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Abstract
Denoising autoencoder genetic programming (DAE-GP) is a novel neural network-
based estimation of distribution genetic programming approach that uses denoising 
autoencoder long short-term memory networks as a probabilistic model to replace 
the standard mutation and recombination operators of genetic programming. At each 
generation, the idea is to capture promising properties of the parent population in a 
probabilistic model and to use corruption to transfer variations of these properties 
to the offspring. This work studies the influence of corruption and sampling steps 
on search. Corruption partially mutates candidate solutions that are used as input to 
the model, whereas the number of sampling steps defines how often we re-use the 
output during model sampling as input to the model. We study the generalization of 
the royal tree problem, the Airfoil problem, and the Pagie-1 problem, and find that 
both corruption strength and the number of sampling steps influence exploration and 
exploitation in search and affect performance: exploration increases with stronger 
corruption and lower number of sampling steps. The results indicate that both cor-
ruption and sampling steps are key to the success of the DAE-GP: it permits us to 
balance the exploration and exploitation behavior in search, resulting in an improved 
search quality. However, also selection is important for exploration and exploitation 
and should be chosen wisely.
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1  Introduction

Estimation of distribution genetic programming (EDA-GP) algorithms are 
metaheuristics for variable-length combinatorial optimization problems that 
sample from a learned probabilistic model, replacing the standard mutation and 
recombination operators of genetic programming (GP). At each generation, the 
idea is to first learn the properties of promising candidate solutions of the parent 
population (model building) and then to sample from the model to transfer the 
learned properties to the offspring (model sampling) [1].

Due to the complex representation of candidate solutions in GP, the scale of 
research on EDA-GP is still limited [1]. This is different from regular estima-
tion of distribution algorithms (EDAs), where many promising approaches have 
already been presented [2] and candidate solutions use a fixed-length represen-
tation, known from genetic algorithms (GAs) [3]. In contrast, EDA-GP usually 
represents candidate solutions as variable-length parse trees, which makes proba-
bilistic model building more difficult. Research on EDA-GP has therefore moved 
from simple univariate to more complex multivariate approaches [1].

An example of a recent multivariate EDA-GP is the denoising autoencoder 
genetic programming (DAE-GP) that uses denoising autoencoder long short-term 
memory networks (DAE-LSTMs) as a probabilistic model [4]. In comparison 
to other EDA-GP approaches, it has the advantage that the model does not make 
assumptions about the relationships between problem variables which allows the 
DAE-GP to flexibly identify and model relevant properties of the parent population. 
The DAE-GP captures dependencies between problem variables by first encoding 
candidate solutions (in prefix notation) to the latent space and then reconstructing 
the candidate solutions from the latent space. During model building, the DAE-GP 
minimizes the reconstruction error between the encoded and decoded candidate 
solutions. During model sampling, candidate solutions are propagated through the 
trained model to transfer the learned properties to the offspring [4].

Denoising prevents the DAE-GP to learn the simple identity function. By par-
tially corrupting input candidate solutions, a more robust model can be created 
that ignores spurious parts (noise) but focuses on the main elements (signal) of 
candidate solutions in the parent population [4]. The stronger the corruption, the 
stronger the generalization of the model [4, 5]. Previous work on estimation of 
distribution algorithms (EDA), where candidate solutions have a fixed length of 
size n, showed that we can control exploration and exploitation through modula-
tion of corruption strength [6]. Exploration increases the diversity of a population 
by introducing new candidate solutions into search; exploitation reduces diver-
sity by focusing a population of candidate solutions on promising areas of the 
solution space [7]. Adjusting the corruption strength can therefore help to bal-
ance exploration and exploitation leading to a more successful search: we either 
increase diversity to overcome local optima avoiding premature convergence, or 
we decrease diversity to exploit promising areas of the solution space [6].

Wittenberg [8] studied how different levels of corruption strength affect the 
exploration and exploitation behavior of the DAE-GP. The author controls the 



1 3

Genetic Programming and Evolvable Machines (2023) 24:17	 Page 3 of 27  17

level of corruption by applying Levenshtein edit on input candidate solutions. 
Levenshtein edit is similar to the Levenshtein distance [9] and operates on the 
string representation of a candidate solution (prefix expression). The idea is to 
apply insertion (add one node), deletion (remove one node), and substitution 
(replace one node by another node) on candidate solutions. Controlling the num-
ber of edits allows us to accurately adjust corruption strength: the more nodes we 
edit, the stronger the corruption, and the stronger we force the DAE-GP to focus 
on general properties of the parent population. The generalization of the royal 
tree (GRT) problem is an easy problem with high locality, where the objective 
values of neighboring solutions are correlated. Wittenberg found that weak cor-
ruption in the GRT problem leads to a strong exploitation of the solution space, 
which helps the DAE-GP to make search more efficient and to outperform stand-
ard GP. In contrast, strong corruption leads to a strong exploration of new solu-
tion spaces, which is not useful for solving the GRT problem. However, it can be 
useful for problem domains where the fitness landscape is more rugged such that 
we need to be able to escape from local optima. Thus, balancing between explo-
ration and exploitation is achievable by choosing the right corruption strategy, 
resulting in an improved search quality. Unfortunately, until now results are lim-
ited to the GRT problem [8].

This paper builds upon and extends the work of Wittenberg [8], with two key 
contributions. First, we study the exploration and exploitation behavior of the DAE-
GP not only on the GRT problem but also on Airfoil and Pagie-1, which are stand-
ard symbolic regression benchmark problems [10–13]. These two last problems 
are more difficult and with lower locality than GRT (i.e., the objective values of 
neighboring solutions are not strongly correlated). Second, we do not only analyze 
the influence of different levels of corruption strength on search, but also consider 
the number of sampling steps and their impact on exploration and exploitation. 
The number of sampling steps defines how often we re-inject each individual in the 
model (output at step s is the input at step s + 1 ). Probst and Rothlauf argue that a 
large number of sampling steps results in a strong exploitation of the solution space 
[6].

We compare the performance of the DAE-GP using Levenshtein edit and dif-
ferent levels of corruption strength and number of sampling steps to standard GP, 
and analyze their impact on search. The results confirm findings from [6, 8], that is 
corruption strength and the number of sampling steps both strongly influence the 
exploration and exploitation behavior of the DAE-GP. Indeed, the lower the cor-
ruption and the higher the number of sampling steps, the stronger the exploitation 
of the solution space. This can be helpful for easy, high-locality problems, such as 
the GRT problem, where a higher degree of exploitation throughout search helps to 
make search more efficient and to outperform standard GP. In contrast, when facing 
more rugged fitness landscapes, such as for the Airfoil problem, a stronger level of 
exploration is needed. However, when facing very difficult problems, such as the 
Pagie-1 problem, we find that the DAE-GP easily gets stuck in local optima even 
when choosing strong corruption and a low number of sampling steps. Here, diver-
sity preserving selection methods could help to avoid premature convergence. The 
results demonstrate that choosing the right corruption and sampling strategy is key 
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to the success of the DAE-GP: it allows us to control the level of exploration and 
exploitation in search, helping us to improve search quality. However, also selection 
strongly influences exploration and exploitation and should be chosen wisely.

In Sect.  2, we present related work on EDA-GP. We describe DAE-LSTMs in 
Sect. 3, where we focus on the architecture, the corruption strategy, and on model 
building and sampling. In Sect.  4, we introduce the experiments and discuss the 
results. We draw conclusions in Sect. 5.

2 � Related work

We can categorize research on EDA-GP into two main research streams [1, 14]: 
probabilistic prototype tree (PPT) models and grammar-based ones. A PPT is a full 
tree of arity a where we set the depth of the PPT equal to the maximum tree depth 
dmax . Arity a is computed as the maximum arity found in the GP function set. At 
each node of the PPT, a multinomial probability distribution is evaluated over the set 
of allowed functions (internal nodes) and terminals (leaf nodes), which is then used 
to update the distributions according the candidate solutions that are presented to the 
model. Salustowicz and Schmidhuber [15] introduced PPTs in 1997 in the first prob-
abilistic EDA-GP model called probabilistic incremental program evolution (PIPE) 
[15]. Based on PIPE, which relies on univariate probability distributions, EDA-GP 
models have been developed to capture dependencies between nodes in a PPT tree. 
Examples include the bivariate estimation of distribution programming (EDP) [16] 
or the multivariate program optimization with linkage estimation (POLE) [17, 18]. 
Hasegawa and Iba [18] report that POLE needs less fitness evaluations than standard 
GP to solve the MAX, the deceptive MAX, and the royal tree problem [18].

The second stream of research uses grammars as EDA-GP model [1, 14]. The 
first grammar-based approach has been proposed by Ratle and Sebag [19] as the 
stochastic grammar-based genetic programming (SG-GP) in 2001. SG-GP uses sto-
chastic context-free grammar (SCFG) as a probabilistic model. The idea is to first 
identify a set of production rules for a problem, with weights attached to them, 
and to then update the weights according to usage counts of the production rules 
in a parent population [19]. Since SG-GP assumes the production rules to be inde-
pendent, more sophisticated EDA-GP models capturing more complex grammars 
have been developed. Consequently, program with annotated grammar estimation 
(PAGE) is an extension that uses expectation maximization (EM) or variational 
Bayes (VB) to learn production rules with latent annotations. An example of latent 
annotation is the position or the depth of a node in a tree [20]. Another extension is 
grammar-based genetic programming with a Bayesian network (BGBGP) that was 
introduced by Wong et al. [21] in 2014. BGBGP uses Bayesian networks with sto-
chastic context-sensitive grammars (SCSG) as a model. Compared to SCFG, SCSG 
additionally incorporate contextual information allowing the Bayesian network to 
learn dependencies between production rules [21]. To further refine the BGBGP, 
Wong et al. [22] added (fitness) class labels to the model. The authors argue that this 
allows the model to differentiate between good and poor candidate solutions helping 
the model to find better solutions. For the deceptive MAX and the asymmetric royal 
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tree problem, the model outperforms POLE, PAGE-EM, PAGE-VB, and grammar-
based GP in the number of fitness evaluations [22].

One example of an EDA-GP model that neither relies on PPTs nor grammars is 
the n-gram GP proposed by Poli and McPhee [23], where n-grams are used to model 
relationships between a group of n consecutive sequences of instructions that can 
learn dependencies in linear GP. Similarly, Hemberg et al. [24] suggested Operator-
free Genetic Programming (OFGP), which learns n-grams of ancestor node chains. 
An n-gram of ancestors is the sequence of a node and its n − 1 ancestor nodes in 
a GP parse tree. However, for the Pagie-1 problem, OFGP could not outperform 
standard GP [24]. Recently, Liskowski et al. [25] proposed neural program optimi-
zation (NPO), where the idea is to first learn neural embeddings of programs in a 
latent space, and to then use continuous optimization (CMA-ES) to search for prom-
ising programs in that latent space. The authors find that several variants of NPO 
outperform standard GP on program synthesis tasks [25]. Note, however, that the 
learned embeddings are neither updated nor re-learned during evolution, thus NPO 
is not considered an EDA-GP.

Wittenberg et  al. [4] recently suggested DAE-GP that uses Denoising Autoen-
coder Long Short-term Memory networks (DAE-LSTMs) as an EDA-GP model. 
For the GRT problem, the DAE-GP outperforms standard GP. The DAE-GP can bet-
ter identify promising areas of the solution space compared to standard GP resulting 
in a more efficient search in the number of fitness evaluations, especially in large 
search spaces. The authors argue that, compared to previous EDA-GP approaches, 
the flexible model representation is the key reason for the high performance, allow-
ing the model to identify in parallel, both position as well as context of relevant 
substructures [4].

The idea of using DAE as probabilistic models in EDA has earlier been presented 
by Probst [26] who introduced DAE-EDA. DAE-EDA was designed for problems 
where candidate solutions follow a fixed-length representation [26]. For the NK 
landscapes, deceptive traps and HIFF problem, Probst and Rothlauf [6] show that 
the DAE-EDA yields competitive results compared to the Bayesian optimization 
algorithm (BOA). However, DAE-EDA is better parallelizable, making it the pre-
ferred choice especially in large search spaces. Furthermore, the authors show that 
corruption strength has a strong impact on exploration and exploitation in search. 
Adjusting the level of corruption can therefore help to either increase exploration 
which helps to overcome local optima, or to exploit relevant solution spaces making 
search more efficient [6].

Wittenberg [8] transferred the idea of analyzing the influence of corruption 
strength to the variable-length problem domain of GP and studied how corrup-
tion strength affects the search behavior of the DAE-GP. For the GRT problem, the 
author found that corruption strength strongly influences search: the stronger we 
corrupt input candidate solutions, the stronger the generalization of the model and 
the stronger exploration of new solution spaces. For the given problem (easy prob-
lem with high locality), a DAE-GP with weak corruption (Levenshtein edit and 5% 
corruption strength) performs best, significantly outperforming standard GP. How-
ever, results are limited to the GRT problem [8], which we extend with more results 
and new analysis in the current paper.
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3 � Denoising autoencoder LSTMs

Autoencoder long short-term memory networks (AE-LSTM) [27] are artificial neu-
ral networks that consist of an encoding and a decoding LSTM: the encoding LSTM 
encodes a candidate solution (a linear sequence in prefix expression) to the latent 
space; the decoding LSTM decodes the latent space (i.e., the latent vector) back to 
a candidate solution. DAE-LSTM are a variant of AE-LSTM where corruption is 
applied to input candidate solutions to prevent the model from learning the simple 
identity function. DAE-LSTMs are used as a probabilistic model in EDA-GP (DAE-
GP) by the repeated application of the following two steps at each generation: train 
the model for learning relevant properties of our parent population (model building) 
and propagate candidate solutions through the trained DAE-LSTM to transfer the 
learned properties to the offspring (model sampling).

In the following sections, we first explain the architecture of AE-LSTMs and the 
concept of corruption, where we focus on Levenshtein edit as corruption strategy. 
Then, we describe the training as well as the sampling procedure, where significant 
differences compared to Wittenberg [8] lie in a new training procedure that increases 
the quality of our model and the use of several sampling steps for producing the 
offspring.

3.1 � Autoencoder LSTMs

Figure 1 shows the architecture of an AE-LSTM with one input layer, one hidden 
layer (consisting of LSTM memory cells), and one output layer. It is based on the 
architecture presented in [4]. x and o represent the input and output candidate solu-
tions of length m and k (sequences in prefix expression), respectively. h is the hidden 
state at time step (iteration) t, where the total number of time steps (total number 
of iterations) corresponds to T = m + k ( m, k ∈ ℕ ). The encoding LSTM (left) first 
sequentially encodes a candidate solution x, with xt , t ∈ {1, 2,… ,m} through the 

Fig. 1   Autoencoder LSTM with one hidden layer
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encoding function g(x), where each xt represents a function or terminal of a candi-
date solution in our parent population. At each time step t (except t = 0 ), the LSTM 
memory cell then receives three inputs: the current input xt , the previous hidden 
state ht−1 and the previous cell state ct−1 (not shown here). The idea of transfer-
ring information from one time step to the next is to capture long-term dependen-
cies in training data [28]. After complete processing of the input candidate solution 
x, we copy hm and cm , and transfer it to the decoding LSTM, thus hm+1 = hm and 
cm+1 = cm . The decoding LSTM (right) then uses the decoding function d(h) and 
decodes ht back to an output candidate solution o, with each ot representing either 
a function or a terminal. The aim of decoding is to reconstruct the input candidate 
solution x. Using ot as input in ot+1 helps to further reduce the reconstruction error 
[27]. Similar to [4, 27], we reverse the input candidate solution x to allow the model 
to learn low range correlations in training data (e.g., x1 and o1 are closer to each 
other when reversing the input), simplifying optimization [27].

3.2 � Using Levenshtein edit as corruption strategy

The aim of the AE-LSTM is to reconstruct the input. Given that the hidden layer 
is sufficiently large, a trivial way to solve this task is to learn the simple identity 
function, which means that the AE-LSTM simply replicates the candidate solutions 
given as input. Since we want to learn a more useful representation of the properties 
of our parent population, we partially corrupt input candidate solutions, transform-
ing the AE-LSTM into a DAE-LSTM. Based on the first DAE presented by Vincent 
et al. [5] in 2008, the idea is to partially corrupt input candidate solutions making 
the model robust to noise that is present in our parent population.

At each generation g, we use the corruption function c(x) to corrupt the candidate 
solutions that were previously selected as promising candidate solutions from popu-
lation Pg . We can formally describe the process by

where x̃(i) is the corrupted version of the i-th candidate solution x in the training set 
X (of size N) [4].

As a corruption function c(x), we use Levenshtein edit that was first introduced 
in [8]. Levenshtein edit operates on the linear sequence of the input candidate solu-
tion x (prefix expression), where each xt represents a node (function or terminal) 
of a tree. Levenshtein edit uses insertion (add one node), deletion (remove one 
node), and substitution (replace one node by another node) to transform x into x̃ . 
We control the corruption strength by a priori defining a corruption percentage 
p ( 0 < p < 1 ). Given a function set F, a terminal set T, and a candidate solution 
x, with xj , j ∈ {1, 2,… ,m} , we corrupt x by iteratively processing each node xj , 

(1)x̃(i) = c(x(i)) ∀i ∈ {1,… ,N},



	 Genetic Programming and Evolvable Machines (2023) 24:17

1 3

17  Page 8 of 27

where each xj has a chance of p to be corrupted: with uniform probability, we either 
insert a random symbol s ∈ F ∪ T  at index j (insertion), we delete xj (deletion), or 
we delete xj and insert a random symbol s ∈ F ∪ T  at index j (substitution). Note 
that these edit operations may produce corrupted candidate solutions x̃ that do not 
obey GP syntax. However, sampling with syntax control (see Sect. 3.4) ensures that 
output candidate solutions o are syntactically valid.

Using Levenshtein edit as corruption strategy has several advantages: we introduce 
variance in tree size (number of nodes in a tree). This is desirable since it introduces 
additional variation into x̃ . However, this variation should not lead to a bias towards 
larger or smaller trees, which was a problem in previous work that used subtree muta-
tion as corruption strategy [4]. Subtree mutation randomly selects a node in tree and 
replaces the subtree at that node by a new random subtree generated by ramped half-
and-half. Depending on the size of the selected subtree to be replaced, we easily corrupt 
either larger (when closer to the root) or smaller parts (when closer to leaf nodes) of x 
resulting in a bias in tree size. The situation is different for Levenshtein edit: we ran-
domly choose corruption operators that iteratively either increase (insertion), decrease 
(deletion), or maintain (substitution) the size of x. Thus, for any p, the expected tree 
size of x̃ is equal to the tree size of x, which means that we are able to introduce vari-
ation without inducing a bias in tree size. Furthermore, we can easily control the cor-
ruption strength by adjusting p. The larger p, the stronger the variation, and the stronger 
the corruption. The results in Sect. 4 will show that this helps to control exploration and 
exploitation in search.

3.3 � Training procedure

At each generation g, we train a DAE-LSTM (from scratch) according to the training 
procedure shown in Algorithm 1. It is similar to the training procedure presented in 
[4, 8]. We first initialize the trainable parameters � of our network (Algorithm 1, line 
1). Then, we iteratively adjust the values of the trainable parameters � using gradient 
descent. Given the edit percentage p, we first transform the candidate solution x(i) into 
x̃(i) (Algorithm 1, line 4). Then, we propagate x̃(i) through the DAE-LSTM, using the 
encoding function g(x) (Algorithm  1, line 5) and the decoding function d(x) (Algo-
rithm 1, line 6). We compute the reconstruction error using the multiclass cross entropy 
loss function by

where o(i) is the output candidate solution and x(i) the original (not the corrupted) 
input candidate solution, with N being the size of the training set X. We update the 
parameters � into the direction of the negative gradient and control the strength of 
the update using the learning rate � ( 0 < 𝛼 < 1 ) (Algorithm 1, line 7).

(2)� ∶= min
�

N
∑

i=1

Err(x(i), o(i)),
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We stop training as soon as the training error Err(x(i), o(i)) , with x(i), o(i) ∈ X , con-
verges. We measure error convergence by observing the number of epochs that the 
training error does not improve. As soon as we reach 200 epochs of no improve-
ment, with a minimum change of 0.05 that qualifies for an improvement, we stop 
training and use for sampling the configuration � that minimizes the training error. 
This training procedure follows the recommendations of Probst and Rothlauf [6] but 
is different to previous work that used early stopping with a hold-out validation set 
to train the DAE-GP [4, 8]. Here, the idea is to use those parameters for model sam-
pling that minimize the validation error. The problem of using a hold-out valida-
tion set is that it would strongly reduce the number of candidate solutions in our 
training set if we have to assure that the validation set is a representative sample of 
our parent population [29]. The situation is different when using the new training 
procedure: here, we use the entire parent population as training set, which allows 
the DAE-GP to capture more complex dependencies in training data. Still, denoising 
prevents the model from overfitting.

3.4 � Sampling with syntax control

Given the trained DAE-LSTM with parameters � , we can sample new candidate 
solutions o forming the offspring population Pg+1 . Algorithm 2 shows the sampling 
procedure and is based on [4, 6, 8, 30]. Given � (Algorithm 2, line 1), we first pick 
a candidate solution x of our training set X (Algorithm 2, line 2). Then, we corrupt 
x into x̃ (Algorithm 2, line 3) using Levenshtein edit and the edit percentage v. Note 
that v can be different to the edit percentage p during training. This is new compared 
to previous work [4, 6, 8]. We found that exploration can be even stronger when 
increasing the edit percentage only during sampling, helping the model to over-
come local optima. We explain this new property in Sect. 3.5. Then, for s sampling 
steps, we propagate x̃ through the DAE-LSTM (Algorithm 2, lines 4–7), and add the 
resulting output candidate solution o to Pg+1 (Algorithm 2, line 6). The idea of using 
several sampling steps was presented in previous work [4, 6], but has not yet been 
explored in the context of the DAE-GP. Probst and Rothlauf argue that choosing 
several sampling steps results in a stronger exploitation of the solution space [6]. We 
investigate this property in Sect. 4.
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We apply syntax control during the last sampling step to ensure that only syntac-
tically valid candidate solutions are added to the new population Pg+1 . The mecha-
nism proceeds as follows: at each time step t, with t ∈ {m + 1,m + 2,… , T} , when 
decoding the latent vector h back to an output candidate solution o (Algorithm 2, 
line 6), the DAE-LSTM implements a probability distribution q over the set of func-
tions and terminals (defined by F and T). Following the procedure of grow initiali-
zation [31], we first identify the set of functions and terminals that generate a syn-
tactically valid candidate solution, where we also verify that we do not exceed the 
recommended maximum allowed tree depth restriction of 17 [31]. Then, we set the 
classes of invalid functions and terminals in q to zero and normalize the remaining 
probabilities in q back to one, where we use the updated probability distribution to 
sample ot . Note that the DAE-LSTM samples a prefix expression (representing a GP 
parse tree top down, left to right) where syntax control following grow initialization 
becomes possible.

Without corrupting the input, syntax control is usually not needed since the com-
plexity of the DAE-LSTM is sufficient to also learn correct syntax. However, the 
stronger the corruption, the more difficult it becomes for the DAE-LSTM to sample 
syntactically valid candidate solutions, since corrupted candidate solutions used as 
input to the model no longer belong to the same parent population as X. In these 
cases, syntax control is very useful: we prevent the DAE-LSTM from inefficient 
resampling and allow the model to explore new solution spaces, which can help to 
overcome local optima and to avoid premature convergence.

3.5 � The manifold learning perspective

Compared to previous work [4, 6, 8] that used the same edit percentage for training 
and sampling, we now split this property into edit percentage for training p and edit 
percentage for sampling v (see Algorithms 1 and 2). The manifold learning perspec-
tive by Vincent et al.  [5] helps to understand why we draw this distinction. In the 
context of the DAE-GP, the manifold is the latent representation of the training set 
X (a multidimensional surface) that the model learns at each generation g. Vincent 
et al. argue that training a denoising autoencoder with edit percentage p leads to a 
model that learns to project corrupted points (the corrupted candidate solutions x̃ ) 
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back to the manifold (the original candidate solution x) [5]. When using the same 
edit percentage during training and sampling (as done in previous work), and given 
enough epochs and examples (variations of x̃ ) to train, this must lead (also for dif-
ferent edit percentages) to a DAE-GP that tends the replicate the parent population 
from population Pg into population Pg+1 , leading to premature convergence. Instead, 
when fixing the edit percentage during training (at a low percentage) and varying 
the edit percentage only during sampling (at a higher percentage, as done in this 
work), we force the DAE-GP to reconstruct corrupted points in the latent space that 
are further away from corrupted points that were reconstructed during training. This 
allows to explore new areas in the solution space, where a stronger corruption results 
in a stronger exploration of the solution space. Still, the reconstruction through the 
learned DAE-LSTM leads to a DAE-GP that transfers properties from the parent 
population to the offspring.

4 � Experiments

We study the performance and the search behavior of the DAE-GP not only on the 
GRT problem, but also on the Airfoil and the Pagie-1 problem. Furthermore, we 
analyze the influence of corruption strength on search as well as the influence of the 
number of sampling steps.

4.1 � Problems

The GRT problem was first presented in [4] as a test problem. It is based on the 
royal tree problem introduced by Punch et al. [32] but uses the initialization method 
ramped half-and-half [31] to generate target candidate solutions xopt . The idea is to 
define a fitness based on the structure of a candidate solution x by

where lev is the minimum Levenshtein distance, defined by the minimum number 
of insertion, deletion, and substitution operations necessary to transform x into xopt 
[9]. In analogy to [4], we normalize lev by the maximum size l of x and xopt , result-
ing in fitnessx ∈ [0, 1] : the closer x to xopt , the better the fitness, where fitnessx = 0 
means that x is identical to xopt [4]. Small changes in the genotype will result in 
small changes in fitness (high-locality problem) [7].

The Airfoil problem [10] is a more difficult real-world symbolic regression prob-
lem. The objective is to find a (black-box) function that best describes a given data-
set, where we use the Root Mean Squared Error (RMSE) to measure the fitness of 
the function. In contrast to the GRT problem, the correlation between the fitness 
of two neighboring candidate solutions is usually lower (low-locality problem). 
The Airfoil dataset is often used in GP literature [e.g., 33, 34, 12, 35] and available 
in the UCI Machine Learning Repository [36]. It consists of 5 features and 1503 

(3)fitnessx =
lev(x, xopt)

max(lx, lxopt )
,
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observations. We split the dataset into 50% training and 50% test set to study the 
performance of algorithms on unseen test cases.

The Pagie-1 problem [11] is a synthetic symbolic regression problem, where the 
objective is to find a function that best approximates synthetic points that were gen-
erated using the objective function 1

1+z1
−4
+

1

1+z2
−4

 . It is known to be a challenging 
problem [37], where evolutionary search hardly finds the objective function (low-
locality problem). Pagie and Hogeweg recommend to generate a set of synthetic 
evaluation points by using uniform random sampling, with z1, z2 ∈ [−5, 5] , and to 
use an interval of 0.4 resulting in 26 × 26 = 676 evaluation points that are part of the 
training set. Note that it is not standard in the EA community to use a test set [11, 
37] or to study the generalizability of the found solutions. Thus, to measure perfor-
mance, we use the RMSE on the training set.

4.2 � Experimental setup

We implemented the experiments in Python using the evolutionary framework 
DEAP [38] and the neural network framework Keras [39]. We use ramped half-and-
half to generate the initial populations and target candidate solutions xopt , where we 
set the minimum and maximum tree depth to dmin = 2 and dmax = 6 (Airfoil and 
Pagie-1), and dmin = 2 and dmax = 4 (GRT), respectively. Note that reducing dmax 
from 6 to 4 strongly reduces the complexity of the problem when searching for tar-
get candidate solutions xopt [4]. However, we allow all algorithms to search for solu-
tions up to a maximum tree depth of dmax = 17 [31].

For the Airfoil and the GRT problem, we use the function set F = {+,−, ∗,÷AQ} , 
where ÷AQ represents the analytic quotient (AQ) [40]. The function set is often used 
to solve real-world symbolic regression tasks [33, 35]. As terminal set, we use 
T = {z1, z2, z3, z4, z5} ∪ ERC , which includes the five problem features of the Air-
foil dataset and ephemeral random integer constants ERC . For the Airfoil problem, 
we use ERC ∈ [−5,… , 5] whereas for the GRT problem, we set ERC = 1 . Again, 
this affects the complexity of the solution space: reducing the number of con-
stants simplifies for both standard GP and the DAE-GP the search of target can-
didate solutions xopt [4]. For the Pagie-1 problem, we use the Koza function set 
F = {+,−, ∗,%, sin, cos, exp, log} [31, 37], where % represents protected division, 
and the terminal set T = {z1, z2} ∪ ERC , where we fix ERC = 1.

For GP, we follow the recommendations of Koza [31] and use 90% subtree cross-
over with internal node bias (90% of the crossover points are functions) and 10% 
subtree mutation as variation operator. Subtree mutation uses full initialization with 
dmin = 0 and dmax = 2 to generate a new subtree. To evaluate GP on different hyper-
parameters, we conduct a grid search and vary population size Ps combined with the 
number of generations g assuring a maximum number of 15,000 fitness evaluations, 
with Ps ∈ {250, 500, 750, 1000, 1500} and g ∈ {10, 15, 20, 30, 60} . Furthermore, we 
vary the tournament selection size u, with u ∈ {2, 5, 7, 9, 12}.

For the DAE-GP, we have to pre-define a set of hyperparameters. We set the 
number of hidden layers to one and the hidden dimension equal to the maximum 
size l of the candidate solutions used as input to the model, which allows the model 
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to flexibly adjust its complexity during evolution. We found that the complexity of 
the model is sufficient to learn complex relationships in training data while allow-
ing efficient model building and sampling. We train the DAE-GP until the train-
ing error converges (as discussed in Sect. 3.3), set the batch size to 50 (10% of X), 
use a learning rate of � = 0.001 , and perform adaptive moment estimation (Adam) 
[41] for gradient descent optimization. We use Levenshtein edit as corruption strat-
egy. To study the impact of corruption and sampling steps on search, we fix the 
edit percentage p = 5 % during training but vary the edit percentage v and the sam-
pling steps s during sampling: for analysis of both corruption and sampling steps, 
we study v ∈ {5%, 20%, 50%, 80%, 95%} and s ∈ {1, 2, 3, 4, 5}.

To assure a fair performance comparison between DAE-GP and GP, we first iden-
tify the best problem-specific GP hyperparameter setting (by varying population size 
Ps , the number of generations g, and tournament selection size u) resulting in 25 GP 
hyperparameter combinations that we test for each problem. Then, we apply the best 
GP hyperparameter combination of Ps , g, and u to the DAE-GP and vary the edit 
percentage v and the number of sampling steps s, resulting in again 25 hyperparam-
eter combinations that we evaluate for each problem. We conduct 30 runs per algo-
rithm and hyperparameter setting (30 different xopt for the GRT problem), resulting 
in a total number of 2250 DAE-GP and 2250 GP runs that we aggregate for perfor-
mance comparison.

4.3 � Performance results

We study the performance of the DAE-GP and GP on the GRT, the Airfoil, and 
the Pagie-1 problem. We use heat maps for better visualization. For the DAE-GP, 
we study the influence of the number of sampling steps s and the edit percentage 
v. According to previous work [6, 8], exploitation should be strongest with weak 
corruption and a high number of sampling steps (upper left corner of heat map); in 
contrast, exploration should be strongest with strong corruption and a low number of 
sampling steps (lower right corner of heat map).

We first focus on the GRT problem. Figure 2 shows the average algorithm suc-
cess rates (left) that we want to maximize and the average best fitness (right) that we 
aim to minimize for 25 different DAE-GP configurations after 30 generations, given 
Ps = 750 , g = 20 , and u = 7 (best GP configuration). A run is successful as soon as 
the algorithm finds a candidate solution x during search that is identical to the target 
candidate solution xopt ( fitnessx = 0).

We notice that both the average success rates and the average best fitness dif-
fer depending on the algorithm configuration considered. For example, when setting 
the edit percentage to v = 95 % and the number of sampling steps to s = 1 (where 
we expect the strongest exploration), the DAE-GP does only find 50% of the target 
candidate solutions, with an average best fitness of 0.086. In contrast, when choos-
ing v = 20 % and s = 1 (stronger exploitation), the DAE-GP finds all target solutions 
resulting in a success rate of 100% and an average best fitness of 0 (best DAE-GP 
configuration).
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We use (pairwise) Mann–Whitney U tests regarding the hypothesis that the 
best fitness distributions in the last generation are from the same population. We 
assume a significance level of 0.05. We find that significant differences between the 
best DAE-GP configuration ( v = 20 % and s = 1 ) and other configurations are only 
observable (p-values < 0.05 ) when comparing the best configuration to a DAE-GP 
with success rates lower or equal to 83.33% ( v = 95 % and s = 1 , v = 80 % and s = 1 , 
and v = 5 % and s = 5 ). In all other cases, differences are not significant (p-values 
> 0.05 ). Thus, both sampling steps and corruption strength influence performance. 
However, many combinations of sampling steps and corruption strength yield good 
performance results.

To assess the performance of DAE-GP, we benchmark the results to 25 hyperpa-
rameter combinations of standard GP. The best GP configuration ( Ps = 750 , g = 20 , 
and u = 7 ) finds 86.67% of the target candidate solutions xopt and yields an average 
best fitness of 0.017. When comparing the best fitness distribution of the best DAE-
GP to the one of standard GP, we find a p-value of 0.042, which indicates that the 
best DAE-GP significantly outperforms standard GP.

Figure 3 shows a heat map for the Airfoil and Pagie-1 problem, with the median 
best fitness (RMSE) that we minimize in the last generation on the test set (Air-
foil) and training set (Pagie-1). The DAE-GP for the Airfoil problem uses Ps = 500 , 
g = 30 , and u = 12 , while the DAE-GP for the Pagie-1 problem is set to Ps = 750 , 
g = 20 , and u = 12 (each best GP configuration). Similar to Fig. 2, we again vary 
both the number of sampling steps s and the edit percentage v.

Compared to the GRT problem, we notice stronger differences in performance 
depending on the chosen sampling step s and edit percentage v used through-
out the experiments, especially for the Airfoil problem: while a DAE-GP with 
v = 5 % and s = 5 (where we expect the strongest exploitation) yields a median 

Fig. 2   GRT problem: average success rates (left) and average best fitness (right) of DAE-GP in last gen-
eration, given Ps = 750 , g = 20 , and u = 7 . Darker green represents better performance (Color figure 
online)
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best fitness of 27.833, we find that a DAE-GP with v = 80 % and s = 1 (where we 
expect strong exploration) finds the best candidate solutions with a median best 
fitness of 5.731 (best configuration). Pairwise comparisons of the best fitness dis-
tributions confirm this observation: for the Airfoil problem, when comparing the 
best DAE-GP configuration ( v = 80 % and s = 1 ) to other DAE-GP settings, we 
observe that nearly all (pairwise) comparisons are significant (p-values < 0.05 ), 
except for the comparison of the best DAE-GP to a DAE-GP with v = 95 % and 
s = 1 (p-value > 0.05 ). The results indicate that the number of sampling steps 
and the edit percentage both have a strong influence on the performance of the 
DAE-GP.

For the Pagie-1 problem, differences in performance are less pronounced: 
when comparing the best fitness distributions of the best DAE-GP configuration 
( v = 95 % and s = 1 ) to a DAE-GP with v = 95 % and s = 2 , v = 95 % and s = 3 , or 
v = 50 % and s = 5 , we find p-values > 0.05 . Here, no significant differences in 
the best fitness distributions exist. Especially the last comparison is interesting, 
as we would expect exploitation and thus differences in performance to be much 
stronger here. In contrast, when comparing the best DAE-GP configuration to a 
DAE-GP with v = 50 % and s = 1 , v = 50 % and s = 2 , or v = 5 % and s = 1 , we 
find p-values < 0.05 , indicating that significant differences exist. However, simi-
lar to the Airfoil problem, we find that the DAE-GP with v = 95 % and s = 1 (set-
ting with strongest exploration) yields the best results.

Similar to the GRT problem, we benchmark the DAE-GP for each the Air-
foil and Pagie-1 problem to 25 hyperparameter combinations of standard GP. The 
best GP configuration yields a median best RMSE of 7.65 ( Ps = 500 , g = 30 , and 
u = 12 ) for the Airfoil problem and a median best RMSE of 0.0055 ( Ps = 750 , 
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Fig. 3   Median best RMSE of DAE-GP in last generation. For the Airfoil problem (left), we report results 
on the test set, given Ps = 500 , g = 30 , and u = 12 . For the Pagie-1 problem (right), we show results on 
the training set, given Ps = 750 , g = 20 , and u = 12 . Darker green represents better performance (Color 
figure online)
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g = 20 , and u = 12 ) for the Pagie-1 problem. A comparison of the best fitness dis-
tributions of the best DAE-GP to the ones of standard GP yields p-values of 0.41 
(Airfoil) and 6.6e− 10 (Pagie-1): differences between the best DAE-GP and the 
best GP are not significant on the Airfoil problem, but significant on the Pagie-1 
problem.

The results indicate that both the edit percentage and the number of sampling 
steps seem to have a big influence on solution quality but that several combinations 
of sampling steps and corruption strength often yield good performance results. We 
observe the strongest differences in DAE-GP performance on the Airfoil dataset.

For the GRT problem (high-locality problem), we find that strong exploitation 
leads to best performance results, whereas for both the Airfoil and the Pagie-1 prob-
lem (low-locality problems), a strong randomization of the input and choosing a 
small number of sampling steps seems to improve search, helping the DAE-GP to 
overcome local optima. However, the results on the Airfoil and the Pagie-1 prob-
lem raise the question if the AE as a model is still helpful or if a random corruption 
(mutation) of candidate solutions (without feeding the solutions to the AE) might 
be sufficient to obtain good results. We therefore conducted further experiments for 
both problems, where we use Levenshtein tree edit [13] as random mutation opera-
tor (without the AE) at each generation, using the same Ps , g, u, and five edit per-
centages v as for the original experiments. Levenshtein tree edit is a variation of 
Levenshtein edit that works on the tree representation of x. The advantage of Leven-
shtein tree edit is that we do not destroy GP syntax [13]. Thus, it is straightforward 
to use it as mutation operator. For the Airfoil problem, we find median RMSE values 
on the test set between 119.8 and 124.8. For Pagie-1, median RMSE values on the 
training set range from 0.56 to 11.7. When comparing the results to Fig. 3, we notice 
that all RMSE values on the heat map are significantly smaller to the ones of ran-
dom corruption, highlighting that propagating candidate solutions through the AE is 
useful for search.

When comparing the performance of the DAE-GP to standard GP, we notice 
that the DAE-GP outperforms standard GP on the GRT problem, while standard 
GP outperforms the DAE-GP on the Pagie-1 problem. We observe no significant 
differences on the Airfoil problem. The results are in line with recent results by 
Wittenberg and Rothlauf [13], who compared the performance of the DAE-GP to 
standard GP, GP-GOMEA [35] and geometric semantic GP [33], given nine real-
world symbolic regression datasets (including Airfoil). The authors also do not find 
a clear winner when comparing the performance of the algorithms to each other. 
Interestingly, they find that advantages of the DAE-GP lie in the generation of small 
solutions. Indeed, for the Pagie-1 problem, we find that the median size of the final 
best solution of the DAE-GP is 9 compared to 40 for standard GP. For the Airfoil 
problem, we find that the median size of the final best solution of the DAE-GP is 12 
compared to 150 for standard GP.



1 3

Genetic Programming and Evolvable Machines (2023) 24:17	 Page 17 of 27  17

4.4 � The influence of corruption and sampling steps on search

The results above demonstrate that both corruption and the number of sampling 
steps influence the performance of the DAE-GP. This is in line with the results 
in [6, 8]. To better understand the influence of corruption and sampling steps 
on search, we study the exploration and exploitation behavior of the algorithms. 
We expect exploration to be strongest when we use strong corruption and a low 
number of sampling steps (lower right corner of heat map). Instead, exploitation 
should be strongest when using weak corruption and many sampling steps (upper 
left corner of heat map) [6, 8].

According to Rothlauf [7], we need to find an appropriate and problem-spe-
cific balance between exploration and exploitation in search. For problems, where 
small variations on the genotype lead to small variations in fitness (high-locality 
problems such as the GRT problem), we usually need much less exploration com-
pared to problems, where the fitness landscape is rugged (problems with lower 
locality such as the Airfoil or the Pagie-1 problem). Thus, depending on the prob-
lem at hand, we either need to increase exploitation, making search more effi-
cient, or we need to increase exploration, helping search to keep diversity high 
and allowing to overcome local optima and to avoid premature convergence [7].

4.4.1 � Introducing Levenshtein diversity

Previous work approximated exploration and exploitation by examining the num-
ber of new candidate solutions over generations that have never been sampled 
before [4, 8]. Exploitation is strong if search introduces a low number of new 
candidate solutions during search. In contrast, the more new candidate solutions 
we introduce into search, the stronger the exploration. The problem with count-
ing new candidate solutions in search is that we do not take into account how big 
the differences are between two candidate solutions. For example, changing only 
one node of a GP tree can result in a candidate solution that has never been sam-
pled before counting towards exploration. Preliminary experiments showed that 
this can be misleading, especially when properties such as the average solution 
size (number of nodes in a solution) of a population changes over generations, 
which we often observe in the problem domain of symbolic regression where size 
increases over search time.

Therefore, we suggest a new measure that we call Levenshtein diversity to 
approximate the level of exploration and exploitation in search. The idea is to cal-
culate all pairwise normalized Levenshtein distances between candidate solutions 
(in prefix expression) in a population and to average the results over the total num-
ber of pairwise comparisons (in total N∗(N−1)

2
 pairwise comparisons). The result is a 

measure scaled between zero and one, where a Levenshtein diversity close to one 
indicates strong diversity (strong exploration) in a population. In contrast, a Leven-
shtein diversity close to zero suggests weak diversity (strong exploitation) in a popu-
lation. The idea of calculating a Levenshtein diversity within a population builds 
upon work presented by O’Reilly, who introduced averaged pairwise Levenshtein 
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distances to analyze crossover operators [42]. Normalizing those Levenshtein dis-
tances is also not new and appears in Kelly et al. [43], who use averaged normalized 
pairwise Levenshtein distances within a selection operator (knobelty selection) to 
find new diverse solutions. However, we are not aware of any work that uses aver-
aged pairwise normalized Levenshtein distances to study the exploration and exploi-
tation behavior of a population throughout search.

4.4.2 � Analysis of diversity in last generation

Figure 4 shows a heat map of the average normalized Levenshtein diversity in the 
last generation of the DAE-GP for the GRT problem (left), the Airfoil problem 
(center), and the Pagie-1 problem (right), given the best GP hyperparameter com-
bination (population size Ps , number of generations g, and tournament size u) that 
was used for performance comparison in Sect. 4.3. Recap that we expect exploration 
to be strongest (values closer to 1) in the lower right corner of the heat map; in con-
trast, we expect exploitation to be strongest in the upper left corner of the heat map 
(values closer to 0).

Interestingly, results are not as clear as expected. When comparing diversity 
values with each other, we notice that differences are often small and difficult to 
interpret. For example, while for the GRT and the Pagie-1 problem, exploration is 
indeed highest at v = 95 % and s = 1 with Levenshtein diversities of 0.535 and 0.159, 
respectively, it is lower for the Airfoil problem (0.194) compared to a DAE-GP with 
v = 50 % and s = 1 (0.237). We notice that the low level of diversity (many runs 
lead to average Leventhtein distances of close to zero) complicates the analysis. It 
indicates that search has mostly converged, which is probably a result of the strong 
selection pressure, with tournament selection sizes between 7 and 12. Furthermore, 
the use of different population sizes, number of generations and tournament selec-
tion sizes makes it difficult to compare results between problems.

Therefore, Fig. 5 shows a heat map of the average normalized Levenshtein diver-
sity, where we fix the population size to Ps = 500 , the number of generations to 

Fig. 4   Average Normalized Levenshtein diversity of DAE-GP in last generation, given Ps = 750 , g = 20 , 
and u = 7 for the GRT problem (left), Ps = 500 , g = 30 , u = 12 for the Airfoil problem (center), and 
Ps = 750 , g = 20 , and u = 12 for the Pagie-1 problem (right). Darker green represents higher diversity 
(Color figure online)
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g = 30 , and the tournament selection size to u = 2 for all three problems. The results 
are interesting, since the hyperparameter configuration of the DAE-GP is exactly 
the same for all problems. However, remind that the problems use different function 
and terminal sets (see Sect. 4.2), making a direct comparison of diversities between 
problems still difficult.

When comparing the results to Fig. 4, we notice strong differences in diversity, 
highlighting that varying the hyperparameters strongly affects exploration and 
exploitation in search. Here, we expect especially tournament selection size to have 
a strong influence on diversity. Indeed, this can best be observed when comparing 
results between Figs. 4b and 5b (Airfoil problem). Here, we only adjust u (from 12 
to 2), which strongly increases diversity. For example, for a DAE-GP with v = 95 % 
and s = 1 on the Airfoil problem, reducing selection pressure leads to an increase in 
diversity in the final population from 0.194 to 0.61.

The diversity values in the heat map in Fig. 5 are now much more as expected, 
especially for the GRT problem: we can well observe that increasing the edit per-
centage v and lowering the number of sampling steps s increases the diversity of the 
solutions. Here, a DAE-GP with v = 95 % and s = 1 yields a diversity of 0.78, while 
choosing v = 5 % and s = 5 results in a diversity of 0.12. For the Airfoil problem, 
results are similar: while setting the DAE-GP to v = 95 % and s = 1 yields a diversity 
of 0.61, choosing v = 5 % and s = 5 results in a much lower diversity of 0.2. How-
ever, there are exceptions. For example, a DAE-GP with v = 95 % and s = 2 pro-
duces less diverse solutions (0.45) than a DAE-GP with v = 95 % and s = 3 (0.64). 
Probably, the DAE-GP with v = 95% and s = 2 has already started to converge to a 
local optimum. For the Pagie-1 problem, differences in diversity are more difficult to 
interpret: the DAE-GP with v = 95 % and s = 1 again yields the most diverse solu-
tions (0.19). However, the level of diversity is still very low, which is surprising 
as we decreased the tournament selection size u from 12 (Fig.  4c) to 2 (Fig.  5c). 
Also, it is surprising that a DAE-GP with v = 95 % and s = 2 yields the lowest diver-
sity value in the heatmap (0.034). The results indicate that the DAE-GP converges 
very early for the Pagie-1 problem, even when given a low tournament selection 
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Fig. 5   Average Normalized Levenshtein diversity of DAE-GP in last generation, given Ps = 500 , g = 30 , 
and u = 2 for the GRT (left), the Airfoil (center), and the Pagie-1 (right) problem. Darker green repre-
sents higher diversity (Color figure online)
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size, which makes a comparison of diversity values still difficult. It also shows that 
adjusting the edit percentage and the number of sampling steps does not seem to 
affect the exploration and exploitation behavior as much as we can observe it for the 
GRT or the Airfoil problem.

For completeness, we report the problem-specific configuration of the DAE-GP 
with fixed hyperparameters ( Ps = 500 , g = 30 , u = 2 ) that performs best: for the 
GRT problem, a DAE-GP with v = 20 % and s = 2 yields the best results, with a 
success rate of 86.67% and a median best fitness of 0.019. For the Airfoil problem, 
a DAE-GP with v = 95 % and s = 4 is most successful with a median best RMSE of 
8.77 on the test set. For the Pagie-1 problem, the DAE-GP with v = 20 % and s = 3 
performs best, with a median best RMSE of 0.1754 on the training set.

4.4.3 � Analysis of diversity over generations

Previous results focused on diversity only in the last generation. To gain insight into 
the development of diversity throughout search, Fig. 6 plots the average normalized 
Levenshtein diversity over generations. We show results for the GRT (left), Airfoil 
(center), and Pagie-1 (right) problems, given Ps = 500 , g = 30 , and u = 2 , for a 
selection of DAE-GP configurations. We fix either the number of sampling steps s 
(a–f) or the edit percentage v (g–l) for easier visualization and compare the results 
to standard GP that uses the same Ps , g, and u as DAE-GP. The results give a fine-
grained idea of how exploration and exploitation develops throughout search.

We find that diversity is usually highest in the initial population (at around 0.8) 
and then decreases (with a few exceptions) over generations. We expect this behav-
ior since selection focuses search on specific areas of the solution space. However, 
the decrease is very different depending on the considered problem and the chosen 
edit percentage v and sampling step s.

We first focus on the GRT problem. When fixing the number of sampling steps 
and focusing on s = 1 (Fig.  6a), we find that the decrease (and thus the exploita-
tion) of the DAE-GP is strongest when using an edit percentage of v = 5 %. In con-
trast, when we set the edit percentage to v = 95 %, exploration is much stronger. The 
results confirm the observations made in Wittenberg [8]: the stronger the corrup-
tion, the stronger the exploration. Compared to standard GP, the level of exploration 
is higher when using a corruption strength of 50%, 80%, or 95%. However, there 
seems to be an upper boundary in exploration, since differences between v = 80 % 
and 95% are only hardly distinguishable. When increasing the sampling steps from 
s = 1 to s = 5 (Fig. 6d), the general level of exploration decreases (which is what 
we expect) such that the diversity of even the DAE-GP with strongest v = 95 % falls 
below the level of exploration of standard GP. We fix the edit percentage and focus 
on v = 95 % (Fig. 6g). The results confirm that the number of sampling steps s also 
has a strong influence on exploration and exploitation. A DAE-GP with s = 1 shows 

Fig. 6   Average normalized Levenshtein diversity over generations, given Ps = 500 , g = 30 , and u = 2 , 
for the GRT (left), Airfoil (center), and Pagie-1 (right) problems, with fixed number of sampling steps s 
(a–f) and fixed edit percentage v (g–l)

▸
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the strongest exploration, whereas increasing the number of sampling steps leads 
to a stronger exploitation of the solution space. This in line with previous work by 
Probst and Rothlauf [6]: the more sampling steps we use, the stronger the exploita-
tion. When lowering the edit percentage from v = 95 % to v = 5 % (Fig. 6j), we notice 
a general (and expected) decrease of the level of exploration. The results indicate 
that we seem to be approaching a lower bound on exploration where differences in 
diversity become smaller when adjusting the number of sampling steps.

Let us now consider the Airfoil problem, where we first fix the number of sam-
pling steps to s = 1 (Fig.  6b). Similar to the GRT problem, we find that setting 
the edit percentage to v = 5 % leads to the strongest decrease in diversity and that 
exploration generally increases when elevating corruption strength. However, for 
v ≥ 50 %, we find that the diversity shifts strongly over generations. Diversity first 
increases to a level larger than the initial population, then drops (partially below the 
diversity of the DAE-GP with v = 20%), and finally increases again. Interestingly, at 
g = 30 , the DAE-GP configurations that use v = 50 % and v = 80 % are slightly more 
diverse than the DAE-GP configuration using v = 95 % (confirming the observations 
made in Fig. 5b). Probably the rugged fitness landscape of the Airfoil problem is the 
reason for strong changes in diversity, where some configurations get stuck in local 
optima. When focusing on standard GP and comparing the diversity to the GRT 
problem, we notice that diversity remains at a higher level for the Airfoil problem, 
which can probably be explained by the strong bloat behavior of standard GP for 
regression problems [13] (recap that we found a median best solution size of GP 
of 150). For the DAE-GP, when increasing the number of sampling steps to s = 5 
(Fig. 6e), the level of exploration of the DAE-GP decreases. Results are similar to 
the ones of the GRT problem (Fig. 6d). When fixing the edit percentage to v = 95 % 
(Fig. 6h), results are similar to the ones in Fig. 6b. We again observe a strong change 
in diversity, where the DAE-GP with s = 1 generates the most diverse solutions only 
in the very first generations. In the last generation, the configuration using s = 3 
yields the highest diversity. When reducing corruption strength to v = 5 % (Fig. 6k), 
we find a general decrease in exploration, where differences in diversity between 
DAE-GP configurations become smaller. Again, we seem to be approaching a lower 
bound on exploration of the DAE-GP.

For the Pagie-1 problem, when the number of sampling steps is fixed to s = 1 
(Fig. 6c), we notice that the development of diversity differs strongly from obser-
vations made for the GRT and the Airfoil problem (Fig. 6a, b): the diversity of all 
DAE-GP configurations strongly converges towards a level below 0.25, indicating 
that the DAE-GP quickly gets stuck in a local optima. Only for v = 95 % (where 
we expect the strongest exploration), we observe that diversity slightly increases in 
later generations. The results suggest that the DAE-GP has severe problems to solve 
the Pagie-1 problem due to premature convergence, where also strong randomiza-
tion techniques do not help to overcome local optima. We believe that this is due to 
the very rugged fitness landscape of the Pagie-1 problem. Observations are similar 
when increasing the number of sampling steps to s = 5 (Fig. 6f), or when fixing the 
edit percentage and varying v (Fig. 6f,  l). Interestingly, when comparing the level 
of diversity to the one of GP, we notice that diversity is much higher. Again, this is 
probably due to the strong bloat behavior of standard GP that helps to keep diversity 
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high. For the Pagie-1 problem, we postulate that this helps standard GP to yield 
superior performance results compared to the DAE-GP (see Sect. 4.3).

The analysis of diversity over generations confirms previous observations. For the 
GRT and the Airfoil problem, we find that both corruption strength and the number 
of sampling steps have a strong influence on exploration and exploitation in search: 
the weaker the corruption and the more sampling steps we use, the stronger the 
exploitation. This can help to improve search performance for high-locality prob-
lems such as the the GRT problem (where the DAE-GP significantly outperforms 
standard GP). In contrast, the stronger the corruption and the fewer the sampling 
steps, the stronger the exploration. This can help to solve problems where we face 
more rugged fitness landscapes such as the Airfoil problem.

However, for very difficult problems such as the Pagie-1 problem, where we 
expect the fitness landscape to be very rugged, the DAE-GP easily gets stuck in local 
optima, even when applying strong randomization techniques. Here, we observe 
strong losses in diversity, also when setting selection pressure to a low level u = 2 . 
We think that diversity preserving selection methods such as Epsilon-Lexicase 
selection [44] could help to further improve search quality of the DAE-GP.

In general, we do not expect the DAE-GP to yield superior performance results 
compared to standard GP when facing very rugged fitness landscapes. Here, the 
only chance to overcome local optima is to apply strong randomization techniques 
and diversity preserving mechanisms. Instead, we should rather focus on problems 
with higher locality. For these problems, we believe that performance advantages 
from probabilistic model building and sampling will occur. However, recent work 
[13] has also shown that other properties such as the solution size is a promising 
property of the DAE-GP that can help to find small solutions and improve interpret-
ability for real-world regression tasks.

5 � Conclusions

The DAE-GP is an EDA-GP model based on artificial neural networks that flexibly 
identifies and models hidden relationships in training data. It corrupts input candi-
date solutions to make the model robust to noise that is present in the parent popu-
lation. For the GRT problem, Airfoil and Pagie-1 problems, this paper studied the 
influence of corruption and sampling steps on search.

We find that both the level of corruption and the number of sampling steps 
strongly influence exploration and exploitation in search and affect performance. 
The stronger we corrupt input candidate solutions and the less sampling steps we 
use, the stronger the exploration. High levels of exploration is especially useful for 
low-locality problems such as the Airfoil problem where we want to escape from 
local optima. In contrast, for high-locality problems, such as the GRT problem, 
stronger exploitation is needed. The results show that the corruption and sampling 
strategy is key to the success of the DAE-GP: it permits us to control the exploration 
and exploitation behavior in search leading to an improved search quality. For the 
Pagie-1 problem, which is a very difficult problem with low-locality, we find that the 
DAE-GP easily gets stuck in local optima, also when choosing strong corruption and 
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a low number of sampling steps. For these problems, diversity preserving mecha-
nisms (such as diversity preserving selection methods) are needed to avoid prema-
ture convergence.

In future work, we want to study if we can dynamically control both corruption 
strength and the number of sampling steps throughout search. To prevent the DAE-
GP from premature convergence, we want to study the performance of the DAE-
GP using diversity preserving methods, such as Epsilon-Lexicase selection [44] or 
novelty initialization [45]. In addition, preliminary results suggest that pre-training 
and re-using the model during evolution strongly reduces computation time [46]. 
We plan to explore this model strategy further.
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