
Vol.:(0123456789)

Genetic Programming and Evolvable Machines (2023) 24:17
https://doi.org/10.1007/s10710-023-09462-2

1 3

Denoising autoencoder genetic programming: strategies
to control exploration and exploitation in search

David Wittenberg1 · Franz Rothlauf1 · Christian Gagné2

Received: 11 November 2022 / Revised: 15 July 2023 / Accepted: 23 September 2023 /
Published online: 8 November 2023
© The Author(s) 2023, Corrected publication 2023

Abstract
Denoising autoencoder genetic programming (DAE-GP) is a novel neural network-
based estimation of distribution genetic programming approach that uses denoising
autoencoder long short-term memory networks as a probabilistic model to replace
the standard mutation and recombination operators of genetic programming. At each
generation, the idea is to capture promising properties of the parent population in a
probabilistic model and to use corruption to transfer variations of these properties
to the offspring. This work studies the influence of corruption and sampling steps
on search. Corruption partially mutates candidate solutions that are used as input to
the model, whereas the number of sampling steps defines how often we re-use the
output during model sampling as input to the model. We study the generalization of
the royal tree problem, the Airfoil problem, and the Pagie-1 problem, and find that
both corruption strength and the number of sampling steps influence exploration and
exploitation in search and affect performance: exploration increases with stronger
corruption and lower number of sampling steps. The results indicate that both cor-
ruption and sampling steps are key to the success of the DAE-GP: it permits us to
balance the exploration and exploitation behavior in search, resulting in an improved
search quality. However, also selection is important for exploration and exploitation
and should be chosen wisely.

Keywords  Genetic programming · Estimation of distribution algorithms ·
Probabilistic model-building · Denoising autoencoders

 *	 David Wittenberg
	 wittenberg@uni-mainz.de

	 Franz Rothlauf
	 rothlauf@uni-mainz.de

	 Christian Gagné
	 christian.gagne@gel.ulaval.ca

1	 Johannes Gutenberg University, Mainz, Rhineland Palatinate, Germany
2	 Laval University, Quebec City, QC, Canada

http://crossmark.crossref.org/dialog/?doi=10.1007/s10710-023-09462-2&domain=pdf

	 Genetic Programming and Evolvable Machines (2023) 24:17

1 3

17  Page 2 of 27

1  Introduction

Estimation of distribution genetic programming (EDA-GP) algorithms are
metaheuristics for variable-length combinatorial optimization problems that
sample from a learned probabilistic model, replacing the standard mutation and
recombination operators of genetic programming (GP). At each generation, the
idea is to first learn the properties of promising candidate solutions of the parent
population (model building) and then to sample from the model to transfer the
learned properties to the offspring (model sampling) [1].

Due to the complex representation of candidate solutions in GP, the scale of
research on EDA-GP is still limited [1]. This is different from regular estima-
tion of distribution algorithms (EDAs), where many promising approaches have
already been presented [2] and candidate solutions use a fixed-length represen-
tation, known from genetic algorithms (GAs) [3]. In contrast, EDA-GP usually
represents candidate solutions as variable-length parse trees, which makes proba-
bilistic model building more difficult. Research on EDA-GP has therefore moved
from simple univariate to more complex multivariate approaches [1].

An example of a recent multivariate EDA-GP is the denoising autoencoder
genetic programming (DAE-GP) that uses denoising autoencoder long short-term
memory networks (DAE-LSTMs) as a probabilistic model [4]. In comparison
to other EDA-GP approaches, it has the advantage that the model does not make
assumptions about the relationships between problem variables which allows the
DAE-GP to flexibly identify and model relevant properties of the parent population.
The DAE-GP captures dependencies between problem variables by first encoding
candidate solutions (in prefix notation) to the latent space and then reconstructing
the candidate solutions from the latent space. During model building, the DAE-GP
minimizes the reconstruction error between the encoded and decoded candidate
solutions. During model sampling, candidate solutions are propagated through the
trained model to transfer the learned properties to the offspring [4].

Denoising prevents the DAE-GP to learn the simple identity function. By par-
tially corrupting input candidate solutions, a more robust model can be created
that ignores spurious parts (noise) but focuses on the main elements (signal) of
candidate solutions in the parent population [4]. The stronger the corruption, the
stronger the generalization of the model [4, 5]. Previous work on estimation of
distribution algorithms (EDA), where candidate solutions have a fixed length of
size n, showed that we can control exploration and exploitation through modula-
tion of corruption strength [6]. Exploration increases the diversity of a population
by introducing new candidate solutions into search; exploitation reduces diver-
sity by focusing a population of candidate solutions on promising areas of the
solution space [7]. Adjusting the corruption strength can therefore help to bal-
ance exploration and exploitation leading to a more successful search: we either
increase diversity to overcome local optima avoiding premature convergence, or
we decrease diversity to exploit promising areas of the solution space [6].

Wittenberg [8] studied how different levels of corruption strength affect the
exploration and exploitation behavior of the DAE-GP. The author controls the

1 3

Genetic Programming and Evolvable Machines (2023) 24:17	 Page 3 of 27  17

level of corruption by applying Levenshtein edit on input candidate solutions.
Levenshtein edit is similar to the Levenshtein distance [9] and operates on the
string representation of a candidate solution (prefix expression). The idea is to
apply insertion (add one node), deletion (remove one node), and substitution
(replace one node by another node) on candidate solutions. Controlling the num-
ber of edits allows us to accurately adjust corruption strength: the more nodes we
edit, the stronger the corruption, and the stronger we force the DAE-GP to focus
on general properties of the parent population. The generalization of the royal
tree (GRT) problem is an easy problem with high locality, where the objective
values of neighboring solutions are correlated. Wittenberg found that weak cor-
ruption in the GRT problem leads to a strong exploitation of the solution space,
which helps the DAE-GP to make search more efficient and to outperform stand-
ard GP. In contrast, strong corruption leads to a strong exploration of new solu-
tion spaces, which is not useful for solving the GRT problem. However, it can be
useful for problem domains where the fitness landscape is more rugged such that
we need to be able to escape from local optima. Thus, balancing between explo-
ration and exploitation is achievable by choosing the right corruption strategy,
resulting in an improved search quality. Unfortunately, until now results are lim-
ited to the GRT problem [8].

This paper builds upon and extends the work of Wittenberg [8], with two key
contributions. First, we study the exploration and exploitation behavior of the DAE-
GP not only on the GRT problem but also on Airfoil and Pagie-1, which are stand-
ard symbolic regression benchmark problems [10–13]. These two last problems
are more difficult and with lower locality than GRT (i.e., the objective values of
neighboring solutions are not strongly correlated). Second, we do not only analyze
the influence of different levels of corruption strength on search, but also consider
the number of sampling steps and their impact on exploration and exploitation.
The number of sampling steps defines how often we re-inject each individual in the
model (output at step s is the input at step s + 1 ). Probst and Rothlauf argue that a
large number of sampling steps results in a strong exploitation of the solution space
[6].

We compare the performance of the DAE-GP using Levenshtein edit and dif-
ferent levels of corruption strength and number of sampling steps to standard GP,
and analyze their impact on search. The results confirm findings from [6, 8], that is
corruption strength and the number of sampling steps both strongly influence the
exploration and exploitation behavior of the DAE-GP. Indeed, the lower the cor-
ruption and the higher the number of sampling steps, the stronger the exploitation
of the solution space. This can be helpful for easy, high-locality problems, such as
the GRT problem, where a higher degree of exploitation throughout search helps to
make search more efficient and to outperform standard GP. In contrast, when facing
more rugged fitness landscapes, such as for the Airfoil problem, a stronger level of
exploration is needed. However, when facing very difficult problems, such as the
Pagie-1 problem, we find that the DAE-GP easily gets stuck in local optima even
when choosing strong corruption and a low number of sampling steps. Here, diver-
sity preserving selection methods could help to avoid premature convergence. The
results demonstrate that choosing the right corruption and sampling strategy is key

	 Genetic Programming and Evolvable Machines (2023) 24:17

1 3

17  Page 4 of 27

to the success of the DAE-GP: it allows us to control the level of exploration and
exploitation in search, helping us to improve search quality. However, also selection
strongly influences exploration and exploitation and should be chosen wisely.

In Sect. 2, we present related work on EDA-GP. We describe DAE-LSTMs in
Sect. 3, where we focus on the architecture, the corruption strategy, and on model
building and sampling. In Sect. 4, we introduce the experiments and discuss the
results. We draw conclusions in Sect. 5.

2 � Related work

We can categorize research on EDA-GP into two main research streams [1, 14]:
probabilistic prototype tree (PPT) models and grammar-based ones. A PPT is a full
tree of arity a where we set the depth of the PPT equal to the maximum tree depth
dmax . Arity a is computed as the maximum arity found in the GP function set. At
each node of the PPT, a multinomial probability distribution is evaluated over the set
of allowed functions (internal nodes) and terminals (leaf nodes), which is then used
to update the distributions according the candidate solutions that are presented to the
model. Salustowicz and Schmidhuber [15] introduced PPTs in 1997 in the first prob-
abilistic EDA-GP model called probabilistic incremental program evolution (PIPE)
[15]. Based on PIPE, which relies on univariate probability distributions, EDA-GP
models have been developed to capture dependencies between nodes in a PPT tree.
Examples include the bivariate estimation of distribution programming (EDP) [16]
or the multivariate program optimization with linkage estimation (POLE) [17, 18].
Hasegawa and Iba [18] report that POLE needs less fitness evaluations than standard
GP to solve the MAX, the deceptive MAX, and the royal tree problem [18].

The second stream of research uses grammars as EDA-GP model [1, 14]. The
first grammar-based approach has been proposed by Ratle and Sebag [19] as the
stochastic grammar-based genetic programming (SG-GP) in 2001. SG-GP uses sto-
chastic context-free grammar (SCFG) as a probabilistic model. The idea is to first
identify a set of production rules for a problem, with weights attached to them,
and to then update the weights according to usage counts of the production rules
in a parent population [19]. Since SG-GP assumes the production rules to be inde-
pendent, more sophisticated EDA-GP models capturing more complex grammars
have been developed. Consequently, program with annotated grammar estimation
(PAGE) is an extension that uses expectation maximization (EM) or variational
Bayes (VB) to learn production rules with latent annotations. An example of latent
annotation is the position or the depth of a node in a tree [20]. Another extension is
grammar-based genetic programming with a Bayesian network (BGBGP) that was
introduced by Wong et al. [21] in 2014. BGBGP uses Bayesian networks with sto-
chastic context-sensitive grammars (SCSG) as a model. Compared to SCFG, SCSG
additionally incorporate contextual information allowing the Bayesian network to
learn dependencies between production rules [21]. To further refine the BGBGP,
Wong et al. [22] added (fitness) class labels to the model. The authors argue that this
allows the model to differentiate between good and poor candidate solutions helping
the model to find better solutions. For the deceptive MAX and the asymmetric royal

1 3

Genetic Programming and Evolvable Machines (2023) 24:17	 Page 5 of 27  17

tree problem, the model outperforms POLE, PAGE-EM, PAGE-VB, and grammar-
based GP in the number of fitness evaluations [22].

One example of an EDA-GP model that neither relies on PPTs nor grammars is
the n-gram GP proposed by Poli and McPhee [23], where n-grams are used to model
relationships between a group of n consecutive sequences of instructions that can
learn dependencies in linear GP. Similarly, Hemberg et al. [24] suggested Operator-
free Genetic Programming (OFGP), which learns n-grams of ancestor node chains.
An n-gram of ancestors is the sequence of a node and its n − 1 ancestor nodes in
a GP parse tree. However, for the Pagie-1 problem, OFGP could not outperform
standard GP [24]. Recently, Liskowski et al. [25] proposed neural program optimi-
zation (NPO), where the idea is to first learn neural embeddings of programs in a
latent space, and to then use continuous optimization (CMA-ES) to search for prom-
ising programs in that latent space. The authors find that several variants of NPO
outperform standard GP on program synthesis tasks [25]. Note, however, that the
learned embeddings are neither updated nor re-learned during evolution, thus NPO
is not considered an EDA-GP.

Wittenberg et al. [4] recently suggested DAE-GP that uses Denoising Autoen-
coder Long Short-term Memory networks (DAE-LSTMs) as an EDA-GP model.
For the GRT problem, the DAE-GP outperforms standard GP. The DAE-GP can bet-
ter identify promising areas of the solution space compared to standard GP resulting
in a more efficient search in the number of fitness evaluations, especially in large
search spaces. The authors argue that, compared to previous EDA-GP approaches,
the flexible model representation is the key reason for the high performance, allow-
ing the model to identify in parallel, both position as well as context of relevant
substructures [4].

The idea of using DAE as probabilistic models in EDA has earlier been presented
by Probst [26] who introduced DAE-EDA. DAE-EDA was designed for problems
where candidate solutions follow a fixed-length representation [26]. For the NK
landscapes, deceptive traps and HIFF problem, Probst and Rothlauf [6] show that
the DAE-EDA yields competitive results compared to the Bayesian optimization
algorithm (BOA). However, DAE-EDA is better parallelizable, making it the pre-
ferred choice especially in large search spaces. Furthermore, the authors show that
corruption strength has a strong impact on exploration and exploitation in search.
Adjusting the level of corruption can therefore help to either increase exploration
which helps to overcome local optima, or to exploit relevant solution spaces making
search more efficient [6].

Wittenberg [8] transferred the idea of analyzing the influence of corruption
strength to the variable-length problem domain of GP and studied how corrup-
tion strength affects the search behavior of the DAE-GP. For the GRT problem, the
author found that corruption strength strongly influences search: the stronger we
corrupt input candidate solutions, the stronger the generalization of the model and
the stronger exploration of new solution spaces. For the given problem (easy prob-
lem with high locality), a DAE-GP with weak corruption (Levenshtein edit and 5%
corruption strength) performs best, significantly outperforming standard GP. How-
ever, results are limited to the GRT problem [8], which we extend with more results
and new analysis in the current paper.

	 Genetic Programming and Evolvable Machines (2023) 24:17

1 3

17  Page 6 of 27

3 � Denoising autoencoder LSTMs

Autoencoder long short-term memory networks (AE-LSTM) [27] are artificial neu-
ral networks that consist of an encoding and a decoding LSTM: the encoding LSTM
encodes a candidate solution (a linear sequence in prefix expression) to the latent
space; the decoding LSTM decodes the latent space (i.e., the latent vector) back to
a candidate solution. DAE-LSTM are a variant of AE-LSTM where corruption is
applied to input candidate solutions to prevent the model from learning the simple
identity function. DAE-LSTMs are used as a probabilistic model in EDA-GP (DAE-
GP) by the repeated application of the following two steps at each generation: train
the model for learning relevant properties of our parent population (model building)
and propagate candidate solutions through the trained DAE-LSTM to transfer the
learned properties to the offspring (model sampling).

In the following sections, we first explain the architecture of AE-LSTMs and the
concept of corruption, where we focus on Levenshtein edit as corruption strategy.
Then, we describe the training as well as the sampling procedure, where significant
differences compared to Wittenberg [8] lie in a new training procedure that increases
the quality of our model and the use of several sampling steps for producing the
offspring.

3.1 � Autoencoder LSTMs

Figure 1 shows the architecture of an AE-LSTM with one input layer, one hidden
layer (consisting of LSTM memory cells), and one output layer. It is based on the
architecture presented in [4]. x and o represent the input and output candidate solu-
tions of length m and k (sequences in prefix expression), respectively. h is the hidden
state at time step (iteration) t, where the total number of time steps (total number
of iterations) corresponds to T = m + k ( m, k ∈ ℕ ). The encoding LSTM (left) first
sequentially encodes a candidate solution x, with xt , t ∈ {1, 2,… ,m} through the

Fig. 1   Autoencoder LSTM with one hidden layer

1 3

Genetic Programming and Evolvable Machines (2023) 24:17	 Page 7 of 27  17

encoding function g(x), where each xt represents a function or terminal of a candi-
date solution in our parent population. At each time step t (except t = 0 ), the LSTM
memory cell then receives three inputs: the current input xt , the previous hidden
state ht−1 and the previous cell state ct−1 (not shown here). The idea of transfer-
ring information from one time step to the next is to capture long-term dependen-
cies in training data [28]. After complete processing of the input candidate solution
x, we copy hm and cm , and transfer it to the decoding LSTM, thus hm+1 = hm and
cm+1 = cm . The decoding LSTM (right) then uses the decoding function d(h) and
decodes ht back to an output candidate solution o, with each ot representing either
a function or a terminal. The aim of decoding is to reconstruct the input candidate
solution x. Using ot as input in ot+1 helps to further reduce the reconstruction error
[27]. Similar to [4, 27], we reverse the input candidate solution x to allow the model
to learn low range correlations in training data (e.g., x1 and o1 are closer to each
other when reversing the input), simplifying optimization [27].

3.2 � Using Levenshtein edit as corruption strategy

The aim of the AE-LSTM is to reconstruct the input. Given that the hidden layer
is sufficiently large, a trivial way to solve this task is to learn the simple identity
function, which means that the AE-LSTM simply replicates the candidate solutions
given as input. Since we want to learn a more useful representation of the properties
of our parent population, we partially corrupt input candidate solutions, transform-
ing the AE-LSTM into a DAE-LSTM. Based on the first DAE presented by Vincent
et al. [5] in 2008, the idea is to partially corrupt input candidate solutions making
the model robust to noise that is present in our parent population.

At each generation g, we use the corruption function c(x) to corrupt the candidate
solutions that were previously selected as promising candidate solutions from popu-
lation Pg . We can formally describe the process by

where x̃(i) is the corrupted version of the i-th candidate solution x in the training set
X (of size N) [4].

As a corruption function c(x), we use Levenshtein edit that was first introduced
in [8]. Levenshtein edit operates on the linear sequence of the input candidate solu-
tion x (prefix expression), where each xt represents a node (function or terminal)
of a tree. Levenshtein edit uses insertion (add one node), deletion (remove one
node), and substitution (replace one node by another node) to transform x into x̃ .
We control the corruption strength by a priori defining a corruption percentage
p ( 0 < p < 1 ). Given a function set F, a terminal set T, and a candidate solution
x, with xj , j ∈ {1, 2,… ,m} , we corrupt x by iteratively processing each node xj ,

(1)x̃(i) = c(x(i)) ∀i ∈ {1,… ,N},

	 Genetic Programming and Evolvable Machines (2023) 24:17

1 3

17  Page 8 of 27

where each xj has a chance of p to be corrupted: with uniform probability, we either
insert a random symbol s ∈ F ∪ T at index j (insertion), we delete xj (deletion), or
we delete xj and insert a random symbol s ∈ F ∪ T at index j (substitution). Note
that these edit operations may produce corrupted candidate solutions x̃ that do not
obey GP syntax. However, sampling with syntax control (see Sect. 3.4) ensures that
output candidate solutions o are syntactically valid.

Using Levenshtein edit as corruption strategy has several advantages: we introduce
variance in tree size (number of nodes in a tree). This is desirable since it introduces
additional variation into x̃ . However, this variation should not lead to a bias towards
larger or smaller trees, which was a problem in previous work that used subtree muta-
tion as corruption strategy [4]. Subtree mutation randomly selects a node in tree and
replaces the subtree at that node by a new random subtree generated by ramped half-
and-half. Depending on the size of the selected subtree to be replaced, we easily corrupt
either larger (when closer to the root) or smaller parts (when closer to leaf nodes) of x
resulting in a bias in tree size. The situation is different for Levenshtein edit: we ran-
domly choose corruption operators that iteratively either increase (insertion), decrease
(deletion), or maintain (substitution) the size of x. Thus, for any p, the expected tree
size of x̃ is equal to the tree size of x, which means that we are able to introduce vari-
ation without inducing a bias in tree size. Furthermore, we can easily control the cor-
ruption strength by adjusting p. The larger p, the stronger the variation, and the stronger
the corruption. The results in Sect. 4 will show that this helps to control exploration and
exploitation in search.

3.3 � Training procedure

At each generation g, we train a DAE-LSTM (from scratch) according to the training
procedure shown in Algorithm 1. It is similar to the training procedure presented in
[4, 8]. We first initialize the trainable parameters � of our network (Algorithm 1, line
1). Then, we iteratively adjust the values of the trainable parameters � using gradient
descent. Given the edit percentage p, we first transform the candidate solution x(i) into
x̃(i) (Algorithm 1, line 4). Then, we propagate x̃(i) through the DAE-LSTM, using the
encoding function g(x) (Algorithm 1, line 5) and the decoding function d(x) (Algo-
rithm 1, line 6). We compute the reconstruction error using the multiclass cross entropy
loss function by

where o(i) is the output candidate solution and x(i) the original (not the corrupted)
input candidate solution, with N being the size of the training set X. We update the
parameters � into the direction of the negative gradient and control the strength of
the update using the learning rate � ( 0 < 𝛼 < 1 ) (Algorithm 1, line 7).

(2)� ∶= min
�

N
∑

i=1

Err(x(i), o(i)),

1 3

Genetic Programming and Evolvable Machines (2023) 24:17	 Page 9 of 27  17

We stop training as soon as the training error Err(x(i), o(i)) , with x(i), o(i) ∈ X , con-
verges. We measure error convergence by observing the number of epochs that the
training error does not improve. As soon as we reach 200 epochs of no improve-
ment, with a minimum change of 0.05 that qualifies for an improvement, we stop
training and use for sampling the configuration � that minimizes the training error.
This training procedure follows the recommendations of Probst and Rothlauf [6] but
is different to previous work that used early stopping with a hold-out validation set
to train the DAE-GP [4, 8]. Here, the idea is to use those parameters for model sam-
pling that minimize the validation error. The problem of using a hold-out valida-
tion set is that it would strongly reduce the number of candidate solutions in our
training set if we have to assure that the validation set is a representative sample of
our parent population [29]. The situation is different when using the new training
procedure: here, we use the entire parent population as training set, which allows
the DAE-GP to capture more complex dependencies in training data. Still, denoising
prevents the model from overfitting.

3.4 � Sampling with syntax control

Given the trained DAE-LSTM with parameters � , we can sample new candidate
solutions o forming the offspring population Pg+1 . Algorithm 2 shows the sampling
procedure and is based on [4, 6, 8, 30]. Given � (Algorithm 2, line 1), we first pick
a candidate solution x of our training set X (Algorithm 2, line 2). Then, we corrupt
x into x̃ (Algorithm 2, line 3) using Levenshtein edit and the edit percentage v. Note
that v can be different to the edit percentage p during training. This is new compared
to previous work [4, 6, 8]. We found that exploration can be even stronger when
increasing the edit percentage only during sampling, helping the model to over-
come local optima. We explain this new property in Sect. 3.5. Then, for s sampling
steps, we propagate x̃ through the DAE-LSTM (Algorithm 2, lines 4–7), and add the
resulting output candidate solution o to Pg+1 (Algorithm 2, line 6). The idea of using
several sampling steps was presented in previous work [4, 6], but has not yet been
explored in the context of the DAE-GP. Probst and Rothlauf argue that choosing
several sampling steps results in a stronger exploitation of the solution space [6]. We
investigate this property in Sect. 4.

	 Genetic Programming and Evolvable Machines (2023) 24:17

1 3

17  Page 10 of 27

We apply syntax control during the last sampling step to ensure that only syntac-
tically valid candidate solutions are added to the new population Pg+1 . The mecha-
nism proceeds as follows: at each time step t, with t ∈ {m + 1,m + 2,… , T} , when
decoding the latent vector h back to an output candidate solution o (Algorithm 2,
line 6), the DAE-LSTM implements a probability distribution q over the set of func-
tions and terminals (defined by F and T). Following the procedure of grow initiali-
zation [31], we first identify the set of functions and terminals that generate a syn-
tactically valid candidate solution, where we also verify that we do not exceed the
recommended maximum allowed tree depth restriction of 17 [31]. Then, we set the
classes of invalid functions and terminals in q to zero and normalize the remaining
probabilities in q back to one, where we use the updated probability distribution to
sample ot . Note that the DAE-LSTM samples a prefix expression (representing a GP
parse tree top down, left to right) where syntax control following grow initialization
becomes possible.

Without corrupting the input, syntax control is usually not needed since the com-
plexity of the DAE-LSTM is sufficient to also learn correct syntax. However, the
stronger the corruption, the more difficult it becomes for the DAE-LSTM to sample
syntactically valid candidate solutions, since corrupted candidate solutions used as
input to the model no longer belong to the same parent population as X. In these
cases, syntax control is very useful: we prevent the DAE-LSTM from inefficient
resampling and allow the model to explore new solution spaces, which can help to
overcome local optima and to avoid premature convergence.

3.5 � The manifold learning perspective

Compared to previous work [4, 6, 8] that used the same edit percentage for training
and sampling, we now split this property into edit percentage for training p and edit
percentage for sampling v (see Algorithms 1 and 2). The manifold learning perspec-
tive by Vincent et al. [5] helps to understand why we draw this distinction. In the
context of the DAE-GP, the manifold is the latent representation of the training set
X (a multidimensional surface) that the model learns at each generation g. Vincent
et al. argue that training a denoising autoencoder with edit percentage p leads to a
model that learns to project corrupted points (the corrupted candidate solutions x̃ )

1 3

Genetic Programming and Evolvable Machines (2023) 24:17	 Page 11 of 27  17

back to the manifold (the original candidate solution x) [5]. When using the same
edit percentage during training and sampling (as done in previous work), and given
enough epochs and examples (variations of x̃ ) to train, this must lead (also for dif-
ferent edit percentages) to a DAE-GP that tends the replicate the parent population
from population Pg into population Pg+1 , leading to premature convergence. Instead,
when fixing the edit percentage during training (at a low percentage) and varying
the edit percentage only during sampling (at a higher percentage, as done in this
work), we force the DAE-GP to reconstruct corrupted points in the latent space that
are further away from corrupted points that were reconstructed during training. This
allows to explore new areas in the solution space, where a stronger corruption results
in a stronger exploration of the solution space. Still, the reconstruction through the
learned DAE-LSTM leads to a DAE-GP that transfers properties from the parent
population to the offspring.

4 � Experiments

We study the performance and the search behavior of the DAE-GP not only on the
GRT problem, but also on the Airfoil and the Pagie-1 problem. Furthermore, we
analyze the influence of corruption strength on search as well as the influence of the
number of sampling steps.

4.1 � Problems

The GRT problem was first presented in [4] as a test problem. It is based on the
royal tree problem introduced by Punch et al. [32] but uses the initialization method
ramped half-and-half [31] to generate target candidate solutions xopt . The idea is to
define a fitness based on the structure of a candidate solution x by

where lev is the minimum Levenshtein distance, defined by the minimum number
of insertion, deletion, and substitution operations necessary to transform x into xopt
[9]. In analogy to [4], we normalize lev by the maximum size l of x and xopt , result-
ing in fitnessx ∈ [0, 1] : the closer x to xopt , the better the fitness, where fitnessx = 0
means that x is identical to xopt [4]. Small changes in the genotype will result in
small changes in fitness (high-locality problem) [7].

The Airfoil problem [10] is a more difficult real-world symbolic regression prob-
lem. The objective is to find a (black-box) function that best describes a given data-
set, where we use the Root Mean Squared Error (RMSE) to measure the fitness of
the function. In contrast to the GRT problem, the correlation between the fitness
of two neighboring candidate solutions is usually lower (low-locality problem).
The Airfoil dataset is often used in GP literature [e.g., 33, 34, 12, 35] and available
in the UCI Machine Learning Repository [36]. It consists of 5 features and 1503

(3)fitnessx =
lev(x, xopt)

max(lx, lxopt)
,

	 Genetic Programming and Evolvable Machines (2023) 24:17

1 3

17  Page 12 of 27

observations. We split the dataset into 50% training and 50% test set to study the
performance of algorithms on unseen test cases.

The Pagie-1 problem [11] is a synthetic symbolic regression problem, where the
objective is to find a function that best approximates synthetic points that were gen-
erated using the objective function 1

1+z1
−4
+

1

1+z2
−4

 . It is known to be a challenging
problem [37], where evolutionary search hardly finds the objective function (low-
locality problem). Pagie and Hogeweg recommend to generate a set of synthetic
evaluation points by using uniform random sampling, with z1, z2 ∈ [−5, 5] , and to
use an interval of 0.4 resulting in 26 × 26 = 676 evaluation points that are part of the
training set. Note that it is not standard in the EA community to use a test set [11,
37] or to study the generalizability of the found solutions. Thus, to measure perfor-
mance, we use the RMSE on the training set.

4.2 � Experimental setup

We implemented the experiments in Python using the evolutionary framework
DEAP [38] and the neural network framework Keras [39]. We use ramped half-and-
half to generate the initial populations and target candidate solutions xopt , where we
set the minimum and maximum tree depth to dmin = 2 and dmax = 6 (Airfoil and
Pagie-1), and dmin = 2 and dmax = 4 (GRT), respectively. Note that reducing dmax
from 6 to 4 strongly reduces the complexity of the problem when searching for tar-
get candidate solutions xopt [4]. However, we allow all algorithms to search for solu-
tions up to a maximum tree depth of dmax = 17 [31].

For the Airfoil and the GRT problem, we use the function set F = {+,−, ∗,÷AQ} ,
where ÷AQ represents the analytic quotient (AQ) [40]. The function set is often used
to solve real-world symbolic regression tasks [33, 35]. As terminal set, we use
T = {z1, z2, z3, z4, z5} ∪ ERC , which includes the five problem features of the Air-
foil dataset and ephemeral random integer constants ERC . For the Airfoil problem,
we use ERC ∈ [−5,… , 5] whereas for the GRT problem, we set ERC = 1 . Again,
this affects the complexity of the solution space: reducing the number of con-
stants simplifies for both standard GP and the DAE-GP the search of target can-
didate solutions xopt [4]. For the Pagie-1 problem, we use the Koza function set
F = {+,−, ∗,%, sin, cos, exp, log} [31, 37], where % represents protected division,
and the terminal set T = {z1, z2} ∪ ERC , where we fix ERC = 1.

For GP, we follow the recommendations of Koza [31] and use 90% subtree cross-
over with internal node bias (90% of the crossover points are functions) and 10%
subtree mutation as variation operator. Subtree mutation uses full initialization with
dmin = 0 and dmax = 2 to generate a new subtree. To evaluate GP on different hyper-
parameters, we conduct a grid search and vary population size Ps combined with the
number of generations g assuring a maximum number of 15,000 fitness evaluations,
with Ps ∈ {250, 500, 750, 1000, 1500} and g ∈ {10, 15, 20, 30, 60} . Furthermore, we
vary the tournament selection size u, with u ∈ {2, 5, 7, 9, 12}.

For the DAE-GP, we have to pre-define a set of hyperparameters. We set the
number of hidden layers to one and the hidden dimension equal to the maximum
size l of the candidate solutions used as input to the model, which allows the model

1 3

Genetic Programming and Evolvable Machines (2023) 24:17	 Page 13 of 27  17

to flexibly adjust its complexity during evolution. We found that the complexity of
the model is sufficient to learn complex relationships in training data while allow-
ing efficient model building and sampling. We train the DAE-GP until the train-
ing error converges (as discussed in Sect. 3.3), set the batch size to 50 (10% of X),
use a learning rate of � = 0.001 , and perform adaptive moment estimation (Adam)
[41] for gradient descent optimization. We use Levenshtein edit as corruption strat-
egy. To study the impact of corruption and sampling steps on search, we fix the
edit percentage p = 5 % during training but vary the edit percentage v and the sam-
pling steps s during sampling: for analysis of both corruption and sampling steps,
we study v ∈ {5%, 20%, 50%, 80%, 95%} and s ∈ {1, 2, 3, 4, 5}.

To assure a fair performance comparison between DAE-GP and GP, we first iden-
tify the best problem-specific GP hyperparameter setting (by varying population size
Ps , the number of generations g, and tournament selection size u) resulting in 25 GP
hyperparameter combinations that we test for each problem. Then, we apply the best
GP hyperparameter combination of Ps , g, and u to the DAE-GP and vary the edit
percentage v and the number of sampling steps s, resulting in again 25 hyperparam-
eter combinations that we evaluate for each problem. We conduct 30 runs per algo-
rithm and hyperparameter setting (30 different xopt for the GRT problem), resulting
in a total number of 2250 DAE-GP and 2250 GP runs that we aggregate for perfor-
mance comparison.

4.3 � Performance results

We study the performance of the DAE-GP and GP on the GRT, the Airfoil, and
the Pagie-1 problem. We use heat maps for better visualization. For the DAE-GP,
we study the influence of the number of sampling steps s and the edit percentage
v. According to previous work [6, 8], exploitation should be strongest with weak
corruption and a high number of sampling steps (upper left corner of heat map); in
contrast, exploration should be strongest with strong corruption and a low number of
sampling steps (lower right corner of heat map).

We first focus on the GRT problem. Figure 2 shows the average algorithm suc-
cess rates (left) that we want to maximize and the average best fitness (right) that we
aim to minimize for 25 different DAE-GP configurations after 30 generations, given
Ps = 750 , g = 20 , and u = 7 (best GP configuration). A run is successful as soon as
the algorithm finds a candidate solution x during search that is identical to the target
candidate solution xopt ( fitnessx = 0).

We notice that both the average success rates and the average best fitness dif-
fer depending on the algorithm configuration considered. For example, when setting
the edit percentage to v = 95 % and the number of sampling steps to s = 1 (where
we expect the strongest exploration), the DAE-GP does only find 50% of the target
candidate solutions, with an average best fitness of 0.086. In contrast, when choos-
ing v = 20 % and s = 1 (stronger exploitation), the DAE-GP finds all target solutions
resulting in a success rate of 100% and an average best fitness of 0 (best DAE-GP
configuration).

	 Genetic Programming and Evolvable Machines (2023) 24:17

1 3

17  Page 14 of 27

We use (pairwise) Mann–Whitney U tests regarding the hypothesis that the
best fitness distributions in the last generation are from the same population. We
assume a significance level of 0.05. We find that significant differences between the
best DAE-GP configuration ( v = 20 % and s = 1 ) and other configurations are only
observable (p-values < 0.05 ) when comparing the best configuration to a DAE-GP
with success rates lower or equal to 83.33% ( v = 95 % and s = 1 , v = 80 % and s = 1 ,
and v = 5 % and s = 5 ). In all other cases, differences are not significant (p-values
> 0.05 ). Thus, both sampling steps and corruption strength influence performance.
However, many combinations of sampling steps and corruption strength yield good
performance results.

To assess the performance of DAE-GP, we benchmark the results to 25 hyperpa-
rameter combinations of standard GP. The best GP configuration ( Ps = 750 , g = 20 ,
and u = 7 ) finds 86.67% of the target candidate solutions xopt and yields an average
best fitness of 0.017. When comparing the best fitness distribution of the best DAE-
GP to the one of standard GP, we find a p-value of 0.042, which indicates that the
best DAE-GP significantly outperforms standard GP.

Figure 3 shows a heat map for the Airfoil and Pagie-1 problem, with the median
best fitness (RMSE) that we minimize in the last generation on the test set (Air-
foil) and training set (Pagie-1). The DAE-GP for the Airfoil problem uses Ps = 500 ,
g = 30 , and u = 12 , while the DAE-GP for the Pagie-1 problem is set to Ps = 750 ,
g = 20 , and u = 12 (each best GP configuration). Similar to Fig. 2, we again vary
both the number of sampling steps s and the edit percentage v.

Compared to the GRT problem, we notice stronger differences in performance
depending on the chosen sampling step s and edit percentage v used through-
out the experiments, especially for the Airfoil problem: while a DAE-GP with
v = 5 % and s = 5 (where we expect the strongest exploitation) yields a median

Fig. 2   GRT problem: average success rates (left) and average best fitness (right) of DAE-GP in last gen-
eration, given Ps = 750 , g = 20 , and u = 7 . Darker green represents better performance (Color figure
online)

1 3

Genetic Programming and Evolvable Machines (2023) 24:17	 Page 15 of 27  17

best fitness of 27.833, we find that a DAE-GP with v = 80 % and s = 1 (where we
expect strong exploration) finds the best candidate solutions with a median best
fitness of 5.731 (best configuration). Pairwise comparisons of the best fitness dis-
tributions confirm this observation: for the Airfoil problem, when comparing the
best DAE-GP configuration ( v = 80 % and s = 1 ) to other DAE-GP settings, we
observe that nearly all (pairwise) comparisons are significant (p-values < 0.05 ),
except for the comparison of the best DAE-GP to a DAE-GP with v = 95 % and
s = 1 (p-value > 0.05 ). The results indicate that the number of sampling steps
and the edit percentage both have a strong influence on the performance of the
DAE-GP.

For the Pagie-1 problem, differences in performance are less pronounced:
when comparing the best fitness distributions of the best DAE-GP configuration
( v = 95 % and s = 1 ) to a DAE-GP with v = 95 % and s = 2 , v = 95 % and s = 3 , or
v = 50 % and s = 5 , we find p-values > 0.05 . Here, no significant differences in
the best fitness distributions exist. Especially the last comparison is interesting,
as we would expect exploitation and thus differences in performance to be much
stronger here. In contrast, when comparing the best DAE-GP configuration to a
DAE-GP with v = 50 % and s = 1 , v = 50 % and s = 2 , or v = 5 % and s = 1 , we
find p-values < 0.05 , indicating that significant differences exist. However, simi-
lar to the Airfoil problem, we find that the DAE-GP with v = 95 % and s = 1 (set-
ting with strongest exploration) yields the best results.

Similar to the GRT problem, we benchmark the DAE-GP for each the Air-
foil and Pagie-1 problem to 25 hyperparameter combinations of standard GP. The
best GP configuration yields a median best RMSE of 7.65 ( Ps = 500 , g = 30 , and
u = 12 ) for the Airfoil problem and a median best RMSE of 0.0055 ( Ps = 750 ,

27.655

27.529

27.593

27.421

27.833

16.448

26.209

27.642

27.643

27.207

13.968

27.63

24.787

27.526

25.715

5.731

14.531

26.967

19.912

23.073

5.744

14.051

24.535

26.506

24.987

1

2

3

4

5

5% 20% 50% 80% 95%
Edit Percentage

S
am

pl
in

g
S

te
ps

(a) Airfoil problem

0.138

0.1367

0.1599

0.1419

0.142

0.1348

0.1425

0.1551

0.1641

0.1597

0.1376

0.1474

0.1441

0.1492

0.1271

0.1367

0.1392

0.1359

0.1684

0.1315

0.1265

0.1333

0.1286

0.1365

0.1615

1

2

3

4

5

5% 20% 50% 80% 95%
Edit Percentage

S
am

pl
in

g
S

te
ps

(b) Pagie-1 problem

Fig. 3   Median best RMSE of DAE-GP in last generation. For the Airfoil problem (left), we report results
on the test set, given Ps = 500 , g = 30 , and u = 12 . For the Pagie-1 problem (right), we show results on
the training set, given Ps = 750 , g = 20 , and u = 12 . Darker green represents better performance (Color
figure online)

	 Genetic Programming and Evolvable Machines (2023) 24:17

1 3

17  Page 16 of 27

g = 20 , and u = 12 ) for the Pagie-1 problem. A comparison of the best fitness dis-
tributions of the best DAE-GP to the ones of standard GP yields p-values of 0.41
(Airfoil) and 6.6e− 10 (Pagie-1): differences between the best DAE-GP and the
best GP are not significant on the Airfoil problem, but significant on the Pagie-1
problem.

The results indicate that both the edit percentage and the number of sampling
steps seem to have a big influence on solution quality but that several combinations
of sampling steps and corruption strength often yield good performance results. We
observe the strongest differences in DAE-GP performance on the Airfoil dataset.

For the GRT problem (high-locality problem), we find that strong exploitation
leads to best performance results, whereas for both the Airfoil and the Pagie-1 prob-
lem (low-locality problems), a strong randomization of the input and choosing a
small number of sampling steps seems to improve search, helping the DAE-GP to
overcome local optima. However, the results on the Airfoil and the Pagie-1 prob-
lem raise the question if the AE as a model is still helpful or if a random corruption
(mutation) of candidate solutions (without feeding the solutions to the AE) might
be sufficient to obtain good results. We therefore conducted further experiments for
both problems, where we use Levenshtein tree edit [13] as random mutation opera-
tor (without the AE) at each generation, using the same Ps , g, u, and five edit per-
centages v as for the original experiments. Levenshtein tree edit is a variation of
Levenshtein edit that works on the tree representation of x. The advantage of Leven-
shtein tree edit is that we do not destroy GP syntax [13]. Thus, it is straightforward
to use it as mutation operator. For the Airfoil problem, we find median RMSE values
on the test set between 119.8 and 124.8. For Pagie-1, median RMSE values on the
training set range from 0.56 to 11.7. When comparing the results to Fig. 3, we notice
that all RMSE values on the heat map are significantly smaller to the ones of ran-
dom corruption, highlighting that propagating candidate solutions through the AE is
useful for search.

When comparing the performance of the DAE-GP to standard GP, we notice
that the DAE-GP outperforms standard GP on the GRT problem, while standard
GP outperforms the DAE-GP on the Pagie-1 problem. We observe no significant
differences on the Airfoil problem. The results are in line with recent results by
Wittenberg and Rothlauf [13], who compared the performance of the DAE-GP to
standard GP, GP-GOMEA [35] and geometric semantic GP [33], given nine real-
world symbolic regression datasets (including Airfoil). The authors also do not find
a clear winner when comparing the performance of the algorithms to each other.
Interestingly, they find that advantages of the DAE-GP lie in the generation of small
solutions. Indeed, for the Pagie-1 problem, we find that the median size of the final
best solution of the DAE-GP is 9 compared to 40 for standard GP. For the Airfoil
problem, we find that the median size of the final best solution of the DAE-GP is 12
compared to 150 for standard GP.

1 3

Genetic Programming and Evolvable Machines (2023) 24:17	 Page 17 of 27  17

4.4 � The influence of corruption and sampling steps on search

The results above demonstrate that both corruption and the number of sampling
steps influence the performance of the DAE-GP. This is in line with the results
in [6, 8]. To better understand the influence of corruption and sampling steps
on search, we study the exploration and exploitation behavior of the algorithms.
We expect exploration to be strongest when we use strong corruption and a low
number of sampling steps (lower right corner of heat map). Instead, exploitation
should be strongest when using weak corruption and many sampling steps (upper
left corner of heat map) [6, 8].

According to Rothlauf [7], we need to find an appropriate and problem-spe-
cific balance between exploration and exploitation in search. For problems, where
small variations on the genotype lead to small variations in fitness (high-locality
problems such as the GRT problem), we usually need much less exploration com-
pared to problems, where the fitness landscape is rugged (problems with lower
locality such as the Airfoil or the Pagie-1 problem). Thus, depending on the prob-
lem at hand, we either need to increase exploitation, making search more effi-
cient, or we need to increase exploration, helping search to keep diversity high
and allowing to overcome local optima and to avoid premature convergence [7].

4.4.1 � Introducing Levenshtein diversity

Previous work approximated exploration and exploitation by examining the num-
ber of new candidate solutions over generations that have never been sampled
before [4, 8]. Exploitation is strong if search introduces a low number of new
candidate solutions during search. In contrast, the more new candidate solutions
we introduce into search, the stronger the exploration. The problem with count-
ing new candidate solutions in search is that we do not take into account how big
the differences are between two candidate solutions. For example, changing only
one node of a GP tree can result in a candidate solution that has never been sam-
pled before counting towards exploration. Preliminary experiments showed that
this can be misleading, especially when properties such as the average solution
size (number of nodes in a solution) of a population changes over generations,
which we often observe in the problem domain of symbolic regression where size
increases over search time.

Therefore, we suggest a new measure that we call Levenshtein diversity to
approximate the level of exploration and exploitation in search. The idea is to cal-
culate all pairwise normalized Levenshtein distances between candidate solutions
(in prefix expression) in a population and to average the results over the total num-
ber of pairwise comparisons (in total N∗(N−1)

2
 pairwise comparisons). The result is a

measure scaled between zero and one, where a Levenshtein diversity close to one
indicates strong diversity (strong exploration) in a population. In contrast, a Leven-
shtein diversity close to zero suggests weak diversity (strong exploitation) in a popu-
lation. The idea of calculating a Levenshtein diversity within a population builds
upon work presented by O’Reilly, who introduced averaged pairwise Levenshtein

	 Genetic Programming and Evolvable Machines (2023) 24:17

1 3

17  Page 18 of 27

distances to analyze crossover operators [42]. Normalizing those Levenshtein dis-
tances is also not new and appears in Kelly et al. [43], who use averaged normalized
pairwise Levenshtein distances within a selection operator (knobelty selection) to
find new diverse solutions. However, we are not aware of any work that uses aver-
aged pairwise normalized Levenshtein distances to study the exploration and exploi-
tation behavior of a population throughout search.

4.4.2 � Analysis of diversity in last generation

Figure 4 shows a heat map of the average normalized Levenshtein diversity in the
last generation of the DAE-GP for the GRT problem (left), the Airfoil problem
(center), and the Pagie-1 problem (right), given the best GP hyperparameter com-
bination (population size Ps , number of generations g, and tournament size u) that
was used for performance comparison in Sect. 4.3. Recap that we expect exploration
to be strongest (values closer to 1) in the lower right corner of the heat map; in con-
trast, we expect exploitation to be strongest in the upper left corner of the heat map
(values closer to 0).

Interestingly, results are not as clear as expected. When comparing diversity
values with each other, we notice that differences are often small and difficult to
interpret. For example, while for the GRT and the Pagie-1 problem, exploration is
indeed highest at v = 95 % and s = 1 with Levenshtein diversities of 0.535 and 0.159,
respectively, it is lower for the Airfoil problem (0.194) compared to a DAE-GP with
v = 50 % and s = 1 (0.237). We notice that the low level of diversity (many runs
lead to average Leventhtein distances of close to zero) complicates the analysis. It
indicates that search has mostly converged, which is probably a result of the strong
selection pressure, with tournament selection sizes between 7 and 12. Furthermore,
the use of different population sizes, number of generations and tournament selec-
tion sizes makes it difficult to compare results between problems.

Therefore, Fig. 5 shows a heat map of the average normalized Levenshtein diver-
sity, where we fix the population size to Ps = 500 , the number of generations to

Fig. 4   Average Normalized Levenshtein diversity of DAE-GP in last generation, given Ps = 750 , g = 20 ,
and u = 7 for the GRT problem (left), Ps = 500 , g = 30 , u = 12 for the Airfoil problem (center), and
Ps = 750 , g = 20 , and u = 12 for the Pagie-1 problem (right). Darker green represents higher diversity
(Color figure online)

1 3

Genetic Programming and Evolvable Machines (2023) 24:17	 Page 19 of 27  17

g = 30 , and the tournament selection size to u = 2 for all three problems. The results
are interesting, since the hyperparameter configuration of the DAE-GP is exactly
the same for all problems. However, remind that the problems use different function
and terminal sets (see Sect. 4.2), making a direct comparison of diversities between
problems still difficult.

When comparing the results to Fig. 4, we notice strong differences in diversity,
highlighting that varying the hyperparameters strongly affects exploration and
exploitation in search. Here, we expect especially tournament selection size to have
a strong influence on diversity. Indeed, this can best be observed when comparing
results between Figs. 4b and 5b (Airfoil problem). Here, we only adjust u (from 12
to 2), which strongly increases diversity. For example, for a DAE-GP with v = 95 %
and s = 1 on the Airfoil problem, reducing selection pressure leads to an increase in
diversity in the final population from 0.194 to 0.61.

The diversity values in the heat map in Fig. 5 are now much more as expected,
especially for the GRT problem: we can well observe that increasing the edit per-
centage v and lowering the number of sampling steps s increases the diversity of the
solutions. Here, a DAE-GP with v = 95 % and s = 1 yields a diversity of 0.78, while
choosing v = 5 % and s = 5 results in a diversity of 0.12. For the Airfoil problem,
results are similar: while setting the DAE-GP to v = 95 % and s = 1 yields a diversity
of 0.61, choosing v = 5 % and s = 5 results in a much lower diversity of 0.2. How-
ever, there are exceptions. For example, a DAE-GP with v = 95 % and s = 2 pro-
duces less diverse solutions (0.45) than a DAE-GP with v = 95 % and s = 3 (0.64).
Probably, the DAE-GP with v = 95% and s = 2 has already started to converge to a
local optimum. For the Pagie-1 problem, differences in diversity are more difficult to
interpret: the DAE-GP with v = 95 % and s = 1 again yields the most diverse solu-
tions (0.19). However, the level of diversity is still very low, which is surprising
as we decreased the tournament selection size u from 12 (Fig. 4c) to 2 (Fig. 5c).
Also, it is surprising that a DAE-GP with v = 95 % and s = 2 yields the lowest diver-
sity value in the heatmap (0.034). The results indicate that the DAE-GP converges
very early for the Pagie-1 problem, even when given a low tournament selection

0.13

0.12

0.1

0.11

0.12

0.37

0.15

0.12

0.11

0.12

0.76

0.63

0.36

0.19

0.14

0.78

0.72

0.62

0.43

0.25

0.78

0.73

0.66

0.53

0.31

1

2

3

4

5

5% 20% 50% 80% 95%
Edit Percentage

S
am

pl
in

g
S

te
ps

(a) GRT problem

0.29

0.23

0.22

0.2

0.2

0.49

0.32

0.26

0.22

0.21

0.66

0.5

0.37

0.27

0.25

0.64

0.59

0.55

0.42

0.34

0.61

0.45

0.64

0.48

0.41

1

2

3

4

5

5% 20% 50% 80% 95%
Edit Percentage

S
am

pl
in

g
S

te
ps

(b) Airfoil problem

0.089

0.09

0.094

0.085

0.076

0.126

0.085

0.074

0.086

0.088

0.088

0.094

0.122

0.119

0.093

0.098

0.044

0.073

0.074

0.123

0.19

0.034

0.084

0.124

0.103

1

2

3

4

5

5% 20% 50% 80% 95%
Edit Percentage

S
am

pl
in

g
S

te
ps

(c) Pagie-1 problem

Fig. 5   Average Normalized Levenshtein diversity of DAE-GP in last generation, given Ps = 500 , g = 30 ,
and u = 2 for the GRT (left), the Airfoil (center), and the Pagie-1 (right) problem. Darker green repre-
sents higher diversity (Color figure online)

	 Genetic Programming and Evolvable Machines (2023) 24:17

1 3

17  Page 20 of 27

size, which makes a comparison of diversity values still difficult. It also shows that
adjusting the edit percentage and the number of sampling steps does not seem to
affect the exploration and exploitation behavior as much as we can observe it for the
GRT or the Airfoil problem.

For completeness, we report the problem-specific configuration of the DAE-GP
with fixed hyperparameters ( Ps = 500 , g = 30 , u = 2 ) that performs best: for the
GRT problem, a DAE-GP with v = 20 % and s = 2 yields the best results, with a
success rate of 86.67% and a median best fitness of 0.019. For the Airfoil problem,
a DAE-GP with v = 95 % and s = 4 is most successful with a median best RMSE of
8.77 on the test set. For the Pagie-1 problem, the DAE-GP with v = 20 % and s = 3
performs best, with a median best RMSE of 0.1754 on the training set.

4.4.3 � Analysis of diversity over generations

Previous results focused on diversity only in the last generation. To gain insight into
the development of diversity throughout search, Fig. 6 plots the average normalized
Levenshtein diversity over generations. We show results for the GRT (left), Airfoil
(center), and Pagie-1 (right) problems, given Ps = 500 , g = 30 , and u = 2 , for a
selection of DAE-GP configurations. We fix either the number of sampling steps s
(a–f) or the edit percentage v (g–l) for easier visualization and compare the results
to standard GP that uses the same Ps , g, and u as DAE-GP. The results give a fine-
grained idea of how exploration and exploitation develops throughout search.

We find that diversity is usually highest in the initial population (at around 0.8)
and then decreases (with a few exceptions) over generations. We expect this behav-
ior since selection focuses search on specific areas of the solution space. However,
the decrease is very different depending on the considered problem and the chosen
edit percentage v and sampling step s.

We first focus on the GRT problem. When fixing the number of sampling steps
and focusing on s = 1 (Fig. 6a), we find that the decrease (and thus the exploita-
tion) of the DAE-GP is strongest when using an edit percentage of v = 5 %. In con-
trast, when we set the edit percentage to v = 95 %, exploration is much stronger. The
results confirm the observations made in Wittenberg [8]: the stronger the corrup-
tion, the stronger the exploration. Compared to standard GP, the level of exploration
is higher when using a corruption strength of 50%, 80%, or 95%. However, there
seems to be an upper boundary in exploration, since differences between v = 80 %
and 95% are only hardly distinguishable. When increasing the sampling steps from
s = 1 to s = 5 (Fig. 6d), the general level of exploration decreases (which is what
we expect) such that the diversity of even the DAE-GP with strongest v = 95 % falls
below the level of exploration of standard GP. We fix the edit percentage and focus
on v = 95 % (Fig. 6g). The results confirm that the number of sampling steps s also
has a strong influence on exploration and exploitation. A DAE-GP with s = 1 shows

Fig. 6   Average normalized Levenshtein diversity over generations, given Ps = 500 , g = 30 , and u = 2 ,
for the GRT (left), Airfoil (center), and Pagie-1 (right) problems, with fixed number of sampling steps s
(a–f) and fixed edit percentage v (g–l)

▸

1 3

Genetic Programming and Evolvable Machines (2023) 24:17	 Page 21 of 27  17

	 Genetic Programming and Evolvable Machines (2023) 24:17

1 3

17  Page 22 of 27

the strongest exploration, whereas increasing the number of sampling steps leads
to a stronger exploitation of the solution space. This in line with previous work by
Probst and Rothlauf [6]: the more sampling steps we use, the stronger the exploita-
tion. When lowering the edit percentage from v = 95 % to v = 5 % (Fig. 6j), we notice
a general (and expected) decrease of the level of exploration. The results indicate
that we seem to be approaching a lower bound on exploration where differences in
diversity become smaller when adjusting the number of sampling steps.

Let us now consider the Airfoil problem, where we first fix the number of sam-
pling steps to s = 1 (Fig. 6b). Similar to the GRT problem, we find that setting
the edit percentage to v = 5 % leads to the strongest decrease in diversity and that
exploration generally increases when elevating corruption strength. However, for
v ≥ 50 %, we find that the diversity shifts strongly over generations. Diversity first
increases to a level larger than the initial population, then drops (partially below the
diversity of the DAE-GP with v = 20%), and finally increases again. Interestingly, at
g = 30 , the DAE-GP configurations that use v = 50 % and v = 80 % are slightly more
diverse than the DAE-GP configuration using v = 95 % (confirming the observations
made in Fig. 5b). Probably the rugged fitness landscape of the Airfoil problem is the
reason for strong changes in diversity, where some configurations get stuck in local
optima. When focusing on standard GP and comparing the diversity to the GRT
problem, we notice that diversity remains at a higher level for the Airfoil problem,
which can probably be explained by the strong bloat behavior of standard GP for
regression problems [13] (recap that we found a median best solution size of GP
of 150). For the DAE-GP, when increasing the number of sampling steps to s = 5
(Fig. 6e), the level of exploration of the DAE-GP decreases. Results are similar to
the ones of the GRT problem (Fig. 6d). When fixing the edit percentage to v = 95 %
(Fig. 6h), results are similar to the ones in Fig. 6b. We again observe a strong change
in diversity, where the DAE-GP with s = 1 generates the most diverse solutions only
in the very first generations. In the last generation, the configuration using s = 3
yields the highest diversity. When reducing corruption strength to v = 5 % (Fig. 6k),
we find a general decrease in exploration, where differences in diversity between
DAE-GP configurations become smaller. Again, we seem to be approaching a lower
bound on exploration of the DAE-GP.

For the Pagie-1 problem, when the number of sampling steps is fixed to s = 1
(Fig. 6c), we notice that the development of diversity differs strongly from obser-
vations made for the GRT and the Airfoil problem (Fig. 6a, b): the diversity of all
DAE-GP configurations strongly converges towards a level below 0.25, indicating
that the DAE-GP quickly gets stuck in a local optima. Only for v = 95 % (where
we expect the strongest exploration), we observe that diversity slightly increases in
later generations. The results suggest that the DAE-GP has severe problems to solve
the Pagie-1 problem due to premature convergence, where also strong randomiza-
tion techniques do not help to overcome local optima. We believe that this is due to
the very rugged fitness landscape of the Pagie-1 problem. Observations are similar
when increasing the number of sampling steps to s = 5 (Fig. 6f), or when fixing the
edit percentage and varying v (Fig. 6f, l). Interestingly, when comparing the level
of diversity to the one of GP, we notice that diversity is much higher. Again, this is
probably due to the strong bloat behavior of standard GP that helps to keep diversity

1 3

Genetic Programming and Evolvable Machines (2023) 24:17	 Page 23 of 27  17

high. For the Pagie-1 problem, we postulate that this helps standard GP to yield
superior performance results compared to the DAE-GP (see Sect. 4.3).

The analysis of diversity over generations confirms previous observations. For the
GRT and the Airfoil problem, we find that both corruption strength and the number
of sampling steps have a strong influence on exploration and exploitation in search:
the weaker the corruption and the more sampling steps we use, the stronger the
exploitation. This can help to improve search performance for high-locality prob-
lems such as the the GRT problem (where the DAE-GP significantly outperforms
standard GP). In contrast, the stronger the corruption and the fewer the sampling
steps, the stronger the exploration. This can help to solve problems where we face
more rugged fitness landscapes such as the Airfoil problem.

However, for very difficult problems such as the Pagie-1 problem, where we
expect the fitness landscape to be very rugged, the DAE-GP easily gets stuck in local
optima, even when applying strong randomization techniques. Here, we observe
strong losses in diversity, also when setting selection pressure to a low level u = 2 .
We think that diversity preserving selection methods such as Epsilon-Lexicase
selection [44] could help to further improve search quality of the DAE-GP.

In general, we do not expect the DAE-GP to yield superior performance results
compared to standard GP when facing very rugged fitness landscapes. Here, the
only chance to overcome local optima is to apply strong randomization techniques
and diversity preserving mechanisms. Instead, we should rather focus on problems
with higher locality. For these problems, we believe that performance advantages
from probabilistic model building and sampling will occur. However, recent work
[13] has also shown that other properties such as the solution size is a promising
property of the DAE-GP that can help to find small solutions and improve interpret-
ability for real-world regression tasks.

5 � Conclusions

The DAE-GP is an EDA-GP model based on artificial neural networks that flexibly
identifies and models hidden relationships in training data. It corrupts input candi-
date solutions to make the model robust to noise that is present in the parent popu-
lation. For the GRT problem, Airfoil and Pagie-1 problems, this paper studied the
influence of corruption and sampling steps on search.

We find that both the level of corruption and the number of sampling steps
strongly influence exploration and exploitation in search and affect performance.
The stronger we corrupt input candidate solutions and the less sampling steps we
use, the stronger the exploration. High levels of exploration is especially useful for
low-locality problems such as the Airfoil problem where we want to escape from
local optima. In contrast, for high-locality problems, such as the GRT problem,
stronger exploitation is needed. The results show that the corruption and sampling
strategy is key to the success of the DAE-GP: it permits us to control the exploration
and exploitation behavior in search leading to an improved search quality. For the
Pagie-1 problem, which is a very difficult problem with low-locality, we find that the
DAE-GP easily gets stuck in local optima, also when choosing strong corruption and

	 Genetic Programming and Evolvable Machines (2023) 24:17

1 3

17  Page 24 of 27

a low number of sampling steps. For these problems, diversity preserving mecha-
nisms (such as diversity preserving selection methods) are needed to avoid prema-
ture convergence.

In future work, we want to study if we can dynamically control both corruption
strength and the number of sampling steps throughout search. To prevent the DAE-
GP from premature convergence, we want to study the performance of the DAE-
GP using diversity preserving methods, such as Epsilon-Lexicase selection [44] or
novelty initialization [45]. In addition, preliminary results suggest that pre-training
and re-using the model during evolution strongly reduces computation time [46].
We plan to explore this model strategy further.

Acknowledgements  We thank our group in Mainz and Quebec City for insightful discussions and pre-
vious work on this topic. Furthermore, we thank the reviewers for thoughtful comments that helped
improve the manuscript. Parts of this research were conducted using the supercomputer Mogon and/or
advisory services offered by Johannes Gutenberg University Mainz (http://​hpc.​uni-​mainz.​de), which is a
member of the AHRP (Alliance for High Performance Computing in Rhineland Palatinate, http://​www.​
ahrp.​info) and the Gauss Alliance e.V. The authors gratefully acknowledge the computing time granted.

Author contributions  David Wittenberg wrote the manuscript. All authors reviewed the manuscript.

Funding  Open Access funding enabled and organized by Projekt DEAL. This work was supported by a
fellowship of the German Academic Exchange Service (DAAD) and by a funding from the Interdiscipli-
nary Public Policy (IPP) Mainz.

Declarations 

Conflict of interest  The authors have no competing interests to declare that are relevant to the content of
this article.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​
ses/​by/4.​0/.

References

	 1.	 K. Kim, Y. Shan, X.H. Nguyen, R.I. McKay, Probabilistic model building in genetic programming:
a critical review. Genet. Program Evolvable Mach. 15(2), 115–167 (2014). https://​doi.​org/​10.​1007/​
s10710-​013-​9205-x

	 2.	 M. Pelikan, M.W. Hauschild, F.G. Lobo, Introduction to estimation of distribution algorithms. Mis-
souri Estimation of Distribution Algorithms Laboratory (MEDAL), Report Nr. 2012003 (2012)

	 3.	 J.H. Holland, Adaptation in Natural and Artificial Systems: An Introductory Analysis with Appli-
cations to Biology, Control, and Artificial Intelligence (University of Michigan Press, Ann Arbor,
1975)

	 4.	 D. Wittenberg, F. Rothlauf, D. Schweim, DAE-GP: Denoising autoencoder LSTM networks as
probabilistic models in estimation of distribution genetic programming, in Proceedings of the 2020

http://hpc.uni-mainz.de
http://www.ahrp.info
http://www.ahrp.info
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s10710-013-9205-x
https://doi.org/10.1007/s10710-013-9205-x

1 3

Genetic Programming and Evolvable Machines (2023) 24:17	 Page 25 of 27  17

Genetic and Evolutionary Computation Conference. GECCO’20 (ACM, New York, 2020), pp.
1037–1045. https://​doi.​org/​10.​1145/​33779​30.​33901​80

	 5.	 P. Vincent, H. Larochelle, Y. Bengio, P.A. Manzagol, Extracting and composing robust features with
denoising autoencoders, in Proceedings of the 25th International Conference on Machine Learning
(ICML’08) (ACM, Helsinki, 2008), pp. 1096–1103. https://​doi.​org/​10.​1145/​13901​56.​13902​94

	 6.	 M. Probst, F. Rothlauf, Harmless overfitting: Using denoising autoencoders in estimation of distri-
bution algorithms. J. Mach. Learn. Res. 21(78), 1–31 (2020)

	 7.	 F. Rothlauf, Design of Modern Heuristics: Principles and Application, 1st edn. (Springer, Berlin,
2011). https://​doi.​org/​10.​1007/​978-3-​540-​72962-4

	 8.	 D. Wittenberg, Using denoising autoencoder genetic programming to control exploration and
exploitation in search, in Genetic Programming: 25th European Conference, EuroGP 2022, Held as
Part of EvoStar 2022, Madrid, Spain, April 20–22, 2022, Proceedings (Springer, Berlin, 2022), pp.
102–117. https://​doi.​org/​10.​1007/​978-3-​031-​02056-8_7

	 9.	 J.B. Kruskal, An overview of sequence comparison: time warps, string edits, and macromolecules.
Soc. Ind. Appl. Math. (SIAM) Rev. 25(2), 201–237 (1983). https://​doi.​org/​10.​1137/​10250​45

	10.	 T.F. Brooks, D.S. Pope, M.A. Marcolini, Airfoil Self-noise and Prediction, vol. 1218. National Aer-
onautics and Space Administration, Office of Management, Scientific and Technical Information
Division (1989)

	11.	 L. Pagie, P. Hogeweg, Evolutionary consequences of coevolving targets. Evol. Comput. 5(4), 401–
418 (1997)

	12.	 D. Wittenberg, F. Rothlauf, Denoising autoencoder genetic programming for real-world symbolic
regression, in Proceedings of the Genetic and Evolutionary Computation Conference Companion.
GECCO’22 (Association for Computing Machinery, New York, 2022), pp. 612–614. https://​doi.​org/​
10.​1145/​35203​04.​35289​21

	13.	 D. Wittenberg, F. Rothlauf, Small solutions for real-world symbolic regression using denoising
autoencoder genetic programming, in Genetic Programming: 26th European Conference, EuroGP
2023, Held as Part of EvoStar 2023, Brno, Czech Republic, April 12–14, 2023, Proceedings
(Springer, Berlin, 2023), pp. 101–116. https://​doi.​org/​10.​1007/​978-3-​031-​29573-7_7

	14.	 Y. Shan, R. McKay, D. Essam, H. Abbass, A survey of probabilistic model building genetic pro-
gramming, in Scalable Optimization Via Probabilistic Modeling. ed. by M. Pelikan, K. Sastry, E.
CantúPaz (Springer, Berlin, 2006), pp.121–160

	15.	 R. Salustowicz, J. Schmidhuber, Probabilistic incremental program evolution. Evol. Comput. 5(2),
123–141 (1997). https://​doi.​org/​10.​1162/​evco.​1997.5.​2.​123

	16.	 K. Yanai, H. Iba, Estimation of distribution programming based on Bayesian network, in IEEE Con-
gress on Evolutionary Computation (CEC’03) (IEEE, Canberra, 2003), pp. 1618–1625. https://​doi.​
org/​10.​1109/​CEC.​2003.​12998​66

	17.	 Y. Hasegawa, H. Iba, Estimation of Bayesian network for program generation, in Proceedings of the
Third Asian-Pacific Workshop on Genetic Programming Hanoi, Vietnam (2006), pp. 35–46

	18.	 Y. Hasegawa, H. Iba, A Bayesian network approach to program generation. IEEE Trans. Evol. Com-
put. 12(6), 750–764 (2008). https://​doi.​org/​10.​1109/​tevc.​2008.​915999

	19.	 A. Ratle, M. Sebag, Avoiding the bloat with probabilistic grammar-based genetic programming,
in 5th International Conference on Artificial Evolution (EA’01) (Springer, Le Creusot, 2001), pp.
255–266

	20.	 Y. Hasegawa, H. Iba, Estimation of distribution algorithm based on probabilistic grammar with
latent annotations, in Proceedings of the IEEE Congress on Evolutionary Computation (CEC’17)
(IEEE, Singapore, 2007), pp. 1043–1050. https://​doi.​org/​10.​1109/​CEC.​2007.​44245​85

	21.	 P.-K. Wong, L.-Y. Lo, M.-L. Wong, K.-S. Leung, Grammar-based genetic programming with Bayes-
ian network, in IEEE Congress on Evolutionary Computation (CEC’14) (IEEE, Beijing, 2014), pp.
739–746

	22.	 P.-K. Wong, L.-Y. Lo, M.-L. Wong, K.-S. Leung, grammar-based genetic programming with
dependence learning and Bayesian network classifier, in Proceedings of the Genetic and Evolution-
ary Computation Conference (GECCO’14) (ACM, Vancouver, 2014), pp. 959–966. https://​doi.​org/​
10.​1145/​25767​68.​25982​56

	23.	 R. Poli, N.F. McPhee, A Linear estimation-of-distribution GP system, in Proceedings of the
11th European Conference on Genetic Programming (EuroGP’08) (Springer, Neapel, 2008), pp.
206–217

	24.	 E. Hemberg, K. Veeramachaneni, J. McDermott, C. Berzan, U.-M. O’Reilly, An investigation of
local patterns for estimation of distribution genetic programming, in Proceedings of the genetic

https://doi.org/10.1145/3377930.3390180
https://doi.org/10.1145/1390156.1390294
https://doi.org/10.1007/978-3-540-72962-4
https://doi.org/10.1007/978-3-031-02056-8_7
https://doi.org/10.1137/1025045
https://doi.org/10.1145/3520304.3528921
https://doi.org/10.1145/3520304.3528921
https://doi.org/10.1007/978-3-031-29573-7_7
https://doi.org/10.1162/evco.1997.5.2.123
https://doi.org/10.1109/CEC.2003.1299866
https://doi.org/10.1109/CEC.2003.1299866
https://doi.org/10.1109/tevc.2008.915999
https://doi.org/10.1109/CEC.2007.4424585
https://doi.org/10.1145/2576768.2598256
https://doi.org/10.1145/2576768.2598256

	 Genetic Programming and Evolvable Machines (2023) 24:17

1 3

17  Page 26 of 27

and evolutionary computation conference (GECCO ’12) (ACM, Philadelphia, 2012), pp. 767–774.
https://​doi.​org/​10.​1145/​23301​63.​23302​70

	25.	 P. Liskowski, K. Krawiec, N.E. Toklu, J. Swan, Program synthesis as latent continuous optimiza-
tion: evolutionary search in neural embeddings, in Proceedings of the 2020 Genetic and Evolu-
tionary Computation Conference. GECCO’20 (Association for Computing Machinery, New York,
2020), pp. 359–367. https://​doi.​org/​10.​1145/​33779​30.​33902​13

	26.	 M. Probst, Denoising autoencoders for fast combinatorial black box optimization, in Proceedings
of the Companion Publication of the Annual Conference on Genetic and Evolutionary Computation
(ACM, Madrid, 2015), pp. 1459–1460

	27.	 N. Srivastava, E. Mansimov, R. Salakhutdinov, Unsupervised learning of video representa-
tions using LSTMs, in Proceedings of the 32nd International Conference on Machine Learning
(ICML’15) (ACM, Lille, 2015), pp. 843–852. https://​doi.​org/​10.​5555/​30451​18.​30452​09

	28.	 S. Hochreiter, J. Schmidhuber, Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997).
https://​doi.​org/​10.​1162/​neco.​1997.9.​8.​1735

	29.	 D. Schweim, D. Wittenberg, F. Rothlauf, On sampling error in genetic programming. Natural Com-
put. (2021). https://​doi.​org/​10.​1007/​s11047-​020-​09828-w

	30.	 Y. Bengio, L. Yao, G. Alain, P. Vincent, Generalized denoising auto-encoders as generative models,
in Advances on Neural Information Processing Systems (NIPS’13), vol. 26, pp. 899–907 (2013)

	31.	 J.R. Koza, Genetic Programming: On the Programming of Computers by Means of Natural Selec-
tion (MIT press, Cambridge, 1992)

	32.	 B. Punch, D. Zongker, E. Goodman, The royal tree problem, a benchmark for single and multi-pop-
ulation genetic programming, in Advances in Genetic Programming II. ed. by P.J. Angeline, K.E.
Kinnear Jr. (MIT Press, Cambridge, 1996), pp.299–316

	33.	 J.F.B.S. Martins, L.O.V.B. Oliveira, L.F. Miranda, F. Casadei, G.L. Pappa, Solving the exponential
growth of symbolic regression trees in geometric semantic genetic programming, in Proceedings of
the Genetic and Evolutionary Computation Conference. GECCO’18 (Association for Computing
Machinery, New York, 2018), pp. 1151–1158. https://​doi.​org/​10.​1145/​32054​55.​32055​93

	34.	 V.V. de Melo, D.V. Vargas, W. Banzhaf, Batch tournament selection for genetic programming: The
quality of lexicase, the speed of tournament, in Proceedings of the Genetic and Evolutionary Com-
putation Conference. GECCO’19 (Association for Computing Machinery, New York, 2019), pp.
994–1002. https://​doi.​org/​10.​1145/​33217​07.​33217​93

	35.	 M. Virgolin, T. Alderliesten, C. Witteveen, P.A.N. Bosman, Improving model-based genetic pro-
gramming for symbolic regression of small expressions. Evol. Comput. 29(2), 211–237 (2021).
https://​doi.​org/​10.​1162/​evco_a_​00278

	36.	 D. Dua, C. Graff, UCI Machine Learning Repository (2017). http://​archi​ve.​ics.​uci.​edu/​ml
	37.	 J. McDermott, D.R. White, S. Luke, L. Manzoni, M. Castelli, L. Vanneschi, W. Jaskowski, K.

Krawiec, R. Harper, K. De Jong, U.-M. O’Reilly, Genetic programming needs better benchmarks, in
Proceedings of the 14th Annual Conference on Genetic and Evolutionary Computation. GECCO’12
(Association for Computing Machinery, New York, 2012), pp. 791–798. https://​doi.​org/​10.​1145/​
23301​63.​23302​73

	38.	 F.A. Fortin, F.M. De Rainville, M.A. Gardner, M. Parizeau, C. Gagńe, DEAP: Evolutionary algo-
rithms made easy. J. Mach. Learn. Res. 13(1), 2171–2175 (2012)

	39.	 F. Chollet, keras. GitHub (2015). https://​github.​com/​fchol​let/​keras
	40.	 J. Ni, R.H. Drieberg, P.I. Rockett, The use of an analytic quotient operator in genetic programming.

IEEE Trans. Evol. Comput. 17(1), 146–152 (2013). https://​doi.​org/​10.​1109/​TEVC.​2012.​21953​19
	41.	 D.P. Kingma, J. Ba, Adam: A method for stochastic optimization, in International Conference on

Learning Representations, San Diego, CA, USA (2015)
	42.	 U.-M. O’Reilly, Using a distance metric on genetic programs to understand genetic operators, in

1997 IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernet-
ics and Simulation, vol. 5 (1997), pp. 4092–4097. https://​doi.​org/​10.​1109/​ICSMC.​1997.​637337

	43.	 J. Kelly, E. Hemberg, U.-M. O’Reilly, Improving genetic programming with novel exploration–
exploitation control, in Genetic Programming. ed. by L. Sekanina, T. Hu, N. Lourenço, H. Richter,
P. García-Sánchez (Springer, Cham, 2019), pp.64–80

	44.	 W. La Cava, L. Spector, K. Danai, Epsilon-lexicase selection for regression, in Proceedings of the
Genetic and Evolutionary Computation Conference 2016. GECCO’16 (Association for Computing
Machinery, New York, 2016), pp. 741–748. https://​doi.​org/​10.​1145/​29088​12.​29088​98

	45.	 C. Olmscheid, D. Wittenberg, D. Sobania, F. Rothlauf, Improving estimation of distribution
genetic programming with novelty initialization, in Proceedings of the Genetic and Evolutionary

https://doi.org/10.1145/2330163.2330270
https://doi.org/10.1145/3377930.3390213
https://doi.org/10.5555/3045118.3045209
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1007/s11047-020-09828-w
https://doi.org/10.1145/3205455.3205593
https://doi.org/10.1145/3321707.3321793
https://doi.org/10.1162/evco_a_00278
http://archive.ics.uci.edu/ml
https://doi.org/10.1145/2330163.2330273
https://doi.org/10.1145/2330163.2330273
https://github.com/fchollet/keras
https://doi.org/10.1109/TEVC.2012.2195319
https://doi.org/10.1109/ICSMC.1997.637337
https://doi.org/10.1145/2908812.2908898

1 3

Genetic Programming and Evolvable Machines (2023) 24:17	 Page 27 of 27  17

Computation Conference Companion. GECCO’21 (Association for Computing Machinery, New
York, 2021), pp. 261–262. https://​doi.​org/​10.​1145/​34497​26.​34594​10

	46.	 J. Reiter, D. Schweim, D. Wittenberg, Pretraining reduces runtime in denoising autoencoder genetic
programming by an order of magnitude, in Proceedings of the Genetic and Evolutionary Computa-
tion Conference Companion. GECCO’23 (Association for Computing Machinery, New York, 2023).
https://​doi.​org/​10.​1145/​35831​33.​35963​32

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

https://doi.org/10.1145/3449726.3459410
https://doi.org/10.1145/3583133.3596332

	Denoising autoencoder genetic programming: strategies to control exploration and exploitation in search
	Abstract
	1 Introduction
	2 Related work
	3 Denoising autoencoder LSTMs
	3.1 Autoencoder LSTMs
	3.2 Using Levenshtein edit as corruption strategy
	3.3 Training procedure
	3.4 Sampling with syntax control
	3.5 The manifold learning perspective

	4 Experiments
	4.1 Problems
	4.2 Experimental setup
	4.3 Performance results
	4.4 The influence of corruption and sampling steps on search
	4.4.1 Introducing Levenshtein diversity
	4.4.2 Analysis of diversity in last generation
	4.4.3 Analysis of diversity over generations

	5 Conclusions
	Acknowledgements
	References

