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Abstract
We show that the solutions to the equations, defining the so-called Calabi–Yau con-
dition for fourth-order operators of degree two, define a variety that consists of ten
irreducible components. These can be described completely in parametric form, but
only two of the components seem to admit arithmetically interesting operators. We
include a description of the 69 essentially distinct fourth-order Calabi–Yau operators
of degree two that are presently known to us.

Keywords 14J32 · 11M06 · 32S40 · 34M15

1 Introduction

The hypergeometric series

φ0(x) =
∞∑

n=0

(5n)!
(n!)5 xn = 1 + 120x + 113400x2 + · · · ∈ Z[[x]]

became famous after in the paper [20] its dual interpretation was discovered: on the
one hand, the series encodes enumerative information on rational curves on the general
quintic Calabi–Yau threefold in P4, and on the other hand, it can be identified as a
normalised period of the mirror quintic Calabi–Yau threefold. The power series is the
unique (up to scalar) series solution of the hypergeometric operator

L := θ4 − 55x

(
θ + 1

5

) (
θ + 2

5

)(
θ + 3

5

)(
θ + 4

5

)
, θ = x

d

dx
.

Gert Almkvist passed away in December 2018. Gert was a remarkable man and a great mathematician. It
was a privilege to have known and worked with him.
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The operator L is the first of the family of 14 hypergeometric fourth-order operators
related to mirror symmetry for complete intersections in weighted projective spaces.
These operators are all of the form

θ4 − N x(θ + α1)(θ + α2)(θ + α3)(θ + α4),

where the integer N is chosen as to make the coefficients of the normalised holomor-
phic solution integral in a minimal way. The properties of these operators have been
well-studied from various points of view [8, 19, 26, 27, 34, 38, 39].

The operator L is also the first member of the ever growing list of Calabi–Yau
operators [3, 41], a notion that was introduced by the first author and Zudilin [4]
by abstracting the properties of the operator L . Calabi–Yau operators in this sense
are essentially self-adjoint fourth-order Fuchsian operators with a point of maximal
unipotent monodromy for which strong integrality properties are supposed to hold.
In a sense, the term Calabi–Yau operator is somewhat of a misnomer, as there exist
families of Calabi–Yau varieties, whose Picard–Fuchs operators have no MUM point
and hence are not Calabi–Yau operators in the above sense of the word. For a recent
account, see [23].

Let us consider a general N th-order differential operator written in θ -form:

L = P0(θ) + x P1(θ) + · · · + · · · + xr Pr (θ), θ := x
d

dx
,

where the Pi are polynomials of degree N . We call the largest r with Pr �= 0 the
degree of the operator. The differential equation

Lφ = 0, φ(x) =
∞∑

n=0

an xn

translates into the recursion relation

P0(n)an + P1(n − 1)an−1 + · · · + Pr (n − r)an−r = 0

on the coefficients an of the series φ(x), so the degree of L is equal to the length of
this recursion.

The roots of P0(θ) are the exponents of the operator at 0. By translation, one can
define exponents of P at each point of the Riemann sphere P1. For the point ∞ we
have to apply inversion x �→ 1/x ; the exponents then are the roots of Pr (−θ). The
Riemann symbol is a table that contains for each singular point the corresponding
exponents. These encode information about the local ramification of the solutions.
Logarithmic terms may and usually do appear at points with exponents with integral
difference. This leads to Jordan blocks in the local monodromy, but these are usually
left implicit in the Riemann symbol.

We will usually assume that N = 4 and that all exponents at 0 vanish; P0(θ) = θ4.
The most salient feature of this situation is that at 0 we have a canonical Frobenius
basis of solution φ0, φ1, φ2, φ3, where φk contains terms with logk(x). The local
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monodromy has a Jordan block of maximal size, so 0 is a point of maximal unipotent
monodromy: MUM.

The 14 hypergeometric operators have degree 1 and have a Riemann symbol of the
form

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 1/N ∞
0 0 α1
0 1 α2
0 1 α3
0 2 α4

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

,

exhibiting a conifold singularity at the point 1/N . At such a point the exponents are
0, 1, 1, 2 and the local monodromy is a symplectic reflection; there is a Jordan block
of size two. The exponents at ∞ are α1 ≤ α2 ≤ α3 ≤ α4 and add up in pairs to one:

α1 + α4 = α2 + α3 = 1.

Currently, we know over 500 Calabi–Yau operators with degrees running up to 40, but
in no way do we expect the current list to be complete. An update of the AESZ list
from [3] is in preparation [2].

The first Calabi–Yau operator of degree > 1 is #15 in the AESZ table and appeared
in [10]:

θ4 − 3x(3θ + 1)(3θ + 2)(7θ2 + 7θ + 2) − 72x2(3θ + 1)(3θ + 2)(3θ + 4)(3θ + 5).

Its Riemann symbol is

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 1/216 −1/27 ∞
0 0 0 1

3
0 1 1 2

3
0 1 1 4

3
0 2 2 5

3

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

.

Another operator of this type is #25 of the AESZ list. It arose from the quantum
cohomology of the Grassmanian G(2, 5). The complete intersection X(1, 2, 2) of
hypersurfaces of degrees 1, 2, 2 in the Plücker embedding is a Calabi–Yau threefold
with the following mirror Picard–Fuchs operator:

θ4 − 4x(2θ + 1)2(11θ2 + 11θ + 3) − 16x2(2θ + 1)2(2θ + 3)2.

Its holomorphic solution is

φ0(x) =
∞∑

n=0

(
2n

n

)2

An xn,
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where

An =
n∑

k=0

(
n

k

)2(n + k

k

)

are the small Apéry numbers that were used in Apéry’s proof of the irrationality of
ζ(2).

At present we know 69 essentially distinct Calabi–Yau operators of order two, to
which all further such degree two operators can be related by simple transformations.
The operators for which the instanton numbers are 0 are obtained as Sym3 of a second-
order operator and do not count as a proper Calabi–Yau operator and do not appear in
[3].

But contrary to the hypergeometric case, it appears that these degree two operators
do not all fall in a single family. First of all, an operator of degree two can have four
singularities, with a Riemann symbol of the form

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 a b ∞
0 0 0 α1
0 1 1 α2
0 1 1 α3
0 2 2 α4

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

,

exhibiting two distinct conifold points, as in the previous two examples. But in many
cases the points a and b coalesce, producing an operator with only three singular
points.

As one can observe in the above two examples, the exponents at infinity are sym-
metrically centred around the value 1 and this seemed to be the case for all further
examples we found. It wasM. Bognerwho first found an example of an Calabi–Yau
operator for which this is not the case: it is the operator

θ4 − x(216 θ4 + 396 θ3 + 366 θ2 − 168 θ + 30) + 36 x2 (3 θ + 2)2 (6 θ + 7)2 .

with Riemann symbol

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 1/108 ∞
0 0 2/3
0 1/6 2/3
0 1 7/6
0 7/6 7/6

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

,

and later two more such operators were found. The existence of such operators was
initially a surprise to us, as it appears that, within the group of operators with three
singular points, further distinctions can be made. It is this circumstance that led to this
paper.

The structure of the paper is as follows. In the first section, we recall some basic
facts about the Calabi–Yau condition and formulate the main result of this paper.
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In the second section, we describe how the result can be obtained from a series of
simple computations. In the third section we summarise the properties of the operators
corresponding to each of the components that we find. In a final section, we review
the list all degree two Calabi–Yau operators that are presently known to us. In two
appendices we include some further monodromy and modular form information on
these examples, together with some properties of the lower-order operators used in
many constructions.

2 The Calabi–Yau condition

The adjoint L∗ of a differential operator L of the form

L = dn

dxn
+ an−1

dn−1

dxn−1 + · · · + a1
d

dx
+ a0 ∈ Q(x)

[
d

dx

]

is obtained by reading the operator backwards with alternating signs:

L∗ = dn

dxn
− dn−1

dxn−1 an−1 + · · · + ± d

dx
a1 + (−1)na0 ∈ Q(x)

[
d

dx

]
,

so that

L∗(y) = y(n) − (an−1y)(n−1) + · · · + (−1)na0y

The operator P is called essentially self-adjoint, if there exists a function α �= 0
(in an extension field of Q(x)), such that

Lα = αL∗.

It is easy to see that any such α has to satisfy the first-order differential equation

α′ = −2

n
an−1α.

This essential self-adjointness is equivalent to the existence of an invariant pairing on
the solution space, symmetric if n is odd and alternating if n is even, [16, 17]. The
condition of essential self-adjointness can be expressed by the vanishing of certain
differential polynomials in the ai , described in [1, 4, 16, 17], called the Calabi–Yau
condition.

For an operator of order two, the essential self-adjointness does not impose any
conditions, whereas for an differential equation of order three of the form

y′′′ + a2y′′ + a1y′ + a0y,
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the Calabi–Yau condition comes down to the vanishing of the quantity

W := 1

3
a′′
2 + 2

3
a2a′

2 + 4

27
a3
2 + 2a0 − 2

3
a1a2 − a′

1,

whereas for a fourth-order operator

y(iv) + a3y′′′ + a2y′′ + a1y′ + a0y = 0,

the quantity

Q := 1

2
a2a3 − a1 − 1

8
a3
3 + a′

2 − 3

4
a3(a3)

′ − 1

2
a′′
3

has to vanish. In that case the associated differential equation satisfied by the 2 × 2
Wronskians reduces its order from 6 to 5, [4].

For operators of higher order, one finds that more than one differential polynomial
condition has to be satisfied; here we will be concerned with operators of three and
mainly order four.

It is rather easy to fulfil the conditionQ = 0! For example, there exists one partic-
ularly nice family of operators of degree n that we call the main family.

Proposition 1 If A, B, C are polynomials of degree n, then the operator

L = θ2Aθ2 + θ Bθ + C

= Aθ4 + 2A′θ3 + (B + A′′)θ2 + B ′θ + C

has degree n and satisfies the Calabi–Yau condition. If the constant term of A is 1 and
of B and B is zero, then the exponents of L at 0 are all zero. If the roots of A are all
distinct, L has n singular points with exponents 0, 1, 1, 2 and a further singular point
at infinity. (Here A′ := θ(A) = x∂ A/∂x, etc.)

The operator of the proposition can be shown to satisfy the Calabi–Yau condition
Q = 0 by a direct, but tedious computation. But the form of the operator makes the
self-adjointness manifest. The statements about the exponents require a further direct
calculation.

In this paper we take a closer look at differential operators of the form

θ4 + x(aθ4 + bθ3 + cθ2 + dθ + e) + f x2(θ + α)(θ + β)(θ + γ )(θ + δ).

If f �= 0, then the numbers α, β, γ, δ are then the characteristic exponents of the
operator at ∞.

For this operator, the quantity Q is a rational function with

x2(1 + ax + f x2)3

as denominator; the singular points of the operator are the roots of this polynomial,
together with the point ∞.
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The numerator is a polynomial Q of degree 5 in the variable x , so we can write

Q = Q0 + Q1x + Q2x2 + Q3x3 + Q4x4 + Q5x5,

where the coefficients Qi are rather complicated polynomials in the parameters
a, b, c, d, e, f and the exponents α, β, γ, δ:

Q0, Q1, Q2, Q3, Q4, Q5 ∈ Q[a, b, c, d, e, f , α, β, γ, δ].

So, the Calabi–Yau condition is equivalent to six polynomial equations

Q0 = Q1 = Q2 = Q3 = Q4 = Q5 = 0,

which define a certain affine algebraic set

X = V (Q0, Q1, . . . , Q5) ⊂ C10.

We will give a complete description of the set X , in particular we determine the
irreducible components of X . As we have six equations in 10 variables, a first trivial
remark is that all irreducible components of X have dimension at least four. We will
give explicit parametrisations of all the irreducible components. Note also that the
polynomials Qi do not depend on the accessory parameter e, so the solution set X
contains the e-line as trivial factor.

Theorem 1 The algebraic set X defined by the condition Q(a, b, c, d, e, f , α, β, γ, δ)

= 0 is the union of ten irreducible components, of which there are seven with f �= 0.

Note that if f = 0 we are dealing with an operator of lower degree (i.e. hyper-
geometric), so will from now on assume that f �= 0 and we will ignore the three
components with f = 0. The seven remaining components differ in the behaviour of
the average exponents at infinity, i.e. the quantity:

σ := 2
α + β + γ + δ

4
.

There is a single component for which σ is not fixed, that we will call the trans-
verse component. On each of the remaining six components, σ has a fixed value. The
dimensions and values of σ that appear are summarised in the following diagram:

σ 0 1 2 3 4
6

dim 5 5
4 4 4

The two five-dimensional components are related by a simple transformation, as
are the three four-dimensional components.
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All Calabi–Yau operators known to us belong to the six-dimensional main compo-
nent (M):

(M) : θ4 + x(aθ4 + 2aθ3 + (a + d)θ2 + dθ + e)

+ f x2(θ + α)(θ + β)(θ + 2 − α)(θ + 2 − β)

or the transverse component (T ) that we describe later.
We remark furthermore that the ideal

I = (Q0, Q1, Q2, Q3, Q4, Q5) ⊂ C[a, b, c, d, e, f , α, β, γ, δ]

is, from an algebraic point of view, rather complicated. It is not radical and the com-
ponents appear with non-trivial multiplicities in the primary decomposition.

For third-order operators of degree two

θ3 + x(aθ3 + bθ2 + cθ + d) + f x2(θ + α)(θ + β)(θ + γ ),

the Calabi–Yau condition W = 0 leads in a similar way to an algebraic set

Y ⊂ C8,

defined by a system of polynomial equations

W0 = W1 = W2 = W3 = W4 = W5 = 0,

where now the polynomials

W0, W1, W2, W3, W4, W5 ∈ Q[a, b, c, d, f , α, β, γ ].

are in eight variables. The analysis of this ideal is very similar to the ideal for the
fourth-order operators, but hardly simpler. The result is, somewhat surprisingly, also
very similar to the case of order four:

Theorem 2 The algebraic set Y ⊂ C8 defined by the condition W (a, b, c, d, f , α, β, γ )

= 0 is the union of ten irreducible components, of which there are seven with f �= 0.

The seven remaining components differ in the behaviour of the (doubled) average
exponent

σ := 2
α + β + γ

3
.

Again there is a single transverse component on which the value of σ is not fixed. On
each of the remaining six components, σ has a fixed value. The dimensions and values
of σ that appear are summarised in the following diagram:
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σ 0 1 2 3 4
4

dim 3 3
2 2 2

The main component (m) is the one with σ = 2, dim = 4 and is given by

(m) : θ3 + x(2θ + 1)((c − 2d)θ2 + (c − 2d)θ + d) + f x2(θ + α)(θ + 1)(θ + 2 − α),

whereas on the transverse component (t) we have the operator

(t) : θ3 + a

4
x(4θ3 + 3(α + β)θ2 + (α + β + 2αβ)θ + αβ)

+
(a

4

)2
x2(θ + α)

(
θ + α + β

2

)
(θ + β).

Again, the operators on the two three-dimensional components are related by a simple
transformation, as are the three two-dimensional components.

One may speculate that the above patterns extends to higher-order operators, but
we will not try to pursue it here.

3 Proof of Theorem 1

The proof of Theorem 1 is purely computational and consists of systematically solving
of the equations, using a computer algebra system like Maple. The miracle here is
that this procedure actually works. We will describe only the most important steps in
the process.

3.1 Preliminary reductionsQ0 = Q5 = 0

The value of b: The polynomial Q0 is found to be

−4b − 8d + 8c,

and this allows us directly to eliminate the variable b and thus we will put from now
on

b = 2(c − d).

Symmetry of the exponents: The polynomial Q5 factors nicely as

− f 3(α + β − δ − ε)(α + δ − β − ε)(α + ε − β − δ).

Aswe assume that f �= 0, this only vanishes if one of the three other factors vanish,
meaning that the exponents come in two pairs that add up to the same value, that we
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shall call σ . So, without loss of generality we can assume to have the pairs α, σ − α

and β, σ − β and we will take the operator to be of the form

θ4 + x(aθ4 + bθ3 + cθ2 + dθ + e) + f x2(θ + α)(θ + β)(θ + σ − α)(θ + σ − β),

with b = 2(c − d) as our starting point.

3.2 The remaining equations

After solving the equations Q0 = 0,Q5 = 0, one is left to solve the polynomial
equations Q1 = Q2 = Q3 = Q4 = 0. For sake of concreteness, we give the explicit
form of the polynomials:

Q1 := 8 f α2σ + 16 f σ β − 8 f σ 2β − 16 c2 + 40 cd − 24 d2 − 8 f α σ 2 − 16 f α2

+16 f σ 2 − 16 f β2 − 32 f σ − 24 da + 16 ca + 16 f α σ + 8 f σ β2,

Q2 := −8 f α2c − 8 f β2c + 8 f β2d + 8 f α2d − 8 cad + 8 f σ 2c + 72 f σ d

−8 f σ 2d + 24 c2d − 24 cd2 + 8 c2a − 64 c f σ + 24 f α σ a + 24 f σ β a

−16 f σ 2β a + 16 f α2σ a − 16 f α σ 2a + 16 f σ β2a

−8 f α σ d + 8 f α σ c − 8 c3 + 8 d3 + 8 f σ β c − 8 f σ β d

−64 d f − 8 da2 − 24 f σ a − 24 f α2a + 48 c f + 24 f σ 2a − 24 f β2a,

Q3 = 8 f
(
2 f σ β + 2 f α σ + f σ β2 − f σ 2β + f α2σ − f α σ 2 − 2 f β2

−3 da + σ 2a2 + f σ 3 − β2a2 − σ a2 − σ β ad + σ β ac − α σ ad + α σ ac

−α2a2 − 2 cσ a − 2 f α2 − 4 f σ 2 + 4 f σ + 4 c2 − 7 cd + 3 d2 − α σ 2a2

+σ β2a2 + 6 σ cd + 3 σ ad − β2ac + β2ad − α2ac + α2ad + σ 2ac

−σ 2ad − 3 σ d2 − 3 σ c2 + α σ a2 + σ β a2 − σ 2β a2 + α2σ a2
)

,

Q4 = 8 f 2
(
−2 c − α2c − 2 σ 2c − 3 σ d + 2 σ 2d + β2d − 2 σ 2a − β2a − α σ d

+α σ c + σ β c − σ β d + σ β a − α σ 2a − σ 2β a + α σ a + α2σ a + β2σ a

σ a − α2a + σ 3a + 4 cσ − β2c + α2d
)

.

Somewhat to our surprise, it turns out to be rather easy to give a complete solution
to these equations. It will be useful to introduce the parameters

A := α(σ − α), B := β(σ − β),

and use these instead of α and β. One has

(θ + α)(θ + σ − α)(θ + β)(θ + σ − β) = (θ2 + σθ + A)(θ2 + σθ + B)

= θ4 + 2σθ3 + (σ 2 + (A + B))θ2 + σ(A + B)θ + AB.
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We will see that most expressions only depend on the quantity

� := −(A + B) = α2 + β2 − σ(α + β).

3.3 The equationQ4 = 0

The polynomial Q4 is an expression that is f 2 times an expression linear in the variable
a. As we will only consider the cases with f �= 0, we can solve for a and find

a = (2(σ − 1)2 + �)c − (σ (2σ − 3) + �)d

(σ − 1)(σ 2 − σ + �)
,

Note that this value for a introduces the denominator

(σ − 1)(σ (σ − 1) + �).

So, if we work further with this operator, we are implicitly assuming that these two
factors do not vanish. If one of them does vanish, we should go back to the previous
step, impose these conditions and compute further. For now, we will assume that these
factors are nonzero and come back to these exceptional cases later.

3.4 The case� = 2

It appears that with this value of a the quantity Q becomes divisible by σ − 2. So, in
this remarkable σ = 2 case, we obtain an operator family withQ = 0. For σ = 2 the
value of a simplifies to

a = (2 + �)c − (2 + �)c

1 · (2 + �)
= c − d,

and one obtains what we call the main component (M):

P := θ4 + x((c − d)θ4 + 2(c − d)θ3 + cθ2 + dθ + e)

+ f x2(θ + α)(θ + β)(θ + 2 − α)(θ + 2 − β),

depending c, d, e, f and the exponentsα andβ as free parameters.Almost all operators
of degree two from the AESZ list are of this type. In this way we obtain our first
component of dimension 6.

3.5 The case� �= 2

If, however, σ �= 2, we have to do a further analysis. Still using the above value for a,
the coefficient of x of Q is a complicated expression in c, d, e, f and the exponents
that, however, is factored by Maple instantly into four factors. First, there are the
factors
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(σ − 1), (σ − 2), (σ (σ − 1) + �).

We assume first that these are nonzero, so one is forced to put to zero the fourth factor,
which leads to a specific value for f :

f = (2c − 3d)
((σ − 1)2 + �)c − (σ (σ − 2) + �)c

(σ − 1) (2σ + �)
(
σ 2 − σ + �

) .

Here a new factor 2σ + � is introduced in the denominator, so we have to come
back later to the case 2σ + � = 0.

3.5.1 The subcase � = 3

Using the above values for a and f , the quantity Q only contains terms with x2 and
x3. It factors out the factor σ − 3, which leads to another remarkable operator family
with Q = 0:

a = (8 + �)c − (9 + �)d

2(6 + �)
, f = (2c − 3d)

(4 + �)c − (3 + �)d

2(6 + �)2
.

It has c, d, e and α, β as free parameters. This makes up a second component, of
dimension 5.

3.5.2 The subcase � �= 3

Still with the given values for a and f , if σ �= 3, one has to analyse the quantity Q
further.Maple manages to factor the coefficient of x2 into a product of eight factors,
of only three were not supposed to be nonzero at this stage. Each of these factors leads
to a linear dependence between c and d.

Case A:

c = (� − σ)
d

�
.

Upon substitution, we obtain an operator that satisfies the condition Q = 0. For this
operator one has

a = −2
d

�
, b = −2σ

d

�
, c = −(σ − �)

d

�
, f =

(
d

�

)2

,

and has d, e and the exponents α, β, σ as free parameters. So, we obtain a further
irreducible component of dimension 5. The remarkable thing is that now we have only
� appearing in the denominator.

The operator of Bognermentioned in the introduction is an instance of case A for
the parameter choice:

α = β = 2/3, σ = 11/6, d = −168, e = 30.
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Case B:

c = d
σ 2 − 2σ + �

(σ − 1)2 + �
.

In this case f reduces to 0, so we do not get an operator of degree two.
Case C:

c = d
σ 2 − 6σ + 4 + �

(σ − 1)(σ − 4) + �

In this case the conditionQ = 0 reduces to special relations between the exponents.
The exceptional cases are:

σ ∈ {0, 1, 2, 3, 4}

or

(
σ 2 − 2σ + 4 + �

)
= 0,

(
σ 2 − 3σ + 4 + �

)
= 0,

(
σ 2 − 5σ + 4 + �

)
= 0

This concludes the list of all possibilities. We still have to backtrack some of the
cases.

3.6 Backtracking the remaining cases

Earlier, we use the value for a which involved the denominator

(σ − 1)(σ 2 − σ + �).

The introduction of f led to a further denominator

2σ + �.

The analysis of Case A gave � as denominator, and Case C gave further factor (σ −
1)(σ − 4) + � in the denominator. In each of the cases we have to backtrack and see
if we find additional solutions.

3.6.1 The case � = 1

Looking at the operator with σ = 1, we find from the coefficient of x ofQ the value of
f . Using this value, and factoring the coefficient of x2 ofQ, we find there is a unique
value of c:

c = d
� − 1

�
.
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Here a denominator � appears, so we assume this to be �= 0; but the case � = 0 has
to be analysed anyway.

3.6.2 The case1 = 0

To analyse the further cases, it is useful to write the operator in terms of A and B
instead of α and β, so that � = C can be implemented by putting B = C − A. We
start with C = 0. The following seven components make up the intersection with
� = 0:

Case 1 σ = � = 0, b, c, d = 0:

θ4 + x(aθ4 + e) + f x2(θ4 + u).

Case 2 σ = 1, � = 0, d = 0, f = (a − c)c;

θ4 + x(aθ4 + 2cθ3 + cθ2 + e) + (a − c)c(θ4 + 2θ2 + 3 + θ2 + u).

Case 3 σ = 2, � = 0, a = c − d. This is inside the main component.
Case 4 σ = 2, � = 0, a = d, c = 2d. f = d2/4.
Case 5 σ = 3, � = 0, a = 8c − 9d/12, f = (2c − 3d)(4c − 3d)/72.

This is inside the σ = 3 component.
Case 6 σ = 4,� = 0, d = 0, c = 2a, f = a2/4.
Case 7 d = � = 0, there is the family with parameters c, e, σ, α

a = 2c

σ
, b = 2c, d = 0, f = a2

4
.

3.6.3 Remaining cases

There are more cases to check and this could be done along the above sketched lines.
Instead of this, we used the computer algebra system Singular. There is a library
called primdec.lib containing the algorithms for doing primary decomposition.
On our computer, Singular could not straight away compute the primary decom-
position of the ideal I defined by the vanishing of the x-coefficients of Q. But after
taking the ideal quotient of I by the ideals already found, it turned out to be able to
find the last component. In total we thus found seven irreducible components of the
variety defined by Q = 0.

3.7 Summary of the seven components

In total we have found seven components. Membership to a component is defined
by certain polynomial relations between the coefficients. Below we give the defining
relations for each of the components, the operator with its coefficients, together with
its generic Riemann symbol.
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The big σ = 2 component, also called the main component is defined by the linear
equations

σ − 2 = 0, a − (c − d) = 0.

For a general member of this component, the Riemann symbol is:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 ∗ ∗ ∞
0 0 0 α

0 1 1 β

0 1 1 2 − β

0 2 2 2 − α

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

,

where ∗ are the two roots of 1 + ax + f x2 = 0. The operator depends on the six
parameters a, d, e, f , α, β. The parameters a, f determine the position of the singular
fibres. The parameters α, β determine the four exponents at ∞ which are symmetric
around the value 2. The parameters d, e are accessory parameters.

However, if the two roots coincide, a2 = 4 f , then we obtain an operator with three
singular points.

The σ = 1 component is defined by the four conditions:

σ − 1 = 0, c� + d(� − 1) = 0,

d(a − (c − d)) + f � = 0, c(a − (c − d)) + f (� − 1) = 0.

The Riemann symbol of the operator is:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 x y ∞
0 0 0 α

0 1 1 β

0 1 2 1 − β

0 2 3 1 − α

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

,

where the special points x and y are located at:

x = �

d
, y = �

d + a�
.

The point y is not really a singular point of the differential operator, as the exponents
0, 1, 2, 3 are those of a regular point of the differential equation. Indeed, it can be
checked that no logarithms occur.

The σ = 3 component is defined by the conditions:

0 = σ − 3,
0 = 4a2 − 4c2 − 3ad + 11cd − 7d2 − 3 f A + 20 f ,

0 = 2a A − cA + d A − 12a + 8c − 9d,

0 = 2ac − 2c2 − 3a2a A − cA + d A − 12a + 8c − 9d,

0 = 2c2A − 5cd A + 3d2A + 2 f A2 − 8c2 + 18cd − 9d2 − 24 f A + 72 f .
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The Riemann symbol of the operator is:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 x y ∞
0 0 −1 α

0 1 0 β

0 1 1 3 − β

0 2 2 3 − α

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

,

where the singular points are located at:

x = 6 + �

2c − 3d
, y = −2(6 + �)

4c − 3d + (c − d)�
.

The operator has five parameters c, d, e, α, β. α, β are parameters that determine the
exponents at infinity, symmetric around 3. The parameters c, d determine together
with α and β the position of the two singularities. e is a single accessory parameter.

The σ = 0 component is defined by the conditions:

σ = 0, c = 0, d = 0, � = 0.

The generic Riemann symbol for this operator is:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 x y ∞
0 0 0 α

0 1 1 iα
0 2 2 −α

0 3 3 −iα

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

,

where the special points x , y are located at the solutions of 1 + ax + f x2 = 0. The
operator depends on four parameters a, e, f , α.

The small σ = 2 component is defined by the four conditions:

σ − 2 = 0, 4ad − d2 − 16 f = 0, 2c − 3d = 0, � + 2 = 0.

The Riemann symbol for a general member of this component is:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 x y ∞
0 −1 0 1 + α

0 0 1 1 + iα
0 1 2 1 − α

0 2 3 1 − iα

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

,

where the special points are

x = − 4

d
, y = − 4

4a − d
.
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The σ = 4 component is defined by the four conditions:

σ − 4 = 0, 6a − c = 0, 2c − 3d, � + 8 = 0.

The Riemann symbol of this operator is:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 x y ∞
0 −1 −1 2 + α

0 0 0 2 + iα
0 1 1 2 − α

0 2 2 2 − iα

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

,

where the singular points x, y are solutions to 1 + ax + f x2 = 0.
The transverse component finally is defined by the equations

0 = a2 − 4 f ,

0 = aσ − 2(c − d),

0 = a� + 2d,

0 = − f �2 + d2,

0 = ad + 2 f �,

0 = dσ − c� + d�,

0 = f σ� − f �2 + cd,

0 = − f σ 2 + f σ� + c2 − cd,

0 = ac − 2 f σ + 2 f �.

Solving for a, b, c, f we find the family of operators

T (d, e, α, β, σ ) := θ4

−x
1

�

(
2dθ4 + 2dσθ3 + (σ − �)θ)

)
+ x(θ + e)

−
(

dx

�

)2

(θ + α)(θ + β)(θ + σ − β)(θ + σ − β)

The Riemann symbol of the generic member in this family is:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 x ∞
0 0 α

0 1 β

0 2 − σ σ − β

0 3 − σ σ − α

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

,

where x = �
d .

The big and small σ = 2 components do intersect:

σ = 2, � = −2, 2a = d, 2c = 3d, f = d2/16.
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The transverse component intersects all other components. No other pair of compo-
nents can intersect, as they have a different σ -value.

3.8 The small components

It turns out that the components with σ = 0, 2, 4 are closely related to each other
and the solutions of the corresponding differential equations can be related in a simple
manner. The families of operators in question are:

P0(a, e, f , A) := θ4 + x(aθ4 + e) + x2 f (θ4 − A2)

P2(a, d, e, A) := θ4 + x(aθ4 + dθ3 + (3/2)dθ2 + dθ + e)
+ d(4a−d)

16 x2((θ + 1)4 − (A − 1)2)
P4(a, e, f , A) := θ4 + x(aθ4 + 4aθ3 + 6aθ2 + 4aθ + e)

+x2 f (θ4 + 8θ3 + 24θ2 + 32θ + A(8 − A))

Their relation is most easily understood from the perspective of the operator
P2(a, d, e, A) and its exponents. The discriminant�(x) of the operator P2(a, d, e, A)

factors as (1+dx/4)(1+(4a−d)x/4). The exponents at the first factor are−1, 0, 1, 2
and at the second factor 0, 1, 2, 3. The exponents at infinity are of the form

1 + α, 1 − α, 1 + iα, 1 − iα.

Multiplication of a solution to P2(a, d, e, A) by (1 + dx/4) will shift the exponents
at the first singular point by +1 and the exponents at infinity by −1, which then leads
to an operator with two points with exponents 0, 1, 2, 3 and

α,−α, iα,−iα

as exponents at infinity, i.e. with σ = 0 and � = 0. Similarly, division of a solution
to P2(a, d, e, A) by (1 + (4a − d)x/4) leads to a shift at the second singularity by
−1 and hence produces two singularities with exponents −1, 0, 1, 2. At infinity the
exponents shift by +1 and are of the form

2 + α, 2 − α, 2 + iα, 2 − iα,

i.e. with σ = 4 and � = −8.
We remark that the exponents at infinity can only be all real in the very special case

that these all coincide.
A precise statement relating these operators is the following:
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Proposition 2

y(x) is a solution of P2(a, d, e, A)

⇐⇒
(1 + dx/4).y0(x) is a solution of

P0(a, e − d/4, (4a − d)d/16, A − 1)
⇐⇒

(1 + (4a − d)x/4)−1y(x) is a solution of
P4(a, e + (4a − d)/4, (4a − d)d/16), A − 3)

It is a remarkable fact that the local monodromies around the special points �= 0 and
�= ∞ are trivial. The monodromy around 0 is MUM, so has infinite order and thus
the monodoromy group is the non-reductive group Z, which clearly prevents these
operators from being Picard–Fuchs operators of a family of algebraic varieties.

Something similar happens for the σ = 1 and γ = 3 components, given by the
operator families

P1(a, d, e, α, β) := θ4 + x
(
aθ4 − 2d

�
θ3 + �−1

�
θ2 + dθ + e

)

− d(d+a�)

�2 (θ + α)(θ + β)(θ + 1 − α)(θ + 1 − β)
,

where � = α2 + β2 − α − β, and

P3(c, d, e, α, β) := θ4 + x

(
(� + 8)c + (� + 9)d

2(� + 6)
+ 2(c − d)θ3 + cθ2 + dθ + e

)

+(2c − 3d)
(� + 4)c − (� + 3)d)

2(� + 6)2
x2(θ + α)

(θ + β)(θ + 3 + α)(θ + 3 − β),

with � = α2 + β2 − 3α − 3β.
One verifies directly that

Proposition 3

y(x) is a solution of P1(a, d, e, α, β)

⇐⇒
(� − (d + a�)x)y0(x) is a solution of

P3(d(� − 1)/�, d, e, α + 1, β + 1)

These operators are also remarkable. One of the roots of the polynomial 1+ax+ f x2 is
in fact a regular point; the other is a conifold point, so the three non-trivialmonodromies
are precisely as those for the hypergeometric operators. In fact, if we multiply the
hypergeometric operator

θ4 − N x(θ + α)(θ)
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with the linear factor 1 + Mx , the result is the operator

P1(M + N ,−N�, e, α, β), (� = α2 + β2 − α − β)

for the specific value

e = Nαβ(1 − α)(1 − β)

of the accessory parameter e. If e takes on another value, the operator is no longer
equal to linear factor × hypergeometric.

4 The known Calabi–Yau operators of degree 2

Below we will give an overview of the 69 Calabi–Yau operators of degree two that
are currently known to us. We also include some further remarkable operators that are
not strictly Calabi–Yau in the sense of [4]. Of course, this is just a small portion of
the list of the still growing list Calabi–Yau operators that was started in [3] and now
contains more than 500 members. An update of this list in preparation [2].

For operators of degree two, there are cases with three andwith four singular points.
Most of the known operators can be related to hypergeometric operators or operators
that are convolutions, that is, can be obtained via Hadamard product of operators of
lower order. Recall that the Hadamard product of two power series φ(x) := ∑

n an xn

and ψ(x) := ∑
n bn xn is the series

φ ∗ ψ(x) =
∑

n

anbn xn

and by a classical theorem, if φ and ψ satisfy a linear differential equations, then so
does φ ∗ ψ . The Hadamard product corresponds to the multiplicative convolution of
local systems, so are under very good control, see [24, 25].

Frobenius basis: For a fourth-order operator P with at MUM point at 0, there is a
canonical basis of solutions y0, y1, y2, y3 to Py = 0 on a sufficiently small slit disc
around the origin, called the Frobenius basis:

y0(x) = f0(x)

y1(x) = log(x) f0(x) + f1(x)

y2(x) = 1
2 log(x)2 f0(x) + log(x) f1(x) + f2(x)

y3(x) = 1
6 log(t)

3 f0(x) + 1
2 log(x)2 f1(x) + log(x) f2(x) + f3(x)

where f0(x) ∈ Q[[x]], fi (x) ∈ xQ[[x]], i = 1, 2, 3.
TheCalabi–Yau operators from [4] are characterised by three integrality conditions:
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(1) integrality of the solution y0:

y0(x) ∈ Z[[x]].

(2) integrality of the q-coordinate q(x):

q(x) := exp(y1(x)/y0(x)) = x exp( f1(x)/ f0(x)) = x + · · · ∈ Z[[x]]

(3) integrality of the instanton numbers nd .

These can be computed in several different ways. The second logarithmic derivative
of y2/y0 expressed in the q-coordinate is called the Yakawa-coupling K (q) of the
operator P:

K (q) =
(

q
d

dq

)2 (
y2
y0

)

Now expand K (q) as a Lambert series

K (q) = 1 +
∞∑

k=1

k3nkqk

1 − qk
.

The numbers nd are called the (normalised, n0 = 1) instanton numbers of P and
are required to be integral. It is also natural not to require strict integrality, but rather
to allow small denominators in f0, q(x) and nd to appear, that is, to require only
N -integrality, for some denominator N .

4.1 Description of the operators

Many of the Calabi–Yau operators of degree 2 that we will describe involve special
lower-order operators of Calabi–Yau type. These are introduced and discussed in
“Appendix B”.

4.1.1 Operators with three singular points

I. The 14 tilde operators There are 14 exponents (α1, α2, α3, α4) with

α1 ≤ α2 ≤ α3 ≤ α4, α1 + α4 = α2 + α4 = 1,

for which the hypergeometric operator, scaled by N ,

θ4 − N x(θ + α1)(θ + α2)(θ + α3)(θ + α4),
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is a Calabi–Yau operator, [8]. Corresponding to these, there are also 14 hypergeometric
fifth-order Calabi–Yau operator

θ5 − 4N x(θ + α1)(θ + α2)(θ + 1

2
)(θ + α3)(θ + α4),

with Riemann symbol

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0 1/4N ∞
0 0 α1
0 1 α2
0 3/2 1/2
0 2 α3
0 3 α4

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

.

These operators have a Yifan Yang pull-back to 14 special fourth-order operators,
called the tilde-operators 1̃, 2̃, . . . , 1̃4. These operators replace the more complicated
hat-operators î, i = 1, 2, . . . , 14 that appeared in the list [3] into which they can be
transformed. However, operator 3̃ is not ’new’, as it can be reduced to operator 2.33.
II. The 16 operators of type H ∗ μ(H)

There are four special hypergeometric second-order operators called A, B, C, D.
TheMöbius transformation that interchanges the singularity with infinity leads to four
Möbius transformed hypergeometric operators

μ(A) := e, μ(B) = h, μ(C) = i, μ(D) = j,

where e, h, i, j refer to the names given in [4], see also “Appendix B”.
Thus, we can form the 16 Hadamard product A ∗ μ(B), etc., and obtain 16 fourth-

order operators of degree two, with three singular points.
But there are two surprises: the operator C ∗ μ(A) can be reduced to the hyperge-

ometric operator AESZ #3 = 1.3 and the operator C ∗ μ(B) has vanishing instanton
numbers and in fact is the third symmetric power of the hypergeometric second-order
operator

θ2 − 12 x (12 θ + 7) (12 θ + 1) .

So, from this we obtain only 14 Calabi–Yau operators of degree two that are ’new’.

III. The four Hadamard products I ∗ μ(H ′)
There are also four special hypergeometric third-order operators A′, B ′, C ′, D′,

analogous to second-order operators A, B, C, D. Interchanging the singularity with
the point at infinity, we obtain third-order operators

μ(A′) = β, μ(B ′) = ι, μ(C ′) = θ, μ(D′) = κ

of degree two, with three singular points. Taking Hadamard product with the central
binomial coefficient produces four fourth-order operators of degree two. One of these,
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I ∗ β, can be transformed by a quadratic transformation to an operator (I ∗ β)∗

θ4 − 16(4θ + 1)(4θ + 3)(8θ2 + 8θ + 3) + 4096x2(4θ + 1)(4θ + 3)(4θ + 5)(4θ + 7),

which in turn can be transformed to the hypergeometric operator AESZ #3. The opera-
tor I ∗θ can be transformed in 2.17, so only two of these give rise to ’new’ Calabi–Yau
operators, [9].

IV. Four sporadic operators
The operator 2.63 = #AESZ84 cannot be constructed in this way. Furthermore,

there are three operators of Bogner-type that were obtained from transformations
of the higher degree operators AESZ#245, AESZ#406 and AESZ #255. As these
operators have unusual properties, they probably could better be understood in terms
of their higher degree versions. We remark that the local monodromies around the two
singularities �= 0 are of finite order.

4.1.2 Operators with four singular points

I. The 24 operators of type H ∗ B Z B
There are six special second-order operators of degree two with four singular fibres

and Riemann symbol of the form

⎧
⎨

⎩

0 ∗ ∗ ∞
0 0 0 1
0 0 0 1

⎫
⎬

⎭ .

So, we are dealing here with special Heun operators. They appear in the work of Beuk-
ers [13] and Zagier [44] and are related to the rational elliptic surfaces described by
Beauville [12], so we call them the BZB operators. They were denoted a, b, c, d, f , g
in [4].

Taking the Hadamard product with the hypergeometric operators A, B, C, D pro-
duces 24 fourth-order operators of degree two, with four singular points.

II. The six Hadamard products I ∗ B Z B ′
TheBZB operators have also analogues as third-order operators that wewill call the

BZB’-operators, that were called α, γ, δ, ε, ζ, η in [4]. Taking I∗with these operators
produces six ’new’ fourth-order operators of degree two with four singularities.

III. Six Sporadic operators with four singularities

III.a. Three operators I∗ sporadic third order: There are three sporadic third-order
operators of degree two, described in “Appendix B”. These lead to fourth-order oper-
ators of degree two by taking I∗ with them.

III.b: Three original operators: There are three operators that apparently cannot be
constructed starting from simpler operators of lower order; we call them original
operators.

The count
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So, in total we have described

(14 − 1) + (16 − 2) + (4 − 2) + 4 = 33

Calabi–Yau operators of degree two with three singular points and

24 + 6 + 3 + 3 = 36

with four singular points, making up a total of 69. Because these all have different
instanton numbers, these are essentially different and there are no algebraic transfor-
mations mapping one to any of the other operators.

Miscellaneous operators
There are two further types of operators of degree two that deserve to be men-

tioned at this place, as they challenge the precise definition of Calabi–Yau operator,
as formulated in [4].

Reducible operators: A large scale Zagier-type search for degree two operators with
integral solutions has been performed by Pavel Metelitsyn. Apart from the oper-
ators equivalent to the ones mentioned above, there are some interesting reducible
fourth-order operators. With regard to the q-coordinate and instanton numbers these
examples behave very much in the same way as the irreducible ones. An example is
the operator

θ4 − 12x (6θ + 1) (6θ + 5)
(
2θ2 + 2θ + 1

)

+144x2 (6θ + 1) (6θ + 5) (6θ + 7) (6θ + 11) .

One finds:

φ(x) = 1 + 60x + 13860x2 + 4084080x3 + 1338557220x4

+465817912560x5 + · · ·
q(x) = x + 312x2 + 107604x3 + 39073568x4 + 14645965026x5 + · · ·

n1 = −192, n2 = 4182, n3 = −229568, n4 = 19136058,

n5 = −2006581440.

But note that the above series φ(x) is just the solution of the second-order oper-
ator D, and the above operator is just the compositional square of D. (Doing this
with the hypergeometric second-order operators A, B, C produces periodic instanton
numbers.)

A strange operator: Bogner [17] also found an example of an operator of degree two
with an integer solution, integral q-coordinate, integral K (q)-series, but for which the
instanton numbers are badly non-integral. We start from the third-order operator

L := θ3 − 4x (2θ + 1)
(
5θ2 + 5θ + 2

)
+ 48x2 (3θ + 2) (3θ + 4) (θ + 1)
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with integral solution

1 + 8x + 96x2 + 1280x3 + 17440x4 + 231168x5 + · · ·

The operator I ∗ L is the fourth-order operator

θ4 − 8x(2θ + 1)2(5θ2 + 5θ + 2) + 192x2(2θ + 1)(3θ + 2)(3θ + 4)(2θ + 3).

We find the following nice integral series:

y0(x) = 1 + 16x + 576x2 + 25600x3 + 1220800x4 + 58254336x5 + · · ·
q(x) := x + 40x2 + 1984x3 + 106496x4 + 5863168x5 + · · ·
K (q) := 1 + 8q2 − 5632q3 − 456064q4 − 17708032q5 + · · ·

However, if we expand K (q) as a Lambert series, we do not get integral instanton
numbers:

n1 = 8, n2 = −1, n3 = −1880

9
, n4 = −7126, n5 = −3541608

25
, . . . ,

n17 = 2432475693294458880448632

289
, . . .

Experimentally, the denominator p2 appears in n p for

p = 3, 5, 7, 11, 13, 17, 19, . . .

This is rather puzzling. Conjecturally, already the fact that φ(x) is an integral series
implies that the operator is a factor of a Picard–Fuchs equation of a family of varieties
defined overQ and indeed our operator is of geometrical origin. It was conjectured in
[4] that the integrality of the q-series implies the integrality of the instanton numbers,
which in this example is not the case. The integrality of solution and mirror map
clearly indicates that we have a rank four Calabi–Yau motive and one would expect
the general arguments for the integrality of [43] to be applicable, but apparently they
are not. There might exist a different scaling of the coordinate that repairs this defect,
but up to now we have been unable to find it.
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Appendix A

The following table lists the operators as they appear in the electronic database acces-
sible at https://cydb.mathematik.uni-mainz.de/. (These are ordered by degree, so that
the nth operator of degree d gets the code d.n in that list.) The second column lists the
AESZ numbers as appearing in [3]. The last three columns list the first three instanton
numbers (normalised, n0 = 1). As these do not change under transformations of the
coordinate, the pair of numbers |n1|, |n3| provide a simple ’fingerprint/superseeker’ to
identify an operator. Operators that are not ’new’ are listed in their natural place, with
xx added in their number. In “Appendix C” one finds some monodromy and modular
form information for these operators.
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Number AESZ Source |�| n1 n2 n3

2.1 #45 A ∗ a 4 12 163 3204
2.2 #15 B ∗ a 4 21 480 15894
2.3 #68 C ∗ a 4 52 2814 220220
2.4 #62 D ∗ a 4 372 136182 71562236
2.5 #25 A ∗ b 4 20 277 8220
2.6 #24 B ∗ b 4 36 837 41421
2.7 #51 C ∗ b 4 92 5052 585396
2.8 #63 D ∗ b 4 684 253314 195638820
2.9 #58 A ∗ c 4 16 142 11056/3
2.10 #70 B ∗ c 4 27 432 18089
2.11 #69 C ∗ c 4 64 2616 246848
2.12 #64 D ∗ c 4 432 130842 78259376
2.13 #36 A ∗ d 4 16 42 1232
2.14 #48 B ∗ d 4 24 291/2 5832
2.15 #38 C ∗ d 4 48 998 73328
2.16 #65 D ∗ d 4 240 57102 19105840
2.17 #111,∼ #40 A ∗ e 3 32 −96 1440
2.18 #110 B ∗ e 3 36 −144 8076
2.xx19 ∼ #3 C ∗ e 3 32 608 26016
2.19 #112 D ∗ e 3 −288 162504 −96055968
2.20 #133 A ∗ f 4 12 −42 −3284/3
2.21 #134 B ∗ f 4 18 −207/2 −5177
2.22 #135 C ∗ f 4 36 −477 −206716/3
2.23 #136 D ∗ f 4 180 −15615 −21847076
2.24 #137 A ∗ g 4 20 2 1684/3
2.25 #138 B ∗ g 4 27 189/4 2618
2.26 #139 C ∗ g 4 44 607 22500
2.27 #140 D ∗ g 4 108 54135 −4945756
2.28 #141 A ∗ h 3 48 −438 2864
2.29 #142 B ∗ h 3 45 −3465/4 27735
2.xx30 Sym3 C ∗ h 3 0 0 0
2.30 #143 D ∗ h 3 −1008 499086 −607849200

Appendix B

In this appendix we collect some information on operators of lower order that are
relevant to the construction of the order four Calabi–Yau operators of degree two.
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Number AESZ Source n1 n2 n3

2.31 7∗∗ A ∗ i 3 96 −3560 −12064
2.32 B ∗ i 3 60 −7635 307860
2.33 6∗ C ∗ i 3 −160 −6920 −539680
2.34 D ∗ i 3 −3936 3550992 −10892932064
2.35 9∗∗, ∼ #67 A ∗ j 3 480 −226968 −16034720
2.36 B ∗ j 3 −36 −486279 128217204
2.37 C ∗ j 3 −2592 −307800 81451104
2.38 #61 D ∗ j 3 −41184 251271360 −5124430612320
2.39 ∼ 1̂ 1̃ 3 −2450 −1825075/2 −623291900
2.40 ∼ 2̂ 2̃ 3 −791200 −41486886600 −4288711075194400
2.xx41 ∼ 3̂ 3̃ 3 −160 −6920 −539680
2.41 ∼ 4̂ 4̃ 3 −522 −105291/2 −9879192
2.42 ∼ 5̂ 5̃ 3 −288 −19260 −2339616
2.43 ∼ 6̂ 6̃ 3 −736 −104512 −26911072
2.44 ∼ 7̂ 7̃ 3 −57760 −354010600 −3869123234080
2.45 ∼ 8̂ 8̃ 3 −10080 −11338740 −24400330080
2.46 ∼ 9̂ 9̃ 3 −2710944 −717640301160 −302270555492914464
2.47 ∼ 1̂0 1̃0 3 −3488 −1406056 −1142687008
2.48 ∼ 1̂1 1̃1 3 −1344 −278040 −109320512
2.49 ∼ 1̂2 1̃2 3 −264006 −52511160 −230398034080
2.50 ∼ 1̂3 1̃3 3 −201888 −1567499400 −40177844666400
2.51 ∼ 1̂4 1̃4 3 −5472 −4476528 −6444589536
2.52 #16 I ∗ α 4 4 20 644/3
2.53 #29 I ∗ γ 4 14 303/2 10424/3
2.54 #41 I ∗ δ 4 2 −7 −104
2.55 #42 I ∗ ε 4 8 63 1000
2.56 #185 I ∗ ζ 4 6 93/2 608
2.57 #184 I ∗ η 4 2 4 −8
2.xx58 ∼ #3 I ∗ β 3 0 4 0
2.yy58 ∼ 2.xx58 (I ∗ β)∗ 3 32 608 26016
2.58 4∗ I ∗ ι 3 −6 −6 −104
2.xx59 ∼ 2.17 I ∗ θ 3 −32 −88 −1440
2.59 13∗,∼ 47 I ∗ κ 3 −384 −1356 −164736
2.60 #18 I ∗ Spor1 4 4 39 364
2.61 #26 I ∗ Spor2 4 10 191/2 1724
2.62 #28 Original 4 5 28 312
2.63 #84 Original 3 −4 −11 −44
2.64 #182 Original 4 1 7/4 7
2.65 #183 I ∗ Spor3 4 4 7 556/9
2.66 Reducible! D ◦ D 3 −192 4182 −229568
2.67 ∼ #245 Bogner1 3 6 −69/2 170
2.68 #406 Bogner2 3 −12 −186 −1668
2.69 #205 Original 4 1 7/4 5
2.70 ∼ #255 Bogner3 3 20 290 28820/3

First-order operator

There is a single first-order operator that we call I :

θ − 4x(θ + 1/2).
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The series

∞∑

n=0

(
2n

n

)
xn

is the unique holomorphic solution of I and in fact coincides for ‖x‖ ≤ 1/4 with the
algebraic function

1√
1 − 4x

.

Second-order operators

The four hypergeometric cases

There are four very remarkable hypergeometric second-order operators of the form

θ2 − N x(θ + α)(θ + β), α + β = 1, α = 1/2, 1/3, 1/4, 1/6

with Riemann symbol of the form

⎧
⎨

⎩

0 1/N ∞
0 0 α

0 0 β

⎫
⎬

⎭ .

These four operators appear inmanydifferent areas ofmathematics, like thealternative
theories of Ramanujan and are described at many places, see, for example, [22].

Name Operator a0, a1, a2, a3, . . . an

A θ2 − 16x(θ + 1
2 )2 1, 4, 36, 400, . . . (2n!)2

n!4
B θ2 − 27x(θ + 1

3 )(θ + 2
3 ) 1, 6, 90, 1680, . . . (3n)!

n!3
C θ2 − 64x(θ + 1

4 )(θ + 3
4 ) 1, 12, 420, 18480, . . . (4n)!

(2n!)(n!)2
D θ2 − 432x(θ + 1

6 )(θ + 5
6 ) 1, 60, 13860, 4084080, . . . (6n)!

(3n!)(2n!)(n!)

The above list of operators is in close correspondence with the six extremal elliptic
surfaces with three singular fibres and of modular origin, [33, 37].

Here MW stands for the Mordell–Weil group of sections of the fibration. The
matrices A, B and (B A)−1 are monodromy matrices for loops around 0, c �= 0,∞
and ∞ respectively. In the monodromy column, the group generated by A and B is
identified. The column H/M P denotes the notation used in [33, 37]. The last column
denotes the type of the Picard–Fuchs operator. We see that there are three surfaces that
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Fibres MW A B (B A)−1 Monodromy H/MP

I2 I2 I∗
2 (Z/2)2

(
1 2
0 1

) (
1 0

−2 1

) (
1 −2
2 −3

)
�(2) 12/X222 A

I1 I1 I∗
4 Z/2

(
1 1
0 1

) ( −1 1
−4 3

) ( −1 0
4 −1

)
�0(4) 11/X114 A

I1 I4 I∗
1 Z/4

(
1 1
0 1

) (
1 0

−4 1

) ( −3 −1
4 1

)
�0(4) 11/X141 A

I1 I3 I V ∗ Z/3

(
1 1
0 1

) (
1 0

−3 1

) (
1 −1
3 −2

)
�0(3) 10/X134 B

I1 I2 I I I∗ Z/2

(
1 1
0 1

) (
1 0

−2 1

) (
1 −1
2 −1

)
�0(2) 9/X123 C

I1 I1 I I∗ Z/1

(
1 1
0 1

) (
1 0

−1 1

) (
1 −1
1 0

)
�0(1) 8/X112 D

belong to operator A, but the surface I1 I4 I ∗
1 shows it is a member of a very regular

series of four surfaces, which we will say to belong to the operators A, B, C, D.
The surfaces belonging to the operators A, B, C, D have a clear relation to the

geometry of the simple elliptic singularities. The fibres over ∞ correspond to config-
urations of rational curves intersecting in the pattern of the affine Dynkin diagrams.
The corresponding simple elliptic singularities have a single modulus. These families
of elliptic curves lead to elliptic surfaces that cover the corresponding extremal elliptic
surfaces.

Case Dynkin Equation Cover

A D̃5 x2 + y2 = suv, u2 + v2 = sxy t = s2

B Ẽ6 x3 + y3 + z3 = sxyz t = s3

C Ẽ7 x2 + y4 + z4 = sxyz t = s4

D Ẽ8 x2 + y3 + z6 = sxyz t = s6

The A case is slightly different, as the corresponding singularity is not a hypersur-
face, but a complete intersection of two quadrics. The last three cases correspond to
the Euclidean triples (p, q, r) of integers ≥ 2 with the property that

1

p
+ 1

q
+ 1

r
= 1.

123



Journal of Algebraic Combinatorics (2023) 58:1203–1259 1233

The transformed hypergeometric cases

The Möbius transformation

x �→ − x

1 − N x

preserves 0 and interchanges the points 1/N and ∞ of the Riemann sphere. If y(x)

solves one of the hypergeometric equations A, B, C, D, then

Y (x) := 1

1 − N x
y

(
− x

1 − N x

)

satisfies a second-order equation of the form

θ2 − x(aθ2 + aθ + b) + cx2(θ + 1)2

that we call transformed hypergeometric equation that we denote by μ(A), μ(B),

μ(C), μ(D). These operators have Riemann symbol of the form

⎧
⎨

⎩

0 1/N ∞
0 −α 1
0 −β 1

⎫
⎬

⎭

Name a b c a0, a1, a2, . . . an

μ(A) = e 32 12 162 1, 12, 164, . . . 16n ∑n
k=0(−1)k(−1/2

k

)2(−1/2
n−k

)

μ(B) = h 54 21 272 1, 21, 495, . . . 27n ∑n
k=0(−1)k(−1/3

k

)2(−2/3
n−k

)

μ(C) = i 128 52 642 1, 52, 2980, . . . 64n ∑n
k=0(−1)k(−1/4

k

)2(−3/4
n−k

)

μ(D) = j 864 372 4322 1, 372, 148644, . . . 432n ∑n
k=0(−1)k(−1/6

k

)2(−5/6
n−k

)

The six Beukers–Zagier–Beauville operators

There are six special second-order operators of degree two with four singular points
of the form

θ2 − t(aθ2 + aθ + b) + c(θ + 1)2

and hence have a Riemann symbol of the form

⎧
⎨

⎩

0 ∗ ∗ ∞
0 0 0 1
0 0 0 1

⎫
⎬

⎭
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AZ-name BZ-name a b c a0, a1, a2, a3, . . . an

a A 7 2 −8 1, 2, 10, 56, . . .
∑n

k=0
(n
k
)3

c C 10 3 9 1, 3, 15, 93, . . .
∑n

k=0
(n
k
)2(2k

k
)

g F 17 6 72 1, 6, 42, 312, . . .
∑n

j,k=0(−1) j8n− j (n
j
)( j

k

)3

d E 12 4 32 1, 4, 20, 112, . . .
∑n

k=0
(n
k
)(2k

k
)(2n−2k

n−k
)

f B 9 3 27 1, 3, 9, 21, . . .
∑

k=0 n(−1)k3n−2k( n
3k

) (3k)!
k!3

b D 11 3 −1 1, 3, 19, 147, . . .
∑n

k=0
(n
k
)2(n+k

k
)

We refer to [30] for a representation of these sequences as constant term of a Laurent
polynomial.

Unfortunately, there is no natural naming for these operators. In the first column
of the table we used the “AZ-names” used in [4]. In [14, 44] the same operators are
named A, B, . . . , F (not to be confusedwith the hypergeometric operators A, B, C, D
mentioned above!); these names appear in the second column as “BZ-names”. These
operators also appear as Picard–Fuchs operators for rational elliptic surfaces, namely
the six semi-stable families of elliptic curves with four exceptional fibres that have
been studied by Beauville [12] and described in detail in [42]. The modular level
gives a more or less natural way order the operators.

Fibres j Pencil Group Operator

I3 I3 I3 I3 0 x3 + y3 + z3 + t xzy �(3) f
I4 I4 I2 I2 1728 x(x2 + z2 + 2yz) + t z(x2 − y2) �1(4) ∩ �(2) d
I5 I5 I1 I1 214313/53 x(x − z)(y − z) + t zy(x − y) �1(5) b
I6 I3 I2 I1 22.733/34 (x + y)(y + z)(z + x) + t xyz �1(6) a, c, g
I8 I2 I1 I1 1728 (x + y)(xy − z) + t xyz �0(8) ∩ �1(4) d
I9 I1 I1 I1 0 x2y + y2z + z2x + t xyz �0(9) ∩ �1(3) f

The coefficients of the holomorphic solution of the operatorb are theApéry numbers
for the irrationality of π2. It belongs to the elliptic surface with fibres I5, I5, I1, I1
over the modular curve X1(5), as was first noticed by Beukers [13].

The operators a, c, g differ by a Möbius transformations. The base of this family
can be identified with the modular curve for the congruence subgroup �1(6). Over
that curve we have the semi-stable elliptic surface with fibres of type I6, I3, I2, I1.
The operator d belongs to the two isogenous elliptic surfaces with fibres I8, I2, I1, I1
and I4, I4, I2, I2. Operator f belongs to the two isogenous elliptic surfaces with fibres
I9, I1, I1, I1 and I3, I3, I3, I3 which is nothing but the Hesse pencil.
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Third-order operators

Hypergeometric operators

Closely related to the operators A, B, C, D, there are also four very remarkable hyper-
geometric third-order operators

A′ = I ∗ A, B ′ = I ∗ B, C ′ = I ∗ C, D′ = I ∗ D

of the form

θ3 − N x(θ + α)(θ + 1/2)(θ + β), α + β = 1, α = 1/2, 1/3, 1/4, 1/6

with Riemann symbol

⎧
⎪⎪⎨

⎪⎪⎩

0 1/N ∞
0 0 α

0 1/2 1/2
0 0 β

⎫
⎪⎪⎬

⎪⎪⎭
.

Also important are the symmetric squares of the operators A, B, C, D. These are
of the form

θ3 − x(2θ + 1)(aθ2 + aθ + b) + a2x2(θ + α)(θ + 1)(θ + β), α + β = 2,

and have Riemann symbol of the form

⎧
⎪⎪⎨

⎪⎪⎩

0 1/a ∞
0 0 1 − α

0 0 1
0 0 1 + α

⎫
⎪⎪⎬

⎪⎪⎭
.

Name a b α

sym2(A) 16 8 1 − 2 1
2 = 0

sym2(B) 27 12 1 − 2 13 = 1/3
sym2(C) 64 24 1 − 2 14 = 1/2
sym2(D) 432 120 1 − 2 16 = 2/3

The four transformed symmetric squares

More important for us are the transformed symmetric squares of the operators
A, B, C, D. These are of the form
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θ3 − x(2θ + 1)(aθ2 + aθ + b) + a2x2(θ + 1)3

and have Riemann symbol of the form

⎧
⎪⎪⎨

⎪⎪⎩

0 1/a ∞
0 −α 1
0 0 1
0 α 1

⎫
⎪⎪⎬

⎪⎪⎭
.

Name a b α a0, a1, a2, . . . an

μ(sym2(A)) = β 16 8 1 1, 8, 88, 1088, 16n ∑
k
(−1/2

k

)2(−1/2
n−k

)2

μ(sym2(B)) = ι 27 15 1/3 1, 15, 297, 6495 27n ∑
k
(−1/3

k

)2(−2/3
n−k

)2

μ(sym2(C)) = θ 64 40 1/2 1, 40, 2008, 109120 64n ∑
k
(−1/4

k

)2(−4/3
n−k

)2

μ(sym2(D)) = κ 432 312 2/3 1, 312, 114264, 44196288 432m ∑
k
(−1/6

k

)2(−5/6
n−k

)2

The names β, ι, θ, κ stem from [4] and also appear in [9].

The six BZB’ operators

Corresponding to the six BZBoperators, there are also six special third-order operators
of degree two with four singular points of the form

θ3 − x(2θ + 1)(aθ2 + aθ + b) + cx2(θ + 1)3,

and hence have a Riemann symbol of the form

⎧
⎪⎪⎨

⎪⎪⎩

0 ∗ ∗ ∞
0 0 0 1
0 1/2 1/2 1
0 1 1 1

⎫
⎪⎪⎬

⎪⎪⎭
.

The closed form for the coefficients an appeared in [9], for a Laurent representation
of these sequences we refer to [30].

The correspondence between the B Z B operators and B Z B ′ operators is determined
by the following table:

a c g d f b
δ α γ ε ζ η
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Name a b c a0, a1, a2, a3, . . . an

δ 7 3 81 1, 3, 9, 3, −279
∑

k (−1)k3n−3k( n
3k

)(n+k
k

) (3k)!
k!3

α 10 4 64 1, 4, 28, 256, . . .
∑

k
(n
k
)2(2k

k
)(2n−2k

n−k
)

γ 17 5 1 1, 5, 73, 1445, . . .
∑

k
(n
k
)2(n+k

k
)2

ε 12 4 16 1, 4, 40, 544, . . .
∑

k
(n
k
)2(2k

n
)2

η 11 5 125 1, 5, 35, 275, . . .
∑�n/5�

k=0

(n
k
)3 ((4n−5k−1

3n
) + (4n−5k

3n
))

ζ 9 3 −27 1, 3, 27, 309, . . .
∑

k,l
(n
k
)2(n

l
)(k

l
)(k+l

n
)

There is a general formula expressing the relation between the BZB and BZB’
operators:

Y0(−x/Q(x)) = Q(x)y0(x)2

which shows that the third-order operators are twisted versions of the symmetric
squares of the corresponding second-order operators. The factor Q(x) is the discrim-
inant of the second-order operator with y0 as solution.

y0 Y0 Q
a δ (1 + x)(1 − 8x)

c α (1 − x)(1 − 9x)

g γ (1 − 8x)(1 − 9x)

d ε (1 − 4x)(1 − 8x)

f ζ 1 − 9x + 27x2

b η 1 − 11x − x2

The three sporadic third-order operators

We know of three very special third-order operators that seem to be not directly related
to the analogous of the second-order operators. These are the following ones:

Sporadic 1:

θ3 − 2x(2θ + 1)(3θ2 + 3θ + 1) − 4x2(4θ + 3)(θ + 1)(4θ + 5),

φ(x) = 1 + 2x + 18x2 + 164x3 + 1810x4 + 21252x5 + 263844x6 + · · ·
⎧
⎪⎪⎨

⎪⎪⎩

0 1/16 −1/4 ∞
0 0 0 3/4
0 1/2 1/2 1
0 1 1 5/4

⎫
⎪⎪⎬

⎪⎪⎭
,

an =
n∑

k=0

(
n

k

)4

.

This example has an A-incarnation as K3 surface that is the intersection of four hyper-
plane sections of type (1, 1) inP3×P3. If we take I∗, we obtain a fourth-order operator
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2.60 with A-incarnation a CY threefold that appears as intersection of two (1, 1) and
one (2, 2) hypersurface in P3 × P3 [10].

Sporadic 2:

θ3 − x(2θ + 1)(13θ2 + 13θ + 4) − 3x2(3θ + 2)(θ + 1)(3θ + 4),

φ(x) = 1 + 4x + 48x2 + 760x3 + 13840x4 + 273504x5 + 5703096x6 + · · ·
⎧
⎪⎪⎨

⎪⎪⎩

0 1/27 −1 ∞
0 0 0 2/3
0 1/2 1/2 1
0 1 1 4/3

⎫
⎪⎪⎬

⎪⎪⎭
,

an =
n∑

k=0

(
n

k

)2(n + k

n

)(
2k

n

)
.

This example has an A-incarnation as K3 surface that is the intersection of six hyper-
plane sections of the Grassmanian G(2, 6) in its Plücker embedding. If we take I∗,
we obtain a fourth-order operator 2.61 with A-incarnation a CY threefold that appears
as intersection of four linear and a quadratic hypersurface in Grassmanian G(2, 6) in
its Plücker embedding [11].

Sporadic 3:

θ3 − 2x(2θ + 1)(7θ2 + 7θ + 3) + 12x2(4θ + 3)(θ + 1)(4θ + 5),

φ(x) = 1 + 6x + 54x2 + 564x3 + 6390x4 + 76356x5 + 948276x6 + · · ·
⎧
⎪⎪⎨

⎪⎪⎩

0 1/16 1/12 ∞
0 0 0 3/4
0 1/2 1/2 1
0 1 1 5/4

⎫
⎪⎪⎬

⎪⎪⎭
,

an =
�n/3�∑

k=0

(−1)k
(

n

k

)(
2k

k

)(
2(n − k)

n − k

) ((
2n − 3k − 1

n

)
+

(
2n − 3k

n

))
.

These sporadic operators and sequences were also found by Cooper [21], where they
are called s10, s7 and s18 and where the explicit description for an in the last case
also can be found. We refer to [30] for representations as constant term sequence of a
Laurent polynomial.

Miscellaneous third-order operators

There is a remarkable infinite series of third-order operators with an integral solution.

Theorem 3 The differential operator

P := θ3 − t(2θ + 1)(θ2 + θ − 1/2d2 + 1/2k2 + 1/2)

+x2(θ + 1 − d)(θ + 1)(θ + 1 + d)
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has

(1 − x)k ·2 F1

(
1 − d + k

2
,
1 + d + k

2
, 1, x

)2

as solution.

Proof The Riemann symbol of the operator P is

⎧
⎪⎪⎨

⎪⎪⎩

0 1 ∞
0 −k (1 − d)

0 0 1
.0 k 1 + d

⎫
⎪⎪⎬

⎪⎪⎭

The operator is the symmetric square of a second-order operatorwithRiemann symbol

⎧
⎨

⎩

0 1 ∞
0 −k/2 (1 − d)/2
0 k/2 (1 + d)/2

⎫
⎬

⎭ .

Multiplication by a factor (1 − x)k/2 gives a hypergeometric operator with Riemann
symbol

⎧
⎨

⎩

0 1 ∞
0 0 (1 − d + k)/2
0 k (1 + d + k)/2

⎫
⎬

⎭ .

If we compare with the Riemann symbol of the standard hypergeometric operator for
2F1(a, b, c; x)

⎧
⎨

⎩

0 1 ∞
0 0 a

1 − c c − a − b b

⎫
⎬

⎭ ,

we read off a = (1 − d + k)/2, b = (1 + d + k)/2, c = 1; hence, the solution of our
original operator is the square of

(1 − x)k/2 ·2 F1((1 − d + k)/2, (1 + d + k)/2, 1; x).

��
Corollary If k and d are rational numbers, then the only primes appearing in denom-
inator of k and d appear in the denominator of the coefficients of the holomorphic
solution of P. After an appropriate rescaling, the coefficients become integral.
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Appendix C

In this Appendix we list all essentially distinct Calabi–Yau operators of order four and
degree two that are known to us. We also present some further information. To present
the monodromy, it is sometimes convenient to use ui (x) = yi (x)/(2π i)3 which we
call the scaled Frobenius basis. The monodromy transformation around 0 in this basis
is given by the matrix

⎛

⎜⎜⎝

1 0 0 0
1 1 0 0
1/2 1 1 0
1/6 1/2 1 1

⎞

⎟⎟⎠ .

In the cases with four singular points, the operator belongs to the main component and
the Riemann symbol of the operator has the form

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 c1 c2 ∞
0 0 0 α

0 1 1 β

0 1 1 2 − α

0 2 2 2 − β

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

where c1, c2 are solutions to the equation

�(x) := 1 + ax + f x2 = 0

We will always assume that the exponents α, β are between 0 and 1. For each operator
we give the monodromy transformations around the other singular points the with
respect to this basis. This information was computed by Hofmann [31]. A very com-
mon transformation is the symplectic reflection v �→ v− < v,w > w in a vector
w = (a, b, c, d) represented by the matrix

I − 1

a

⎛

⎜⎜⎝

−ad ac −ab a2

−bd bc −b2 ab
−cd c2 −bc ac
−d2 cd −bd ad

⎞

⎟⎟⎠ .

Such a transformation is found at conifold points, where the exponents are 0 1 1 2.
For the conifold nearest to the origin, the vector is of the form

(a, 0, c, d),

and in that case the characteristic numbers h3, c2h, c3 = χ of the operator are deter-
mined by the reflection vector via

a = h3, c = c2h

24
, d = c3λ,
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where

λ = ζ(3)

(2π i)3
.

These numbers are formally attached to the differential operator, but have the inter-
pretation as characteristic numbers of the mirror manifold, see [41].

Modular form information. For conifold points appearing at rational values of the
parameters, one can determine the coefficients of a weight four modular form as
described in the thesis of Samol [35, 36]. We include here the name of modular form
from S4(�0(N ) as it appears in the list of Meyer [32]. For example, (6/1) denotes
the first (and only) weight four new forms of level 6, which is the η-product

f = (η(q)η(q2)η(q3)η(q6))2 = q − 2q2 − 3q3 + 4q4 + 6q5 + · · · ∈ S4(�0(6))

For critical points at real quadratic irrationalities, one expects the appearance ofHilbert
modular forms; at imaginary quadratic irrationalities, one would expect Bianchi mod-
ular forms. Another phenomenon that may occur is that of a so-called K -point, see
[41]. Here two single logarithms are appearing (two size two Jordan blocks), and one
expects the appearance of a modular form from S3(�0(N )).

Below we list the 90-degree rotated extended Riemann symbols; each row starts
with the singular value, followed by the four exponents at that point, then monodromy
information and finally modular form information. At theMUMpoint the monodromy
is always standard, and we give the first few instanton numbers as a substitute for
modular form information. If Hilbert modular, Bianchi or weight three modular forms
are expected, we indicate this with h, b or k. An m is written for those cases where
ordinary modular form from S4(�0(N ) is expected, but not yet determined. In case
the local monodromy is of finite order we put −.

The operators with three singular points which are on the main components can all
be written in the form

θ4 + f x(−2θ4 − 4θ3 + (γ (1 − γ ) + α2 + β2 − 4)θ2

+(γ (1 − γ ) + α2 + β2 − 2)θ + e +
+ f 2(θ + 1 − α)(θ + 1 − β)(θ + 1 + β)(θ + 1 + α)

which has Riemann symbol

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 1/ f ∞
0 0 1 − α

0 γ 1 − β

0 1 − γ 1 + β

0 1 1 + α

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

There is a single accessory parameter e.
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2.1: A ∗ a = #45 χ = −120, c2H = 72, H3 = 24, dim |H | = 10.

θ4 − 4x(2θ + 1)2(7θ2 + 7θ + 2) − 128x2(2θ + 1)2(2θ + 3)2

⎧
⎪⎪⎨

⎪⎪⎩

0 0 0 0 0 12, 163, 3204
1
128 0 1 1 2 (24, 0, 3, −120λ) (64/5)
− 1

16 0 1 1 2 (48, −24, 10, −3 − 240λ) (8/1)
∞ 1

2
1
2

3
2

3
2 k

⎫
⎪⎪⎬

⎪⎪⎭

2.2: B ∗ a = #15 χ = −162, c2H = 72, H3 = 18, dim |H | = 9.

θ4−3x(3θ+1)(3θ+2)(7θ2 + 7θ + 2) − 72x2(3θ + 1)(3θ + 2)(3θ + 4)(3θ + 5)
⎧
⎪⎪⎨

⎪⎪⎩

0 0 0 0 0 21, 480, 15894
1

216 0 1 1 2 (18, 0, 3, −162λ) (54/2)
− 1

27 0 1 1 2 (36, −18, 9, −3 − 324λ) (27/2)
∞ 1

3
2
3

4
3

5
3 −

⎫
⎪⎪⎬

⎪⎪⎭

2.3: C ∗ a = #68 χ = −228, c2H = 72, H3 = 12, dim |H | = 8.

θ4 − 4x(4θ+1)(4θ+3)(7θ2 + 7θ + 2)−128x(4θ + 1)(4θ + 3)(4θ + 5)(4θ + 7)
⎧
⎪⎪⎨

⎪⎪⎩

0 0 0 0 0 52, 2814, 220220
1

512 0 1 1 2 (12, 0, 3, −228λ) (256/3)
− 1

64 0 1 1 2 (24, −12, 8, −3 − 456λ) (32/3)
∞ 1

4
3
4

5
4

7
4 −

⎫
⎪⎪⎬

⎪⎪⎭

2.4: D ∗ a = #62 χ = −336, c2H = 72, H3 = 6, dim |H | = 7.

θ4 − 12x(6θ + 1)(6θ + 5)(7θ2 + 7θ + 2) − 1152x2(6θ + 1)(6θ + 5)(6θ + 7)

(6θ + 11)
⎧
⎪⎪⎨

⎪⎪⎩

0 0 0 0 0 372, 136182, 71562236
1

3456 0 1 1 2 (6, 0, 3, −366λ) (1728/16)
− 1

432 0 1 1 2 (12, −6, 7, −3 − 732λ) (216/4)
∞ 1

6
5
6

7
6

11
6 −

⎫
⎪⎪⎬

⎪⎪⎭

2.5: A ∗ b = #25 χ = −120, c2H = 68, H3 = 20, dim |H | = 9.

θ4 − 4x(2θ + 1)2(11θ2 + 11θ + 3) − 16x2(2θ + 1)2(2θ + 3)2

⎧
⎪⎪⎨

⎪⎪⎩

0 0 0 0 0 20, 277, 8220
0.005636 0 1 1 2 (20, 0, 17/6, −120λ) h

−0.693136 0 1 1 2 (80, −40, 46/3 −13/3 − 480λ) h
∞ 1

2
1
2

3
2

3
2 k

⎫
⎪⎪⎬

⎪⎪⎭
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2.6: B ∗ b = #24 χ = −150, c2H = 66, H3 = 15, dim |H | = 8.

θ4−3x(3θ+1)(3θ + 2)(11θ2 + 11θ + 3)−9x2(3θ + 1)(3θ + 2)(3θ + 4)(3θ + 5)
⎧
⎪⎪⎨

⎪⎪⎩

0 0 0 0 0 36, 837, 41421
0.003340 0 1 1 2 (15, 0, 11/4, −150λ) h

−0.410748 0 1 1 2 (12, −6, 7, −3 − 732λ) h
∞ 1

3
2
3

4
3

5
3 −

⎫
⎪⎪⎬

⎪⎪⎭

2.7: C ∗ b = #51 χ = −200, c2H = 64, H3 = 10, dim |H | = 7.

θ4 − 4x(4θ + 1)(4θ + 3)(11θ2 + 11θ + 3) − 16x2(4θ + 1)(4θ + 3)(4θ + 5)

(4θ + 7)
⎧
⎪⎪⎨

⎪⎪⎩

0 0 0 0 0 92, 5052, 585396
0.0014090 0 1 1 2 (10, 0, 8/3, −200λ) h
−0.173284 0 1 1 2 (40, −20, 38/3, −14/3 − 400λ) h

∞ 1
4

1
2

3
2

3
2 −

⎫
⎪⎪⎬

⎪⎪⎭

2.8 D ∗ b = #63 χ = −310, c2H = 62, H3 = 5, dim |H | = 6.

θ4 − 12x(6θ + 1)(6θ + 5)(11θ2 + 11θ + 3)

−144x2(6θ + 1)(6θ + 5)(6θ + 7)(6θ + 11)

⎧
⎪⎪⎨

⎪⎪⎩

0 0 0 0 0 684, 253314, 195638820
0.000208 0 1 1 2 (5, 0, 31/12, −310λ) h

−0.025671 0 1 1 2 (20 −10 34/3 −29/6 − 1240λ) h
∞ 1

6
5
6

7
6

11
6 −

⎫
⎪⎪⎬

⎪⎪⎭

2.9: A ∗ c = #58 χ = −112, c2H = 72, H3 = 24, dim |H | = 10.

θ4 − 4x(2θ + 1)2(10θ2 + 10θ + 3) + 144x2(2θ + 1)2(2θ + 3)2

⎧
⎪⎪⎨

⎪⎪⎩

0 0 0 0 0 16, 142, 11056/3;
1

144 0 1 1 2 (24, 0, 3, −112λ) (48/1)
1
16 0 1 1 2 (72, −24, 9, −3 − 336λ) (16/1)
∞ 1

2
1
2

3
2

3
2 k

⎫
⎪⎪⎬

⎪⎪⎭

2.10: B ∗ c = #70 χ = −156, c2H = 72, H3 = 18, dim |H | = 9.

θ4 − 3x(3θ + 1)(3θ + 2)(10θ2 + 10θ + 3) − 81x2(3θ + 1)(3θ + 2)(3θ + 4)

(3θ + 5)⎧
⎪⎪⎨

⎪⎪⎩

0 0 0 0 0 27, 432, 18089
1
243 0 1 1 2 (18, 0, 3, −156λ) (243/1)
1
27 0 1 1 2 (54, −18, 9, −3 − 468λ) (27/1)
∞ 1

4
3
4

5
4

7
4 −

⎫
⎪⎪⎬

⎪⎪⎭
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2.11: C ∗ c = #69 χ = −224, c2H = 72, H3 = 12, dim |H | = 8.

θ4 − 4x(4θ + 1)(4θ + 3)(10θ2 + 10θ + 3) + 144x2(4θ + 1)(4θ + 3)(4θ + 5)

(4θ + 7)⎧
⎪⎪⎨

⎪⎪⎩

0 0 0 0 0 64, 2616, 246848;
1
576 0 1 1 2 (12, 0, 3, −224λ) (576/3)
1
64 0 1 1 2 (36, −12, 9, −3 − 672λ) (64/3)
∞ 1

4
3
4

5
4

7
4 −

⎫
⎪⎪⎬

⎪⎪⎭

2.12: D ∗ c = #64 χ = −364, c2H = 72, H3 = 6, dim |H | = 7.

θ4 − 12x(6θ + 1)(6θ + 5)(10θ2 + 10θ + 3)

+1296x2(6θ + 1)(6θ + 5)(6θ + 7)(6θ + 11)⎧
⎪⎪⎨

⎪⎪⎩

0 0 0 0 0 432, 130842, 78259376;
1

3888 0 1 1 2 (6, 0, 3, −364λ) (1944/5)
1

432 0 1 1 2 (18, −6, 9, −3 − 1092λ) (432/9)
∞ 1

4
3
4

5
4

7
4 −

⎫
⎪⎪⎬

⎪⎪⎭

2.13: A ∗ d = #36 χ = −88, c2H = 80, H3 = 32, dim |H | = 12.

θ4 − 16x(2θ + 1)2(3θ2 + 3θ + 1) + 512x2(2θ + 1)2(2θ + 3)2⎧
⎪⎪⎨

⎪⎪⎩

0 0 0 0 0 16, 42, 1232
1

128 0 1 1 2 (32, 0, 10/3, −88λ) (64/4)
1
64 0 1 1 2 (64, −16, 20/3, −7/3 − 176λ) (32/2)
∞ 1

2
1
2

3
2

3
2 k

⎫
⎪⎪⎬

⎪⎪⎭

2.14: B ∗ d = #48 χ = −162, c2H = 84, H3 = 24, dim |H | = 11.

θ4 − 12x(3θ + 1)(3θ + 2)(3θ2 + 3θ + 1) + 288x2(3θ + 1)(3θ + 2)(3θ + 4)

(3θ + 5)⎧
⎪⎪⎨

⎪⎪⎩

0 0 0 0 0 4, 291/2, 5832
1

216 0 1 1 2 (24, 0, 7/2, −162λ) (9/1)
1

108 0 1 1 2 (48, −12, 7, −9/4 − 324λ) (108/4)
∞ 1

3
2
3

4
3

5
3 −

⎫
⎪⎪⎬

⎪⎪⎭

2.15: C ∗ d = #38 χ = −268, c2H = 88, H3 = 16, dim |H | = 10.

θ4 − 16x(4θ + 1)(4θ + 3)(3θ2 + 3θ + 1) + 512x2(4θ + 1)(4θ + 3)(4θ + 5)

(4θ + 7)⎧
⎪⎪⎨

⎪⎪⎩

0 0 0 0 0 48, 998, 73328
1

512 0 1 1 2 (16, 0, 11/3, −268λ) (256/1)
1
256 0 1 1 2 (32, −8, 22/3, −13/6 − 536λ) (128/4)
∞ 1

4
3
4

5
4

7
4 −

⎫
⎪⎪⎬

⎪⎪⎭
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2.16: D ∗ d = #65 χ = −470, c2H = 92, H3 = 8, dim |H | = 9.

θ4 − 48x(6θ + 1)(6θ + 5)(3θ2 + 3θ + 1)

+4608x2(6θ + 1)(6θ + 5)(6θ + 7)(6θ + 11)⎧
⎪⎪⎨

⎪⎪⎩

0 0 0 0 0 240, 57102, 19105840;
1

3456 0 1 1 2 (8, 0, 23/6, −470λ) (576/8)
1

1728 0 1 1 2 (16, −4, 23/3, −25/12 − 940λ) (864/3)
∞ 1

6
5
6

7
6

11
6 −

⎫
⎪⎪⎬

⎪⎪⎭

2.17: A ∗ e = #111

θ4 − 16x(2θ + 1)2(8θ2 + 8θ + 3) + 212x2(2θ + 1)2(2θ + 3)2⎧
⎨

⎩

0 0 0 0 0 32,−96, 1440
1/256 0 1/2 1/2 1 m

∞ 1/2 1/2 3/2 3/2 k

⎫
⎬

⎭

2.18: B ∗ e = #110

θ4 − 12x(3θ + 1)(3θ + 2)(8θ2 + 8θ + 3)

+2832x2(3θ + 1)(3θ + 2)(3θ + 4)(3θ + 5)⎧
⎨

⎩

0 0 0 0 0 36,−144, 8076
1/432 0 1/2 1/2 1 m

∞ 1/3 2/3 4/3 5/3 −

⎫
⎬

⎭

2.xx19: C ∗ e ∼ 1.3 = #3

θ4 − 16x(4θ + 1)(4θ + 3)(8θ2 + 8θ + 3)

+212x2(4θ + 1)(4θ + 3)(4θ + 5)(4θ + 7)⎧
⎨

⎩

0 0 0 0 0 32, 608, 26016
1/1024 0 1/2 1/2 1 m

∞ 1/4 3/4 5/4 7/4 −

⎫
⎬

⎭

2.19: D ∗ e = #112

θ4 − 48x(6θ + 1)(6θ + 5)(8θ2 + 8θ + 3)

+21232x2(6θ + 1)(6θ + 5)(6θ + 7)(6θ + 11)⎧
⎨

⎩

0 0 0 0 0 −288, 162504,−96055968
1/6912 0 1/2 1/2 1 m

∞ 1/6 5/6 7/6 11/6 −

⎫
⎬

⎭
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2.20: A ∗ f = #133

θ4 − 12x(2θ + 1)2(3θ2 + 3θ + 1) + 432x2(2θ + 1)2(2θ + 3)2⎧
⎪⎪⎨

⎪⎪⎩

0 0 0 0 0 12, −42, −3284/3
α 0 1 1 2 (36, −6, 4, −5/6 − 120λ) b
β 0 1 1 2 (36, 6, 4, −5/6 − 120λ) b
∞ 1

2
1
2

3
2

3
2 k

⎫
⎪⎪⎬

⎪⎪⎭

2.21: B ∗ f = #134

θ4 − 9x(3θ + 1)(3θ + 2)(3θ2 + 3θ + 1)

+243x2(3θ + 1)(3θ + 2)(3θ + 4)(3θ + 5)⎧
⎪⎪⎨

⎪⎪⎩

0 0 0 0 0 18, −207/2, −52177
α 0 1 1 2 (27, −9/2, 33/8, −13/16 − 198λ) b
β 0 1 1 2 (27, 9/2, 33/8, −13/16 − 198λ) b
∞ 1

3
2
3

4
3

5
3 −

⎫
⎪⎪⎬

⎪⎪⎭

2.22: C ∗ f = #135

θ4 − 12x(4θ + 1)(4θ + 3)(3θ2 + 3θ + 1)

+432x2(4θ + 1)(4θ + 3)(4θ + 5)(4θ + 7)⎧
⎪⎪⎨

⎪⎪⎩

0 0 0 0 0 36, −477, −206716/3
α 0 1 1 2 (18, −3, 17/4, −19/24 − 312λ) b
β 0 1 1 2 (18, 3, 17/4, 19/24 − 312λ) b
∞ 1

4
3
4

5
4

7
4 −

⎫
⎪⎪⎬

⎪⎪⎭

2.23: D ∗ f = #136

θ4 − 36x(6θ + 1)(6θ + 5)(3θ2 + 3θ + 1) + 3888x2(6θ + 1)(6θ + 5)(6θ + 7)

(6θ + 11)⎧
⎪⎪⎨

⎪⎪⎩

0 0 0 0 0 180, −15615, −21847076
α 0 1 1 2 (9, −3/2, 35/8, −37/48 − 534λ) b
β 0 1 1 2 (9, 3/2, 35/8, −37/48 − 534λ) b
∞ 1

6
5
6

7
6

11
6 −

⎫
⎪⎪⎬

⎪⎪⎭

2.24: A ∗ g = #137 χ = −16, c2H = 96, H3 = 48, dim |H | = 16.

θ4 − 4x(2θ + 1)2(17θ2 + 17θ + 6) + 1152x2(2θ + 1)2(2θ + 3)2⎧
⎪⎪⎨

⎪⎪⎩

0 0 0 0 0 20, 2, 1684/3
1

144 0 1 1 2 (48, 0, 4, −16λ) (24/1)
1
128 0 1 1 2 (72, −12, 6, −2 − 24λ) (64/1)
∞ 1

2
1
2

3
2

3
2 k

⎫
⎪⎪⎬

⎪⎪⎭
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2.25: B ∗ g = #138 χ = −156, c2H = 108, H3 = 36, dim |H | = 15.

θ4 − 3x(3θ + 1)(3θ + 2)(17θ2 + 17θ + 6)

+648x2(3θ + 1)(3θ + 2)(3θ + 4)(3θ + 5)⎧
⎪⎪⎨

⎪⎪⎩

0 0 0 0 0 27, 189/4, 2618
1
243 0 1 1 2 (36, 0, 9/2, −156λ) (243/2)
1
216 0 1 1 2 (54, −9, 27/4, −15/8 − 234λ) (54/4)
∞ 1

3
2
3

4
3

5
3 −

⎫
⎪⎪⎬

⎪⎪⎭

2.26: C ∗ g = #139 χ = −344, c2H = 120, H3 = 24, dim |H | = 14.

θ4 − 4x(4θ + 1)(4θ + 3)(17θ2 + 17θ + 6)

+1152x2(4θ + 1)(4θ + 3)(4θ + 5)(4θ + 7)⎧
⎪⎪⎨

⎪⎪⎩

0 0 0 0 0 44, 607, 22500
1
576 0 1 1 2 (24, 0, 5, −344λ) (288/10)
1

512 0 1 1 2 (36, −6, 15/2, −7/2 − 516λ) (256/4)
∞ 1

4
3
4

5
4

7
4 −

⎫
⎪⎪⎬

⎪⎪⎭

2.27: D ∗ g = #140 χ = −676, c2H = 132, H3 = 12, dim |H | = 13.

θ4 − 12x(6θ + 1)(6θ + 5)(17θ2 + 17θ + 6)

+10368x2(6θ + 1)(6θ + 5)(6θ + 7)(6θ + 11)⎧
⎪⎪⎨

⎪⎪⎩

0 0 0 0 0 108, 54135, −494556
1

3888 0 1 1 2 (12, 0, 11/2, −676λ) (1944/6)
1

3456 0 1 1 2 (18, −3, 33/4, −13/8 − 1014λ) (1728/15)
∞ 1

6
5
6

7
6

11
6 −

⎫
⎪⎪⎬

⎪⎪⎭

2.28: A ∗ h = #141

θ4 − 12x(2θ + 1)2(18θ2 + 18θ + 7) + 2436x2(2θ + 1)2(2θ + 3)2⎧
⎨

⎩

0 0 0 0 0 48,−438, 2864
1/432 0 1/3 2/3 1 −

∞ 1/2 1/2 3/2 3/2 k

⎫
⎬

⎭

2.29: B ∗ h = #142

θ4 − 9x(3θ + 1)(3θ + 2)(18θ2 + 18θ + 7)

+38x2(3θ + 1)(3θ + 2)(3θ + 4)(3θ + 5)⎧
⎨

⎩

0 0 0 0 0 45,−3465/4, 27735
1/729 0 1/3 2/3 1 −

∞ 1/3 2/3 4/3 5/3 −

⎫
⎬

⎭

123
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2.xx30: C ∗ h

θ4 − 12x(4θ + 1)(4θ + 3)(18θ2 + 18θ + 7)

+2436x2(4θ + 1)(4θ + 3)(4θ + 5)(4θ + 7)⎧
⎨

⎩

0 0 0 0 0 0, 0, 0
1/1728 0 1/3 2/3 1 −

∞ 1/4 3/4 5/4 7/4 −

⎫
⎬

⎭

2.30: D ∗ h = #143

θ4 − 36x(6θ + 1)(6θ + 5)(18θ2 + 18θ + 7)

+2438x2(6θ + 1)(6θ + 5)(6θ + 7)(6θ + 11)⎧
⎨

⎩

0 0 0 0 0 −1008, 499086,−607849200
1/11664 0 1/3 2/3 1 −

∞ 1/6 5/6 7/6 11/6 −

⎫
⎬

⎭

2.31: A ∗ i

θ4 − 16x(2θ + 1)2(32θ2 + 32θ + 13) + 216x2(2θ + 1)2(2θ + 3)2⎧
⎨

⎩

0 0 0 0 0 96,−3560,−12064
1/1024 0 1/4 3/4 1 −

∞ 1/2 1/2 3/2 3/2 k

⎫
⎬

⎭

2.32: B ∗ i

θ4 − 12x(3θ + 1)(3θ + 2)(32θ2 + 32θ + 13)

+21232x2(3θ + 1)(3θ + 2)(3θ + 4)(3θ + 5)⎧
⎨

⎩

0 0 0 0 0 60,−7635, 307860
1/1728 0 1/4 3/4 1 −

∞ 1/3 2/3 4/3 5/3 −

⎫
⎬

⎭

2.33: C ∗ i

θ4 − 16x(4θ + 1)(4θ + 3)(32θ2 + 32θ + 13)

+2436x2(4θ + 1)(4θ + 3)(4θ + 5)(4θ + 7)⎧
⎨

⎩

0 0 0 0 0 −160,−6920,−539680
1/4096 0 1/4 3/4 1 −

∞ 1/4 3/4 5/4 7/4 −

⎫
⎬

⎭

123
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2.34: D ∗ i

θ4 − 48x(6θ + 1)(6θ + 5)(32θ2 + 32θ + 13)

+21632x2(6θ + 1)(6θ + 5)(6θ + 7)(6θ + 11)⎧
⎨

⎩

0 0 0 0 0 −3936, 3550992,−10892932064
1/27648 0 1/4 3/4 1 −

∞ 1/6 5/6 7/6 11/6 −

⎫
⎬

⎭

2.35: A ∗ j

θ4 − 48x(2θ + 1)2(72θ2 + 72θ + 31) + 21236x2(2θ + 1)2(2θ + 3)2⎧
⎨

⎩

0 0 0 0 0 480,−226968,−16034720
1/6912 0 1/6 5/6 1 −

∞ 1/2 1/2 3/2 3/2 k

⎫
⎬

⎭

2.36: B ∗ j

θ4 − 36x(3θ + 1)(3θ + 2)(72θ2 + 72θ + 31)

+2838x2(3θ + 1)(3θ + 2)(3θ + 4)(3θ + 5)⎧
⎨

⎩

0 0 0 0 0 −36,−486279, 128217204
1/11664 0 1/6 5/6 1 −

∞ 1/3 2/3 4/3 5/3 −

⎫
⎬

⎭

2.37: C ∗ j

θ4 − 48x(4θ + 1)(4θ + 3)(72θ2 + 72θ + 31)

+21236x2(4θ + 1)(4θ + 3)(4θ + 5)(4θ + 7)⎧
⎨

⎩

0 0 0 0 0 −2592,−307800, 81451104
1/27648 0 1/6 5/6 1 −

∞ 1/4 3/4 5/4 7/4 −

⎫
⎬

⎭

2.38: D ∗ j

θ4 − 144x(6θ + 1)(6θ + 5)(72θ2 + 72θ + 31)

+21238x2(6θ + 1)(6θ + 5)(6θ + 7)(6θ + 11)⎧
⎨

⎩

0 0 0 0 0 −41184, 251271360,−5124430612320
1/186624 0 1/6 5/6 1 −

∞ 1/6 5/6 7/6 11/6 −

⎫
⎬

⎭
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2.52: I ∗ α = #16 χ = −128, c2H = 96, H3 = 48, dim |H | = 16.

θ4 − 4x(2θ + 1)2(5θ2 + 5θ + 2) + 256x2(2θ)(θ + 1)2(2θ + 3)⎧
⎪⎪⎨

⎪⎪⎩

0 0 0 0 0 4, 20, 644/3
1
64 0 1 1 2 (48, 0, 4, −128λ) (6/1)
1
16 0 1 1 2 (192, −48, 16, −4 − 512λ) (12/1)
∞ 1

2 1 1 3
2 m

⎫
⎪⎪⎬

⎪⎪⎭

2.53: I ∗ γ = #29 χ = −116, c2H = 72, H3 = 24, dim |H | = 10.

θ4 − 2x(2θ + 1)2(17θ2 + 17θ + 5) + 4x2(2θ + 1)(θ + 1)2(2θ + 3)⎧
⎪⎪⎨

⎪⎪⎩

0 0 0 0 0 14, 303/2, 10424/3
0.00737 0 1 1 2 (24, 0, 3, −116λ) −
8.49263 0 1 1 2 (600, −240, 75 −20 − 2900λ) −

∞ 1
2 1 1 3

2 m

⎫
⎪⎪⎬

⎪⎪⎭

2.54: I ∗ δ = #41 χ = −116, c2H = 72, H3 = 24, dim |H | = 10.

θ4 − 2x(2θ + 1)2(7θ2 + 7θ + 3) + 324x2(2θ + 1)(θ + 1)2(2θ + 3)⎧
⎪⎪⎨

⎪⎪⎩

0 0 0 0 0 14, 303/2, 10424/3
∗ 0 1 1 2 (72, −12, 6, −1 − 180λ) b
∗ 0 1 1 2 (72, 12, 6, 1 − 180λ) b
∞ 1

2 1 1 3
2 m

⎫
⎪⎪⎬

⎪⎪⎭

2.55: I ∗ ε = #42 χ = −116, c2H = 80, H3 = 32, dim |H | = 12.

θ4 − 8x(2θ + 1)2(3θ2 + 3θ + 1) + 64x2(2θ + 1)(θ + 1)2(2θ + 3)⎧
⎪⎪⎨

⎪⎪⎩

0 0 0 0 0 8, 63, 1000
α 0 1 1 2 (32, 0, 10/3, −116λ) −
β 0 1 1 2 (288, −96, 30, −8 − 1044λ) −
∞ 1

2 1 1 3
2

⎫
⎪⎪⎬

⎪⎪⎭

2.56: I ∗ ζ = #185 χ = −120, c2H = 84, H3 = 36, dim |H | = 13.

θ4 − 6x(2θ + 1)2(3θ2 + 3θ + 1) − 108x2(2θ + 1)(θ + 1)2(2θ + 3)⎧
⎪⎪⎨

⎪⎪⎩

0 0 0 0 0 6, 93/2, 608
α 0 1 1 2 (36, 0, 7/2, −120λ) h
β 0 1 1 2 (144, −72, 26, −7 − 480λ) h
∞ 1

2 1 1 3
2 m

⎫
⎪⎪⎬

⎪⎪⎭
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2.57: I ∗ η = #184

θ4 − 2x(2θ + 1)2(11θ2 + 11θ + 5) + 500x2(2θ + 1)(θ + 1)2(2θ + 3)⎧
⎪⎪⎨

⎪⎪⎩

0 0 0 0 0 2, 4, −8
α 0 1 1 2 (100, −10, 20/3, −5/6 − 200λ) b
β 0 1 1 2 (100, 10, 20/3, 5/6 − 200λ) b
∞ 1

2 1 1 3
2 m

⎫
⎪⎪⎬

⎪⎪⎭

2.58: I ∗ ι = 4∗

θ4 − 6x(2θ + 1)2(9θ2 + 9θ + 5) + 2916x2(2θ + 1)(θ + 1)2(2θ + 3)⎧
⎨

⎩

0 0 0 0 0 −6,−6,−104
1/108 0 1/6 5/6 1 −

∞ 1/2 1 1 3/2 m

⎫
⎬

⎭

2.xx59: I ∗ θ ∼ 2.17.

θ4 − 16 x (2 θ + 1)2
(
8 θ2 + 8 θ + 5

)
+ 16384 x2 (2 θ + 1) (θ + 1)2 (2 θ + 3)

⎧
⎨

⎩

0 0 0 0 0 −32,−88,−1440
1/256 0 0 1 1 k

∞ 1/2 1 1 3/2 m

⎫
⎬

⎭

2.59: I ∗ κ

θ4 − 48(2θ + 1)2(18θ2 + 18θ + 13) + 746496x2(2θ + 1)(θ + 1)2(2θ + 3)⎧
⎨

⎩

0 0 0 0 0 −384,−1356,−164736
1/1728 −1/6 0 1 7/6 −

∞ 1/2 1 1 3/2 m

⎫
⎬

⎭

2.60:= I ∗Sporadic1 = #18 χ = −128, c2H = 88, H3 = 40, dim |H | = 14.

θ4 − 4x(2θ + 1)2(3θ2 + 3θ + 1) − 16x2(2θ + 1)(4θ + 3)(4θ + 5)(2θ + 3)⎧
⎪⎪⎨

⎪⎪⎩

0 0 0 0 0 4, 39, 364
1
64 0 1 1 2 (40, 0, 11/3, −128λ) (80/3)

− 1
16 0 1 1 2 (80, −40, 46/3, −13/3 − 256λ) (40/2)

∞ 1
2

3
4

5
4

3
2 −

⎫
⎪⎪⎬

⎪⎪⎭

2.61: I ∗ Sporadic2 = #26 χ = −116, c2H = 76, H3 = 28, dim |H | = 11

θ4 − 2x(2θ + 1)2(13θ2 + 13θ + 4) − 12x2(2θ + 1)(3θ + 2)(3θ + 4)(2θ + 3)⎧
⎪⎪⎨

⎪⎪⎩

0 0 0 0 0 10, 191/2, 1724
1
108 0 1 1 2 (28, 0, 19/6, −116λ) (252/3)
− 1

4 0 1 1 2 (112, −56, 62/3, −17/3 − 464λ) (28/1)
∞ 1

2
2
3

4
3

3
2 −

⎫
⎪⎪⎬

⎪⎪⎭
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2.62: = #28 χ = −96, c2H = 84, H3 = 42, dim |H | = 14.

θ4 − x(65θ4 + 130θ3 + 105θ2 + 40θ + 6) + 4x2(4θ + 3)(θ + 1)2(4θ + 5)⎧
⎪⎪⎨

⎪⎪⎩

0 0 0 0 0 5, 28, 312
1
64 0 1 1 2 (42, 0, 7/2, −96λ) (14/2)
1 0 1 1 2 (756, −252, 63, −15 − 1728λ) (7/1)
∞ 3

4 1 1 5
4 m

⎫
⎪⎪⎬

⎪⎪⎭

an =
∑

j,k

(
n

k

)2(n

j

)2(k + j

n

)2

The operator comes from the mirror symmetry of the intersection of six general hyper-
planes of the Grassmanian G(3, 6), Plücker-embedded in P19 [11].

2.63: #84

θ4 − 4x(32θ4 + 64θ3 + 63θ2 + 31θ + 6) + 256x2(4θ + 3)(θ + 1)2(4θ + 5)⎧
⎨

⎩

0 0 0 0 0 −4, −11, −44, . . .
1/64 0 0 1 1 k
∞ 3/4 1 1 5/4 m

⎫
⎬

⎭

An =
∑

k

(
n

k

)2(2n

2k

)−1
(4k!)

(2k!)k!2
(4n − 4k)!

(2n − 2k)!(n − k)!2

2.64: #182 χ = −96, c2H = 132, H3 = 132, dim |H | =

θ4 − x(43θ4 + 86θ3 + 77θ2 + 34θ + 6) + 12x2(6θ + 5)(θ + 1)2(6θ + 7)⎧
⎪⎪⎨

⎪⎪⎩

0 0 0 0 0 1, 7/4, 7
1
16 0 1 1 2 (132, 0, 11/2, −96λ) (22/3)
1
27 0 1 1 2 (396, −66, 33/2, −13/4 − 288λ) (33/2)
∞ 5

6 1 1 7
6 m

⎫
⎪⎪⎬

⎪⎪⎭

This operator was found by a brute-force search. We do not know an explicit formula
for the coefficient An .

2.65 =I ∗ Sporadic3 = #183 χ = −128, c2H = 120, H3 = 72, dim |H | =
22.

θ4 − 4x(2θ + 1)2(7θ2 + 7θ + 3) + 48x2(2θ + 1)(4θ + 3)(4θ + 5)(2θ + 3)⎧
⎪⎪⎨

⎪⎪⎩

0 0 0 0 0 4, 7, 556/9
1
64 0 1 1 2 (72, 0, 5, −128λ) (16/1)
1
48 0 1 1 2 (144, −24, 10, −7/3 − 256λ) (72/1)
∞ 1

2
3
4

5
4

3
2 −

⎫
⎪⎪⎬

⎪⎪⎭

123
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2.66 Reducible operator (does not really count).

θ4 − 12x(6θ + 1)(6θ + 5)(2θ2 + 2θ + 1)

+144x2(6θ + 1)(6θ + 5)(6θ + 7)(6θ + 11)⎧
⎨

⎩

0 0 0 0 0 −192, 4182, −229568
1/432 0 0 1 1 k

∞ 1/6 5/6 7/6 11/6 −

⎫
⎬

⎭

This operator is the square of the second-order hypergeometric operator D.
2.67: ∼ #245 (Bogner 1)

θ4 − 2x(108θ4 + 198θ3 + 183θ2 + 84θ + 15) + 36x2(3θ + 2)2(6θ + 7)2⎧
⎨

⎩

0 0 0 0 0 −6, −33, −170
1/108 0 1/6 1 7/6 −

∞ 2/3 2/3 7/6 7/6 −

⎫
⎬

⎭

We do not know a formula for An .
2.68: ∼ #406 (Bogner 2)

θ4 − 4x(128θ4 + 224θ3 + 197θ2 + 85θ + 14)

+128x2(2θ + 1)(4θ + 5)(8θ + 5)(8θ + 9)⎧
⎨

⎩

0 0 0 0 0 −12 ,−186 ,−1668,
1/256 0 1/4 1 5/4 −

∞ 1/2 5/8 9/8 5/4 −

⎫
⎬

⎭

We do not know a formula for An . 2.69: = #205 χ = −128, c2H = 160, H3 =
160, dim |H | = 40.

θ4 − x(59θ + 118θ3 + 105θ2 + 46θ + 8) + 96x2(3θ + 2)(θ + 1)2(3θ + 4)⎧
⎪⎪⎨

⎪⎪⎩

0 0 0 0 0 1, 7/4, 5
1
32 0 1 1 2 (160, 0, 20/3, −128λ) (5/1)
1
27 0 1 1 2 (320, −40, 40/3, −7/3 − 256λ) (15/2)
∞ 2

3 1 1 4
3 m

⎫
⎪⎪⎬

⎪⎪⎭

An = 4
�n/4�∑

k

n − 2k

3n − 4k

(
n

k

)(
2k

k

)(
2n − 2k

n − k

)(
3n − 4k

2n

)

2.70: ∼ #255 (Bogner 3)

θ4 − 4x(128θ4 + 160θ3 + 125θ2 + 45θ + 6)

+128x2(8θ + 7)(2θ + 1)(4θ + 3)(8θ + 3)⎧
⎨

⎩

0 0 0 0 0 20, 290, 28820/3
1/256 0 3/4 1 7/4 −

∞ 3/8 1/2 3/4 7/8 −

⎫
⎬

⎭

123
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We do not know a formula for An .
The 14 tilde operators There are 14 exponents (α1, α2, α3, α4) with

α1 ≤ α2 ≤ α3 ≤ α4, α1 + α4 = α2 + α4 = 1,

for which the hypergeometric operator, scaled by N ,

θ4 − N x(θ + α1)(θ + α2)(θ + α3)(θ + α4)

is a Calabi–Yau operator [8]. Corresponding to these, there are also 14 hypergeometric
fifth-order Calabi–Yau operator

θ5 − 4N x(θ + α1)(θ + α2)

(
θ + 1

2

)
(θ + α3)(θ + α4)

with Riemann symbol

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0 1/4N ∞
0 0 α1
0 1 α2
0 3/2 1/2
0 2 α3
0 3 α4

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

These operators have a Yifan Yang pull-back to 14 special fourth-order operators,
called the tilde-operators 1̃, 2̃, . . . , 1̃4. These operators replace the more complicated
hat-operators î, i = 1, 2, . . . , 14 that appeared in the list [3] into which they can be
transformed.

An explicit formula for the tilde operators can be found in [5]:

θ4 − 4N x

(
2

(
θ + 1

2

)4

+ 1

2

(
7

2
− μ2 − ν2

) (
θ + 1

2

)2

+ 1

16
− 1

4

(
μ2 + 1

4

)(
ν2 + 1

4

))

+(4N )2x2
(

θ + 1 + μ + ν

2

)(
θ + 1 − μ + ν

2

)

(
θ + 1 + μ − ν

2

) (
θ + 1 − μ − ν

2

)

where μ := α3 − 1
2 = 1

2 − α2, ν := α4 − 1
2 = 1

2 − α1. Its Riemann symbol is of the
form
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⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 1/4N ∞
0 −1/2 1 − (μ + ν)/2
0 0 1 + (μ − ν)/2
0 1 1 − (μ − ν)/2
0 3/2 1 + (μ + ν)/2

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

A general formula for the holomorphic solution is also given in [5]. The 2× 2 Wron-
skians for this operator, multiplied by a factor (1 − 4N x)3/2, are solutions to the
hypergeometric fifth-order equation.

The monodromy around the central point 1/4N is of order two, and the matrix in
the scaled Frobenius basis is of the form

⎛

⎜⎜⎝

x 0 y 0
z −x 0 y
t 0 −x 0
0 t −z x

⎞

⎟⎟⎠ ,

where x, y, t satisfy the relation x2+ yt = 1. The invariants x, y, z, t can be expressed
in terms of the reflection vector:

(a, 0, c, d) = (h3, 0, c2h/24, χλ), λ := ζ(3)

(2π i)3

of the corresponding hypergeometric operator by the formulas

x =
√

a

24
+ c√

a
, y = √

a z = 2d − 4aλ√
a

, t = (1 − x2)/y.

The fourteen hypergeometric and the corresponding tilde operators

Case Exponents N Monodromy data Number

1 1/5 2/5 3/4 4/5 55 5, 0, 25/12, −200λ 1.1
1̃ 4/5 9/10 11/10 6/5 11

√
5/24,

√
5,−84

√
5λ − 29

√
5/2880 2.39

2 1/10 3/10 7/10 9/10 2855 1, 0, 17/12, −288λ 1.2
2̃ 7/10 9/10 11/10 13/10 35/24, 1,−580λ, −649/576 2.40
3 1/2 1/2 1/2 1/2 28 16, 0, 8/3,−128λ 1.3
3̃ 1 1 1 1 5/6, 4, −80λ, 2̃.33
4 1/3 1/3 2/3 2/3 36 9, 0, 9/4,−144λ 1.4
4̃ 5/6 1 1 7/6 7/8, 3, −108λ, 5/64 2.41
5 1/3 1/2 1/2 2/3 2433 12, 0, 5/2, −144λ 1.5
5̃ 11/12 11/12 13/12 13/12

√
3/2, 2

√
3, −56

√
3λ,

√
3/24 2.42

6 1/4 1/2 1/2 3/4 210 8, 0, 7/3, −296λ 1.6
6̃ 7/8 7/8 9/8 9/8 2

√
2/3, 2

√
2, −96

√
2λ,

√
2/36 2.43

7 1/8 3/8 5/8 7/8 216 2, 0, 11/6,−296λ 1.7
7̃ 3/4 7/8 9/8 5/4 23

√
2/24,

√
2, −300

√
2λ, −241

√
2/576 2.44
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Case Exponents N Monodromy data Number

8 1/6 1/3 2/3 5/6 2436 3, 0, 7/4,−204λ 2.45
8̃ 3/4 11/12 13/12 5/4 5

√
3/8,

√
3, −140

√
3λ, −11

√
3/192 2.45

9 1/12 5/12 7/12 11/12 21236 1, 0, 23/12,−484λ 1.9
9̃ 3/4 5/6 7/6 5/4 47/24, 1, −972λ, −1633/576 2.46
10 1/4 1/4 3/4 3/4 212 4, 0, 5/3,−144λ 1.10
1̃0 3/4 1 1 5/4 11/12, 2, −152λ, 23/288 2.47
11 1/4 1/3 2/3 3/4 2633 6, 0, 2, −156λ 1.11
1̃1 19/24 23/24 25/24 29/24 3

√
6/8,

√
6, −56

√
6λ, 5

√
6/192 2.48

12 1/5 1/4 3/4 5/6 21033 2, 0, 4/3, −156λ 1.12
1̃2 17/24 23/24 25/24 31/24 17

√
2/24,

√
2, −160

√
2λ, −√

2/576 2.49
13 1/6 1/6 5/6 5/6 2836 1, 0, 11/12,−120λ 1.13
1̃3 2/3 1 1 4/3 23/24, 1, −244λ, 47/576 2.50
14 1/6 1/2 1/2 5/6 2833 4, 0, 13/6,−256λ 1.14
1̃4 5/6 5/6 7/6 7/6 7/6, 2, −264λ,−13/72 2.51

List of Calabi–Yau operators of degree 2
Wegive the parameters a, b, c, d, e, f , α, β, γ, δ for theCalabi–Yau operatorswrit-

ten in the form (note the sign change)

θ4 − x(aθ4 + bθ3 + cθ2 + dθ + e) + f x2(θ + α)(θ + β)(θ + γ )(θ + δ).

Number a b c d e f α β γ δ

2.1 112 224 172 60 8 −(2)11 1/2 1/2 3/2 3/2
2.2 189 378 285 96 12 −(2)3(3)6 1/3 2/3 4/3 5/3
2.3 448 896 660 212 24 −(2)15 1/4 3/4 5/4 7/4
2.4 3024 6048 4308 1284 120 −(2)11(3)6 1/6 5/6 7/6 11/6
2.5 176 352 268 92 12 −(2)8 1/2 1/2 3/2 3/2
2.6 4752 9504 6708 1956 180 −(3)6 1/3 2/3 4/3 5/3
2.7 704 1408 1028 324 36 −(2)12 1/4 3/4 5/4 7/4
2.8 4752 9504 6708 1956 180 −(2)8(3)6 1/6 5/6 7/6 11/6
2.9 160 320 248 88 12 (2)8(3)2 1/2 1/2 3/2 3/2
2.10 270 540 411 141 18 (3)8 1/3 2/3 4/3 5/3
2.11 640 1280 952 312 36 (2)12(3)2 1/4 3/4 5/4 7/4
2.12 4320 8640 6216 1896 180 (2)8(3)8 1/6 5/6 7/6 11/6
2.13 192 384 304 112 16 (2)13 1/2 1/2 3/2 3/2
2.14 324 648 504 180 24 (2)5(3)6 1/3 2/3 4/3 5/3
2.15 768 1536 1168 400 48 (2)17 1/4 3/4 5/4 7/4
2.16 5184 10368 7632 2448 240 (2)13(3)6 1/6 5/6 7/6 11/6
2.17 512 1024 832 320 48 (2)16 1/2 1/2 3/2 3/2
2.18 864 1728 1380 516 72 (2)8(3)6 1/3 2/3 4/3 5/3
2.xx19 −144 −1152 −3200 −4096 −2048 (2)20 1/4 3/4 5/4 7/4
2.19 13824 27648 20928 7104 720 (2)16(3)3 1/6 5/6 7/6 11/6
2.20 144 288 228 84 12 (2)8(3)3 1/2 1/2 3/2 3/2
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2.21 243 486 378 135 18 (3)9 1/3 2/3 4/3 5/3
2.22 576 1152 876 300 36 (2)12(3)3 1/4 3/4 5/4 7/4
2.23 3888 7776 5724 1836 180 (2)8(3)9 1/6 5/6 7/6 11/6
2.24 272 544 436 164 24 (2)11(3)2 1/2 1/2 3/2 3/2
2.25 459 918 723 264 36 (2)3(3)8 1/3 2/3 4/3 5/3
2.26 1088 2176 1676 588 72 (2)15(3)2 1/4 3/4 5/4 7/4
2.27 7344 14688 10956 3612 360 (2)11(3)8 1/6 5/6 7/6 11/6
2.28 864 1728 1416 552 84 (2)8(3)6 1/2 1/2 3/2 3/2
2.29 1458 2916 2349 891 126 (3)12 1/3 2/3 4/3 5/3
2.30 23328 46656 35640 12312 1260 (2)8(3)12 1/6 5/6 7/6 11/6
2.31 2048 4096 3392 1344 208 (2)20 1/2 1/2 3/2 3/2
2.32 3456 6912 5628 2172 312 (2)12(3)6 1/3 2/3 4/3 5/3
2.33 8192 16384 13056 4864 624 (2)24 1/4 3/4 5/4 7/4
2.34 55296 110592 85440 30144 3120 (2)20(3)6 1/6 5/6 7/6 11/6
2.35 13824 27648 23232 9408 1488 (2)16(3)6 1/2 1/2 3/2 3/2
2.36 23328 46656 38556 15228 2232 (2)8(3)12 1/3 2/3 4/3 5/3
2.37 55296 110592 89472 34176 4464 (2)20(3)6 1/4 3/4 5/4 7/4
2.38 373248 746496 585792 212544 22320 (2)16(3)12 1/6 5/6 7/6 11/6
2.39 25000 50000 58750 33750 7380 (2)4(5)10 4/5 6/5 9/10 11/10
2.40 6400000 12800000 14880000 8480000 1824880 (2)20(5)10 7/10 9/10 11/10 13/10
2.41 5832 11664 13770 7938 1746 (2)4(3)12 1 1 5/6 7/6
2.42 3456 6912 8184 4728 1044 (2)12(3)6 11/12 11/12 13/12 13/12
2.43 8192 16384 19328 11136 2448 (2)24 7/8 7/8 9/8 9/8
2.44 524288 1048576 1224704 700416 151920 (2)36 3/4 5/4 7/8 9/8
2.45 93312 186624 218376 125064 27180 (2)12(3)12 3/4 5/4 11/12 13/12
2.46 23887872 47775744 55655424 31767552 6870384 (2)28(3)12 3/4 5/4 5/6 7/6
2.47 32768 65536 76800 44032 9584 (2)28 3/4 1 1 5/4
2.48 13824 27648 32520 18696 4092 (2)16(3)6 19/24 23/14 25/24 29/24
2.49 221184 442368 515712 294528 63600 (2)24(3)6 17/24 23/24 25/24 31/24
2.50 1492992 2985984 3462912 1969920 421488 (2)20(3)12 1 1 2/3 4/3
2.51 55296 110592 129792 74496 16272 (2)20(3)6 5/6 5/6 7/6 7/6
2.52 80 160 132 52 8 (2)10 1/2 1 1 3/2
2.53 136 272 210 74 10 (2)4 1/2 1 1 3/2
2.54 56 112 94 38 6 (2)4(3)4 1/2 1 1 3/2
2.55 96 192 152 56 8 (2)8 1/2 1 1 3/2
2.56 72 144 114 42 6 −(2)4(3)3 1/2 1 1 3/2
2.57 88 176 150 62 10 (2)4(5)3 1/2 1 1 3/2
2.xx58 128 256 224 96 16 (2)12 1/2 1 1 3/2
2.yy58 2048 4096 3200 1152 144 (2)20 1/4 3/4 5/4 7/4
2.58 216 432 390 174 30 (2)4(3)6 1/2 1 1 3/2
2.59 3456 6912 6816 3360 624 (2)12(3)6 1/2 1 1 3/2
2.60 48 96 76 28 4 −(2)10 1/2 3/4 5/4 3/2
2.61 104 208 162 58 8 −(2)4(3)3 1/2 2/3 4/3 3/2
2.62 65 130 105 40 6 (2)6 3/4 1 1 5/4
2.63 128 256 252 124 24 (2)12 3/4 1 1 5/4
2.64 43 86 77 34 6 (2)4(3) 1 1 5/6 7/6
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Number a b c d e f α β γ δ

2.65 112 224 188 76 12 (2)10(3)6 1/2 3/4 5/4 3/2
2.66 864 1728 1416 552 60 (2)4(3)4 1/6 5/6 7/6 11/6
2.67 216 396 366 168 30 (2)4(36) 2/3 2/3 7/6 7/6
2.68 512 896 788 340 56 (2)16 1/2 5/4 5/8 9/8
2.69 59 118 105 46 8 (2)5(3)3 1 1 2/3 4/3
2.70 512 1408 1652 948 216 (2)16 5/4 3/2 9/8 13/8
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