supercritical fluid. At the triple point in contrast, all three phases coexist. 

Not only water, but a countless number of systems do feature different 
phases, phase transitions and critical points as well as triple points. Which 
current phase they are in depends on thermodynamic variables, such as for 
example temperature, pressure and density. By changing the relevant 
variables, a system can be brought from one phase to another undergoing a 
phase transition. These phase transitions can typically be categorized in 
phase transitions of first order and phase transitions of second order. While 
[A1] and [A2] deal with second order phase transitions, [A3] deals mainly 
with first order phase transitions. 

According to Ehrenfest’s classification, phase transitions of first order are 
called discontinuous because they are marked by certain discontinuities in 
the first partial derivative of thermodynamic potentials. Examples are the 
solid / liquid or the liquid / gas transition of water, the volume leap between 
liquid and gas phase is a corresponding discontinuity. Phase transitions of 
second order are in contrast called continuous as there is no discontinuity in 
the first derivative, but in the second. In a more modern classification first 
order transitions are simply called discontinuous and related to the latent 
heat involved in the phase transition while second order transitions are called 
continuous with no latent heat involved [16], [17]. 

Second order phase transitions can be characterized by an order parameter 
which becomes zero at the phase transition. They show a highly interesting 
set of critical phenomena like a divergence in correlation length at the phase 
transition, finite size effects in (small) simulation geometries, universality and 
critical slowing down. The critical point is such a second order phase 
transition. It can not only be found in water but in all systems that have liquid 
and gas phases as well as similar systems like the Ising model and the active 
matter models discussed in this work. 

Observable Critical exponent Scaling 2D Ising value 
Heat capacity   | |  0 

Order parameter   | |  0.125 
Susceptibility   | |  1.75 

Correlation length   | |  1 
Order parameter 

correlation 
 (0) ( )

 
0.25 

Table 1  Overview of some critical exponents, their scaling relation and 2D Ising value [16]–[21]. The 
distance to the critical point is given by  (reduced temperature). For the order parameter correlation, 
 indicates the spatial distance and  the dimensionality of the system. 
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Because the correlation length is diverging at the critical point, it becomes 
much larger than the effective particle interaction range. The whole system 
becomes rather dominated by critical fluctuations than by the specific 
particle interaction. This remarkable process leads to universality: A wide 
range of systems with rather different forms of particle interactions behave 
the same way at their respective critical point [16], [17]. They can be 
categorized according to their universality class, which allows a deeper 
understanding of them. To determine which universality class a given system 
belongs to, one has to determine its critical exponents. Typical critical 
exponents are given in table 1. The scaling is valid in the vicinity of the 
critical point. Furthermore, the critical exponents are not independent, but 
obey scaling relations. A particularly important one is the hyperscaling 
relation [22]–[24]: +  2 = 2  

For the 2D Ising system, the exact values of the critical exponents have been 
derived analytically while for many other systems one has to resort to 
approximations and / or simulations (e.g., 3d Ising) [16]–[20]. A well-
established procedure to measure the critical exponents in simulations and 
thereby determine the universality class is described and applied in [A1] and 
similarly in [B1].  

In contrast, a somewhat different approach is presented in [A2]. By 
instantaneously quenching active matter systems to the critical point on the 
one hand and deep inside the phase separated region on the other hand, 
more insight towards dynamical behavior is gained and conclusions about 
universal behavior and the comparison to 2D Ising can be drawn. 

Another particularly interesting phase behavior can be found in two-
dimensional continuous particle systems. Depending on the density, there is 
a disordered liquid phase and a densely packed solid phase. But in addition, 
there can be a hexatic phase in between the two phases. The solid phase is 
characterized by long-range orientational and quasi long-range positional 
order, while both are short ranged in the liquid phase. The intermediate 
hexatic phase is characterized by short-range positional and quasi long-
range orientational order. Systems of soft disks with a repulsive power-law 
potential show a first-order liquid-hexatic and a continuous hexatic-solid 
transition. Depending on the exponent of the power-law potential, the liquid-
hexatic transition becomes continuous and of the Kosterlitz-Thouless-
Halperin-Nelson-Young (KTHNY) type [25]–[28]. There has been a long-
standing controversy on the nature of these transitions in two dimensional 
systems with alternative theories suggesting a conventional first-order liquid-
solid transition in the absence of a hexatic phase [29], [30]. The controversy 
has been resolved only recently by establishing that the fundamental hard-
disk model has indeed a first-order liquid-hexatic transition and in contrast a 
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continuous hexatic-solid transition [28]. This remarkable phase behavior is 
studied closer for systems of two-dimensional skyrmion lattices in [A3], that 
can be modelled as soft disks. For obvious reasons the experimental 
realization of ideal two-dimensional systems is of great interest here, but also 
challenging. Skyrmions are a promising approach battling this challenge as 
they can be stabilized with thicknesses down to sub-nm and diameters in the 
range of micrometers, bringing them very close to a perfect two-dimensional 
system [A3].  

Active matter and motility-induced phase separation 
(MIPS) 

Active matter consists of self-propelled particles, which means that each 
particle is actively propelled along a certain direction. This direction is a 
specific property of each particle and therefore also called orientation. The 
orientation of each particle is furthermore subject to rotational diffusion. 
Dependent on the strength of the rotational diffusion, the particle’s 
orientation changes over time: The stronger the rotational diffusion, the 
faster the changes in the orientation and vice versa. The velocity component 
with which each particle is propelled along its orientation is called active 
velocity. The higher the active velocity, the faster the particle’s movement 
along its direction and vice versa. One can easily imagine, that with regard to 
the persistence of the particle’s directed motion, active velocity and 
rotational diffusion are both relevant drivers. The combination of the two of 
them determines the actual magnitude of activity present in the active matter 
system. Low rotational diffusion and high active velocity account for highly 
directed motion and thus high activity. With more rotational diffusion or lower 
active velocity, the particle’s path gets less directed. Infinite rotational 
diffusion or zero active velocity brings the system back to plain Brownian 
motion with no activity. 

Besides simulations that are the subject of this thesis, there is a manifold of 
real-world active matter systems [21]: On the one hand, there are many 
biological systems that show active behavior, like bacteria [31], [32], 
biopolymer networks [33]–[35], sperm cells [12], [13], or even flocks of birds 
and sholes of fish [36], [37]. On the other hand, there are many experimental 
realizations of active particles [38]: By only partially coating particles with a 
coating material that interacts with the surrounding environment, a symmetry 
breaking propulsion can be achieved. This can be, for example [21], due to 
catalytic reactions [39]–[41], self-thermophoresis [42], certain flows [43]–[45], 
artificial flagella [46], or the local demixing in a supercritical fluid [47]–[49]. 
So-called Janus particles can be a concrete realization of the last-mentioned. 
They are particularly close to the ABPs discussed in [A2]. Janus particles 
consist of two different hemispheres, e.g., a silica particle that is coated by 
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gold or carbon on one hemisphere. When placing them in a water-lutidine 
mixture at a temperature just slightly below the mixture’s critical temperature 
of 307K, they are solely subject to Brownian motion. But if they are 
illuminated by a laser, the coated hemisphere will pick up more heat than the 
other, causing the surrounding solvent to demix around the coated 
hemisphere and thus causing a directed propulsion [49]. The system then 
becomes active. 

The activity itself is not a direct particle-particle interaction but rather a 
property of each of the particles in the system. It’s beneficial to use very 
minimal forms of particle-particle interactions in order to best examine the 
effects of activity. The active matter systems studied in [A1] and [A2] are only 
subject to a simple repulsive particle interaction, there is no attraction 
between the particles. A phase transition to a solid or hexatic state can of 
course be achieved in purely repulsive particle systems by simply increasing 
density to very high packing fractions. This is done in [A3]. However, purely 
repulsive active matter systems exhibit phase transitions at much lower 
densities and that is what makes them so special [48]. 

 

 

 
Figure 2  Schematic sketch of active particles blocking each other. From left to right: Two particles 
with opposite direction of active motion block each other. While the particles are reorienting, a third 
particle arrives and blocks the other two and vice versa. More particles join the emerging cluster and 
thus the inner particle is blocked, no matter how it is oriented. 

 

If the rotational diffusion of the particles’ orientations is low enough in 
relation to the active velocity, particles can block each other. Particles that 
initially block each other form a nucleation cluster. This happens by chance if 
particles collide with opposed orientations and hence opposed directed 
motions. Due to the rotational diffusion, the particles at the edge of such a 
cluster might turn away from it and the cluster would dissolve. For a low 
enough rotational diffusion this takes so much time, that in the meantime 
other particles collide with the cluster and join it. The newly joined particles 
subsequently block the inner particles from leaving the cluster (see figure 2). 
The cluster grows and phase separation occurs. The active velocity on the 
one hand moves the particles together, forming and stabilizing clusters. On 
the other hand, it is also the driver for a more directed motion of particles in 
the dilute phase, allowing them to reach emerging clusters faster than with 
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plain Brownian motion only. This kind of phase separation in active matter is 
called motility-induced phase separation (MIPS). 

The phase behavior of MIPS is surprisingly similar to the gas liquid phase 
behavior in equilibrium systems. Not only is MIPS in contrast a non-
equilibrium phenomenon, but the underlying mechanism causing the phase 
separation is also very different. Nevertheless, MIPS shows a similar binodal 
curve of coexisting densities terminated by a critical point. Therefore, it is of 
fundamental interest whether or not the phase behavior around such a non-
equilibrium critical point is universal, and whether it can be attributed to one 
of the standard universality classes. These questions have also stirred up an 
ongoing controversy [4], [50]–[52]. While we found critical exponents for two-
dimensional ABPs [B1] that are incompatible with any of the known 
universality classes, other numerical studies of related but different models 
have come to other conclusions, supporting Ising universality in two 
dimensions for off-lattice active Ornstein-Uhlenbeck particles [50] and a 
lattice variant of ABPs [52] (as well as for ABPs in three dimensions [53], 
[54]). These discrepancies and deviations from ideal Ising behavior could 
potentially be explained by recent new renormalization group studies of 
active models [51], [55]. They find additional fixed points to the Wilson-Fisher 
fixed point, which is connected to the Ising universality. The range in which 
the Wilson-Fisher fixed point determines the phase behavior can be limited 
by these additional points. 

Therefore, the question arises, whether active matter’s MIPS falls into a 
given universality class at all, or whether there are some model-dependent 
deviations from universality. The work in [A1] and [A2] shines more light one 
this question and highlights some of the model-dependent deviations from 
two dimensional Ising universality class. 

A common approach to determine the critical point in equilibrium systems is 
to run simulations in a grand canonical ensemble (variable particle number / 
density) and measure density fluctuations throughout the simulation. In order 
to account for finite system size and diverging correlation length at the 
critical point, Binder’s cumulant ratio is utilized [56], [57]: ( ) =  

Where  is the order parameter and  the distance to the critical point. At 
the critical point  becomes independent of the system size , therefore the 
critical point can be determined as the cumulant’s crossing for differently 
sized systems. 

Nevertheless, in active matter systems it is unfortunately very challenging to 
accurately determine the critical point and the corresponding critical 
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exponents, that characterize a universality class. This is mainly due to two 
reasons:  

First of all, there is up to now no suitable definition of chemical potential in 
any of these systems. Simulations can’t be run in a grand canonical 
ensemble like equilibrium systems, they have to be run with fixed particle 
number and density. As a consequence, there are at any time coexisting 
phases of different densities within one simulation setup that is run within the 
phase separated regime. Still the order parameter of these systems is 
density, so there is a need to measure the differences in densities for the two 
phases around the critical point. An established method to do so is the so 
called subbox method, that divides the simulation box into smaller subboxes 
[58]–[60]. Since the particles can move freely within the simulation box, the 
particle numbers of the individual subboxes are not fixed and local density 
differences can be sampled. This method turned out to not work very well for 
active matter and doesn’t work at all for lattice systems in two dimensions. 
This is due to interfaces between the different phase regions within the 
simulation box that obstruct a proper density distribution sampling. 

 

 
Figure 3  Schematic illustration of improved subbox method in a 1:3 geometry with two subboxes 
above each other in each of the two phase regimes. 

 

Fortunately, I was able to develop an improved subbox method in the course 
of my diploma thesis: By using elongated simulation boxes, the two phases 
separate rather clearly because of the application of periodic boundary 
conditions along the short side of the box in a slab-like geometry. This allows 
us to determine the areas occupied by dense and dilute phases via the 
center of mass, so that the subboxes can be placed to avoid obstructing 
interfaces (see figure 3). More computational effort is the downside of that 
improvement. Still this method yielded good results in [A1] and [B1] as well 
as in other publications where it was adapted by other groups [50], [52], [61], 
[62]. 

The second reason is closely related to that downside: Only a small part of 
the simulation box can actually be used for measurements and thus 
generation of statistics. This alone means a three times higher computational 
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effort compared to a grand canonical simulation. But on top of that, the 
stability of the slab geometry and the interfaces is rather low for active 
matter. This does not come as a surprise as there are no attractive particle 
interactions. The slab might break and re-emerge in the course of the 
simulation which leads to severe deterioration in the quality of the statistical 
data. Consequently, an even higher amount of data has to be generated, 
resulting in way more computational effort. Last but not least, the instabilities 
grow with the size of the simulation box and limit the possible accuracy of 
measurements that way further. 

MIPS and all the fundamentals of active matter described in this chapter do 
of course not only apply for simulations but also for experimental setups. 
There are various experimental realizations of active matter systems that all 
show the outlined genuine behavior. One of the benefits of simulations is 
however, that high densities and activities can be reached and studied easily. 
This is still difficult and limited in experimental setups. Especially the highly 
interesting region around the critical point can be accessed by simulations 
but less so by experiments as of today. 

Active lattice systems 

Discrete lattice systems are fairly simple systems that are lightweight in 
implementation and simulation. Nevertheless, they contain most, if not all the 
relevant properties found in equivalent continuous systems. Within the 
framework of this work simulations of MIPS around the critical point in 
continuous systems remained highly demanding. An immense amount of 
simulation data is required to gain reliable statistics and precise results. 
Therefore, active lattice systems turned out to be the more practicable 
approach to accessing static critical order parameters of MIPS. 

While the simulations of continuous systems in [A2] and [A3] are run as 
Brownian dynamics (BD) simulations, the discrete lattice simulations in [A1] 
are run as Monte Carlo (MC) simulations. One of the most basic and 
common models to realize active matter in continuous simulations is that of 
active Brownian particles. They are the subject of the next chapter and [A2].  

For the implementation of active matter in discrete lattice geometries, there 
is no such agreed upon model. Two possible implementations have been 
proposed recently and I will according to [A1] and [A2] refer to them as 
Model I [52] and Model II [63]. They differ a bit in the implementation of the 
rotational diffusion and in the lattice geometry (see figure 4). Model I was 
proposed on a hexagonal lattice (hex.) and Model II on a square lattice (sq.). 
To check for the effect of the underlying lattice geometry, I additionally 
implemented Model I on a square lattice. In total I programmed simulations 
for three different lattice models and used these in [A1] and [A2]. Beyond 
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this, I also varied the parameters and the actual implementation of these 
models in different aspects to examine the influence on the phase behavior. 
There seems to be an effect even on the critical behavior, but much more 
data is needed to make clear statements. This is why I had to focus on the 
three different models presented in [A1] in the end. For efficiency all lattice 
simulations were written in C. 

 

 
Figure 4  Schematic illustration of rotational diffusion in Model I (a) and Model II (c) as well as 
translational movement in Model I (b) and Model II (d). More details about the models and their 
implementation can be found in [A1]. 

 

In the two models, each lattice space can be occupied only by one particle at 
a time. This implements a hard disk like repulsion. Apart from that, there is 
no other interaction. Each particle has a discrete direction, which points to 
one of the possible four or six neighboring lattice spaces. This direction gets 
changed at random with a certain probability. The probability for direction 
changes thus determines the amount of rotational diffusion. A particle can 
only move to one of the neighboring lattice spaces at a time (in one MC 
step). An attempted move is always accepted if the destination lattice site is 
empty and rejected otherwise. The direction in which a move is attempted is 
set at random by a certain probability scheme: Movements in the particle’s 
direction have a higher probability than a movement (“diffusion”) in any other 
direction. The probability for moves in the particle’s direction hence sets the 
amount of active propulsion in the system. Rotation and translation are serial 
in Model I and concurrent in Model II. More details about the models and 
their implementation can be found in [A1] and also in [A2]. 

Determining the critical points and the corresponding critical exponents ,  
and  for all three models is the core analysis performed in [A1]. For this I ran 
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several simulations in elongated simulation boxes of different sizes around 
multiple activities around the critical point of each model. Each data point is 
backed by a cumulated CPU runtime of about half a year. I analyzed the data 
from the elongated simulation boxes with the improved subbox method 
discussed above. This enabled me to determine the critical points via the 
crossing of the Binder cumulant for different system sizes. Subsequently, I 
extracted the critical exponent  from the slope of the Binder cumulant 
around the critical point,  from the density differences of dense and dilute 
phase in the vicinity of the critical point and finally  from the susceptibility 
(fluctuations of the order parameter) around the critical point. The analysis is 
analogous to that performed in [B1]. More details are provided in [A1]. 

 

Model  /  1/  / + 2 /  
2D Ising 0.125 1.75 1 2 

2D Ising (sim.) 0.113(1) 1.751(2) 0.97(3) 1.97 
ABPs [B1] 0.45 1.47 0.67 2.07 

Model I (hex.) 0.1567(3) 1.678(2) 1.03(2) 2.00 
Model I (sq.) 0.1528(1) 1.695(3) 1.023(8) 2.00 
Model II (sq.) 0.2208(1) 1.649(1) 1.021(7) 2.10 

Table 2  Summary of obtained critical exponents for various simulated systems. 

 

The results obtained are summarized above in table 2. The first three 
columns show the numerical results for the critical exponents for the 
different models and for comparison the 2D Ising model (exact results from 
theory and simulation results applying the same methodology as for active 
systems). The active lattice models show a systematic deviation from 2D 
Ising universality class that becomes even clearer in comparison to the 
results from 2D Ising simulations, as the applied methods appear to 
systematically underestimate . Even more interestingly, the magnitude of 
these deviations varies between the different models. One might argue, that 
the deviations are due to limitations of the methods utilized for analysis. 
However, the combined result of all acquired order parameters 
(approximately) fulfill hyperscaling [22]–[24] for each model, as shown in the 
last column ( / + 2 / = 2). This rather indicates, that there is some 
systematic deviation inherent to the models. This deviation is even stronger 
for ABPs, as argued in [B1]. A closer discussion about possible causes will 
be given in the conclusion chapter. 

Active Brownian particles (ABPs) 

Active Brownian particles (ABPs) are widely used in continuous simulations 
of active matter [64]–[71]. As their name suggest, they are an “extension” of 
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Brownian particles towards non-equilibrium active matter. The equations of 
motion are given by an overdamped Langevin equation [B1], [A2]: 

r = + cossin + 2  

The first term describes the particle-particle interaction, with the potential  
arising from a purely repulsive Weeks-Chandler-Andersen (WCA) potential 
between the ABPs. This potential is in essence a short-ranged, purely 
repulsive and therefore shifted Lennard-Jones potential with a cut-off 
distance of = 2 / . Analogously the potential’s steepness is given by the 
parameter  and the diameter of the ABPs is set to = 1. The translational 
diffusion constant is also set to = 1, the Boltzmann constant is denoted as 

 and the temperature as . In the second term, the active velocity  propels each particle with constant speed along its orientation which is 
described by the angle . Thus, this term adds the activity to the equations 
of motion. Finally, the last term models Brownian motion as Gaussian noise 
with  being normal distributed Gaussian noise. 

Furthermore, the particles’ orientations described by  are not constant but 
undergo free rotational diffusion with diffusion coefficient  as given by:  =  2 R  

More details about the precise implementation of ABPs utilized in this work 
can be found in [B1] and [A2]. While in [B1] inhouse code is used, [A2] uses 
the particle simulation toolkit HOOMD-blue [72] for simulating ABPs. 

An analysis to determine the critical exponents analogous to the one 
performed on the active lattice systems in [A1] has previously already been 
done for ABPs in [B1]. Despite a tremendous amount of CPU time utilized for 
[B1], the statistical accuracy is limited and way behind the accuracy reached 
for the active lattice systems in [A1]. Determining the critical exponents for 
ABPs with higher accuracy would greatly help shining more light on the 
somewhat model dependent results for the critical exponents found in [A1] 
as this would allow to test and compare variations of the ABPs’ 
implementation parameters. Throughout the course of this thesis, I therefore 
tried to improve accuracy for ABPs in numerous time-intensive attempts. 
Even though, none of them yielded significant enhancement, I want to shortly 
summarize these attempts and the rationale behind them:  

First, we tried to improve statistics. Shifting from inhouse code (MPI 
accelerated) to HOOMD-blue (GPU accelerated) improved simulation speed 
and accordingly statistics. This benefit turned out to be limited by a 
comparably smaller number of available GPUs and the fact, that only very big 
simulation boxes of more than 100.000 particles can be run efficiently on 
GPUs. Simply simulating more particles in one system (bigger simulation 
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boxes) is no straight forward solution since this leads to less stable slabs, as 
discussed before. Hence, subsequent efforts followed which focused on 
improving slab stability and measuring methods. 

Tests with other simulation geometries than 1:3, such as more elongated 
ones (like 1:4) or less elongated ones (like 1:2), did not provide a big 
improvement potential as opposed effects come to play: For more elongated 
geometries (with constant density) the relative interface area of a single slab 
becomes smaller and the interfaces are shifted away from the subboxes 
within the slab as the slab becomes broader. But on the other hand, the 
broader single slab then tends to break into several smaller slabs that 
distribute all over the simulation box, making any subbox measurement 
useless. For less elongated geometries the single slab is less prone to break 
apart, but then the interfaces are shifted closer to the subboxes within the 
slab as the slab becomes narrower. Since the interfaces are not straight but 
fluctuate a lot, the narrower slab increases the probability of interfaces 
crossing the subboxes and hence deteriorating the quality of the measured 
data. All in all, the 1:3 geometry already seems to be a good compromise 
between these effects. 

Improving the data quality by shifting the interfaces away from the subboxes 
can also be achieved by using smaller but more subboxes within the given 
simulation box. In particular, I tested geometries with three and six instead of 
two subboxes above each other. However, the smaller subboxes are more 
affected by finite size effects that limit accuracy. To reach decent subbox 
sizes, the overall simulation box needs to be larger in this case. But then the 
vicious circle begins, considering that larger simulation boxes lead to less 
stable slabs. Obviously, there is an inherent limitation with this method that 
compromised all my attempts to improve accuracy. 

Nevertheless, I also tried improving the placement of the subboxes to 
account for slab instabilities occurring for bigger system sizes. Usually only 
one overall center of mass for the whole simulation box is calculated and all 
the subboxes probing the dense phase are placed in that center of mass. 
This works fine, if the slab is perfectly parallel to the short side of the 
simulation box. But with increasing system size the slab is more likely to be 
crooked or show other deformations. I accounted for that by placing each 
subbox individually according to the center of mass of the respective 
horizontal slice it is placed in. For this the simulation box is sliced along the 
elongated side into as many equal stripes as there are subboxes to be 
placed above each other. Then each subbox gets placed according to the 
respective center of mass of the individual stripe and not according to the 
center of mass of the whole system (i.e. all the stripes combined). While this 
modification appeared promising at first, the overall data quality did not 
improve significantly. In conclusion, significant improvement likely requires 
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more fundamental changes to the methodology. I will discuss some basic 
ideas later on in the conclusions. 

A similar direction I looked into, is if and how changes in the simulation 
parameters of ABPs can improve the data quality by making interfaces more 
stable throughout the simulation. The activity can for instance be controlled 
via the rotational diffusion or the active velocity. While one parameter is 
tuned, the other one stays constant. The value at which the constant 
parameter is fixed, can of course be chosen freely. In [B1] and [A2] for 
example, the rotational diffusion is fixed at = 3/ 2,4486 with an 
effective hard disk Barker Henderson diameter = 1,10688 [73] for a 
WCA potential with = 100. I tested higher and lower values for fixing the 
rotational diffusion. Furthermore, I tested fixing the active velocity at several 
values and tuning the rotational diffusion instead. And I also tested other 
values for the WCA parameter , hence changing the repulsive potential’s 
steepness. This makes the ABPs exhibit a more soft-disk (lower ) or hard-
disk-like character (higher ). All these variations should “in theory” be 
equivalent to each other. The concept of the so called Péclet number [70], 
[71] suggests, that all variations can be mapped to the same results (i.e., 
phase diagram). However, it turns out that this is not fully true for non-
equilibrium systems, as the following interesting (but not published) 
observations show: 

The shape and width of the phase diagram of ABPs depend on the applied 
active force or equivalently the applied active velocity. The higher the active 
velocity, the “broader” the phase diagram and vice versa. This means, that 
the binodal line for the dense phase is shifted towards higher densities with 
increased active velocity. When tuning the activity via rotational diffusion, the 
shift is determined by the set fixed value for the active velocity. When tuning 
the activity via active velocity, the shift increases with the activity along the 
binodal line. Mapping the different phase diagrams via the concepts of Péclet 
number and effective hard disk diameter reduces the discrepancies to some 
degree but not fully. This effect also depends on the parameter  of the WCA 
potential. A softer potential gives a stronger effect, while a harder potential 
weakens the effect. As a consequence, there seems to be no simple way to 
an implementation independent phase diagram for ABPs. 

These observations can easily be understood, if one imagines figuratively 
that the active force pushes the particles in the dense phase closer together. 
A closer packing is equivalent to a higher density. Hence the shift of the 
binodal line for the dense phase towards higher densities. At the same time 
the binodal line for the dilute phase is not affected (there is obviously no 
aggregation) which in sum results in a broader phase diagram. The active 
lattice systems do of course not show such an effect, because they are 
implemented as real “hard disks” – one lattice space can only be occupied 
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by one particle and there is no space between the lattice spaces. In 
equilibrium, the effective hard disk diameter, also called Barker–Henderson 
diameter, should map soft disks to effective hard disks. It accounts for the 
random force due to Brownian motion but not for the additional active force 
propelling the particles in non-equilibrium systems. The described 
observations have been shown more closely by Yannik Muche in his 
bachelor thesis [74], which I co-supervised. 

While varying simulation parameters yielded interesting findings, none of the 
variations did contribute to the improvement of the measuring accuracy. 
Therefore, I was unfortunately not able to further examine whether the 
variation of rotational diffusion, active velocity or WCA potential do have an 
influence on the critical exponents or their measurement. Since the 
(measurement of the) critical exponent  depends on the coexistence 
densities, the shape of the phase diagram might hint to such an influence. 

Exploring the discussed possible accuracy improvements went hand in hand 
with very time-consuming simulations of different activities and simulation 
box sizes around the critical point. Each of these simulations requires a fairly 
long runtime (minimum one week, depending on the system size) to achieve 
a descent level of equilibration and statistics. Only then a first assessment 
whether the quality of the Binder cumulant crossing is improved or not can 
be made. A more defined crossing is the pre-condition for a more exact 
determination of the critical exponents. One of the above-mentioned 
enhancements or a wise combination of them might lead to slightly better 
results in an even longer run. However, I was looking for a "game changer" 
but did not find it in any of the options discussed. 

It’s important to note, that the dominant problem of instable slabs in ABPs is 
less of a problem in lattice systems. I will come back to this in the 
conclusions. 

Even though my work did not succeed in yielding a better determination of 
critical exponents for ABPs, I was able to further investigate critical behavior 
in these systems. To do so, the study in [A2] focusses on dynamical 
properties in active systems. 

Dynamics in active systems 

The dynamical properties of active systems can be studied by quenches of 
homogeneous configurations to state points inside the miscibility gaps and to 
the critical point. Following the quench, the system’s far-from-steady-state 
dynamics can be investigated by calculating quantities associated with 
structure and characteristic length scales. An understanding of non-
equilibrium dynamics following these quenches is of fundamental as well as 
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practical relevance and recent focus has been especially on active matter 
systems [75]–[83]. 

The work performed in [A2] studies the dynamical properties of ABPs as well 
as of the active lattice systems already introduced in [A1]. Before the quench 
takes place, all the systems are equilibrated in the homogeneous phase, i.e., 
at an activity well below MIPS. After sufficient equilibration the systems are 
quenched by suddenly changing the activity to a much higher value. 
Subsequently the active systems start to form clusters as MIPS takes place. 
The emerging structures and their growth provide insights to the dynamical 
behavior. In [A2] two different types of quenches are studied: Quenches to 
state points inside the miscibility gaps (i.e., deep inside the phase separated 
regime) on the one hand and quenches right to the critical point on the other 
hand. For the quenches to the critical point, the information about critical 
activity and density obtained in [B1] and [A1] is crucial. 

The growth following a quench inside the coexistence region is dominated 
by power-law behavior, i.e.,  with  being the length scale,  the time 
and  the growth exponent (not to be mistaken with the critical exponent ). 
The growth is furthermore self-similar in nature, meaning that the emerging 
patterns at different times only differ from each other in terms of the length 
scale. The two-point equal time correlation function therefore scales with , 
too [83]. 

The aging phenomena is another important property that can be studied 
following the quench. It is captured in the relaxation behavior of the two-time 
order-parameter auto-correlation function and attributes an age to the 
system. This means, that the development state of the system can be 
distinguished at different points in time. In contrast to equilibrium states, the 
time translation invariance in growing systems is not obeyed and the two-
time order-parameter auto-correlation function scales like 

 

with  being the age and  the aging exponent [84]. 

In case of quenches to the critical point, the correlation in the system is 
expected to grow over time as ( ) /  with  being the dynamic critical 
exponent [79], [85], [86]. In addition, the two-point equal time correlation 
function can be rewritten with respect to the fractal nature of the structure 
(see [A2]) in the form of ( , ) ( / ( )) 

with the critical exponent  being accessible via two-point equal time 
correlation function and correlation length ( ) [85], [87]. 
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The values of ,  and  and their determination are of fundamental 
importance in the field of dynamics of phase transitions. The results for 
structure growth and aging of ABPs in [A2] appear to be quite similar to 
those observed during phase separation in the 2D Ising model. However, for 
the active lattice models, there are deviations in the case of quenches inside 
the coexistence regions, but none in the case of quenches to the critical 
point. These deviations still need further assessment in the future and were 
not included and discussed in [A2]. 

Skyrmions 

Skyrmions are certain mathematical objects which are realized in many 
areas of physics [88]. The concept was first suggested by nuclear physicist 
Tony Skyrme while studying pion fields around 1960 [89]–[91]. Later on, the 
concept of skyrmions was generalized: A skyrmion can be defined as “a 
topologically stable, smooth field configuration describing a non-trivial 
surjective mapping from coordinate space to an order parameter space with 
a non-trivial topology” [88].  

The subject in this work are magnetic skyrmions. They are topologically 
stable solitons that were predicted theoretically [92]–[94] and demonstrated 
in experiments [15], [95], [96]. These magnetic whirls are quasiparticles that 
can be created in a variety of materials ranging from bulks of ferromagnets 
to thin films [14]. Depending on the material, there are two main types of 
skyrmions: Bloch-type [97] and Neel-type [98] skyrmions. In bulks of 
ferromagnets Bloch-type chiral skyrmion can be stabilized due to bulk 
Dzyaloshinskii-Moriya interaction (DMI) [14], [99]. In thin films Neel-type 
hedgehog skyrmions can be stabilized due to interfacial DMI [14], [100]. The 
different spin structures of the two types are shown in figure 5. In bulk 
systems skyrmions are not necessarily 2D like, as the “skyrmion tube” length 
can easily exceed the skyrmion diameter. This is different in magnetic thin 
film systems where skyrmions with diameters three orders of magnitudes 
larger than their thickness can be stabilized as done in [A3], making them 
almost perfectly two-dimensional. Furthermore, skyrmions interact in a 
coarse-grained manner with a repulsive interaction potential which opens up 
the possibility to model them as soft disks. While ABPs are genuinely 
regarded soft matter, skyrmions are regarded hard matter, as they reside in 
solid magnetic materials. Such a differentiation is misleading here: As shown 
in [A3] the coarse-graining allows to treat the ensemble behavior of 
skyrmions with the very same set of instruments as used for soft matter. 
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Figure 5  Left hand side: The vector field of magnetic skyrmions with (a) being a hedgehog skyrmion 
(Neel-type) and (b) a spiral skyrmion (Bloch-type). Picture by Karin Everschor-Sitte and Matthias Sitte 
licensed under CC BY 3.0 (https://commons.wikimedia.org/wiki/File:2skyrmions.PNG)  
Right hand side (c): Kerr microscope 
disk like character of skyrmions in magnetic thin film systems. [A3]. 
 

Skyrmions can externally be moved or manipulated using spin-transfer 
torques [101], [102] and spin-orbit torques [103] with the latter being very 
power efficient for possible use cases in electronics. In addition, skyrmions 
can be subject to magnetic pinning [104] and the skyrmion-Hall effect [105]. 
For the coarse-grained approach presented in this work, these effects are of 
secondary importance and will therefore not be covered further. 

Although the behavior of single or few skyrmions can be simulated on a 
micromagnetic level, this is not feasible for larger numbers of skyrmions. A 
common coarse graining approach on particle-level is based on the Thiele 
equation yielding a set of Langevin equations [106]–[109]: = + +   with    = ×  

Where ( ) is the skyrmion drift velocity,  the damping coefficient,   a 
repulsive skyrmion-skyrmion interaction,   thermal white noise and   the 
Magnus force acting on the direction perpendicular to the skyrmion’s 
velocity. The strength of the Magnus force is set by the parameter .  

The Thiele equation is a simplification of the Landau-Lifshitz-Gilbert (LLG) 
equation derived by projecting the LLG equation onto the relevant 
translational modes [110], [111]. The resulting Magnus force term of the 
Thiele equation is related to the physics of a so-called Berry phase [88], 
[110]–[112]. Once a skyrmion is moving in an electric current, the Magnus 
force arises from the interplay (spin-torque coupling) of dissipationless spin 
currents circulating around each skyrmion and the spin currents induced by 
the electric current [112], [113]. It pushes the moving skyrmion 
perpendicularly to its direction of motion. The rotating spin currents of the 
skyrmion act in the electric current similar to a rotating ball in the 
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surrounding air flow in the case of the classical Magnus effect, hence the 
name [88]. 

The Langevin equation for skyrmions shown above is very similar to the one 
describing ABPs: Both equations feature repulsive interaction, a velocity 
dependent additional force and thermal noise. However, the Magnus force is 
non-dissipative, since it is acting perpendicular to the skyrmion’s velocity 
[108], [114]–[118]. 

Closely packed systems of skyrmions are called skyrmion lattices and are 
the prime subject of [A3]. Please note, that these “lattices” are not 
comparable to what is commonly associated with lattice systems or lattice 
order in solid bodies. Skyrmions in a skyrmion lattice can still move around 
and change places, however the movement is very limited due to the high 
density. Hence, the individual skyrmion velocity is very low and therefore the 
associated Magnus force becomes more or less negligible. This opens up 
the possibility of further coarse graining: Modelling skyrmions in a skyrmion 
lattice as soft disks without a magnus force turns out to be sufficient to 
capture their statical and to some degree dynamical behavior. In this regard, 
the modelling becomes identical to the one for ABPs with zero activity. 

The first question of interest then is, how the skyrmion-skyrmion interaction 
potential looks like and especially how steep it is. Unfortunately, the forces 
between the skyrmions can’t be measured directly in the experimental setup. 
A common approach to access the interaction potential indirectly is to run an 
iterative Boltzmann inversion on the one-dimensional pair-correlation 
function. This approach turned out to be meticulous for the systems 
examined in the course of this thesis. Therefore, the more robust technique 
of combining simulations and experiments as shown in [A3] was developed 
and used. It also laid the foundation for further work where iterative 
Boltzmann inversion was successfully adapted to similar systems in an 
advanced procedure [119]. As shown in [A3], the skyrmion-skyrmion 
interaction potential can also be reconstructed solely with the help of 
simulations: 

In a simulated system of density equal to the experimental system, the 
potential is adjusted until the one-dimensional pair-correlation function of the 
simulated system matches the experimentally measured one. Within certain 
inaccuracies and limitations, the simulated potential and the real-world 
potential of the experimental skyrmion lattice are identical in this case [120], 
[121]. This method is also a nice example, how simulations and experiments 
can complement each other. 

In order to make the matching work, first of all, the experimental skyrmion 
lattice is visualized and recorded via Kerr-microscope imaging. The resulting 
black and white movies show the skyrmions floating around as disks on a 
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plane. Their position and density have to be determined from these movies. 
A standard tracking package can handle this job sufficiently accurate if all 
parameters are chosen correctly. The pair-correlation function is then 
calculated straightforwardly from the skyrmion positions. The Skyrmion 
density is simply the number of skyrmions detected in the area of the image 
frame. 

As already mentioned, one of the interesting things about two dimensional 
systems of soft disks is, that with increasing density they undergo a phase 
transition from liquid to solid phase with an intermediate hexatic phase. 
Since the experimentally created skyrmions in [A3] can be regarded as 
almost ideal two-dimensional systems and are acting like soft disks, this 
immediately raises the question, whether skyrmion lattices show a similar 
phase behavior. 

Determining the phase state of the skyrmion lattice is again a very 
challenging task. It turns out that the equilibration of a two-dimensional 
system of soft disks in the hexatic (as well as in the solid phase) takes a 
profound amount of time. While the local structure and therefore the pair-
correlation function form out rather quickly, the quasi-long range 
orientational order takes a multiple of that time to emerge. This is a 
manageable problem for simulations, but it was not possible to stabilize the 
experimental skyrmion lattice in [A3] for a sufficient amount of time. The 
common approach of determining the phase via the long range orientational 
order is not well suited in this case. In [A3] another approach is therefore 
presented: 

The local orientational order parameter is a standard measure to quantify, as 
the name suggests, the local orientational order of a system [26], [122]. In 
case of a hexagonal order, it is also called hexagonal order parameter and 
given by: 

( ) = 1  
Where  describes the angle of the connecting line between a (central) 
skyrmion  and the th of its  nearest neighbours with respect to a defined 
fixed axis [26]. The absolute value of this parameter yields | | = 1 for a 
perfect hexagonal order, and a value between 0 and 1 otherwise.  

One can utilize the spatial correlation of the hexagonal order parameter in 
order to quantify the long range orientational order in a system, which results 
in very poor signals for the experimental skyrmion lattices, as explained 
before. Instead, I found in [A3], that for soft disks with power law potential, 
the mean value of the hexatic order parameter appears to yield a fixed 
absolute value at the liquid-hexatic phase transition. This value was found to 
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be roughly | | 0.69, independent of the exponent of the underlying 
power law potential.  

With the help of this heuristic finding, the experimental skyrmion lattices in 
[A3] could be characterized and the degree of hexagonal structure in them 
could be mapped over the external experimental parameters. So, we were 
able to determine, which set of parameters drives the skyrmion lattice 
towards the hexatic / solid phase and which setup already shows the onset of 
these highly interesting phase states. Figure 2 in [A3] nicely summarizes 
these results and shows, how the structure of the skyrmion lattice depends 
on the magnetic out-of-plane field and the temperature. A setup at 338K 
temperature and 20μT out-of-plane field was found to be in an emerging 
hexatic or even solid phase exhibiting clusters of around 100 skyrmions with 
the same orientation of hexagonal order (see figure 6). This shows, that 
skyrmion lattices can be used as 2D model systems with advantages in 
terms of tunability and speed compared to conventionally used 2D model 
systems such as colloids [A3]. 

 

 
Figure 6  Spatial distribution of the local orientational order parameter  of individual skyrmions for the 
experimental setup at 338K temperature and 20μT out-of-plane field (as shown in figure 3 in [A3]). The color-
coding visualizes the orientation of , that is, the orientation angle . Similar coloring indicates clusters of 
skyrmions with the same orientation of hexagonal order. 
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Abstract Lattice models allow for a computationally efficient investigation of motility-induced phase sep-
aration (MIPS) compared to off-lattice systems. Simulations are less demanding, and thus, bigger systems
can be accessed with higher accuracy and better statistics. In equilibrium, lattice and off-lattice models
with comparable interactions belong to the same universality class. Whether concepts of universality also
hold for active particles is still a controversial and open question. Here, we examine two recently proposed
active lattice systems that undergo MIPS and investigate numerically their critical behavior. In particular,
we examine the claim that these systems and MIPS in general belong to the Ising universality class. We
also take a more detailed look on the influence and role of rotational diffusion and active velocity in these
systems.

1 Introduction

Non-equilibrium active systems composed of self-
propelled particles offer a wide range of interesting
behavior and applications [1–3]. A fundamental phe-
nomenon is the so-called motility-induced phase sepa-
ration (MIPS) [4]: At large propulsion speeds and low
rotational diffusion, self-propelled particles block each
other due to excluded volume and form initial clus-
ters. If the timescale for the rotational diffusion of the
particle orientations at the border of such a cluster
is larger than the time it takes to enrich the clus-
ter with additional particles, a dynamical instability
leading to non-equilibrium phase separation is induced.
Although the phase-separated state resembles passive
liquid–gas separation with dense domains surrounded
by an active gas, no explicit attractive interactions are
required. Still, the phase behavior is very similar, with
the binodal curve of coexisting densities terminated by
a critical point below which the system remains homo-
geneous for all densities. The question whether or not
the behavior close to such a non-equilibrium critical
point is universal, and whether it can be attributed to
one of the standard universality classes, is not only of
fundamental interest but has also stirred up an ongoing
controversy [5–8].

Numerical studies of active Brownian particles (ABPs)
[9–16] are a common approach to investigate MIPS in a
simple continuous system. These particles are modeled
as disks interacting with each other via a purely repul-

a e-mail: thomas.speck@uni-mainz.de (corresponding
author)

b e-mail: virnau@uni-mainz.de

sive Weeks–Chandler–Anderson potential in the frame-
work of an overdamped Langevin equation. In addition,
they are propelled with constant speed along their ori-
entation, which is subject to rotational diffusion. For
this system, we have determined the location of the crit-
ical point in two dimensions and reported critical expo-
nents, which are incompatible with any of the known
universality classes [5]. To gain access to the critical
point and the critical exponents, we have proposed a
novel method to sample subboxes that minimizes the
influence of interfaces on density fluctuations.

In contrast, subsequent numerical investigations of
related but different models have come to a different
conclusion, supporting Ising universality in two dimen-
sions for off-lattice active Ornstein–Uhlenbeck particles
[8] and a lattice variant of ABPs [7] (and for ABPs
in three dimensions [17,18]). Following generic argu-
ments of renormalization [19], however, all these mod-
els (in two dimensions) should fall into the same uni-
versality class and thus exhibit the same critical expo-
nents. Indeed, in a first renormalization study of an
active field theory (“active model B+” [20,21]) it was
found that the critical behavior is controlled by the
Wilson–Fisher fixed point [6]. What, then, is the rea-
son for the reported differences? Regarding geometry
and subboxes, all three numerical works have employed
the same method (for details, see Sec. 2.2). One rea-
son could be insufficient statistics, or insufficient range
of system sizes leading to a biased estimate of critical
exponents. Or, more intriguingly, are there additional
features that characterize universality classes in active
matter? We stress that MIPS of repulsive particles is
a genuine non-equilibrium phenomenon. The effect of
self-propulsion on the critical behavior in models that
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exhibit phase separation already under equilibrium con-
ditions has been studied for Lennard-Jones interactions
[22] and a three-dimensional Asakura–Oosawa model
[23] driven by a Vicsek-type force [24–26] and found to
be compatible with the 3d Ising universality class [27].

In this manuscript, we take another step toward a
comprehensive understanding of critical behavior in
active matter. To this end, we numerically investigate
different variants of two-dimensional active lattice gases
with excluded volume and dynamics that break detailed
balance. While a range of active lattice gas models
has been investigated [28–33], we focus on two variants
that mimic active Brownian particles. In particular, we
study two lattice geometries (the square and hexag-
onal lattice) and two implementations of the dynam-
ics, either treating rotation and translation serial [7] or
concurrently [34]. Our numerical results indicate that
details of the dynamics have an influence on the crit-
ical behavior and question the proposition that MIPS
falls into Ising universality.

2 Methods

2.1 Critical behavior

Before embarking on the computational study, let us
recall some of the properties close to a critical point.
We consider systems that undergo phase separation
with two coexisting phases having different densities ρ.
The two phases are identified with gas (ρgas) and liquid
(ρliq). The (average) order parameter is the difference,
m = ρliq − ρgas. As we approach the critical point, the
gap in m closes and follows a path through the critical
point. Hence, we observe

m ∼ τβ , (1)

whereby τ measures the distance to the critical point
(typically the reduced temperature) and β is the cor-
responding critical exponent. The transition is contin-
uous, with m > 0 for τ > 0 and m = 0 in the homo-
geneous phase for τ < 0. In addition, both the suscep-
tibility χ and the correlation length ξ diverge at the
critical point,

χ ∼ τ−γ , ξ ∼ τ−ν , (2)

defining two more exponents. Of particular importance
is Ising universality in equilibrium systems with short-
range interactions and scalar order parameter, for which
in two dimensions the exponents can be obtained ana-
lytically [35–37]

β = 1
8 , γ = 7

4 , ν = 1. (3)

Note that these three critical exponents are not inde-
pendent but obey the hyperscaling relation

γ + 2β = 2ν. (4)

6l

2l

l

3l

Fig. 1 Sketch to illustrate the simulation box setup. The
evaluated subboxes of size l×l are placed in the dense (cyan)
and dilute (red) phase. The overall simulation box is set to
size 2l × 6l

Arguments why this relation might still be valid for
driven active systems are sketched in “Appendix” A.

The diverging correlation length ξ implies that the
critical behavior is modified in finite systems, where the
correlation length is bounded by the system size l. One
of the most remarkable successes of computational sta-
tistical physics is that the critical behavior can still be
extracted from simulations of finite systems [38,39]. To
locate the critical point, we turn to Binder’s cumulant
ratio

Ql(τ) =
〈m2

l 〉2
〈m4

l 〉
, (5)

which becomes independent of l exactly at the criti-
cal point. Note that ml = (Nl − 〈Nl〉)/l2 in the lattice
gas formulation with Nl being the number of particles.
Plotting the ratio Ql as a function of some parameter
for different l thus allows—notwithstanding systematic
effects as discussed below—to locate the critical point
from the intersection of curves. Moreover, the deriva-
tive dQl/dτ |τ=0 = 1/ν yields the inverse of the critical
exponent ν. Once we have located the critical point,
we can extract β from plotting 〈ml〉 as a function of τ .
Finally, we exploit the scaling form χl = lγ/ν χ̃(l/ξ) for
the susceptibility with scaling function χ̃ that depends
on system size through the ratio l/ξ. Plotting the sus-
ceptibility (obtained from the fluctuations of the order
parameter) as a function of l allows to extract the ratio
γ/ν. We thus have access to the three critical exponents
ν, γ and β.

2.2 Simulations

While the ensemble of choice for simulations of critical
behavior in equilibrium is the grand canonical ensem-
ble, for driven active systems breaking detailed bal-
ance this route is not available due to the absence
of a comprehensive framework in which a chemical
potential is defined (although attempts have been made
[40,41]).

Therefore, we closely follow the method and analy-
sis proposed in Ref. [5]. All simulations were performed
in a periodic box with 1:3 geometry. In such elongated
boxes, the dense phase nucleates to a slablike struc-
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(a) (b) (c)

Fig. 2 Estimation of the critical exponents for the 2d Ising model. The black dashed lines show the slopes with the
analytical values [Eq. (3)]. Gray dots in (a) were excluded from the analysis since they are too far from the critical point
and have moved away from the power-law scaling

ture, cf. Fig. 1. The slab arises along the short side
of the box and connects to itself via periodic bound-
ary conditions. Its position inside the simulation box
can be easily determined as the center of mass of all
particles.

In order to measure dense and dilute phase, as well
as to avoid interface regions between the two phases,
we place two quadratic subboxes of size l above each
other right in the center of mass to sample the dense
phase (see Fig. 1). Another set of two subboxes is placed
shifted away by one half of the simulation box’s width
from the center of mass to sample the dilute phase.
In total, we sample the number of particles Nl within
the four subboxes of size l in a simulation box of total
size 2l × 6l. Note that Nl is counted for each of the
four subboxes separately, resulting in four measure-
ments for each snapshot. By adjusting the size of the
simulation box through the subbox size, we couple the
maximum correlation length to l and achieve a clear
crossing point of Ql for different l. The susceptibility
is evaluated as χl = 〈(Nl − 〈Nl〉)2〉/〈Nl〉. Coexistence
densities of dense and dilute phase (ρliq and ρgas) are
obtained as plateau values of density profiles generated
from a simulation box of size 252×84 (corresponding to
l = 42) at activities slightly above the tentative critical
point.

We use the same system sizes of l = 12, 18, 24, 30, 36,
42 for all simulations, resulting in simulation boxes of
size 24 × 72, 36 × 108, 48 × 144, 60 × 180, 72 × 216,
84×252. The number density is always 0.5, which gives
the corresponding particle numbers 864, 1944, 3456,
5400, 7776, 10584. Furthermore, we chose all activi-
ties to be at comparable relative distance to the critical
point.

As reference, in Fig. 2 we show our analysis applied
to the 2d Ising model. Since the 2d Ising model is sub-
ject to critical slowing down, we get somewhat poorer
statistics (see “Appendix” B). Nevertheless, the analy-
sis yields the following critical exponents

β � 0.113(1), γ/ν � 1.751(2), 1/ν � 0.97(3) (6)

in good agreement with the analytical values. Errors
in this and later sections refer to statistical errors

obtained by splitting respective data sets into three
parts and calculating the standard error of the mean.
While γ/ν agrees exactly, there is a slight underesti-
mation for 1/ν and a noticeable underestimation for
β. While the error of 1/ν might be within statistical
uncertainties, the deviation observed for β is more sys-
tematic: The power-law scaling is clearly only valid
very close to the critical point. However, measuring
points closer to the critical point than shown in Fig. 2
is challenging. Below we show that the active lat-
tice models follow a power-law behavior over a wider
range.

3 Model I: serial rotation/translation

3.1 Model description

We first turn to the model studied in Ref. [7] employing
a hexagonal lattice, which we will refer to as model I.
On a hexagonal lattice each particle has six neighboring
sites and six discrete directions it can be orientated
toward (Fig. 3). Specifically, each Monte Carlo (MC)
step works as follows:

1. A particle is picked at random.
2. A Gaussian distributed random number (with stan-

dard deviation σ and zero mean) is drawn and
rounded to the nearest integer n. The current ori-
entation of the particle is adjusted by that integer
(n = 1 means one step clockwise, n = −1 means
one step counterclockwise, n = 2 means two steps
clockwise and so on), cf. Fig. 3a.

3. A movement along the new orientation of the parti-
cle is chosen with probability w+ = 25/30, and other
directions are chosen with probability wt = 1/30
each mimicking translational diffusion, cf. Fig. 3b.

4. If the target lattice site is empty the move is
accepted, otherwise the move is rejected. This ensures
that each lattice site is either unoccupied or occupied
by exactly one particle.
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wn
w+

wt

wtwt

wt

wt

(a) (b) (c)

Fig. 3 Sketch to illustrate serial model I on a hexagonal
lattice. a First, the orientation (arrow) of the particle is
updated drawing a random number from a Gaussian dis-
tribution. b Then, a move along the particle’s orientation
is attempted with rate w+, diffusion along another direc-
tion is attempted with rate wt each. c Probability to keep

the current orientation as a function of σ (as given by the
integral over the Gaussian distribution from −0.5 to 0.5).
Dashed and dotted lines correspond to critical values for
model I on the hexagonal (σc � 0.3048) and square lattice
(σc � 0.2415)

(a) (b)

Fig. 4 a Cumulant ratios Ql for model I on the hexagonal
lattice. The dotted line indicates the estimated critical value
σc � 0.3048 as the mean crossing point for l = 24, 30, 36, 42
excluding the two smallest system sizes. Note that each tick
on the x-axis corresponds to one simulation point. b Snap-

shots for the largest system of l = 42 below the critical point
at σ = 0.307 (top), at the critical point at σ = 0.3048 (mid-
dle) and above the critical point at σ = 0.303 (bottom).
Particles are colored according to the subbox they are in

Note that the adjustment of orientation in step 2 is
always accepted and a translation does not change the
orientation of the particle. Since w+ and wt are fixed,
the “activity” of the system is solely adjusted via the
rotational diffusion, which is defined by the width σ
of the Gaussian distribution. A low value for σ corre-
sponds to low rotational diffusion and therefore highly
persistent motion [see Fig. 3c]. Note that the proba-
bility to keep the current orientation is not linear in
σ, especially not around the estimated values for the
critical points. It is also important to note that in con-
trast to model II discussed below, rotation (step 2) and
translation (step 4) are always performed in series.

3.2 Analysis and results

By closely following the analysis described in Sec. 2.2,
we determine the critical point σcr,I � 0.3048 as
the average of the cumulant ratio crossings (Fig. 4)
for the four largest system sizes under consideration
(l = 24, 30, 36, 42). This value is in agreement with the

results published in Ref. [7], which has analyzed systems
of comparable system sizes. Excluding the two smallest
boxes (l = 12, 18)1, the cumulant ratios for the big-
ger boxes cross within a small interval as expected for
critical scaling.

Figure 5a–c shows results for the order parame-
ter, the susceptibility and the derivative of the cumu-
lant ratio. Fitting power laws yields the following
exponents

β � 0.1567(3), γ/ν � 1.678(2), 1/ν � 1.03(2)
(7)

and thus ν � 0.97 and γ � 1.63. While the agreement
with the corresponding 2d Ising values is reasonable for
ν (νIsing = 1.0) and γ (γIsing = 1.75), the exponent
β differs by more than 25% from βIsing = 0.125. This
disagreement is also clearly visible in Fig. 5a.

1 The fact that only intermediate box sizes cross is com-
mon for block density distribution methods also in passive
systems [42].
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(a) (b) (c)

(d) (e) (f)

Fig. 5 a–c Estimating the critical exponents for model I.
Plotted are (a) the order parameter ρliq − ρgas, b the sus-
ceptibility χl and c the slope of the cumulant ratio at the
critical point. d–f Corresponding determination for model

I but on a square lattice with σc � 0.2415. Gray dots in (a)
and (d) were excluded from the analysis. The black dashed
lines show the slopes with the critical exponents for the 2d
Ising system

To test the influence of the underlying lattice geom-
etry, we have also performed an analogous investiga-
tion of the model on a square lattice with w+ = 17/20
for movements along the particles current orientation
and wt = 1/20 for the three remaining directions. The
results are shown in Fig. 5d–f with exponents

β � 0.1528(1), γ/ν � 1.695(3), 1/ν � 1.023(8)
(8)

and thus ν � 0.98 and γ � 1.66. These critical expo-
nents are very similar to the hexagonal case and within
numerical uncertainties, indicating that the influence of
the underlying lattice is negligible as one would expect.

4 Model II: concurrent rotation/translation

4.1 Model description

The second model is based on a square lattice and has
been proposed in Ref. [34]. As illustrated in Fig. 6, there
are now six possible moves: either rotation of the par-
ticle orientation clockwise or counterclockwise by 90◦
with weight w1 [Fig. 6a], or translation along the orien-
tation with weight w+ or any of the three other direc-
tions with weight wt [Fig. 6b]. In contrast to model
I, the weight w1 = 0.1 for rotation is now kept con-
stant and we vary w+ with wt = 1. Moreover, in each
MC step one of the moves is selected according to its
weight. Hence, the particle can either rotate or move in
one time step, which we term concurrent.

w1 w+

wtwt

wt

w1

(a) (b)

Fig. 6 Sketch to illustrate model II on a square lattice. a
The particle orientation is turned clockwise or counterclock-
wise by 90◦ with rate w1. b A move along the orientation
is attempted with rate w+, diffusion into any other direc-
tion with rate wt each. Note that only one of these moves is
attempted in each time step. The probability for each move
is given by the respective rate divided by the sum of all rates

4.2 Analysis and results

Figure 7 shows the crossings of the cumulant ratios
Ql for different box lengths l. The crossings start to
converge for the bigger boxes with l ≥ 24. Hence, we
only take these system sizes into account and determine
the critical point to be at w+,cr � 4.76. Corresponding
results for the critical exponents are displayed in Fig. 8,
for which we find

β � 0.2208(1), γ/ν � 1.649(1), 1/ν � 1.021(7).
(9)
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(a) (b)

Fig. 7 a Cumulant crossing for model II yielding a critical
point at w+,cr � 4.76 as determined by the mean crossing
point for = 24, 30, 36, 42 (dotted line). Note that each tick
on the x-axis represents a w+ at which simulations for the
various system sizes took place. b Snapshots for the largest

system of l = 42 below the critical point at w+ = 4.5 (top),
at the critical point at w+ = 4.76 (middle) and above the
critical point at w+ = 4.9 (bottom). Particles are colored
according to the subbox they are in

(a) (b) (c)

Fig. 8 Critical exponents for model II, cf. Fig. 5. Note that
for (a) the gray points were not considered for the fit as slabs
started to dissolve, resulting in an ill-defined plateau of the

density profiles. In (b) w+ = 4.76 has been used. For com-
parison, the black dashed lines indicate the 2d Ising critical
exponents

While γ � 1.68 and ν � 0.98 again exhibit reasonable
agreement with 2d Ising values (1.75 and 1, respec-
tively), β = 0.221 exceeds the corresponding value
(0.125) by almost a factor of two. Note that β needs
to be measured further from the critical point than in
model I because the density profiles lose their stability
faster. This indicates that fluctuations are stronger and
the slab in the 1:3 simulation box stays less stable in
the vicinity of the critical point for model II.

5 Alternative determination of β

The accuracy of measuring the exponent β from the
density difference is limited by the fact that it becomes
more and more difficult to reliably estimate this differ-
ence as we approach the critical point. For the Ising
model (cf. Fig. 2), this has led to a noticeable deviation
from the known analytical value. There is an alternative
method using the density fluctuations 〈(ρl − 〈ρl〉)2〉 ∼
l−2β′/ν at the critical point which is equivalent to (and

therefore not independent from) how γ/ν is determined
from χl, see also Ref. [8]. The densities for the subboxes
are given by ρl = Nl/l2. This analysis is shown in Fig. 9.
For the 2d Ising model we now obtain 2β′/ν � 0.249(1),
which is in excellent agreement with the analytical
value. The values for the other models are included in
Table 1, but it is clear that they substantially deviate
from 2d Ising universality.

6 Discussion and conclusions

Our results for the critical exponents are summarized
in Table 1. We have also added the corresponding val-
ues for active Brownian particles as determined in Ref.
[5]. For all lattice models studied here, we find values
for ν that are in very good agreement with Ising uni-
versality (< 3% smaller) and values for γ/ν that are
in good agreement (< 5% smaller). These values are in
agreement with plots shown in Ref. [7], which concludes
that Ising universality holds. This conclusion seems
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(a) (b)

(c) (d)

Fig. 9 Alternative determination of β. Plotted is the slope
of 〈(ρl − 〈ρl〉)2〉 for the different system sizes at the criti-
cal point, which yields −2β′/ν. For comparison, the black
dashed lines indicate the analytical 2d Ising slope of −1/4.

Fits are shown for: a 2d Ising model, b model I on hexago-
nal lattice, c model I on square lattice and d model II. For
model II, there is a noticeable bending and the gray dot in
(d) was excluded from the analysis

Table 1 Comparison of critical exponents

Model β γ/ν 1/ν γ/ν + 2β/ν 2β′/ν

2d Ising 0.125 1.75 1 2 0.25
2d Ising (sim.) 0.113(1) 1.751(2) 0.97(3) 1.97 0.249(1)
ABPs [5] 0.45 1.47 0.67 2.07 –
Model I (hex.) 0.1567(3) 1.678(2) 1.03(2) 2.00 0.334(2)
Model I (sq.) 0.1528(1) 1.695(3) 1.023(8) 2.00 0.327(4)
Model II (sq.) 0.2208(1) 1.649(1) 1.021(7) 2.10 0.391(6)

The first three columns are the estimated values. The fourth column is the hyperscaling relation Eq. (4), which is approx-
imately obeyed by all models. The last column shows results for the alternative determination of β′ (cf. Sec. 5). Errors
refer to statistical errors obtained by splitting respective data sets into three parts and calculating the standard error of
the mean

questionable when taking the exponent β into account,
which deviates substantially. Indeed, the determination
of β is technically the most challenging. However, note
that the hyperscaling relation Eq. (4) places a strong
constraint on the exponents. From γ/ν � 1.68 and
ν � 0.98, we can obtain an estimate for β � 0.157
that is in excellent agreement with the numerically esti-
mated values for model I on both lattice geometries,
supporting that reduction of γ (and ν) is not a sta-
tistical effect but systematic. In our analysis, we can-
not completely exclude the possibility that the system
sizes under consideration are still too small and larger
sizes would lead to a slightly shifted critical point. This

could in principle also shift the critical exponents, par-
ticularly β/ν, while the influence on β and 1/ν is less
pronounced.

The value for β estimated for model II is even
larger. However, in this case the hyperscaling relation
is only fulfilled approximately, which might indicate
that β is too large. We have observed that obtaining
“good” crossings of the cumulant ratio in this model is
more challenging, which might be because the speed
is changed in contrast to the rotational diffusion in
model I. Moreover, the distance to the critical point
is larger since the determination of ρliq − ρgas requires
stable liquid slabs with a well defined plateau of the
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density profile. The alternative method of Sec. 5 yields
a smaller β′ � 0.19. We notice that the ratio γ/ν has
become even smaller, moving away from the Ising value.
While this seems to indicate an influence of the dif-
ferent dynamic rules on the critical behavior, we can-
not rule out that the scaling closer to the critical point
changes (but note that the smaller value of γ/ν accom-
modates a larger β). Even further from Ising universal-
ity are off-lattice active Brownian particles, where also
the exponent ν now changes substantially from ν = 1 to
ν � 1.5. Still, the hyperscaling relation is again approx-
imately fulfilled, indicating that the exponents are con-
sistent. We cannot exclude the possibility that correc-
tions to scaling are relevant and modify these expo-
nents in a way that is compatible with scaling relations
[43].

Based on our numerical results, we find the general
conclusion from Ref. [7] that MIPS belongs to the 2d
Ising universality class to be somewhat premature. Our
results even cast some serious doubts on the weaker
claim that model I exhibits 2d Ising behavior. At this
point, we would like to emphasize that the numerical
evidence presented in Ref. [7] is based on figures similar
to our Figs. 5(b) and (c) in which the slopes for the 2d
Ising values were drawn on top of the simulation values
suggesting excellent agreement. However, the authors
neither provide values for γ or ν, nor did they mention
the discrepancy for the exponent β.

Instead, we see mounting evidence that the criti-
cal behavior for models exhibiting MIPS is at least to
some degree model-dependent. Whether or not there is
an underlying Ising universality or any universality at
all, and to which extent deviations occur and why still
remains an interesting and challenging question for sim-
ulations and theory alike.

Acknowledgements We thank C. Maggi and K. Binder
for illuminating discussions. We gratefully acknowledge
financial support by the Deutsche Forschungsgemeinschaft
within priority program SPP 1726 (Grants No. SP1382/3-2
and No. VI 237/5-2). ZDV Mainz is acknowledged for com-
puting time on the MOGON supercomputers.

Funding Open Access funding enabled and organized by
Projekt DEAL.

Author contribution statement

PV and TS designed the research. FD wrote and per-
formed the simulations and analyzed the data. All
authors contributed to writing the manuscript.

Open Access This article is licensed under a Creative Com-
mons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in
any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to
the Creative Commons licence, and indicate if changes were
made. The images or other third party material in this arti-

cle are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons
licence and your intended use is not permitted by statu-
tory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

A Hyperscaling relation

The scaling relation Eq. (4) is typically derived from a free
energy following arguments originally developed by Widom
[44]. Since active matter is steadily driven away from ther-
mal equilibrium, its behavior is not governed by such a free
energy. However, the property of the free energy that is
mostly exploited in deriving scaling laws is that of a gener-
ating function, and some of the results can be transferred
to non-equilibrium systems.

To this end, consider the cumulant generating function

φ(τ, h) = ln
∑

C
p(C; τ)ehm̂(C) (10)

for the order parameter m̂ = m̂(C) summing over all possible
configurations C with probability p(C; τ) depending on the
control parameter τ . The auxiliary field h allows to obtain
the average m and susceptibility χ as

m =
∂φ

∂h

∣∣∣∣
h=0

= 〈m̂〉, χ =
∂2φ

∂h2

∣∣∣∣
h=0

= 〈m̂2〉 − m2.

(11)

A system with linear extend l and correlation length ξ in
d dimensions can be viewed as n � (l/ξ)d independent sys-
tems, for which the joint probability p(C) =

∏n
i=1 pξ(Ci)

becomes a product of probabilities pξ(C′; τ) for the con-
figuration in a smaller system with linear extend ξ. With
m̂(C) =

∑n
i=1 m̂(Ĉi) we have

φ(τ, h) � ln

[∑
C′

pξ(C′)ehm̂(C′)

]n

� (l/ξ)dφ̃(h/|τ |Δ).

(12)

In the second step, we invoke the usual scaling hypothesis
positing a scaling function φ̃(x) of the combined argument
h/|τ |Δ with gap exponent Δ. With ξ ∼ τ−ν we thus find
m ∼ τdν−Δ ∼ τβ and χ ∼ τdν−2Δ ∼ τ−γ . Eliminating
Δ = dν−β leads to γ+2β = dν [Eq. (4)]. Hence, this scaling
relation only requires extensivity and homogeneity of the
generating function, two properties that are not restricted
to equilibrium.

B Critical slowing down

As mentioned above, the statistical quality of the data
obtained for the active lattice models is way better than that
obtained for the 2d Ising model, despite comparable simu-
lation run time. We determine the autocorrelation function
for N − 〈N〉 in order to estimate effects of critical slowing
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Fig. 10 Autocorrelation of the density fluctuations N −
〈N〉 for the different models plotted for the largest system
size of l = 42 and at the respective critical point. Aver-
aged over all individual subboxes and all simulation data
available

Table 2 Amount of simulation data for the biggest simu-
lation box (l = 42) at each respective critical point

Model Run time MC steps per
individual run

Number of
individual
runs

2d Ising 15 days ca. 1,230,000,000 20
Model I (hex.) 15 days ca. 170,000,000 12
Model I (sq.) 15 days ca. 175,000,000 12
Model II (sq.) 15 days ca. 285,000,000 12

A comparable amount of data is used for each of the other
simulation points. The same run time is applied to the
smaller simulation boxes, therefore more data is available
for these systems. The difference in MC steps performed is
a result of different computational effort for the particular
models. The equilibration time is not included

down. The strongest effects can be found for the biggest
systems; therefore, Fig. 10 only shows the results for l = 42
(simulation box of size 84 × 252). Each model is evaluated
at its respective critical point. The autocorrelation function
is calculated for each individual subbox separately and then
averaged over all subboxes and all simulation data obtained.
The time lag Δt is given in units of 1,000 Monte Carlo
(MC) steps. For each MC step, each lattice site is on aver-
age picked once. So in total Δt = 1 is in this case equivalent
to performing 21,168,000 simulation steps. Table. 2 provides
an overview of the total amount of simulation data evalu-
ated for this work.

Figure 10 shows that the correlation for the 2d Ising
model is quiet persistent, indicating critical slowing down.
On the other hand, the correlations decay rather quickly for
the active lattice models and are more or less gone after
Δt = 100. Consequently, critical slowing down is not an
issue for the active lattice models. The main reason for these
differences is the acceptance schemes in the models. For the
Ising model, the metropolis criterion has to be fulfilled for a
spin swap. In comparison, each move to a free lattice site is
accepted for the active lattice models and there is no inter-
action except for hard repulsion.
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Via computer simulations we study evolution dynamics in systems of continuously moving active Brownian
particles. The obtained results are discussed against those from the passive 2D Ising case. Following sudden
quenches of random configurations to state points lying within the miscibility gaps and to the critical points, we
investigate the far-from-steady-state dynamics by calculating quantities associated with structure and character-
istic length scales. We also study aging for quenches into the miscibility gap and provide a quantitative picture
for the scaling behavior of the two-time order-parameter correlation function. The overall structure and dynamics
are consistent with expectations from the Ising model. This remains true for certain active lattice models as well,
for which we present results for quenches to the critical points.

DOI: 10.1103/PhysRevE.108.024609

I. INTRODUCTION

Nonequilibriummodels of self-propelled or active particles
describe a multitude of phenomena ranging from the move-
ment of bacteria and artifical microswimmers to macroscopic
flocks of birds [1–3]. Some of these systems exhibit cooper-
ative phenomena such as motility-induced phase separation
(MIPS) [4] that resembles the passive liquid-gas phase sepa-
ration but occurs in absence of any attractive interactions: At
large propulsion speeds and low rotational diffusion, artificial
microswimmers can self-trap and form clusters. The resulting
phase diagram shows a binodal curve of coexisting densi-
ties that ends in a critical point. Computationally, artificial
microswimmers are often studied with continuously moving
active Brownian particles (ABPs) [5–13] or variants thereof,
but recently active lattice models have gained attention as
well [14–16].
Whether the phase behavior in the vicinity of a nonequilib-

rium critical point is unique, and if it belongs to any standard
universality class is a question of fundamental interest and
has sparked an ongoing controversy [15–22]. For ABPs, a
determination of the critical point and its associated critical
exponents revealed results incompatible with any known uni-
versality class [17], while active Ornstein-Uhlenbeck particles
appear to be compatible with 2D-Ising behavior [19,21,22].
Similarly, active lattice models exhibit exponents close to
the 2D-Ising values [15] even though small model-dependant
deviations remain [16]. For the description of static critical
behavior first theoretical approaches have appeared recently
which may reconcile some of these discrepancies [18,20].

*virnau@uni-mainz.de
†das@jncasr.ac.in

In this manuscript we focus on dynamical aspects of active
systems. Understanding of nonequilibrium dynamics follow-
ing quenches of homogeneous systems to the critical point,
as well as to state points inside the coexistence region, is
of fundamental as well as practical relevance [23,24]. In the
context of passive matter systems associated phenomena re-
ceived much attention. In this broad area, recent focus has
been on active matter systems [25–31]. In a class of studies
the objective is to understand the scaling behaviors related to
structure, growth, and aging [23,26,32–36]. Below we provide
brief descriptions of these nonequilibrium aspects.
Typically, growth in such nonequilibrium situations, fol-

lowing quenches inside the coexistence region, occurs in a
power-law fashion, viz., average size of domains, rich or poor
in particles of a particular type, �, grows with time (t) as [23]

� ∼ tα. (1)

Such a growth is usually self-similar in nature, i.e., the domain
patterns at two different times are different from each other
only via a change in �. This property is reflected in the scaling
behavior of the two-point equal time correlation function [23],

C(r, t ) = 〈ψ (�r, t )ψ (0, t )〉 − 〈ψ (�r, t )〉〈ψ (0, t )〉, (2)

as [23]

C(r, t ) ≡ C̃(r/�). (3)

Here ψ is a space- (�r) and time-dependent order parameter.
Another important property associated with such nonequilib-
rium systems is the aging phenomena. This can be captured
in the relaxation behavior of the two-time order-parameter
auto-correlation function [32]

Cag(t, tw ) = 〈ψ (�r, t )ψ (�r, tw )〉 − 〈ψ (�r, t )〉〈ψ (�r, tw )〉, (4)

2470-0045/2023/108(2)/024609(9) 024609-1 ©2023 American Physical Society
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where tw (< t) is a waiting time, also referred to as the age
of the system. As opposed to the equilibrium systems, the
time translation invariance in growing systems is not obeyed.
Note that the rate of relaxation is expected to be different for
different ages of a system. Thus,Cag does not exhibit collapse
of data from different values of tw when plotted versus t − tw,
but is reported to exhibit collapse when plotted as a function
of t/tw [32], with the scaling form

Cag ∼
(

t

tw

)−αλ

, (5)

λ being referred to as an aging exponent. With the increase
of the exponent λ, the decay of C(t, tw ) becomes generally
faster. In the domain of kinetics of phase transitions, λ is a
key quantity for the determination of the universality classes.
Similar interest exists for quenches to the critical point. In

this case the correlation in the system is expected to grow with
time as [29,37,38]

ξ (t ) ∼ t1/z, (6)

z being a dynamic critical exponent. Note that in the long time
limit values of ξ diverge with the approach to the critical point
in a power-law fashion with an exponent ν [39].
Obtaining the values of α, λ, and z are of fundamental

importance in the domain of dynamics of phase transitions.
Understanding of these are quite advanced for various lattice
systems in the case of passive matter. For fluids, the status is
reasonably poor. In the case of active matter systems, such
interest is very recent. In this work, we intend to obtain these
quantities for phase-separating systems consisting of active
Brownian particles [4,17]. In addition, we also study active
lattice systems [14,15] as they are computationally less de-
manding and thus yield statistically better data. These systems
did show interesting deviations in steady-state critical behav-
ior from ABPs in prior work [16]. Therefore, a comparative
analysis of dynamical behavior adds further understanding
toward the uniqueness of active matter systems.
Note that self-propelled particles forming nonequilibrium

active systems offer a wide range of interesting behavior
and applications [1–3,40,41]. While phase transition and the
overall nonequilibrium behavior in these systems constitute
a broad field of ongoing research [5–12,17], we add an
additional aspect of nonequilibrium behavior by quenching
uncorrelated homogeneous active systems to correlated or
phase separated states.

II. METHODS

A. Model and simulations: Active Brownian particles

Systems of active Brownian particles in two dimensions
consist of hard disks which are actively propelled along their
orientation (see below). Periodic boundary conditions are ap-
plied in both dimensions and equations of motion are given
by [17]

ṙk = − Dt

kBT
∇kU + v0

(
cosϕk

sin ϕk

)
+

√
2Dt Rk, (7)

where Rk is normal distributed Gaussian noise, Dt the
translational diffusion constant, and U arises from a purely

FIG. 1. Phase diagram for ABPs as shown in Ref. [17]. The green
stars at the bottom mark the initialization points from where the
systems were quenched at constant packing fractions φ = 0.597 and
φ = 0.3 into the phase separated region (blue stars at the top) and
to the critical point (red diamond). Dotted lines were only drawn to
guide the eye.

repulsive Weeks-Chandler-Andersen (WCA) potential be-
tween disks with ε = 100 and σ = 1 as in Ref. [17]. If not
mentioned otherwise, then units are from now on omitted and
correspond to standard simulation units. Furthermore, Dt is
set to 1. With a cutoff distance of r = 21/6 we obtain an ef-
fective hard disk Barker-Henderson diameter dBH ≈ 1.10688.
A particle’s orientation is described by the angle ϕk , which
undergoes free rotational diffusion with diffusion coefficient
Dr , i.e. ϕ̇k = √

2DrRr , where Rr is Gaussian distributed, has
unit variance and is neither correlated between particles nor
in time. Each particle is propelled along its orientation with
constant speed v0. GPU-based simulations were performed
using HOOMD-blue [42] applying a Brownian integrator with
a time step of 10−6. Temperature was set to 1, and simulations
were performed at fixed volumes and particle numbers. If the
rotational diffusionDr (set to 3Dt/d2BH ≈ 2.45 throughout this
work) is small with respect to the active velocity v0, then a
self-trapping mechanism can be observed [4,43]. Particles that
form an emerging cluster require more time to orient away
from the cluster than it takes for other particles to reach and
enlarge it. This leads to a separation into a dense and a dilute
phase and a nonequilibrium phase diagram with a critical
point (Fig. 1) [17] even in the absence of explicit attractions.
In the present work we have performed several quenches

into the phase-separated region and to the critical point. All
simulations started in a mixed state with v0 = 10 and were
first equilibrated for 2× 107 time steps (corresponding to
20 MD times). For the quenches into the phase-separated
region the final active velocity was set to v0 = 125. Critical
density (φ = 0.597 [17]) was established in a system of size
1024× 1024 with 649 636 particles [Fig. 2(b)], while the
quench to the low-density branch (at φ = 0.3) [Fig. 2(a)]

024609-2
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FIG. 2. Snapshots obtained during the evolutions of the ABP
model, at three different times, after the quenches took place. Time t
is given in MD units. (a) For density φ = 0.3, we have simulated sys-
tem size 1024× 1024 following quench to v0 = 125. (b) For critical
density φ = 0.597, we have system size 1024× 1024 and quench
was to v0 = 125. (c) For critical density φ = 0.597, system size was
256× 256 and quench was to the critical v0 = 40/dBH ≈ 36.14.

was realized with 314 573 particles. To improve statistics we
averaged over 10 independent runs each.
For quenches to the critical point [Fig. 2(c)] the final active

velocity was set to v0 = 40/dBH ≈ 36.14 [17]. To study the
scaling of the steady-state correlation length ξmax with system
size, different system sizes had to be realized. In particular,
100 independent runs for size 64× 64 containing 2500 parti-
cles each, 50 runs for size 128× 128 with 10 000 particles,
and 15 runs for size 256× 256 containing 40 401 particles
each were performed.

B. Model and simulations: Active lattice systems

Quenches to the critical points were also performed for
three active lattice models which are described in detail in
Ref. [16]. In contrast to ABPs [17], these systems are already
reported to exhibit steady-state critical exponents close to the
2D-Ising values [16]. From a computational point of view
they are also less demanding, and superior statistics can be
achieved in a straightforward implementation on CPUs.
Rotational diffusion and active propulsion are handled sim-

ilarly to ABPs, but parameters are probabilities or rates in
Monte Carlo (MC) simulations. Each particle can occupy a
single site and is oriented toward one of its neighboring sites.
Density is defined as the number of occupied divided by the
total number of sites. Again, all simulations were performed
with a fixed number of particles in 2D with periodic boundary
conditions. One Monte Carlo time unit consists of as many
individual Monte Carlo attempts as there are lattice spaces in
the system. A rotation move only changes the orientation of

the particle. In a translation move, a particle attempts to move
to a neighboring site, which is always accepted if the targeted
space is empty and rejected otherwise. To implement activity,
movements along the particles’ orientation were chosen with
higher probability. Other directions were also allowed with
reduced probability to account for translational diffusion.
As in Ref. [16] Model I [15] on a hexagonal (hex.) and a

square (sq.) lattice were investigated to study the influence of
lattice geometry on emerging dynamical properties. In each
simulation step, the program attempts to change the orienta-
tion of a particle first: A Gaussian distributed random number
(having standard deviation σrot and zero mean) is chosen
and rounded to the nearest integer. The current orientation
is adjusted by that integer, and the move is accepted with
probability 1. As indicated, the rotational diffusion parameter
σrot governs the width of the Gaussian distribution and hence
the activity of the model: A low value for σrot corresponds
to a low probability for orientation adjustments and thus
enhanced activity and vice versa. Afterwards, a translation
move is attempted with the same particle and accepted if the
destination location is empty. The direction for the move is
chosen at random, with probability w+ along the particle’s
current orientation and with probability wt for any of the
remaining directions. For the hexagonal lattice probabilities
are set to w+ = 25/30 and wt = 1/30 [15], for the square
lattice w+ = 17/20 and wt = 1/20 [16].
In Model II [14] either a rotation or a translation move is at-

tempted in an individual simulation step on the square lattice.
A clockwise or anticlockwise rotation is performed with rate
w1 = 0.1, an attempted move along the current orientation
is undertaken with rate w+ and in any other direction with
wt = 1. Activity is regulated by adjusting w+. Probabilities
for each move are obtained by dividing the individual rates by
the sum of all rates, namely (w+ + 3wt + 2w1). For a more
in-depth discussion of the lattice models including steady state
critical exponents and visualizations of particle moves, the
reader is referred to Ref. [16]. Note that model parameters
for the three active lattice models (including w+,wt , and w1)
were all taken from the original publications in which the
models were first introduced [14–16]. In general, parameters
were chosen to balance active movement with regular diffu-
sion and mimic off-lattice models such as active Brownian
particles. Such choices are helpful in dealing with matters that
are parts of debates.
All lattice systems were equilibrated at the correspond-

ing critical densities (0.524 for Model I hex., 0.498 for
Model I sq., and 0.527 for Model II [16]) for 5000 time units
in a mixed state and then quenched to the critical points. For
equilibration, activity in Model I was set to σrot = 1 and in
Model II to w+ = 1.25. Two hundred independent runs were
performed for L = 512. The system size for the hexagonal
lattice was increased by 2/

√
3 to 592 in one direction to

account for the hexagonal structure. Quenches to the critical
points were simulated for five different system sizes. Four
hundred independent runs were undertaken for L = 64 and
L = 128 200 runs for L = 256 and 512 and 50 for L = 1024.
For the hexagonal lattices, one dimension was again adjusted
as described above. Critical simulation parameters were taken
from Ref. [16] as σrot = 0.3048 for Model I hex., σrot =
0.2415 for Model I sq. and w+ = 4.76 for Model II sq.
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FIG. 3. Scaling plots of the correlation functions for the quench
protocol of Fig. 2(c). Data from several different times are included
for quenches of random initial configurations to the critical point,
for the off-lattice model. The exponent η is set to 0.25, the 2D Ising
value.

III. RESULTS AND DISCUSSION

As already stated, in Fig. 1 we show the phase diagram of
the off-lattice model. TheMIPS phase behavior resembles that
of a vapor-liquid phase separation in passive systems rather
closely. Nevertheless, it is not clear yet whether the critical
behavior can be attributed to the Ising universality class. On
the one hand, a study with the model used in this paper showed
clear deviations from the 2D Ising universality class [17]. On
the other hand, studies using other (somewhat similar) models
concluded agreement with 2D Ising universality class [15,19]
which resulted in a controversy. Recently, however, renormal-
ization group studies of active matter models appeared [18,20]
which could potentially reconcile these discrepancies and ex-
plain deviations from ideal Ising behavior. Apart from the
Wilson-Fisher fixed point associated with the Ising univer-
sality, these studies find other points that limit the region in
which the former dictates the phase transition. Even though
little is known about the transitions described by these other
points, they might potentially be connected to various forms
of microphase separation observed, e.g., in Ref. [44].
In Fig. 2 we show snapshots from the evolution of our

off-lattice ABP model system following a quench of random
initial configurations to various state points. There, locations
of particles are marked by dots. The frames under Figs. 2(a)
and 2(b) are for quenches to state points inside the coexistence
region (see Fig. 1). In Fig. 2(a) the overall density of particles
is closer to the vapor branch of the coexistence curve. For
this case, as expected, we observe formation and growth of
disconnected clusters. In Fig. 2(b) we have included evolution
snapshots corresponding to the critical value of φ = φc. In this
case we observe an essentially bicontinuous structure. The
snapshots in Fig. 2(c) are for quenches to the critical point,
and the resulting fractal nature of the morphology can be
appreciated. In the following we will only discuss Figs. 2(b)
and 2(c) before moving to results from the lattice models.

FIG. 4. (a) Results for growing correlation length are shown
from different system sizes for quenches of random initial config-
urations to the critical point. The solid line is a power law, the
value of the exponent mentioned next to it. Inset shows the plot
of instantaneous exponent, 1/zi, as a function of 1/ξ , for L = 256.
(b) The steady state values of the correlation length, ξmax, are plotted
versus the system size L. These results are for the continuum model.

Note that in the case of Fig. 2(a), gathering meaningful data
would require simulations of very large systems over long
periods.
First we discuss the case of a quench to the critical point. In

this case, due to the fractal nature of the structure the scaling
property of Eq. (3) should be written as

C(r, t ) ≡ r
C̃[r/ξ (t )], (8)

where
 is a function of the space and the fractal dimensions.
Recalling that the equilibrium (here steady-state) correlation
function in the critical vicinity has the form [38,39]

r−pe−r/ξ ; p = d − 2+ η, (9)
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FIG. 5. Scaling plots of (a)C(r, t ) and (b) S(k, t ), for the quench-
ing protocol described in Fig. 2(b). In panel (b) the solid lines
represent power laws with exponent values mentioned in adjacent
locations. These results are from the simulations of the off-lattice
model.

we have the modified scaling form

rηC(r, t ) ≡ C̃[r/ξ (t )], (10)

the critical exponent η being 1/4 in space dimension d = 2
for the Ising class [39]. To confirm this scaling property we
have plotted r0.25C(r, t ) as a function of r/ξ (t ) in Fig. 3. Re-
sults from several different times have been included. Similar
exercises were performed by replacing η by other numbers.
The collapse for 0.25 appears the best.
The values of ξ (t ) obtained via the above discussed scaling

analysis are plotted in Fig. 4(a), as a function of t . Data
from different system sizes, as seen on the log-log scale,
indicate a power-law growth with the exponent 	 0.275. This
is consistent with 1/z, with z = 4− η, as expected for the
2D Ising class. In the inset we have shown the instantaneous

FIG. 6. (a) Plot of the average domain length as a function of
time for the quenching protocol described in Fig. 2(b). (b) Instanta-
neous exponent corresponding to the growth in panel (a) is plotted
versus 1/�. These results are from the simulations of the continuum
model.

exponent [46–48]

1/zi = d ln ξ (t )

d ln t
, (11)

as a function of 1/ξ (t ). Asymptotically, a convergence toward
0.275 can be appreciated. In Fig. 4(b) we demonstrate that the
maximum correlation length scales with the system size, as in
the passive case, at the critical point. A more accurate study
calls for an exercise where ξmax for different system sizes L
are calculated at the finite-size critical points. Now we discuss
the case of Fig. 2(b).
To check for the self-similar nature of the evolving pat-

tern we calculate C(r, t ). Scaling plots of this quantity are
presented in Fig. 5(a). In this case we aim to validate the
scaling form of Eq. (3). Data from a few different times
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FIG. 7. Autocorrelation functions from the simulations of the
off-lattice model are plotted versus the translated time t − tw, for a
few values of the waiting time tw. These results are for the protocol
of Fig. 2(b).

are shown. There, the distance axis is scaled by the average
domain lengths at the corresponding times. Clearly, data from
different times nicely collapse on top of each other, confirm-
ing self-similar growth. A scaling plot for the structure factor
is presented in Fig. 5(b). There the power-law decay in the
large wave vector (k) limit validates the Porod law [49]. The
latter originates from scattering from sharp interfaces. We will
discuss the small k power-law behavior later. Note that the
presented scaling form for the structure factor S(k, t ) is a
direct consequence of the fact that this quantity is the Fourier
transform ofC(r, t ).

FIG. 8. Same as Fig. 7 but here we show Cag(t, tw) as a function
of t/tw. The solid line has a power-law decay. The value of the
exponent is mentioned next to the line.

FIG. 9. The instantaneous aging exponent is plotted versus tw/t
for a value of tw . The solid line is a guide to the eyes.

The average domain lengths are plotted in Fig. 6(a) as a
function of time. The late time behavior is consistent with a
power-law exponent 1/3. The latter is expected for diffusive
domain growth as seen in Lifshitz-Slyozov mechanism [35]
and is realized in Monte Carlo simulations [29] of Ising model
via Kawasaki exchange [50] kinetics that preserves the system
integrated order parameter over time [23,29]. In Fig. 6(b) we
show [46–48]

αi = d ln �(t )

d ln t
, (12)

versus 1/�. Clearly the asymptotic convergence (� = ∞ limit)
is toward a value very close to 1/3.
In Fig. 7 we present the autocorrelation function,Cag(t, tw ),

versus the translated time t − tw. Clearly, results from dif-
ferent tw do not overlap, as expected for evolving systems.
The same data sets are plotted versus t/tw in Fig. 8. Good
overlap is observed. There the deviations of the data points
from the master curve, that occur at different abscissa values
for different tw, are due to finite size of the systems. These
departures should not be considered while quantifying the
decay in the thermodynamically large system size limit. At
large values of t/tw, prior to the appearance of the finite-size
effects, it appears that Cag decays in a power-law manner
with an exponent 1. For an accurate estimate of the exponent,
in Fig. 9 we show the corresponding instantaneous expo-
nent [32,36] −d lnCag/d ln(t/tw ) as a function of tw/t . The
convergence is toward 1.1, when analyzed by discarding the
finite-size affected part, that appears when tw/t is small. This
implies λ 	 3.3 which is in agreement with the Ising value for
conserved order parameter [36].
Depending upon the conservation of order-parameter dur-

ing evolution, there exist important bounds on the aging
exponent λ [32,34]. For nonconserved order-parameter dy-
namics, which is not relevant to the present problem, Fisher
and Huse provided a lower bound, λ � d/2, that can be
obtained from the well-known Ohta-Jasnow-Kawasaki (OJK)
correlation function [52] involving two space points and two
times. Later Yeung, Rao, and Desai (YRD) [34] provided a
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FIG. 10. Snapshots obtained during the evolutions of the consid-
ered lattice models are presented for three different times after the
quenches to the critical points took place. Time t is given in Monte
Carlo steps. The locations of the particles are marked. (a) For Model I
hex., a system at critical density 0.524, is quenched to σrot = 0.3048.
The system is of size 512× 592, to adjust for the hexagonal lattice
structure. (b) For Model I sq., a critical density (0.498) system is
quenched to σrot = 0.2415. The system is of size 512× 512. (c) For
Model II sq., a system with critical density 0.527 is quenched to
w+ = 4.76. System is of size 512× 512. The comparison of the
results with the 2D conserved Ising model is presented in Fig. S4,
in the Supplemental Material [45].

more general lower bound, viz.,

λ � d + β

2
, (13)

where β is the exponent characterizing the small wave-vector
(k) power-law behavior [51],

S(k, tw ) ∼ kβ. (14)

For Ising-type systems, for standard nonconserved dynam-
ics [36,52] β = 0. Thus, the YRD bound matches with
the lower bound of FH. However, for similar models with
conserved order-parameter dynamics one should ideally
have [51] β = 4. The latter type of dynamics is of relevance
here [23,29]. In Fig. 5(b) we have shown a representative plot
of the structure factor, as a function of k, on a double-log scale.
The small k behavior is consistent with β = 3. In that case we
have the YRD bound to be equal to 2.5, recalling that here
d = 2. Our result in Fig. 9 satisfies the lower bound of YRD.
Somewhat smaller value of β than 4 was realized in earlier
works also [53].
Before concluding, we present results from growth in the

lattice models. In Fig. 10 we show evolution snapshots for
quenches to the critical points for different lattice models.
In Fig. 11 we have shown the growth of ξ for these lattice
models. The results are consistent with the Ising case. For

FIG. 11. Time-dependent correlation lengths are plotted for
(a) square lattice using method-I, (b) hexagonal lattice using method-
I, and (c) square lattice using method-II. The solid lines are power
laws with mentioned value of the exponent. These results are for
quenches of random initial configurations to the critical points.
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quenches inside the coexistence regions, patterns obtained
from the lattice models differ from the 2D conserved Ising
model, and in the late stages the underlying lattice geometry
becomes apparent. See Figs. S1 and S2 in the Supplemental
Material [45]. The average domain length grows faster as
well (Fig. S3) [45]. Further investigations, thus, are certainly
warranted.

IV. CONCLUSION

We have studied critical and off-critical kinetics of vapor-
liquid phase transition in a model system consisting of active
Brownian particles [17]. Results are presented for structure,
growth, and aging. Each of these aspects appear to be quite
similar to those observed during phase separation in the Ising
model with conserved order-parameter dynamics [23,29].
The growth of average domain size follows a power-law
behavior with an exponent α = 1/3, as expected for Lifshitz-
Slyzov mechanism [35]. The aging exponent λ appears to
have a value 3.3 that is in quite good agreement with
two-dimensional conserved dynamics of Ising model [36]
within 10%. The value of λ satisfies the Yeung-Rao-Desai
bound [34]. The structure also matches Ising behavior.
Note that our results for ABPs are not necessarily in

contradiction to the central claim of Ref. [17], namely that
static critical exponents differ from the 2D Ising case. In

our opinion, they merely indicate that critical behavior in
nonequilibrium systems may still not be as well-understood
as in the equilibrium case, and that future research in this
field is certainly warranted. On a related note, inertia [54,55]
and hydrodynamics [56] also appear to affect behavior of
active particles in the phase separated region and beyond,
and a thorough investigation of their influence on dynam-
ics, particularly in the critical region would be interesting as
well.
Finally, we have also presented results from a few lattice

models [15] for quenches to the critical points. In these cases
also the structure and dynamics, like in the case of the contin-
uum model, are similar to those for the conserved Ising model
in d = 2.
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FIG. S1. Series of snapshots obtained during the evolutions of the ABP lattice models and con-

served Ising model, for three different times, after the quenches to the miscibility gap took place.

Time t is given in MC steps. The locations of the particles are marked. (a) For Model I hex., a

system at critical density 0.524 is quenched to σrot = 0.15. The system is of size 512 × 592, to

adjust for the hexagonal lattice structure. (b) For Model I sq., a system of size 512×512, at critical

density 0.498 is quenched to σrot = 0.15. (c) For Model II sq., a system at critical density 0.527,

having size 512 × 512, is quenched to w+ = 30. (d) For conserved 2D Ising model a system with

50:50 composition and size 256 × 256, has been quenched to T = 0.6Tc. Here Tc � 2.269 is the

critical temperature.
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FIG. S2. Scaling plots of correlation function, C(r, t), as a function of r/� as obtained from

the different active lattice models and the conserved 2D Ising model for the quenching protocols

described in Fig. S1
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FIG. S3. Domain length �, as a function of time t, obtained from the different active lattice models

and the conserved 2D Ising model, for the quenching protocol described in Fig. S1, are shown. The

black dashed lines correspond to power-laws. The exponent values are indicated next to them.
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FIG. S4. Snapshots obtained during the evolutions of the ABP lattice models and conserved Ising

model are shown from three different times after the quenches to the critical points took place.

Time t is given in MC steps. The locations of the particles are marked. These are similar to

Fig. S1, expect for the fact that in the former quenches were performed into the coexistence region.
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even be stabilized with no external mag-
netic field applied,[7–9] which makes them 
potentially useful for memory and com-
puter logic devices.[3,10] In addition to such 
devices based on the controlled operation 
of single skyrmions, also thermally acti-
vated skyrmions and skyrmion ensem-
bles have been suggested for functional 
devices for non-conventional computing 
approaches: recently it was shown, that 
skyrmions, including ensembles, can be 
relevant for stochastic computing where a 
functional skyrmion reshuffler device was 
implemented.[11] And in particular for res-
ervoir computing, we have suggested to 
use ensembles of many skyrmions where 
the skyrmion interaction and collective 
behavior is of key importance.[12] Thus 
advanced functionality in nanoscale devices 

is enabled if the properties of ensembles of skyrmions can be 
understood and controlled. Periodic ensembles called skyrmion 
lattices have been found widely in bulk materials with B20 sym-
metry, where the topological structures are stabilized due to bulk 
Dzyaloshinskii–Moriya interaction (DMI).[4,5,13,14] However, in 
bulk systems the skyrmions are mostly not 2D like, as the “skyr-
mion tube” length can easily exceed the skyrmion diameter or 
even the skyrmion-skyrmion distance. In advanced thin film 
systems, skyrmions down to sub-nm thickness and diameters 
in the range of micrometers are stabilized, making them prime 
candidates for perfectly 2D systems. While skyrmion lattices have 
been studied theoretically in such systems, only recently first 
experimental reports of thin film lattices have been reported, 
albeit with systems where the relatively large (≈100  nm) film 
thickness is similar to the lateral skyrmion size making these 
systems not necessarily 2D.[13,15–17] Thus to experimentally probe 
the rich phase behavior of 2D systems[18–20] akin to colloids in 
the past,[21–23] 2D skyrmion lattices occurring in ultra-thin film 
stacks might be an ideal model system.[24] The nature of phase 
transitions in 2D systems of hard and soft disks has been a grand 
challenge in statistical physics, which has recently been numeri-
cally treated.[18] Apart from a liquid at low and a solid phase at 
high density, a third intermediate phase may emerge: The hexatic 
phase is characterized by short range translational and quasi-long 
range orientational order, and there is a clear need for experi-
mental 2D systems to probe this unique phase behavior. This 
calls for studying 2D skyrmion lattices and analysis of their phase 
behavior with numerical simulations based on coarse-grained 
models from Statistical Mechanics to identify possibly unique 
2D properties as well as gauge the suitability of these systems to 
study the exciting 2D phase behavior.

1. Introduction

Magnetic skyrmions, topologically stabilized whirls of magneti-
zation, are in the focus of the scientific community due to their 
attractive properties for possible novel functional devices.[1–3] 
Using spin-transfer torque and spin–orbit torque,[4–7] skyrmions 
can be moved with high speeds at low current densities and can 

© 2020 The Authors. Published by Wiley-VCH GmbH. This is an open 
access article under the terms of the Creative Commons Attribution  
License, which permits use, distribution and reproduction in any  
medium, provided the original work is properly cited.

Adv. Funct. Mater. 2020, 30, 2004037

60



www.afm-journal.dewww.advancedsciencenews.com

2004037 (2 of 8) © 2020 The Authors. Published by Wiley-VCH GmbH

Thus, in this work, we use a sub-nm thick CoFeB-based 
multi layer system to study the emergence of skyrmion lattices 
as well as their response to tuning external parameters such as 
temperature and field. Since the skyrmion diameter (Figure 1a) 
is three orders of magnitudes larger than its thickness (0.9 nm), 
and as the thickness of the magnetic layer is much smaller than 
the exchange length so that the magnetization texture is uni-
form along the z-direction, this system could be considered 
to be inherently 2D. This is distinctly different from previous 
reports on topologically trivial bubbles for instance in yttrium 
iron garnet (YIG) films that are >μm thick and where no size-
able DMI is found. By experimentally ascertaining the phase 
transitions, we demonstrate the 2D nature of the system as well 
as its suitability as a model system to probe 2D phase behavior.

2. Results and Discussion

Using Kerr microscopy imaging we investigated a low-pinning 
multilayer stack Ta(5)/Co20Fe60B20(0.9)/Ta(0.08)/MgO(2)/Ta(5) 
similar to a material previously characterized in which the 

skyrmions show thermally activated diffusion at low skyrmion 
densities.[11] The studied material exhibits perpendicular mag-
netic anisotropy (PMA) and interfacial DMI.[11] Using out-of-
plane magnetic field sweeps, stripe domains, and a low density 
of skyrmions are present in the sample. Upon fixing the out-
of-plane field and a subsequent saturation of the sample using 
an in-plane field in any direction, a high density of skyrmions 
is nucleated in the sample when the in-plane field is reduced 
back to zero abruptly by switching off the power supply to the 
in-plane coil. Due to the interfacial DMI and concluded from 
current induced motion experiments, the observed skyrmions 
were topologically stabilized, with a fixed chirality, and rota-
tional symmetry and a topological charge Q = 1. This is desired 
for our further investigation as there are no reports indicating 
phase transitions with spatially ordered Q = 0 magnetic bubbles 
that are not rotationally symmetric. The density and the mean 
radius of the skyrmions is controlled by the values of the out-
of-plane magnetic field applied and the temperature. For details 
on the MOKE hysteresis loops and skyrmion lattice nucleation, 
see Supporting Information. By varying the out-of-plane field, 
the size and as a result also the skyrmion lattice density and 

Figure 1. Picture of skyrmion lattice and evolution of phase quantifiers. a) Kerr image of a skyrmion lattice at 335 K with μm sized skyrmions. b) The 
evolution of 〈|ψ6|〉 averaged over all skyrmions in one frame in dependence of time after nucleation. The red, blue, and green backgrounds depict the 
nucleation, stabilization, and a semi-steady skyrmion state, respectively. 〈|ψ6|〉 is dependent on the temperature and the applied out-of-plane field. 
c) Pair correlation function g(r) right after nucleation, in the stabilization phase and in the semi-steady state for temperature 338 K and 20 μT applied
out-of-plane field. After switching off the in-plane field and the resulting skyrmion nucleation, the red pair correlation function (in (c)) emerges and
indicates typical nearest and next-nearest neighbor distances. Blue and green curves show the pair correlation function g(r) in the relaxation and semi-
steady state of the lattice, respectively. In the stabilization process, the correlation function is noisier, whereas in the semi-steady state the function
has a finer distribution.
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ordering is tuned, which is a unique handle compared to previ-
ously used systems, such as colloids with fixed sizes. Variations 
in temperatures are found to tune the amount of thermally acti-
vated motion but also the average skyrmion radius, as well as 
lattice density due to the changing magnetic properties.[11] To 
evaluate phases in 2D systems such as the skyrmion lattice 
phases (Figure 1a), we employ two quantifiers:

The local orientational order parameter[18,25] (Figure 1b)
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The local orientational order parameter is a standard measure 
to quantify the emergence of local hexagonal order.[18,25] θkl 
describes the angle of the connecting line between a (central) 
skyrmion k and the lth of its nk nearest neighbors with respect 
to a fixed axis (here the x-axis).[18] The cut-off distance to find 
the nearest neighbors was selected to be the position of the first 
minimum in the corresponding pair correlation function g(r). 
A strict cut is implemented, so the number of neighbors nk will 
usually but not necessarily be 6. For a perfect (periodic) trian-
gular lattice, the contribution of all six neighbors yields |ψ6| = 1.

The 1D pair correlation function g(r) (Equation (2)) contains 
basic information such as typical nearest and next-nearest 
neighbor distances and the general structure of a gas, liquid or 
crystal. Particularly, it allows us to quantify the local structure of 
a skyrmion lattice in area A by comparing it to a structureless, 
homogeneous fluid of area density N

A
ρ = . Essentially, we count

the number of particles located at a certain distance around 
each particle and divide this number by the expected number 
of particles in a fluid with no structure. In our modelling 
approach we use this quantifier to reproduce the basic structure 
of the system while keeping the fitting procedure manageable. 
Equation (2) is, however, not suited to visualize the emergence 
of hexagonal order like the 2D-pair correlation function, for 
example, used in ref. [18].

To study the evolution of the phases of the system, we take a 
video using the Kerr microscope after an in-plane magnetic field 
is switched off. The observed skyrmions are tracked, their posi-
tions are evaluated, and quantifiers are calculated for each frame 
in the video. Calculation of the correlation functions and indi-
vidual skyrmion position evaluation is described in Section 4. The 
local orientational order parameter is calculated for every skyr-
mion in one frame except for those on the border of the frame. 
Note that in this context the expression “order parameter” refers 
to a parameter which quantifies the local orientational order of 
a system and is not to be understood in the classical sense as a 
parameter which characterizes second-order phase transitions. To 
obtain a quick indication of the state and the phase of the system, 
we introduce a heuristic parameter 〈|ψ6|〉, which averages the 
absolute value of ψ6 over all skyrmions for which ψ6 was com-
puted.[25] From simulations of a soft disc system we find that the 
liquid branch of the liquid to hexatic coexistence region is marked 
by 〈|ψ6|〉  ≈ 0.69 irrespective of the exponent of the underlying 

repulsive power-law potential used in the simulations. Larger 
values correspond to hexatic or solid phases (respectively their 
onsets), while smaller values are characteristic for liquid phases. 
For details, we refer the reader to Supporting Information.

Figure 1b shows 〈|ψ6|〉 of the skyrmion lattice at fixed out-of-
plane field and sample temperature as a function of time after 
the initial lattice nucleation. As visible, the angular ordering 
as well as translational ordering as quantified by the pair cor-
relation function (Figure  1c) is not constant instantly after 
switching off the magnetic in-plane field: A local liquid-like 
structure emerges and becomes more pronounced as relaxation 
proceeds. Note that it is not possible to distinguish the 1D g(r) 
of the hexatic phase from that of a dense liquid as pointed out 
above. Immediately after switching off this field, the skyrmions 
are nucleated on a timescale that is below the time resolution 
of the measurement setup (ms). This is then followed by a 
stabilization phase in the range of seconds to tens of seconds. 
The stabilization time frame is influenced by the energy land-
scape of the multilayer material and the diffusion parameter of 
the skyrmions to form an ordered structure that we term here in 
line with literature a skyrmion lattice. While the initial ordering 
occurs rather quickly in all cases, 〈|ψ6|〉 is still increasing 
slightly over the course of our measurement (60  s) consistent 
with the expected prolonged equilibration times associated with 
the emergence of hexagonal order. We refer to the last 30s of 
the 〈|ψ6|〉(t) as the “semi-steady” state, which is a sufficiently 
long period to robustly measure quantifiers. The initial 4 s after 
switching off the in-plane field where the highest slope of 〈|ψ6|〉
(t) is found and where the nucleated skyrmions form a lattice is
referred to as the “nucleation” period. The “relaxation” period
covers the remaining part of the time evolution. These criteria
were chosen by comparing the obtained videos at every tem-
perature and out-of-plane field combination for a comparable
evaluation of the skyrmion lattice.

While as shown in Figure 1b, at 338 K the system orders with 
〈|ψ6|〉  > 0.69 (indicating possibly a hexatic phase, see further 
below for a detailed discussion), at 330 K 〈|ψ6|〉 only goes up 
to the value of 0.55, consistent with the formation of a more 
disordered dense liquid phase. Likewise, the pair correlation 
function also changes in the course of equilibration (Figure 1c). 
Fluctuations are related to the thermally activated movement 
of the skyrmions that occurs in the lattice. We observe that 
skyrmions repel each other and we do not see any significant 
skyrmion-skyrmion annihilation thus boding well to study 
the phase transitions. Having established the time evolution 
of 〈|ψ6|〉, we now systematically study the dependence of the 
semi-steady state lattice properties on the external parameters, 
temperature and magnetic field to explore the tunability. The 
average tψ| |6  is obtained from all frames after 30 s of equili-
bration and shown in Figure 2. With reducing temperature, the 
range of out-of-plane field where skyrmions can be stabilized 
becomes narrower and a monotonic trend of higher hexagonal 
order with higher temperature is observed. The highest tem-
perature achievable was limited by the measurement tempera-
ture control as well as the spatial resolution since the skyrmion 
diameter depends on temperature. At too low out-of-plane 
fields, after in-plane field sweeps, not only skyrmions are sta-
bilized but also elongated chiral domains are present. These 
effectively distort the lattice and hinder its higher ordering so 
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that we have focused on parameter combinations where we 
have only skyrmions. A decreasing tendency of angular order 
is found at increased out-of-plane field values for every studied 
temperature. This can result from higher skyrmion-skyrmion 

distances, where the thermal movement of the magnetic tex-
tures is more pronounced and thus hinders the ordering of the 
lattice. A maximum value of tψ| |6  of around 0.73 is obtained
at the highest investigated temperature and 20 μT out-of-plane 
field when also the highest observable skyrmion density is 
reached.

As the onset of the hexatic (or even solid) phase is directly 
visible in the spatially resolved map of the local orientational 
order parameter, we study this at the maximum value of 

tψ| |6  (338  K, 20 μT): Figure 3a shows the hexatic skyrmion 
domains with coincident orientation of ψ6 as measured by the 
angle θ (Euler angle of the complex number ψ6 divided by 6 as 
explained in Section 4). The average domain size is of the order 
of 50  μm, corresponding to roughly 100 skyrmions. In par-
ticular we see a homogenous distribution of |ψ6| in Figure 3c.

For comparison, we also show the corresponding liquid 
phase results for T = 330 K and B = 40 μT in Figure 3b,d). Note 
that skyrmions are much larger under these conditions and 
domains of similar orientation are of the order of 10 particles 
or less. In this liquid phase, there is no homogeneous distribu-
tion of |ψ6| as shown by the irregular colors in Figure  3d. To 
understand our results and draw robust conclusions about the 
phases and the 2D nature of the studied system, we support the 
experimental results with numerical simulations using a model 
of soft particles which interact with each other via a repulsive 
power-law potential r−n. This choice is purely empirical but 
allows us to describe the strong short range repulsive interac-
tion studied previously.[26] At the same time, the chosen poten-
tial benefits from the availability of exact phase diagrams for 
a wide range of n.[18] For n  ≥ 6 (which includes the hard disk 
scenario) the transition from the liquid to the hexatic phase was 
shown to be of first order followed by a continuous transition to 

Figure 2. Time averaged | |6ψ t  for different out-of-plane fields in the 
temperature range 325–338 K. The field and temperature ranges are lim-
ited by the stability of a pure skyrmion lattice as well as the minimum 
size of skyrmions that can be detected. The highest ordering achieved is 
at 338 K with 20 μT. | |6ψ t  was calculated from the skyrmion position in 
the sample in the semi-steady state part of the skyrmion lattice formation 
(after 30 s since the skyrmion nucleation). Empty circles are simulation 
results corresponding to T = 338 K and T = 330 K and were determined 
after 106 simulation time steps. Dashed lines serve as guidelines between 
points only.

Figure 3. Spatial distribution of the local orientational order parameter ψ6 of individual skyrmions. (a) and (c) were evaluated at 338 K and an out-of-
plane field value of 20 μT. This represents the state with the highest value of | |6ψ t  in Figure 2. (a) visualizes the orientation of ψ6, that is, the orienta-
tion angle θ, while (c) visualizes the absolute value of ψ6. (b) and (d) are corresponding figures for 330 K and 40 μT.
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the solid phase.[18] For smaller values of n, the transition from 
the liquid to the hexatic phase becomes continuous and of the 
Kosterlitz-Thouless–Halperin–Nelson–Young (KTHNY) type.[27]

In the following, we want to ascertain to which extent skyr-
mion lattices can be used as generic model systems to explore 
the phase behavior of 2D systems akin to colloids.[21–23] At the 
same time, we want to gauge if a coarse phenomenological 
model from statistical physics is actually able to describe the 
bulk macroscopic behavior of skyrmions accurately. Building 
upon expansive numerical work, which has determined the 
phase behavior of soft disks with great accuracy, Molecular 
Dynamics simulations of this model were performed and 
mapped onto our skyrmion system.[18,28–30] Parameters were 
adjusted to match the pair correlation function of skyrmions 
for a given density. Note that fixing n (to, e.g., 6 to represent 
interactions between dipoles) will generally lead to a worse 
agreement with the experimental g(r). For a detailed discus-
sion of the mapping procedure, see Section 4 and Supporting 
Information.

Using this ansatz, we have reproduced the experimen-
tally observed behavior of tψ| |6  for T = 338 K and T = 330 K

(Figure  2). Qualitative agreement between simulations and 
experiments is found. However, one should note that 〈|ψ6|〉 is 
very sensitive to the details of the mapping (e.g., if all details 
or only parts of g(r) are used). Another caveat for both simula-
tions and experiments at T = 338 K is the time after which 〈|ψ6|〉 
is measured as it increases during the course of equilibration. 
Nevertheless, considering that our mapping is purely based on 
basic structural information (namely density and the 1D g(r)), 
the qualitative agreement shows that static properties of skyr-
mion interactions can indeed be captured by a coarse-grained 
phenomenological model.

A more quantitative approach relies on the decay of the spa-
tial correlation function G6 which can also be used to distin-
guish phases in 2D systems:[21,22]

G r
n

r r
r r r r

k l

k l

∑ ψ ψ=
− =

∗( )
1

( ) ( )6 6 6 (3)

Here, we sum over all nr particle pairs whose distance is r. 
In Figure 4, we compare the decay of G6 from experiment at 
T = 338 K and B = 20 μT and simulation. While this correlation 
function decays exponentially in the liquid phase, quasi-long 
range orientational order is expected to emerge in the hexatic 
phase.[27] Depending on the equilibration time after which the 
correlation function is measured in the simulation, the enve-
lope of G6 increases toward an algebraic decay. We also observe 
that the experimental data (black dashed curve) is still decaying 
exponentially and is likely not fully equilibrated, yet, in line 
with our observations in Figure 3a.

The effect of equilibration can also be seen in simulation 
snapshots. While after 104 equilibration steps the distribution of 
θ in Figure 5a (as well as the decay of G6) is similar to the corre-
sponding experimental plot (Figure 3a), the domains of similar 
orientation continue to grow as indicated by a snapshot taken 
after 108 equilibration steps (Figure 5b).

3. Conclusions

Based on our numerical simulations, we conclude that the 
observation of multiple domains in the experiment (Figure  3) 
is likely the result of an incomplete equilibration process as 
equilibration times are notoriously large in an emergent hexatic 
(or solid) phase. This is corroborated by the observation that 

Figure 4. Decay of the spatial correlation function G6 for the experimental 
system (338 K, 20 μT, averaged over frames 300–960) and matching simu-
lations after different runtimes (single snapshot of a quadratic simulation 
box containing 40 000 particles).

Figure 5. Spatial distribution of θ in a simulation corresponding to a sample temperature of 338 K and an out-of-plane field of 20 μT after a) 104 and 
b) 108 equilibration steps. Only a small part of the simulation box is shown to make plots comparable to Figure 3a.
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the sizes of the experimental domains continue to grow up to 
the maximum time which can be measured (that is limited by 
the setup stability). Additionally, we occasionally see structural 
defects that pin certain skyrmions that are thus not ordered 
locally and remain unordered potentially leading to artificial 
domain wall pinning.

In conclusion, we have analyzed the phases of skyrmion lat-
tices to identify the reduced dimensionality of this μm sized but 
sub-nm thick system. We have shown that by using the pair 
correlation function and local orientational order parameter we 
can characterize the skyrmion lattice system, which allows us to 
investigate 2D phase transitions. Temperature and out-of-plane 
field impact density and mean skyrmion-skyrmion distance 
and translate to different nucleation dynamics and hexagonal 
ordering of the observed lattice. We find that the hexagonal 
order increases with higher temperature and field values in the 
range of 10–30 μT. Above 338 K, the skyrmion lattice cannot be 
resolved with the optical microscope setup. For the majority of 
the selected parameters, we observe behavior consistent with a 
2D, dense liquid. However, we also find that for selected condi-
tions, our system is in an emergent hexatic (or even solid) phase 
showing its 2D nature. As expected for the hexatic phase, we find 
that the equilibration in this phase is very slow. By comparison 
with theory, we were able to reproduce qualitatively the experi-
mentally observed phase behavior using computer simulations 
with a simple phenomenological model based on soft disks by 
matching density and the 1D pair correlation function. We thus 
demonstrate that static behavior of skyrmion ensembles may be 
described by a simple 2D model system highlighting that our 
skyrmion lattices can indeed be used as 2D model systems with 
major advantages in terms of tunability and speed compared to 
conventionally used 2D model systems such as colloids.

4. Experimental Section

Sample Parameters: The sample was prepared using magnetron
sputtering in a Singulus Rotaris sputtering tool. The base pressure during 
the growth process was less than 3 × 10-8 mbar. The composition of the 
single stack was Ta(5)/Co20Fe60B20(0.9)/Ta(0.08)/MgO(2)/Ta(5), with 
the thickness of individual layers given in nanometers in parentheses. 
With the used deposition system, the thickness of the individual layers 
can be tuned in the stack in a controlled manner with high accuracy. The 
stack is similar to the one reported on previously where it was found that 
the very thin Ta layer on top of the CoFeB plays a key role in setting the 
effective anisotropy.[11] The sample was characterized using the magneto-
optical Kerr effect (MOKE) measurement. Single skyrmions can be 
stabilized in the ferromagnetic layer using out-of-plane field sweeping, 
meaning applying an oscillating out-of-plane field over several oscillation 
periods. This procedure moves the domains and eventually they break 
into smaller domains and in this case can form skyrmions. Elongated 
domains and skyrmions exhibit thermally activated diffusion. The 
hysteresis loop in applied out-of-plane field shows an hour-glass shape, 
typical for material with the presence of skyrmions (see Supporting 
Information). With higher temperature, the hysteresis loop is tilted 
toward larger applied fields. This indicates a change of the anisotropy 
of the material with temperature. The lowest investigated temperature is 
determined by the ability to stabilize the skyrmion lattice. Below 325 K, 
only stripe domains were nucleated by the saturation of the sample 
with an in-plane field. The highest achievable temperature for the lattice 
investigation was determined by the resolution of the microscope and 
the thermally activated motion of skyrmions. Above 338 K, the size of the 
skyrmions was comparable to the resolution of the Kerr microscope. The 

skyrmions movement was also more rapid. Above this temperature, no 
reliable skyrmion tracking in this material system could be performed.

The DMI was measured by investigating the domain periodicity at 
zero magnetic field and by comparison with micromagnetic simulations. 
Using the measured parameters of magnetic anisotropy and saturation 
magnetization and an exchange parameter of A = 10 pJ m−1, it was found 
that DMI is needed to stabilize skyrmion structures. The obtained DMI 
from comparing the measurement with the simulations is comparable 
to the value published previously for a similar stack (DI  = 0.3 ± 
0.1 mJ m−2).[11] The DMI in the material is sufficiently strong so that only 
topologically non-trivial skyrmion spin structures are stable. The effect of 
the topology on the skyrmion lattice phases and phase transitions could 
be studied in a material where both topologically trivial bubbles and 
non-trivial skyrmions are stable, which however goes beyond the scope 
of the current work.

Measurement Setup: A commercial Evico GmbH MOKE microscope 
was used. The optical spatial resolution is approximately 400  nm. 
The temporal resolution remains the same at any temperature and 
magnetic field and is 62.5  ms. At higher temperatures, the skyrmions 
become much smaller and their diffusion is enhanced and thus faster. 
This hinders the reliable tracking to identify the position given the 
time resolution. Therefore, the threshold where skyrmions can be 
tracked is determined by both the temporal and spatial resolution of 
the microscope setup. The in-plane field coil was supplied from the 
microscope manufacturer. The highest achievable in-plane field was  
300 mT. The coil for the out-of-plane field application was custom built 
at the University of Mainz. The coil was designed to have negligible 
coercivity and to be able to supply the sample with very small controlled 
fields in orders of μT. A current versus magnetic field calibration was 
performed using a Gaussmeter in the position of the sample and used 
during the measurement along different directions. The calibration 
for the Earth magnetic field was done using the hysteresis loop of 
the material. The residual Earth field caused an offset in the x-axis 
of the M-H loop. The authors compensated for this offset in the coil 
calibration. The calibration of all stray-fields and resulting offsets in the 
field values was performed before every measurement and no changes 
were observed during the timescale of the measurement. Adjustment 
of the in-plane field coil was done the same way. When the coil was 
tilted or set in a way that a cross field between the out-of-plane and 
in-plane field was present, the M-H loop of the material was shifted. The 
in-plane field coil was adjusted so that the hysteresis loop is the same as 
without the coil, only with out-of-plane field. A stage with two HighTech 
QuickCool QC-32-0.6.1.2 Peltier elements was used for the temperature 
change of the sample in the range of 280–350 K. The temperature was 
externally controlled by measurement of resistivity of a Pt100 resistor, 
which was placed next to the multilayer sample. The stability of the set 
temperature was measured to be within 0.3 K. The frame rate of the 
microscope camera was 16 frames s−1; therefore, the time resolution of 
the microscope measurement was 62.5 ms.

Skyrmion Tracking: Skyrmion lattices are visualized using a Magneto-
Optical Kerr-Microscope. In the pictures the out-of-plane magnetization 
is represented by a grey scale, so that the skyrmions appear as light blobs 
on a dark(er) background. Videos recorded that way were consecutively 
analyzed using the Trackpy[31] package. In a first stage, it locates the 
skyrmions by detecting Gaussian-like blobs in the grey scale movies. 
It was ensured that the software finds all skyrmions in the individual 
video frames. Several parameters are set to optimize the recognition 
for reliable results. Most importantly, the mask-parameter sets a rough 
estimate for the pixel-diameter of the features to be found. During 
the evaluation, it is set slightly above the average skyrmion diameter 
determined by simple binarization of the frame. The separation-
parameter enforces a minimum separation between the recognized 
features, this way over-recognition in defective areas is prevented. A 
safe value for the recognition is several pixels lower than the average 
skyrmion distance. The percentile-parameter depends on the contrast of 
the video and indicates to which extend the features are expected to be 
brighter than the surrounding area. The noise-parameter is a measure 
for the “sharpness” of the features to be detected and can vary between 
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measurement videos with different external parameters. Most of the 
skyrmion diameters are in a range from 7 to 13 pixels, corresponding 
to 4.5–8.5 μm. For example, at the temperature of 338 K and the out-of-
plane field of 20 μT, we set the mask to 9, the separation to 4, and the 
noise to 0.15.

Quantifiers for Phase Transitions in 2D Systems: The pair correlation 
function (PCF) (Equation (2)) determines the probability of finding two 
skyrmions at a distance r from each other. The position of the first peak 
assesses the mean nearest neighbor distance and deep in the solid 
phase characteristic sharp peaks resulting from the underlying lattice 
appear. It is, however, impossible to distinguish g(r) of liquid, hexatic 
and solid phases close to the phase transition and other identifiers 
need to be considered. Since the disk-shaped skyrmions develop 
hexagonal order as the bulk density increases, one can resort to the 
local orientational order parameter ψ6 (Equation (1)).[27] This complex 
parameter measures deviations from hexagonal order. The absolute 
value |ψ6|  = 1 for a perfect triangular lattice and decreases to 0 with 
increasing disorder. In addition to the absolute value of ψ6 one can also 
extract the local orientation angle of neighboring skyrmions, that is, the 
Euler angle of ψ6 divided by 6. Note that the orientation of a hexagonally 
ordered cluster consisting of the central particle and its six neighbors is 
essentially determined by the angle between the x-axis and the vector of 
the central particle and its neighbor in the range of 0–60°. The factor of 
six in the definition of ψ6 projects all vectors between the central particle 
and its neighbors on top of each other and ψ6 averages over these 
projections. The orientation angle (ranging from 0° to 60°) is therefore a 
gauge for the local orientation of the cluster with respect to the x-axis. 
This parameter is well-suited to visualize clusters of equal orientation. In 
simulations of soft disks, it was also noticed empirically that the mean 
|ψ6| is roughly 〈|ψ6|〉 ≈ 0.69 at the liquid branch of the liquid to hexatic
phase transition (see Supporting Information), and this parameter was
used as an additional indicator for the transition. For computing g(r) 
and ψ6, the MD analysis program FREUD was employed.[17]

Molecular Dynamics Simulations of Soft Disks: Molecular Dynamics 
simulations of soft disks were performed using the model of Kapfer and 
Krauth with the HOOMD Molecular Dynamics package and a Langevin 
integrator:[18,32]
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In this coarse, phenomenological model for the bulk behavior of 
skyrmions, σ roughly corresponds to the mean skyrmion distance, and 
n denotes the steepness of the potential. By running MD simulations 
at the experimentally determined skyrmion density, the authors were 
able to adjust the simulation potential so that the pair correlation for 
the simulated soft disks matches the pair correlation of the skyrmions. 
In order not to overparameterize the mapping to the experimentally 
measured PCFs, the authors only adjusted n and set σ constant. Even 
though the position of the first peak of the PCFs is not necessarily 
identical with the σ of the simulation potential, this approximation turns 
out to be sufficiently accurate for the examined densities. Therefore, 
σ was set in the simulations to be the position of the first peak of the 
experimentally determined PCFs. Simulations were then run for varying 
n in the range between 6 and 12 with 0.1 resolution. The matching of 
the simulated and experimental PCFs is determined as mean squared 
deviation measured up to the fourth maximum. This deviation shows a  
smooth dependence of n and a clear minimum which were taken as best 
match to the experiment. The optimal n is typically around 10 (for T = 338 K)  
and somewhat lower for lower temperatures. The determined density, 
σ and n allow running simulations mapped closely to the experiment 
and the estimated underlying experimental potential. For these mapped 
simulations, the mean absolute value 〈|ψ6|〉 were determined, which is 
to some extent, dependent on the equilibration time of the simulations. 
If not mentioned otherwise, the system was equilibrated for 106 time 
steps before measurements were taken. It should also be noted that the 
simulations employ a Langevin dynamics thermostat with a time step 
of 10−3 and could be further improved by including additional specific 

terms to account for gyrotropic dynamics.[33–35] It is not expected that 
the current static equilibrium results are affected because such terms 
do not contribute to the energy of the system and thus do not break 
detailed balance.[35] However, to analyze the dynamics of the system 
evolution in the future, such terms need to be considered.
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1. MOKE Loops 

Magnetization hysteresis loops using the Kerr microscope were investigated with respect 

to an out-of-plane field. No in-plane field was applied. The measurements were performed 

to determine the range of the out-of-plane field which can be applied to stabilize domains 

and magnetic textures in the sample. The MOKE signal is evaluated as the overall grayscale 

contrast averaged over the whole picture frame. Figure S1 shows the gradual change of the 
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hysteresis loops at different temperatures. Whereas at 300 K a sharp switching was 

observed and no skyrmions could be nucleated using field sweeping, at 325 K the sample 

shows a “hourglass-shaped” loop. In this configuration, using an out-of-plane field, a low 

density of skyrmions is nucleated together with elongated worm-like domains. At higher 

temperatures, the loop tilts towards higher field and skyrmions are nucleated at those field 

values. However, the nucleation of skyrmion lattices was only achieved using in-plane field 

sweeping.  
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Figure S1. Magnetization hysteresis loops at various temperatures measured using the 

Kerr microscope. The hysteresis loops transform from rectangular sharp switching at 

temperature 300 K to a butterfly-shaped loop at temperatures around 330 K. At those 

temperatures, the skyrmion lattices are nucleated and investigated. 

 

2. Magnetization with Temperature 

The temperature dependence of the magnetization was determined using the 

superconducting quantum interference device (SQUID). Measurements were performed to 
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investigate the change of magnetization in the range of temperatures used in the study. The 

substrate contribution was obtained by measuring the magnetization loops and subtracting 

the diamagnetic background. Magnetization dependence was fitted using the Bloch’s law. 

The Curie temperature was determined at . This indicates that the temperature 

range used for the skyrmion lattice ordering is far enough from the critical temperature. 
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Figure S2. Temperature dependence of the magnetization of the studied material. 

 

3. Skyrmion Nucleation 

The studied material exhibited perpendicular magnetic anisotropy. Using out-of-plane field 

sweeping, only stripe domains and a low density of skyrmions are present in the sample. 

Upon saturation of the sample using an in-plane field (not depending on the field 

orientation in the hard plane) and after discontinuation of the in-plane field, a high density 

of skyrmions is nucleated in the sample. The density and the mean radius of the skyrmions 

is controlled by simultaneous application of the out-of-plane field additional to the 

nucleation in-plane field. Depending on the interplay between the out-of-plane field and the 
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material magnetic anisotropy, the nucleated skyrmions expand to worm domains or shrink 

in their size down to a complete annihilation. The magnetic state before and after the 

application of the in-plane field sweeping is shown in Figure S3. As it has been previously 

shown that skyrmion nucleation occurs in the time scale of nanoseconds and the time 

needed for the in-plane field to be fully switched in our setup is in the range of 

milliseconds, we cannot resolve the skyrmion nucleation by itself. However, we focus on 

the formation and effects of the skyrmion lattice which lie within the resolution of our 

setup. To evaluate the skyrmion lattice, videos of the domain state have been taken using 

the Kerr microscope. The starting point was after the application of the desired out-of-

plane field and when the sample was fully saturated with the in-plane field. Afterwards, 

videos with the duration of one minute with the frame resolution of 16 fps (62.5 ms) have 

been taken for various out-of-plane field settings and several temperatures. 

 

 

Figure S3. Effect of in-plane sweeping on the skyrmion nucleation at temperature 335 K 

and constant out-of-plane field of 20 μT. On the left is the domain state after application of 

the out-of-plane field. No skyrmions are present in this state. After in-plane (IP) field 

application and discontinuation, a high density of skyrmion is nucleated in the sample, as 

seen on the right. 
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4. Matching of Experiment and Simulation 

The matching of simulations to experiments was outlined in the Experimental Section and 

here we address more details. 

To match a certain experimental measurement the positional data of the measured 

skyrmions are evaluated first. The pair correlation function is calculated averaging over the 

last 30s of the measurement video. The position of the (first) maximum of the so obtained 

g(r) sets the σ of our simulation potential (Equation 4). The skyrmion density is also 

calculated by averaging over the last 30s of the measurement video. For each frame, the 

number of detected skyrmions is divided by the detection area (given by the minimum and 

maximum of detected positions in x and y direction) and then averaged. This way the size 

of the unit cell of the simulation is given by the square root of the density. In different 

simulations with different exponents n in the potential, the deviation of the simulated g(r) 

from the experimental g(r) is calculated as described in the Experimental Section. A plot of 

this deviation in dependence of n can be seen in Figure S4a. It shows a clear minimum, 

from which n was determined. The simulated g(r) for this best match and the experimental 

one can be seen in Figure S4b. 

In general, this matching method works better for lower densities and higher out-of-plane 

fields. This is likely because the assumption that the position of the first peak roughly 

equals σ is more exact for these densities.  
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Figure S4. Matching theoretical simulations to experimental results. a) The mean squared 

deviation of the simulated pair correlation function and the experimental one, measured up 

to the 4th maximum in dependence of n (T = 338 K and 20 μT). The minimum is marked by 

the dashed line at n = 10.3. b) Experimental and matched pair correlation function (for T = 

338 K and 20 μT), simulated with n = 10.3 as determined in Figure S4a. The experimental 

pair correlation function is less pronounced in the higher order peaks, likely due to 

interfaces. Note that the matching works better for less dense systems. The experimental 

a) 

b) 
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pair correlation function shows a small discontinuity at around 3 μm which corresponds to 

the cutoff of our tracking software. The slight increase for r>3 μm is likely due to defects. 

 

 

5. Equilibration towards the Hexatic Phase 

In order to better understand the equilibration process of the experimental data, we 

simulated the experimental data set at T = 338 K and 20 μT with corresponding mapped 

potential. As we showed before in Figure 1 the formation of the skyrmion lattice is taking 

place rather quickly (about 30s) which is indicated by the measurements of and the 

pair correlation function. Measurements of however continue to grow slowly, 

indicating that equilibrium is not reached yet. Figure 4 suggests, that the 60s of 

experimental measurements roughly correspond to something between 104 to 105 

simulation steps for T = 338 K and 20 μT. Figure S5 shows the evolution of for the 

same simulation in dependence of simulation steps. It shows that the equilibration towards 

the hexatic phase is still not reached for 106 simulation steps and continues even further. 

This is in good agreement with the corresponding evolution of the spatial correlation 

functions shown in Figure 4. Between 104 to 105 simulation steps  for the simulation 

is below the experimental . This might indicate that the mapped potential is a bit too 

soft due to the above-mentioned problems of finding the correct σ. In conclusion one can 

estimate, that a fully equilibrated skyrmion lattice at this experimental setup is deeper in 

the hexatic phase than the measured and spatial correlation functions do indicate for 

now. 
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Figure S5. Time evolution of the mean absolute value for a simulation matching the 

experimental 338 K, 20 μT system. Simulation took place in a quadratic box containing 

40000 particles.  

 

6. Analysis of for Soft Disks 

for soft disks depends on the potential (i.e. n) and weakly depends on the system 

size. It turns out to be mostly independent of these parameters around the phase 

transition, namely the transition from the liquid phase to the liquid-hexatic-coexistence 

phase. This phase transition is the relevant one for us to mark the transition to the hexatic 

phase. Figure S6 visualizes the properties of described above and shows that 

is around 0.69 when the phase transition to the hexatic phase starts. [18] 
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Figure S6. Shows that the mean absolute value  does not differ at the transition point 

and closely below for different potentials (with n= 6, 8 and 12). Same applies for different 

system sizes. Above points are the results of individual simulations of quadratic boxes 

containing 40000 particles each. X-Axis is linearly shifted to match the liquid-to-liquid-

hexatic-coexistence phase transition points as determined in Ref. [18]. (dashed vertical line). 

The points in [-0.005…0.005] had 108 steps equilibration time and were measured over the 

course of 109 steps. All other points had 5·106 steps equilibration time and were measured 

over the course of 108 steps.  
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Conclusion and Outlook 

This work touched on many aspects of phase behavior in non-equilibrium 
systems and provided valuable insights and methods. Even though no final 
answer on the nature of universality in active matter systems could be 
provided yet, the understanding of such systems has been significantly 
improved. Nevertheless, there is still a long way to go towards a 
comprehensive theory of non-equilibrium systems. 

There are clear indications that MIPS in 2D active matter systems does not 
show all the properties associated with the concept of universality known 
from equilibrium systems. The deviations documented in this work should 
not occur otherwise, especially there should be no model dependence if 
MIPS was a truly universal phenomenon. The combined results from [B1] 
and [A1] show these model dependent results for the critical exponents even 
clearer, besides using the very same measuring methods. In equilibrium, 
universality is not influenced by the underlying structure, e.g., whether the 
model is discrete or continuous, but solely based on the nature of the 
interaction potential and the dimensionality of the system. The continuous 
two-dimensional Lennard-Jones fluid for example yields the same critical 
exponents as the discrete two-dimensional Ising model. 

Of course, one can argue that the measuring methods might cause the 
model dependence. Maybe they are working more exact in one model than 
in the other. However, the applied methods have not shown such deviations 
from model to model in equilibrium systems (2D Ising vs. Lennard-Jones 
fluid for example). Therefore, the discovered deviations clearly seem to be a 
highly interesting phenomenon unique to active matter either way. 

A possible explanation is given in ref. [55]: When connecting the ABPs to 
field theories, the coupling between density and polarization in the particle 
current is a key ingredient. Close to two dimensions the renormalization flow 
exhibits a pair of perturbative fixed points that limit the attractive basin of the 
Wilson-Fisher fixed point. As a consequence, the critical behavior of active 
Brownian particles in two dimensions is governed by a strong-coupling fixed 
point different from Wilson-Fisher. A deviation from the Wilson-Fisher fixed 
point however can correspond to a deviation from Ising universality. Possibly, 
the amount of deviation can also be linked to the exact implementation of 
activity and other parameters, thus explaining some sort of model 
dependence. 

Back in my diploma thesis I tested a slight modification of the 2D Ising model: 
First of all, a direction is assigned to all particles (spin up) and continuously 
updated to the direction of the last attempted movement of that particle, i.e., 
a Kawasaki move switching the spin with the next nearest lattice space. The 
Kawasaki move is furthermore preferably attempted in that direction with a 
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certain probability, hence introducing activity to the system. Since the spin-
spin-interaction is kept in place, this model is not governed by MIPS, but by 
the 2D Ising phase separation. The introduced activity did only shift the 
critical temperature: The higher the activity, the lower the critical 
temperature and vice versa. This means, that the activity only introduced 
some additional energy to the system. However, the critical exponents 
measured deviated a bit from the ones measured for a pure 2D Ising system 
with no activity. The deviation increased with the amount of activity. Back 
then I attributed this to a lack in measurement accuracy. With the findings 
from the current work, it might be worth rethinking this assumption and 
having a second look. 

In this context a closer look on possible influences of implementation 
parameters for ABPs (e.g., repulsive potential, setting of rotational diffusion 
and active propulsion, etc.) could provide more insights. Especially MIPS at 
very high rotational diffusion and active propulsion and vice versa might 
show interesting behavior. Unfortunately, improved measurement accuracy 
is key to these investigations. As discussed before, this is quite a challenge. 
The straightforward brute force approach of multiplying the computational 
resources is possible but not necessarily wise. 

One idea is to further improve the subbox method to yield more and better 
statistics. Going back to the original subbox method of sampling the whole 
simulation box and finding another way to exclude the surface contributions 
might be a strategy. I came up with the idea of dynamically excluding only 
the subboxes that contain a certain amount of surface contributions. This can 
for example be realized by determining the density gradient in each subbox 
and excluding all subboxes that show a greater gradient than a certain 
threshold. If the subbox is in the dense or dilute phase, the gradient would be 
low. The same applies for a subbox in the homogenous phase, i.e., in a 
system without phase separation below MIPS. These subboxes would not be 
excluded. Only for subboxes that contain both phases (dilute and dense) 
with a more or less sharp dividing surface show a significant gradient and 
would be excluded. Developing such an approach requires a big amount of 
time for testing different implementations and verifying results. This can be 
done best within the well-known 2D Ising system. Unfortunately, I came up 
with that idea towards the end of my thesis so that there was no time left to 
explore it. Nevertheless, this is probably a promising route to go. 

Regarding the dynamical properties of active systems, we did not find 
notable deviations from 2D Ising behavior for the quenches to the critical 
point in [A2]. The supposed effect of activity on the universal behavior seems 
to affect different critical exponents with a different magnitude. This is 
consistent with [A1] where the results for the critical exponent  show the 
biggest deviations from 2D Ising universality. However, some deviations for 
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the quenches of the active lattice models deep inside the phase separated 
regime have been encountered and shown in the SI of [A2]. They are not 
discussed any further, since a more detailed investigation is required to 
understand this matter.  

On the skyrmion topic, new analysis methods have been developed and 
established. The iterative fitting of pair-correlation functions from simulations 
to experiment is a powerful tool to probe the underlying interaction potential. 
Knowledge of the interaction potential for skyrmion lattices facilitated further 
research about the behavior in confined geometries, which is fundamental to 
developing new probabilistic computing applications, as examined in [B3]. 
The introduced parameter | |  and its determined threshold value of 0.69 
for repulsive power law potentials provides a handy indication of whether the 
examined system is experiencing a liquid, hexatic or solid phase state. This 
kind of analysis was also applied in [B2] and complemented the experimental 
findings. Last but not least [A3] demonstrated, that skyrmion lattices are 
great experimental realization of two-dimensional soft disks. Compared to 
conventionally used two-dimensional model systems, colloids for example, 
they show major advantages in terms of tunability and speed. 

Besides all that, my work at the intersection between soft and hard matter 
has led to a long-term successful collaboration between the group of apl. 
Prof. Dr. Peter Virnau and the group of Prof. Dr. Mathias Kläui. This 
collaboration has so far resulted in two master's theses and two doctoral 
students who are continuing and further developing this kind of simulations. 
Thus, apart from [B2] and [B3] there has been more follow up work that is 
based on the previously performed work in [A3]. 
for example added a magnus force (as described by the Thiele equation) to 
the soft disks of our coarse-grained skyrmion lattice simulations in order to 
check for the limits of the modelling done in [A3]. As expected he found that 
for the examined densities, there is no relevant correction towards the more 
coarse-grained modelling by pure soft disks with respect to static behavior. 
Furthermore, he refined the matching of pair-correlation functions between 
experiment and simulations by implementing an enhanced iterative 
Boltzmann inversion that is iterated throughout a series of BD simulations. 
Thereby previously encountered limitations due to low resolution of the 
experimentally measured pair-correlation function and high-density artefacts 
are bypassed. With this enhancement, it was possible to determine the 
skyrmion-skyrmion interaction potential more exactly and additionally the 
skyrmion-wall interaction potential for skyrmions in a confined geometry 
[119]. This is yet another nice example how methods from soft matter can be 
transferred and applied to hard matter problems. Additional follow up works 
include, e.g., studies of pinning-effects, enhanced diffusion and applications 
in the field of non-conventional computing [104], [123]–[126]. 
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Obviously, the field of non-equilibrium systems remains a highly interesting 
subject with many opportunities to gain additional insights and develop new 
applications. A fundamental understanding of processes in these very 
systems will be key to future advances. This work was intended to, and did, 
create some part of that fundamental understanding. 

  



86 
 

  



87 
 

Acknowledgement 

At this point I would like to express my special thanks to some very important 
people who have supported me decisively in the course of my PhD. 

First and foremost, apl. Prof. Dr. Peter Virnau not only for being a fantastic 
supervisor, but also for being a great motivator, supporter and mentor. 

Prof. Dr. Peter G. J. van Dongen for assuming the role of the second 
reviewer. 

Prof. Dr. Mathias Kläui and his whole team, Dr. Jakub Zázvorka, Prof. Dr. 
Thomas Speck, Prof. Dr. Subir K Das and Dr. Jiarul Midya for the outstanding 
collaboration and the fruitful work accomplished together. 

Andreas Nußbaumer not only for providing impeccable IT support, but also 
for making the coffee breaks great fun. 

The HPC team from ZDV for keeping the MOGON cluster up and running, at 
least most of the time. 

Dr. Jonathan Tammo Siebert for the introduction and mentoring in the first 
months. 

The whole work group Komet1 for the enjoyable working atmosphere and 
the exceptional collegiality. 



88 
 

  



89 
 

References 

[1] F. Dittrich, T. Speck, and P. Virnau, “Critical behavior in active lattice models of 
motility-induced phase separation,” The European Physical Journal E, vol. 44, no. 4, 
p. 53, Apr. 2021, doi: 10.1140/epje/s10189-021-00058-1. 

[2] F. Dittrich, J. Midya, P. Virnau, and S. K. Das, “Growth and aging in a few phase-
separating active matter systems,” Phys Rev E, vol. 108, no. 2, p. 024609, Aug. 2023, 
doi: 10.1103/PhysRevE.108.024609. 

[3] J. Zázvorka et al., “Skyrmion Lattice Phases in Thin Film Multilayer,” Adv Funct 
Mater, vol. 30, no. 46, p. 2004037, Nov. 2020, doi: 10.1002/adfm.202004037. 

[4] J. T. Siebert, F. Dittrich, F. Schmid, K. Binder, T. Speck, and P. Virnau, “Critical 
behavior of active Brownian particles,” Phys Rev E, vol. 98, no. 3, p. 030601, Sep. 
2018, doi: 10.1103/PhysRevE.98.030601. 

[5] A. v. Ognev et al., “Magnetic Direct-Write Skyrmion Nanolithography,” ACS Nano, 
vol. 14, no. 11, pp. 14960–14970, Nov. 2020, doi: 10.1021/acsnano.0c04748. 

[6] C. Song et al., “Commensurability between Element Symmetry and the Number of 
Skyrmions Governing Skyrmion Diffusion in Confined Geometries,” Adv Funct 
Mater, vol. 31, no. 19, p. 2010739, May 2021, doi: 10.1002/adfm.202010739. 

[7] J. Palacci, S. Sacanna, A. P. Steinberg, D. J. Pine, and P. M. Chaikin, “Living Crystals of 
Light-Activated Colloidal Surfers,” Science (1979), vol. 339, no. 6122, pp. 936–940, 
Feb. 2013, doi: 10.1126/science.1230020. 

[8] G. Brunner, “Applications of Supercritical Fluids,” Annu Rev Chem Biomol Eng, vol. 1, 
no. 1, pp. 321–342, Jun. 2010, doi: 10.1146/annurev-chembioeng-073009-101311. 

[9] V. Reddy and M. Saharay, “Solubility of Caffeine in Supercritical CO 2
Dynamics Simulation Study,” J Phys Chem B, vol. 123, no. 45, pp. 9685–9691, Nov. 
2019, doi: 10.1021/acs.jpcb.9b08351. 

[10] J. R. Baylis et al., “Self-propelled particles that transport cargo through flowing 
blood and halt hemorrhage,” Sci Adv, vol. 1, no. 9, Oct. 2015, doi: 
10.1126/sciadv.1500379. 

[11] S. T. Chang, V. N. Paunov, D. N. Petsev, and O. D. Velev, “Remotely powered self-
propelling particles and micropumps based on miniature diodes,” Nat Mater, vol. 6, 
no. 3, pp. 235–240, Mar. 2007, doi: 10.1038/nmat1843. 

[12] V. Magdanz, S. Sanchez, and O. G. Schmidt, “Development of a Sperm-Flagella 
Driven Micro-Bio-Robot,” Advanced Materials, vol. 25, no. 45, pp. 6581–6588, Dec. 
2013, doi: 10.1002/adma.201302544. 

[13] L. Alvarez et al., “The rate of change in Ca2+ concentration controls sperm 
chemotaxis,” Journal of Cell Biology, vol. 196, no. 5, pp. 653–663, Mar. 2012, doi: 
10.1083/jcb.201106096. 



90 
 

[14] W. Kang, Y. Huang, X. Zhang, Y. Zhou, and W. Zhao, “Skyrmion-Electronics: An 
Overview and Outlook,” Proceedings of the IEEE, vol. 104, no. 10, pp. 2040–2061, 
Oct. 2016, doi: 10.1109/JPROC.2016.2591578. 

[15] P.-J. Hsu, A. Kubetzka, A. Finco, N. Romming, K. von Bergmann, and R. 
Wiesendanger, “Electric-field-driven switching of individual magnetic skyrmions,” 
Nat Nanotechnol, vol. 12, no. 2, pp. 123–126, Feb. 2017, doi: 
10.1038/nnano.2016.234. 

[16] W. Nolting, Grundkurs Theoretische Physik 6. Berlin, Heidelberg: Springer Berlin 
Heidelberg, 2014. doi: 10.1007/978-3-642-25393-5. 

[17] F. Schwabl, Statistische Mechanik. in Springer-Lehrbuch. Berlin/Heidelberg: 
Springer-Verlag, 2006. doi: 10.1007/3-540-31097-5. 

[18] M. E. Fisher, “Correlation Functions and the Critical Region of Simple Fluids,” J Math 
Phys, vol. 5, no. 7, pp. 944–962, Jul. 1964, doi: 10.1063/1.1704197. 

[19] C. N. Yang, “The Spontaneous Magnetization of a Two-Dimensional Ising Model,” 
Physical Review, vol. 85, no. 5, pp. 808–816, Mar. 1952, doi: 
10.1103/PhysRev.85.808. 

[20] L. Onsager, “Crystal Statistics. I. A Two-Dimensional Model with an Order-Disorder 
Transition,” Physical Review, vol. 65, no. 3–4, pp. 117–149, Feb. 1944, doi: 
10.1103/PhysRev.65.117. 

[21] J. T. Siebert, “Computer simulations of active Brownian particles,” Dissertation, 
Johannes Gutenberg-Universität Mainz, Mainz, 2018. doi: 10.25358/openscience-
3854. 

[22] J. W. Essam and M. E. Fisher, “Padé Approximant Studies of the Lattice Gas and 
Ising Ferromagnet below the Critical Point,” J Chem Phys, vol. 38, no. 4, pp. 802–
812, Feb. 1963, doi: 10.1063/1.1733766. 

[23] B. Widom, “Equation of State in the Neighborhood of the Critical Point,” J Chem 
Phys, vol. 43, no. 11, pp. 3898–3905, Dec. 1965, doi: 10.1063/1.1696618. 

[24] G. S. Rushbrooke, “On the Thermodynamics of the Critical Region for the Ising 
Problem,” J Chem Phys, vol. 39, no. 3, pp. 842–843, Aug. 1963, doi: 
10.1063/1.1734338. 

[25] D. R. Nelson and B. I. Halperin, “Dislocation-mediated melting in two dimensions,” 
Phys Rev B, vol. 19, no. 5, pp. 2457–2484, Mar. 1979, doi: 
10.1103/PhysRevB.19.2457. 

[26] S. C. Kapfer and W. Krauth, “Two-Dimensional Melting: From Liquid-Hexatic 
Coexistence to Continuous Transitions,” Phys Rev Lett, vol. 114, no. 3, p. 035702, 
Jan. 2015, doi: 10.1103/PhysRevLett.114.035702. 

[27] M. Engel, J. A. Anderson, S. C. Glotzer, M. Isobe, E. P. Bernard, and W. Krauth, 
“Hard-disk equation of state: First-order liquid-hexatic transition in two dimensions 
with three simulation methods,” Phys Rev E, vol. 87, no. 4, p. 042134, Apr. 2013, 
doi: 10.1103/PhysRevE.87.042134. 



91 
 

[28] E. P. Bernard and W. Krauth, “Two-Step Melting in Two Dimensions: First-Order 
Liquid-Hexatic Transition,” Phys Rev Lett, vol. 107, no. 15, p. 155704, Oct. 2011, doi: 
10.1103/PhysRevLett.107.155704. 

[29] C. Alba-Simionesco et al., “Effects of confinement on freezing and melting,” Journal 
of Physics: Condensed Matter, vol. 18, no. 6, pp. R15–R68, Feb. 2006, doi: 
10.1088/0953-8984/18/6/R01. 

[30] K. J. Strandburg, “Two-dimensional melting,” Rev Mod Phys, vol. 60, no. 1, pp. 161–
207, Jan. 1988, doi: 10.1103/RevModPhys.60.161. 

[31] H. P. Zhang, A. Be’er, E.-L. Florin, and H. L. Swinney, “Collective motion and density 
fluctuations in bacterial colonies,” Proceedings of the National Academy of Sciences, 
vol. 107, no. 31, pp. 13626–13630, Aug. 2010, doi: 10.1073/pnas.1001651107. 

[32] H. H. Wensink and H. Löwen, “Emergent states in dense systems of active rods: 
from swarming to turbulence,” Journal of Physics: Condensed Matter, vol. 24, no. 
46, p. 464130, Nov. 2012, doi: 10.1088/0953-8984/24/46/464130. 

[33] G. H. Koenderink et al., “An active biopolymer network controlled by molecular 
motors,” Proceedings of the National Academy of Sciences, vol. 106, no. 36, pp. 
15192–15197, Sep. 2009, doi: 10.1073/pnas.0903974106. 

[34] V. Schaller, C. Weber, C. Semmrich, E. Frey, and A. R. Bausch, “Polar patterns of 
driven filaments,” Nature, vol. 467, no. 7311, pp. 73–77, Sep. 2010, doi: 
10.1038/nature09312. 

[35] T. Sanchez, D. T. N. Chen, S. J. DeCamp, M. Heymann, and Z. Dogic, “Spontaneous 
motion in hierarchically assembled active matter,” Nature, vol. 491, no. 7424, pp. 
431–434, Nov. 2012, doi: 10.1038/nature11591. 

[36] Y. Katz, K. Tunstrøm, C. C. Ioannou, C. Huepe, and I. D. Couzin, “Inferring the 
structure and dynamics of interactions in schooling fish,” Proceedings of the 
National Academy of Sciences, vol. 108, no. 46, pp. 18720–18725, Nov. 2011, doi: 
10.1073/pnas.1107583108. 

[37] M. Ballerini et al., “Interaction ruling animal collective behavior depends on 
topological rather than metric distance: Evidence from a field study,” Proceedings of 
the National Academy of Sciences, vol. 105, no. 4, pp. 1232–1237, Jan. 2008, doi: 
10.1073/pnas.0711437105. 

[38] C. Bechinger, R. di Leonardo, H. Löwen, C. Reichhardt, G. Volpe, and G. Volpe, 
“Active Particles in Complex and Crowded Environments,” Rev Mod Phys, vol. 88, 
no. 4, p. 045006, Nov. 2016, doi: 10.1103/RevModPhys.88.045006. 

[39] W. F. Paxton et al., “Catalytic Nanomotors:  Autonomous Movement of Striped 
Nanorods,” J Am Chem Soc, vol. 126, no. 41, pp. 13424–13431, Oct. 2004, doi: 
10.1021/ja047697z. 

[40] J. Palacci, C. Cottin-Bizonne, C. Ybert, and L. Bocquet, “Sedimentation and Effective 
Temperature of Active Colloidal Suspensions,” Phys Rev Lett, vol. 105, no. 8, p. 
088304, Aug. 2010, doi: 10.1103/PhysRevLett.105.088304. 



92 
 

[41] Y. Hong, N. M. K. Blackman, N. D. Kopp, A. Sen, and D. Velegol, “Chemotaxis of 
Nonbiological Colloidal Rods,” Phys Rev Lett, vol. 99, no. 17, p. 178103, Oct. 2007, 
doi: 10.1103/PhysRevLett.99.178103. 

[42] H.-R. Jiang, N. Yoshinaga, and M. Sano, “Active Motion of a Janus Particle by Self-
Thermophoresis in a Defocused Laser Beam,” Phys Rev Lett, vol. 105, no. 26, p. 
268302, Dec. 2010, doi: 10.1103/PhysRevLett.105.268302. 

[43] S. Herminghaus, C. C. Maass, C. Krüger, S. Thutupalli, L. Goehring, and C. Bahr, 
“Interfacial mechanisms in active emulsions,” Soft Matter, vol. 10, no. 36, pp. 7008–
7022, 2014, doi: 10.1039/C4SM00550C. 

[44] K. Peddireddy, P. Kumar, S. Thutupalli, S. Herminghaus, and C. Bahr, “Solubilization 
of Thermotropic Liquid Crystal Compounds in Aqueous Surfactant Solutions,” 
Langmuir, vol. 28, no. 34, pp. 12426–12431, Aug. 2012, doi: 10.1021/la3015817. 

[45] A. Reinmüller, H. J. Schöpe, and T. Palberg, “Self-Organized Cooperative Swimming 
at Low Reynolds Numbers,” Langmuir, vol. 29, no. 6, pp. 1738–1742, Feb. 2013, doi: 
10.1021/la3046466. 

[46] R. Dreyfus, J. Baudry, M. L. Roper, M. Fermigier, H. A. Stone, and J. Bibette, 
“Microscopic artificial swimmers,” Nature, vol. 437, no. 7060, pp. 862–865, Oct. 
2005, doi: 10.1038/nature04090. 

[47] I. Buttinoni, G. Volpe, F. Kümmel, G. Volpe, and C. Bechinger, “Active Brownian 
motion tunable by light,” Journal of Physics: Condensed Matter, vol. 24, no. 28, p. 
284129, Jul. 2012, doi: 10.1088/0953-8984/24/28/284129. 

[48] I. Buttinoni, J. Bialké, F. Kümmel, H. Löwen, C. Bechinger, and T. Speck, “Dynamical 
Clustering and Phase Separation in Suspensions of Self-Propelled Colloidal 
Particles,” Phys Rev Lett, vol. 110, no. 23, p. 238301, Jun. 2013, doi: 
10.1103/PhysRevLett.110.238301. 

[49] G. Volpe, I. Buttinoni, D. Vogt, H.-J. Kümmerer, and C. Bechinger, “Microswimmers 
in patterned environments,” Soft Matter, vol. 7, no. 19, p. 8810, 2011, doi: 
10.1039/c1sm05960b. 

[50] C. Maggi, M. Paoluzzi, A. Crisanti, E. Zaccarelli, and N. Gnan, “Universality class of 
the motility-induced critical point in large scale off-lattice simulations of active 
particles,” Soft Matter, vol. 17, no. 14, pp. 3807–3812, 2021, doi: 
10.1039/D0SM02162H. 

[51] F. Caballero, C. Nardini, and M. E. Cates, “From bulk to microphase separation in 
scalar active matter: a perturbative renormalization group analysis,” Journal of 
Statistical Mechanics: Theory and Experiment, vol. 2018, no. 12, p. 123208, Dec. 
2018, doi: 10.1088/1742-5468/aaf321. 

[52] B. Partridge and C. F. Lee, “Critical Motility-Induced Phase Separation Belongs to the 
Ising Universality Class,” Phys Rev Lett, vol. 123, no. 6, p. 068002, Aug. 2019, doi: 
10.1103/PhysRevLett.123.068002. 

[53] A. K. Omar, K. Klymko, T. GrandPre, and P. L. Geissler, “Phase Diagram of Active 
Brownian Spheres: Crystallization and the Metastability of Motility-Induced Phase 



93 
 

Separation,” Phys Rev Lett, vol. 126, no. 18, p. 188002, May 2021, doi: 
10.1103/PhysRevLett.126.188002. 

[54] F. Turci and N. B. Wilding, “Phase Separation and Multibody Effects in Three-
Dimensional Active Brownian Particles,” Phys Rev Lett, vol. 126, no. 3, p. 038002, 
Jan. 2021, doi: 10.1103/PhysRevLett.126.038002. 

[55] T. Speck, “Critical behavior of active Brownian particles: Connection to field 
theories,” Phys Rev E, vol. 105, no. 6, p. 064601, Jun. 2022, doi: 
10.1103/PhysRevE.105.064601. 

[56] K. Binder, “Finite size scaling analysis of ising model block distribution functions,” 
Zeitschrift für Physik B Condensed Matter, vol. 43, no. 2, pp. 119–140, Jun. 1981, 
doi: 10.1007/BF01293604. 

[57] R. C. Desai, D. W. Heermann, and K. Binder, “Finite-size scaling in a microcanonical 
ensemble,” J Stat Phys, vol. 53, no. 3–4, pp. 795–823, Nov. 1988, doi: 
10.1007/BF01014226. 

[58] M. Rovere, P. Nielaba, and K. Binder, “Simulation studies of gas-liquid transitions in 
two dimensions via a subsystem-block-density distribution analysis,” Zeitschrift für 
Physik B Condensed Matter, vol. 90, no. 2, pp. 215–228, Jun. 1993, doi: 
10.1007/BF02198158. 

[59] M. Rovere, D. W. Hermann, and K. Binder, “Block Density Distribution Function 
Analysis of Two-Dimensional Lennard-Jones Fluids,” Europhysics Letters (EPL), vol. 6, 
no. 7, pp. 585–590, Aug. 1988, doi: 10.1209/0295-5075/6/7/003. 

[60] K. Kaski, K. Binder, and J. D. Gunton, “Study of cell distribution functions of the 
three-dimensional Ising model,” Phys Rev B, vol. 29, no. 7, pp. 3996–4009, Apr. 
1984, doi: 10.1103/PhysRevB.29.3996. 

[61] K. Adachi and K. Kawaguchi, “Universality of active and passive phase separation in 
a lattice model,” Dec. 2020. 

[62] J. Midya, S. A. Egorov, K. Binder, and A. Nikoubashman, “Phase behavior of flexible 
and semiflexible polymers in solvents of varying quality,” J Chem Phys, vol. 151, no. 
3, p. 034902, Jul. 2019, doi: 10.1063/1.5110393. 

[63] S. Whitelam, K. Klymko, and D. Mandal, “Phase separation and large deviations of 
lattice active matter,” J Chem Phys, vol. 148, no. 15, p. 154902, Apr. 2018, doi: 
10.1063/1.5023403. 

[64] J. T. Siebert, J. Letz, T. Speck, and P. Virnau, “Phase behavior of active Brownian 
disks, spheres, and dimers,” Soft Matter, vol. 13, no. 5, pp. 1020–1026, 2017, doi: 
10.1039/C6SM02622B. 

[65] J. Bialké, J. T. Siebert, H. Löwen, and T. Speck, “Negative Interfacial Tension in 
Phase-Separated Active Brownian Particles,” Phys Rev Lett, vol. 115, no. 9, p. 
098301, Aug. 2015, doi: 10.1103/PhysRevLett.115.098301. 



94 
 

[66] Y. Fily and M. C. Marchetti, “Athermal Phase Separation of Self-Propelled Particles 
with No Alignment,” Phys Rev Lett, vol. 108, no. 23, p. 235702, Jun. 2012, doi: 
10.1103/PhysRevLett.108.235702. 

[67] A. P. Solon et al., “Pressure and Phase Equilibria in Interacting Active Brownian 
Spheres,” Phys Rev Lett, vol. 114, no. 19, p. 198301, May 2015, doi: 
10.1103/PhysRevLett.114.198301. 

[68] A. Wysocki, R. G. Winkler, and G. Gompper, “Cooperative motion of active 
Brownian spheres in three-dimensional dense suspensions,” EPL (Europhysics 
Letters), vol. 105, no. 4, p. 48004, Feb. 2014, doi: 10.1209/0295-5075/105/48004. 

[69] D. Levis, J. Codina, and I. Pagonabarraga, “Active Brownian equation of state: 
metastability and phase coexistence,” Soft Matter, vol. 13, no. 44, pp. 8113–8119, 
2017, doi: 10.1039/C7SM01504F. 

[70] G. S. Redner, M. F. Hagan, and A. Baskaran, “Structure and Dynamics of a Phase-
Separating Active Colloidal Fluid,” Phys Rev Lett, vol. 110, no. 5, p. 055701, Jan. 
2013, doi: 10.1103/PhysRevLett.110.055701. 

[71] J. Stenhammar, D. Marenduzzo, R. J. Allen, and M. E. Cates, “Phase behaviour of 
active Brownian particles: the role of dimensionality,” Soft Matter, vol. 10, no. 10, 
pp. 1489–1499, 2014, doi: 10.1039/C3SM52813H. 

[72] J. A. Anderson, J. Glaser, and S. C. Glotzer, “HOOMD-blue: A Python package for 
high-performance molecular dynamics and hard particle Monte Carlo simulations,” 
Comput Mater Sci, vol. 173, p. 109363, Feb. 2020, doi: 
10.1016/j.commatsci.2019.109363. 

[73] J. A. Barker and D. Henderson, “Perturbation Theory and Equation of State for 
Fluids. II. A Successful Theory of Liquids,” J Chem Phys, vol. 47, no. 11, pp. 4714–
4721, Dec. 1967, doi: 10.1063/1.1701689. 

[74] Yannik Muche, “Computersimulationen zum Phasenverhalten von aktiven 
Brownschen Teilchen,” Bachelorarbeit, Johannes Gutenberg-Universität Mainz, 
Mainz, 2020. 

[75] P. Cremer and H. Löwen, “Scaling of cluster growth for coagulating active particles,” 
Phys Rev E, vol. 89, no. 2, p. 022307, Feb. 2014, doi: 10.1103/PhysRevE.89.022307. 

[76] S. K. Das, “Pattern, growth, and aging in aggregation kinetics of a Vicsek-like active 
matter model,” J Chem Phys, vol. 146, no. 4, p. 044902, Jan. 2017, doi: 
10.1063/1.4974256. 

[77] K. Binder and P. Virnau, “Phase transitions and phase coexistence: equilibrium 
systems versus externally driven or active systems - Some perspectives,” Soft 
Mater, vol. 19, no. 3, pp. 267–285, Jul. 2021, doi: 10.1080/1539445X.2021.1906703. 

[78] G. Grégoire and H. Chaté, “Onset of Collective and Cohesive Motion,” Phys Rev Lett, 
vol. 92, no. 2, p. 025702, Jan. 2004, doi: 10.1103/PhysRevLett.92.025702. 

[79] D. P. Landau and K. Binder, A Guide to Monte Carlo Simulations in Statistical Physics. 
Cambridge University Press, 2005. doi: 10.1017/CBO9780511614460. 



95 
 

[80] S. Chakraborty and S. K. Das, “Relaxation in a phase-separating two-dimensional 
active matter system with alignment interaction,” J Chem Phys, vol. 153, no. 4, p. 
044905, Jul. 2020, doi: 10.1063/5.0010043. 

[81] S. Paul, A. Bera, and S. K. Das, “How do clusters in phase-separating active matter 
systems grow? A study for Vicsek activity in systems undergoing vapor–solid 
transition,” Soft Matter, vol. 17, no. 3, pp. 645–654, 2021, doi: 
10.1039/D0SM01762K. 

[82] S. Puri and V. Wadhawan, Kinetics of Phase Transitions. CRC Press, 2009. doi: 
10.1201/9781420008364. 

[83] A. J. Bray, “Theory of phase-ordering kinetics,” Adv Phys, vol. 43, no. 3, pp. 357–
459, Jun. 1994, doi: 10.1080/00018739400101505. 

[84] D. S. Fisher and D. A. Huse, “Nonequilibrium dynamics of spin glasses,” Phys Rev B, 
vol. 38, no. 1, pp. 373–385, Jul. 1988, doi: 10.1103/PhysRevB.38.373. 

[85] A. Onuki, Phase Transition Dynamics. Cambridge University Press, 2002. doi: 
10.1017/CBO9780511534874. 

[86] P. C. Hohenberg and B. I. Halperin, “Theory of dynamic critical phenomena,” Rev 
Mod Phys, vol. 49, no. 3, pp. 435–479, Jul. 1977, doi: 10.1103/RevModPhys.49.435. 

[87] M. E. Fisher, “The theory of equilibrium critical phenomena,” Reports on Progress in 
Physics, vol. 30, no. 2, p. 306, Jul. 1967, doi: 10.1088/0034-4885/30/2/306. 

[88] K. Everschor-Sitte and M. Sitte, “Real-space Berry phases: Skyrmion soccer 
(invited),” J Appl Phys, vol. 115, no. 17, p. 172602, May 2014, doi: 
10.1063/1.4870695. 

[89] T. H. R. Skyrme, “A non-linear theory of strong interactions,” Proc R Soc Lond A 
Math Phys Sci, vol. 247, no. 1249, pp. 260–278, Sep. 1958, doi: 
10.1098/rspa.1958.0183. 

[90] T. H. R. Skyrme, “A non-linear field theory,” Proc R Soc Lond A Math Phys Sci, vol. 
260, no. 1300, pp. 127–138, Feb. 1961, doi: 10.1098/rspa.1961.0018. 

[91] T. H. R. Skyrme, “A unified field theory of mesons and baryons,” Nuclear Physics, 
vol. 31, pp. 556–569, Mar. 1962, doi: 10.1016/0029-5582(62)90775-7. 

[92] A. N. Bogdanov and U. K. Rößler, “Chiral Symmetry Breaking in Magnetic Thin Films 
and Multilayers,” Phys Rev Lett, vol. 87, no. 3, p. 037203, Jun. 2001, doi: 
10.1103/PhysRevLett.87.037203. 

[93] U. K. Rößler, A. N. Bogdanov, and C. Pfleiderer, “Spontaneous skyrmion ground 
states in magnetic metals,” Nature, vol. 442, no. 7104, pp. 797–801, Aug. 2006, doi: 
10.1038/nature05056. 

[94] B. Dupé, M. Hoffmann, C. Paillard, and S. Heinze, “Tailoring magnetic skyrmions in 
ultra-thin transition metal films,” Nat Commun, vol. 5, no. 1, p. 4030, Jun. 2014, doi: 
10.1038/ncomms5030. 



96 
 

[95] N. Romming et al., “Writing and Deleting Single Magnetic Skyrmions,” Science 
(1979), vol. 341, no. 6146, pp. 636–639, Aug. 2013, doi: 10.1126/science.1240573. 

[96] S. Mühlbauer et al., “Skyrmion Lattice in a Chiral Magnet,” Science (1979), vol. 323, 
no. 5916, pp. 915–919, Feb. 2009, doi: 10.1126/science.1166767. 

[97] R. Wiesendanger, “Nanoscale magnetic skyrmions in metallic films and multilayers: 
a new twist for spintronics,” Nat Rev Mater, vol. 1, no. 7, p. 16044, Jun. 2016, doi: 
10.1038/natrevmats.2016.44. 

[98] I. Kézsmárki et al., “Néel-type skyrmion lattice with confined orientation in the polar 
magnetic semiconductor GaV4S8,” Nat Mater, vol. 14, no. 11, pp. 1116–1122, Nov. 
2015, doi: 10.1038/nmat4402. 

[99] X. Z. Yu et al., “Real-space observation of a two-dimensional skyrmion crystal,” 
Nature, vol. 465, no. 7300, pp. 901–904, Jun. 2010, doi: 10.1038/nature09124. 

[100] A. Fert, V. Cros, and J. Sampaio, “Skyrmions on the track,” Nat Nanotechnol, vol. 8, 
no. 3, pp. 152–156, Mar. 2013, doi: 10.1038/nnano.2013.29. 

[101] F. Jonietz et al., “Spin Transfer Torques in MnSi at Ultralow Current Densities,” 
Science (1979), vol. 330, no. 6011, pp. 1648–1651, Dec. 2010, doi: 
10.1126/science.1195709. 

[102] J. Masell, D. R. Rodrigues, B. F. McKeever, and K. Everschor-Sitte, “Spin-transfer 
torque driven motion, deformation, and instabilities of magnetic skyrmions at high 
currents,” Phys Rev B, vol. 101, no. 21, p. 214428, Jun. 2020, doi: 
10.1103/PhysRevB.101.214428. 

[103] S. Woo et al., “Spin-orbit torque-driven skyrmion dynamics revealed by time-
resolved X-ray microscopy,” Nat Commun, vol. 8, no. 1, p. 15573, May 2017, doi: 
10.1038/ncomms15573. 

[104] R. Gruber et al., “Skyrmion pinning energetics in thin film systems,” Nat Commun, 
vol. 13, no. 1, p. 3144, Jun. 2022, doi: 10.1038/s41467-022-30743-4. 

[105] G. Chen, “Skyrmion Hall effect,” Nat Phys, vol. 13, no. 2, pp. 112–113, Feb. 2017, 
doi: 10.1038/nphys4030. 

[106] A. A. Thiele, “Steady-State Motion of Magnetic Domains,” Phys Rev Lett, vol. 30, no. 
6, pp. 230–233, Feb. 1973, doi: 10.1103/PhysRevLett.30.230. 

[107] S.-Z. Lin, C. Reichhardt, C. D. Batista, and A. Saxena, “Particle model for skyrmions in 
metallic chiral magnets: Dynamics, pinning, and creep,” Phys Rev B, vol. 87, no. 21, 
p. 214419, Jun. 2013, doi: 10.1103/PhysRevB.87.214419. 

[108] N. Nagaosa and Y. Tokura, “Topological properties and dynamics of magnetic 
skyrmions,” Nat Nanotechnol, vol. 8, no. 12, pp. 899–911, Dec. 2013, doi: 
10.1038/nnano.2013.243. 

[109] B. L. Brown, U. C. Täuber, and M. Pleimling, “Effect of the Magnus force on 
skyrmion relaxation dynamics,” Phys Rev B, vol. 97, no. 2, p. 020405, Jan. 2018, doi: 
10.1103/PhysRevB.97.020405. 



97 
 

[110] J. C. Martinez and M. B. A. Jalil, “Topological dynamics and current-induced motion 
in a skyrmion lattice,” New J Phys, vol. 18, no. 3, p. 033008, Mar. 2016, doi: 
10.1088/1367-2630/18/3/033008. 

[111] K. Everschor, M. Garst, R. A. Duine, and A. Rosch, “Current-induced rotational 
torques in the skyrmion lattice phase of chiral magnets,” Phys Rev B, vol. 84, no. 6, 
p. 064401, Aug. 2011, doi: 10.1103/PhysRevB.84.064401. 

[112] K. Everschor et al., “Rotating skyrmion lattices by spin torques and field or 
temperature gradients,” Phys Rev B, vol. 86, no. 5, p. 054432, Aug. 2012, doi: 
10.1103/PhysRevB.86.054432. 

[113] F. Jonietz et al., “Spin Transfer Torques in MnSi at Ultralow Current Densities,” 
Science (1979), vol. 330, no. 6011, pp. 1648–1651, Dec. 2010, doi: 
10.1126/science.1195709. 

[114] J. C. Bellizotti Souza, N. P. Vizarim, C. J. O. Reichhardt, C. Reichhardt, and P. A. 
Venegas, “Spontaneous skyrmion conformal lattice and transverse motion during dc 
and ac compression,” New J Phys, vol. 25, no. 5, p. 053020, May 2023, doi: 
10.1088/1367-2630/acd46f. 

[115] J. Iwasaki, M. Mochizuki, and N. Nagaosa, “Universal current-velocity relation of 
skyrmion motion in chiral magnets,” Nat Commun, vol. 4, no. 1, p. 1463, Feb. 2013, 
doi: 10.1038/ncomms2442. 

[116] K. Litzius et al., “Skyrmion Hall effect revealed by direct time-resolved X-ray 
microscopy,” Nat Phys, vol. 13, no. 2, pp. 170–175, Feb. 2017, doi: 
10.1038/nphys4000. 

[117] S.-Z. Lin, C. Reichhardt, C. D. Batista, and A. Saxena, “Driven Skyrmions and 
Dynamical Transitions in Chiral Magnets,” Phys Rev Lett, vol. 110, no. 20, p. 207202, 
May 2013, doi: 10.1103/PhysRevLett.110.207202. 

[118] K. Zeissler et al., “Diameter-independent skyrmion Hall angle observed in chiral 
magnetic multilayers,” Nat Commun, vol. 11, no. 1, p. 428, Jan. 2020, doi: 
10.1038/s41467-019-14232-9. 

[119] Y. Ge et al., “Constructing coarse-grained skyrmion potentials from experimental 
data with Iterative Boltzmann Inversion,” Oct. 2021. 

[120] D. Rosenberger, M. Hanke, and N. F. A. van der Vegt, “Comparison of iterative 
inverse coarse-graining methods,” Eur Phys J Spec Top, vol. 225, no. 8–9, pp. 1323–
1345, Oct. 2016, doi: 10.1140/epjst/e2016-60120-1. 

[121] M. Hanke, “Well-Posedness of the Iterative Boltzmann Inversion,” J Stat Phys, vol. 
170, no. 3, pp. 536–553, Feb. 2018, doi: 10.1007/s10955-017-1944-2. 

[122] P. Dillmann, G. Maret, and P. Keim, “Comparison of 2D melting criteria in a colloidal 
system,” Journal of Physics: Condensed Matter, vol. 24, no. 46, p. 464118, Nov. 
2012, doi: 10.1088/0953-8984/24/46/464118. 



98 
 

[123] R. Gruber et al., “300-Times-Increased Diffusive Skyrmion Dynamics and Effective 
Pinning Reduction by Periodic Field Excitation,” Advanced Materials, vol. 35, no. 17, 
Apr. 2023, doi: 10.1002/adma.202208922. 

[124] M. A. Brems, M. Kläui, and P. Virnau, “Circuits and excitations to enable Brownian 
token-based computing with skyrmions,” Appl Phys Lett, vol. 119, no. 13, Sep. 2021, 
doi: 10.1063/5.0063584. 

[125] O. Lee, R. Msiska, M. A. Brems, M. Kläui, H. Kurebayashi, and K. Everschor-Sitte, 
“Perspective on unconventional computing using magnetic skyrmions,” Appl Phys 
Lett, vol. 122, no. 26, Jun. 2023, doi: 10.1063/5.0148469. 

[126] K. Raab et al., “Brownian reservoir computing realized using geometrically confined 
skyrmions,” Mar. 2022. 

  



99 
 



100 
 

  



101 
 

Curriculum Vitae 

Florian Dittrich 

 

Personal Details 

Address  Zum Staudchen 13, 56237 Nauort 

Born  17.12.1988, Neuwied, Germany 

Citizenship German 

Email  mail@florian-dittrich.de 

Education 

Since 04/2017  PhD studies 
Johannes Gutenberg-Universität Mainz 

04/2007 - 03/2017  Diploma in Physics 
Johannes Gutenberg-Universität Mainz 

Thesis title: „Modellierung von aktiven Teilchen in einem 
Gitter-Gas-Modell und Bestimmung des 
kritischen Punktes im kanonischen 
Ensemble“ 

Grade:  „sehr gut” (1.0) 

Minors:  Computer simulations, Nuclear chemistry 

08/1999 - 03/2007  Abitur 
Wilhelm-Remy-Gymnasium Bendorf 

Adv. courses: English, Mathematics, Physics 

Grade:  1.0 

Career 

Since 05/2023  Consultant & Data Scientist 
    Freelancer 

04/2022 - 04/2023  Consultant 
    Bain & Company Germany, Inc. 

10/2017 - 03/2022  Research Fellow 
    Johannes Gutenberg-Universität Mainz 

09/2007 - 06/2014  Accelerator operator of MAMI (Mainzer Mikrotron) 
Johannes Gutenberg-Universität Mainz 

Languages 

German (native), English (fluent), French (basic) 


	Leere Seite



