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Zusammenfassung

Quantenkommunikation ermöglicht es Nachrichten informationstheoretisch beweisbar sicher
zu verschlüsseln, wobei die Datenübertragungsraten über große Distanzen durch Verluste
und Fehler stark reduziert sind. Diese niedrigen Übertragungsraten können durch den
Einsatz von Quantenrepeatern, die die Gesamtdistanz in mehrere kleine Teildistanzen
aufteilen, verbessert werden. In dieser Arbeit werden zwei unterschiedliche Ansätze von
Quantenrepeatern untersucht. Bezüglich speicherbasierter Quantenrepeater schlagen wir
ein neues Schema vor, das auf der Interferenz einzelner Photonen basiert und durch
das kürzlich vorgestellte Twin-field Quantenschlüsselaustauschprotokoll inspiriert wurde.
Außerdem werden erreichbare Datenübertragungsraten geheimer Schlüssel, die bereits mit
kleinen Quantenrepeatern auf unterschiedlichen physikalischen Plattformen erzielt werden
können, auf Grundlage von experimentell vorgegebenen Parametern berechnet. Des Weit-
eren werden auch größere Quantenrepeater untersucht, wobei wir das Dephasieren der
Quantenspeicher exakt berechnen. Damit werden dann auch Übertragungsraten geheimer
Schlüssel für verschiedene speicherbasierte Quantenrepeater berechnet und miteinander
verglichen. Bezüglich des alternativen Ansatzes eines Quantenrepeaters basierend auf
Quantenfehlerkorrekur stellen wir zunächst eine experimentell einfachere Möglichkeit, die
auf linearer Optik beruht, vor, um das Fehlersyndrom eines GKP Codes zu bestimmen.
Diese Methode führt zusätzlich zu geringeren Fehlerraten und wir diskutieren auch Gren-
zen der linearen Optik. Schlussendlich wenden wir diese Methoden im Kontext eines auf
GKP Qudits basierenden Quantenrepeaters an. Dabei zeigt sich, dass es für in der näheren
Zukunft experimentell sinnvolle Parameter besser ist GKP Qubits anstatt höherdimension-
aler GKP Qudits zu nutzen.
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Abstract

Quantum communication makes it possible to encrypt messages providing information-
theoretic security, but suffers from a large decrease of the transmission rate for larger
distances due to loss and errors. These low rates can be increased by employing quantum
repeaters which divide the total distance into multiple smaller segments and this thesis
deals with two different approaches for such quantum repeaters. Regarding quantum re-
peaters employing memories we propose a new scheme based on single-photon interference
inspired by the recently discovered twin-field quantum key distribution protocol. Fur-
thermore, we calculate secret-key rates obtainable in small-scale repeaters with different
physical platforms using realistic parameters obtained from experimentalists and we also
perform an analysis for larger repeaters where we calculate the memory dephasing exactly
and compare secret-key rates for different memory-based repeater proposals. Concerning
the repeater approach employing solely quantum error correction we propose experimen-
tally simpler methods of obtaining the error syndrome for GKP codes based on linear
optics also leading to an improved performance and we also discuss limitations of linear
optics. We then apply these methods of GKP error correction to a repeater employing
GKP qudits. There we find that for experimentally reasonable parameters in the near
future it is better to use GKP qubits instead of high-dimensional GKP qudits.
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1 Introduction

In the last few years noisy small-scale quantum computers became reality [1, 2, 3] already
resulting in an enormous public interest. Quantum computers can efficiently solve some
specific problems which are believed to be intractable on classical computers. For exam-
ple, the behavior of large molecules, described by quantum mechanics, can be simulated
much more efficiently on a quantum computer which will probably allow chemists and
pharmacists to design better materials and medicines. In Shor’s groundbreaking work [4]
he showed that quantum computers are also able to perform prime factorization efficiently.
However, the fact that multiplying numbers is easy, but finding the prime factors of a
large random number is very difficult, is the basis of many cryptographic protocols as e.g.
RSA encryption. Thus, upcoming large-scale fault-tolerant quantum computers will break
many of today’s encryptions and we need to come up with encryption schemes unaffected
by quantum computers.

One approach to solve this problem is the field of post-quantum cryptography [5] where
one tries to find problems which are computationally hard even for a quantum computer.
This solution is rather inexpensive as we only need to change software, but computational
hardness assumptions against quantum computers may be problematic as the field of quan-
tum algorithms is relatively new and therefore long-term secrecy may be even less provided
than currently against classical computers.

A different approach consists of using the one-time pad (OTP) in combination with
quantum key distribution (QKD) for obtaining the required secret shared key. Correctly
implemented this scheme allows for information-theoretic security based on the fundamen-
tal laws of quantum mechanics instead of computational hardness assumptions. Quantum
mechanics does not allow copying an arbitrary unknown quantum state and a measurement
might change the state such that it is disturbed with high probability. Communicating
parties may then use this disturbance in order to bound the information an eavesdropper
might have gained about their key and distill a secret key, provided not too much informa-
tion has been leaked. Due to its high speed the typical information carrier is light in fibers.
However, absorption causes the signal to decay exponentially with the fiber length, result-
ing in an exponential decay of the secret-key rate for any point-to-point QKD protocol
[6].

On the one hand, the inability to copy unknown quantum states allows for secrecy,
but on the other hand, it also forbids simple information amplification stations similar to
classical repeaters. Nowadays, several quantum repeater protocols have been proposed and
they all have in common that the total distance is split into much shorter segments finally
allowing low-noise transmission of quantum states at a fairly high rate. Although QKD is
a very prominent application of quantum repeaters, there are many more like for example
connecting distant quantum computers, blind quantum computing1 [7, 8], synchronizing
clocks [9, 10], improving telescopes [11] and there is ongoing research in finding further
applications.

The first quantum repeater proposed by Briegel et al. [12] makes use of quantum memo-
ries and entanglement swapping in order to distribute entanglement over the total distance
which can then be used for quantum transmission via the quantum teleportation protocol.

1In blind quantum computing a client may only be able to perform some basic quantum tasks, wishes to
perform universal quantum computing at some company, and wants to be sure that the company does
not learn anything about the input data of the computation.
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1 Introduction

A different approach [13, 14, 15, 16, 17, 18], avoiding two-way classical communication,
considers quantum error correcting codes where a recovery operation is applied at every
station after at most a few km. Thus, only few errors accumulate and the recovery opera-
tion succeeds almost every time further reducing the error rates.

In this thesis we discuss both of these approaches for distributing entanglement over
large distances. A new memory-based quantum repeater scheme based on single-photon
interference is proposed in paper I. In comparison to schemes relying on two-photon in-
terference this scheme has a square root scaling advantage as only one photon needs to
arrive. In paper II we then calculate secret-key rates for potential repeaters with quantum
memories based on two-photon interference with parameters reported by experimentalists
in the project of “Q.Link.X” and for the different experimental platforms. The last pa-
per dealing with memory-based quantum repeaters is paper IV which is an analysis for
general memory-based repeaters where the focus lies on an exact calculation of the mem-
ory dephasing for different protocols filling also some gaps in the work of paper I. These
results are then used for comparing three different general repeater schemes.

Relevant works in the context of quantum repeaters based on error correction are pa-
per III and paper V. Paper III discusses possibilities to obtain the error syndrome of
Gottesman-Kitaev-Preskill (GKP) codes with simple linear optics in addition to the GKP
ancilla instead of using general Gaussian operations also involving in-line squeezing opera-
tions, which is experimentally considerably more demanding. Furthermore, we also discuss
limitations of linear optics. These results are not only relevant in the context of a potential
quantum repeater, but also for quantum computation with GKP codes. In paper V we
consider a quantum repeater based on GKP qudits employing techniques from paper III.

The outline of this thesis is as follows. In chapter 2 we present the background of this
work starting with basic quantum information theory, followed by a brief introduction
to quantum optics since we will consider photons as the information carriers. Then we
come to the topic of quantum error correction, where we first introduce the general theory,
followed by a detailed introduction to GKP codes, which encode qubits/qudits within
a harmonic oscillator. Subsequently, we come to the more applied topics of quantum
communication and quantum repeaters where we explain how quantum mechanics can lead
to information-theoretic secure encryption and how one can achieve high secret-key rates
over large distances. In the next chapter 3 the results from my papers are summarized.
Afterwards we conclude and finally we present the papers with a short section explaining
my contributions to each paper.
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2 Background

2.1 Basic quantum information theory

The basis unit of classical information used in all of our computers is the so-called bit taking
the values 0 or 1, which can be easily realized by all kinds of physical processes involving
two states as e.g. a voltage which is either above or below a specific threshold. In the
context of quantum information (nice and comprehensive introductions are Refs. [19, 20])
we have to replace the bit by its quantum generalization called qubit. A (noiseless) qubit
is a quantum two-level system and can be represented by a vector |ψ⟩ in a two-dimensional
complex Hilbert space spanned by |0⟩ and |1⟩ in the computational basis, 1

|ψ⟩ = α |0⟩+ β |1⟩ , α, β ∈ C , |α|2 + |β|2 = 1 . (2.1)

By allowing for these complex amplitudes instead of an element of Z2 much more infor-
mation is required to represent a qubit in comparison to a bit. This effect becomes much
more pronounced when considering multiple qubits. While n bits can represent 2n different
states, n qubits require 2n complex numbers for their representation or 2n+1 real numbers,
although there are only 2n+1 − 2 independent ones, because of the normalization and ir-
relevance of a global phase. This exponentially increasing number of parameters makes it
infeasible to simulate a quantum many-body system exactly on a classical computer and
let Richard Feynman propose the idea of using quantum systems instead of a classical
computer.

’Nature isn’t classical, dammit, and if you want to make a simulation of nature,
you’d better make it quantum mechanical, and by golly it’s a wonderful problem,
because it doesn’t look so easy.’ (Feynman, 1981)

However, we cannot use multiple qubits as a dense information storage, because when
performing measurements on the n qubits we can obtain at most n bits of information
(Holevo bound) [21, 19] as only the absolute square of the amplitudes is relevant for the
probability distribution of measurement outcomes which we also sample only once.

In order to perform computations we do not want to build hardware for a specific cal-
culation, but instead we want to decompose every possible calculation into a small set of
operations, which we should then be able to implement on our computer. For classical
computers every function of bits can be represented by some combination of NAND gates.
Such a universal set of gates also exists for arbitrary quantum computations. First, one
shows that CNOT-gates (controlled NOT, whenever two indices are referenced the first
one denotes the controlling input) together with arbitrary single-qubit gates are universal.
As the set of single-qubit operations is uncountably large, there exists no finite set of quan-
tum gates which can generate every element of SU(2) exactly. However, we can get around
this issue by allowing for sequences of universal gates which do not generate the desired
unitary exactly, but only approximate it up to some error ϵ in the operator norm. An
ϵ-approximation can be obtained by applying O(logc

(
1
ϵ

)
) gates using the Solovay-Kitaev

algorithm [22, 23], where c depends on the actual set of universal single-qubit gates. The

1The generalization to a D-dimensional Hilbert space is called qudit of dimension D.
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2 Background

canonical set consists of the Hadamard gate H, the phase gate S, the π/8 gate T and the
CNOT-gate. Their matrix representation in the computational basis is given by

H =
1√
2

(
1 1
1 −1

)
, S =

(
1 0
0 i

)
, T =

(
1 0

0 ei
π
4

)
, (2.2)

CNOT =




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


 . (2.3)

Other very important gates are the Pauli operators

1 =

(
1 0
0 1

)
, X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
. (2.4)

In the paragraph above we only discussed gate-based quantum computing, which is the
standard approach for universal quantum computing. However, there are also other ap-
proaches for universal quantum computing like for example measurement-based quantum
computing (MBQC), where one starts with some large entangled state and performs mea-
surements in order to perform computational steps, or adiabatic quantum computing. The
latter approach relies on the adiabatic theorem and typically problems are framed as find-
ing the ground-state energy of some specific Hamiltonian. First one starts in the ground
state of a very simple Hamiltonian and then this Hamiltonian is slowly changed to the
desired one. For a slow enough transition the final state is close to the ground state of
the desired Hamiltonian allowing for a good ground state energy estimation. For optical
quantum computing MBQC is of particular interest as photons are easily lost. When gen-
erating a large entangled cluster state not all parts thereof have to exist at the same time,
but the state can be build step by step and after a short time the photons are already
measured. As a consequence a photon only needs to survive the short time between state
generation and measurement while in an gate based approach it must survive the time it
takes to apply all gates in the quantum computation.

A fundamental restriction of any quantum information processing is the no-cloning theo-
rem [24, 25], stating that it is impossible to make a perfect copy of an arbitrary unknown
state. While this seems quite remarkable from a classical point of view, it immediately
follows from the linearity of quantum mechanics. The cloning of arbitrary unknown states
corresponds to an operation

(α |0⟩+ β |1⟩) |0⟩ → (α |0⟩+ β |1⟩) (α |0⟩+ β |1⟩) , (2.5)

where the left side of the equation is linear in α and β, while the right side is quadratic,
violating the linearity of quantum mechanics. This does not contradict classical copying
as there we are copying known orthogonal basis states, i.e. we are considering the special
case where the coefficients α and β only take the values 0 or 1.

When considering noisy quantum systems or a system involving classical ignorance as for
example in the case of an imperfect state preparation this additional (classical) uncertainty
can be described nicely with density operators which are bounded linear operators acting
on the Hilbert space instead of being an element of the Hilbert space in the noiseless case.
Such a density operator ρ̂ also needs to fulfill the properties

ρ̂ = ρ̂† , (2.6)
ρ̂ ≥ 0 , (2.7)

Tr(ρ̂) = 1 . (2.8)
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2.1 Basic quantum information theory

Self-adjointness is needed in order to guarantee orthogonal eigenvectors with real eigen-
values while the other two conditions constrain the eigenvalues to be non-negative and
summing to 1 which is necessary in order to interpret them as probabilities. If we have an
ensemble of states |ψi⟩ each occurring with probability pi this corresponds to the density
operator ρ̂ =

∑
i pi |ψi⟩ ⟨ψi|.2

Any time evolution (channel) should linearly map a valid density operator to a valid
density operator leading to the notion of completely-positive trace-preserving (CPTP)
maps. In order to obtain a valid density operator it is obvious that the map should
be positive, i.e. mapping positive operators to positive operators, and preserve the trace.
However, a channel even needs to be completely-positive meaning that the channel tensored
by arbitrarily many identity operations is still positive. This restriction is needed in order
to ensure that an operation is still physically meaningful when it only acts on parts of a
larger system which involves entanglement.

As shown by Stinespring’s dilation theorem [26] every CPTP map can be represented as

E(ρ̂) = Trenv

(
Û (ρ̂⊗ |e⟩ ⟨e|) Û †

)
, (2.9)

where |e⟩ is some state of the environment. We can then interpret the CPTP map as some
unitary operation, generated by a Hamiltonian, acting on our system of interest and the
environment. As we have no access to the environment’s degrees of freedom, we have to
ignore them, formally represented by tracing them out. When explicitly performing the
trace with some orthonormal basis {|ei⟩} of the environmental system, we obtain the Kraus
representation of the CPTP map

E(ρ̂) =
∑

i

K̂iρ̂K̂
†
i (2.10)

with K̂i = ⟨ei| Û |e⟩, fulfilling the completeness relation
∑

i K̂
†
i K̂i = 1. As one can choose

different bases, the Kraus representation is not unique.
In many applications we only care about the probability distribution of a measurement

and not the actual post-measurement state itself. In some cases, as for example the de-
structive measurement of a photon’s properties by absorbing it at some detector, it does
not even make sense to talk about its post-measurement state. For these cases it is quite
convenient to use the POVM (positive-operator-valued-measure) formalism where one as-
signs positive operators {Êm}, fulfilling

∑
m Êm = 1, to measurement outcomes m. The

probability of a measurement outcome m for a state ρ̂ is then given by p(m) = Tr
(
Êmρ̂

)
.

In contrast to projective measurements in standard quantum mechanics POVM elements
Êm, Êm′ do not need to be orthogonal. However, this generalization is equivalent to pro-
jective measurements and unitary time evolution with additional auxiliary states.

When considering noisy states it is useful to have measures describing the closeness between
two states. One relevant quantity is the trace norm

∥ρ̂∥1 = Tr (|ρ̂|) , (2.11)

which does not have an operational interpretation by itself, but it can be used to define
many measures with important operational interpretations. For example, it can be used to
define the trace distance 1

2∥ρ̂1 − ρ̂2∥1 which is related to the distinguishability of the states
ρ̂1 and ρ̂2. Suppose someone generates states ρ̂1 and ρ̂2 with equal probability and we are
asked to distinguish them. The optimal probability to succeed in this task is then given
by 1

2

(
1 + 1

2∥ρ̂1 − ρ̂2∥1
)

[20, pp. 235]. These scenarios are important when doing security

2When there is only one term in the sum, the state is called pure. Otherwise it is called mixed state.
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2 Background

proofs for QKD schemes with finite key length, where one needs to calculate the probability
of distinguishing the ideal QKD output state from the realized one. However, in this thesis
we will always consider the asymptotic regime of infinitely long keys. Quite similar, it is
also possible to define the diamond norm [27] which measures the distinguishability of two
channels.

A different measure of similarity of two states is the fidelity3

F (ρ̂1, ρ̂2) = Tr
(√

ρ̂1ρ̂2
√
ρ̂1

)2
, (2.12)

which is symmetric and bounded by 0 ≤ F (ρ̂1, ρ̂2) ≤ 1, where the fidelity is 1 for equal
states and 0 for orthogonal density operators. Typically we are comparing a noisy state
ρ̂1 to an ideal pure one ρ̂2 = |ψ⟩ ⟨ψ|, simplifying the equation to

F (ρ̂1, |ψ⟩ ⟨ψ|) = ⟨ψ| ρ̂1 |ψ⟩ . (2.13)

In this scenario the fidelity has a nice intuitive meaning. Let us assume that ρ̂1 is
a noisy version of |ψ⟩ ⟨ψ|. We consider the task of state discrimination with POVMs
{|ψ⟩ ⟨ψ| ,1 − |ψ⟩ ⟨ψ|} and the fidelity simply gives the probability of ρ̂1 passing the test.
Thus, the fidelity can be directly measured in an experiment while the other distance mea-
sures have the disadvantage that one first needs to perform quantum state tomography in
order to reconstruct the density operator and then calculate the distance. In the remaining
thesis we will only consider the fidelity and no distance measures of quantum states.

As soon as one considers multiple quantum systems they might be entangled with each
other which is a stronger notion than classical correlation known from probability theory.
Let us briefly discuss the subtle differences between entanglement and classical correlation.
For example, two perfectly correlated bits may look completely random when viewed indi-
vidually, but both bits have the same value. When preparing such a state with two qubits
we obtain

ρ̂1 =
1

2
(|00⟩ ⟨00|+ |11⟩ ⟨11|)

=
1

8

[
(|+⟩+ |−⟩)⊗2 (⟨+|+ ⟨−|)⊗2 + (|+⟩ − |−⟩)⊗2 (⟨+| − ⟨−|)⊗2

]
,

(2.14)

with |±⟩ = 2−1/2 (|0⟩ ± |1⟩). Here we have completely correlated measurement outcomes
when measuring the qubits in the Z-basis, but we obtain uncorrelated measurement out-
comes in the X-basis. When instead preparing a maximally entangled state

ρ̂2 =
1

2
(|00⟩+ |11⟩) (⟨00|+ ⟨11|)

=
1

2
(|++⟩+ |−−⟩) (⟨++|+ ⟨−−|) ,

(2.15)

we obtain perfectly correlated measurement outcomes in both complementary bases which
is impossible for only classically correlated states. Also notice that ρ̂1 is a mixed state
with one bit of entropy meaning that the randomness of the measurement outcome in the
Z-basis originates from our ignorance of the actual state. In contrast ρ̂2 is a pure state, i.e.
we have no uncertainty about the prepared state and the randomness in the measurement
outcome originates from the quantum mechanically probabilistic measurement process. For
the special case of pure states an entangled state cannot be written as the tensor product

3The fidelity is not a distance measure in the mathematical sense. There are also two different conventions
of the definition differing up to a square, but we will use the version that is more common in the
literature.
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2.1 Basic quantum information theory

of two one-qubit states |ψ⟩12 ̸= |ϕ1⟩1 ⊗ |ϕ2⟩2. That means there is no way of describing
one of the two qubits individually without neglecting some kind of information. For mixed
states one says that they are separable iff (if and only if) there exists a decomposition of
the form

ρ̂12 =
∑

j

pj ρ̂1,j ⊗ ρ̂2,j . (2.16)

Detecting entanglement is straightforward for pure states as we can simply trace out one
subsystem and calculate the entropy of the remaining reduced density operator. Whenever
the entropy is non-zero the initial state was entangled. However, the detection becomes
much more complicated for mixed states, especially when the subsystems have dimensions
larger than 2.

Building upon the idea that entangled states may have correlations in complementary
bases Einstein, Podolsky and Rosen came up with their famous discussion about the in-
completeness of quantum mechanics [28]. There, they argued that either the quantum
mechanical description of reality is incomplete or physical quantities of complementary
observables do not have a simultaneous reality. By making use of the correlations in en-
tangled states they showed that physical quantities of complementary observables can have
a simultaneous reality in a weak sense4, letting them conclude that quantum mechanics
is incomplete, which then led to the idea of local hidden-variable theories. In order to
make the existence of local hidden-variable theories testable, Bell proposed an experiment
where two qubits are separated by a large distance and for each qubit one locally decides
which measurement should be performed [29]. The separation needs to be large enough
such that no information can be exchanged between the measurement devices until the
outcomes are announced. Bell proved an inequality of expectation values of the measure-
ments which should hold provided that measurement outcomes can be described by a local
hidden-variable theory. Furthermore, he showed that a specific entangled state violates this
inequality when calculating the expectation value with the standard quantum mechanics
formalism. As a simplification for an experimental demonstration Clauser, Horne, Shi-
mony and Holt generalized Bell’s inequality to the CHSH inequality [30]. In this proposed
experiment Alice measures one of the two observables a,a′ and Bob measures one of b, b′

where each of the observables takes values in {1,−1}. We then define the observable

C =
(
a+ a′) b+

(
a− a′) b′ . (2.17)

Clauser, Horne, Shimony and Holt showed that E(|C|) ≤ 2 holds under the assumption
of local realism. In order to understand this result let us naively assign a probability
distribution P(a, a′, b, b′). One immediately sees that C = ±2 as either a + a′ or a − a′

must give ±2 and the other one gives 0. Thus, we obtain −2 ≤ E(C) ≤ 2. However,
by assigning a simultaneous probability distribution for a and a′ we already made use
of the locality assumption. As the expectation value is a linear function, we can simply
decompose C in its four parts and take the expectation value of each term. Since all terms
only involve a single observable for Alice and Bob, we can also obtain these expectation
values in an experiment.

Let us now assume that Alice measures the observables X and Z, while Bob measures
X+Z√

2
and X−Z√

2
. Then it is a simple calculation that the expectation value of C is given

by ⟨Φ+|C |Φ+⟩ = 2
√
2, where |Φ+⟩ = 1√

2
(|00⟩+ |11⟩) is one of the four Bell states.

This CHSH inequality was violated by multiple experiments, where early experiments had
some loopholes regarding low detector efficiencies or the locality condition [31, 32, 33, 34],

4They were aware that their definition of reality might not be restrictive enough.
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but these have been closed now simultaneously ruling out local hidden-variable theories
[35, 36, 37]5. For the proposal and demonstrated experimental violation of this inequality
Clauser, Aspect and Zeilinger were awarded with the Nobel price in 2022.

While being of particular interest in the foundations of quantum mechanics, entangle-
ment also plays an important role in many quantum information applications. There we
will be mostly interested in the four maximally entangled Bell states

∣∣Φ±〉 = 1√
2
(|00⟩ ± |11⟩) ,

∣∣Ψ±〉 = 1√
2
(|01⟩ ± |10⟩) , (2.18)

which form an orthonormal basis of the two-qubit Hilbert space. One application is quan-
tum teleportation which can replace a qubit channel with local operations, a shared Bell
state and two bits of classical communication. Suppose Alice has a qubit encoding some
quantum information which she does not know and wants to transmit the information to
Bob. Furthermore, she does not want to send the qubit directly to him as the connecting
quantum channel might be very noisy, but we assume that they already share a noiseless
Bell state |Φ+⟩ (it works similarly for all other Bell states),

|ψ⟩A
∣∣Φ+

〉
A′B

=
1

2

( ∣∣Φ+
〉
AA′ |ψ⟩B +

∣∣Ψ+
〉
AA′ X |ψ⟩B

+
∣∣Ψ−〉

AA′ (−iY ) |ψ⟩B +
∣∣Φ−〉

AA′ Z |ψ⟩B
)
. (2.19)

The quantum teleportation protocol consists of the following three steps already sug-
gested by Eq. 2.19:

• Alice measures qubits A and A′ in the Bell basis.

• Alice tells Bob her measurement result.

• Bob applies a recovery operation from the set {1, X, iY, Z} depending on the mea-
surement outcome.

After Alice performed her Bell measurement, only one term remains where Bob has the
information up to some Pauli operator, which depends on the measurement outcome.
When Bob learns the measurement outcome he can easily apply the inverse Pauli opera-
tor. Without this information all Pauli operators are equally likely such that Bob’s qubit
is in a maximally mixed state from his point of view. Therefore, faster-than-light commu-
nication is impossible with quantum teleportation as the transmission of the measurement
outcome using classical communication is limited by the speed of light. The first experi-
mental demonstration of this protocol was already shown in 1998 [38] and since then new
experiments demonstrated the protocol [39, 40, 41, 42] even overcoming distances of up to
1400km between a satellite and a ground station [43].

A very similar protocol is entanglement swapping, effectively implementing the operation
|Φ+⟩12 |Φ+⟩34 → |Φ+⟩14 by performing a Bell measurement on qubits 2 and 3 and applying
a Pauli correction conditional on the measurement outcome. Some people call this protocol
also quantum teleportation as it can be understood as teleportation protocol, where the
input state |ψ⟩ is now an entangled state and one half of this entangled state is teleported
to Bob. This protocol was also demonstrated experimentally a long time ago [44].

5However, local hidden-variable theories are not ruled out if one considers superdeterminism, where Alice’s
and Bob’s measurement choices are assumed to be not independent from the hidden variables.
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2.2 Quantum optics

2.2 Quantum optics

2.2.1 Quantization of the electromagnetic field

As there is a vast amount of literature (e.g. [45, 46]) discussing the quantization of the
electromagnetic field, we will only discuss it briefly for the sake of completeness. Let us
consider the electromagnetic field in the vacuum without charges or currents given by

E⃗ = −∇ϕ− ∂

∂t
A⃗ , (2.20)

B⃗ = ∇× A⃗ , (2.21)

where ϕ is the scalar potential and A⃗ is the vector potential. Using the Coulomb gauge
∇ · A⃗ = 0 and Maxwell’s equation ∇ · E⃗ = 0, one finds that both fields are completely
characterized by the vector potential A⃗. By inserting the fields definition into ∇ × B⃗ =
1
c2

∂E⃗
∂t , where c is the speed of light, and using a vector calculus identity, it follows that the

vector potential A⃗ fulfills the homogeneous wave equation

∆A⃗− 1

c2
∂2

∂t2
A⃗ = 0 . (2.22)

By applying separation of variables and constructing the potential to be real-valued, one
then obtains

A⃗(t, r⃗) =
∑

k

cku⃗k(r⃗)ak(t) + c∗ku⃗
∗
k(r⃗)a

∗
k(t) , (2.23)

where ck are constants chosen in such a way that the set {u⃗k} forms an orthonormal ba-
sis and ak are dimensionless. The summation involves all possible wavevectors k⃗ and the
polarization degrees of freedom.

In the quantization process we replace the complex-valued amplitudes ak with the mode
operators âk with commutation relations

[âk, âk′ ] = [â†k, â
†
k′ ] = 0 , [âk, â

†
k′ ] = 1̂δk,k′ . (2.24)

Inserting the quantized vector potential into the definition of the E⃗- and B⃗-fields, using
the free field energy density ϵ0|E⃗|2 + 1

µ0
|B⃗|2 and integrating over the whole space leads

after some calculations to the Hamiltonian

Ĥ =
∑

k

ωk

(
â†kâk +

1

2

)
, (2.25)

where ωk is the frequency of the corresponding light mode and we set ℏ = 16. Thus every
light mode of the free field corresponds to a simple harmonic oscillator. The operators âk
and â†k, respectively, annihilate and create excitations of the field referred to as photons as
one can see from the commutation relation in Eq. 2.24. The field’s dimensionless position
and momentum operators7 are given by

x̂ =
1√
2

(
â+ â†

)
, p̂ =

1√
2i

(
â− â†

)
, (2.26)

fulfilling the canonical commutation relation [x̂, p̂] = i1̂.
6In paper I the convention ℏ = 1

2
was used instead.

7These operators do not represent a position or momentum in real space, but correspond to the in-phase
and out-of-phase amplitude with respect to some phase reference.
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2.2.2 Passive linear optics

Passive linear optical operations are the easiest experimentally implementable class of
transformations on the mode operators â. These operations transform the mode operators
linearly, i.e. when considering N optical modes they are transformed as

âj → â′j =

N∑

k=0

Ujkâk , (2.27)

where Ujk are the elements of a unitary matrix. Due to the unitarity it is easy to check
that the total number of photons is a conserved quantity (hence "passive"). This can also
be observed by calculating the commutator between the total photon number operator and
the generating Hamiltonian

Ĥ =
∑

j,k

Ajkâ
†
j âk , (2.28)

where Ajk are elements of a hermitian matrix. As shown by Reck et al. [47] it is possible
to decompose any such passive linear optical operation into at most N(N−1)

2 beam splitters
and N phase shifters.

Often it is also quite useful to describe the electromagnetic field by its quadrature op-
erators where the linear optical transformation corresponds to an orthogonal, symplectic
linear transformation O of the quadrature operators

(
x̂′1, . . . , x̂

′
N , p̂

′
1, . . . , p̂

′
N

)T
= O (x̂1, . . . , x̂N , p̂1, . . . , p̂N )T , (2.29)

OT

(
0 1N
1N 0

)
O =

(
0 1N
1N 0

)
, (2.30)

OT = O−1 . (2.31)

2.2.3 Squeezing operations

Another important class of operations are single-mode squeezing operations. They can be
used to squeeze one quadrature while anti-squeezing the conjugated one. Their generating
Hamiltonian has the form

H = iκ

(
â2e−2iϕ −

(
â†
)2
e2iϕ

)
. (2.32)

The angle ϕ characterizes which quadrature gets squeezed, for example, ϕ = 0 squeezes
the x-quadrature and anti-squeezes the p-quadrature

x̂→ x̂e−r p̂→ p̂er , (2.33)

where r = 2κt is the effective squeezing parameter. In contrast to linear optical transfor-
mations squeezers do not conserve the photon number as the terms in the Hamiltonian
either annihilate or generate two photons. In an experiment such a transformation can be
obtained by spontaneous parametric-down conversion where a pump photon in a crystal
with an optical nonlinearity (the polarization of the crystal is nonlinear in the electric
field) is converted into two photons and the crystal is pumped by a strong classical field,
such that its mode operator can be approximated by its classical amplitude. While it is
easy to implement all linear optical operations in an experiment, implementing squeezers
with high r is difficult and today the record lies at 15 dB of squeezing [48] (squeezing in
dB =̂10r). When implementing a squeezing operation by pumping a non-linear crystal
higher squeezing values are obtained by placing the crystal within a cavity. In the case
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2.2 Quantum optics

of a squeezing operation within a quantum circuit this has the disadvantage that one first
needs to couple the unknown quantum state into the cavity and after the interaction out
of the cavity resulting in additional losses. An experimentally more suitable approach
was proposed in Ref. [49] where they generate a squeezed state and couple it with the
unknown quantum state by linear optics followed by a homodyne measurement. In the
limit of an infinitely squeezed state this protocol implements the desired squeezing oper-
ation, but as every physical squeezed state is only finitely squeezed this results in some
intrinsic noise. Thus it is beneficial to avoid in-line squeezing operations whenever possible.

Furthermore, for any system consisting of N modes an arbitrary operation generated by a
Hamiltionian quadratic in the mode operators can be decomposed into a linear optical op-
eration acting on all N modes, followed by N single-mode squeezing operations followed by
a final linear optical transformation acting on all N modes and possibly some displacement
operators [50]. In this case the transformation matrix of the quadrature operators is simply
given by a symplectic one in order to preserve the commutation relation of the transformed
quadrature operators. These transformations are also known as Gaussian unitaries in the
literature as they map Gaussian states onto Gaussian states8.

2.2.4 Coherent states

The most classical states in quantum optics are coherent states. Their defining relation is
the eigenvalue problem of the mode operator â ,

â |α⟩ = α |α⟩ α ∈ C . (2.34)

In the quantization we replaced the classical fields’ amplitude α with the mode operator
â and now we defined a coherent state to be an eigenstate of this operator. By using the
defining relation, we can already see the close relation between coherent states |α⟩ and
classical light fields as the expectation value of any normal-ordered operator of the form∑

n,m cnm
(
â†
)n
âm is the same as the result obtained by a purely classical calculation with

a classical field with amplitude α. As a consequence the expectation value of the position
and momentum operators behave exactly the same as expected from a classical harmonical
oscillator.

Despite being very classical pure coherent states also show purely quantum mechanical
features such as a non-zero position variance, because not all observables of interest are
already in this normal-ordered form and bringing them into this form introduces some
extra terms involving the commutator [â, â†] = 1̂. These states are also minimum uncer-
tainty states satisfying Var(x̂)Var(p̂) = 1

4 , achieving equality in the Heisenberg uncertainty
relation.

In the Fock space representation coherent states are given by

|α⟩ = e−
|α|2
2

∞∑

k=0

αk

√
k!

|k⟩ , (2.35)

and it is easy to see that they are always non-orthogonal as

⟨α|β⟩ = exp

(
−|α|2

2
− |β|2

2
+ α∗β

)
, | ⟨α|β⟩ |2 = exp

(
−|α− β|2

)
. (2.36)

8States are called Gaussian iff their representation in terms of the Wigner function [51] is a Gaussian
function. As applying Gaussian operations on Gaussian states with a following homodyne measurement
can be simulated efficiently on classical hardware [52] and they still show some genuine quantum effects
like entanglement, the field of Gaussian operations has been well studied in the literature.
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Formally all coherent states are related to the vacuum state by the displacement operator

D̂(α) = exp
(
αâ† − α∗â

)
= exp

(
i
√
2 (x̂ Im{α} − p̂Re{α})

)
, (2.37)

|α⟩ = D̂(α) |0⟩ . (2.38)

Eq. 2.38 can be obtained by using the relation D̂(α)†âD̂(α) = â + α and the property
that coherent states are eigenstates of the annihilation operator.

2.2.5 Noise channels

One of the most important sources of noise in quantum optics and especially in the context
of quantum communication is the loss of photons due to absorption and scattering. This
process is formally described by the bosonic loss channel. The mode of interest â is coupled
to an environmental mode b̂ with a beam splitter of transmission η where in general the
environment is assumed to be in the vacuum state and we then trace out the environmental
mode b̂′,

(
â′

b̂′

)
=

( √
η

√
1− η√

1− η −√
η

)(
â

b̂

)
. (2.39)

To be more precise one should consider a thermal state

ρ̂thermal =
1

1− exp
(
− ℏω

kBT

)
∞∑

j=0

exp

(
− ℏω
kBT

)j

|j⟩ ⟨j| (2.40)

instead of the vacuum state, but we are mostly interested in the regime of optical frequen-
cies where ℏω ≫ kBT even holds for room temperature such that we can neglect the higher
excitations. Finally we obtain the bosonic loss channel

ρ̂→
∞∑

k=0

Êkρ̂E
†
k

with Êk =
∞∑

n=k

√(
n

k

)
ηn−k(1− η)k |n− k⟩ ⟨n| .

(2.41)

Another very important noise channel is the Gaussian displacement channel. In this
channel displacements occur in the position and momentum quadrature according to a
Gaussian probability distribution. We will assume that these shifts are independent and
identically distributed (i.i.d.) with zero mean and a variance of σ2,

ρ̂→ 1

2πσ2

∫

R2

dxdp exp

(
−
(
x2 + p2

)

2σ2

)
D̂

(
x+ ip√

2

)
ρ̂D̂†

(
x+ ip√

2

)
. (2.42)

2.2.6 Detectors

In this thesis we make use of three different detectors of the electromagnetic field which we
will discuss briefly without going into their inner workings as this is outside of the scope
of this thesis.

On the one hand, there are on-off detectors which are able to discriminate the vacuum
state from excited ones and their POVM is given by {|0⟩ ⟨0| , 1̂−|0⟩ ⟨0|}. On the other hand,
there are photon-number-resolving detectors (PNRDs) which can resolve multiple photons
corresponding to a POVM {|0⟩ ⟨0| , |1⟩ ⟨1| , |2⟩ ⟨2| , . . . }. PNRDs are experimentally much
more demanding than on-off detectors and up to now only PNRDs which can resolve a
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2.2 Quantum optics

few photons have been demonstrated in an experiment [53, 54]. Some detectors work at
higher temperatures, but have a lower efficiency. However, both kinds of detectors have
the disadvantage that they can mostly only be operated at cryogenic temperatures.

A different detector which can be used at room temperature is a (balanced) homodyne
measurement. In such a measurement the mode of interest is coupled with a strong classical
light field with amplitude α by a 50:50 beam splitter (see Eq. 2.42 with η = 1

2). Then the
intensity of each output mode is measured by a common photo diode and one considers
the difference of the two signals. The resulting observed quantity is then proportional to a
quadrature operator of the input field, when considering a semi-classical approach where
we replace the auxiliary strong coherent state by a classical light field. In a fully quantum-
mechanical picture proportionality holds between the expectation values of the quadrature
operator and the output signal, while for higher orders of the quadrature operator there
are some correction terms which are neglectable for |α| ≫ 1. Different quadratures can be
measured by adjusting the phase of α (see Fig. 2.1),

â′†â′ − b̂′†b̂′ =
1

2

((
â† + α∗

)
(â+ α)−

(
â† − α∗

)
(â− α)

)

= â†α+ âα∗ .
(2.43)

Figure 2.1: Schematic of a homodyne measurement: A coherent state is coupled by a 50:50
beam splitter (BS) with a light field whose quadrature is to be measured. The
output modes are then measured by common photo diodes and their output
current is subtracted. The resulting current is proportional to the expectation
value of the quadrature measurement.
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2.3 Quantum error correction

2.3.1 Prominent error channels

Before starting with error correction we shall briefly discuss two qubit error channels of
particular interest.

On the one hand, we have the depolarizing channel

ρ̂→µρ̂+ (1− µ)
1

2
(2.44)

=
1 + 3µ

4
ρ̂+

1− µ

4
(Xρ̂X + Y ρ̂Y + Zρ̂Z) , (2.45)

where the last equation was obtained by using the identity

1

2
=

1

4
(ρ̂+Xρ̂X + Y ρ̂Y + Zρ̂Z) . (2.46)

When no error and X,Y, Z-error occur with equal probability, then the complete informa-
tion of a single qubit is erased. Therefore, the depolarizing channel can be understood as
a worst-case scenario where no error occurs with probability µ and otherwise the complete
information is lost. There exist multiple conventions what is meant by an error probability
in the depolarizing channel. Some call the probability to replace ρ̂ by the maximally mixed
state 1

2 error probability and others call the probability that a X, Y or Z-error happens
error probability.

The other really important error channel is the dephasing (sometimes also called phase-flip)
channel

ρ̂→ (1− p) ρ̂+ pZρ̂Z . (2.47)

Quite often the probability p of a phase-flip is parameterized as p = 1
2

(
1− exp

(
− t

Tcoh

))

due to physical reasons. Let us assume that ρ̂ starts in the state
(
|0⟩+|1⟩√

2

)(
⟨0|+⟨1|√

2

)
and we

apply the dephasing channel. As a consequence the off-diagonal terms will be suppressed
by a factor of 1 − 2p corresponding to an exponential decay with coherence time Tcoh in
the other parametrization, which can be observed in many experiments. After some time
we obtain a classical mixture of |0⟩ and |1⟩ instead of the initial superposition.

Let us now derive this channel more rigorously from fundamental principles. We assume
that our qubit interacts with the environment due to e.g. scattering with probability p′,
where the probabilities of |0⟩A and |1⟩A are left invariant and the environmental state
depends on the qubit state. One example for such a scenario would be that |0⟩A and |1⟩A
denote the energy eigenstates of a system which scatters without energy exchange,

|0⟩A |0⟩E →
√
1− p′ |0⟩A |0⟩E +

√
p′ |0⟩A |1⟩E , (2.48)

|1⟩A |0⟩E →
√

1− p′ |1⟩A |0⟩E +
√
p′ |1⟩A |2⟩E . (2.49)

Since we have no access to the degrees of freedom of the environment, we have to calculate
the partial trace. By using the canonical basis for the partial trace, we obtain the three
Kraus operators which can be represented as matrices in the canonical basis

ˆ̃K0 =
√
1− p′1 , ˆ̃K1 =

√
p′
(
1 0
0 0

)
, ˆ̃K2 =

√
p′
(
0 0
0 1

)
. (2.50)
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Kraus operators are not unique as one can choose different bases for the partial trace and
it is possible to find a more compact set of Kraus operators,

K̂0 =

√
1− p′

2
1 , K̂1 =

√
p′

2
Z . (2.51)

We can also obtain the exponential form in the decaying off-diagonal terms by considering
a continuous dephasing process with a dephasing rate Γ. For a small time segment ∆t we
have p′ = Γ∆t ≪ 1 and for each application of the dephasing channel the off-diagonal
elements are damped by 1 − p′. Thus we can split the overall time evolution of length t
into n segments of length ∆t = t

n and we consider the limit of n → ∞. The off-diagonal
terms are then damped by

(1− Γ∆t)n =

(
1− Γt

n

)n
n→∞−→ exp(−Γt) . (2.52)

There also exists a different approach for deriving the dephasing channel with another
nice operational interpretation. Let us assume that we prepared an imperfect version of ρ̂,
where phase kicks occurred following a Gaussian distribution with variance σ2

1√
2πσ2

∫ ∞

−∞
exp

(
− θ2

2σ

)
exp

(
iθ

2
Z

)
ρ̂ exp

(
− iθ

2
Z

)
dθ . (2.53)

The diagonal terms are unharmed, but the off-diagonal ones are damped by a factor
exp
(
−σ2

2

)
. Such an interpretation is very useful for experiments. For example, we may

have an atom that shall store its quantum information for a long time. We assume constant
electric and magnetic fields, but this is an idealization and not what is happening in the
lab. There, the magnetic field is fluctuating, shifting the energy difference between both
energy levels resulting to some unforeseen phases due to the time evolution, which we have
to average over.

2.3.2 General theory

Although quantum systems are very fragile and susceptible to noise a very similar problem
arose in the last century when trying to sent classical information through a noisy envi-
ronment. There, the solution was to use encodings of the information with some amount
of redundancy. The simplest encoding with redundancy is the 3-bit repetition code

0L = 000 , 1L = 111 , (2.54)

where one simply copies the information multiple times and from time to time one applies
a recovery operation, where one applies majority voting, i.e. if there is a single 1 one flips it
to 0 and vice versa. This scheme succeeds whenever at most one error happened. Provided
that bit-flip errors occur independently and with a low enough probability p, this code
reduces the error rate to 3p2(1− p) + p3, but it also introduces an hardware overhead.

Several issues arise when trying to generalize such an error correction scheme to the quan-
tum realm:

• The quantum information cannot be simply duplicated due to the no-cloning theo-
rem.

• Measuring all qubits in order to learn the error destroys the quantum information.

• We have to correct uncountably many different errors.
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Due to the no-cloning theorem it is impossible to copy the input qubit, but it is possible
to consider a similar scheme. Here, we consider the code

|0L⟩ = |000⟩ , |1L⟩ = |111⟩ , (2.55)

thus encoding a superposition results in an entangled state and not multiple copies of the
superposition. In order to correct bit flip errors we cannot measure all qubits in the Z-basis
as this would also reveal encoded information. For example, already a single measurement
of Z1 corresponds to a measurement of the logical Pauli operator Z in the error correcting
code and thus superpositions in the logical qubit are already destroyed. Thus, we have to
gain less information while still getting enough information in order to learn the occurring
error. This can be done by measuring Z1Z2 and Z2Z3 with the projectors

P1 = |000⟩ ⟨000|+ |111⟩ ⟨111| apply 1 as recovery , (2.56)
P2 = |100⟩ ⟨100|+ |011⟩ ⟨011| apply X1 as recovery , (2.57)
P3 = |010⟩ ⟨010|+ |101⟩ ⟨101| apply X2 as recovery , (2.58)
P4 = |001⟩ ⟨001|+ |110⟩ ⟨110| apply X3 as recovery . (2.59)

Here, we only obtain 2 bits of information, which is enough to learn the error without
leaking the encoded information, such that we can apply an appropriate recovery operation.
In classical error correction we measure Z1, Z2 and Z3, which are then multiplied to
Z1Z2 and Z2Z3. In quantum error correction we skip the first step and only measure the
information that is really necessary for the recovery.

As an example, let us consider the case where on each qubit a bit-flip occurs indepen-
dently with probability p and no error with probability 1 − p. Furthermore, we consider
the general encoded state α |000⟩ + β |111⟩. With probability p(1 − p)2 we have the pre-
measurement state α |100⟩+β |011⟩. The measurement projects onto P2 leaving the actual
state invariant. Then we know that we have to apply X1 as a recovery in order to go back
to the code space.

Up to now we have have not discussed the important issue of continuous errors. Es-
pecially in the context of performing single-qubit rotations it is easy to imagine that in
an experiment the interaction times will never be perfect, resulting in small under- or
overrotations. Let us assume we want to perform some rotation on the first qubit and in
addition to the desired rotation we also got the error a1 + bX1 due to an overrotation.
When measuring Z1Z2 and Z2Z3 on the state (a1+ bX1) (α |000⟩+ β |111⟩) we project
onto P1 with probability |a|2 resulting in the state α |000⟩ + β |111⟩ and with probability
|b|2 we project onto P2 resulting in the state α |100⟩+β |011⟩. After the recovery operation
we obtain the state α |000⟩+ β |111⟩ in both cases. Here we can see that the projection in
the measurement process of Z1Z2 and Z2Z3 reduced the continuous error to a discrete one
that we have to correct.

In general, a quantum error-correcting code is a subspace of a Hilbert space where the
canonical correction process consists of two steps. First, we perform a syndrome measure-
ment, i.e. a measurement which allows us to gain information about the occurring error
without leaking any encoded information. Conditional on this measurement outcome we
then apply an operation in order to recover a state lying in the code space. In general,
arbitrary qubit rotations can occur as an error leading to an uncountable set of errors that
we have to correct. However, measuring the syndrome discretizes the errors such that we
only have to correct a finite set. A general theory of quantum error correcting codes is
described in Ref. [19] and the Knill-Laflamme conditions [55] specify whether a code can
correct a given set of errors.
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Theorem 1 (Knill-Laflamme conditions). A code C can correct errors from a set A iff
for all basis states |iL⟩ , |jL⟩ (i ̸= j) and Aa, Ab ∈ A the conditions

⟨iL|A†
aAb |iL⟩ = ⟨jL|A†

aAb |jL⟩ (2.60)

and

⟨iL|A†
aAb |jL⟩ = 0 (2.61)

are satisfied.

Both conditions have an intuitive interpretation. The first condition means that cor-
rectable errors must not introduce deformations depending on the encoded information,
which would change the coefficients in a superposition otherwise, and the second condition
means that logical basis states can still be discriminated for correctable errors.

Suppose, we consider a finite set of correctable errors {Aj}nj=1, then it is easy to show
that every linear combination thereof A′

a =
∑n

k=1 akAk, where ak is a scalar, can also be
corrected,

⟨iL|A′†
aA

′
b |jL⟩ = ⟨iL|

n∑

k,l=1

a∗kA
†
kblAl |jL⟩ =

n∑

k,l=1

a∗kbl ⟨iL|A†
kAl |jL⟩ = 0 . (2.62)

The other condition can be proven similarly and thus every linear combination of cor-
rectable errors is also correctable, such that we only have to consider a basis of correctable
errors. Every possible single-qubit Kraus operator can be described by a 2 × 2 matrix.
A really convenient basis for these single-qubit errors is given by {1, X, Y, Z} which even
forms an orthogonal basis with respect to the Frobenius inner product ⟨A,B⟩ = Tr

(
A†B

)
.

The elements of this basis are part of the n-qubit Pauli group

Pn = {iαB1 ⊗B2 ⊗ · · · ⊗Bn|α ∈ {0, 1, 2, 3},
Bj ∈ {1, X, Y, Z}, j ∈ {1, . . . , n}} , (2.63)

which also has the additional property that two group elements either commute or anti-
commute with each other. We can then consider multi-qubit errors by choosing the ele-
ments9 of Pn as the basis for expanding the error Kraus operators.

Almost all qubit quantum error correcting codes belong to the class of stabilizer codes,
which can be described quite nicely in the stabilizer formalism making heavy use of the
Pauli group. An n-qubit stabilizer code is represented by a stabilizer group which is an
abelian subgroup (not including −1)10 of the n-qubit Pauli group Pn. The code space
is then given by the common +1 eigenspace of all elements in the stabilizer group. This
group can be generated by n − k independent stabilizer generators11 and corresponds to
a code which encodes k logical qubits within n physical ones. Stabilizer codes have two
really nice features. First, we can describe a code compactly with n−k stabilizers although
the underlying Hilbert space dimension increases exponentially with n. Tracking the sta-
bilizers even allows for an efficient simulation12 of Clifford-circuits [56] consisting of gates
from the Clifford group Cn = {V ∈ U(2n)|V PnV

† = Pn}, i.e. it is the normalizer of the
Pauli group and can be generated by the gates H,S and CNOT. Similarly, one can define
the normalizer N (S) := {P ∈ Pn|PSP † = S} of a stabilizer group S in Pn. It is possible

9with trivial phase
10Otherwise, the codespace is empty.
11Often only called stabilizers for brevity. Rigorously, all elements in the stabilizer group are stabilizers.
12As a consequence, quite often one considers Pauli noise consisting of probabilistic Pauli-operator errors,

because such an error correction process can be simulated efficiently.
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2 Background

to choose a basis for the logical qubits in such a way that logical Pauli-operators then
correspond to the cosets N (S)/S and the lowest weight of an element in N (S) not belong-
ing to S is the code distance d, where the weight of an operator is the number of qubits
with non-trivial action. Such a code can then correct d − 1 errors with known positions
and only ⌊d−1

2 ⌋ errors when their positions are unknown. Quite often the most important
properties of a code are written down as the triple Jn, k, dK, where n is the number of used
physical qubits for encoding k logical ones with a code distance of d. Another benefit of
the stabilizer formalism is that the stabilizer generators already explicitly define syndrome
measurements. In our example with the 3-qubit bit flip code two stabilizer generators are
given by Z1Z2 and Z2Z3 which are exactly the syndrome measurements discussed above.

When ignoring global phases every n-qubit Pauli operator can be represented by an Z2n
2

string via the symplectic representation

Xe1
1 Z

f1
1 ⊗ · · · ⊗Xen

n Zfn
n ↔ (e1, . . . , en, f1, · · · , fn) = (e|f) . (2.64)

Two Pauli operators commute when the symplectic form ω ((e|f), (e′|f ′)) = ef ′ − fe′ is
a multiple of 2.13

A very important subclass of stabilizer codes are Calderbank-Shor-Steane (CSS) codes
where it is possible to find a set of stabilizer generators such that each generator only
consists of 1 and X or 1 and Z. Therefore, one can correct X- and Z-errors independently
and the overall code can be decomposed into two classical codes each correcting either the
X- or Z-errors. Furthermore, the logical CNOT gate can be implemented transversally
between two CSS codes, i.e. by applying physical CNOT gates in a bitwise fashion.

2.3.3 Gottesman-Kitaev-Preskill (GKP) codes

So far we considered quantum error-correcting codes for qubits which can be applied in
principle to all kinds of quantum systems since only two states are used. However, this
might be very hardware-inefficient as only a two dimensional subspace of the overall Hilbert
space is used for the physical qubit and no other degrees of freedom are utilized for encoding
the logical information and an error syndrome. The smallest qubit code being able to
correct arbitrary single-qubit errors is the 5-qubit code. Thus, one would naively employ
five physical systems in order to obtain one logical qubit. Especially in the case of a
harmonic oscillator the Hilbert space is infinite-dimensional such that it would be wasteful
to only use a two-dimensional subspace instead of considering additional parts of the space
for redundancy.

Thus, it makes sense to consider quantum error-correcting codes which are already de-
fined within the Hilbert space of a harmonic oscillator, which are known as bosonic codes.
As these codes are not built out of abstract qubits, they can also be designed in such a
way that they are able to correct more physically realistic error models as e.g. photon loss
or small diffusive displacements.

The most important bosonic codes are cat [57] and binomial codes [58] which are designed
to correct photon loss and GKP codes [59] which are designed to correct displacement er-
rors. These GKP codes were already proposed in 2001 and are therefore also one of the
oldest bosonic codes. However, back then an implementation thereof was considered ex-
perimentally impractical or even “beyond impossible” [60] and only in the last years first
experiments could be demonstrated [61, 62, 63, 64, 65]. Quite impressively an experi-
ment with active GKP error correction was demonstrated in superconducting circuits very
13In the case of general qudits of dimension D the generalized Pauli operators commute when the symplectic

form is a multiple of D. There is no unique way to generalize the Pauli operators from qubits to
higher dimensional system and we consider the choice of X =

∑D−1
j=0 |j + 1 mod D⟩ ⟨j| and Z =∑D−1

j=0 exp
(
−i 2π

D
j
)
|j⟩ ⟨j|.
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2.3 Quantum error correction

recently overcoming break-even [65], i.e. the coherence time of the information encoded
within the GKP code was higher than the best passive encoding employing the same hard-
ware. Especially in the last few years when these codes came in reach they also gained
enormous interest from the theoretical side and it was shown that GKP codes can even
beat cat and binomial codes in their own game of photon loss [66].

The most famous ideal GKP codes consist of a Dirac comb as the position-wavefunction,
i.e. the wave function consists of delta peaks with some period,

|0⟩ =
∑

n∈Z
|x̂ = 2nβ⟩ , |1⟩ =

∑

n∈Z
|x̂ = (2n+ 1)β⟩ , (2.65)

|+⟩ =
∑

n∈Z

∣∣∣∣p̂ = 2n
π

β

〉
, |−⟩ =

∑

n∈Z

∣∣∣∣p̂ = (2n+ 1)
π

β

〉
. (2.66)

The corresponding X and Z-operations can be represented by

X = exp (−iβp̂) , Z = exp

(
i
π

β
x̂

)
. (2.67)

Therefore, all position displacements with a magnitude smaller than β
2 and all momentum

displacements with a magnitude smaller than π
2β can be corrected by measuring the error

syndrome and shifting the state back to the nearest codeword. Usually noise in the position
and momentum quadratures is equally strong and therefore one chooses β =

√
π making

the code symmetric.

To make the error correction scheme more illustrative we will briefly discuss a standard ap-
proach for error correction for the symmetric scheme also shown in Fig. 2.2. For simplicity
we assume that a position displacement of strength u occurs at a |0⟩ state and we want to
correct it. Analogously we could also do the same for superpositions in the codespace and
for superpositions of errors, but the calculation would be less clear. Hence we stick with
this simple model.
In order to obtain the syndrome information we consider an ancilla state

∑
j∈Z |x̂ =

√
πj⟩2

and couple it with the other state by employing a CSUM gate e−x̂1p̂2 . The idea of this
coupling is that the position shift is copied from mode 1 onto mode 2 which is then mea-
sured, so that we can learn the shift. In the end we measure the position in mode 2 and
thus we learn u mod

√
π. We assume that it is more likely for u to be small and therefore

we estimate u to be in the interval [−
√
π
2 ,

√
π
2 ) and apply a corresponding correction shift

−uestimated to the position of mode 1. For |u| <
√
π
2 the correction always succeeds, but for

larger shifts it leads to logical errors14.
∑

j,k∈Z

∣∣x̂ = 2j
√
π + u

〉
1

∣∣x̂ = k
√
π
〉
2

(2.68)

CSUM→
∑

j,k∈Z

∣∣x̂ = 2j
√
π + u

〉
1

∣∣x̂ = (2j + k)
√
π + u

〉
2

(2.69)

=
∑

j,k′∈Z

∣∣x̂ = 2j
√
π + u

〉
1

∣∣x̂ = k′
√
π + u

〉
2

(2.70)

GKP codes can also be described as a kind of stabilizer code where the underlying group
14We are neglecting the cases where error and correction add to a large shift of for example 2

√
π, because

these events only occur with a very low probability.
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x

|ψ〉

|+〉
Figure 2.2: The CNOT12 realized by exp(−ix̂1p̂2) acts as the identity when both qubits

are in the GKP code space. However, it also propagates position shifts from
mode 1 to mode 2 and vice versa for momentum shifts. Thus, the position
measurement of mode 2 gives us the required syndrome information in the
form of x mod

√
π.

is the Weyl-Heisenberg group instead of the Pauli group. Elements of the Weyl-Heisenberg
group acting on N modes take the form of

D(θ, α⃗, β⃗) = eiθ exp


i

√
2π

N∑

j=1

(αj x̂j + βj p̂j)


 ,

D(θ1, α⃗1, β⃗1)D(θ2, α⃗2, β⃗2) = e−i2πω((α⃗1|β⃗1),(α⃗2|β⃗2))D(θ2, α⃗2, β⃗2)D(θ1, α⃗1, β⃗1) ,

(2.71)

where ω is again the symplectic form introduced in the symplectic representation of the
Pauli group. In fact, when ignoring global phases we already have a symplectic repre-
sentation in R2N with the vector (α⃗|β⃗). The similarity of the Weyl-Heisenberg and Pauli
groups is no coincidence as they can also be understood as unitary representations of the
continuous or respectively finite Heisenberg group [67]. The stabilizer generators of the
described GKP code are then given by

ei2
√
πp̂ and ei2

√
πx̂ . (2.72)

Notice that products of stabilizers are also stabilizers and the set of possible stabilizers
forms a lattice in the symplectic representation. For this reason we will refer to this code
as square GKP as it forms a square lattice L in the symplectic representation.

Additionally we can consider the dual (in the symplectic form) lattice

L⊥ = {v ∈ R2N |ω(v, l) ∈ Z ∀l ∈ L}

corresponding to displacements commuting with all stabilizers. Logical Pauli operators are
then represented by the coset L⊥/L. Different GKP codes then correspond to different
lattices where the symplectic form between any two basis elements of the lattice has to be
an integer such that the stabilizers commute with each other.

Unfortunately, the exact codewords are unphysical as they are not normalizable due to
the translation-invariance and additionally they are superpositions of infinitely squeezed
states which would require an infinite amount of energy. A very intuitive approach [59]
consists of replacing the delta peaks with sharp Gaussian peaks and introducing an overall
Gaussian envelope resulting in the approximate states

∣∣0̃
〉
∝
∑

s∈Z

∫

R
e−

1
2
κ2(2s

√
π)2e−

1
2∆2 (q−2s

√
π)2 |x̂ = q⟩ dq , (2.73)

∣∣1̃
〉
∝
∑

s∈Z

∫

R
e−

1
2
κ2((2s+1)

√
π)2e−

1
2∆2 (q−(2s+1)

√
π)2 |x̂ = q⟩ dq . (2.74)
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Figure 2.3: Snippet of square GKP’s stabilizers in the symplectic representation forming
a square lattice. The blue dots show the lattice points L and the orange ones
show the symplectically dual lattice L⊥.

Alternatively, one can consider

∣∣∣ψ̃
〉
∝
∫

R2

1

2πγδ
e
− 1

2

(
u2

γ2
+ v2

δ2

)
e
i
(
−up̂+vx̂√

2

)
|ψ⟩ dudv , (2.75)

where
∣∣∣ψ̃
〉

is the approximate version of the ideal square GKP state |ψ⟩ (see Fig. 2.4).
Multiple different approximate codewords have been proposed [59, 68] and they have been
shown to be (almost) equivalent15 when assuming equal error rates in both quadratures,
i.e. γ = δ [69]. The last equivalent approximation consists of applying the operator
exp
(
−ξ(n̂+ 1

2)
)

on the ideal codewords, where n̂ is the number operator [68]. This also
allows for a simple calculation of stabilizers for finitely-squeezed GKP states [70], which
we will demonstrate for the stabilizer ei2

√
πp̂,

∣∣∣ψ̃
〉
= e−ξ(n̂+ 1

2) |ψ⟩ = e−ξ(n̂+ 1
2)ei2

√
πp̂ |ψ⟩ (2.76)

= e−ξ(n̂+ 1
2)ei2

√
πp̂e+ξ(n̂+ 1

2)e−ξ(n̂+ 1
2) |ψ⟩ (2.77)

= ei2
√
π(cosh2(ξ)p̂−i sinh2(ξ)q̂)

∣∣∣ψ̃
〉
. (2.78)

Quite often in the literature the coherent Gaussian displacements are replaced by in-
coherent ones as a simplification, resulting in a Gaussian displacement channel. This
approximation has the advantage that one can combine the Gaussian noise originating
from the environment with the Gaussian noise from the approximate states to a single
Gaussian channel, which is simply described by its covariance matrix, followed by ideal
GKP error correction simplifying calculations enormously. The approach of considering in-
coherent instead of coherent noise is also well-established in the context of qubit quantum
error correction. There, in principle it is possible to actually perform this conversion by
a process called twirling [71, 72], where one applies a random operation from a set before
the error channel followed by the inverse operation. Similar schemes have been proposed

15The state given in Eq. 2.74 is not symmetric in position and momentum and therefore the wave function
has to be squeezed by a factor of

√
1 + κ2σ2 in order to make it equivalent with the parameterization

given in Eq. 2.75. Thus, in the limit of good approximation this squeezing is neglectable.
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Figure 2.4: GKP wavefunction in the position representation with (a) ideal GKP qubits, (b)
finitely squeezed approximate (unnormalized) GKP states with ∆ = κ = 0.25.

in the GKP context [73, 74], but in this infinite-dimensional Hilbert space the off-diagonal
terms cannot be brought to zero exactly but only in a limit.

In order to perform error correction we also need to perform measurements in order to
obtain the syndrome information. For example, measuring the syndrome of the stabilizer
e
i 2π√

π
x̂ is equivalent to measuring x̂ mod

√
π. Such a measurement can be performed by

a circuit shown in Fig. 2.2. An experimentally simpler variation thereof is discussed in
paper III.

Often GKP codes are considered in combination with a concatenated high-level qubit
stabilizer code and the error correction of both codes is done independently [75, 76, 77].
However, the logical error rate can be boosted by using the analog GKP syndrome infor-
mation also in the decoding process of the high-level code. Suppose that a shift error of√

π
2 − ϵ with 0 < ϵ ≪ 1 occurs and this has the same syndrome as a shift of −

(√
π
2 + ϵ

)
.

A confusion of these two shifts would result in a logical Pauli error after the error cor-
rection and both shift errors have almost the same probability according to the Gaussian
distribution. Hence, we have low confidence in the correctness of the recovery operation
for this specific error syndrome. However, in the case of a shift of ϵ it is rather easy to
decide correctly as alternative shifts with the same syndrome are ϵ ± √

π and according
to the Gaussian probability distribution these shifts are very rare such that we have high
confidence in our recovery operation. This measure of confidence can then be used by
the recovery of the high-level code [78, 73]. The performance of several codes with ad-
ditional analog information have been studied and large improvements have been found
[76, 75, 79, 80].

Another advantage of GKP codes is that Clifford operations can be realized on the
logical level of the GKP code by physical Gaussian operations (mapping Gaussian states
onto Gaussian states) as they transform quadrature operators linearly while preserving the
canonical commutation relations. For example, in the square GKP code Pauli operations
are realized by displacements, the Hadamard gate is realized by the rotation ei

π
2
n̂ and a

CNOT12 is given by the conditional displacement e−iq̂1p̂2 .

The five experimental demonstrations of the GKP code make use of different physical
platforms, as on the one hand, Refs. [61, 63] use the harmonic motion of a trapped
40Ca+ as the oscillator mode which is controlled by a qubit in the internal state of the ion(∣∣S1/2,mj = 1/2

〉
and

∣∣D5/2,mj = 3/2
〉)

due to state-dependent optical forces. On the
other hand, Refs. [62, 64, 65] use a microwave cavity controlled by a transmon, but the
schemes [61, 62, 65] have in common that they apply controlled displacement operations
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or more generally an entangling operation, consisting of multiple controlled displacements
and single-qubit rotations, between the oscillator and the transmon qubit before measuring
the qubit. Conditional on the measurement outcome an operation may be applied on the
mode. In the trapped-ion experiment [61] they first generate a squeezed state and prepare
the qubit in a |+⟩ state, apply a controlled displacement operation and measure the qubit
ion the X-basis. This generates a superposition of squeezed states and by repeating these
steps additional peaks of the GKP state can be added step by step. In the other experi-
ment [62] they make use of the fact that the controlled displacement can equivalently also
be seen as a qubit rotation conditional on the oscillators state. By performing suitable
measurements on the qubit after each controlled displacement operation they are able to
reconstruct the expectation value of the stabilizer generator. By measuring these stabiliz-
ers again and again they project the oscillator state onto the GKP codespace. However,
every qubit measurement can only give a single bit of information such that many mea-
surements are needed in order to obtain an accurate estimation of a stabilizer syndrome
consisting of a phase. Although the experiments [61, 63] use the same encoding, their state
preparation is completely different since there are no measurements involved in experiment
[63], but instead they designed a dissipative process where they apply some spin-dependent
displacement operations followed by resetting the spin via optical pumping. This process
is designed in such a way that its steady state contains the GKP codespace and thus
codewords are prepared by applying multiple iterations of this process. By using this re-
pumping instead of the spin-state readout one has the advantage that less photons scatter
with the ion (∼ 2 vs ∼ 1000 photons) and therefore less noise originates from the recoil.
Ref. [64] also generates GKP states without performing measurements. They consider an
interaction between a microwave cavity and a transmon qubit in the dispersive regime with
an interaction Hamiltonian H = χâ†âZ/2, where χ is the rate of non-linear interaction.
Typically, universal control of the harmonic oscillator is impossible in the regime where
the dispersive non-linearity is not much larger than the decoherence rates. However, by
applying large displacements and suitable chosen echo sequences, one can obtain a large
effective non-linearity. This approach was then used for the generation of GKP states.

Unfortunately there has been no demonstration of GKP states in the optical domain
yet. The main problem consists in the unavailability of naturally occurring and strong
non-linearity in quantum optics. However, it has been well-known for a long time that
measurements can be used in order to effectively induce nonlinearities [81]. Hence, quite
recently it was proposed to use adaptions of Gaussian Boson Sampling (GBS) experiments
for the generation of arbitrary bosonic states with some cut-off in the Fock representation.
In a GBS experiment we first generate single-mode squeezed states in all modes which is
easily possible with state-of-the-art experiments (only the amount of squeezing is restricted
by experimental constraints). Then we send these states through a network of beamsplitters
and phase shifters implementing some general linear-optical operation. Up to this point the
state can be described efficiently in the formalism of Gaussian states, but as the last step we
measure the photon number distribution. The calculation of the probability distribution is
related to the computation of the hafnian of some matrix which is conjectured to be really
hard [82] and GBS is a non-universal type of quantum computing. When measuring the
photon distribution of all except one mode, the state of the remaining mode is non-Gaussian
and depends on the measurement outcomes. By varying the parameters of the squeezed
states and the linear-optical network one can adjust which states should be generated, but
because of the measurement process the generation will only work probabilistically with
rather low probabilities [83, 84, 85]. With the right choice of parameters and for the right
measurement outcomes a approximate GKP state is generated. There is also some trade-
off between a high probability of success and the quality of the state, i.e. the amount of
squeezing in the peaks.
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However, there are also some proposals relying on nonlinearities [86, 87]. In Ref. [86]
more efficient decompositions of gates into small nonlinearities were considered, while in
Ref. [87] nonlinear effects due to Rabi interactions between a two-level system and a
bosonic mode (e.g. a trapped ion and a microwave field in a cavity) are considered and
approximate GKP states can already be obtained with cavities that are already proposed.
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2.4 Quantum communication

The no-cloning theorem and the inability of discriminating non-orthogonal states without
distortion lies at the heart of any quantum protocol promising some kind of security. The
former follows directly from the linearity of quantum mechanics [24, 25]. The latter can
also be proven easily as follows. Let |ϕ⟩ , |ψ⟩ be two distinct non-orthogonal states and let
|u⟩ be some ancillary state which is used for discrimination. The unitary discrimination
operation results in

|ψ⟩ |u⟩ → |ψ⟩ |v⟩ , (2.79)
|ϕ⟩ |u⟩ → |ϕ⟩

∣∣v′
〉
. (2.80)

By assuming ⟨ψ|ϕ⟩ ̸= 0 and making use of the unitarity 1 = ⟨u|u⟩ = ⟨v|v′⟩ needs to hold
and thus |v⟩ = |v′⟩ making any discrimination impossible.

The first application of these properties goes back to Wiesner with his idea of unforge-
able quantum money [88]. In this proposal a banknote does not only have a printed serial
number, but each digit is also encoded within a qubit using either the X- or the Z-basis.
The random basis choice is set by the bank at the note generation and it stores the basis
choice. When someone wants to deposit the note at the bank, the bank measures the
qubits according to the stored bases and only accepts the money when the measurement
results match the serial number. Under the assumption of noiseless qubits a note printed
by the bank will always be accepted by the bank. However, a forger does not know the
base choices belonging to a serial number and therefore he has to guess each basis. With
a probability of 50% he guesses right and in the other case the bank obtains the correct
measurement result with 50% probability, thus for each individual digit he has a prob-
ability of 75% such that the bank does not notice the forgery. A typical serial number
consists of multiple digits resulting in an exponentially decreasing acceptance rate of the
bank. Hence, for a sufficiently long serial number the banknote is practically unforgeable.

Building upon this idea Bennett and Brassard proposed the first quantum key distri-
bution (QKD) protocol in 1984 encoding the information within two mutually unbiased
bases (eigenbases of X and Z), nowadays simply known as BB84 [89]. As it (and variants
thereof) is the most prominent QKD protocol and has a structure similar to most other
QKD protocols, we will now discuss a pedagogical version thereof in detail following Ref.
[19].

Let Alice and Bob be two parties who wish to communicate privately and the eaves-
dropper is referred to as Eve. We assume that Alice and Bob use a public, authenticated
channel for communication, i.e. Eve can listen to messages, but she cannot manipulate
them. This is an important assumption as otherwise Eve can easily break the encryption
which we will later discuss in detail.

The protocol consists of the following steps:

• Alice uses a random number generator generating two bit-strings a, b of length
(4 + δ)n where all strings are equally likely (δ > 0).

• Alice encodes the random strings in her (4 + δ)n qubits according to |ψak,bk⟩ with

|ψ0,0⟩ = |0⟩ , |ψ1,0⟩ = |+⟩ ,
|ψ0,1⟩ = |1⟩ , |ψ1,1⟩ = |−⟩ .

• Alice sends her qubits to Bob, who randomly measures them in the X- or Z-basis
and confirms the qubits’ arrival over a public channel.
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• Alice and Bob publicly reveal their chosen bases.

• Alice and Bob discard all events where their bases do not match (sifting phase). With
high probability a key of length 2n remains (δ can be chosen in such a way).

• Alice and Bob announce n bits of their key in order to estimate the error rate.

• Alice and Bob apply error correction such that they obtain a smaller, but equal key.

• Alice and Bob apply privacy amplification in order to obtain a smaller key uncorre-
lated with Eve.

Intuitively, security originates from Alice using the X- and Z-eigenbasis for encoding
the information. As these four states are not mutually orthogonal Eve cannot gain any
information without distorting the state. She might as well also perform measurements in
the X- or Z-basis on Alice qubits. When she correctly guesses the basis with a probability
of 50% she obtains the encoded information and does not change Alice’s state. However,
whenever she uses the wrong basis she does not obtain any information about Alice’s
encoded information and the qubit’s state is changed which would result in an error rate
of 50%. Thus, Eve would introduce a total error rate of 25%. Here, we can already see
that the security critically depends on Eve not finding out the preparation bases before
Bob performs his measurements as otherwise she could perfectly align her measurements
with the preparation basis such that she obtains all the information and does not disturb
the qubits. Hence, Bob needs to confirm the arrival over an authenticated channel such
that Alice can be sure she talks with Bob and is not tricked into telling Eve the bases too
early. Similarly, when Alice and Bob compare their bits an authenticated communication
channel is needed as otherwise Eve could tamper with the messages hiding errors. In the
end Alice and Bob probably come up with a non-zero error rate due to either eavesdropping
attempts or simply noise in the implementation. Typically all information that leaked out
due to noise is assumed to be accessible for Eve and the error rates are then used to bound
the information that she might have gained about the key. Alice and Bob then make use
of classical error-correction (information reconciliation) in order to obtain an equal key
with high probability which is then used for privacy amplification such that Eve only has
negligible information on the resulting key. The last two steps might either use one-way
or two-way classical communication between Alice and Bob allowing for different tolerable
error rates [90].

Furthermore, an authenticated communication channel is also needed in order to pre-
vent so-called “man-in-the-middle attacks”. In such an attack Eve would impersonate Bob
towards Alice and impersonate Alice towards Bob. Then she would simply perform the
actual QKD protocol with Alice and Bob giving her a shared secret key with Alice and Bob
as well. When Alice uses her secret-key for encryption Eve can simply decrypt the message
and later she uses her key shared with Bob to send him the original message. However,
Eve is not required to only read the message, but she may even send him a different one.

Secure authentication is a hard problem to achieve without meeting in person to establish
a shared secret. Many of today’s authentication schemes rely on computational hardness
assumptions which we want to get rid of. In order to be information-theoretically secure16

we need to consume a common secret in order to authenticate each message. Hence, Alice
and Bob already need a short secret key in order to start the protocol and parts of the
distilled secret-key must be used for authentication in the following rounds.

In principle, one could also use authentication schemes based on computational hardness
assumptions in order to distribute the first secret key for practical purposes. Any attack

16This means the protocol is secure against an adversary with unbounded computing resources and time.
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exploiting the hardness assumption must be done during the first round of the QKD pro-
tocol. If one is confident that the authentication scheme cannot be broken in this short
time, one can still generate secret keys, because the security is not invalidated when the
initial authentication scheme is broken at some later point of time after Alice’s and Bob’s
communication. See Ref. [91] for a detailed discussion.

The pedagogical variant of BB84 discussed here has the disadvantage of a large fraction
of qubits being discarded or used for testing. This issue was resolved in Ref. [92], where
it was shown that it is possible to choose a basis with a probability different from 50%
even approaching zero in the asymptotic limit while performing a more sophisticated error
analysis, where one does not consider a single error rate Q, but two error rates ez and ex
for both bases. Thus, the probability of discarding events due to differently chosen bases is
highly reduced. Furthermore, it suffices to use only a small subset of qubits for estimating
the error rates even approaching a vanishing fraction in the asymptotic regime. A very
similar scheme is the six-state protocol [93] where not only two mutually unbiased qubit
bases (X,Z) but all three (X,Y, Z) are used. As there is an additional basis, it is more
likely that Eve guesses a wrong basis resulting in a higher amount of tolerable noise. Both
the BB84 and six-state protocol cannot only be defined for qubits but also for more general
qudits [94].

Here we presented BB84 as a prepare-and-measure scheme meaning that Alice prepares
some states being measured by Bob, but one can also interpret it as an entanglement-based
scheme where entanglement is distributed between Alice and Bob who then both perform
X or Z measurements. Imagine Alice generates a perfect Bell state, sends one half thereof
to Bob and then they perform the measurements corresponding to the entanglement-based
scheme. However, when she measures her half before sending the other half to Bob instead,
she simply generated BB84 states and we would call it a prepare-and-measure scheme.
From an experimentalist’s point of view a prepare-and-measure scheme is simpler to im-
plement, but viewing it as an (virtual) entanglement-based scheme allows for simpler se-
curity proofs. From this point of view one would argue that the origin of security lies in
the monogamy of entanglement [95], i.e. when two qubits (Alice and Bob) are maximally
entangled they cannot be entangled with another qubit (Eve).

The amount of secret key which can be generated is described by the so-called secret-key
rate. This decomposes into a raw-rate and a secret-key fraction. The raw-rate is given
by the amount of bits which can be generated per time unit and the secret-key fraction
gives the amount of secret key which can be distilled per raw bit. For BB84 using one-way
classical communication for post-processing the asymptotic secret-key fraction is given by

rBB84 = max (1− h(ex)− h(ez), 0) , (2.81)

where h(·) is the binary entropy.

Today, countless physical implementations of QKD have been demonstrated using sin-
gle photons [96, 97] or approximate single photons such as weak coherent states [98, 99,
100, 101], which then need a more detailed security analysis because of multi-photon events
[102, 103]. There already exist commercially available QKD cryptosytems (e.g. ID Quan-
tique, MagiQ) and for short metropolitan distances secret-key rates on the order of 10-100
Mbps have been reported [104, 105]. Despite the promise of information-theoretic security
multiple QKD systems have been hacked exploiting deviations between the idealized pro-
tocol and the actual physical implementation thereof (see Refs. [106, 107] for a review).
As most of these attacks targeted Bob’s detector, measurement-device independent (MDI)
QKD was proposed. In such a scheme Alice and Bob send signals to an untrusted party
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Charlie who performs measurements potentially correlating Alice and Bobs raw keys (see
Fig. 2.5). One can even consider device-independent QKD based on the violation of a Bell
inequality such that Alice and Bob only have to assume that their measurement devices
do not communicate with an adversary. However, this additional level of security comes
at the cost of low secret-key rates.

For large distances the achievable secret-key rates drop significantly because the transmis-
sion η decays exponentially within an optical fiber due to absorption. It was shown that
for point-to-point QKD a secret-key rate per channel use of at most − log2 (1− η) ≈ 1.44η
can be achieved (PLOB bound) [6]. Thus, in order to obtain high rates for large distances
one has to introduce some intermediate stations in order to reduce the effective length
of the transmission channel. One approach is to use so-called quantum repeaters which
we will discuss in detail in the next section. Alternatively one can consider trusted-node
networks which are already in use connecting, for example, Beijing with Shanghai [108].
In this case many stations are introduced between the endpoints and usual QKD protocols
are executed between neighboring stations. As every station is able to decode the messages
they need to be trusted.

However, in 2018 the twin-field (TF) QKD protocol was proposed which allows for a
secret key rate of O(

√
η) without being an experimentally difficult quantum repeater [109].

Several further adaptations have been proposed [110, 111, 112, 113, 114] and an enormous
number of experiments overcame the PLOB bound [115, 116, 117, 118, 119, 120, 121, 122,
123, 124]. All adaptions of the twin-field QKD have in common that they do not perform
point-to-point QKD (otherwise the PLOB bound would apply), but instead Alice and Bob
send coherent states to Charlie in the middle who then should apply a 50:50 beam splitter
and measure the photons in both outputs. Similar to BB84 Alice and Bob use some rounds
for key generation and some for parameter estimation in order to guarantee security. In the
process of key generation, Alice and Bob encode their information within the local phase
of the coherent states. Therefore, both require a common phase reference over a possibly
large separation which is the main experimental difficulty of this scheme. For example,
Alice and Bob could encode a key bit kA and kB in a coherent state

∣∣(−1)kA/Bα
〉

and send
them through a lossy channel of transmission √

η to Charlie who then applies the beam
splitter

∣∣∣(−1)kAα, (−1)kBα
〉
→
∣∣∣
(
(−1)kA + (−1)kB

)
4
√
ηα,

(
(−1)kA − (−1)kB

)
4
√
ηα
〉
. (2.82)

Assuming Charlie is honest and detects a photon in the first detector, Alice and Bob learn
that they used the same value for k, when Charlie detects a photon in the other mode
either Alice or Bob has to flip their bit. In the case where no photon is detected Alice
and Bob have to discard their round. However, it is unknown whether Charlie is honest or
might even conspire with Eve and therefore we only assume that he performs some POVM
with 4 elements corresponding to his announcement “no photon detected”, “photon in the
first (second) mode detected” and “photon in both modes detected”. In order to obtain
information about the noise channel and the POVM, Alice and Bob send coherent states
according to some probability distribution reconstructing the action on the 4-dimensional
subspace relevant for key generation. Another major benefit of this scheme is that this
scheme does not rely on classical communication except for the classical post-processing in
the end such that one can achieve repetition rates on the order of 1 GHz. To summarize,
the twin-field protocol consists of the following steps:

• Alice and Bob choose randomly and independent from each other with a probabil-
ity pmode whether the current round is used for generating a key or for estimating
parameters needed for bounding the information leakage to Eve (test mode).
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Figure 2.5: Schematic of different types of QKD protocols. Solid lines denote quantum
communication and dashed ones denote (authenticated) classical communica-
tion. (a) point-to-point QKD, (b) measurement-device-independent QKD as
e.g. twin-field QKD.

• If the key-generation mode is chosen, Alice (Bob) generate uniformly distributed
random bits kA (kB) and send coherent states with amplitude (−1)kA/Bα to an un-
trusted middle station called Charlie (Alice and Bob pre-agreed upon an α requiring
a common phase reference). If the test mode is chosen, they generate coherent states
of an amplitude according to some fixed probability distribution and send the optical
states to the middle station.

• If Charlie is honest, he applies a balanced beam splitter to Alice’s and Bob’s optical
modes and employs on/off detectors for the beam splitters output modes, announcing
the measurement results. If Alice and Bob use the key-generation mode and exactly
one of the two detectors clicks, ka and kb are perfectly (assuming no dark counts)
(anti-)correlated depending on which of the two detectors clicked.

• All previous steps are repeated until a long data set is obtained.

• The usual QKD steps of sifting rounds where Alice and Bob used different modes,
estimating the error rate and leaked information, error correction and privacy am-
plification need to be performed.

The summary involving the bullet points is based on Sec. II.A. in paper I.
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2.5 Quantum repeaters

Due to photonic loss it is very hard to transmit quantum information faithfully over
large distances since the transmission probability of a single photon within a fiber η =

exp
(
− L

Latt

)
decays exponentially with the total distance L and the attenuation length

Latt depends on the photons’ wavelength. For a typical optical fiber minimal loss occurs
at telecom wavelength (≈ 1550 nm) corresponding to Latt = 22km. In principle, a simi-
lar problem arises in the transmission of classical information. However, this problem is
solved by repeaters which simply amplify (and reshape if necessary) the signal. Due to the
no-cloning theorem this is impossible for general quantum information as it does not allow
copying the unknown quantum information without adding some additional noise.

In principle, for long distances the problem of exponentially decreasing transmission can
be avoided to large parts by considering satellite uplinks instead of fiber transmission [125].
When using satellite links we only have to consider absorption and scattering in the at-
mosphere with significant losses in the first and last 10-20 km, for the remaining distance
there are almost no losses and the beam width broadens. Of course this approach also has
the disadvantage of beam wandering due to turbulences in the atmosphere resulting in a
reduced overlap between the beam and the detector. Another drawback is the weather
dependence: haze, fog or heavy rain scatter the beam leading to high error rates. Most
likely a combination of quantum repeaters and satellites will be considered in the future
for very long distance transmission of quantum information where the ground and satellite
states are used in order to overcome the really large distance and quantum repeaters will
then be used in order to distribute the information from the ground station to the receiver.

In their seminal work Briegel et al. [12] proposed the first quantum repeater in 1998 which
is still the underlying basis of today’s memory-based quantum repeaters. They considered
the problem of the exponential photon decay in fibers and furthermore the exponentially
decreasing output state fidelity. In order to tackle this problem they divide the large total
distance L into n segments each of length L0 =

L
n . Every segment consists of two stations

with memories and one tries to generate heralded entanglement between the memories.
Heralded entanglement means that one obtains some signal, as for example the measure-
ment of two photons, confirming the successful generation of entanglement. Having this
information is absolutely cruel for the quantum memories. Without this information the
memories would not know whether the state generation was successful and the memory
state should be stored or whether the memory state should be discarded in order to allow
for a new entanglement generation attempt. Both memory stations in a segment must
have this information and therefore it takes L0

c to 2L0
c time for an entanglement genera-

tion attempt depending on the actual protocol for the transmission of the quantum state
and the classical heralding signal. On top there comes the time required for performing
the local operations on the memory which can typically neglected in comparison to the
communication times.

Let us now describe how such an entanglement generation could look like in detail.
Alice and Charlie are separated by a distance L0 and both have an atom as their memory
system. First, both generate entanglement between the atom and a photon. This might by
done by exciting the atom into some state which can then decay into two different ground
states and depending on the resulting ground state the emitted photon has a different
polarization. Both parties then send their photon to a middle station with a beam splitter
followed by polarization beam splitters in order to separate the different polarizations into
different spatial modes for the detection. Each mode is measured with on-off detectors
and measuring a photon in two modes corresponds to a successful Bell state measurement
entangling both atoms via entanglement swapping. Sending the photons to the middle
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station takes L0
2c and sending the heralding information back to the atoms takes the same

time, therefore a single entanglement generation attempt takes roughly L0
c . This process

is highly probabilistic as both photons must be successfully coupled into the fiber, must
not be lost in the fiber and the optical Bell measurement also works only in half of the
time [126].

All entanglement generation attempts succeed independently in terms of the different
segments and also in time. Therefore, we can assign independent, geometrically distributed
random variables for waiting times with probability of success p in each entanglement gen-
eration attempt for every segment. For the sake of simplicity, let us now assume that n is
a power of two. As soon as two neighboring segments generated entanglement successfully,
one can then perform entanglement swapping. In this step two memories in a station are
measured collectively in order to perform a Bell state measurement. This operation con-
verts two Bell states each of length L0 to a single Bell state of length 2L0. As the initial
Bell states are of imperfect quality, the swapped Bell states quality is further reduced even
for an idealized swapping procedure because the noise originating from both Bell states is
mapped onto a single state17. In principle, entanglement distribution in the elementary
segments and entanglement swapping is performed until entanglement is distributed over
the total distance and the approximate expected distribution time for parallel entangle-
ment distribution is given by H(n)

p , where H(n) is the n’th harmonic number
∑n

j=1
1
j .

Without the quantum memories we would expect a much longer waiting time of p−n as
all segments would need to succeed simultaneously. Despite the exponential gain in the
waiting time we still have the problem that the final state is of low quality. The idea is
to use entanglement purification [128, 129] which transforms many entangled states of low
quality into a smaller set of higher quality entangled states by employing local operations
and classical communication (LOCC). However, as the input states still have to be entan-
gled, they may not degrade too much and therefore we perform purification after every
entanglement swapping which doubles the distance. Hence, we need at least two memories
per station in order to perform the purification although it may be reasonable to consider
more memories for faster, parallel entanglement generation as the states in the memories
also degrade while waiting.

Repeaters following a similar approach [130, 131] are considered as quantum repeaters
of the first generation [132]. They have the disadvantage that in the process of entangle-
ment purification they have to communicate over the total distance L resulting in a fairly
low achievable distribution rate as the classical communication of the last entanglement
purification step already gives an upper bound of c

L . Furthermore, due to the long com-
munication times quantum memories with a high coherence time are needed. Thus, when
considering an intercontinental communication over a distance of 1000 km the maximal
rate achievable by such a repeater without multiplexing would be lower than 200 bits per
second. An exemplary repeater protocol involving entanglement purification is shown from
a high-level perspective in detail in Fig. 2.6.

Repeaters of the second generation [133, 134] work quite similar, but they do not make
use of techniques for improving the state quality that need to communicate over a distance
larger than L0. Such an approach employs quantum error correction locally on the quan-
tum memories and possibly combines it with entanglement purification on the elementary
segment level.

For these memory-based quantum repeaters many other proposals have been made, as
for example, the DLCZ protocol [130] based on atomic ensembles and linear optics or the
hybrid repeater [131] based on a phase space rotation of a coherent state controlled by a
memory qubit.

17For Pauli-noise this statement also holds in a rigorous sense. (see [127, App. D])
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Since the hybrid repeater has some similarities with our repeater proposed in paper I,
we will discuss it in more detail. In each segment there are two quantum memories and
first a non-linear interaction is introduced between the first memory and a cavity mode
entangling the coherent state’s phase (α ∈ R) with the memory state

1√
2
(|↑⟩+ |↓⟩) |α⟩ → 1√

2

(
|↑, α⟩+

∣∣∣↓, αe−iθ
〉)

. (2.83)

Then the coherent state is sent through an optical fiber to the other memory where the
same non-linear interaction is applied followed by a phase shift of θ. For the special case
of no loss in the fiber one obtains the state

1

2

(∣∣∣↑, ↑, αeiθ
〉
+
√
2
∣∣Ψ+, α

〉
+
∣∣∣↓, ↓, αe−iθ

〉)
. (2.84)

The quantum memories can then be projected onto an entangled state by discriminating
the 0 from the ±θ phase. One possibility easily applicable in an experiment consists of per-
forming a momentum-quadrature measurement as the 0 phase corresponds to a Gaussian
peak at 0 in the momentum space while the ±θ phases correspond to Gaussian peaks at
±α sin (θ). However, these peaks have some overlap such that it is impossible to perfectly
discriminate the states resulting in some contributions of |↑, ↑⟩ and |↓, ↓⟩ in the memory
state. We have to set a threshold for the momentum deviation from 0 we are willing to ac-
cept. On the one hand, by reducing this threshold we improve the state quality, but on the
other hand the probability of success also decreases. The contribution from |↑, ↑⟩ and |↓, ↓⟩
can be avoided by using generalized measurements for unambiguous state discrimination
(USD) based on on/off detectors [135] instead of homodyne measurements.

Additional noise arises from the photon loss in the optical fiber and due to dephasing
noise occurring in the quantum memory. The memory dephasing can be modeled as

ρ→ 1

2

(
1 + e

− t
Tcoh

)
ρ+

1

2

(
1− e

− t
Tcoh

)
ZρZ , (2.85)

where t is the elapsed time, Tcoh is the memory coherence time (in the remaining thesis
the coherence time may also be called T or τcoh in order to be consistent with my other
papers) as already discussed in section 2.3.1.

Although, all individual parts of a quantum repeater have been demonstrated already
some time ago, the first demonstration of a memory-based quantum repeater overcoming
the PLOB bound has only been shown in 2019 [136]. However, in this repeater the authors
considered two segments and Alice and Bob sent their signal to the memory station. As
both memories are next to each other there is no communication time needed between them
such that Alice and Bob can send states at a high repetition rate. This allows them to use
a relative short coherence time of ≈ 0.2 ms, but as soon as one considers a repeater scheme
that needs classical communication such a low coherence time will not suffice as it would
only suffice for communicating over 40km. For repeaters with more than two segments
there is no way of getting rid of the communication times entirely and therefore higher
memory coherence times will be needed.18 In 2021 an additional experiment demonstrated
a quantum repeater with a much higher coherence time of more than 20 ms even allowing
for a protocol involving memory waiting times depending on classical communication times
and still producing a non-zero secret-key rate. Although in this experiment they did not
beat the PLOB-bound, they were still able to improve the η-scaling of the secret-key rate
[137]. Furthermore, in a real-life application the secret-key rate per channel use will not
18For three segments it is possible to find a scheme with almost constant dephasing time L0/c.
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(a) (b)

Figure 2.6: (a) Initially, no entanglement is distributed (dashed line) until it succeeds in
the left segment denoted by the solid line and green filling to represent that
the memories state’s fidelity is above a threshold. Then entanglement is also
distributed in the other segment such that one can perform entanglement swap-
ping (dotted ellipse of the inner memories). Due to the imperfect input states
the fidelity of the resulting Bell state is lower falling below the threshold (de-
noted by the red filling) such that purification must be applied (dashed ellipse
of the outer two memories). The resulting Bell state is now of high quality.
This process is applied recursively to span larger distances. Purification can be
used at different times (e.g. even before the first swapping) and it is a branch of
research finding protocols with a low cost for a fixed fidelity goal. (b) Doubling
the entanglement distance by applying entanglement swapping recursively.

be of much relevance, but rather the secret-key rate per second. State-of-the-art prepare-
and-measure QKD schemes can operate at repetition rates on the order of GHz. However,
when using memories the interaction between light and memory limits the rate to the or-
der of MHz and when considering communication over 100km the repetition rate even goes
down to the order of kHz. Therefore, for a quantum repeater it is not enough to simply
overcome the PLOB bound, but one has to overcome it by several orders of magnitude to
even compensate the low repetition rate of a memory-based quantum repeater.

A totally different approach tackling the long-distance loss problem without the disad-
vantage of slow communication times is considered by repeaters of the third generation.
These repeaters [13, 14, 15, 16, 17, 18, 138, 139] make no use of quantum memories, but
use quantum error correcting codes instead in order to correct the photon loss and the
operational errors as well. Typically, Alice encodes the quantum information within an
error-correcting code consisting of one or more optical modes and sends the photonic state
to the first repeater station. There, one round of error correction is applied and the cor-
rected state is then sent to the next station repeatedly until it arrives at Bob.

On the one hand, these repeaters have the advantage of high repetition rates which
are only limited by the local processing times of the error-correction operations and state
preparation, but on the other hand, one has the disadvantage of smaller possible distances
between repeater stations, because error correcting codes work best in the regime of low
error rates. For high loss of η < 1

2 the code cannot improve the transmission, because
the environment has more information than the receiving station and as soon as the en-
vironment is able to perform a logical measurement on their half the encoded information
received at the station is distorted. Thus, the repeater spacing must be smaller than
22 ln(2)km ≈ 15.2 km and typical spacings lie in the range of 0.5-5 km in contrast to
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spacings of tens to hundreds of km in the case of memory-based quantum repeaters.
Most of third-generation repeaters [13, 14, 15, 16, 17, 18] employ a multimode encoding

where they encode a physical qubit or possibly a high-dimensional qudit in the presence
of a single photon within multiple modes. For example, a qubit might be defined by a
photon within two modes, where the two modes are the polarization degrees of freedom.
However, of course one can also consider different spatial modes or a time-bin encoding
where a photon pulse is either sent early or late. These encodings consist of a total photon
number of exactly one such that the channel loss simplifies under the assumption of equal
loss rates for all modes. Either the photon is not lost leaving the qubit undisturbed or it
is lost leading to a detectable error. Thus, in principle we can measure the total photon
number non-destructively giving us the information whether an (erasure) error occurred
or not. This information is extremely valuable when considering a concatenation with
a qubit-stabilizer code with code distance d. In the case of unknown error position at
least ⌊d−1

2 ⌋ errors can be corrected, but when their positions are known the number of
correctable errors increases to d− 1.

However, performing the measurement of the total photon in a non-demolishing way,
which is needed as the syndrome measurements have to be performed later, is experimen-
tally really demanding [140].

A possible workaround is given by an optical implementation of Knill’s error correction
by teleportation [141]. For this protocol we need an ancillary encoded Bell state. In
this protocol we perform quantum teleportation on the high level of the qubit stabilizer
code. The measurement of the logical Bell state is then replaced by transversal Bell
measurements on the physical qubits. All Bell measurements commute with the logical
Bell measurement and their measurement results can be used to obtain the logical Bell
measurement outcome and the syndrome. Thus, even in the presence of operational errors
one can find the most likely Pauli correction which needs to be applied at the other half of
the ancillary logical Bell state. As this half consists of n photons the photon loss has been
corrected after a successful teleportation, but it is possible that too many photons of the
transmitted code have been lost such that it is impossible to gain enough information for
the logical Bell measurement, then the teleportation failed and the photon loss could not
be corrected. Unfortunately, a deterministic physical Bell measurement is impossible when
using only linear optics and photon counting [142]. Without usage of ancillary photons
the maximally obtainable efficiency is given by 50% [126] which can simply be achieved
with a balanced beam splitter followed by two polarization beam splitters such that the
detectors can discriminate the different polarizations. However, this issue can partly be
compensated by the redundancy of the quantum code [15]. By making use of different
physical Bell measurements or even using feed-forward, such that the choice depends on
previous measurement outcomes, can boost the success probability even further [143, 144].
All these repeater proposals are based on the multi-mode encoding concatenated with a
stabilizer code assuming idealized perfectly indistinguishable photons.

The main difficulty of these schemes lies in the state preparation which requires single-
photon sources and non-linear interactions [145, App. C/D].

Quite recently also GKP qubits have been considered for repeaters [138, 139] and they
have the advantage of simpler Bell measurements, but their state generation is even harder.
Bell measurements on GKP codes are discussed in large detail in paper III in the main
text. An application of GKP qudits in combination with quantum polynomial codes for
quantum repeaters is also discussed in paper V.
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The papers in this thesis can be classified into two topics. One the one hand, we consider
quantum repeaters based on quantum memories (paper I, II and IV), which are well
suited for a near-term implementation, but have the disadvantage of low repetition rates.
On the other hand, we also take a look at quantum repeaters solely based on quantum error
correction (paper III and V) which ultimately can achieve much higher rates, but require
much more sophisticated hardware, such that they will probably only be implemented in
the far future. In this section I will briefly summarize the results of the papers.

3.1 Memory-based quantum repeaters

3.1.1 Twin-field-inspired quantum repeater

When discussing twin-field QKD we already saw that it is possible to improve the loss scal-
ing of the secret-key rate in comparison to point-to-point QKD from O(ηtotal) to O

(√
ηtotal

)

by considering a beam splitter in the middle between Alice and Bob. A conventional
memory-based quantum repeater reduces the loss scaling by breaking up the total dis-
tance into n segments each equipped with quantum memories reducing the loss scaling
from O(ηtotal) to O( n

√
ηtotal). The main idea of this paper (paper I) is to combine the

advantages of both approaches resulting in a loss scaling of O( 2n
√
ηtotal). Our considered

QKD protocol is an adaptation of the BB84 protocol applied to a repeater very similar to
the hybrid quantum repeater. In our proposed repeater in every segment and in each of
both memories we generate the state

1√
2

(∣∣∣↑, αe−iθ
〉
+
∣∣∣↓, αeiθ

〉)
, (3.1)

where the coherent state’s phase is entangled with the memory state due to a non-linear
interaction, and we send the two photonic modes to a beam splitter in the middle between
both memories. After applying the beam splitter we consider either on/off detectors,
PNRDs or homodyne measurements. The transition from twin-field QKD to a twin-field
inspired quantum repeater is shown in Fig. 3.1. For the sake of simplicity, let us first
consider the case where loss is the only type of noise occurring.

The resulting states when employing on/off detectors or PNRDs are very similar as both
project the memories onto a mixture of two Bell states. For the most relevant case of on/off
detectors we obtain

1

2

(
1 + e−2(2−√

η)α2 sin2(θ)
) ∣∣Ψ+

〉 〈
Ψ+
∣∣+ 1

2

(
1− e−2(2−√

η)α2 sin2(θ)
) ∣∣Ψ−〉 〈Ψ−∣∣ , (3.2)

where η denotes the transmission from one memory to the other.
When considering PNRDs instead of on/off detectors the distributed state takes a similar

form, but the exponential is replaced by e−4(1−√
η)α2 sin2(θ) 1, hence significant discrepancies

between both detectors only occur at small distances between the memories. The loss does
not only reduce the probability of generating entangled memory states, but it also affects

1This is stated incorrectly in the main text of the published version, where e−2(1−√
η)α2 sin2(θ) is written.

However, in appendix E of the paper it is given correctly. Employing PNRDs instead of on/off detectors
does not lead to any advantage in the regime of √η ≪ 1.
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Figure 3.1: Illustration of the protocol. (a) Phase-matching QKD. Alice and Bob send
optical coherent states (black filled points) to Charlie who performs an optical
measurement (OM). (b) Entanglement-based variation of phase-matching QKD
(n = 1). Alice and Bob each have an optical mode (black filled point) entangled
with a short-lived memory (white filled circle). The optical fields are sent to
Charlie’s OM. The memories can be short-lived since it does not matter when
Alice and Bob perform the measurements on their memories (as long as they
wait with communicating their choice of measurement basis). (c) Two-segment
repeater variant (n = 2). Two copies of (b) are used where the memories in the
central node need to be long-lived (red filled circles), since either of them has to
wait until the other segment succeeds. When both segments succeeded, a Bell
measurement is performed on the two long-lived memories for entanglement
swapping. (d) Three-segment repeater variant (n = 3). In order to obtain
the n-segment repeater one simply needs to use n− 2 inner segments (marked
by the dashed box). Such a n-segment quantum repeater scheme consists of
2n physical segments. (e) Set-up of the OM. Usually the detectors are on/off-
detectors, but we could also use PNRDs. For θ ≪ 1 we only need one detector.
‘BS’ stands for beam splitter. Reprinted from paper I.
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Figure 3.2: Secret-key rates per channel use for a two-segment repeater (n = 2, parallel
scheme) without phase mismatch assuming the parameters as listed in the
main text of paper I (including pdet = 0.15) and a memory coherence time
T of 1 second. The straight lines (from bottom to top) denote the PLOB
bound,√ηtotal, and 4

√
ηtotal. The rates are for different values of the memory

cut-off (10,100,1000,10000) (from right to left). The areas between PLOB and√
ηtotal and between √

ηtotal and 4
√
ηtotal are highlighted in color. Adapted from

paper I.
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Figure 3.3: Comparison of the secret-key rate per channel use per employed memory (sta-
tion) for our scheme (solid lines) and the USD hybrid scheme (dashed lines) for
n = 2, 3, 4 (from left to right in the regime of rates dropping towards zero) as-
suming a coherence time of T = 10 s, a depolarizing channel with pdepol = 10−3

and a sequential scheme (parallel for n = 2). The black solid line corresponds
to the PLOB bound. Reprinted from paper I.
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the state quality as it introduces dephasing which comes on top to the dephasing due to
imperfect memories. The probability to measure at least one photon at one specific beam
splitter output is given by p = 1

2

(
1− e−2

√
ηα2 sin2(θ)

)
in the case of a small non-linearity

θ, which is often easier to achieve experimentally. However, for θ = π
2 this probability can

be doubled as photons at both output modes result in entangled memory states. After
performing the entanglement swapping on all n segments, we obtain a memory state which
is again a mixture of two Bell states and the exponential simply needs to be taken to the
n’th power. In this proposal α is a real parameter tuning the tradeoff between a high
probability of success and a high state quality. Here, we consider the application of BB84
and choose α in such a way that the secret-key rate is maximized resulting in a rate per
channel use of approximately 2n

√
ηtotal

3.57×10−2

nH(n) , where H(n) is the n’th harmonic number∑n
j=1

1
j . For this approximation we assume that all segments generate entanglement in

parallel, photon loss is the only occurring error channel and √
η ≪ 1.

Additionally, we also calculate secret-key rates for a more sophisticated error model
consisting of memory dephasing, detector dark counts, random phase differences between
Alice’s and Bob’s oscillators and imperfect swapping operations. As one can see in Fig.
3.2 it becomes apparent that even under a detailed error model the PLOB bound can be
overcome by our proposal even with n = 2. For n = 2 we consider parallel entanglement
distribution as we are able to calculate the expected memory dephasing. However, for
n > 2 we only consider a sequential distribution as this allows for a simple and exact
calculation of the expected memory dephasing, while for the parallel distribution we are
only able to bound the dephasing with Jensen’s inequality leading to worse rates.

Regarding the finite memory coherence time we show that it is very beneficial for the
secret-key rate to consider memory cut-offs, i.e. after some time one discards memory states
in order to guarantee a high state quality. Additionally, Alice and Bob should perform
their QKD measurement on their memories as soon as possible and do not wait until they
share an entangled state. As a consequence their memories do not accumulate unnecessary
dephasing noise. Especially, in a sequential entanglement distribution scheme this becomes
apparent as there is always only a single memory pair waiting and when Alice/Bob measure
their memory at the beginning only a single memory dephases, effectively doubling the
memory coherence time.

Finally, we also compare our proposed repeater with the hybrid quantum repeater using
unambiguous state discrimination as both scheme employ almost the same resources. In
Fig. 3.3 one can see that our proposal based on the beam splitter in the middle gives rise
to much higher secret-key rates.
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3.1 Memory-based quantum repeaters

3.1.2 Theoretical analysis of experiments in the Q.Link.X project

In paper II we compare different experimental platforms such as color centers (NV, SiV),
quantum dots, ions (calcium, ytterbium) and atoms (rubidium) from the Q.Link.X project
as possible quantum memories for quantum repeaters. In order to compare them we con-
sider a simple set of three parameters, namely Plink which incorporates imperfections going
into the probability of generating entanglement within a repeater segment on top of the
photon loss. This may involve for example probabilistic state generation, coupling ineffi-
ciencies, detector inefficiencies, memory write-in inefficiencies and the frequency conversion
to the telecom wavelength. Another very important parameter is the memory coherence
time τcoh, the last and least important parameter is the time τclock required for one en-
tanglement generation attempt without communication times, e.g. it is limited by the
memory write-in time or the detectors dead time.

In this work we always consider small-scale repeaters of two segments, but we also
consider two different repeater protocols. For both protocols we calculate the distributed
quantum state in the process of quantum memory dephasing. We assume parallel state dis-
tribution in both segments and the relevant quantity for the memory dephasing depends on
the used memory time |N1−N2|T0, where N1 and N2 are random variables counting the en-
tanglement distribution attempts and T0 denotes the total time required for a entanglement
generation attempt. Since each individual distributed quantum state depends on the quan-
tity exp

(
− T0

τcoh
|N1 −N2|

)
, we calculate the expectation value E

(
exp

(
− T0

τcoh
|N1 −N2|

))

for cases with and without cut-off while for the calculation of waiting times we use results
known from the literature [146, 147]. On the one hand, we have the node-sends-photon
protocol (see Fig. 3.4 (a)), where in each segment the memory nodes send a photon to a
station in the middle of the segment performing a photonic Bell state measurement requir-
ing a communication time of L0

c per entanglement generation attempt. On the other hand,
we consider the node-receives-photon protocol (see Fig. 3.4 (b)), where the photons are
sent to the memory node and written in locally, thus the memory does not need to wait for
some classical communication in order to decide whether it should keep the state or not.
Therefore, the repetition rate is only limited by the local operation time τclock making this
protocol very attractive for platforms with a small τclock as typically communication times
are much longer. However, the complete omission of communication time does not work
for larger repeaters with n > 2.

We then use parameter values obtained in discussions with experimentalists in order to
calculate secret-key rates and obtainable raw rates with a minimal fidelity of 0.95 for both
repeater protocols. We consider a memory cutoff in order to guarantee the minimal fidelity
or to optimize the secret-key rate.

Employing the node-sends-photon protocol we find that rubidium atoms are the only
platform that is able to overcome the PLOB bound with current experimental parameters
and it also barely does it (see Fig. 3.5). Probably it would not overcome it in a real
experiment or when considering a less idealized error model. However, when considering
potential future parameter values all platforms except quantum dots are able to beat the
PLOB bound in our idealized model. The reason for the bad performance of quantum dots
is that they have the advantage of a really high clock rate of 1 GHz, but they also have
the disadvantage of an extremely small memory coherence times of 0.3 µs. Unfortunately,
the high clock rate cannot be made use of and the low memory coherence time makes this
platform unsuitable for this protocol.

Employing the node-receives-photon protocol we find that already with today’s experi-
mental parameters all platforms are able to overcome the PLOB bound, but this protocol
will not be scalable to more than two segments without losing its advantage of the high
clock rate. In the calculation for the node-receives-photon protocol we assume a deter-
ministic write-in process of the photonic qubit into the memory. However, such a direct
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OM OM

(a)

OM OM

(b)

Figure 3.4: (a) Node-sends-photon: In each segment the nodes with quantum memories
(in the context of QKD the memories represented by the white balls can be
replaced by sources of BB84 states) send the photons to a middle station for a
Bell measurement. Sending the photons to the middle station takes a time of
L0
2c and communicating the measurement outcome to the quantum memory (red
ball) additionally takes the same time. The quantum memory needs to obtain
this information in order to know whether (virtual) entanglement between the
two memories has been created such that the state should be stored or if a new
distribution attempt should be started. (b) Node-receives-photons: In essence
it is a similar protocol as discussed in (a), but the optical measurement is
performed at the quantum memories (red balls) such that the communication
times are close to 0 for the used quantum memories. The outside memories
are replaced by sources of BB84 states with an high repetition rate which give
the clock rate of the protocol. Events where the optical measurement fails can
simply be discarded in the classical post-processing.

write-in often has the problem that one does not knows whether the photon arrived at the
memory station. Thus, we also consider an additional variation of the memory write-in
where the quantum memory generates an entangled state with a photon and a photonic
Bell measurement is performed between this auxiliary photon and the photon sent through
the fiber. If the photon is not lost in the fiber, the Bell measurement can succeed tele-
porting the sent quantum state directly into the memory where the measurement of both
photons heralds the successful memory-write in. Unfortunately, the generation of the en-
tangled state between the memory and the auxiliary photon slows down the obtainable
clock rate. This variation also leads to lower secret-key rates per channel use than the ap-
proach assuming direct memory-write in, but by assuming future experimental parameters
the PLOB bound can also be beaten easily.
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3.1 Memory-based quantum repeaters

Figure 3.5: Secret key rates (SKR) and high-fidelity raw rates (RR) for a small NSP-based
QR scheme (QR cell). The bottom plots show SKR in dB as a function of
the total distance L in km for experimental parameters as currently available
(left) and as potentially available in the future (right). The top plots show
RR in schemes where the entangled states effectively created over the total
distance L have a fidelity of at least 0.95 (left: current parameters, right:
future parameters). Curves that are disappearing beyond certain distances (or
completely missing for quantum dots) no longer (never) exceed F = 0.95. The
different platforms correspond to NV (violet) and SiV (green) centers, ions
(brown), rubidium atoms (red), and quantum dots (yellow). The light gray
area illustrates the (secret key) rate regime between ∼ η (curve in bold black:
“repeaterless” bound) and √

η (line in dark gray: optimal rate for QR cells or
two-segment QR schemes). The bold black dashed lines represent the realistic
“repeaterless” bound Plinkη/2 (direct transmission via PPL) with finite link
efficiencies Plink=0.1, 0.7.
Reprinted from paper II.
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3.1.3 Analysis of a multi-segment twin-field-inspired quantum repeater

This work (paper IV) deals with larger quantum repeaters of up to 8 segments without
considering entanglement purification under the assumption of deterministic entanglement
swapping. The paper can be separated into two parts. In the first part we discuss the gen-
eral error model consisting of constant Pauli channels and memory dephasing dependent
on a random variable counting the totally accumulated used storage time of all memories
similar as in paper I or paper II. This random variable depends on multiple factors like
the overall number of segments n, the strategy of how entanglement should be distributed
(sequentially vs. in parallel), and on when entanglement swapping should be performed.
The main results of this first part are systematically calculated probability generating
functions (PGFs) fD(t) :=

∑∞
j=0 P(D = j)tj of these random variables D counting the ac-

cumulated used memory time for various protocols, containing all of their information and
allowing for an easy calculation of E(e−αD) = fD(e

−α) which is the expected dephasing
with α being a real number including the memory coherence time and time per entangle-
ment generation attempt. Especially practical strategies beyond sequential entanglement
distribution and swapping are considered filling a gap of paper I where such protocols
could only be considered in calculations by making use of Jensen’s inequality leading to
rather loose bounds in the regime of realistic memory coherence times. Furthermore, we
also consider strategies involving memory cut-offs and multiplexing, where multiple entan-
glement generation attempts are done in parallel in each segment. In addition, for the
case of n = 3 segments we consider all possible entanglement distribution and swapping
strategies without a cut-off with a fixed entanglement distribution time in each segment,
but including protocol variations adapted towards QKD where Alice and Bob perform their
measurements on the end nodes as soon as possible and they do not wait until entangle-
ment has been distributed over the total distance. This variation has the advantage that
some quantum memories are used a shorter time and therefore accumulate less dephasing
noise.

Using these calculations we analyze minimal parameters needed in our general error
model such that it is possible to obtain a non-zero secret-key rate or even beat the PLOB
bound for different distances. Our calculations show that the best secret-key rates can
be obtained by strategies with parallel entanglement distribution, swapping as soon as
possible and minimizing the amount of parallel quantum storage time. Swapping as soon
as possible is beneficial, since it reduces the number of quantum memories which need to
store quantum information in parallel during the time of entanglement distribution over
the overall distance. These conditions can be expected intuitively, but there is also some
tension between the parallel entanglement distribution and the minimal amount of parallel
storage. In a sequential entanglement distribution strategy Alice can perform her BB84
measurement in the beginning and thus in each time step there is only a single quantum
memory dephasing in a segment. Furthermore, after entanglement has been distributed
in the second segment, one can perform entanglement swapping between the first two seg-
ments and again there is only one memory waiting until entanglement is distributed in
next segment. However, when considering parallel entanglement distribution, it is possible
that first entanglement is distributed in a middle segment where both quantum memories
need to store quantum information because neither Alice nor Bob can perform a measure-
ment. It is also possible that first entanglement is distributed in the segments next to
Alice and Bob, but the segments in the middle did not succeed also leading to two quan-
tum memories dephasing simultaneously. Therefore, parallel distribution has advantages
regarding the waiting time until entanglement is distributed over the total distances, but
other schemes can be better concerning dephasing due to multiple memories dephasing
simultaneously in the parallel scheme. This effect becomes most prominent for low mem-
ory coherence times. In most reasonable cases one obtains optimal or at least rather good
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3.1 Memory-based quantum repeaters

secret-key rates by considering a parallel entanglement distribution scheme where entan-
glement swapping is performed as soon as possible.

In the second part of the paper we apply our previous results to different quantum in-
formation encodings and compare three kinds of repeater architectures:
In all three architectures we consider the same qubit memories and the same optical mea-
surements in the middle station. The only difference of the three architectures lies within
different optical states which are entangled with the memories. The first architecture con-
sists of a multimode encoding (dual-rail), which means the photonic information carrier
is a single photon in two modes, e.g. horizontally or vertically polarized. As the second
architecture we consider a twin-field-inspired repeater as introduced in paper I, thus the
photonic information is encoded in the phase of a coherent state. As the third and last
architecture we consider the Cabrillo scheme, where the photonic information is encoded
in a superposition of either zero or one photon.

Schemes 2 and 3 rely on single-photon interference at the beam splitter in the middle of
a segment and have therefore a scaling advantage in comparison to the first scheme which
relies on two-photon interference. However, in the multimode encoding the distributed
states are of higher quality as the measurement of both photons heralds that no photon
was lost, which would leak information to the environment. As a consequence schemes 2
and 3 outperform scheme 1 when there are almost no depolarizing errors (µ ≈ 1), because
then the increased error rates are not problematic as they lie well below the critical error
rates for QKD, but the improved scaling has a huge impact. When considering more and
more depolarizing noise, the increased error rates become very important as the secret-key
fraction drops to 0. Therefore, the multi-mode encoding is highly competitive or even the
better option when considering rather realistic noise parameters. Although schemes 2 and
3 both rely on single-photon interference, their idealized distributed entangled states are
not the same. Scheme 2 prepares the memories in a mixture of two Bell states, such that
there is only one basis with a non-zero error rate. For scheme 3 the probability of an error
is smaller, but they affect both error rates reducing the secret-key fraction enormously.
Hence, scheme 2 is significantly better than scheme 3 for small depolarizing error rates
(µ ≈ 1) as then there are almost no errors in one error basis. For larger probabilities of
depolarizing errors scheme 3 becomes better as it has less intrinsic errors and because of
the depolarizing errors both schemes have a significant error rate in both bases (see Fig.
3.6).
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Figure 3.6: Secret key rates per second for the three repeater architectures for different
error parameters (µ denotes depolarization errors in individual segments and
the swapping operation). As the schemes based on single-photon interference
(TF and Cabrillo) already generate imperfect entangled memory states we also
consider some dephasing with parameter F0 for the dual rail (DR) scheme in
order to avoid comparing ideal states with imperfect ones. We always assume
a coherence time τcoh=10s, plink,TF = 0.9, and no multiplexing. Adapted from
paper IV.
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3.2 Error-correction-based all optical quantum repeaters

3.2.1 GKP syndrome measurements and linear optics

Paper III is about efficient ways to obtain the error syndrome of general GKP codes.
By using GKP ancillae, Gaussian operations and homodyne measurements it is straight-
forward to obtain the GKP error syndrome as already discussed in section 2.3.3 (also see
Fig. 3.7 (a)). However, these required Gaussian operations typically also involve squeezing
operations. Although, it is usually easier to implement them than other non-linear inter-
actions, their online implementation is experimentally not that simple especially for high
amounts of squeezing. Therefore, we investigate whether these Gaussian operations can
be replaced by linear optical ones and we find that it is possible.
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Figure 3.7: Different syndrome measurement schemes for GKP codes. Depending on the
measurement outcomes a displacement D is applied as the recovery operation.
(a) Scheme proposed in the original GKP paper. CSUM gates are used to
copy the displacement errors from the data qubit to the ancilla states where
homodyne measurements can detect them. (b) Teleportation based syndrome
measurement using only linear optics. (c) Scheme similar to the one in (a) but
the CSUM gates are replaced by simple balanced beam splitters, requiring one
offline squeezed ancilla state. Adapted from paper III.

The first proposed method is based on quantum teleportation (see Fig. 3.7 (b)). Inter-
estingly, the teleportation can be understood from two perspectives. On the one hand, it
can be seen as a continuous-variable (CV) teleportation as the measurement works exactly
the same as in the CV teleportation and the calculation can be done in a very analogous
way where the (infinitely squeezed) two-mode squeezed state is simple replaced by a GKP
Bell state. On the other hand, it can also be understood as the discrete-variable teleporta-
tion explained in Eq. 2.19, where all qubit operations are replaced by their realization of
the GKP qubit. In the special case of square GKP qubits the Bell measurement is simply
implemented with a balanced beam splitter followed by homodyne measurements in the q
and p quadrature. However, these quadrature measurements return a real number instead
of an integer one required for choosing the suitable Pauli correction and therefore it also in-
cludes the GKP error syndrome that we wanted to measure. Similar approaches also work
for more general GKP codes where n qubits are encoded within n modes. The required
GKP Bell states can be systematically obtained by simply applying CNOT12 |+⟩1 |0⟩2 and
replacing everything with the GKP representative. However, this has multiple drawbacks
as the CNOT requires squeezing operations. First of all it is harder to implement Gaussian
instead of linear optical operations and furthermore, being even more important, Gaus-
sian operations can propagate displacement shifts resulting in correlated errors on multiple
modes. When these correlations are neglected (which is sometimes inevitable as e.g. in
repeater chains with local decoders) the effective error rate is increased. This is a very sig-
nificant issue as ideal GKP states are unphysical and thus every physical GKP realization
necessarily does involve displacement errors in comparison to the ideal state. In stark con-
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trast to Gaussian operations, isotropic noise is left invariant by linear optical operations.
A method for obtaining square GKP qubit Bell states from GKP-like state in combination
with a simple balanced beam splitter has been proposed in Ref. [148]. In paper III we
generalize this result from the square GKP code to arbitrary GKP codes encoding n qubits
within n modes. In addition, we also show that there is no direct generalization to GKP
codes encoding k qubits within n > k modes. Furthermore, we also generalize the scheme
from the qubit case to arbitrary qudits of even dimension.

Additionally, we also propose another scheme for obtaining the syndrome information
using linear optics (see Fig. 3.7 (c)) which is very similar to the scheme involving general
Gaussian operations proposed in the original GKP paper. In our proposed scheme we
replace the CSUM gates with simple balanced beam splitters and we have to squeeze one
of the ancilla state by a factor of 1√

2
which can simply be absorbed into the state generation

without making it experimentally any harder.
When considering the concatenation of a GKP code with a high level qubit stabilizer

code, people in the literature typically first performed 2n measurements of the GKP qubits
for correcting the small shifts on the GKP qubits followed by n−k measurements in order
to obtain the syndrome information of the higher level code, where every measurement
requires a GKP ancilla. For example, let us consider the concatenation of square GKP
qubits with a two qubit repetition code stabilized by Z1Z2. Thus, following this naive
approach we would first measure the four stabilizers of the GKP qubits

exp
(
i2
√
πq̂1
)
, exp

(
−i2√πp̂1

)
, exp

(
i2
√
πq̂2
)
, exp

(
−i2√πp̂2

)
(3.3)

followed by a measurement of

exp
(
i
√
π (q̂1 + q̂2)

)
(3.4)

as the stabilizer measurement of the high-level repetition code. However, it is easy to see
that there is some redundancy in the syndrome measurements since

exp
(
i2
√
πq̂2
)
= exp

(
i
√
π (q̂1 + q̂2)

)2
exp

(
i2
√
πq̂1
)−1 (3.5)

and therefore we see that there are only 4 independent stabilizer generators to be measured
for the concatenation of the GKP code with the repetition code instead of 5 stabilizer
measurements. As a consequence we can avoid the preparation of one GKP ancilla for
obtaining the syndrome information. We show that the concatenation of any Jn, k, dK qubit
stabilizer code with GKP codes corresponds to some general GKP code defined on a lattice
in the 2n-dimensional phase space. Since stabilizer generators correspond to basis elements
of this lattice, it is clear that there are only 2n stabilizers needed to be measured. Using the
naive approach one would first perform 2nmeasurements for correcting the individual GKP
codes followed by additional n − k measurement for obtaining the syndrome information
of the high level code leading to a significant waste of GKP ancilla states.

It is even possible to combine the idea of performing only 2n measurements with linear
optics. This can be seen easily by obtaining the syndrome information of the high level code
by Knill’s error correction by teleportation, where the Bell measurements are realized by
a balanced beam splitter followed by two quadrature measurements. As already discussed
in this section these individual Bell measurement also give the syndrome information of
the GKP code.

Unfortunately, the required logical Bell state cannot be generated by independent single-
mode GKP states with a rectangular lattice followed by a linear-optical operation when
the high-level code is able to correct arbitrary single-qubit errors. This problem does not
only exist in the context of logical Bell state generation, but it also applies in many other
cases. We assume that for the input state there exists an orthogonal basis of the lattice
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and linear optics preserves this property. However, following Ref. [149] one can see that
codewords of most relevant codes correspond to a lattice where no orthogonal basis exists.

Similar to the teleportation it is also possible to generalize our proposed sequential
syndrome measurement scheme for concatenations of GKP codes with high-level codes.
One simply has to replace the ancilla states to the corresponding equivalents of the high
level code and all beams splitters and measurements have to be applied in a transversal
way.

Finally, we observe that it is also really useful to view GKP codes concatenated with a
high level code as a code defined by a lattice as this allows one to use tools from lattice
theory like Voronoi cells of a lattice. Voronoi cells can be defined for every space and a
set of points being element of this space. For every point of this set one can consider the
region of the space where no other point of this set is nearer according to some metric.
These regions then define the Voronoi cells.

Instead of considering the analog information in the GKP syndrome as proposed by
Fukui [78] and feeding it in the decoder of the high-level code and performing a Monte-
Carlo simulation for calculating the resulting error probabilities, one can also calculate
the Voronoi-cells with respect to the euclidean distance of the sympletically-dual lattice
and integrate the Gaussian probability distribution of the displacement shifts over the
Voronoi-cells belonging to lattice points corresponding to the logical identity operation as
a more systematic approach. For the example of the three-qubit bit-flip code most of the
integration can be done analytically and one is only left with a one dimensional integral,
which can then be calculated numerically.

Although all of these results are obtained while having a quantum repeater as an appli-
cation in mind, they are much more general and can e.g. also be applied in the context of
quantum computation with GKP codes.
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3 Results

3.2.2 GKP qudit repeater

In section 2.5 we discussed the different generations of quantum repeaters with their ad-
vantages and disadvantages. Here, in paper V we consider a third-generation quantum
repeater based on GKP codes. For quantum communication we only require Clifford op-
erations, which can be implemented on GKP codes by using Gaussian operations. In some
of our protocols we even got rid of the Gaussian operations and replaced them with linear
optical ones. We do not only consider square GKP qubits, but also higher dimensional
qudits, such that the qudit dimension D is a free parameter which shall be optimized. As
GKP codes are designed to correct displacement errors, we consider two methods which
convert the loss to a Gaussian displacement channel. The first method consists of applying
a quantum amplifier with gain η−1 before the loss channel with transmission η is applied.
The concatenation of these two channels is equivalent to a Gaussian displacement channel
with variance 1 − η. The second method only works with teleportation-based protocols
where both halves of a Bell state are sent into opposite directions and where the amplifi-
cation is applied on the classical measurement data by a simple multiplication leading to
an experimental simplification.

For obtaining the syndrome information we follow two different approaches. The first one
is a teleportation based syndrome measurement introduced in paper III correcting errors
in both quadratures at every repeater station and the other approach is an adaptation of
Ref. [18] where in each repeater station errors of only one quadrature are corrected in an
alternating manner.

First, we consider a teleportation-based repeater employing bare square GKP qudits
with a fixed repeater spacing with optimal qudit dimension D for different total distances
and different amounts of squeezing in the GKP state preparation. As shown in Fig. 3.8
one can see that qudits beyond qubits can be beneficial for the achievable secret-key rate
when high quality GKP states are available.
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Figure 3.8: Optimal qudit dimension D of a GKP-based quantum repeater with re-
peater spacing L0 = 500m and coupling efficiency ηc = 99% using the pre-
amplification scheme (a) and the two-way scheme (b). For each choice of total
repeater length L and squeezing parameter sGKP, the qudit dimension D (color
coded) is adjusted to the value that maximizes the secret key rate. The latter
is depicted by insets of the white lines. In the region of D = 1 it is not possible
to generate secret keys. Reprinted from paper V.

In addition, we also consider the concatenation of GKP qudits with quantum polynomial
codes [150, 151, 152]. When using quantum error correcting codes with a fixed number
of physical qudits there is a trade-off between the number of logical qudits and the code
distance, formally expressed in the quantum Singleton bound [153]. While for qubits there
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Figure 3.9: Comparison of the BB84 secret-key rate in dependence of the total transmission
length with a repeater spacing L0 = 100m obtained by different quantum poly-
nomial codes in combination with different error correction methods assuming
GKP qudits with (a) 20 dB and (b) 30 dB of squeezing. The highlighted
area shows secret-key rates obtainable with single GKP qudits with optimized
dimension D and using the two-way scheme. Reprinted from paper V.

only exist one non-trivial code satisfying this bound with a code distance of at least 3,
allowing for the correction of an arbitrary single-qubit error [154, 155], arbitrary large
code distances satisfying the bound are possible when employing high dimensional qudits.
Therefore, we employ quantum polynomial codes requiring a prime qudit dimension, be-
cause they achieve equality in the Singleton bound. We analyze the achievable secret-key
rate for concatenated codes and find that they can achieve a better state quality resulting
in a higher secret-key rate than optimized bare GKP codes. However, when taking the
overhead of the high level code into account and choosing the secret-key rate per mode as
the relevant metric, then the bare GKP codes result in better rates. In some other appli-
cations with a high required state fidelity it might be useful to employ these polynomial
codes. The rather poor performance of the concatenation of GKP qudits with polyno-
mial codes can be explained by the fact that increasing the qudit dimension of the GKP
code decreases the spacing of the code words and the polynomial codes require rather high
qudit dimensions. As a consequence one also obtains very demanding constrains on the
squeezing parameter of the GKP states. Furthermore, we also calculate optimal repeater
spacings and analyze when imperfect coupling efficiencies or finite squeezing of the GKP
states dominate the overall noise.

Overall, we find that employing GKP qudits can be useful in principle, but then we
need to employ experimentally unrealistic high amounts of squeezing in order to see an
improvement in comparison to GKP qubits. Therefore, we can conclude that one should
use GKP qubits instead of qudits in the foreseeable future.
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4 Conclusion and outlook

In this thesis we followed two different approaches towards a quantum repeater either based
on heralded entanglement distribution and quantum memories or solely based on quantum
error correction.

Concerning the first approach we proposed a repeater protocol based on single-photon in-
terference (paper I). In comparison to repeater schemes based on two-photon interference
our scheme has the advantage of a much better loss scaling for the case when only photon
loss is considered as the probability of not losing a single photon is much higher than not
losing any of the two photons. However, this advantage comes at the cost of additional
dephasing of the qubits. Thus, by varying an excitation parameter one trades between a
high probability of success for distributing entanglement and a high state quality. Con-
sidering the loss-only case we found the optimal excitation value for QKD. Additionally,
we also calculated secret-key rates for more realistic error models also involving memory
dephasing, detector dark counts and phase mismatch in the state generation. Further-
more, it might be an interesting fundamental question whether it is possible to obtain a
better loss-scaling with a memory-based quantum repeater for a fixed number of quantum
memories than with our proposal by making use of multiple middle stations between two
memories.

In another project (paper II) we calculated secret-key rates for different repeater proto-
cols consisting of two segments using various experimental platforms (color centers, quan-
tum dots, ions and atoms) whose parameters were reported in the Q.Link.X project. We
found that with currently experimentally available parameters and employing a protocol
where the memories are dephasing while waiting for classical communication signals, only
the platform of rubidium atoms is barely able to overcome the PLOB bound. However,
in order to cope with the low coherence times we also considered a second protocol which
can make use of the higher source repetition as the memories do not have to wait for clas-
sical communication signals. Employing this protocol allows all platforms to overcome the
PLOB bound, but such a protocol, that avoids all classical communication times, is not
scalable to more than two segments. In future research schemes involving entanglement
purification and small-scale quantum error correction should be investigated for these ex-
perimental platforms and it should be checked which platforms might be best suited for a
possible proof-of-principle demonstration of such an advanced repeater scheme. Another
open questions is to which extent it is possible to make use of high clock rates for more
than two segments in the context of QKD.

In addition we also performed an analysis of large-scale quantum repeaters without
purification, but involving multiplexing (paper IV). We calculated the exact memory
dephasing for different general repeater schemes. There, we found that optimal schemes
should distribute entanglement in parallel, perform entanglement swapping as soon as pos-
sible and use parallel quantum storage as little as possible. We also calculated secret-key
rates for repeaters of different number of segments and with different underlying processes
for generating entanglement in each segment. We found that our proposal from paper
I can lead to really high rates for low noise parameters, but because of the additional
dephasing it may even become worse than schemes based on two-photon interference for
more realistic noise parameters. Again it might be an interesting idea to also consider re-
peaters of the second generation. This might fit quite nicely in the framework of this work
as the depolarizing and dephasing channels can be approximated as different depolarizing
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and dephasing channels after error correction such that one simply has to replace α and
µ by improved αeff and µeff in the formulas. To some extent it might also be tractable
to consider entanglement purification for small systems. However, for larger systems the
schemes involving entanglement purification become rather complex such that it should be
more feasible to consider Monte-Carlo simulations.

For the quantum repeater approach based on quantum error correction we considered
GKP codes. First, we developed simpler methods for obtaining the GKP error syndrome
information using linear optics, homodyne measurements and GKP ancillae (paper III).
This is a simplification in comparison to canonical circuits which employ general Gaussian
operations also involving squeezing operations instead of making only use of linear op-
tics. We need slightly different GKP ancilla states modified by a Gaussian transformation.
However, we have the advantage that this operation may be applied offline or even better
simply incorporated in the GKP generation process. This process involves already non-
linear optics and the modified GKP ancilla can be simply obtained by tuning a parameter
in the state generation making the state generation not any harder. Thus, single-mode
GKP states are only coupled via beam splitters which has the advantage of a simpler
and better noise propagation. We generalized two linear-optical syndrome measurement
schemes to the concatenation of GKP codes with high level codes and discuss when the
required ancilla states can be obtained with linear optics and single-mode rectangular GKP
states. This syndrome measurement scheme for the concatenation of GKP and an Jn, k, dK
stabilizer code has the advantage of performing only 2n instead of 3n − k measurements,
where each measurement typically consumes a single GKP state. Finally, we also used
tools from lattice theory in order to calculate error rates exactly for the concatenation of
square GKP codes with the three-qubit repetition code making use of the analog syndrome
information. In this project we found multiple open questions for future research. First, it
is a really relevant question whether the usage of the minimal set of measurements allows
to reduce the noise threshold for quantum error correction because less noisy ancilla states
are introduced in the syndrome measurement. A follow-up question arises in the context of
generating the necessary multi-mode ancilla state. We already showed that it is impossible
to generate such ancilla states with single-mode rectangular GKP states and linear optics.
Is it any harder to produce the multi-mode ancilla state with GBS than it is to produce
all of the individual GKP states with GBS? Another open question is for which codes it is
possible to find rather simple expressions for the error rates when considering the analog
syndrome information in the decoding process.

Finally, we apply these results to a repeater based on GKP qudits (paper V). We find
that in principle it can be beneficial to employ GKP qudits with a dimension D > 2.
However, this requires GKP states of really high quality such that in the near future it
will be better to use GKP qubits only. It might also be an interesting question for which
high-level qubit codes one can obtain the best rates in combination with GKP codes in
a third-generation repeater. Another interesting question is whether it might be useful
to consider GKP or other bosonic codes in the memories of a second-generation quantum
repeater.
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6 Publications

Contribution to publications

The initial idea of paper I arose when Peter van Loock asked me to investigate whether it
would be possible to somehow combine the improved distance scaling of the secret-key rate
of TF QKD with the improved scaling from a memory-based quantum repeater. While
first approaching the problem with the general framework of QKD using the Holevo infor-
mation in order to bound Eve’s obtained information, I soon realized that the obtained
secret-key fraction looked very similar to the secret-key fraction in a BB84 protocol and
found that one can interpret the scheme as a simple application of the BB84 protocol to
some quantum repeater. All calculations and choices of error models required for the anal-
ysis of the quantum repeater secret-key rate were done completely by myself. However,
the idea to improve the secret-key rate per second by choosing asymmetric positions of the
beams splitter was proposed by Peter van Loock. When writing the paper he helped me
improving the style and also wrote the paragraph about the experiment performed in the
group of Gerhard Rempe which could be used to generate the required states.

Paper II gives an overview about the progress achieved in the experiments of the project
“Q.Link.X” and shows where they stand on their path to a functioning quantum repeater.
Originally, it was planned to only calculate the raw rate of a protocol with some worst-case
fidelity given by a memory cut-off. I suggested to additionally calculate the expected state
instead of the worst-case scenario by making use of the results obtained in paper I. Thus, I
performed all of the calculations and generated the plots. Furthermore, during discussions
between Peter van Loock and me we had the idea to consider different memory write-in
proposals as e.g. a local Bell measurement in order to herald the memory write-in. In
addition, Appendix S2 was also written completely by myself.

When learning about GKP codes I read Ref. [156] and noticed that although they simpli-
fied the circuit to obtain the error syndrome, it was still possible to get rid of the in-line
squeezing operation when considering syndrome measurements in both quadratures.1 This
inspired me to investigate for which other GKP codes it is also possible to employ only
off-line squeezing operations in order to gain the syndrome information which is the main
content of paper III. Especially with regard to paper V I got interested in Bell mea-
surements for general GKP qudits and found that by using Knill’s error correction by
teleportation it is possible to obtain the whole error syndrome of an n-qudit code con-
catenated with a GKP code with only 2n measurements. In a discussion then Peter van
Loock had the idea that any GKP qubit state can be represented by only 2n stabilizers
because otherwise there is some redundancy. Later I generalized this result to qudits using
a lattice-based approach. All other results in this paper were obtained without Peter van
Loock’s help, but he again helped me with stylistic improvements of the paper.

My main contributions to paper IV are the following:
The application of the memory dephasing expectation values to the different physical im-
plementations where we consider dual-rail encoded qubits, the scheme introduced in paper

1This was also noticed in Ref. [157] a long time before paper III was published, but after my observation.
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I and a similar scheme also based on single-photon interference (section H/App. I). When
we numerically found out that there are minimal values of µ which need to be achieved
by the repeater in order to allow for a non-zero secret-key rate, I showed that this is not
an effect arising from an interplay between different occurring errors, but it is a simple
fundamental property of the chosen QKD protocol (Sec. 5.D). In addition, I also had the
idea for the rule of thumb in Sec. 5.F. For sequential entanglement distribution I proposed
to improve the coherence time by a factor 2 by performing the QKD measurements im-
mediately and I showed that when using a cut-off protocol it is better to use individual
cut-off values for each segment instead of a single global one, which only aborts the pro-
tocol when the accumulated dephasing overcomes the global cut-off. Of course, I also was
involved in other parts of the paper, but there the work was done jointly with the other
authors such that an exact attribution of contribution is not really possible. This applies
especially to writing the paper and performing calculations and double checking in App. E.

The rough idea of paper V was developed at the 1. DPG fall meeting (2019) where
I met Daniel Miller, who gave a talk about third-generation repeaters employing multi-
mode/Fock encoded qudits in combination with quantum polynomial codes. We thought
that it would be a nice idea to generalize his analysis also towards GKP qudits as they
would allow for rather simple measurements which were a rather unfeasible in his previous
proposals. In this project he had the background in the quantum polynomial codes and
I brought the expertise in GKP codes. For this paper we discussed the general outline
together. Regarding the code we wrote, he converted some code from his previous repeater
from C++ to python and I was in charge of writing the remaining functions and perform-
ing the calculations and finding simple adaptions of the general protocols for GKP codes.
Furthermore, I generated all figures, while he helped a lot improving the style of the text.
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We propose a scheme that generalizes the loss scaling properties of twin-field or phase-matching quantum key
distribution (QKD) related to a channel of transmission ηtotal from

√
ηtotal to 2n

√
ηtotal by employing n − 1 memory

stations with spin qubits and n beam-splitter stations including optical detectors. Our scheme’s resource states are
similar to the coherent-state-based light-matter entangled states of a previous hybrid quantum repeater, but unlike
the latter our scheme avoids the necessity of employing 2n − 1 memory stations and writing the transmitted
optical states into the matter memory qubits. The full scaling advantage of this memory-assisted phase-matching
QKD (MA-PM QKD) is obtainable with threshold detectors in a scenario with only channel loss. We mainly
focus on the obtainable secret-key rates per channel use for up to n = 4 including memory dephasing and for
n = 2 (i.e., 4

√
ηtotal-MA-PM QKD assisted by a single memory station) for error models including dark counts,

memory dephasing and depolarization, and phase mismatch. By combining the twin-field concept of interfering
phase-sensitive optical states with that of storing quantum states up to a cutoff memory time, distances well
beyond 700 km with rates well above ηtotal can be reached for realistic, high-quality quantum memories (up
to 1-s coherence time) and modest detector efficiencies. Similarly, the standard single-node quantum repeater,
scaling as

√
ηtotal, can be beaten when approaching perfect detectors and exceeding spin coherence times of 5 s;

beating ideal twin-field QKD requires 1 s. As for further experimental simplifications, our treatment includes the
notion of weak nonlinearities for the light-matter states, a discussion on the possibility of replacing the threshold
by homodyne detectors, and a comparison between sequential and parallel entanglement distributions.

DOI: 10.1103/PhysRevA.102.042614

I. INTRODUCTION

In 1984, Bennett and Brassard presented a protocol (BB84)
[1] that allows two parties (typically referred to as Alice
and Bob) to distribute an information-theoretically secure key
exploiting the fundamental laws of quantum mechanics. This
was the beginning of the new field of quantum key distribution
(QKD), leading now to the first commercial applications of
quantum technology (see Ref. [2] for a recent overview of
QKD). Based on this concept, a key distribution scheme over
421 km of glass fiber was demonstrated recently [3]. Nonethe-
less, a complication of realistic QKD schemes is the linear
scaling of the secret-key rate with the channel transmittance
ηtotal [4], where ηtotal decreases exponentially with the dis-
tance, ηtotal = exp(−L/Latt ), where Latt = 22 km is the typical
attenuation distance of an optical fiber. In fact, it was shown
that this linear scaling for large distances is a fundamental
property of point-to-point QKD, expressed by the so-called
repeaterless (or PLOB) bound [5], − log2 (1 − ηtotal ), in terms
of secret bits per channel use, where − log2 (1 − ηtotal ) ≈
1.44ηtotal for ηtotal � 1.

As a consequence, one needs to split the total channel into
multiple segments of smaller lengths in order to overcome
the linear scaling. Splitting the total distance into multiple
segments of smaller length is the underlying idea of all types
of quantum repeaters making use of either quantum mem-
ories [6,7], quantum error-correcting codes [8–11], or both

*fschmi@students.uni-mainz.de
†loock@uni-mainz.de

in order to improve the transmission rate. Because of the
quantum mechanical no-cloning theorem, it is impossible that
a quantum repeater simply reamplifies an incoming optical
quantum state at every intermediate station along the channel
like for a classical repeater with classical light pulses. The
only experimental demonstration of a quantum repeater so far
overcoming the PLOB bound in terms of a secret key rate
per channel use was reported recently in Ref. [12] based on
a solid-state light-matter interface and memory system using
SiV color centers in diamond.

Besides its scalability, an essential element of a QKD
scheme is its security in a realistic setting. More than a decade
ago, it was shown that QKD systems are vulnerable to hacking
attacks (see Refs. [13,14] for a review) and it was realized that
the typical assumptions of the security proofs are not met in a
practical implementation. Device-independent QKD [15,16]
was proposed as a possible solution. Its security proof no
longer depends on the actual implementation, since it relies on
the violation of a Bell inequality. However, this type of proto-
col yields only very small secret-key rates. A more promising
approach in this respect is measurement-device-independent
(MDI) QKD [17,18], where Alice and Bob send states to a
middle station, Charlie, who performs a measurement that can
be treated as a black box. As such, the middle station may be
completely untrusted, with Charlie potentially embodied by
an eavesdropper, Eve. This approach becomes secure against
the most problematic class of detector attacks and yields rea-
sonable secret-key rates.

Quite recently it was shown that MDI QKD, exploiting
interference of phase-sensitive phase-encoded optical states
sent from Alice and Bob to Charlie, gives a scaling of the

2469-9926/2020/102(4)/042614(21) 042614-1 ©2020 American Physical Society
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asymptotic secret-key rate of O(
√

ηtotal ) [19], originally
named as twin-field QKD. Many works have now appeared
improving or simplifying the security proof and suggesting
variations of this protocol [20–26]. For the present work, es-
pecially relevant is the version referred to as phase-matching
QKD [20,22]. Therefore, it is possible, in principle, to over-
come the PLOB bound [5] without making use of quantum
memories or quantum error-correcting codes. There are al-
ready first experimental demonstrations of twin-field QKD
that claim to have overcome the PLOB bound [27–31].

In this work, we introduce a scheme that is an exten-
sion of the twin-field/phase-matching protocol to more than
two physical segments (i.e., beyond a single middle station),
exploiting quantum memories similar to Ref. [32] and fur-
ther extending a four-segment variant of Ref. [32], but with
single-photon-based single-rail (single-mode) qubits replaced
by coherent states. Our scheme makes use of quantum memo-
ries, a kind of memory-assisted extension of phase-matching
QKD [20,22], and thus is ideally, with sufficiently good mem-
ories and operations, in principle scalable to long distances.
The scheme shares similarities with a hybrid quantum repeater
(HQR) [33] where an optical coherent state subsequently in-
teracts with two spin-based matter quantum memories and
entangles these two spin qubits after a suitable measurement
of the optical mode. However, in the original HQR, the optical
mode travels all the way from one memory station to another
before its detection at that station. In our scheme, crucially,
there will be a middle station, halfway between the memories,
equipped with a beam splitter and detectors. This way we
will be able to generalize the loss scaling behavior of twin-
field/phase-matching QKD from an effective channel length
of L

2 to L
2n for 2n physical segments and a total physical chan-

nel of length L with only n − 1 memory stations. We find that
compared with the original HQR based on unambiguous state
discrimination [34], the new MA-PM QKD scheme leads to a
scaling advantage where in all relevant quantities η (transmit-
tance per repeater segment) becomes

√
η. While our scheme

could be supplemented by additional quantum error correction
or detection mechanisms such as entanglement purification
[6,33,35], here we shall consider the theoretically and es-
pecially experimentally simplest intermediate-scale versions
without error correction.

The outline of our paper is as follows. In Sec. II, we will
briefly introduce the main ideas of twin-field/phase-matching
QKD, the HQR, and possibilities for generating the entangled
states needed for our scheme. In Sec. III, we will then describe
our version of a type of HQR and discuss its obtainable secret-
key rate by employing a BB84 protocol and focusing on the
channel-loss-only case. For the more general and realistic situ-
ation, we will briefly mention different error models including
channel loss, memory dephasing, detector dark counts, phase
mismatch, and depolarization, referring to the Appendixes for
details. We will also briefly describe a variant of our scheme
based on optical homodyne measurements, similar to the orig-
inal HQR [33]. Then we will explicitly calculate the attainable
secret-key rates in Sec. IV for the first-order generalization
(i.e., four physical segments, n = 2) considering a fairly large
and representative set of realistic parameters. Although our
main focus is on secret-key rates per channel use, we will also
include a discussion on the usefulness of our scheme in terms

of the ultimate figure of merit, the secret-key rate per second.
We conclude in Sec. V and give more details about the basic
concepts, assumptions, and calculations in the Appendixes.

II. BACKGROUND

A. Twin-field/phase-matching QKD

There are many different variations of twin-field QKD
[19–26] and we will stick to the version in Ref. [20], since that
protocol is conceptually easy to understand and very similar
to the generalized scheme that we will introduce:

(1) Alice and Bob choose randomly and independent from
each other with a probability pmode if the current round is used
for key generation or for estimating information leakage (test
mode).

(2) If the key-generation mode is chosen, Alice (Bob)
generate uniformly distributed random bits kA (kB) and send
coherent states with amplitude αeiπkA/B to an untrusted middle
station called Charlie (Alice and Bob pre-agreed upon an α).
If the test mode is chosen, they generate coherent states of
an amplitude according to some fixed probability distribution
and send the optical states to the middle station.

(3) If Charlie is honest, he applies a balanced beam splitter
(BS) to Alice’s and Bob’s optical modes and employs thresh-
old (on-off) detectors for the BS output modes, announcing
the measurement results. These steps are repeated until a long
data set is obtained. If Alice and Bob use the key-generation
mode and exactly one of the two detectors clicks, ka and
kb are perfectly (assuming no dark counts) (anti)correlated
depending on which of the two detectors clicked. In our
scheme, the level of security of these (anti)correlations that
manifests itself in the quality of the randomly phase-flipped
entangled (effective) density operator shared by Alice and
Bob will depend on the channel transmission, the overlap of
the coherent states, and the type of detectors (we shall also
consider photon-number resolving detectors, PNRDs).

(4) The usual QKD steps of sifting, estimating the error
rate and leaked information, error correction, and privacy
amplification need to be performed.

Note that a pre-agreed complex amplitude α implies that
Alice’s and Bob’s lasers should not differ in their phase.
However, it is also unreasonable to assume that the optical
path length between Alice and Charlie perfectly coincides
with that of Bob and Charlie. Therefore, it is necessary to
stabilize Alice’s and Bob’s laser frequencies and also apply
phase-stabilization techniques because of the phase drift in the
fiber of the communication channel. This extra experimental
complication in a twin-field/phase-matching QKD scheme is
the price to pay for the scaling gain, ηtotal → √

ηtotal.
Since the untrusted Charlie (who could always be Eve)

performs the measurements, the protocol is a MDI protocol
[17,18], meaning that we are immune to attacks upon the
detectors, which seems to be the most vulnerable part in a
QKD system.

B. Hybrid quantum repeater

Each segment of a so-called HQR consists of two quantum
memories placed at its ends [33] and connected by an optical
channel. Each quantum memory is represented by a two-level
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spin system which is initially in the state 1√
2
(|↑〉 + |↓〉). We

will consider a light-matter interaction between each memory
and a single-mode coherent state of light such that

Ûint (θ )(|↑〉 + |↓〉)|α〉 = |↑〉|αe−iθ 〉 + |↓〉|αeiθ 〉 . (1)

Thus, the coherent-state light amplitude is phase-rotated con-
ditioned upon the state of the spin. We call the result of this
interaction a hybrid entangled state and there exist different
physical phenomena for obtaining this transformation. An
attractive feature here is that we may even consider a fairly
weak interaction, θ � 1. A few more details about these in-
teractions will be given in the next subsection.

First, we let one memory interact with the optical mode,
which is then sent to the other memory at the next repeater
station where we again apply the light-matter interaction. This
results, in the absence of channel loss, in the (normalized)
state

(|↑,↓〉 + |↓,↑〉)|α〉 + |↑,↑〉|αe−2iθ 〉 + |↓,↓〉|αe2iθ 〉
2

. (2)

By discriminating the ±2θ phase shifts from the zero phase
shift, we can project the two memories onto an entangled Bell
state |↑,↓〉 + |↓,↑〉. Such a discrimination can be performed,
for example, by using quadrature homodyne measurements.
In the following, let us assume that α ∈ R+. Then we could
discriminate the phase shifts by performing a measurement of
the momentum quadrature p̂ := 1

2i (â − â†), where â and â†

are bosonic annihilation and creation operators. We can then
choose a sufficiently small �p and if the measurement out-
come p ∈ [−�p,�p], we say that we successfully identified
a zero phase shift. However, this is not an exact projection
onto a Bell state and the fidelity of the state is a function of
the measured value p and α sin(2θ ), i.e., 2αθ for small θ . We
could improve the fidelity at the expense of the success prob-
ability by choosing a smaller �p, which means that we are
discarding many low-quality states. Alternatively, we could
also set �p to a fixed value and increase α sin(2θ ); however,
we cannot increase this value arbitrarily much as soon as the
photon loss of the fiber channel is included, since a larger
value leads to more decoherence due to the loss. Therefore,
one has to find a compromise between average fidelity and raw
rate. For small θ , the probability of success and the fidelity are
only dependent on the transmittance η in the repeater segment
and on αθ . One may also consider different measurements on
the optical mode such as unambiguous state discrimination
based on PNRDs or on-off detectors [34]. While in our work
we discuss both types of measurements, discrete photon and
continuous homodyne (Appendixes F and H) detections, the
former allow us to entirely suppress discrimination errors even
for small αθ , and thus longer repeater segments are possible.
Later, we will compare our scheme with a HQR based on
unambiguous state discrimination using on-off detectors.

C. Generation of hybrid entangled states

States of the form |↑〉|αe−iθ 〉 + |↓〉|αeiθ 〉 are also known as
Schrödinger cat states, because for large amplitudes of the co-
herent state they serve as an example of entanglement between
a microscopic object like an atom and a macroscopic object
like a strong optical field, exactly like in Schrödinger’s famous

thought experiment [36]. In order to realize this in the labo-
ratory, large efforts have been made to generate these states.
Mostly the entanglement was generated between the internal
state of an atom or ion and its motional degree of freedom, or
with microwave radiation [37–39]. A few other experiments
with atom-induced phase shifts were realized for electromag-
netic radiation in the optical frequency domain [40,41].

We will briefly discuss two different approaches for gener-
ating these states. A general advantage of the corresponding
physical platform, namely cavity QED with atoms and light,
is that it allows for room-temperature operations at optical
frequencies, as opposed to solid-state-based approaches such
as that of Ref. [12] where sufficient cooling is a necessity.
One possible approach considers the interaction of light (for
a coherent state with amplitude α) with a two-level atom
(Jaynes-Cummings model [42] of cavity QED) where the
light frequency is largely detuned from the atomic resonance
frequency. The effective interaction Hamiltonian is then given
by

Ĥeff = h̄
g2

δ
(σ̂+σ̂− + â†âσ̂z ) , (3)

in the regime of large detuning δ (see, for example, Ref. [42]).
Here, g denotes the coupling constant, σ̂± are atomic
transition operators, and σ̂z is the Pauli-Z operator. This
interaction Hamiltonian results (up to some phase, which
can be compensated easily) in the desired state, equivalent
to applying the operator Ûint (θ ) with θ = h̄ g2

δ
α2tint, where

tint denotes the interaction time. However, it is demanding to
achieve a sufficiently strong nonlinear interaction correspond-
ing to a θ of the order of π

2 . Therefore, here we shall also
consider the case where θ is small (corresponding to a weak
nonlinear interaction), similar to the analysis in Ref. [33].

A different approach was considered in the recent experi-
ment of Ref. [43], where a resonant light-atom interaction was
employed in a cavity. More precisely, in this case the internal
state of an atom determines whether a light mode initially in
a coherent state couples with the cavity. In one atomic state
(uncoupled with the cavity), the cavity mode and the incoming
light pulse are on resonance such that the light will enter the
cavity and experience a π -phase shift after leaving it again. In
the other atomic state coupled with the cavity, the effective
cavity mode is no longer on resonance with the incoming
pulse. In this case, the light will not enter the cavity and
immediately be reflected back directly by the cavity mirror
with no resulting phase shift. As a consequence, an atomic
superposition state leads to a state for the reflected pulse that
is entangled with the atom, similar to Eq. (1), with a phase
difference of π for the two coherent states. Therefore, in this
case it is also possible to obtain θ = π

2 .

III. MEMORY-ASSISTED PHASE-MATCHING
QKD PROTOCOL

A. Description of the protocol

Let us start by describing the smallest example of our ver-
sion of a HQR, which is very similar to an entanglement-based
description of phase-matching QKD [see Figs. 1(a) and 1(b)].

(1) Alice and Bob each have an atom as a quantum memory
and generate a hybrid entangled state between their memory
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OM

(a)

OM

(b)

OM OM

(c)

OM OM OM

(d)

(e)

FIG. 1. Illustration of the protocol. (a) Phase-matching QKD.
Alice and Bob send optical coherent states (black filled points)
to Charlie who performs an optical measurement (OM). (b)
Entanglement-based variation of phase-matching QKD (n = 1).
Alice and Bob each have an optical mode (black filled point) entan-
gled with a short-lived memory (white filled circle). The optical fields
are sent to Charlie’s OM. The memories can be short-lived since it
does not matter when Alice and Bob perform the measurements on
their memories (as long as they wait with communicating their choice
of measurement basis). (c) Two-segment HQR variant (n = 2). Two
copies of (b) are used where the memories in the central node need
to be long-lived (red filled circles), since either of them has to wait
until the other segment succeeds. When both segments succeeded, a
Bell measurement is performed on the two long-lived memories for
entanglement swapping. (d) Three-segment HQR variant (n = 3). In
order to obtain the n-segment repeater, one simply needs to use n − 2
inner segments (marked by the dashed box). Such an n-segment
quantum repeater scheme consists of 2n physical segments. (e) Setup
of the OM. Usually the detectors are on-off detectors, but we could
also use PNRDs. For θ � 1, we only need one detector. BS stands
for beam splitter.

and an optical mode starting in a coherent state, resulting in
1√
2
(|↑, α exp(−iθ )〉 + |↓, α exp(iθ )〉). Notice that Alice and

Bob can also prepare BB84 states (thus distributing effective
entanglement) instead of real entanglement. This is equivalent
to the case where they generate real entanglement and perform
measurements on the memories before sending the optical
modes, because the measurements commute with Eve’s op-
erations provided that Alice and Bob only send information
about the chosen measurement basis after establishing the raw
key. Whenever Alice or Bob should apply Pauli operations to
their memories but they have already measured them, this can
be done via classical postprocessing of the measurement data.

The generation of these entangled states was described in the
previous section. We will show that for our repeater protocol
we can use, in principle, any θ > 0 at the expense of a larger
amplitude α of the coherent state. Choosing a small θ is also
accompanied by the need of a better phase stabilization.

(2) Alice and Bob send the optical part of their hybrid
entangled states through a lossy channel of transmittance

√
η

to a middle station operated by Charlie (ηtotal = η).
(3) If Charlie is honest, he applies a 50:50 BS to the

two incoming optical modes with annihilation operators â
and b̂ described by the transformation, â′ = (â + b̂)/

√
2, b̂′ =

(â − b̂)/
√

2 . Then he measures mode b′ with an on-off detec-
tor or, alternatively, with a PNRD, while he does not need to
measure anything for mode a′ [see Fig. 1(e)]. If he measures
at least one photon, his measurement correlates Alice’s and
Bob’s quantum memories.

In order to distribute entanglement over very large dis-
tances, we divide the overall channel that connects Alice and
Bob into n smaller segments where in each we run the above
protocol. The smallest example above then was for n = 1
[Fig. 1(b)] and the n = 2 case with two repeater segments,
each with a detection station in the middle (so, effectively
four physical segments), can be seen in Fig. 1(c). As the next
step, we perform entanglement swapping between neighbor-
ing quantum memories as soon as they are ready, as usual in
quantum repeaters. In the end, we have an (effective) two-
qubit state shared by Alice and Bob that can be used for
generating a secret key by employing, e.g., the (entanglement-
based) BB84 protocol.

Let us now get some insight into why we may use any
θ > 0, especially θ �= π

2 , and only need to measure one mode.
For this, we will still omit channel losses. We again consider
the smallest n = 1 case, corresponding to one repeater seg-
ment in the notation of general n. The state before the BS is
given by 1

2 [|↑, α exp(−iθ )〉 + |↓, α exp(iθ )〉]⊗2. After the BS
(and changing order), the state is given by

1
2 (|↑,↑,

√
2αe−iθ , 0〉 + |↓,↓,

√
2αeiθ , 0〉

+ |↑,↓,
√

2α cos θ,−i
√

2α sin θ〉
+ |↓,↑,

√
2α cos θ, i

√
2α sin θ〉) , (4)

where the last two entries in each ket vector refer to the two
modes a′ and b′, respectively. In this simplified scenario, also
assuming that Charlie uses a PNRD, by detecting mode b′
he projects the memories onto |	±〉 = 1√

2
(|↑,↓〉 ± |↓,↑〉),

where the sign depends on whether he measured an even or
odd nonzero number of photons. If we set θ = π

2 , we could
in addition also use a PNRD for mode a′ and depending
on the nonzero measurement outcome (even or odd number)
Charlie’s measurement would project the quantum memo-
ries onto |
±〉 = 1√

2
(|↑,↑〉 ± |↓,↓〉). As a consequence, our

wish to need only small θ comes at the price that the success
probability is only half of the ideal probability of success
for θ = π

2 . The protocol succeeds when there is at least one
photon measured in mode b′ and therefore the success proba-
bility is given by 1

2 (1 − e−2α2 sin2 θ ). When considering on-off
detectors instead of PNRDs, one projects onto a mixture of
two Bell states. Note that the postmeasurement memory state
and the success probability only depend on the product α sin θ
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and therefore we can use an arbitrarily small θ by employing
correspondingly large amplitudes α in this simplified model.

B. Channel loss only

As the next step, we will include the lossy channel with
transmittance

√
η (between Alice/Bob and the middle station,

again considering the n = 1 case) and obtain the density op-
erator of Alice and Bob’s qubits after Charlie’s successful
measurement. In order to keep this straightforward calculation
clear, we will introduce auxiliary modes such that the lossy
channel acts as a unitary operation on a larger Hilbert space.
After Charlie’s measurement, we trace out all subsystems
except Alice’s and Bob’s memory qubits. More details on this
calculation can be found in Appendix E. When Charlie uses a
PNRD, the resulting density operator is given by

1
2 (1 + e−2(1−√

η)α2 sin2 θ )|	±〉〈	±|
+ 1

2 (1 − e−2(1−√
η)α2 sin2 θ )|	∓〉〈	∓| , (5)

where the upper sign holds in the even and the lower sign
holds in the odd photon number case. Because of the success-
ful measurement, the qubits can only be in the {|↑,↓〉, |↓,↑〉}
subspace. If Charlie uses an on-off detector, the density oper-
ator is given by

1
2 (1 + e−2(2−√

η)α2 sin2 θ )|	−〉〈	−|
+ 1

2 (1 − e−2(2−√
η)α2 sin2 θ )|	+〉〈	+| . (6)

Here, the state |	−〉 has a larger probability because of the
larger fraction of an odd nonzero photon number than that for
an even nonzero photon number. Therefore, Alice and Bob
could exploit this to distill 1 − h( 1

2 [1 + e−2(1−√
η)α2 sin2 θ ]) or

1 − h( 1
2 [1 + e−2(2−√

η)α2 sin2 θ ]) ebits in the cases of PNRDs or
on-off detectors, respectively, using one-way classical com-
munication in the asymptotic limit, where h(·) denotes the
binary entropy function. When using on-off detectors, one
obtains an ebit rate of

1
2 (1 − e−2

√
ηα2 sin2 θ )

{
1 − h

[
1
2 (1 + e−2(2−√

η)α2 sin2 θ )
]}

√
η�1
≈ √

ηα2 sin2 θ
{
1 − h

[
1
2 (1 + e−4α2 sin2 θ )

]}
. (7)

Note that this is the same as the secret-key rate of BB84 in the
asymptotic limit. The tradeoff of the original HQR (assuming
small θ ) between high fidelities for small αθ and high success
probabilities for large αθ in the version with unambiguous
state discrimination [34] now becomes manifest in a high
secret-key fraction (second factor) for small αθ and a high raw
rate (first factor) for large αθ . However, the crucial difference
is that the entanglement distribution probability in a single
repeater segment (n = 1) now scales with

√
η instead of η due

to the middle station between Alice and Bob. Since a similar
expression appears in the PNRD case, it is useful to opti-
mize the function f (x) = x(1 − h( 1

2 (1 + e−2x ))) and choose
α2 sin2 θ accordingly. The maximum of f is approximately
7.141 × 10−2 with x ≈ 0.229. With this function, it can be
seen easily that the use of PNRDs instead of on-off detectors
only gives improvement of a factor of 2 for the rate in the
high-loss regime. Therefore, we will only consider on-off
detectors since these are readily available in comparison to

PNRDs. The resulting overall ebit rate (allowing for small θ )
is given by 0.5 × 7.141 × 10−2√ηtotal (similar to Ref. [20]1).

Next, we consider the case of n segments [see Fig. 1(d)]. It
is then straightforward to calculate Alice’s and Bob’s density
operator after the quantum teleportation steps, because the
input states are Bell diagonal (see Appendix D for details). For
the case of on-off detections, up to suitable Pauli operations
(which can also be applied via classical postprocessing if
Alice and Bob already measured their qubits in the beginning)
after the Bell measurements on the memory qubits for entan-
glement swapping [see Fig. 1(c) for the n = 2 case], Alice and
Bob share the (effective) state

1
2 (1 + e−2n(2−√

η)α2 sin2 θ )|
+〉〈
+|
+ 1

2 (1 − e−2n(2−√
η)α2 sin2 θ ) )|
−〉〈
−| . (8)

When using PNRDs, one obtains a similar state with a dif-
ferent coefficient of |
±〉 (1 − √

η instead of 2 − √
η). Let us

consider a scheme where we try to distribute the entanglement
in all segments in parallel and only at the end do we perform
the entanglement swapping everywhere. Using the results for
the exact raw rate with deterministic entanglement swapping
[44], one can calculate the obtainable ebit and secret-key
rate for this simple case exactly. However, to obtain a rough
overview it is useful to apply an approximation for the raw rate
(assuming

√
η � 1; see details in Appendix B) and use the

optimal value for nα2 sin2 θ , resulting in an overall secret-key
rate of

2n
√

ηtotalH (n)−1 0.07

2n
∼ 3.57 × 10−2

2n
√

ηtotal

n(γ + ln(n))
, (9)

where H (n) are the harmonic numbers and γ = 0.57721 . . .

is the Euler-Mascheroni constant. Notice that we always have
to reduce the mean photon number α2 of each optical pulse

with increasing n (αoptimum ≈ 1
sin(θ )

√
0.229

2n ). All these consid-
erations are for secret-key rates per channel use (and per
mode, but in our schemes, the optical states are single-mode).
We define one channel use as a single attempt to generate
entanglement in all repeater segments.

One benefit of this scheme is that in order to obtain a
secret-key rate scaling of 2n

√
ηtotal one only needs n − 1 sta-

tions equipped with quantum memories. In comparison, a

1The difference in the protocol between Ref. [20] and our work
with n = 1 is that the authors of Ref. [20] use θ = π

2 and two on-off
detectors, such that their raw rate is larger by a factor of 2. However,
there are also differences in the approach of calculating the secret-
key rate. We employ a BB84-like protocol since it easily allows us
to go to a larger number of repeater segments, whereas the authors
of Ref. [20] consider the Devetak-Winter formula for obtaining the
secret-key fraction by calculating the mutual information between
Alice’s and Bob’s bits and estimating the mutual information be-
tween Eve and the key via the Holevo information. This approach
allows the authors of Ref. [20] to employ only coherent states for
estimating Eve’s information, while in our approach we need to
generate hybrid entangled or cat states, even for the simplest n = 1
case, without memory assistance.
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standard quantum repeater [6]2 would need 2n − 1 stations
with memories when directly employed for QKD with Alice
and Bob immediately measuring their qubits (otherwise the
standard repeater uses 2n + 1 memories, while our scheme
would use n + 1 memories). Note that the scaling of 2n

√
ηtotal

is consistent with the ultimate end-to-end capacity in repeater-
assisted quantum communication where the channel is divided
into 2n physical channel segments (assuming large segment
lengths) [46]. When considering first experimental realiza-
tions of small-scale memory-based quantum repeaters, using
a scheme like ours (or related schemes like those of Ref. [32])
could be beneficial, because in order to obtain a secret-key
rate scaling of 4

√
ηtotal only a single memory station is needed

instead of three.
For the case of this section where channel loss is the only

error considered, the distillable entanglement (when allowing
one-way, forward classical communication) coincides with
the asymptotic secret-key rate obtainable with BB84. In order
to obtain a reasonably realistic description of such a repeater,
we also have to include dark counts and the efficiency of the
on-off detectors, memory dephasing, phase mismatch, and
errors in the deterministic entanglement swapping which will
be described by a depolarizing channel. Before turning to
such a model including all of these errors, however, one may
first only include the most important errors which still enables
one to see their influence onto the secret-key rate in simple,
analytical expressions. For our treatment here, all conceptual
and technical details regarding the more realistic cases beyond
just channel loss are presented in the Appendixes. There, we
first consider detector inefficiencies and memory dephasing
where we can still describe the resulting states as mixtures
of two Bell states. Including detector efficiencies (ηdet) is
trivial, because we only have to substitute

√
η → √

η × ηdet.
However, things become trickier when considering the
dephasing in the memories. Nonetheless, since the dephasing
channel is a Pauli channel, it commutes with the entanglement
swapping and therefore we can assume that we first distribute
perfect entanglement via multiple quantum teleportations
and then apply the errors to the qubits (according to the
loss channel and the memory dephasing; see Appendixes A
and D). Later, we also consider imperfections of the Bell

2Note that there are well-known proposals for quantum repeaters
that are based on single-photon interference and thus intrinsically
contain the twin-field-type scaling advantage. One such protocol
makes use of a single atom or spin entangled with a light mode
that either contains a photon or not [45]; see also Ref. [32]. An-
other protocol, proposed by Duan, Lukin, Cirac, and Zoller (DLCZ)
[7], initially employs entanglement between a light mode and the
collective spin mode of an atomic ensemble. The finally resulting
two-mode single-excitation spin entanglement in DLCZ, however,
cannot be straightforwardly used for applications like QKD and
therefore DLCZ suggests a postselection strategy by considering two
copies of a repeater chain and accepting only those cases where
each end point of the double-chain state carries exactly one spin
excitation. As a consequence, the DLCZ scheme loses its additional
scaling advantage. The schemes of Refs. [32,45] do not share this
complication, because their resulting spin-spin entanglement is of
immediate use.

measurements which still result in Bell-diagonal states.
Finally, we will also take into account dark counts, eventually
leading to Bell-nondiagonal states. A detailed discussion of
the influence of these error sources to the secret-key rate is
given in Appendix F. We also present a detailed discussion on
the use of homodyne detectors for our scheme in Appendixes
F and H. The secret-key rates as obtainable with our model
(based on on-off detectors) will be presented and compared
among different scenarios in the following section. The extra
experimental parameters as required for the discussion there
are all introduced in Appendixes A and F.

IV. COMPARISON OF SECRET-KEY RATES

A. Secret-key rate per channel use

Let us now consider the performance in terms of BB84
secret-key rates per channel use of our proposed scheme for
some physically reasonable parameters. We start with the
example of a two-segment repeater [i.e., n = 2, corresponding
to two segments connected at a memory station and each seg-
ment equipped with an optical middle station; see Fig. 1(c)].
We assume the following parameters (similar to Ref. [20]):

(1)
√

η = 0.15 exp(− L
2nLatt

),
(2) Latt = 22km,
(3) α = 23.9,
(4) θ = 0.01,
(5) dark count probability pdark = 8 × 10−8,
(6) pdepol = 10−2,
(7) τ = L

nc ,
(8) c = 2 × 108 m

s , and
(9) error correction inefficiency fEC = 1.15.

The transmission parameter
√

η, when we set n = 2, corre-
sponds to a quarter of the total distance L between Alice and
Bob, because every mode travels only for this distance to the
corresponding detector station. This parameter also includes
a finite detector efficiency (factor pdet = 0.15). We shall also
consider perfect detectors, pdet = 1. Since we do not know the
optimal value of α (for given θ ) when considering all possible
errors in our model, we simply use the optimal α from the
loss-only case assuming n = 2. This already gives a good
starting point for α, which we use everywhere unless stated
otherwise. Further parameters are explained in Appendixes A
and F.

The BB84 secret-key fraction [2] is given by

1 − h(eX ) − fECh(eZ ) , (10)

where eX/Z are the error probabilities in the X and Z bases
which can also be expressed in terms of the four Bell-state
coefficients of the density matrix. Note that we consider the
biased BB84 scheme where one of the two bases is employed
more often, allowing us to increase the sifting factor to unity
in the asymptotic limit of infinite repetitions [47]. The overall
secret-key rate is then given by the product of the raw rate and
the secret-key fraction.

The memory coherence time T and the phase mismatch
will be varied in order to assess their influence on the secret-
key rate (see Appendix F). Let us first study the effect of
the memory dephasing, since insufficient coherence times are
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an important issue for quantum repeaters. As can be seen in
Figs. 7 and 8 (in Appendix F), one really needs demanding
memory coherence times such as 1000 s or more in order
to be able to expect nearly the total benefit of the memory-
based repeater capabilities. When considering more realistic,
currently available memories with a coherence time of around
1 s,3 it can be seen that it is not even possible to overcome the
PLOB bound (Fig. 7 with inefficient detectors). This means
in this case the additional memory element even worsens
the secret-key rate in comparison to simple twin-field QKD.
However, we also found that the detection efficiency pdet is
a highly influential parameter determining whether PLOB
can be exceeded or even the ultimate 4

√
ηtotal scaling can be

approached, with realistic (∼1 s) or potential future (�10 s)
coherence times, respectively (see Fig. 8).4

Based on the above observations, one may infer that the
MA-PM QKD scheme cannot help increasing long-distance
secret-key rates using currently available memories and finite,
modest detector efficiencies. However, up to now we assumed
that the participants will always wait until the entanglement is
distributed in both segments no matter how long this distribu-
tion lasts for. It is possible, though, to introduce a maximal
memory waiting time [32,50–54] until which the entangle-
ment must be distributed in both segments; otherwise, the
entanglement already distributed in one segment is discarded
in order to prevent large error rates at the expense of a lower
raw rate. References [52,53] derive the raw qubit rate for
a two-segment repeater with such a memory cutoff, while
Ref. [54] presents a rate formula for the more general case of
arbitrarily many segments under the constraint of determinis-
tic entanglement swappings. References [32,50] analyze the
dephased qubit states for schemes with at most two segments.

3Currently available memory coherence times are ranging from
several μs (quantum dots) to tens of ms (color centers, atoms, and
ions) [48]. Although there are very recent reports on approaching
coherence times of up to a few or even above 60 min [49], we
assume that future coherence times that are also compatible with the
requirement of telecom-frequency conversion are within the range
of almost 1 ms (quantum dots) and 0.1–1 s (atoms and ions) up
to 10 s (color centers). In our quantitative rate analysis including
memory dephasing, we will thus have a particular focus on coher-
ence time values of 0.1, 1, and 10 s (see especially Figs. 2–6). For
a more detailed discussion on the interplay between experimental
clock times (with or without the need of additional spin sequences
on the memory qubits), memory coherence times, and the need for
frequency conversion, for various experimental hardware platforms,
see Ref. [48]. In that reference as well as in the present work,
the focus is on single-spin quantum memories subject to dephasing
rather than spin ensembles (as employed in atomic-ensemble-based
quantum repeaters [7]), which instead must be modeled including
memory loss acting on collective, bosonic spin modes.

4Throughout all plots, as benchmarks, we show the PLOB bound
− log2(1 − ηtotal ) for point-to-point communication between Alice
and Bob [5] and, instead of the ultimate repeater bounds for a quan-
tum repeater with 2n physical segments − log2(1 − 2n

√
ηtotal ) [46],

several benchmarks of the form 2n
√

ηtotal (which up to a factor of
1.44 coincide with the former for small 2n

√
ηtotal), since our particular

qubit-based scheme can never exceed 2n
√

ηtotal similar to the ideal
standard twin-field scheme that never goes above

√
ηtotal.
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FIG. 2. Secret-key rates for a two-segment repeater (n = 2, par-
allel scheme) without phase mismatch assuming the parameters as
listed in the main text (including pdet = 0.15) and a memory coher-
ence time T of 1 s. The straight lines (from bottom to top) denote the
PLOB bound,

√
ηtotal, and 4

√
ηtotal. The rates are for different values of

the memory cutoff (10, 100, 1000, 10 000) (from right to left). The
areas between PLOB and

√
ηtotal and between

√
ηtotal and 4

√
ηtotal are

highlighted in color.

As can be seen in Fig. 2, it is possible to overcome the PLOB
bound by introducing a cutoff, and furthermore, it is even
possible to distribute secret keys over a distance of 700 km
and more with modestly performing memories and detectors
(compare this with Fig. 7, even with T = ∞). In this work,
we only consider rates including cutoff for n = 2.

We expect that a cutoff will also enhance the final rates for
more than two segments. Thus, our rate analysis leads us to
the following conclusion. Even though the PLOB bound can
in principle be exceeded for our n = 2 scheme by introducing
a memory cutoff, a higher experimental cost would be needed,
i.e., sufficiently efficient memories and detectors, in order
to benefit from the improved scaling of our n = 2 scheme
compared with twin-field QKD. However, in Sec. IV B, we
will see that when rates per second are considered, it is gen-
erally hard for a small-scale repeater like our n = 2 scheme
to compete against twin-field QKD at high clock rates. There-
fore, we will also consider more than two repeater segments
(as for an alternative, we also explore the possibility of an
asymmetric two-segment repeater operating at a higher clock
rate in Appendix G).

In Fig. 3, one can see the scaling behavior of repeaters
based on our protocol with n = 2, 3, or even 4 repeater seg-
ments considering a finite memory coherence time of 10 s
and no additional errors in comparison to the PLOB bound
and ideal quantum repeaters. For all n, we choose α = 23.9
even though it is generally not the optimal value in the loss-
only case, but it yields better rates when considering other
errors. However, note that we did not try to find an opti-
mal α in the general case. When we optimize α this will
be explicitly stated. We found that for these three different
segment numbers PLOB is overcome at an overall distance
of approximately 140 km. However, since the PLOB bound
can be overcome by twin-field QKD without memory stations,
the more relevant benchmark for our protocol may be

√
ηtotal

which can be exceeded at approximately 350 km. Due to the
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FIG. 3. Secret-key rates for a repeater with n = 2 (red), 3
(green), and 4 (blue) (dashed, from left to right) segments using a
sequential protocol (parallel for n = 2) without cutoff (dashed lines,
α = 23.9 in all cases). For all curves, we consider a finite memory
coherence time of 10 s (no other errors are assumed). The red dotted
line denotes a n = 2 scheme where we do use a cutoff. The bench-
marks (from bottom to top) PLOB,

√
ηtotal, 4

√
ηtotal, 6

√
ηtotal, and 8

√
ηtotal

can also be seen. The regions between two of those benchmarks are
highlighted in color accordingly.

coherence time of only 10 s we can barely surpass
√

ηtotal, but
with an appropriately chosen cutoff parameter (in the n = 2
case) we can overcome this benchmark even for distances
between 450 and 1500 km (see Fig. 3). Furthermore, we find
that by making use of a memory cutoff and perfect-efficiency
detectors, but also including dark counts and an imperfect Bell
measurement, it suffices to require a coherence time of 5 s for
overcoming

√
ηtotal (not shown in plots). In order to obtain

better rates than in the ideal twin-field scheme, a coherence
time of 1 s suffices, even without making use of a memory
cutoff (see Fig. 8).

B. Secret-key rate per second

For practical applications, the secret-key rate per second
is the more important figure of merit for comparing quantum
repeaters with other types of QKD schemes. A large disad-
vantage of scalable memory-based quantum repeaters is that
they rely on classical communication for confirming success,
setting an upper bound on the repetition rate due to classical
communication times. For example, when assuming a spacing
of 100 km between two repeater stations, this limits the repeti-
tion rate to the order of kHz. However, theoretically, this also
makes it easy to convert the secret-key rate per channel use to
a secret-key rate per second, because the (classical and quan-
tum) communication times are typically much larger than the
local operation times and thus the latter can be neglected in the
regimes that we mainly consider here.5 Therefore, in order to
perform better than twin-field QKD in terms of secret-key rate

5The problem of these low repetition rates can be circumvented
when using so-called third-generation quantum repeaters which
make use of quantum error correction [55]. However, an optical im-
plementation of suitable quantum error correcting codes is currently
still hard to achieve.

per second by using a memory-assisted repeater, one needs to
employ sufficiently many repeater stations for a given total
distance (with ηtotal � 1), such that the communication times
become smaller (and also the scaling advantage increases).
However, even for repeater spacings as small as 100 m, the
repetition rate only grows to the order of MHz. Hence, one
can see that a scalable memory-based quantum repeater with a
reasonable repeater spacing has to outperform twin-field QKD
by many orders of magnitude in terms of secret-key rate per
channel use, only to obtain rates similar to twin-field QKD per
second. Nonetheless, there are at least three reasons for why
it is still beneficial to employ our memory-assisted schemes.

First, like general memory-based quantum repeaters, in
principle, long-distance regimes become accessible for rates
per second that are otherwise (including for twin-field QKD)
unreachable at the same rates. This happens because of the
scaling advantage which eventually dominates over the clock-
rate disadvantage for sufficiently long distances. At such
distances, the final rates per second are generally low, but this
applies to both twin-field QKD and MA-PM QKD while rates
end up strongly biased toward MA-PM QKD with growing
distance. In this case, the small final rates of MA-PM QKD
may be enhanced up to practical values by employing many
repeater chains in parallel (multiplexing). Second, also for dis-
tances where dark counts greatly reduce the secret-key rate, a
repeater can overcome the twin-field QKD secret-key rate per
second. However, it is also possible to obtain the same effect
by using entangled light sources with a high repetition rate as
a relay in order to keep the dark count effect small. With our
system, such a relay could be realized when all spins of the
hybrid spin-light entangled states are measured immediately.
In this case, we only lose a factor of 1

2 when employing small
θ ; however, with a simple relay (n = 2), as we no longer
make use of memories, the effect is squared. Third, unlike
direct-transmission or twin-field QKD at high repetition rates,
our memory-based schemes can also be used in applications
different from QKD such as distributed quantum computing.

As can be seen in Fig. 4, our proposed schemes (for
n � 8) can outperform (in terms of secret-key rate per sec-
ond) idealized twin-field QKD even when we consider dark
counts, memory dephasing (T = 10 s), and depolarizing er-
rors pdepol = 10−3 in our repeater scheme for distances above
1000 km.6 However, even a maximally idealized four-segment
quantum repeater (in a standard approach employing as many
memories as our n = 4 scheme) that attains the corresponding
repeater capacity [46] outperforms idealized twin-field QKD
just at distances of 1000 km. Thus, it is a rather fundamental
problem to overcome idealized twin-field QKD with further
scalable memory-based quantum repeaters for a small number
of memories in a regime where the single-chain secret-key
rate per second is not too low for practical purposes. Also,
notice that here we did not consider a memory cutoff (for
n > 2 there are many different strategies to implement such
a cutoff protocol) and therefore we expect that it is possible

6In Fig. 4, we need to optimize α for the different schemes. Other-
wise, if we use α = 23.9 in all schemes the rates for n = 16 become
the worst in the plots. We used the following values for α: 30, 23.9,
23.9, 18, 17, 9 (ordered by increasing n).
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FIG. 4. Comparison of the secret-key rate in bits/s between twin-
field QKD (ideal, blue dashed; with dark counts, black dashed)
assuming a repetition rate of 1 GHz and our proposed scheme for
n = 2, 3, 4, 6, 8, 16 (left to right in terms of vanishing rates, parallel
scheme for n = 2), where we assumed detectors with unit efficiency
(pdet = 1), a dark count rate of 7 × 10−8, a memory coherence time
of 10 s and pdepol = 10−3. The dashed purple line (for L ≈ 0 begin-
ning at a rate of ≈105 bits/s) represents an ideal standard repeater
with four physical segments attaining the repeater-assisted capacity
[46], whose repetition rate is limited by the communication time. No-
tice that for n = 8 and distances as large as 1000 km we outperform
ideal twin-field QKD with a noisy repeater in terms of secret-key
rate per second while still attaining rates as high as 10−2 Hz without
making use of memory cutoffs.

to improve the secret-key rates of our schemes significantly
(recall the improvement in the comparison between Figs. 2
and 7). When comparing our schemes with a noisy twin-field
QKD protocol, it is easy to see that our schemes allow for a
longer communication range until the secret-key rates drop to
zero.

In Fig. 5, it can be seen that our scheme with n = 2 in-
cluding memory cutoff is able to outperform twin-field QKD
in a scenario where dark counts are taken into account. Even
a scheme with memories of rather low coherence time such
as 0.1 s is able to outperform realistic twin-field QKD at a
distance of approximately 440 km, though resulting in a rather
low secret-key rate of 10 bits/h. Memories with such coher-
ence times are already available [48]. However, it can also
be seen that a similar enhancement is achieved with a relay
(which actually scales better than the memory-based scheme
for a coherence time of 0.1 s). In order to see an improved
scaling for the repeater, one needs a coherence time as large
as 10 s. Since the huge gap between twin-field QKD and our
proposal in terms of secret-key rate per second in some
regimes originates from the different repetition rates of both
schemes, it is reasonable to consider the possibility for n = 2
not to place the beam splitter in the middle for one segment,
but in an asymmetric way [thus modifying Fig. 1(c)]. Im-
provement is possible then, because Alice and Bob can send
light states at an in principle arbitrarily high repetition rate,
since they only need the information regarding success from
the beam splitter in order to decide whether they should count
or discard that round in the final classical postprocessing.
However, the memory station requires this information im-
mediately in order to decide if the state in the memory should

200 400 600 800
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0.001
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FIG. 5. Comparison of the secret-key rate in bits/s between twin-
field QKD (blue, top) assuming a repetition rate of 1 GHz and our
proposed scheme for n = 2 including a memory cutoff and assuming
different memory coherence times of (0.1, 1, 10) s (solid lines,
bottom to top) (pdet = 1, parallel scheme, other parameters are as
described in the main text). The dashed lines (yellow, small θ hence
smaller rate) refer to a relay configuration assuming a repetition rate
of 1 MHz taking into account the finite spin-light interaction times
for the optical entangled-state generations in our relay.

be held or discarded. When placing the beam splitter nearer
to the memory, one decreases the secret-key rate per channel
use, but at the same time enhances the possible repetition rate.
We discuss this scheme in Appendix G. We find that for a not
fully asymmetric scheme one can increase the secret-key rate
per second by up to a few percent.

C. Comparison with USD hybrid repeater

Let us now compare our new HQR with a HQR that uses
on-off detectors for unambiguous state discrimination (USD)
[34]. In our scheme, in each segment we have two qubit
memories each interacting nonlinearly with a coherent state
and these optical states are then send to a middle station with
a 50:50 beam splitter followed by an on-off detector. In the
USD scheme, we have two memories but only one optical
state. First, this state interacts with the first memory, is then
sent to the other, and interacts with this second memory. In
the end, a USD measurement using linear optics, phase-space
displacements, and three on-off detectors is performed. Thus,
one can see that both schemes employ very similar resources.
We can evaluate and compare the two schemes in a simple
error model where we consider channel loss, depolarization,
and memory dephasing.

In our scheme, the probability to generate entanglement in
one segment in a single try is given by 1

2 (1 − e−2
√

ηα2 sin2 θ ),
while for the USD hybrid repeater it is given by
1
2 (1 − e−2ηα2 sin2 θ ). Here we can already see the improvement
of our scheme in the raw rate since η is simply replaced
by

√
η. The loss channel and the measurement also induce

a dephasing channel with parameter e−2(2−√
η)α2 sin2 θ in our

scheme. In the USD scheme, this is given by e−2(1−η)α2 sin2 θ .
The memory dephasing works similar in both cases, but in
our scheme the duration of a single entanglement generation
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FIG. 6. Comparison of the secret-key rate per channel use per
employed memory (station) for our scheme (solid lines) and the USD
hybrid scheme (dashed lines) for n = 2, 3, 4 (from left to right in the
regime of rates dropping toward zero), assuming a coherence time of
T = 10 s, a depolarizing channel with pdepol = 10−3, and a sequential
scheme (parallel for n = 2). The black solid line corresponds to the
PLOB bound.

attempt is given by L
nc whereas in the USD scheme it is 2 L

nc .7

As can be seen in Fig. 6, already our n = 2 scheme gives better
secret-key rates per employed memory than the USD hybrid
repeater for n = 2, 3, 4 for relevant distances. In the regime of
small distances, the USD scheme achieves rates slightly better
than our scheme, because for η = 1 there is no dephasing due
to loss and the measurement in the USD scheme. However,
our scheme always has dephasing originating from the usage
of the on-off detectors. Nonetheless, our scheme has a better
distance scaling and therefore our schemes achieve better rates
than the USD scheme for the relevant large-distance regime.
For these distances, our schemes often achieve rates which
are orders of magnitude better then those of the USD scheme.
Thus, we obtain a better secret-key rate while employing a
smaller supply of quantum memories.

V. CONCLUSION

We introduced a measurement-device-independent QKD
scheme based on the twin-field QKD concept but making
use of memories in order to extend the overall distance for
which a secret key can be distributed. The secret-key rates per
channel use of our scheme scale as [nH (n)]−1 2n

√
ηtotal [har-

monic number H (n) = γ + ln(n) + O(n−1)] in the loss-only
case (assuming 2n

√
ηtotal � 1 and using a parallel entangle-

ment distribution scheme), where γ = 0.57721 . . . is the
Euler-Mascheroni constant and n is the number of repeater

7For the USD scheme, it is also possible to shorten the duration
of one time step to L

nc by switching the roles of sender and receiver.
If the entanglement generation fails, Bob usually communicates this
failure to Alice, who then tries again. However, briefly after sending
the classical communication he can also start to send an optical pulse
to Alice, who needs this short break for switching from sender to
receiver mode, which might be experimentally complicated.

segments, each equipped with memory stations at their ends
and a beam splitter and optical-detector station in their
middles. The transmission parameter ηtotal = exp(− L

Latt
) rep-

resents the total channel connecting Alice and Bob separated
by a distance L.

Our scheme shares some similarities with the so-called
hybrid quantum repeater such as the usage of hybrid entan-
gled states and the dependencies and tradeoff related to the
entanglement generation rate and state quality with regard to
α sin θ , where α is the optical coherent-state amplitude and θ

is the angle of a spin-controlled phase rotation of the optical
mode due to a dispersive light-matter interaction. However,
due to the photonic middle stations in each repeater segment,
our version inherits the twin-field-like scaling advantage. In
some distance regimes, this difference results in rates for
our scheme that are larger by orders of magnitude com-
pared with the original HQR version based on unambiguous
state discrimination. For this version, we explicitly showed
that the relevant quantities do not exhibit the twin-field-type
square-root enhancement of the transmission parameter per
repeater segment like in our scheme. We further showed that
it is possible, in principle, to employ small dispersive phase
rotations θ corresponding to weak optical nonlinearities at
the expense of using larger coherent state amplitudes α and
more demanding phase stabilization. Another advantage of
our scheme compared to the original hybrid quantum repeater
is that it is no longer necessary to couple nonclassical light
states with a spin system (like an atom in a cavity) “inline”. It
is now sufficient to prepare hybrid light-spin entangled states
“offline” and couple the optical parts with beam splitters when
executing the repeater protocol.

For the n = 2 case with only one memory station based
on a parallel distribution scheme, we considered the most
important imperfections like photon loss, detector inefficien-
cies, memory dephasing, dark counts, phase mismatch, and
faulty Bell measurements on the memories modeled by de-
polarization. This error analysis can also be extended to n
repeater segments when using a sequential distribution and
swapping strategy. This approach enabled us to calculate
exact BB84 secret-key rates (in the asymptotic limit) for the
general case of n repeater segments. For n = 2, the parallel
scheme outperforms the sequential one and for n > 2 we have
evidence that the sequential scheme is better. As we did not
include quantum error correction, we focused on repeaters
up to n = 16. We calculated secret-key rates per channel use
for realistic parameter regimes and showed that introducing a
cutoff (maximal duration) for the memory waiting time can
increase the secret-key rate enormously.

Our main quantitative results in terms of secret-key rates
per channel use are that by introducing quantum memories
into a twin-field-based relay, for distances beyond 700 km, the
PLOB bound can be beaten with memory coherence times of
1 s and modest detector efficiencies. The ideal single-repeater
scaling of

√
ηtotal can be exceeded when coherence times of

5 s and perfect detector efficiencies are approached. In order to
overcome the ideal twin-field rate, only a coherence time of 1 s
is needed. Since our scheme is mainly for threshold detectors
but also involves light-matter interactions, the light wave-
lengths must be suitably chosen (possibly including additional
frequency conversions which have not been considered here)
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and the basic processing times, as usually in memory-based
quantum repeaters determined by classical communication
times and the speed of the light-matter operations, are longer
than those in twin-field QKD without memory assistance.
Nonetheless, for sufficiently many and short elementary seg-
ments, the scaling advantage of the memory-assisted scheme
can potentially overcome the disadvantage of the slower clock
rates (for phase-matching QKD without memories, the source
clock rate is just given by that of a laser generating coherent
states; creating cat states like in our BB84-type scheme is
unnecessary and so are light-matter couplings and classical
waiting times). We explicitly showed this by also considering
secret-key rates per second.

We also investigated a variant of our scheme based on
homodyne detectors. According to our analysis, the regimes
where a homodyne-based scheme works is incompatible with
the regimes where the scaling advantage of a MA-PM QKD
scheme becomes relevant. Thus, secret-key rates for segments
of 10 km and more are obtained to be zero for the homodyne-
based scheme. This is conceptually similar to the original
hybrid quantum repeater based on homodyne measurements
where the segment lengths also needed to remain sufficiently
short (at around 10 km). A difference there, however, was
that additional quantum error detection (entanglement purifi-
cation) was included such that high-fidelity entangled states
were still obtainable. In our scheme, active methods for quan-
tum error correction or detection were not considered.

Like in all twin-field-type QKD approaches based on
single-photon interference or, more generally, interference
of phase-sensitive single-mode states, as opposed to those
schemes relying on two-photon interference, a means for ro-
bust phase stabilization must be included. In our scheme, this
could be achieved by sending a coherent-state reference pulse
along the fiber channels together with the signal pulses.
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APPENDIX A: ERROR MODELS

Here we briefly describe all error models employed for
our analysis. A lossy channel with transmittance η can be
described as a beam splitter acting on the optical mode of
interest a and an environmental mode b corresponding to the
mode operator transformation

(
â′

b̂′

)
=
( √

η
√

1 − η√
1 − η −√

η

)(
â
b̂

)
, (A1)

where â′ is the relevant output mode operator of interest and
we trace out the environmental mode expressed by mode
operator b̂′. For fiber transmission, η is given by exp(− L

Latt
),

where L is the fiber’s length and Latt is the attenuation length
of 22 km in a typical optical fiber.

The dephasing of the memories is described by the follow-
ing dephasing channel,

Edephasing(t, T, ρ)

= 1

2

[
1 + exp

(
− t

T

)]
ρ + 1

2

[
1 − exp

(
− t

T

)]
ZρZ ,

(A2)

where ρ is a single-qubit density matrix, Z is the Pauli
qubit phase-flip operator, t is the time for which the memory
dephases, and T is the memory coherence time. The imper-
fections of the Bell measurement on the quantum memories
are modeled by the following depolarizing channel,

Edepol(pdepol, ρ) = (1 − pdepol )ρ + pdepol
1

2
. (A3)

The POVM element corresponding to a click of the on-off
detector is given by

Ê = 1− D(0)|0〉〈0| , (A4)

where D(0) denotes the probability that the detector does not
click on a vacuum state. This means the dark count probability
is given by 1 − D(0). Fortunately, we will not require an
explicit expression for the conditional density operator that
incorporates dark counts, because we trace out the measured
mode (see Appendix E).

APPENDIX B: APPROXIMATION OF E[max(X1, . . . , Xn)]

In order to distribute entanglement over the whole dis-
tance of the repeater, entanglement needs to be generated
in all n segments. When generating entanglement in the n
segments independently, the total waiting time is given by
max(X1, . . . , Xn), where the geometrically distributed random
variables Xj describe the number of entanglement generation
attempts until success in segment j and where p is the proba-
bility of success in a single attempt. Therefore, the raw rate
scales inversely with E[max(X1, . . . , Xn)]. This expectation
value will also appear when we will discuss the dephasing in a
parallel scheme using Jensen’s inequality. For the case p � 1
and deterministic entanglement swapping, it is possible to
obtain a simple approximation of E[max(X1, . . . , Xn)] where
X is geometrically distributed:

E[max(X1, . . . , Xn)] =
n∑

j=1

(
n

j

)
(−1) j+1

1 − (1 − p) j
(B1)

≈
n∑

j=1

(
n

j

)
(−1) j+1

j p
. (B2)

This approximation is based on the exact expression of
Ref. [44] for arbitrary p. We then expanded (1 − p) j with the
binomial theorem and neglected quadratic and higher orders
of p. We can furthermore prove by induction

n∑
j=1

(
n

j

)
(−1) j+1

j
=

n∑
j=1

1

j
=: H (n) , (B3)

where H (n) are also known as harmonic numbers. We approx-
imate the harmonic numbers by using only the first terms of
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their asymptotic expansion,

H (n) ≈ γ + ln(n) + 1

2n
, (B4)

where γ = 0.57721 . . . is the Euler-Mascheroni constant. In
the end, we obtain the simple approximation

E[max(X1, . . . , Xn)] ≈ 1

p

(
γ + ln(n) + 1

2n

)
. (B5)

Note that this approximation scales with ln(n), while the
widely used approximation ( 3

2 )
log2(n) 1

p scales with nlog2(1.5).
However, note that the latter depends on the assumption of
both small p and small swapping probabilities, so it is inap-
plicable here for deterministic swapping [53].

APPENDIX C: EFFECT OF MEMORY
DEPHASING FOR n = 2

For the case of two quantum repeater segments, the defi-
nition of Mpar ≡ M in Eq. (F3) simplifies to |X1 − X2|, where
X1 and X2 are independent geometrically distributed random
variables. Therefore, we have for the corresponding distribu-
tion

P(M = 0) =
∞∑

k=1

P(X1 = X2 = k) =
∞∑

k=1

p2q2(k−1) = p

2 − p
,

and for j > 0,

P(M = j) =
∞∑

k=1

2p2q2(k−1)+ j = 2
pq j

2 − p
,

where the factor 2 comes from the fact that the two cases X1 >

X2 and X2 > X1 are possible.
This allows us to calculate for M := |X1 − X2|

E

[
exp

(
− M

τ

T

)]
= p

2 − p

[
2

1 − q exp
(− τ

T

) − 1

]
,

(C1)

and by summing only up to a constant instead of infinity
and considering a renormalization, one can easily obtain the
expectation value for protocols which abort after the memory
has dephased for a given time (cutoff). The additional com-
plexity of this protocol lies solely in the raw rate, which is
already known in the literature [52–54]. Note that we also
have to consider an additional nonrandom dephasing time, be-
cause each memory already dephased during the time between
sending the optical mode and obtaining the information on
whether the optical measurement was successful. Therefore,
each memory dephases for a time unit of L

nc . If we perform
the measurements on the two outer memories immediately, we
only accumulate a constant dephasing time of 2(n − 1) L

nc =
2L
c (1 − 1

n ). If we perform the measurements of the outer
memories at the end of the entanglement distribution [like in
Eq. (F2)], we accumulate a constant dephasing time of 2L

c .

APPENDIX D: PAULI CHANNELS AND
ENTANGLEMENT SWAPPING

We call a single-qubit channel N (·) a Pauli channel if and
only if N (ρ) = ∑

i piPiρP†
i , where pi are probabilities and

Pi are Pauli operators (1, X,Y, Z). Since all of these Pauli
operators either commute or anticommute, Pauli channels
commute. The composition of two Pauli channels is again a
Pauli channel, because the product of two Pauli operators is
again a Pauli operator up to a phase which becomes irrelevant
for the case of a Pauli channel since Pi and P†

i are both
applied such that these phases cancel. Since one can switch
between all four two-qubit Bell states by applying one of the
four single-qubit Pauli operators, it can be seen that every
Bell-diagonal state is equivalent to a Pauli channel acting on
a perfect Bell state. Let us now show that Pauli channels com-
mute with the entanglement swapping operation on perfect
Bell states.

Without loss of generality, we assume that the Bell mea-
surement on two memory qubits for entanglement swapping
yields |
+〉 as the measurement outcome, while the other
three cases work analogously. It is also sufficient to con-
sider only two two-qubit pairs initially prepared in the Bell
states |
+〉12 and |
+〉34 and each being partially subject to
an arbitrary Bell-diagonal channel, N2 and N ′

3 for qubits 2
and 3:

〈
+|23N2(|
+〉12〈
+|) ⊗ N ′
3(|
+〉34〈
+|)|
+〉23

= 〈
+|23

4∑
i, j=1

pi p
′
jPi,2|
+〉12〈
+|P†

i,2

⊗ Pj,3|
+〉34〈
+|P†
j,3|
+〉23

=
4∑

i, j=1

pi p
′
jPi,1Pj,4〈
+|23|
+〉12〈
+|

⊗ |
+〉34〈
+|
+〉23P†
i,1P†

j,4

= 1

4

4∑
i, j=1

pi p
′
jPi,1Pj,4|
+〉14〈
+|P†

j,4P†
i,1

= 1

4

4∑
i, j=1

pi p
′
jPi,1Pj,1|
+〉14〈
+|P†

j,1P†
i,1

= 1

4
N1(N ′

1(|
+〉14〈
+|)) . (D1)

Here we used the fact that Pi,1Pi,2|
+〉12 = |
+〉12 holds for
all Pauli operators Pi and we also employed that (qubit) Pauli
operators are Hermitian and unitary and therefore self-inverse.

We can then apply this result for all entanglement swap-
ping operations successively. Note that this argument relies
on the assumption of Pauli channels and Bell-diagonal states,
but initially when including detector dark counts the memory
states are no longer Bell diagonal and already dephasing be-
fore we apply a operation which erases the Bell nondiagonal
elements [56, Sec. 3.2.1]. However, this erasing is done by
applying random correlated two-qubit Pauli operations and
hence commutes with the decoherence channel. As a conse-
quence, we can first apply the erasing channel and therefore
we have Bell-diagonal states (which are equivalent to a Pauli
channel on a perfect Bell state), allowing us to use the result
above. There is no additional temporal overhead due to the
communication time needed for generating the correlations.
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For example, a memory could generate two correlated random
variables and send one of them to the other memory belonging
to this segment. The necessary communication time is given
by L

nc , which is the same time as between sending the opti-
cal mode and obtaining the information whether the optical
measurement succeeded or failed. Alternatively, the middle
station could also generate the correlated random variables
and send them to the memories if the optical measurement was
successful. Therefore, only the amount of sent information by
the middle station increases and thus there are no temporal
issues. In the end, we have to consider a concatenation of n
dephasing channels, each with a random decoherence time
which is equivalent to a single dephasing channel where the
dephasing time is given by the sum of all the individual
dephasing times, e.g., t + t ′ (assuming the same coherence
time for both memories) for N1 and N ′

1 in Eq. (D1) for t
as defined in Eq. (A2). Similarly, we can simplify the con-
catenation of the n − 1 depolarizing channels with parameter
pdepol, describing the probability of no depolarization, into a
depolarizing channel with 1 − p′

depol = (1 − pdepol )n−1. The
concatenation of the Pauli channel corresponding to dark
counts and measurements cannot be simplified as much as for
the depolarizing or dephasing channel. For the concatenation
of a general single-qubit Pauli channel,

N (ρ) = p1ρ + p2ZρZ + p3XρX + p4Y ρY , (D2)

we obtain the following recursive set of equations,⎛
⎜⎜⎜⎜⎝

p(n+1)
1

p(n+1)
2

p(n+1)
3

p(n+1)
4

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎝

p1 p2 p3 p4

p2 p1 p4 p3

p3 p4 p1 p2

p4 p3 p2 p1

⎞
⎟⎠
⎛
⎜⎜⎜⎜⎝

p(n)
1

p(n)
2

p(n)
3

p(n)
4

⎞
⎟⎟⎟⎟⎠ , (D3)

where p(0)
1 = 1 and p(0)

2 = p(0)
3 = p(0)

4 = 0. Therefore, we
have ⎛

⎜⎜⎜⎜⎝
p(n)

1

p(n)
2

p(n)
3

p(n)
4

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎝

p1 p2 p3 p4

p2 p1 p4 p3

p3 p4 p1 p2

p4 p3 p2 p1

⎞
⎟⎠

n⎛
⎜⎝

1
0
0
0

⎞
⎟⎠ . (D4)

The transition matrix is real and symmetric and can thus be
diagonalized, such that it is easy to calculate the power of the
matrix.

APPENDIX E: CALCULATION OF THE QUANTUM
REPEATER STATES WITH ON-OFF DETECTORS

Our simplest protocol (n = 1) starts by creating hybrid
entanglement at the two cavities [see Fig. 1(b)]; i.e., we first
have the state

1
2 (|↑,↑, αe−iθ , αe−iθ 〉 + |↓,↓, αeiθ , αeiθ 〉

+ |↓,↑, αeiθ , αe−iθ 〉 + |↑,↓, αe−iθ , αeiθ 〉) . (E1)

After applying the lossy channels of transmittance
√

η (cor-
responding to the distance between Alice/Bob and the middle
station) and the 50:50 beam splitter at the middle station, we

obtain the following state:

1
2 (|↑,↑,

√
2
√

ηαe−iθ , 0,

√
1 − √

ηαe−iθ ,

√
1 − √

ηαe−iθ 〉

+ |↓,↓,

√
2
√

ηαeiθ , 0,

√
1 − √

ηαeiθ ,

√
1 − √

ηαeiθ 〉

+ |↑,↓,

√
2
√

ηα cos θ,−i
√

2
√

ηα sin θ,√
1 − √

ηαe−iθ ,

√
1 − √

ηαeiθ 〉

+ |↓,↑,

√
2
√

ηα cos θ, i
√

2
√

ηα sin θ,√
1 − √

ηαeiθ ,

√
1 − √

ηαe−iθ 〉) . (E2)

Here, the last two entries in each ket vector represent the
loss modes that initially start in a vacuum state. In order to
calculate the partial trace we will use the following calculation
trick. Suppose we are given a state of the form

∑
k ck|k〉1 ⊗

|	k〉2 (|k〉1 form an orthonormal basis, while |	k〉2 may be
arbitrary pure states) and we want to calculate the reduced
density matrix of system 1:

Tr2

(∑
k, j

ckc∗
j |k〉1〈 j| ⊗ |	k〉2〈	 j |

)

=
∑
k, j

ckc∗
j Tr2(|k〉1〈 j| ⊗ |	k〉2〈	 j |)

=
∑
k, j

ckc∗
j |k〉1〈 j|

∑
l

〈l|2|	k〉2〈	 j |l〉2

=
∑
k, j

ckc∗
j |k〉1〈 j|

∑
l

〈	 j |l〉2〈l|2|	k〉2

=
∑
k, j

ckc∗
j |k〉1〈 j|〈	 j |	k〉2 . (E3)

Similarly, one can show for the conditional state of subsystem
1 with measurement operators A acting on subsystem 2:

Tr2

(∑
k, j

ckc∗
j |k〉1〈 j| ⊗ A2|	k〉2〈	 j |A†

2

)

=
∑
k, j

ckc∗
j |k〉1〈 j|〈	 j |A†

2A2|	k〉2 . (E4)

Note that A†A is a POVM element and the POVM of an
on-off detector including dark counts [see Ê of Eq. (A4)] is
known in the literature [57] and therefore we do not need to
explicitly calculate a corresponding measurement operator A.
Moreover, there is no need to explicitly compute the effect of
dark counts on the conditional states. This allows us to express
all coefficients of the two memories’ final density operator in
terms of scalar products between coherent states.

If we measure the photon number (without dark counts)
on the second optical mode after the beam splitter at
the middle station and trace out all other modes, we ob-
tain the following density operator for Alice’s and Bob’s
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qubits:

1
2 (|↑,↓〉〈↑,↓| + |↓,↑〉〈↓,↑| ± ∣∣〈√1 − √

ηαeiθ |

×
√

1 − √
ηαe−iθ 〉∣∣2(|↑,↓〉〈↓,↑| + |↓,↑〉〈↑,↓|)) , (E5)

where |〈√1 − √
ηαeiθ |√1 − √

ηαe−iθ 〉|2 evaluates to
exp [−4(1 − √

η)α2 sin2 θ ]. When considering only
on-off detectors, the off-diagonal terms change and
one additionally needs to take into account a factor

of
〈−i

√
2
√

ηα sin θ |(1−|0〉〈0|)|i
√

2
√

ηα sin θ〉
e2

√
ηα2 sin2 θ−1

, which simplifies to

−e−2
√

ηα2 sin2 θ . Therefore, we obtain in total e−2(2−√
η)α2 sin2 θ

as the factor of the off-diagonal terms. This state is a mixture
of two Bell states and, for the cases n > 1, if we perform
(ideal) Bell measurements on all n segments, it is easy to see
(due to the Pauli channel argument) that the exponent of the
off-diagonal terms in the remaining state (after applying Pauli
operations depending on the Bell measurement outcomes) is
simply multiplied by n. For Bell-diagonal states with only two
nonzero coefficients, it is trivial to check that the distillable
entanglement with only one-way classical communication
coincides with the asymptotic secret-key fraction of BB84.

When considering also dark counts for the on-off detectors,
we obtain the following (unnormalized) state:

〈↑,↑| 〈↓,↓| 〈↑, ↓| 〈↓, ↑|
|↑,↑〉 a c∗ d∗

1 d∗
2

|↓, ↓〉 c a d2 d1

|↑, ↓〉 d1 d∗
2 b f ∗

|↓, ↑〉 d2 d∗
1 f b

with a = 〈0|Ê |0〉 = 1 − D(0), where Ê is the click operator
considering dark counts [57] and D(0) is the probability that
the detector does not click when a vacuum state is used as the
input. Further, we have

b = 〈±i
√

2
√

ηα sin θ |Ê | ± i
√

2
√

ηα sin θ〉
= 1 − e−2

√
ηα2 sin2 θD(0) , (E6)

c = 〈
√

1 − √
ηαe−iθ |

√
1 − √

ηαeiθ 〉2

× 〈
√

2
√

ηαe−iθ |
√

2
√

ηαeiθ 〉a
= e2α2[exp(2iθ )−1]a = ae−4α2 sin2 θ+i2α2 sin 2θ , (E7)

d = d1 = d2 = 〈
√

1 − √
ηαe−iθ |

√
1 − √

ηαeiθ 〉

× 〈
√

2
√

ηα cos θ |
√

2
√

ηαeiθ 〉〈0|Ê |i
√

2
√

ηα sin θ〉
= ae−2α2 sin2 θ+iα2 sin 2θ , (E8)

f = |〈
√

1 − √
ηαe−iθ |

√
1 − √

ηαe−iθ 〉|2

× 〈i
√

2
√

ηα sin θ |Ê | − i
√

2
√

ηα sin θ〉
= e−2α2 sin2 θ (2−√

η)[e−2
√

ηα2 sin2 θ − D(0)] . (E9)

Note that without dark counts, a = c = d = 0, and D(0) = 1,
we recover the effective 2×2 matrix of the loss-only case. A
distinction between d1 and d2 has to be made when we con-
sider entanglement swapping strategies which do not double
the distance.

Note that the phases of these parameters now also have a
α2 sin 2θ dependency, while there was no such dependency in
the ideal case without dark counts. If we transform the state
into a Bell-diagonal state, we have the parameter c which
gives use information about the relative distribution of |φ±〉
and this parameter varies periodically with θ . Therefore, it
can be useful to apply local transformations for permuting
the four Bell-state coefficients [58] in order to obtain a higher
secret-key fraction using BB84. When considering a swapping
scheme where entanglement swapping is performed between
two segments of equal size, one obtains the following set of re-
cursive equations describing the unnormalized two-qubit state
(assuming 2 j elementary segments and |
+〉 as measurement
outcome, while above we considered the case of j = 0 and
omitted the subscript):

a j+1 = a2
j + b2

j + 2Re
(
d2

j

)
,

b j+1 = 2
[
a jb j + Re

(
d2

j

)]
,

c j+1 = 2d2
j + f 2

j + c∗2
j ,

d j+1 = d j (a j + b j + c∗
j ) + d∗

j f j ,

f j+1 = 2[|d j |2 + f jRe(c j )] . (E10)

Note that for n = 1 the BB84 secret-key fraction is not re-
duced due to discarding the off-diagonal terms in the Bell
basis. For n = 2, the effect of discarding them is negligibly
small. Also note that the approach here that leads to these
recursive equations does not yield the same rates as using
the protocol version based on the results of Ref. [59] without
correlated Pauli operations (see Appendix F 2), because we do
not average over all possible Bell measurement outcomes. The
calculation of the reduced state considering phase mismatch is
completely analogous.

APPENDIX F: ERRORS BEYOND LOSS,
HOMODYNE DETECTION

1. Memory dephasing

Let us consider n repeater segments (n > 1; otherwise,
no memory is needed). We can then assign independent ran-
dom variables Xj ( j ∈ {1, . . . , n}) to every segment counting
for each the number of attempts until the entanglement is
distributed due to a successful measurement outcome of the
detector(s) for that segment. These random variables follow
a geometric distribution P(X = k) = pqk−1 with q = 1 − p,
where p is the probability for a successful measurement out-
come. We can then introduce a new random variable M, which
is a function of the random variables Xj , describing the to-
tally accumulated memory time for which the quantum states
dephase. Note that the specific form of the random variable
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M differs for different entanglement generation and swapping
protocols. In Sec. III B, we only considered a scheme where
entanglement distributions in the n segments are done in par-
allel. In terms of the raw rate, it is clear that such a scheme
achieves better rates than any sequential approach. However,
when we also consider finite memory times it is no longer
obvious whether the parallel scheme still performs better in
terms of secret-key rate, because it is possible during the
parallel distributions that multiple segments dephase simulta-
neously, resulting in a longer accumulated memory dephasing
time. In contrast, in an appropriate sequential scheme where
always only one pair is distributed and swapping is imme-
diately performed as soon as two pairs are present next to
each other, at most a single memory pair is subject to a longer
dephasing at any time.

In the special case of n = 2, it is impossible that multiple
memory pairs dephase simultaneously and therefore in terms
of secret-key rate the parallel scheme (M = 2|X1 − X2|) out-
performs the sequential one (M = 2X2). The factor two here
takes into account the situation when there are two memo-
ries dephasing in each segment. It is intuitive that for n = 2
the parallel scheme outperforms the sequential one for two
reasons. First, in the parallel scheme we only need to wait
max(X1, X2) time steps instead of X1 + X2 in order to dis-
tribute entanglement in both segments. Second, the memories
also dephase to a lesser extent in the parallel scheme, because
in both schemes at most one memory pair has to wait, but
in the parallel scheme it is also possible that both segments
succeed simultaneously. In general, for n segments, the raw
rate in a sequential scheme is given by p

n , while in a parallel
scheme it is given by p

H (n) , where H (n) is the nth harmonic
number (assuming p � 1; see Appendix B). Let us emphasize
that this raw rate approximation holds for any memory-based
quantum repeater that distributes entanglement in parallel and
operates without nested quantum error detection or correc-
tion. However, for n > 2, it is easy to calculate the average
dephasing for the sequential scheme exactly while it is more
complicated for the parallel one. In order to calculate it for
a parallel scheme, we assume that entanglement swapping
is performed when entanglement was distributed in all seg-
ments in order to simplify the analysis (see Appendix I).
We found that the sequential scheme always gives better
secret-key rates than our simple parallel scheme (except for
n = 2). This comparison is based on both exact and lower
bounded dephasing factors for the sequential scheme together
with lower bounds on the secret-key fraction for the parallel
scheme. Supported by this, whenever memory dephasing is
included, we shall consider the parallel scheme for the n = 2
case and the sequential scheme otherwise (n > 2). Thus, our
focus on the sequential scheme for n > 2 has two benefits:
The secret-key rates can be calculated exactly and they turn
out to be better thanks to the reduced total average dephas-
ing. The inferior raw rates, p

n versus p
H (n) for the parallel

scheme, appear to have a smaller impact on the secret-key
rates (for up to n = 16, the difference is a factor smaller
than 5).

The resulting random state of a single protocol run
with on-off detectors is then given by the density

matrix:

1

2

[
1 + e−2n(2−√

η)α2 sin2 θ exp

(
− M

τ

T

)]
|
+〉〈
+|

+ 1

2

[
1 − e−2n(2−√

η)α2 sin2 θ exp

(
− M

τ

T

)]
|
−〉〈
−| ,

(F1)

where τ is the duration of a single entanglement generation
attempt in one segment and T is the coherence time of the
memory. Note that this state corresponds to the final state
shared between Alice and Bob over the total channel distance
(while for the case of Alice and Bob immediately measuring
their qubits it is an effective rather than a physically occurring
state).

The density operator in Eq. (F1) describes the state af-
ter a single run, but we are interested in the averaged
state. This means we have to calculate the expectation value
E[exp(−M τ

T )]. We calculate this expectation value for the
case n = 2 for the parallel scheme in Appendix C. In a se-
quential scheme, the expectation value E[exp (−M τ

T )] can be
calculated easily for arbitrary n, because M is simply a sum
of (independent and identically distributed) geometric random
variables, whereas for a parallel scheme it is generally not
known how to calculate the expectation value for arbitrary n.
In Appendix I, we will discuss a lower bound on the secret-key
rate based on Jensen’s inequality when using a parallel scheme
with arbitrary n.

Since we are here only interested in the secret-key rate,
we do not need to consider distributing physical entanglement
over the whole distance. This means we can perform the
measurement on Alice’s and Bob’s memories in the beginning
with no need to wait until the entanglement is distributed over
the whole repeater. For the parallel scheme, this has only a
little effect by improving

Mpar = 2
n∑

j=1

[max(X1, . . . , Xn) − Xj] (F2)

to

Mpar = 2
n−1∑
j=2

[max(X1, . . . , Xn) − Xj]

+ 2 max(X1, . . . , Xn) − X1 − Xn . (F3)

For Eq. (F3), in the segments next to Alice and Bob there is
only one memory dephasing instead of two like for Eq. (F2).

In the case of the sequential scheme, we can improve

Mseq = 2
n∑

j=2

Xj (F4)

to

Mseq =
n∑

j=2

Xj , (F5)

since in the sequential scheme there is always a single segment
dephasing where for Eq. (F5) we removed the dephasing in
one of the two memories. Therefore, we effectively double the
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FIG. 7. Secret-key rates for a two-segment repeater (n = 2, par-
allel scheme) without phase mismatch and assuming the parameters
as listed in the main text. The straight lines (from bottom to top)
denote the PLOB bound,

√
ηtotal, and 4

√
ηtotal. The rates are for differ-

ent coherence times T of (1, 10, 100, 1000, ∞) seconds (from left
to right). The areas between PLOB and

√
ηtotal and between

√
ηtotal

and 4
√

ηtotal are highlighted in color. The purple dashed line denotes
the loss-only case of standard twin-field QKD with perfect detector
efficiencies and assuming a coherent-state amplitude optimized for
the regime of large loss [20].

memory coherence time for arbitrary n, whereas in the parallel
scheme the improvement reduces with increasing segment
number n.

Due to the finite memory time, it is useful to consider a
cutoff parameter which defines a maximal decoherence time
before a state is discarded. For the case of only two segments,
we have calculated the expectation value of the dephasing
fractions with cutoff. In this paper, the main focus is on
repeaters with n = 2, 3, 4 repeater segments whose ultimate
secret-key rates per channel use scale as 4

√
ηtotal, 6

√
ηtotal, and

8
√

ηtotal, respectively.

2. Dark counts and phase mismatch

With the inclusion of detector dark counts, we need to
use the full 4×4 density matrix (in the computational basis)
instead of an (effective) 2×2 matrix (in the case without
dark counts all matrix elements except a 2×2 submatrix were
zero) in order to describe the two-qubit state. Calculating
the state before the entanglement swapping is straightforward
but lengthy (see Appendix E) and the state after multiple
entanglement swappings can be described by a set of recur-
sive relations (see also Appendix E). In order to simplify the
analysis, we apply classically correlated Pauli operations to
both parts of the imperfect Bell states, such that we erase the
off-diagonal terms in the Bell basis [56, Sec. 3.2.1]. We do not
need to let the memories dephase additionally for obtaining
the classical correlations as required for the correlated Pauli
operations, because an entanglement generation attempt takes
τ = 2 L0

2c in order to send the optical mode to the detector in
the middle of the segment (length L0) and to learn the mea-
surement outcome. If one party sends the bits for establishing
classical correlations at the same time as it sends the mode
to the detector, then we do not get an additional temporal
overhead. As a consequence, this allows us to describe all

0 200 400 600 800
L(km)

10−14

10−11

10−8

10−5

0.01

10
SKR

FIG. 8. Secret-key rates assuming the same parameters as in
Fig. 7 except for pdet = 1 instead of pdet = 0.15.

errors as Pauli channels which act onto perfect Bell states.
Therefore, we can conduct our analysis as if we perform
the entanglement swapping on perfect Bell states and apply
all the errors afterward (see Appendix D). Also notice that
it is possible to obtain the advantage of a simplified anal-
ysis without the need for correlated Pauli operations [59].
In this case, one performs entanglement swapping as usual;
i.e., one applies Pauli corrections depending on the measured
Bell state, but after the Pauli correction one discards the in-
formation about the measurement outcome. Because of this
averaging, the teleportation reduces to a Pauli channel. There-
fore, we can also interpret our protocol as applying n − 1
teleportation steps (each represented by a Pauli channel) onto
a non-Bell-diagonal state. Since a channel is linear, we can
split the non-Bell-diagonal state into a Bell-diagonal part and
a part containing the off-diagonal elements. When applying
the Pauli channel to these two parts, we see that the first part
is exactly the state we considered in the previous protocol.
In the second part, the Bell states are simply permuted by
Pauli operations, such that the state after applying the Pauli
channels again only contains off-diagonal elements. However,
these off-diagonal elements do not matter for the BB84 secret-
key rate. Note that these simplifications (applying correlated
Pauli operations or discarding the measurement outcome) are
at the expense of a worse secret-key rate in comparison to the
case without correlated Pauli operations, where we still keep
track of the measurement outcome and do not average.

We compared the secret-key fraction of the simplification
and the exact case (for n = 2) using the parameters as mostly
chosen in Sec. IV. For this comparison, we considered loss
and dark counts with parameters as in Sec. IV. We found that
the relative error increases exponentially with the distance of
the total repeater. However, only for distances that are just
a bit shorter than the distance where the secret-key fraction
drops to zero the relative error becomes relevant, up to the
point when the relative error diverges near the point where the
secret-key fraction drops to zero. Therefore, we conclude that
it is safe to use this simplification when not considering the
neighborhood of the point where the secret-key fraction drops
to zero.

In order to allow for phase-mismatch errors, which occur,
e.g., due to small differences in the laser frequencies and
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length fluctuations of the optical path, we model this error
by assuming that one party employs a coherent state with
amplitude α for generating the hybrid entangled states while
the other party uses a coherent state with amplitude αeiφ ,
where φ is a random variable with, for simplicity, a uniform
distribution on the interval (−�

2 , �
2 ). We also have to bear

in mind that this random-phase difference has an influence
on the raw rate [depending on α sin θ ] and especially for a
small dispersive phase rotation θ the rate can vary up to a few
percent. However, the relevant distribution for the secret-key
fraction is the probability distribution of φ after conditioning
onto a detector click. Therefore, the relevant distribution is
not uniform anymore but larger values of |φ| have a larger
probability (up to the point where the probability drops to
zero). Nevertheless, the difference between the actual and uni-
form distributions is small. We calculated the Bell-diagonal
coefficients and their expectation values with respect to φ.
However, even for the uniform distribution, it is only possible
to calculate the expectation value by numerical integration and
therefore one could easily consider a more realistic model for
the distribution of the phase difference φ.

According to Fig. 9, the phase mismatch can be almost ne-
glected when � < 0.1θ (this even holds for θ = π

2 ). However,
for larger �, the secret-key rate drops to zero very fast. For
� = θ = 0.01, it is even impossible to obtain a secret key
using the above parameters. Therefore, we cannot choose θ

arbitrarily small since this increases too much the required
precision of the phase matching.

3. Homodyne measurement

In the main part of the paper, we only consider a scenario
where Charlie (besides the less practical case of PNRDs) em-
ploys an on-off detector. This is similar to previous twin-field
QKD schemes. However, it is straightforward to treat homo-
dyne measurements for the two modes instead. Homodyne
measurements have the benefit of near-unit efficiencies. When
reconsidering Eq. (4), one can see that the state shares some
similarities to that of the HQR in Eq. (2). If we can discrimi-
nate the peak at 0 from those at ±√

2α sin θ in the first mode
with a p measurement (imaginary part of

√
2α cos θ versus

that of
√

2α exp(±iθ ) for, recall, α ∈ R+), then we learn only
that Alice and Bob have different bits but not their values.
However, in order to not learn their values by measuring the
second mode (to disentangle it from the remaining system),
we need to measure the x quadrature in the second mode
(real part of ±i

√
2α sin θ ). It is also possible to exchange

the two modes by which one obtains the same secret-key
fraction after a suitable postselection of states. The actual
calculation is similar to that with on-off detectors and can be
found in Appendix H. Using homodyne measurements, it is
not obvious how to define a successful detector event. We will
consider an event to be successful if the measurement result of
the quadrature p1 lies within the interval (−�p,�p), and the
measurement result of x2 must also occur within the interval
(−�x,�x ). Choosing �x and �p is a compromise between a
high raw rate and a high state quality. For a given α and θ , we
can reduce the Z-error rate by decreasing �p. One might think
that the parameter �x is not relevant and can therefore be set
to ∞. However, this is not true since it also has an influence on
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FIG. 9. Secret-key fraction for the two-segment quantum re-
peater (n = 2, parallel scheme) using the parameters discussed in
Sec. IV. We choose different memory coherence times for the three
different plots and in each plot we consider a phase mismatch � of
(0, 10−4, 10−3, 5 × 10−3, 7.5 × 10−3) (from top to bottom). (a) Ideal
memories, (b) T = 10E(M )τ , and (c) T = E(M )τ .

the X -error rate, making it even impossible to share a secret
key in the no-loss case of

√
η = 1 for too large �x. This

problem can be solved by simply choosing a sufficiently small
�x, but even then a nonzero secret-key rate cannot be obtained
for even moderate losses like

√
η = 0.7 (about 8 km for the

physical segment length assuming perfect detectors).
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FIG. 10. Asymmetric variation of our proposed scheme for
n = 2. The beam splitter is placed nearer to the memory station
(β > 1

2 ) such that the overall repetition rate can be increased. Note
that for n > 2 there is no gain with this variation. Because of this
asymmetry, Alice (as well as Bob) and the central memory station
have to choose different amplitudes of the coherent states, and we
denote the amplitude arriving at the beam splitter by αBS .

APPENDIX G: CALCULATION OF THE QUANTUM
REPEATER STATES WITH ASYMMETRIC

LINK LENGTHS

In this Appendix, we discuss the obtainable secret-key
rates per second in an asymmetric setting (for n = 2) where
the beam splitters are placed closer to the central memory
station and farther away from Alice and Bob. This way, com-
pared with the fully symmetric scheme, repetition rates can be
increased (thanks to shorter classical communication times) at
the expense of a worse scaling with distance. Similar to the
case with symmetric link lengths as discussed in Appendix E,
we can calculate the resulting two-qubit state in the asym-
metric setting as illustrated in Fig. 10. When we consider the
loss-only case, we obtain

a = c = d = 0 ,

b = 1 − exp(−2α2
BS sin2 θ ) ,

f = [exp(−2α2
BS sin2 θ ) − 1] exp(−2α2

BS sin2 θ )

× exp

(
− α2

BS exp

(
L0

Latt

){
exp

(
− L0β

Latt

)
(1 − e−2iθ )

+ exp

[
− L0(1 − β )

Latt

]
(1 − e2iθ ) − 2[1 − cos(2θ )]

})
.

(G1)

Here, β describes the asymmetry of the scheme as follows.
The distance from Alice and Bob to the beam splitter is given
by βL0 and the distance between the memory and the beam
splitter is therefore given by (1 − β )L0. Since Alice and Bob
have different distances to the beam splitter compared with
the memory, both parties need to use different amplitudes in
the light-spin entangled states. We choose their amplitudes in
such a way that the amplitude at the beam splitter is given in
both cases by αBS .

Notice that in this general case f is no longer a real number
and it is even possible that Re( f ) = 0. Therefore, the secret-
key fraction may become zero in this simple error model. As
can be seen in Fig. 11, for a fixed total distance, the secret-key
rate oscillates with respect to β including an envelope. The
oscillations originate from the fact that Im( f ) �= 0 is possi-
ble. The envelope takes the following form: For β < βmax

it increases with βmax > 1
2 , while it drops when β > βmax.

This comes from the gain in repetition rate while not losing
too much from the worse scaling per channel use. By further
increasing β, the envelope now decreases due to the worse
scaling. In the region of β ≈ 1, the secret-key rate per sec-
ond rapidly increases again, because the repetition rate grows

FIG. 11. Secret-key rate per second in the loss-only case of our
asymmetric parallel scheme (n = 2) for a total distance of 400 km
in dependence of the asymmetry parameter β. The constant line is
given by the secret-key rate of the symmetric scheme (β = 1

2 ). We
assume that the repetition rate is limited to 10 MHz because of local
operation times. In this case, we can comfortably beat the symmetric
scheme for strong asymmetry (β → 1); however, this almost resem-
bles the twin-field QKD configuration where GHz repetition rates
can be used in principle. Also note that for a maximal repetition rate
of 1 MHz the completely asymmetric scheme no longer outperforms
the symmetric one.

quickly up to the point where it is limited by the possible
repetition rate of the light source. Because of the oscillations,
it is necessary to optimize β for any given total distance.
When considering increasing distances, βmax moves nearer to
1
2 and the advantage compared to the symmetric case of β = 1

2
becomes less pronounced. For total distances of 200 km, we
can increase the secret-key rate by 4.6%, while for a total
distance of 400 km we only gain 1.1%.

APPENDIX H: CALCULATION OF THE QUANTUM
REPEATER STATES WITH HOMODYNE MEASUREMENTS

Let us first start with the no-loss case and again consider
the state

1
2 (|↑,↑, αe−iθ , αe−iθ 〉 + |↓,↓, αeiθ , αeiθ 〉

+ |↓,↑, αeiθ , αe−iθ 〉 + |↑,↓, αe−iθ , αeiθ 〉) . (H1)

After applying the beam splitter and the measurements of
p̂1 = p and x̂2 = x, we have the conditional two-qubit state
(after tracing out the optical modes)

1
2 (|↑,↑〉〈p̂ = p|

√
2αe−iθ 〉〈x̂ = x|0〉

+ |↓,↓〉〈p̂ = p|
√

2αeiθ 〉〈x̂ = x|0〉
+ |↓,↑〉〈p̂ = p|

√
2α cos θ〉〈x̂ = x|i

√
2α sin θ〉

+ |↑,↓〉〈p̂ = p|
√

2α cos θ〉〈x̂ = x| − i
√

2α sin θ〉) . (H2)

As the next step, we calculate position- and momentum-space
wave functions of a coherent state with amplitude x0 + ip0. In
order to express these wave functions in terms of vacuum-state
wave functions of the harmonic oscillator, we will make use
of the displacement operator (h̄ = 1

2 in our notation) and the
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Baker-Campbell-Hausdorff formula:

〈x̂ = x|x0 + ip0〉
= 〈x̂ = x| exp[(x0 + ip0)(x̂ − i p̂) − (x0 − ip0)(x̂ + i p̂)]|0〉
= 〈x̂ = x| exp[2i(p0x̂ − x0 p̂)]|0〉
= 〈x̂ = x| exp(2ip0x̂) exp(−2ix0 p̂) exp(−ip0x0)|0〉
= 〈x̂ = x − x0|0〉 exp

[
2ip0

(
x − x0

2

)]

= 4

√
2

π
exp

[−(x − x0)2
]

exp
[
2ip0

(
x − x0

2

)]
. (H3)

Similarly, one can show

〈p̂ = p|x0 + ip0〉 = 4

√
2

π
exp[−(p − p0)2]

× exp
[
−2ix0

(
p − p0

2

)]
. (H4)

We postselect onto states where p ∈ (−�p,�p) and x ∈
(−�x,�x ). Further, we label the density matrix elements
in the same way as in the case with on-off detectors (see
Appendix E) and we obtain the following results (all elements
must be divided by the matrix trace, 2(a + b), for normal-
ization; for brevity we also omitted some extra factors which
cancel anyway then through normalization),

a = 1

2
[erf(

√
2�p − 2α sin θ ) + erf(

√
2�p + 2α sin θ )] ,

(H5)

b = erf(
√

2�p) , (H6)

c = exp(2α2[−1 + exp(2iθ )])erf(
√

2�p) , (H7)

f =exp(−4α2 sin2 θ ) erf(
√

2�p)
Re[erf(

√
2�x +2iα sin θ )]

erf(
√

2�x )
.

(H8)

When including loss, we can make use of Eq. (E3), and after
simplifications one can see that the expressions for a, b, c, f
almost stay the same. We only have to replace α → α

√√
η

within the erf functions and otherwise nothing changes where√
η is the transmission parameter corresponding to one physi-

cal segment (half a repeater segment). For example, for n = 1,
we have α → 4

√
ηtotalα. Using the expressions a, b, c, f we

can then calculate the BB84 secret-key fraction as before (we
did not explicitly calculate d1 and d2, because we only need
their values when considering n > 1 and also not discarding
the off-diagonal terms in the Bell basis).

APPENDIX I: DIFFERENT DISTRIBUTION
AND SWAPPING STRATEGIES

Let us discuss the effects of memory dephasing for the
sequential and a parallel entanglement distribution schemes.
First of all, we have to point out that the choice of Mpar is not
optimal for more than two segments, because it assumes that
the entanglement swapping operations are performed at the
end, only after the entanglement distributions in all segments
have succeeded. To illustrate this point, let us consider the
example that first two adjacent segments succeeded and we

have to wait one more time step until all the other segments
succeeded so that we can perform all swapping operations.
This means the value of M would be 4, because two segments
(with two memories each) waited for one time step. Instead,
we could also consider the case that we first perform the
swapping operation on the two segments immediately after
their successful creations and after the extra single time step
we perform the remaining swapping operations. As a conse-
quence, the value of M is only 2, because only two memories
waited for one time step. This means it is beneficial to swap
as soon as possible in order to keep the number of dephasing
memories low.8

Unfortunately, it is currently not even known how to calcu-
late the probability distribution of M = Mpar for n > 2 in the
simple case where we wait for the success of all segments
before performing the swapping operations. If we want to
consider more than two segments in a parallel distribution
scheme, however, we can use the bound E[exp(−M τ

T )] �
exp[−E(M ) τ

T ] which can be obtained by applying Jensen’s
inequality. As the expectation value operation is linear, we can
easily calculate E(M ) since the exact E[max(X1, . . . , Xn)] is
already known in the literature [44], and we obtain [for the
case when Alice and Bob do not store their halves, so for M
from Eq. (F3)]:

E(Mpar ) = 2(n − 1)

[
n∑

j=1

(
n

j

)
(−1) j+1

1 − q j
− 1

p

]
, (I1)

also using the well-known result for a geometrically dis-
tributed variable, E(Xj ) = 1

p ,∀ j = 1 . . . n. We can use the
inequality in order to obtain a lower bound on the secret-key
fraction. However, one needs to bear in mind that this is
only a lower bound that becomes very loose in the regime
of bad memories. For the simple case of n = 2, we calcu-
lated exp[−E(M ) τ

T ] and E[exp(−M τ
T )] (see Appendix C)

and compared their corresponding secret-key fractions (as-
suming p = 10−4,

√
η � 1). For the case of T = 10E(M )τ ,

we found that the exact calculation yields a 1% higher secret-
key rate. When considering T = E(M )τ , the error increased
to 86% and when looking at memories with T = 0.1E(M )τ
the approximation underestimated the secret-key fraction by
six orders of magnitude, although the exact secret-key fraction
of 2 × 10−3 was not ridiculously low. Numerical simulations
show that the bound becomes tighter for an increasing number
of repeater segments. Unfortunately, realistic coherence times
are often too small for obtaining a good bound by applying
Jensen’s inequality.

Let us now discuss the difference between a sequential and
a parallel scheme with respect to the secret-key fraction. In
order to be sure that improvements in the state quality arise
from the changed strategy and not only from using the exact

8However, note that if we assumed probabilistic entanglement
swapping instead of a deterministic one, swapping as soon as possi-
ble would yield a nonoptimal raw rate, because one does not want to
perform many entanglement swapping operations between entangled
pairs of long and short distances since if the operation fails all
involved segments have to start from scratch.
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FIG. 12. Secret-key rate for a repeater with n = 2 (red), 3
(green), and 4 (blue) (from left to right in terms of dropping secret-
key rate) segments using a sequential protocol (α = 23.9 in all
cases). The solid lines show the ideal loss-only case (pdet = 1),
while the dashed lines correspond to the case where we additionally
consider a finite memory coherence time of 10 s. The dotted lines
use the exact expression for the expectation value of the dephasing.
The benchmarks (from bottom to top) PLOB,

√
ηtot, 4

√
ηtot, 6

√
ηtot, and

8
√

ηtot can also be seen. The regions between two of those benchmarks
are highlighted in color.

expression instead of a lower bound, we will now also com-
pare the two strategies using for both the lower bound based
on Jensen’s inequality (for the sequential scheme, in addition,
we use the exact rates). For simplicity, let us consider the
case where Alice and Bob perform the measurements on their
qubits at the end after the entanglement was distributed over
the whole distance and define the random variable Mseq :=
2
∑n

j=2 Xj (in the other case, the sequential scheme also has a
larger improvement than the parallel one). We then have

E[Mseq] = 2
n − 1

p
, (I2)

E[Mpar] ≈ 2n
H (n) − 1

p
, (I3)

where Mpar is taken from Eq. (F2) and we used the approxima-
tion for the parallel scheme derived in Appendix B, assuming
p � 1. For n = 2, the protocols are the same and it can easily
be checked that the sequential protocol is better for n � 3.
Better here means that less memory time is needed leading to
a better secret-key fraction. Which protocol is the best in terms
of the secret-key rate also depends on the memory coherence
time T . If we have perfect memories (T = ∞), we do not gain
any advantage due to the sequential protocol, but we have the
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FIG. 13. Secret-key rate for a repeater with n = 2 (red), 3
(green), and 4 (blue) (from left to right in terms of dropping secret-
key rate) segments using a parallel protocol (α = 23.9 in all cases).
The solid lines show the ideal loss-only case (pdet = 1), while the
dashed lines correspond to the case where we additionally consider
a finite memory coherence time of 10 s using Jensen’s inequality.
The benchmarks (from bottom to top) PLOB,

√
ηtot, 4

√
ηtot, 6

√
ηtot, and

8
√

ηtot can also be seen. The regions between two of those benchmarks
are highlighted in color.

disadvantage of a lower raw rate ( p
n versus p

H (n) ), resulting in
a lower overall secret-key rate. Note that for n = 2 when we
use the exact dephasing expressions for both the parallel and
the sequential schemes, the parallel one even has a smaller
dephasing than the sequential one, as already pointed out in
Appendix F.

The obtainable secret-key rate using Jensen’s inequality for
the sequential and parallel protocols with a memory coherence
time of 10 s can be seen in Figs. 12 and 13. It can be seen
that for n = 2 the parallel scheme is superior, because both
schemes have the same amount of dephasing but the parallel
scheme has a better raw rate. However, for n = 3 the rates of
both schemes are quite similar and for n = 4 the sequential
scheme outperforms the parallel one as one might anticipate
due to the better dephasing. Clearly, when using the exact
expression for the dephasing in the sequential scheme, we ob-
tain significantly better rates than for the parallel scheme with
rates calculated from the lower bound. However, for n > 2,
the rates of the sequential scheme based on the lower bound
are still at least as good or even better (n > 3) than those for
the parallel scheme. This is our motivation for employing the
sequential scheme throughout whenever we consider n > 2
(besides the benefit that this allows us to compute the exact
rates also for larger schemes, n > 2).
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Elementary building blocks for quantum repeaters based on fiber channels
and memory stations are analyzed. Implementations are considered for three
different physical platforms, for which suitable components are available:
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modular form to construct a quantum repeater system that is potentially
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1. Introduction

Quantum key distribution (QKD) and re-
lated schemes are offering a paradigm
change in establishing secure communi-
cation: algorithmic security is replaced by
physically secure generation of encryption
keys.[1] The symmetric keys created byQKD
can be used to securely transmit messages
between two stations (Alice and Bob) via
public channels. Security is warranted by
physically detecting any eavesdropping at-
tack. To generate a key, the iconic BB84
protocol[2] employs nonorthogonal quan-
tum states of photons carrying qubit in-
formation, while other schemes make use
of measuring entangled photon pairs, such
as the Ekert protocol.[3] More generally, es-
tablishing entanglement of distant quan-
tum objects provides a critical resource
for efficient distribution of quantum infor-
mation, both at short and long distances;
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applications beyond quantum cryptography, such as dis-
tributed quantum information processing and future quantum
networks,[4] will also depend on this resource.
Networks based on individual point-to-point links (PPLs) over

50–80 km length have been realized at the metropolitan area
level, and even a long distance connecting Beijing and Shanghai
(≈2.000 km) has been bridged via 32 intermediate stations.[5]

So far, however, such networks rely on independent quantum
PPLs chained together by “trusted nodes,” connecting the links
by classical operations (“receive and resend”) and thus providing
full access to the transmitted bits at each node. Truly long-range
quantum links have been realized via satellite channels,[6] yet up
to now also the satellites serve as trusted nodes in such schemes.
Moreover, since these links require large-scale send-and-receive
facilities, it is likely that they need to be combined with “local-
area” ground-based quantum networks (of a smaller, intermedi-
ate range) as obtainable from the elementary fiber-based schemes
presented and discussed here.
At present the main obstacle in establishing large-scale quan-

tum networks are inherent losses of the transmission channels.
The current record for terrestrial, fiber-based point-to-point QKD
lies in the range of about 400 km.[7,8] As a consequence,[9] secret
key rates (SKRs) obtained via direct transmission (without inter-
mediate stations) through an optical quantum channel of length
L are effectively limited by the channel transmission efficiency
𝜂 = exp(−L∕Latt) for large L where Latt is the attenuation length
of the channel.[10] More precisely, this limit corresponds to a se-
cret key capacity of 1.44 𝜂 (per channel use and permode, in units
of secret bits[11]).[12] In particular, optical fiber systems feature a
loss rate of about 0.2 dB km−1 (corresponding to Latt = 22 km),
limiting useful distances to a few hundred km (Figure 1).
There are interesting methods to overcome this limitation

without the use of quantum memories by sending fairly sim-
ple quantum states (in the form of single photons or optical
coherent states) to a detector station placed in the middle of
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Figure 1. QKD rate in dB (normalized to the protocol’s clock rate) as
a function of distance in km. Point-to-point protocols scale as ∼ 𝜂 =
exp(− L

Latt
), limited by the “repeaterless” bound.[12] For telecom fibers:

Latt = 22 km. An ideal “single” quantum repeater with only one middle
station[13] scales as ∼

√
𝜂 = exp(− L∕2

Latt
). “Multiple” repeaters may further

reduce the effective loss and extend the transmission distance. The exact
“repeaterless” bound (secret key capacity) is −log2(1−𝜂) ≈ 1.44𝜂 in units
of secret bits,[12] where the approximation only holds for sufficiently small
𝜂 (large distances).

the channel.[14,15] Especially the “twin-field QKD” concept[15] is
appealing, as it needs[16] neither multiple parallel channel trans-
missions nor nondestructive measurements with feedforward
and multiplexing,[14] but instead only transmission of phase-
sensitive single-mode quantum states and their interference at
the middle station. Experimental proof-of-principle demonstra-
tions of the twin-field concept were reported very recently.[17–19]

Both approaches[14,15] reduce the effective channel length by a fac-
tor of two, corresponding to an enhanced transmission efficiency
of

√
𝜂 = exp[−(L∕2)∕Latt]. However, neither of them has been

shown to be scalable to larger distances by further improving the
effective transmission. In principle, there are other, all-optical
approaches for long-distance, even scalable quantum communi-
cation with no need for storing qubits inmatter-basedmemories,
but such schemes depend on the engineering of complex multi-
photon (entangled) quantum states and a sufficiently close spac-
ing of stations along the channel (every 1–5 km) in order to exploit
the sophisticated concept of quantum error correction codes.[20]

Therefore, it is currently assumed that the most feasible and
promising route toward long-distance quantum communica-
tion, while entirely avoiding trusted node configurations, is
based upon the use of quantum repeaters (QRs)[21] that include
intermediate stations (typically every 10–100 km) equipped
with quantum memories realized by atomic or solid-state
qubits. Here, we consider elementary fiber- and memory-based
schemes, which we refer to as quantum repeater cells (QR cells).
By storing quantum states for sufficiently long, these schemes
allow to enter the rate regime[13] between 𝜂 and

√
𝜂 and may

serve as modular building blocks for bridging larger distances.
Thus, ultimately, true quantum networks based on quantum
repeaters should not only eliminate the need to trust the stations
along the channels of the network but also achieve a QKD rate
scaling with distance at least as efficient as a trusted relay or

Adv. Quantum Technol. 2020, 3, 1900141 © 2020 The Authors. Published by Wiley-VCH GmbH1900141 (2 of 15)
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Figure 2. Generic QR link for increasing the communication distance. Ini-
tially, for each segment AA′ and B′B, quantum memories (full circles) are
entangled with each other (double red line) over a distance L/2. Via a Bell-
state measurement (black box) on the two memories in the central re-
peater node, the entanglement is swapped to the outer memories A and
B separated by distance L. Thus, a new, longer segment is created that is
usable for further extensions of the quantum link by repeated concatena-
tion of this procedure including some form of quantum error detection or
correction.

an entanglement distribution rate scaling more efficient than a
quantum relay where each node only measures optical quantum
states without storing them. Compared with quantum PPLs
chained together by trusted nodes and other forms of quantum
relays, genuine repeater-based quantum networks would thus
represent a leap both conceptually and quantitatively.
The first QR concepts were proposed already 20 years ago[21]

to overcome the distance limitation by distributing, enhancing,
and connecting short-range entanglement through local quan-
tum operations and classical communication. In the simplest
case, quantum correlations from two entangled point-to-point
segments AA′ and B′B are connected via a collective Bell-state
measurement (BM) at the central “repeater” node A′B′, resulting
in so-called entanglement swapping to nodes A and B (Figure 2).
These larger segments can then be concatenated further in the
same way, while a simple multiplication of the channel transmis-
sion efficiencies per segment and a propagation and accumula-
tion of errors can be prevented by storing quantum information
in quantum memories and applying entanglement purification
on many entangled pairs in each segment[21] or incorporating
quantum error correction codes into thememory qubits.[20] Over-
coming the distance and rate limitations in a scalable fashion,
QRs offer highly attractive functionality for future long-range
quantum networks.[22]

Experimentally, QRs have remained an enormous challenge
up to now.[20,23] A QR constitutes a system based on several differ-
ent hardware components. Although all necessary components
have been demonstrated to some extent individually, combining
these into a fully operational (and hence scalable) repeater sys-
tem is demanding and first experimental demonstrations in this
direction are now only beginning to be reported.[24]

One of the most critical hardware components are the quan-
tum memories required to effectively synchronize the arrival of
quantum information for further processing at the individual
nodes. Depending on the range and the application of the re-
peater system, the required memory coherence times vary. For
example, in order to establish entanglement over 1000 km via a
standardQR[21] at leastmillisecond storage times are needed only
to be able to cover the waiting time for a classical signal sent over
the total distance. In a fully nested quantum repeater with proba-

bilistic entanglement purification and swapping steps including
two-way classical communication, even longer storage times will
be required.[25] Deterministic entanglement swapping and quan-
tum error correction of local gate andmemory errors may reduce
these requirements,[20] but most memory systems are still not
sufficiently long-lived or fault-tolerant.[26]

Here we analyze small-scale, functional QR systems that may
serve as elementary building blocks for experimental QR realiza-
tions on a larger scale. Implementations are considered for three
different physical platforms, for which suitable components are
available: quantum dots, trapped atoms and ions, and color cen-
ters in diamond. The aim of these elementary schemes is to ex-
perimentally approach a regime at intermediate distances (up to
several 100 km) in which the qubit transmission and secret key
rates exceed the limits of direct transmission. Based on a simple
model we compare the properties of the different platforms cap-
turing the influence of source and memory efficiencies on the
repeater performance for each system.
In order to assess and compare the specific capabilities of each

platform, we primarily consider the most dominating and dis-
tinct effects in a typical elementaryQR, namely, transmission loss
in the fiber channel and memory dephasing at the repeater sta-
tions. In addition, we do include source and detector efficiencies,
but we omit, for example, detector dark counts. These have a sig-
nificant impact on secret key rates for larger distances.[27] The
overall performance of the source includes an experimentally de-
termined efficiency and a clock (repetition) rate whose influence
on the repeater rates depends on the repeater protocol.
The memory quality is given by an experimentally determined

coherence time, but the impact of memory dephasing errors on
the entanglement fidelity and thus the secret key fraction can be
controlled by a freely chosen, so-called memory cutoff time.[28]

This means a quantum state is never kept in the memory for
longer than a maximal storage time in order to optimize the se-
cret key rates or almost entirely suppress dephasing errors. In
ourmodel, for comparison with the dimensionless “repeaterless”
bound (secret key capacity), the finally considered secret key rates
per channel use and per mode are also dimensionless and not
expressed in Hz. Thus, clock rates given in Hz only have an indi-
rect effect on theQR performance via the accumulated dephasing
times and the corresponding variations of the required cutoff.We
consider two different protocols, one of which is better adapted to
the higher source clock rate and lower memory coherence time
of the quantum dot platform. The other protocol, however, cir-
cumvents the need of writing the transmitted optical quantum
states into the memories in a heralded, nondestructive fashion.
It will become apparent that for both protocols, in principle, the
elementary building blocks can be connected in a modular fash-
ion to construct a QR system that is potentially scalable to larger
distances. Let us now first introduce a minimal set of experimen-
tal parameters that can be used to quantitatively assess the per-
formance of a memory-based QR system.

2. Minimal Set of Experimental Parameters
Characterizing QR Performance

We assess the performance of a single QR cell (as it will be de-
fined in Section 3) or, similarly, a two-segment QR in a simplified
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model applicable to all three physical platforms. For this pur-
pose, we choose three experimental parameters that are primarily
related to the sources’, the detectors’, and the memories’ efficien-
cies: the zero-length channel or link coupling efficiency, Plink, the
source/memory clock time 𝜏clock (time span between two trig-
ger/excitation events or memory write-in and reset time),[29] and
the memory coherence time 𝜏coh. The link coupling efficiency
Plink incorporates the photon creation efficiency, fiber channel in-
and outcoupling efficiencies, and, depending on the protocol, a
detector efficiency or amemorywrite-in efficiency; the fiber chan-
nel transmission efficiency 𝜂 will be treated separately from Plink.
We consider sources generating true single-photon states as ob-
tainable from initial entangled spin–photon resources. A single
photonic qubit that is launched into the fiber channel is encoded
into two field modes (typically corresponding to polarization or
time-bin encoding). Such single-photon-based two-mode qubits
can be easily “rotated” into any qubit state and measured in any
qubit basis; for two qubits simple partial Bell-statemeasurements
are available. These single-photon qubit states are also most ro-
bust against path length fluctuations along the optical channels
and compatible with the stationary matter qubits (as opposed
to weak coherent states or other phase-sensitive single-mode
states, although also for this case repeater protocols exist[23]). The
memory coherence time 𝜏coh is defined via the time-dependent
probability for a random phase flip to occur on a memory qubit,
1
2
(1 − exp(− t

𝜏coh
)), see Section S2 (Supporting Information). In

addition, we include a memory cutoff time, i.e., a maximally
allowed storage time until any quantum memory is reset and
reinitialized. For a summary of the relevant experimental param-
eters and our notation used throughout the paper, see Section S1
(Supporting Information).
Let us briefly discuss the influence of the finite link coupling

and channel transmission efficiencies in an idealized general
QR, without errors and for an arbitrary number of stations/
segments, on the QR performance, corresponding to a raw rate
in the QKD context. We can then compare this with a quantum
PPL, i.e., a scheme without the use of quantum memories solely
based on direct transmission of quantum states. A single QR seg-
ment can be thought of as a quantumPPL over distance L/nwhen
the total channel of length L is divided into n segments. The raw
rate in Hz, i.e., the number of (quantum) bits (secret bits in QKD
without errors) per time and per mode, for one segment is then
given by

link(L∕n) =
Rlink(L∕n)

NT0
(1)

where Rlink is the overall (dimensionless) link efficiency,[30]

T0 is the time duration between two channel uses (i.e., time
consumed per use), and N is the number of modes in case that
several modes are sent in parallel through the optical channel.
In general, Rlink(L∕n) may exceed unity, but it must necessarily
remain smaller than one either for not too short segment lengths
(i.e., channel segments with more than 3 dB transmission loss
for each[12]) in a single-mode link or for an optical encoding
based on discrete qubit states, as it applies to our two-mode-
qubit-based schemes. This is why we refer to Rlink(L∕n) as an
efficiency and we may decompose it into the two contributions

coming from the link coupling and channel transmission
efficiencies

Rlink(L∕n) = Plink𝜂
1∕n (2)

where, more specifically, the second factor describes
the channel transmission in a single repeater segment
𝜂1∕n = exp[−(L∕n)∕Latt] (i.e., 𝜂 is the probability that a single-
photon two-mode qubit remains intact after its parallel trans-
mission over two independent amplitude damping channels of
length L, while

√
𝜂 represents the amplitude damping parameter

of a Gaussian single-mode loss channel of length L).
If we connect the segments without the use of quantum

memories like in a relay, effectively multiplying the efficien-
cies of the individual segments, we obtain at best (Rlink(L∕n))n =
(Plink)

n(𝜂1∕n)n = (Plink)
n𝜂. Since this scales with distance like a

PPL over the whole channel, we may just remove the interme-
diate stations to obtain Rlink(L) = Plink𝜂 =: RPPL(L). This link ef-
ficiency for the total two-mode PPL, up to a factor of 1.44 and
for small Plink𝜂, can also be identified as a “realistic repeater-
less” bound for a single-mode channel of length L including a
finite link coupling efficiency for the quantum PPL between Al-
ice and Bob with finite source, fiber coupling, and detector effi-
ciencies at Alice’s and Bob’s stations. For the raw rate in Hz (per
mode) obtainable over the whole channel, we can now also write
PPL(L) = RPPL(L)∕NT0 = (Plink𝜂)∕NT0. In this case, if Alice di-
rectly sends a qubit to Bob over the entire distance, she will use
N = 2 modes for a two-mode-encoded photonic qubit and she
may also send many qubits sequentially at a high source clock
rate (𝜏clock)

−1 ∼ GHz such that the final rate PPL is ultimately
limited only by 𝜂 since T0 = 𝜏clock (also assuming sufficiently fast
detectors at Bob’s station).
Once quantum memories are employed at the intermediate

stations, in principle, a raw rate in Hz (per mode) for the to-
tal distance scaling asQR ∼ (Plink 𝜂

1∕n)∕NT0 can be approached
(at fixed n), which corresponds to an expression similar to that
for the rate in a single QR segment. The quantity Plink is once
again the link coupling efficiency related with a single repeater
segment and recall that we do not consider additional success
probabilities from entanglement purification and swapping in
the present discussion on an idealized QR. However, Plink should
now also contain any inefficiencies related to the light–matter in-
terface or the memory write-in for one segment. Even more im-
portant, comparedwith amemoryless quantumPPL bridging the
total distance, the time unit for one channel use T0 (as only for
a PPL uniquely defined and coinciding with the source/detector
clock time) will be significantly larger than a source clock time
𝜏clock. For the memory-based QR, depending on the specific pro-
tocol, T0 must include the local memory write-in and reset times
(∼ MHz−1) and the necessary waiting times for classical signals
announcing successful quantum state transmissions. Thus, al-
though typically one also has N = 2 modes for the optical qubits,
beating even the realistic “repeaterless” bound expressed in Hz
requires a sufficiently long distance such that the superior scaling
of 𝜂1∕n dominates over the inferior “clock rate” of the memory-
based repeater. So it is important to recognize that even the
ideal memory-based QR, compared to a quantum PPL with fast
sources and detectors, starts with a “repeater disadvantage,” and
only for sufficiently large distances can this be converted into a
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“repeater advantage.” If errors are included, no longer all trans-
mitted (quantum) bits (when employed for QKD) can be turned
into secret bits. Related with this, for large distances, the QR rates
drop further due to the need of probabilistic quantum error de-
tection (such as entanglement purification) on higher repeater
levels (alternatively, as said before, quantum error correctionmay
be employed for all local gate and memory errors).
Note that all-optical quantum repeaters (at least those that

work entirely without feedforward operations at the intermedi-
ate stations) can, in principle, operate at the same clock rate as
a direct-transmission PPL. However, not only do we need rather
complicated encoded states for this approach but also typically
(though not necessarily) many optical modes N > 2 are required
to transmit a logical qubit. Therefore, also in this case, sufficiently
many segments have to be concatenated to benefit from the bet-
ter effective transmission per segment, (Rlink)

′(L∕n), compared to
the long-distance PPL that works with N = 2. Such a better effec-
tive transmission due to quantumerror correction at every station
requires sufficiently short segment lengths, as opposed to the
schemes we consider here. For short segment lengths, as already
mentioned above, non-qubit-based schemes would in principle
even allow for a “link efficiency” greater than one corresponding
to the transmission of more than a single qubit (secret bit) per
channel use.[31] A unique exception is the twin-field QKD con-
cept, for which we also have a high clock rate, only limited by
lasers and detectors, and even just a single mode N = 1 for the
optical transmission. However, this approach is not known to be
scalable beyond

√
𝜂.[32]

To conclude, beating the (realistic) dimensionless “repeater-
less” bound by means of a multimode memory-based quantum
repeater with an effective overall transmission efficiencyRQR, i.e.,
effectively exceeding the overall efficiency of a multimode direct-
transmission PPL

RQR(L) > 1.44 N Plink 𝜂 = 1.44 N RPPL(L) ≳ (N∕2) RPPL(L) (3)

is the minimal requirement even for a small-scale quantum re-
peater module to eventually be able to obtain better rates  in
Hz for large-distance quantum communication with many mod-
ules than what is obtainable via a long-distance PPL. Here, N is
the number of modes and RPPL(L) = Plink 𝜂, as introduced ear-
lier, refers to a two-mode direct-transmission PPL that covers the
total channel and employs no quantum memories at all. Thus,
here the link coupling efficiency contains only source (with fiber
incoupling) and detector (with fiber outcoupling) efficiencies,
Plink = Psource 𝜂det. The factor 1/2 in the lowest bound above has
been included to stress that RPPL(L) represents a two-mode link
efficiency. The bound in the middle is the (realistic[33]) multi-
mode “repeaterless” bound for large L. In other words, overcom-
ing the dimensionless bounds with a small, elementary repeater
is the first necessary condition to be met for an experimental
demonstration of in-principle scalable quantum repeater func-
tionality. In our schemes, the QR stations are connected by opti-
cal two-mode channels, henceN= 2. In this case, overcoming the
direct-transmission efficiency bound expressed by a two-mode
PPL corresponds toRQR(L)> RPPL(L)= Plink 𝜂. In our quantitative
comparison later (Figures 5 and 7), we will consider as a figure of
merit the SKR in a memory-based QR scheme per channel use
and per mode. Up to the secret key fraction factor that includes

the effect of the dephasing errors for a chosen QKD protocol (see
Section S2, Supporting Information), SKR then corresponds to
RQR(L)∕2. The relevant benchmarks will be the ideal “repeater-
less” bound (single-mode secret key capacity), −log2(1 − 𝜂), and
SKR for a “realistic” but error-free PPL (per channel use and per
mode), RPPL(L)/2 = Plink 𝜂∕2. Yet ultimately, a comparison must
rely on rates in Hz, per time and per mode:QR versusPPL.
To sum up, for a given channel transmission efficiency (with

Latt = 22 km), we consider three fundamental parameters:

1) The link efficiency Rlink, which is composed of the link cou-
pling efficiencyPlink (now also includingmemory efficiencies)
and the channel transmission efficiency per segment 𝜂1∕n,

2) The memory coherence time 𝜏coh, which can influence both
the repeater raw rates and the secret key fraction in the QKD
context, and

3) The clock time 𝜏clock, which, depending on the protocol,
can have a significant impact even on the dimensionless
repeater rates, namely, indirectly in the presence of memory
dephasing.

In the following, we will discuss in detail several variants of
small-scale proof-of-principle repeater protocols which can be
classified into basically two distinct classes: node sends photons
(“NSP”) and node receives photons (“NRP”). For each protocol
we will then specify the particular form of the above three fun-
damental parameters, especially decomposing the link efficiency
into further experimental parameters depending on the protocol.
Eventually, we will be able to insert particular values for each of
the three hardware platforms in order to compare their possible
present and future repeater performances.

3. QR Cell: A Generic Experimental System
Showing QR Functionality

Before introducing the basic concept of a QR cell in detail, and
applying it to two different protocols and three different physi-
cal platforms, let us start by summarizing the overall concept for
establishing a QR within our framework:

• A quantum channel is realized by an optical fiber.
• Intermediate stations along the channel include sources of sin-
gle/entangled photons or spin–photon entanglement, beam
splitters, detectors, possibly wavelength converters.

• The “repeaterless” bound limits the (secret key) rates in point-
to-point communication (direct transmission without inter-
mediate stations).

• The QR segments create entanglement of two spatially sep-
arated quantum memories connected by a direct quantum
channel.

• The QR cells consist of two half QR segments with a central
QR node containing quantum memories.

As described in the Introduction, the focus here is on fiber
channels with a fixed channel attenuation. In our model, the
quantitative effect of wavelength converters can be absorbed into
Plink via a wavelength conversion efficiency (see Section S6, Sup-
porting Information). While Figure 2 shows how entangled QR
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Figure 3. Entanglement creation within a QR segment (with QR nodes
sending photons like in the “NSP” protocol below). At the end nodes spin–
photon entanglement (full-open pair of circles) is generated. An optical
Bell-state measurement on photons arriving at the central photonic node
produces entanglement of the end nodes. This configuration does not yet
exploit the storage capabilities of the quantum memories, since the pho-
tons need to arrive simultaneously at the middle station.

segments, once they are available, can be connected by entangle-
ment swapping to increase the distance of a QR, Figure 3 illus-
trates how a single QR segment itself, defined as an entangled
pair of quantum memories located at neighboring repeater sta-
tions, may be established via an optical BM on two photons (two
qubits) emitted by the two quantummemories placed each at the
end points.[34]

3.1. Protocol 1: Node Sends Photons

3.1.1. Model, Parameters, Modularity, and Rate Analysis

One of the simplest, most generic protocols promising to show
the functionality of a memory-based QR system was put forward
by Luong et al.[35] This protocol, which we refer to as NSP pro-
tocol, is based on an arrangement that we will call a QR cell.
Generally, this is an elementary structure that contains the min-
imal set of components required to show the functionality of a
memory-based QR scheme, thus allowing to analyze schemes
that can, in principle, overcome the “repeaterless” bound. An
additional important property of a QR cell is that concatena-
tion of QR cells renders the system (if, ideally, only affected by
channel loss), in principle, scalable (Figure 4). This extra fea-
ture is needed, as we know that the “repeaterless” bound can
be overcome in a restricted (not fully scalable) sense via a mid-
dle station not equipped with quantummemories.[14,15] The NSP
protocol relies on only a few generic parameters, whose impact
on the QR performance can be clearly identified. It thus allows
to compare different hardware platforms, including a qualita-
tive and quantitative assessment of their relative strengths and
weaknesses.
For a functioning QR cell (Figure 4b), the central node,

equippedwith a pair of quantummemories, is crucial. It allows to
asynchronously establish effective entanglement in the two half
segments, although an entangled state will never be physically
shared between the end points of a QR cell. Instead, one would
measure the optical signals emitted from the central node at the
end points of the cell to establish correlations and obtain a secret
key. The specific feature of the NSP protocol for the QR cell is
that at the central QR node quantum states with spin–photon en-
tanglement are locally created and then the photons are coupled
into the communication channels, i.e., the node sends photons

toward the detectors placed on the left and right ends of the cell
(Figure 4b). The concatenation of several QR cells then involves
two-photon interferences to perform optical two-qubit BMs at the
photonic nodes (Figure 4a).
Note that similar elementary QR schemes with a single QR

node emitting and sending photons were considered in refs.
[36,37] (considering a range of experimental parameters similar
to ref. [35], however, including additional memory cutoffs, being
adapted to the specific hardware platform of NV centers, and, in
ref. [37] incorporating the twin-field QKD concept[15] based on
single-photon interference).
Let us discuss the underlying model for a QR cell with the

NSP protocol in more detail. A single QR cell (Figure 4b) of
total length L is composed of a central memory station placed in
the middle between two receiving stations each equipped with
photon detectors. The conceptually simplest scenario is when
the two quantum memories each emit a single photon in two
polarization modes entangled with the memory internal state.
One photon is sent to the left receiver and the other photon to
the right receiver (Figure 4b). The probability for each photon to
arrive at its intended detector after travelling over a channel dis-
tance L/2 is exp[−(L∕2)∕Latt] ≡

√
𝜂. Without the use of quantum

memories both detectorsmust click simultaneously for the trans-
mission to succeed, which happens with a probability

√
𝜂
2 = 𝜂 =

exp(−L∕Latt) corresponding to the direct-transmission efficiency
over a distance L. Thus, a single photon could be equivalently
sent directly from left to right without the central station. How-
ever, by employing quantum memories, once the middle station
is informed about the detection of one photon left or right, the
respective memory is kept and for the other light-memory pair
further attempts are made to eventually have a second photon
arriving at its detector and being detected. A final BM on the two
quantum memories, effectively swapping the entanglement of
the two spin–photon pairs onto the two successfully distributed
photons, establishes correlations between the two detectors such
that a secret key can be shared provided that noncommuting
observables were measured at the photon detectors (like in a
BB84 protocol). Thanks to the memories, in principle, the trans-
mission probability for the total distance L then scales as

√
𝜂,

corresponding to an effective transmission over only half the
distance L/2.
The most extreme scenario in a QR cell would be to attempt

distributing effective entanglement by sequentially (rather than
simultaneously) sending photons entangled withmemory qubits
to the left and to the right (e.g., first to the left), and start sending
those photons entangled with a second spin (e.g., the right one)
only when the arrival of a photon belonging to the first spin (e.g.,
arriving at the left detector) was confirmed and the first spin qubit
(e.g., the left quantum memory) was determined to be held for
storage. Such an approach can be experimentally useful, because
the central node may no longer require two distinct memory sys-
tems (with the typical example of a single NV center whose nu-
clear spin with coherence times of the order of seconds allows for
efficient storage and whose electron spin with coherence times
of the order of milliseconds can be employed as an interface to
the optical communication channel;[36,37] another example would
be an ion-based quantum memory composed of two ion species
where one is adapted for storage and the other for light–matter
interfacing[38]).
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Figure 4. a) Full QR link with two QR segments (NSP) like in Figure 3. b) QR cell (NSP) with two half QR segments and a central node for storage as a
minimal element for exploiting memory capability. The pair of quantummemories at the central node enables a valid Bell-state measurement also when
the left and right half segments become entangled at different times.

The effective transmission probability RQR is related to the
inverse average number of attempts it takes for successfully
transmitting the photons to both ends. However, besides this av-
erage number, the ultimate secret key (or qubit) rate of a repeater
scheme expressed in secret bits (or qubits) per second,QR, also
depends on the actual duration per attempt (recall the discussion
in Section 2). Moreover, the longer a single attempt takes, the
smaller the number of attempts becomes that can be executed
well within a given quantum memory’s coherence time. In the
NSP protocol, the duration per attempt is distance-dependent,
because any new attempt can only be initiated when the classical
signal from the detector has been received. Thus, the total dura-
tion of a single attempt is dominated by this waiting time that
includes quantum and classical signal transmissions, T0 =

L
c
for

the QR cell (Figure 4b) and T0 =
L
2c
for the two-segment setup

in Figure 4a assuming the same total distance L in either case.
Hence, the influence of an increased experimental clock rate
(𝜏clock)

−1 for preparing spin–photon entanglement and emitting a
photon is less significant for theNSPprotocol.More precisely, the
average dephasing is determined by the factor exp(− T0

𝜏coh
), includ-

ing the memory- and protocol-dependent quantity 𝜏coh/T0 that
counts howmany distribution attempts fit into the givenmemory
coherence time window (see Section S2, Supporting Informa-
tion). In the NSP protocol, for the QR cell, we have T0 =

L
c
+ 𝜏clock

≈
L
c
with the relatively large distances that we are interested in.

For the QR cell in the NSP protocol (Figure 4b), we have the
link coupling efficiency Plink = Psource 𝜂det where Psource includes
all efficiencies related to a source emitting photons entangled
with a spin memory and coupling them in (and eventually out
of) the fiber channel, i.e., it is the probability to get a photon
into and out of a single-mode fiber channel per trigger/excitation
event, and 𝜂det is the detector efficiency (regarding the effect of
wavelength converters, see Section S6, Supporting Information).
Constructing two QR segments like in Figure 4a with the NSP
protocol corresponds to Plink = 1∕2(Psource)2 (𝜂det)2, because one
segment is successfully bridged only when both sources at its end
points create photons that are both detected at the photonic node
in the middle (the factor 1/2 takes into account the efficiency of a
standard partial, beam-splitter-based two-photon two-qubit BM).
However, the time duration per attempt for one segment of the
two-segment scheme (Figure 4a) is half as big as that for the QR
cell (Figure 4b) at any given total distance L, as mentioned above.

Table 1. Currently available experimental parameters for the three QR plat-
forms: color centers (NV, SiV), quantum dots, ions (calcium, ytterbium),
and atoms (rubidium).

Platform Plink [%] (𝜏clock)
−1 [MHz] 𝜏coh [ms]

NV centers
a)

5 50 (0.5) 10

SiV centers
b)

5 30 (5) 1

Quantum dots
c)

10 1000 (32) 0.003

Ions
d)
(Ca/Yb) 25 0.47 (0.007) 20

Atoms
e)
(rubidium) 50 5 (0.005) 100

a)
Refs. [36,37];

b)
Refs. [39,40];

c)
Refs. [41–43];

d)
Refs. [44–46];

e)
Refs. [47,48].

Table 2. Potentially available future experimental parameters for the three
QR platforms: color centers (NV, SiV), quantum dots, ions (calcium, ytter-
bium), and atoms (rubidium).

Platform Plink [%] (𝜏clock)
−1 [MHz] 𝜏coh [ms]

NV centers
a)

50 250 (5) 10 000

SiV centers
b)

50 500 (50) 100

Quantum dots
c)

60 1000 (323) 0.3

Ions
d)
(Ca/Yb) 50 10 (1) 300

Atoms
e)
(rubidium) 70 10 (1) 1000

a)
Refs. [36,37];

b)
Refs. [24,39];

c)
Refs. [43,49];

d)
Ref. [50,51];

e)
Refs. [47,48].

In addition to the three experimentally determined parame-
ters Plink, 𝜏clock, and 𝜏coh, we include a memory cutoff parameter
imposing the rule that quantum states will never be stored for a
longer time than given by the cutoff.[28] In other words, the QR
protocol is aborted and started from scratch as soon as a quantum
memory’s storage time has exceeded the imposed storage limit.
The memory cutoff can be freely chosen. Our analysis is based
on the experimental parameters for the three platforms as given
in the tables next.
Table 1 refers to the state of the art presenting the currently

available, realistic values for each platform. Table 2 shows poten-
tial future parameter values, i.e., an idealization compared to the
state of the art. Nonetheless, the latter are physically reasonable
and not fundamentally unobtainable.
For (𝜏clock)

−1 we list two types of values for all platforms, as will
be explained later when we discuss the NRP protocol, because
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(𝜏clock)
−1 is not important here for the NSP protocol. Since

(𝜏clock)
−1 is of the order of MHz or higher for most platforms,

the clock times ∼1 µs or shorter are negligible compared with
L
c
≳ 50 μs for distances L > 10 km. The only exceptions are ions

and atoms with the longest clock times around 200 µs. For dis-
tances L > 100 km this also goes below L

c
≳ 500 μs. Moreover, for

smaller distances, the elementary time unit T0, even including
the experimental clock times, is small compared with the values
of 𝜏coh assumed for ions and atoms. Overall, (𝜏clock)

−1 plays no
significant role in the NSP protocol.
The future parameters of NV centers are obtained by extrapo-

lating the values of refs. [36,37], especially for the link coupling
efficiency (and for the clock times as needed later), and assum-
ing a 13C nuclear spin for the memory. Similar assumptions are
made for the SiV centers based on refs. [24,39,40]. Compared to
NV centers, the SiV platform has the advantage of not only allow-
ing for efficient quantum storage via the nuclear spins but also
providing a potentiallymore efficient photon–spin interface (with
higher cooperativities available); though a drawback of SiV is the
need for very low temperatures[52] (below 500 mK).[53] Further
details regarding the experimentally assumed parameters can be
found in Section S6 (Supporting Information).
For the quantum dot platform, based on experimentally

achieved quantum dot photon-collection efficiencies of 60%[42]

connected with a near Gaussian beam profile which is preferen-
tial for large fiber incoupling efficiencies, we estimate the link
coupling efficiency Plink to 10% (Table 1). Anticipating improve-
ments in photon-collection efficiencies up to 90% together with
improved fiber-coupling efficiencies, we assume that a possible
future value of Plink is 60% (Table 2). Regarding the clock times,
we estimate spin-preparation times in a quantum dot to be in
the few 100 ps regime, and together with reported radiative re-
combination times also in the range of a few 100 ps,[43] we expect
achievable clock rates of 1000 MHz for a quantum-dot-based
nonclassical light source (we refer to Section 3.2 for a further
discussion on the impact of experimental clock rates). Additional
remarks concerning these experimental parameters can be
found in Section S6 (Supporting Information).
We assumed fairly good experimental parameters for the ru-

bidium atom and calcium ion platforms. The presently available
values for Plink and 𝜏coh refer to current experiments with rubid-
ium atoms in a cavity.[47,48] More specifically, atomic eigenstates
can be chosen for the qubit encoding such that the effect of exter-
nal magnetic fields is significantly reduced. This way coherence
times above 100 ms have been measured.[47]

The performance of a QR may be quantified in a meaningful
way by the secret key rate that can be obtained for a given length
L of the quantum channel connecting the two parties Alice and
Bob. The advantage of using the secret key rate as a figure of
merit is that it incorporates both the efficiency and the quality
(or fidelity) of the quantum state transmission at the same time.
A high efficiency, i.e., a high (effective) transmission probability
or raw rate leads to an increasing secret key rate, whereas a low
fidelity, i.e., a high error rate, results in a decreasing secret key
rate (typically incorporated via a secret key fraction). In our rate
analysis, we shall consider, on the one hand, secret key rates in an
entanglement-based BB84-type scheme, for which optimalmem-
ory cutoffs exist, since a cutoff chosen too small will reduce the
raw rate and a cutoff chosen too large will lead to a stronger ac-

cumulation of dephasing errors reducing the secret key fraction.
In other words, the infidelities from the finite coherence times of
the memories, eventually becoming manifest as an infidelity of
the effective entangled state shared between Alice and Bob after
the BM on the memory qubits, are mapped onto a reduced secret
key fraction for a BB84 QKD scheme (see Section S2, Supporting
Information).
On the other hand, in an alternative picture independent of

QKD, we shall only consider the raw rate (without inclusion of
dephasing errors) by choosing the cutoff sufficiently small in
order to almost entirely suppress dephasing errors and keep the
final fidelities of the (effective) entangled state above a certain
value such as 0.95. This means the maximally allowed storage
time is chosen well below the memory’s coherence time for
the loaded memory at the central station waiting for the second
transmission to succeed. More details can be found in Section S3
(Supporting Information).
It should be stressed that our simplified model does not

entirely capture intrinsic effects arising from specific memory
errors (beyond pure dephasing) and other error sources for a
given hardware platform, such as an imperfect initial spin–
photon state prior to its storage-time-dependent dephasing and
imperfections of the final two-spin two-qubit BMs, but also
detector dark counts. All these additional error sources lead to ef-
fective entangled states that are randommixtures of four instead
of just two Bell states (see Section S2, Supporting Information)
resulting in secret key rates eventually dropping to zero beyond
certain distances. An advantage of our simple model, however,
is that we are able to use only very few parameters to compare
QR schemes employing different hardware realizations with
different error mechanisms for the preparation and storage of
quantum states. We can then clearly identify which parameter in-
fluences the (still to some extent idealized) QR performance in a
certain way, mainly manifesting itself in the rate versus distance
plot of Figure 1 as a negative offset, i.e., a downshift of the curve
due to link coupling inefficiencies, and an increased slope, i.e.,
an additional distance-dependent rate reduction due to memory
inefficiencies.

3.1.2. Results and Comparison for Different Platforms

The resulting raw and secret key rates calculated for ourmodel in
the case of the NSP-QR cell (as illustrated by Figure 4b) with the
different hardware platforms can be seen in Figure 5. The upper
part shows the raw rates RR for distributing effective entangled
states with a fidelity of at least 0.95 for current (left) and future
(right) experimental parameters. The lower part shows the cor-
responding SKRs. All rates (in dB) are per channel use and per
mode (recall the discussion at the end of Section 2).[54]

With current parameters, only the rubidium atom platform
enters the repeater regimes. For future values, as calculated, all
platforms except for quantum dots enter the repeater regimes.
However, the different platforms exhibit a slope increase, i.e., a
more rapid decline of the rate with distance, to a different extent
in accordance with their ranking in terms of memory coherence
time (see Table 2). Apparently, the slope of the rates is clearly con-
nected to the memory efficiencies. The plots cover distances up
to 400 km and the curves may be extrapolated to larger distances.
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Figure 5. Secret key rates (SKR) and high-fidelity raw rates (RR) for a small NSP-based QR scheme (QR cell). The bottom plots show SKR in dB as a
function of the total distance L in km for experimental parameters as currently available (left) and as potentially available in the future (right). The top
plots show RR in schemes where the entangled states effectively created over the total distance L have a fidelity of at least 0.95 (left: current parameters,
right: future parameters). Curves that are disappearing beyond certain distances (or completely missing for quantum dots) no longer (never) exceed
F = 0.95. The different platforms correspond to NV (violet) and SiV (green) centers, ions (brown), rubidium atoms (red), and quantum dots (yellow).
The light gray area illustrates the (secret key) rate regime between ∼ 𝜂 (curve in bold black: “repeaterless” bound) and

√
𝜂 (line in dark gray: optimal

rate for QR cells or two-segment QR schemes). The bold black dashed lines represent the realistic “repeaterless” bound Plink𝜂∕2 (direct transmission
via PPL) with finite link efficiencies Plink = 0.1, 0.7.

However, recall that detector dark counts and some other im-
perfections that could make the rates eventually drop to zero are
not included here. The negative offset from the “repeaterless”
bounds at zero distance is related to the link coupling efficiency.
The quantum dot platform, as calculated here for the NSP proto-
col, does not enter the repeater regime at all, not even for future
parameters (it does though for rather short distances when
compared with a “realistic repeaterless” bound as a benchmark
that is defined with a smaller link coupling efficiency Plink = 0.1).
Some curves drop faster than the “repeaterless” bound, which
seems contradictory. However, note that even when the very
first qubit distribution attempt is successful both memories are
already subject to dephasing for one time unit. For platforms
with insufficient coherence times, this results in an even steeper
decline of the secret key rates compared to the “repeaterless”
bound, although the 𝜂 scaling could be formally attained via the
raw rate by not storing the quantum states at all, i.e., setting the
cutoff value to zero (see the Supporting Information). All this will
become different for another protocol below (NRP) for which, in
particular, all platforms are able to access the repeater regimes.
For the NSP protocol, besides a single QR cell (Figure 4b),

there is also the variant of a QR with two full segments (Fig-
ure 4a). As discussed before, for equal total distance L, the two-
segment scheme has a smaller elementary time unit compared

to the QR cell (T0 =
L
2c
vs T0 =

L
c
). However, at the same time,

the two-segment scheme has a smaller link coupling efficiency
(Plink = 1∕2(Psource)2 (𝜂det)2 vsPlink = Psource 𝜂det).
For comparison and completeness, we present the rates of the

two-segment scheme in Section S4 (Supporting Information).[55]

One can see that it performs slightly worse compared to the QR
cell. In all plots the secret key rates can sometimes be greater than
the raw rates, which again seems contradictory. However, note
that for the secret key rates, the optimized memory cutoff (which
must neither be too small nor too large to prevent a too small raw
rate or a too small secret key fraction, respectively) typically leads
to a worst-case fidelity much lower than the minimal fidelity of
0.95 allowed for the calculation of the raw rates alone (requiring a
very small memory cutoff to almost entirely suppress dephasing
errors).

3.2. Protocol 2: Node Receives Photons

3.2.1. Model, Parameters, Modularity, and Rate Analysis

In order to potentially benefit from a higher source repetition rate
as available from the quantum dot platform, we shall consider
an alternative NRP protocol (Figure 6). In this protocol, photons
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Figure 6. a) Full QR link with two QR segments incorporating the NRP concept. The BMs in Figure 4a are now replaced by Bell-state sources. b) QR
cell consisting of two half QR segments and a central node for storage as a minimal element for exploiting memory capability. As opposed to the QR
cell in Figure 4b, here the quantum memories “receive” photons from two sending stations; whether a photon has arrived must be confirmed by a
nondestructive measurement on the qubit, here realized by a photonic BM on a “local” photon emitted from the memory (open circle) and the photon
transmitted through the channel. As before, the final BM on the memories can also be valid when the QR segments become entangled at different times.

are sent from two sending stations to the central memory station
where the arrival of a photonic qubit is nondestructively (e.g., by a
linear-optics photonic BM teleporting the arriving photonic qubit
to the memory qubit) detected before or while it is “written into”
the memory. At any failure event, the next photon pulse can be
processed with a delay only depending on the repetition rate of
the source or depending on the typically longer write-in and reset
times of the memory. In this case, the duration per attempt cor-
responds to the clock time of the source or the write-in time and
is independent of the channel distance, T0 = 𝜏clock, as opposed to
the situation for the NSP protocol where T0 is mainly determined
by the length of the repeater segments.
Thus, the factor that specifies the average memory dephas-

ing (see Section S2, Supporting Information) now becomes
exp(− 𝜏clock

𝜏coh
), while it is now the ratio 𝜏coh/𝜏clock that counts the

number of distribution attempts fitting into the given memory
coherence time. However, note that this feature is specific to a
single NRP-QR cell and as soon as several cells are combined into
a larger QR system, distance-dependent waiting times for classi-
cal signals have to be taken into account again. As a consequence,
similar to what holds in general for the case of the NSP protocol,
a scalable QR based upon NRP modules (see next) will also be
mostly influenced by an experimental improvement of the link
coupling efficiency and the memory coherence time, and much
less by an enhanced experimental clock time.
A QR cell now still has a central node equipped with quantum

memories, but at the end points there are no longer detectors,
but sources for optical quantum states such as BB84-encoded
single-photon-based qubits (Figure 6b). The memory node now
receives the photons. This may be realized by a direct and her-
alded write-in mechanism (such as those of refs. [56–58]), for
which certain write-in inefficiencies and infidelities would ap-
ply, or by first preparing spin–photon entangled states at the cen-
tral node and then coupling the photons near the memories lo-
cally with the arriving photons coming from the left and right
sources (by an optical BM, see Figure 6b). Similar to the NSP
protocol, also QR cells based upon the NRP protocol can be con-
catenated in order to scale up the QR system to larger distances
(Figure 6a). The “photonic nodes” where the half segments meet
are now no longer performing BMs like in the NSP case, but

are instead equipped with entangled photon pair sources (Fig-
ure 6a). Compared to the NRP-based QR cell here, a similar el-
ementary QR scheme with a single QR node receiving photons,
for BB84-encoded photonic qubits equivalent to what is referred
to as measurement-device-independent QKD[59,60] assisted by a
quantum-memory-based middle station, was considered in refs.
[61–64] (again mainly adapted to the specific hardware platform
of NV centers, but also presenting comparisons with other plat-
forms in ref. [63] and incorporating the idea of a deterministic
final BM on the electronic and nuclear spins of a single NV cen-
ter in ref. [64]).
In order to keep memory dephasing errors small and the

fidelity of the effective entanglement shared between Alice and
Bob above a certain minimum, in the NSP protocol, for an
increasing L a decreasing number of attempts can be executed at
a given memory coherence time because of the L-dependence of
a single attempt’s duration and the growing storage time needed
per transmission attempt. In the NRP-protocol-based QR cell
(Figure 6b), this L-dependence disappears, since the quantum
signals are sent to, and no longer emitted from, the quantum
memories. The memory cutoff can be chosen independent of
distance and the time duration per transmission attempt can
be made arbitrarily small by increasing the repetition rate of
the sources up to the local memory write-in and reset times.
This means the cutoff (expressed by the number of allowed
attempts during one storage cycle) can be chosen much higher
resulting in larger raw rates. Moreover, this way the memo-
ries have less time to be subject to dephasing during a given
number of attempts leading to a larger secret key fraction.
Generally, the NSP and NRP protocols have both their bene-
fits and disadvantages. The NSP protocol does not require a
nondestructive detection of an arriving photonic qubit or an
efficient heralded write-in mechanism, but the memory station
has to wait for the classical signals from the receiving detector
stations. In contrast, the NRP protocol relies on a nondestructive
measurement or any other means to nondestructively write the
incoming “flying qubit” into a “stationary qubit” in a heralded
fashion; however, there are no extra waiting times for classical
signals (as long as we consider the elementary QR cell of Fig-
ure 6b). In addition, the NRP scheme inherits all benefits of
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measurement-device-independent QKD with an untrusted mid-
dle station receiving and measuring the quantum states coming
from two outer sending stations.[59–64] For the rate analysis of
the NRP-based schemes, the main experimental parameters
taken into account in our simple model are the same as for
the NSP-based schemes: the link coupling efficiency Plink, the
memory coherence time 𝜏coh, and the source/memory clock time
𝜏clock which now for the NRP-QR cell may have an actual impact
on the repeater performance.
The two types of values given in Tables 1 and 2 for (𝜏clock)

−1

either exclude (numbers without brackets) or include (numbers
in brackets) the additional sequences and operations that are typ-
ically needed in order to reinitialize a spin every time when an
attempted write-in of an arriving photonic qubit failed. Clearly,
these numbers differ significantly, and it depends on the par-
ticular protocol whether the spin is affected by a failed write-
in and has to be reset or not. The specific teleportation-assisted
write-in processes as illustrated in Figure 6 would always, in
every round, require a newly prepared spin–photon entangled
state. However, there are also schemes where the initial spin
state is to a great extent only altered at those events when a pho-
tonic qubit is actually arriving, ready to be coupled to the spin
qubit, and eventually detected (we refer to such schemes as a
direct write-in).[24,56–58] Therefore, we will consider both above-
mentioned types of values for (𝜏clock)

−1 corresponding to the two
extreme scenarios where the experimental clock rate in the NRP
protocol is either determined by the repetition rate of a nonclassi-
cal source (reaching values as high as 1 GHz for a quantum-dot-
based source) or where the necessary spin reset times are fully
taken into account.[65] The former scenario is somewhat more
general, as it does not rely upon a particular protocol for the spin–
photon interface. However, it is idealized assuming an ultrafast
write-inmechanism. In our quantitative analysis in Section 3.2.2,
we shall combine this idealization with the extra assumption of
a deterministic write-in. The complementary scenario of a non-
deterministic, slow write-in including memory reset times will
be considered in Section S5 (Supporting Information). Further
details regarding the experimentally assumed parameters can be
found in Section S6 (Supporting Information).
For the QR cell in the NRP protocol (Figure 6b), we now have

Plink = Psource Pwrite where Psource again includes all efficiencies
related to a source emitting photons (this time prepared in BB84
states) and coupling them into (and eventually out of) the fiber
channel. The parameter Pwrite represents the probability for
successfully writing a photonic qubit arriving at the central node
into the respective memory (regarding the effect of wavelength
converters, see Section S6, Supporting Information). If a spin–
photon entangled state and a linear-optics BM are exploited for
this in order to teleport the arriving photonic qubit to the mem-
ory spin qubit (see Figure 6b), we have Pwrite = 1∕2 Psource(𝜂det)2
wherePsource specifically refers to the generation of a spin–photon
entangled state. Note that if the BB84-encoded photons were
produced in a similar fashion (via initial spin–photon entangle-
ment) with the same source efficiencyPsource, wewould obtain the
link coupling efficiency Plink = Psource Pwrite = 1∕2(Psource)2 (𝜂det)2,
which actually coincides with that of the NSP-based two-segment
QR (Figure 4a), because in terms of the link couplings the two
schemes become identical when the photonic nodes in the mid-
dle of each segment of the NSP scheme both move to the central

node right next to the memories (except that the “local” photons
may no longer require fiber coupling).[66] For other write-in
methods,[56–58] we may just directly insert numbers for Pwrite.
Although the two-segment concatenation of NRP-based QR
cells and half segments (Figure 6a) demonstrates that the basic
modules can be systematically combined to build an in-principle
scalable QR system, we shall not consider this scheme in our rate
analysis. As opposed to the QR cell in Figure 6b, the combined
scheme in Figure 6a does require classical communication to
inform the two central memories about the successful loading
of their memory counterparts with photons originating from the
same entangled photon pair, and thus it will have smaller rates
than the QR cell alone (in this context, however, see also the dis-
cussion on quantum repeater design presented in ref. [67]). More
theoretical details can be found in Sections S2 and S3 (Supporting
Information).

3.2.2. Results and Comparison for Different Platforms

The resulting raw and secret key rates calculated for our model
in the case of the NRP-QR cell (as illustrated by Figure 6b) with
the different hardware platforms can be seen in Figure 7. The
upper part again shows the raw rates for distributing effective
entangled states with a fidelity of at least 0.95 for current (left)
and future (right) experimental parameters. The lower part again
shows the corresponding secret key rates. All rates (in dB) are
again per channel use and per mode (recall the discussion at the
end of Section 2). The plots in Figure 7 are for a deterministic
memory write-in scheme, Pwrite= 1. Moreover, as for the values
given in Tables 1 and 2 for (𝜏clock)

−1, the rates in Figure 7 have
been calculated excluding additional spin sequences (numbers
without brackets).[68]

This time we observe that already with current parameters all
platforms enter the repeater regimes.With future parameters, for
the simple model used in the rate calculations (no dark counts
and no depolarizing errors), all platforms achieve a rate slope
∼
√
𝜂 over the entire distance of 400 km as shown, thus fully ex-

hibiting the repeater advantage. This also holds in particular for
the quantum dot platform that, though having the worst mem-
ory coherence time, can fully benefit in the NRP protocol from
the highest clock rate (see Table 2).
For the NRP-QR cell, we may then also consider an ex-

plicit write-in mechanism in the form of a linear optical BM
(Figure 6b). In this case, instead of assuming unit write-in effi-
ciency like for the rates calculated in Figure 7, we have Pwrite =
1∕2 Psource(𝜂det)

2 as mentioned above. Moreover, the additional
sequences for spin reinitialization are included in (𝜏clock)

−1 (num-
bers in brackets in Tables 1 and 2). We present the corresponding
rates calculated for this situation in Section S5 (Supporting
Information).

4. Conclusion

As the effective clock rate in a memory-based QKD or QR system
is always slower than that of a direct point-to-point quantum con-
nection driven from a laser source at ∼GHz rates, the memory-
based system will become potentially more efficient only at large
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Figure 7. Secret key rates (SKR) and high-fidelity raw rates (RR) for small NRP-based QR schemes (QR cell assuming Pwrite = 1 in Plink = Psource Pwrite).
The bottom plots show SKR in dB as a function of the total distance L in km for experimental parameters as currently available (left) and as potentially
available in the future (right). The top plots show RR in schemes where the entangled states effectively created over the total distance L have a fidelity of
at least 0.95 (left: current parameters, right: future parameters). The different platforms correspond to NV (violet) and SiV (green) centers, ions (brown),
rubidium atoms (red), and quantum dots (yellow). The NV/ions curves, invisible for future parameters, coincide with those of the other platforms. The
light gray area illustrates the (secret key) rate regime between ∼ 𝜂 (curve in bold black: “repeaterless” bound) and

√
𝜂 (line in dark gray: optimal rate for

QR cells or two-segment QR schemes). The bold black dashed lines represent the realistic “repeaterless” bound Plink𝜂∕2 (direct transmission via PPL)
with finite link efficiencies Plink = 0.1, 0.7.

communication distances requiring sufficiently many elemen-
tary QR segments and additional quantum error detection and
correction at higher “nesting levels” of the QR. At such large
scales, quantum memories must be sufficiently long-lived or
fault-tolerant to survive the necessary waiting times especially for
the classical signals sent back and forth between the QR stations.
However, a necessary requirement for a large-scale QR to show
a performance superior to that of direct transmission is that its
fundamental elements already exceed the bounds constraining a
“repeaterless” system on a smaller scale: employing an elemen-
tary QR cell or a two-segment QR should on average lead to a
larger secret key or qubit transmission rate than obtainable in a
direct transmission. We have investigated such basic elements
for a QR system considering two protocol variants for three dif-
ferent hardware platforms.
Combining the basic building blocks in a modular fashion

allows to construct a QR system, that is, considering only
channel loss, scalable to larger distances. For the realistic situ-
ation including general memory and operation errors (such as
depolarizing errors with infidelities from the initial states, the
light–matter interfaces, and write-in processes, or the spin–spin
Bell measurements as well as detector dark counts) eventually
additional methods of quantum error correction/detection will

be required. Nonetheless, for the small-scale QR elements
(cells and two-segment schemes) discussed in this work the
impact of both finite link and memory efficiencies (the latter
described by a simple dephasing model including a “memory
cutoff”) on the repeater performance has been analyzed for
various hardware platforms. The aim was to keep our model
sufficiently simple in order to allow for an analytic treatment
and to be able to assess the performances in terms of a small
set of experimental parameters. Among the three parameters
identified—link coupling efficiency, memory coherence time,
and experimental clock rate—most important, especially toward
combining the QR modules into a large-scale system, turn out
to be the former two parameters. The experimental clock rate
specifically influences the performance of our NRP-QR cell.
While, depending on the protocol, some platforms turn out to

be superior to others with current and future experimental pa-
rameters as assumed in our model, a promising further direc-
tion could be a hybridization between the different platforms, for
instance, combining the high clock rates of quantum-dot-based
sources with the long memory coherence times of rubidium
atoms orNV centers. In ourNRPprotocol, where quantummem-
ories can receive photons at a rate only limited by the source’s
clock rate and thememory write-in and reset times, but not by the
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classical communication times, the “repeaterless” bounds can be
exceeded quite comfortably under the assumptions of our sim-
plified model. Even when NRP-based QR cells are connected to
reach larger distances, like in our NRP-based two-segment QR
scheme using sources of entangled photon pairs, high source
clock rates can still be of great benefit.[67] Yet, in general, once
QR building blocks are connected to construct a larger system
composed of many repeater segments or cells, the classical com-
munication times become a limiting factor in any protocol based
on quantum memories.
Ultimately, deciding which quantum communication system

performs better for a given range must rely upon rates deter-
mined in Hz, i.e., per time in seconds. Nonetheless, for a suffi-
ciently large range, the better effective transmission efficiency of
a memory-based QR system that becomes manifest in a scaling-
with-distance advantage over any point-to-point link will even-
tually also lead to higher rates in Hz for the QR. In particular,
combining many sufficiently short repeater segments improves
the scaling and allows to keep the classical communication times
small, provided that errors beyond transmission loss can be dealt
with via additional quantum error correction. The resulting rates
may still be rather small for a single repeater chain, but they can
be increased by operating many chains in parallel or via more ad-
vancedmultiplexing techniques. Such approaches, besides quan-
tum error correction, can also help to keep memory errors small,
thus enhancing the overall secret key rates.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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S1. Graphical language, experimental parameters, and figures of merit 

 

 

Here we summarize the graphical symbols as used in this paper, which we propose for a 

visual representation of the structure and the protocols of QR links.  
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We further summarize the most important experimental parameters and the figures of merit to 

assess the performance of a QR link: 

 

 

             zero-length coupling efficiency, link coupling efficiency 

 

             source/memory clock time (inverse clock rate) 

 

             memory coherence time 

 

               fiber channel transmission efficiency,  

                amplitude damping parameter for a single-mode loss channel  

 

              raw rate in Hz (number of qubits transmitted per time and per mode)  

 

  R            raw rate (number of qubits transmitted per channel use), 

                inverse average number of qubit transmission attempts needed for one success 

 

             multi-mode link efficiency,  

                raw rate (number of qubits transmitted in link per channel use) 

 

               elementary time unit, effective time consumed per channel use,  

                effective time duration for one transmission/distribution attempt 

 

SKR         secret key rate (number of secret bits per channel use and per mode) 

 

 RR          raw rate with fidelity bound (number of qubits/ebits per channel use and per mode)   

 

  c           speed of light in a fiber channel:       m/s 

 

             attenuation length in a fiber channel: 22 km 

 

 

 

 

S2. Memory dephasing model including cutoff and secret key rates for QKD 

 

The memory error model we shall consider is pure memory dephasing as described by 
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where 
 

 
(     ( 

 

    
)) is the probability for a Pauli-Z phase-flip to occur on the state of a 

single memory qubit.  
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For the case of two QR segments or, equivalently, a QR cell with two half segments, we 

define a random variable M as |X1 − X2| where X1 and X2 are independent geometrically 

distributed random variables describing the number of attempts until success in a single (half) 

segment. This means the random variable M counts the number of time steps for which either 

one of the two memories (i.e. the first memory whose link has been successfully established 

via detection of a transmitted photon) has to wait for the other one that still attempts to be 

connected. The waiting quantum memory is subject to dephasing for a duration of     . Here 

   is the time duration per attempt whose value is protocol-dependent and, for simplicity, two 

additional protocol-dependent extra units of dephasing,     , are omitted in M (in the 

quantitative rate analysis and in the plots for the NSP protocol, these two units are included, 

see below).  

Either of the protocols as described in the main text can be effectively treated like an 

entanglement swapping (quantum teleportation) process in which a final effective entangled 

state emerges after the BM on the two quantum memories at the central node. Considering a 

suitable Pauli correction (depending on the BM result) and tracing out the two measured 

memories, this final state takes the form of 

 

 

 
(     (  

  

    
)) |  ⟩⟨  |  

 

 
(     (  

  

    
)) |  ⟩⟨  |   

 

where |  ⟩ are the two two-qubit Bell states |  ⟩   |  ⟩  |  ⟩    .  

We remark that depending on the protocol and the application we may not actually prepare  

such an entangled state (for instance, physically present in two spatially separated quantum  

memories). Instead, in the QKD context, we convert e.g. the usual BB84 protocol that does  

not rely on physically distributing entangled states into an equivalent entanglement-based  

QKD protocol, thus simplifying the theoretical analysis. This equivalence can be understood  
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in the following way. Suppose Alice prepares the state |  ⟩ and sends one half to Bob. After  

its arrival, Alice and Bob perform X- and Z-measurements on their halves of the entangled 

state. Then Alice’s measurement acts only on the Hilbert space of her qubit and therefore it 

commutes with Bob’s measurement and possible attacks by Eve. Consequently, she could 

also perform her measurement before she sends her half to Bob, which is equivalent to 

preparing and sending BB84 states to Bob. Also notice that the BM on the memories takes 

place after two successful detections and therefore the Pauli correction can be applied simply 

on the level of the classical post-processing of the measurement data. We  

need to save all measurement results and any information about the state preparations and in  

the end we can discard the information for those cases where the transmission failed. 

 

 

For the probability distribution of the random variable M we obtain (p is the success, q=1-p 

the failure probability for one attempt related with the individual geometric random variables)   

 

       ∑            
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and for j > 0, 

       ∑             
     

   

 

   

   

 

where the factor 2 comes from the fact that both cases X1 > X2 and X2 > X1 are possible. This 

allows us to calculate the following expectation value,  
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and by summing only up to a cutoff constant m instead of infinity, including a renormalization 

of the probability distribution, one can easily obtain the expectation value for protocols which 
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abort after the memory has dephased for a predetermined, given number of time steps 

(attempts). Again note that, depending on the protocol, the overall state may be subject to 

dephasing for an additional constant amount of    . In the case of the NSP protocol, we first 

generate entanglement between the memory and a photon, and as the next step we send this 

photon to a detector over a distance       . Then the detector sends a classical signal to the 

memory announcing whether the photon was detected or not. Therefore, we have to wait for a 

time unit of               until we can decide which action should be applied to the 

memory: storage of the qubit or initialization for a new attempt. Hence, the memory would 

always decohere for at least one such time step, even in the case when the very first attempt is 

already successful. Since this argument applies to both memories, the total state decoheres (is 

subject to dephasing) for M + 2 time steps, each with duration        .  

However, if we consider the NRP protocol, we send photons to the memory and therefore the 

memories (almost) immediately know when a transmission was successful. As a consequence, 

there is no additional constant dephasing in this case and    is simply given via the repetition 

rate of the photon source or the local processing times including the write-in time, whichever 

is longer. 

Using the BB84 protocol,
1
 we obtain an ideal asymptotic secret key fraction of         

     , where                                is the binary entropy and       are 

the error rates in the X and Z basis, respectively. Since the Z-error rate is equivalently given 

by the probability to obtain the effective state |  ⟩, one can easily see that    is zero in our 

error model. Similarly, the X-error rate is given by the probability to obtain |  ⟩ or |  ⟩ and 

is therefore given by 
 

 
(       (  

  

    
) ) up to the protocol-dependent constant 

dephasing. Hence the asymptotic secret key fraction is given by  

   (
 

 
(       (  

  

    
) )), and the final secret key rate is then the product of the 

raw rate (the so-called “yield”) and this secret key fraction. 

 

Also notice that the binary entropy function takes on its maximum of 1 when the argument of 

the function is 
 

 
. Thus, we always obtain a non-zero secret key fraction, which is a specific 

                                                 
1
 We consider the biased BB84 scheme here where one of the two bases is employed more often than the other 

which, in the asymptotic limit of infinite repetitions, allows to remove the ½ factor in the rates of standard BB84 

and increase the sifting factor to unity.
 [50]
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feature of our error model. If we also consider additional error sources like, for example, 

imperfect (though still deterministic) BMs on the memories, we typically have non-zero error 

rates in both the X and the Z basis (unlike the sole phase-flip error in the effective entangled 

state above). Therefore, the secret key fraction can become zero and we typically get more 

demanding requirements for the memory coherence times. 

 

 

S3. Calculation of raw rates  

 

The performance of a QR may be quantified by the secret key rate that can be obtained for a 

given length   of the quantum channel connecting the two parties Alice and Bob who aim to 

securely communicate with each other. Besides the secret key fraction, for calculating the 

(asymptotic) secret key rate, we need an expression for the raw rate, i.e. in our case, the 

number of quantum bits that can be transmitted over a lossy channel of length L, employing 

that channel once and sending one optical mode through that channel (i.e. “per channel use” 

and “per mode”). As the memory-based QR has at least one intermediate station as opposed to 

a PPL for direct transmission, it may not be immediately obvious how to count the channel 

uses. In our case, one channel use corresponds to one attempt to establish a link, and because 

the two (half) segments can be simultaneously attempted to be bridged, the total number of 

attempts, on average, to transmit one qubit over the entire distance can be expressed by 

             . The probability for successfully transmitting one qubit can then be written 

as                . This then corresponds to the number of qubits transmitted per channel 

use, i.e. a dimensionless raw rate expressed per channel use. 

 

The effect of imperfect quantum memories, i.e., quantum memories with finite coherence 

times (see the dephasing model of the preceding section), can be taken into account in the raw 

rate by imposing a maximally allowed storage time of the loaded memory at the central 

station waiting for a second transmission to succeed. In other words, the QR protocol is 
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aborted as soon as a quantum memory's storage time limit is exceeded. If this “cutoff” is 

chosen to be well below the memory’s coherence time, one can ensure that the quality of the 

entangled light-matter state is still so high and hence that of the final (effective) entangled 

state too, such that errors are negligible. In the QKD context, this corresponds to a secret key 

fraction near unity. However, such an approach would be at the expense of the raw rate, 

because aborting and restarting the protocol more frequently for a small cutoff time means 

that it takes longer to finally distribute a qubit over the total distance, thus reducing the raw 

rate. Due to this trade-off, there is an optimal cutoff that maximizes the secret key rate. 

Nonetheless, we shall also consider sufficiently small cutoffs that lead to fidelities of the final 

(effective) entangled states that are above a certain fidelity value. This may also be relevant 

for applications different from QKD. Generally, smaller memory coherence times and thus 

shorter storage time limits require a correspondingly faster abortion and restart of the protocol 

leading to a smaller transmission probability. For the NSP protocol, this effect depends on the 

total distance  , because for larger  , the required storage time per transmission attempt 

grows such that for a given, fixed memory coherence time the effective memory efficiency 

drops, which becomes visible in the QR performance. As a consequence, in this case, the 

cutoff becomes distance-dependent in order to keep the fidelity above a certain threshold and 

the maximal secret key rates have smaller optimal cutoffs for larger distances. In the NRP 

protocol, this  -dependence disappears, because the quantum signals are sent to, and no 

longer emitted from, the quantum memories, in which case the duration of every transmission 

attempt only depends on the source’s repetition rate and the local processing / write-in times, 

and no longer on the distance between memories and detectors. 

 

Calculating the expression                  the dimensionless raw rate (or qubit 

transmission probability) for a memory-based scheme with one central memory node 

including memory cutoff time is given by 
[23,57] 
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Here, p and q are again the success and failure probabilities of a single attempt in one (half) 

segment of length    . Thus, for deterministic local state preparations (or, more generally, 

unit link coupling efficiencies), we have   √ . The final BM efficiency on the two 

memories is included via the extra factor    , which can be set to one for a deterministic BM 

(      in the following). The parameter   determines the maximal acceptable number of 

attempts (the above-mentioned memory cutoff) a loaded memory is allowed to wait for a 

second successful transmission attempt. Note that for     we obtain the no-memory case, 

corresponding to          , which is just the result one obtains for direct transmission, 

i.e. the “repeaterless” bound for distance   (for not too small  ). Conversely, for     

(corresponding to the perfect memory case with no need for aborting the protocol), we have 

         

    
       , which, for small   becomes approximately    

 
     √  (and this 

scaling becomes      for   repeater segments). The √ -scaling corresponds to the optimal 

transmission in a memory-based QR with a single node or, equivalently, two segments. 

 

 

S4. Additional results: two-segment QR in the NSP protocol 

 

 

In comparison to the rates of the NSP-QR cell (illustrated by Fig. 4b) as shown in Fig. 5, 

below we also present the rates calculated for the two-segment QR as illustrated by Fig. 4a.  

The subtle differences between these two small-scale QR variants are discussed in the main 

text. In addition to the short discussion there, let us emphasize here that for a reasonable 

comparison, we did not include dephasing errors on the outer memories (those most left and 

right in Fig. 4a). Practically, in the context of QKD, this means that Alice and Bob would 

immediately measure their qubits and not store any quantum states at all; thus, storage again 
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takes place only at the central node. On the other hand, such an approach prevents the two-

segment scheme from its possible use beyond QKD, because the two-segment scheme is 

potentially more versatile compared with the NSP-QR cell when the outer memories of the 

two segments are also exploited for quantum storage. 

 

One can see that comparing the two QR variants (Fig. S1 with Fig. 5 of the main text) there is 

a visibly better performance of the QR cell. Some platforms that enter the repeater regimes for 

the QR cell no longer achieve this for the two-segment scheme. 

 

 

 

Fig. S1: Secret Key Rates (SKR) and High-Fidelity Raw Rates (RR) for a small NSP-based QR scheme (two-

segment QR). The bottom plots show SKR in dB as a function of the total distance L in km for experimental 

parameters as currently available (left) and as potentially available in the future (right). The top plots show RR 

in schemes where the entangled states effectively created over the total distance L have a fidelity of at least 0.95 

(left: current parameters, right: future parameters). Curves that are disappearing beyond certain distances (or 

completely missing) no longer (never) exceed F=0.95. The different platforms correspond to NV (violet) and SiV 

(green) centers, ions (brown), Rubidium atoms (red), and quantum dots (yellow). The light grey area illustrates 

the (secret key) rate regime between    (curve in bold black: “repeaterless” bound) and √  (line in dark grey: 

optimal rate for QR cells or two-segment QR schemes). The bold black dashed lines represent the realistic 

“repeater-less” bound           (direct transmission via PPL) with finite link efficiencies          ,    .         
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S5. Additional results: Bell-state measurement-assisted memory write-in (NRP) 

 

 

In comparison to the rates of the NRP-QR cell with ideal unit write-in efficiency as shown in 

Fig. 7, below we also present the rates calculated for the scheme based on quantum 

teleportations of the arriving photonic qubits onto the spin qubits with the help of locally 

prepared spin-photon entangled states and linear optical BMs (see Fig. 6b). In this case, 

instead of assuming unit write-in efficiency like for the rates calculated in Fig. 7 (where the 

values for               are directly taken from Tables 1 and 2), we have        

         
       

  and hence                                
        

 . For obtaining the 

curves in Fig. S2, we thus use for       the Table values squared and multiplied with one half 

(without explicitly considering the factor       
 ). Moreover, the additional sequences for 

spin reinitialization are included in         
   (numbers in brackets in Tables 1 and 2). 

 

For current experimental parameters, where previously with ideal and fast photon-spin 

interfaces all platforms entered the repeater regimes (Fig. 7), we now observe that under the 

assumption of non-deterministic and slow interfaces, most platforms stay within the 

“repeater-less” regimes. Only the secret key rate for Rubidium atoms slightly exceeds the 

limit. Note that the curves for NV and SiV color centers completely overlap, since the 

relevant factor that counts the number of possible distribution attempts within the memory 

coherence time is equal for both,     /            (while the individual times are different). 

Here, NV and SiV also share the same link coupling efficiency,           , which appears 

to be the stronger limitation for the distances considered when compared with the values for 

Rubidium,       = 0.5 and     /          , especially because the Table values for       

now enter quadratic into the rates.  
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This discussion also serves as a nice illustration that the actual memory efficiency in a QR 

protocol depends on the ratio of the coherence time and the (effective) repetition time. With 

future parameters, for all platforms, the repeater regimes can still be entered and the repeater 

rate slopes can be fairly well maintained over 400 km despite the non-unit write-in efficiency 

and slower interfaces. 

 

 

 

 

Fig. S2: Secret Key Rates (SKR) and High-Fidelity Raw Rates (RR) for a small NRP-based QR scheme (QR cell 

with linear optical teleportation-assisted memory write-in). The bottom plots show SKR in dB as a function of the 

total distance L in km for experimental parameters as currently available (left) and as potentially available in 

the future (right). The top plots show RR in schemes where the entangled states effectively created over the total 

distance L have a fidelity of at least 0.95 (left: current parameters, right: future parameters). The different 

platforms correspond to NV (violet) and SiV (green) centers, ions (brown), Rubidium atoms (red), and quantum 

dots (yellow). The NV curves are invisible coinciding with those of the SiV platform. The light grey area 

illustrates the (secret key) rate regime between    (curve in bold black: “repeaterless” bound) and √  (line in 

dark grey: optimal rate for QR cells or two-segment QR schemes). The bold black dashed lines represent the 

realistic “repeater-less” bound           (for direct transmission via PPL) with finite link efficiencies       

   ,    .         
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S6. Remarks on QR parameters, wavelength conversion and fiber-coupling efficiencies 

 

 

We will give a few additional details especially regarding the future experimental parameters 

of the three hardware platforms (as given in Table 2). The discussion here will also include 

some remarks and additional rate calculations concerning the use of wavelength converters. 

 

For NV centers we extrapolate the values of Refs. [25,26] for the link coupling efficiency and 

the clock rate, excluding additional spin sequences, and for the coherence time assuming a 
13

C 

nuclear spin for the memory. Similar assumptions are made for the SiV centers based on Refs. 

[21,28,29]. As already mentioned in the main text, the SiV platform provides a potentially 

more efficient photon-spin interface including higher cooperativities. More specifically, in the 

recent experiment of Ref. [21 , the  i  centers are placed inside a cavity with a cooperativity 

of    , leading to a  urcell factor        and shortening the spontaneous emission time of a 

SiV center to below 100 ps. This would, in principle, result in even higher clock rates than 

500 MHz. However, the experimental data of Ref. [21] were collected including extra spin 

sequences after a certain fixed and finite number of distribution attempts. Averaging over 

these extra sequences eventually leads to an overall clock rate      z. Overall a full system 

detection efficiency of about 85% was deduced in Ref. [21] exceeding our assumed value of 

50% for the link coupling efficiency. Reference [28] extended the SiV electron spin 

coherence time by swapping to a 
13

C nuclear spin reaching a number above 100 ms. To sum 

up, in Table 2 we give numbers for SiV that have been achieved individually already, but we 

refer to them as future values as they have to be achieved concurrently in a single system.    

 

When including the minimal times required for spin reinitialization etc. (       including 

initialization, preparation, and emission times), current NV experiments 
[58]

 have already 

demonstrated clock times        as low as   μs corresponding to clock rates of 500 kHz (here 
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the main limitation appears to be the spin initialization). This number is the NV clock rate 

(number in brackets) in Table 1. As for the future clock rates (Table 2), we assume that for the 

spin initialization at least one cycle involving the    singlet system must be completed while 

the lifetime of the lowest singlet state is    200 ns. This corresponds to a clock rate of 5 MHz 

(Table 2, number in brackets). In the case of SiV, we currently assume a (slow) clock rate of 5 

MHz (Table 1, number in brackets), which is an order of magnitude larger than that for NV, 

since the spin initialization mechanism is different (independent of a singlet system). 

However, as the coherence time of SiV is assumed to be an order of magnitude smaller than 

that for NV, the relevant dephasing factor is equal for both,     /           . The slow, 

future SiV clock rate value is assumed to be 50 MHz (Table 2, number in brackets). In this 

case, the spin initialization is limited by the duration for one cyclic optical transition. Based 

on the number of Table 1 (5 MHz), assuming 100 cycles until a spin flip, and considering an 

extra gain by a factor of 10 through the possibility of Purcell cant, a future clock rate of 50 

MHz seems feasible.     

 

For the quantum dot platform, the numbers given in the Tables correspond to the most 

commonly studied and highly performant quantum dots, namely InGaAs strained quantum 

dots. However, already published results (at low temperature in the mK regime using gate 

defined quantum dots in GaAs as III-V material) have reported coherence times on the order 

of 300 µs based on dynamical decoupling.
[59]

 These existing experimental parameters can be, 

in principle, linked to the optical regime. Recent material physics developments in the growth 

of strain-free GaAs quantum dots (i.e., fabricated by droplet epitaxy 
[60,61]

) have also made 

significant progress and these systems have now a quality comparable to strained InGaAs 

quantum dots. In fact, in Ref. [62], highly entangled photons were efficiently extracted from 

symmetric GaAs quantum dots, based on the earlier work reported in Ref. [61]. In the context 

of implementing a quantum repeater, it is worth mentioning that with the same GaAs quantum 
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dot system, photonic entanglement swapping has been demonstrated.
[63,64]

 Moreover, the 

emission of entangled photon pairs based on quantum dots at a clock rate of 400 MHz was 

demonstrated already five years ago.
[65]

 

 

The level of control of the nuclear spin system which is the main source of spin dephasing 

also improved dramatically recently, for instance, via optically pumped nuclear state 

narrowing techniques.
[66]

 Coherent addressing of nuclear spin waves promises 
[67]

 further 

enhanced coherence times. Furthermore, using quantum dot molecules one can employ 

single/triplet qubit bases which are less sensitive to electric and magnetic field fluctuations 
[68]

 

as another approach to improve the coherence times in quantum dot systems.  

 

Important efficiency parameters for a quantum repeater based on the quantum dot platform 

are the photon collection and fiber-coupling efficiencies. Photon collection efficiencies 

between 60% - 85% have already been reported for quantum dot micropillar and so-called 

bullseye cavities.
[69,70,71,72]

 Theoretical values of up to 96% have been estimated in Ref. [73]. 

To achieve such values one can optimize the cavity design to improve unidirectional emission, 

and at the same time optimize the vertical and lateral design of the etching processes. For 

instance, for the bullseye it is known that the exact thicknesses of the epitaxial membrane 

structure and the lateral grating are critical to obtain maximal values. Moreover, the quantum 

dot needs to be well located, which can be realized via deterministic placement techniques. 

 

For the fundamental mode of laser light (Gaussian      mode), fiber-coupling efficiencies of 

80% - 90% can be achieved in the labs. To achieve a comparable value for a quantum dot 

light source, the quantum dot has to be embedded into a cavity structure exhibiting a nearly 

Gaussian fundamental mode. This is possible for the pillar and bullseye microcavities. 

Excellent cavity-mode-to-fiber coupling efficiency of 85% have already been achieved.
[74]
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Additionally, one can implement a new type of 3D printed micro- and nano-optics with 

complex lens designs for photon collection.
[75]

 This allows for high optical performance and 

corrects for aberrations when imaging at wide angles. We therefore anticipate fiber-coupling 

efficiencies in optimized cavities on the order of 80% - 90%. 

 

For the ion platform, we refer to existing and potential future experiments with Calcium and 

Ytterbium. The current parameters for Calcium are extracted from the recent experimental 

results of Ref. [51] where the clock rate of 7 kHz is fairly small in comparison with the other 

platforms (Table 1, number in brackets). A higher clock rate with         
   = 0.47 MHz has 

been achieved for Ytterbium.
[52] 

However, the link coupling efficiency in that Ytterbium-

based experiment 
[52]

 was smaller (            than that obtained in the Calcium-based 

experiment 
[51]

 (          . Nonetheless, for the rate calculations based on Table 1 using 

the faster clock rate (Fig. 7), we assume as well the higher value for      , as the two relevant 

experiments are both from the ion platform. Similarly, for the memory coherence time we 

choose a value of 20 ms throughout.
[51] 

As for the future parameters, we refer again to Ref. 

[51] where ~25% photon-to-fiber link coupling probability per attempt was demonstrated. 

Based on this result, assuming more efficient detectors and moderately improved ion-cavity 

coupling, we infer as an extrapolation a future link coupling efficiency of 50%. A clock rate 

of 1 MHz has already been achieved in Ref. [53] in a system without cavity, and this also 

appears to be applicable to an ion-cavity system provided that the cavity is sufficiently short, 

like in Ref. [38]. The memory coherence time is an already demonstrated value from Ref. [54]. 

 

Finally, for the Rubidium atom platform, the currently available values for       and      

refer to reported experiments with Rubidium atoms in a cavity.
[34,35] 

More specifically, atomic 

eigenstates can be chosen for the qubit encoding such that the effect of external magnetic 

fields is significantly reduced. This way coherence times above 100 ms have been 
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measured.
[34] 

Also from an earlier experiment, demonstrating atom-atom entanglement as 

highly relevant in the context of quantum repeaters, we can infer a link coupling efficiency of 

50% which can be further improved. Typical values for the clock rate in these experiments, 

including additional operations such as intermediate atom cooling, are about 5 kHz (Table 1, 

number in brackets). The assumption of potentially higher values then depends on a repeater 

protocol that circumvents such slow additional sequences. Generally, the state fidelity plays 

an important role for the atom platform. While currently fidelities of almost 70% are 

possible,
[55] 

with realistic fiber-based cavities of higher cooperativity fidelities of up to 96% 

should be possible.
[56] 

As a main challenge, like for all platforms, it is crucial to combine high 

values of the three experimental parameters proposed in our simple model together with 

sufficiently high state fidelities in a single system.   

 

Let us finally comment on the quantitative effect of wavelength converters for switching from 

the sources’ and memories’ wavelengths to the telecom wavelength as most suitably adapted 

to a fiber communication channel. In our model, the effect of these converters can be 

absorbed into       via a wavelength conversion efficiency. For simplicity, we assume a 

constant factor of ½ for all platforms, while the relevant wavelengths in some platforms are 

certainly harder to convert than in others. Quantum frequency conversion nonetheless now 

achieves device efficiencies exceeding 50%. In particular, for Rubidium atoms, atom-

telecom-photon entanglement was recently demonstrated with a conversion efficiency of 

57%.
[76]

 For ions and quantum dots, conversion efficiencies of almost 30% and exceeding 

30% were reported in Ref. [33] and Ref. [77], respectively. Current experiments with Calcium 

ions produce (yet unpublished) experimental data compatible with a conversion efficiency 

above 50% (based on the earlier experiment achieving above 25%,
[33]

 see also Ref. [51] for a 

Calcium ion experiment that achieved 25% conversion efficiency). For NV color centers, an 

existing experiment reports a conversion efficiency of 17%.
[78]

 Thus, again, in all platforms, 
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conversion to telecom wavelength has been experimentally demonstrated with efficiencies of 

similar order of magnitude. We shall then analyze what the general effect of the assumed 

factor ½ reduction of       on the repeater rates is. 

 

The figures below show the repeater rates calculated based on our model including throughout 

an additional factor of ½ for the experimental parameter      . Figure S3 corresponds to the 

rates of the NSP-QR cell as shown in Fig.5, but this time including the conversion efficiency. 

Although the overall effect of the extra inefficiency does not appear dramatic, some platforms 

that previously enter the repeater regimes now no longer achieve this.   

 

 

Fig. S3: Secret Key Rates (SKR) and High-Fidelity Raw Rates (RR) for the NSP-QR cell as shown in Fig.5, but 

including a factor ½ in the link coupling efficiencies to take into account the effect of wavelength conversions. 

Bottom plots show SKR in dB as a function of the total distance L in km for experimental parameters as currently 

available (left) and as potentially available in the future (right). Top plots show RR in schemes where the 

entangled states effectively created over the total distance L have a fidelity of at least 0.95 (left: current right: 

future).         
 

Similarly, we show the rates for the NRP protocol including the conversion efficiency. Figure 

S4 corresponds to the rates of the NRP-QR cell as shown in Fig. 7 assuming a deterministic 
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and fast memory write-in, but now also including the extra factor ½ in      . The effect of this 

factor on the rates appears relatively small. Figure S5 is the counterpart of Fig. S2 (NRP-QR 

cell with a teleportation-based, non-deterministic and slow write-in), with the only difference 

now being the factor of ½ in      . In this case, the effect appears stronger. For the future 

parameters, it can be most easily seen that the rates are basically downshifted, while the 

repeater regime can still be entered over the distance considered.  

 

  

 

 

Fig. S4: Secret Key Rates (SKR) and High-Fidelity Raw Rates (RR) for the NRP-QR cell as shown in Fig.7, but 

including a factor ½ in the link coupling efficiencies to take into account the effect of wavelength conversions. 

Bottom plots show SKR in dB as a function of the total distance L in km for experimental parameters as currently 

available (left) and as potentially available in the future (right). Top plots show RR in schemes where the 

entangled states effectively created over the total distance L have a fidelity of at least 0.95 (left: current right: 

future).         
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Fig. S5: Secret Key Rates (SKR) and High-Fidelity Raw Rates (RR) for the NRP-QR cell as shown in Fig.S2, but 

including a factor ½ in the link coupling efficiencies to take into account the effect of wavelength conversions. 

Bottom plots show SKR in dB as a function of the total distance L in km for experimental parameters as currently 

available (left) and as potentially available in the future (right). Top plots show RR in schemes where the 

entangled states effectively created over the total distance L have a fidelity of at least 0.95 (left: current right: 

future).         
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We propose two schemes to obtain Gottesman-Kitaev-Preskill (GKP) error syndromes by means of linear-
optical operations, homodyne measurements, and GKP ancillas. This includes showing that for a concatenation
of GKP codes with an [n, k, d] stabilizer code only 2n measurements are needed in order to obtain the complete
syndrome information, significantly reducing the number of measurements in comparison to the canonical
concatenated measurement scheme and at the same time generalizing linear-optics-based syndrome detections
to higher GKP codes. Furthermore, we analyze the possibility of building the required ancilla states from single-
mode states and linear optics. We find that for simple GKP codes this is possible, whereas for concatenations
with qubit Calderbank-Shor-Steane codes of distance d � 3 it is not. We also consider the canonical concatenated
syndrome measurements and propose methods for avoiding crosstalk between ancillas. In addition, we make use
of the observation that the concatenation of a GKP code with a stabilizer code forms a lattice in order to see the
analog information decoding of such codes from a different perspective allowing for semianalytic calculations
of the logical error rates.

DOI: 10.1103/PhysRevA.105.042427

I. INTRODUCTION

In the last few years large interest arose in bosonic
quantum error correcting schemes, which encode a finite-
dimensional system within a harmonic oscillator, such as
cat and Gottesman-Kitaev-Preskill (GKP) codes [1,2]. This
growing interest for such codes came from experiments
demonstrating first implementations of these codes [3–5] and
partly already outperforming simple encodings, although the
codes were proposed already two decades ago. As these codes
even allow for error correction with a single oscillator mode
they are very hardware efficient. However, the GKP codes are
only able to correct small displacement errors and therefore
concatenations with stabilizer codes [6–10] are often consid-
ered in order to correct larger shifts. The analog syndrome
information of individual GKP codes has gained a lot of atten-
tion as it helps to further boost the error-correction capability
of the code concatenation, because even for a code of distance
d = 3 it allows for correcting some two-qubit errors.

GKP codes are now also considered for quantum commu-
nication, since they can be encoded in an electromagnetic light
field, which is the ideal long-distance quantum information
carrier, and so have been shown to almost achieve the capacity
of the loss channel in the low-loss regime [11]. Furthermore,
for quantum communication one only needs Clifford gates and
Pauli measurements which can be implemented in the GKP
encoding with Gaussian optics and homodyne measurements.
Recently concatenations with qubit stabilizer codes have been

*fschmi@students.uni-mainz.de
†loock@uni-mainz.de

considered for communication [12], making also use of the
analog information in the GKP error syndrome [13].

In this paper we primarily describe the GKP codes by
making use of their stabilizer formulation, because this allows
us to simply generalize results from the usual square-lattice
GKP code to more general lattices and it is also useful for
the concatenation with high-level codes, which we assume
to be qubit (qudit) stabilizer codes. We show that it is not
necessary to first perform the GKP syndrome measurements
and later those of the stabilizer code independently as it is
usually done in the literature. Instead it is possible to find a
joint minimal set of stabilizer generators for the concatenation
of both codes which can then be measured, reducing the
overhead of necessary ancilla states. Related to this result,
we propose two explicit methods for obtaining this syndrome
information without inline squeezing operations and based on
passive linear optics. In particular, our linear-optics schemes
for the error-correction syndrome detections include those
of the higher GKP codes, thus extending existing linear-
optics schemes for sole GKP qubit syndrome detection. These
linear-optical syndrome measurements might be useful in the
context of generalized approaches to fault-tolerant photonic
quantum computing with GKP codes [14]. We show that the
error-correcting properties of a code remain invariant under
(passive) linear-optical transformations for isotropic displace-
ment noise. Additionally, we also discuss the possibility of
generating the ancilla states necessary for error correction
with linear optics and show that it is impossible to generate
codewords of such a high-level GKP qubit code with code
distance d � 3 by employing rectangular single-mode grid
states and linear optics. These results are not in contradiction
and complementary to the results from Ref. [15], which con-
siders additional GKP states which are then measured, while
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we do not assume such additional GKP states. We also dis-
cuss some other results concerning the possibility of building
GKP-type states with passive linear optics, namely, for GKP
Bell states composed of two general (multimode) GKP codes
or codewords assuming that two copies of suitable codes or
codewords are already experimentally accessible.

Moreover, we also discuss the possibility of performing
syndrome measurements of the higher-level code following
the canonical measurement approach in such a way that there
is no error propagation from one ancilla to another one. Fi-
nally, we demonstrate how one can systematically calculate
the performance of the concatenation of GKP qudits with a
high-level code when making use of the analog syndrome
information in a semianalytic way.

The paper is structured as follows. In Sec. II we review
qudits and GKP codes, and in Sec. III we give a brief review
about different schemes for obtaining the GKP syndrome
information. In Sec. IV we discuss the minimal number of
measurements for higher GKP codes and propose a linear-
optical realization based on error correction by teleportation.
In Sec. V we propose another linear-optical realization of the
minimal set of measurements and in Sec. VI we discuss meth-
ods for avoiding error propagation between ancillas when
performing stabilizer measurements. Finally, we compare the
different methods of obtaining the syndrome information in
Sec. VII and conclude in Sec. VIII.

II. BACKGROUND

A. Qudits

We refer to a quantum system represented by a finite-
dimensional Hilbert space of dimension D as a qudit of
dimension D. Furthermore, we label states in the Z basis by
elements of ZD. For these qudits we can generalize the Pauli
operators as

XD =
D−1∑
j=0

| j + 1 mod D〉〈 j|, (1)

ZD =
D−1∑
j=0

exp

(
i
2π

D
j

)
| j〉〈 j|, (2)

ZDXD = exp

(
i
2π

D

)
XDZD. (3)

For qudits we can then give D2 basis elements for all opera-
tors, taking the form Prs := X r

DZs
D with r, s ∈ ZD. For brevity

we drop the index D in Pauli operators. When neglecting
global phase information, it is possible to map Pauli operators
acting on n qudits onto Z2n

D via

φ
(
X r1

1 Zs1
1 · · · X rn

n Zsn
n

) = (r1, . . . , rn|s1, . . . , sn). (4)

Using Eq. (3) we see that

PrsPr′s′ = exp

(
−i

2π

D
ω((r, s), (r′, s′))

)
Ps′,r′

Ps,r, (5)

where ω(·, ·) is the canonical symplectic form given by
ω((r, s), (r′, s′)) = r · s′ − s · r′. Thus, two Pauli operators
commute if and only if the symplectic form of the two

symplectic representations of the Pauli operators vanishes
modulo D.

Stabilizer codes (see Refs. [16,17] for more details) are
defined by an Abelian subgroup S of the Pauli group which
acts as the identity within the code space. Given such a group
it is possible to find a small set generating the whole group.
For the special case of prime D there is the nice relation that
the number of stabilizer generators is equal to n − k, where
n is the number of physical qudits and k is the number of
encoded qudits. However, for nonprime D we can have up
to 2n stabilizer generators [17]. The code distance of a sta-
bilizer code is given by the lowest-weight element in N (S)/S,
where N (S) denotes the normalizer of S. It is quite conve-
nient to give a stabilizer code by an l × 2n matrix given by
the symplectic representation of the l stabilizer generators.
For Calderbank-Shor-Steane (CSS) codes this matrix can be
brought to the following form:

H =
(

HX 0
0 HZ

)
. (6)

Thus, bit and phase flips can be corrected independently.
Employing high-dimensional qudits instead of qubits

might be of practical relevance as qudits can tolerate more
(hardware-agnostic) depolarizing noise before entanglement
is lost or one is unable to perform quantum key distribution
[18–21]. Additionally, in the context of quantum error cor-
rection there is the quantum singleton bound showing that
there is a trade-off between the number of logical qudits and
the code distance for a given number of physical qudits. For
qubits there only exists a five-qubit code with code distance
3 satisfying the bound while for higher-dimensional qudits
there also exist codes for arbitrary large code distance d . An
example for such codes is the family of quantum polynomial
codes defined for prime qudit dimension D [22].

B. GKP codes

GKP codes [2] encode n qudits within the phase space
of a harmonic oscillator with n modes. These codes can be
understood as stabilizer codes, where the code space is sta-
bilized by a discrete, Abelian subgroup of the continuous
Weyl-Heisenberg group [23].

The elements of the continuous Weyl-Heisenberg
group for n modes can be given as U (θ, α, β ) =
exp(iθ ) exp(i

√
2π

∑n
j=1(α j q̂ j + β j p̂ j )) with real numbers

α, β ∈ Rn and where q̂ and p̂ denote the position and
momentum operators fulfilling [q̂, p̂] = ih̄; in this article we
set h̄ = 1. Thus this group is isomorphic to U (1) × R2n. The
commutation relation of two group elements is given by

U (θ1, α1, β1)U (θ2, α2, β2)

= U (θ2, α2, β2)U (θ1, α1, β1)

× exp(−i2πω((α1, β1), (α2, β2))), (7)

where ω(·, ·) is the canonical symplectic product already
introduced in the previous qudit section extended to real num-
bers and can be obtained by the Baker-Campbell-Hausdorff
formula. In order to obtain commuting operators, we need to
find elements in R2n whose symplectic product gives pairwise
an integer. We will refer to the parametrization via R2n as
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phase-space or symplectic representation. In order to encode
a finite-dimensional system in the 2n-dimensional code space,
we need 2n independent stabilizer generators which we use as
a definition for the stabilizer group. If we have found those
elements in R2n, then we know that also all elements in the
lattice L generated by the 2n independent vectors in R2n also
correspond to commuting operators due to the linearity of
the symplectic product [24]. The set of operators commuting
with all stabilizers corresponds to the dual lattice L⊥ (with
respect to the symplectic form). Thus L⊥/L give logical op-
erators and therefore we can define the code distance (with
respect to the Euclidean norm), analogously to qudit stabilizer
codes, as the minimum weight of nontrivial elements in L⊥/L
giving the smallest error commuting with all stabilizers.

As an example let us consider the well-known square-
lattice code. The stabilizer generators are given by

exp(−i
√

2πDp̂), exp(i
√

2πDq̂), (8)

with logical operators

X = exp

(
−i

√
2π

D
p̂

)
, Z = exp

(
i

√
2π

D
q̂

)
. (9)

Thus all displacement errors smaller than
√

π
2D can be

corrected [25]. However, notice that the logical states | j〉 in
the Z basis are given as

| j〉 =
∑
k∈Z

∣∣∣q̂ =
√

2πD
(

k + j

D

)〉
. (10)

The codewords consist of an infinite series of delta peaks
in position or momentum representation such that the states
are unphysical, because they are not normalizable and have
infinite energy. Thus one needs to consider approximate GKP
states, where we replace the delta peaks by narrow Gaussian
peaks and we also consider an overall Gaussian envelope in
order to make the state normalizable. Such a state can be
obtained by applying coherent, Gaussian displacements on an
ideal codeword. There are multiple approximations known in
the literature which have been shown to be equivalent [26]. In
this article, we replace the coherent Gaussian displacements
by incoherent ones, simplifying the calculations. This can be
understood as the result of an unphysical limit of a twirling op-
eration [27,28] acting on a state with coherent displacements
similar to the qubit case where it is also possible to reduce
arbitrary noise to Pauli channels by applying twirling opera-
tions. Thus the resulting state is noisier such that we obtain a
conservative estimate of the error-correction properties.

One main advantage of this GKP encoding is that all Clif-
ford operations acting on the GKP code can be implemented
by Gaussian operations. Additionally, Pauli measurements
can be implemented by using homodyne measurements.
Furthermore, GKP syndrome measurements, which can be
implemented by GKP states and Gaussian operations, applied
to the vacuum state are known to produce states that can
be distilled to magic states [29]. Thus, the generation of the
GKP states is the only needed non-Gaussian element for a
universal set of quantum gates. An all-Gaussian system can
be simulated efficiently [30].

Although only codewords of qubit GKP codes have been
explicitly demonstrated in experiments with ions [4] and su-
perconducting qubits [5], it is not much more difficult at
all to obtain codewords of GKP qudits. For example, in the
experiment in Ref. [4] one only has to modify the parameter
α in the conditional displacement in order to generate qudits
instead of qubits on a square lattice. Furthermore, the X and
Z eigenstates of the qubit square-lattice GKP code prepared
in the experiment can already be understood as a qudit GKP
codeword based on an appropriately chosen rectangular lat-
tice. Thus, for example the codeword |0〉 is given by the
same physical state for both codes and the difference of the
two codes only lies in the different definitions of Pauli and
recovery operations.

III. REVIEW OF SYNDROME MEASUREMENTS

We consider a concatenation of GKP qudits with qudit sta-
bilizer codes. We refer to the syndrome measurement where
we obtain information about the small shifts needed for cor-
recting the GKP qudit as GKP syndrome, while we will refer
to the syndrome obtained by measuring the stabilizer genera-
tors as stabilizer syndrome.

A. Stabilizer syndrome

The syndrome of a stabilizer code which encodes k logical
qudits into n physical qudits is formally obtained by mea-
suring all n − k stabilizer generators (for D prime, otherwise
up to 2n). When coupling ancilla qubits with data qubits for
obtaining the code syndrome it is highly desirable that every
ancilla qubit only couples with a single data qubit in order to
prevent a single error of the ancilla propagating onto multiple
data qubits. One such scheme is the Steane error correction
[31] where the n data qubits are coupled with 2n ancilla qubits
by transversal controlled-NOT (CNOT) gates. The CNOTs act as
the identity on the logical level for this ancilla such that we
learn the error syndrome but gain no information about the
encoded quantum information. In the special case of a CSS
code the 2n qudit ancilla states can be decomposed into the
two logical codewords |+〉 (|0〉) being target (control) of the
transversal CNOTs and measured in the Z (X ) basis.

A different approach is the so-called Knill scheme [32],
where the ancilla is given by a logical Bell state and Bell
measurements are applied to the data qubits and one-half of
the logical Bell state. In the original paper the scheme was
only proven for qubits, but in Appendix C we show that it also
works for D > 2 CSS codes.

B. GKP syndrome

Let us begin to review the different known methods for
obtaining the GKP syndrome. The schemes can be put into
two categories. On the one hand, we have sequential mea-
surements as the one proposed in the original GKP paper [2],
which is inspired by the Steane error-correction scheme for
CSS qubit codes [31], and further improved schemes reducing
the experimental resources [33,34]. On the other hand, we
have a teleportation-based scheme [29,35] inspired by Knill’s
error correction by teleportation [32] which only started to
gain more interest recently [36].
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FIG. 1. Different methods to obtain the syndrome information
of a square GKP code. (a) Steane-inspired approach introduced in
Ref. [2]. The CNOT gates are implemented by CSUM gates where
each can be decomposed into two beam splitters and two squeezers.
(b) Knill-Glancy scheme [33] where each CSUM gate is replaced by a
single beam splitter and squeezer. (c) Improved Knill-Glancy scheme
where we only need beam splitters and an offline-squeezed state.

1. Steane scheme

Now let us further discuss the sequential scheme. For
square GKP qubits the Steane error-correction scheme
[Fig. 1(a)] was proposed for performing the syndrome mea-
surement. First we have one code block containing the data
and two ancilla code blocks being in the |+〉 and |0〉 state.
In order to obtain the syndrome information of the modular
position a CNOT is applied to the data code (control) and the
first ancilla code (target) and the mode of the first ancilla
code is measured in the position quadrature. Similarly, we
obtain the modular momentum stabilizers by applying a CNOT

to the second ancilla code (control) and data code (target) and
the mode of the ancilla code is measured in the momentum
quadrature. In the code space this acts as the identity and
therefore by obtaining the error syndrome we do not ob-
tain information about the logical state. For the square GKP
code CNOT gates are implemented by controlled-SUM (CSUM)

gates [exp(−iq̂1 p̂2)] which can be decomposed into two beam
splitters and two squeezing operations. From an experimental
point of view arbitrary passive linear-optical transformations,
decomposable into beam splitters and phase shifters, are easy
to implement while squeezing operations are not that simple
to implement (highest squeezed vacuum state 15 dB [37]).
Furthermore, it is hard to implement an operation which acts
as the squeezing operation on arbitrary input states. Thus
these squeezing operations are typically implemented via gate
teleportation with an, ideally infinitely, squeezed ancilla state
[38] and have already been used for implementing a CSUM

gate experimentally [39]. However, infinitely squeezed vac-
uum states are unphysical and can only be approximated by
highly squeezed vacuum states resulting in an approximation
error. Thus, it is beneficial to avoid inline squeezing and use
offline squeezing whenever possible.

2. Knill-Glancy scheme

The Knill-Glancy scheme [33] [Fig. 1(b)] was proposed for
a square-lattice (although it is easy to see that it also works
for rectangular lattices) GKP code and it can be understood
as a variation of Steane error correction where the CSUM gate
is replaced by a 50:50 beam splitter followed by a squeezing
operation with a squeezing factor

√
2. Independently from our

work, it was recently shown in Ref. [34] that the Knill-Glancy
scheme is equivalent to a scheme where no inline squeezing
is used [Fig. 1(c)], but one of the two ancilla GKP states is
squeezed by a factor of

√
2. In Sec. V we will show that these

improvements also work for arbitrary GKP codes. Further-
more, this improves the noise introduced by finite squeezing
and there also exists a similar scheme which also gives the
syndrome information of a high-level CSS code.

IV. IMPROVEMENT OF SYNDROME MEASUREMENTS

In many works [6–10] concatenations of GKP codes with
higher-level qubit codes are considered and the syndrome
measurements of the GKP code and the high-level code are
done independently. This means one first obtains the GKP
syndrome information for correcting the small shifts and then
one obtains the syndrome information of the higher-level
code for correcting the larger shifts. Each of these mea-
surements typically makes use of a GKP-like ancilla state
which is costly. Therefore, we discuss alternative measure-
ment schemes which only make use of a minimal number of
measurements.

Let us begin with the qubit case where we concatenate
an n-mode GKP code with an arbitrary stabilizer code. We
show that by using 2n measurements we not only obtain the
GKP syndrome information of the n-mode GKP code, but
also the additional syndrome information for decoding the
higher-level code. This can be seen rather easily by describ-
ing the whole concatenated code by a set of independent
(Weyl-Heisenberg) stabilizer generators. The stabilizer of the
GKP code can be obtained by applying logical Pauli operators
twice. In a naive approach one would construct a set of stabi-
lizer generators by first considering the stabilizers of the GKP
code and then adding the qubit stabilizers. However, these
stabilizer generators are not independent, because we can

042427-4



QUANTUM ERROR CORRECTION WITH HIGHER … PHYSICAL REVIEW A 105, 042427 (2022)

apply the qubitlike stabilizers twice in order to obtain stabi-
lizer generators of the GKP code. Thus we can remove these,
such that we still have 2n independent stabilizer generators.
When encoding quantum information into a code we have
a product state of inputs in Pauli eigenstates. This state can
therefore be described by 2n independent stabilizer genera-
tors. In order to do the encoding we perform a sequence of
Clifford (Gaussian) operations, changing the actual stabilizer
generators but their number remains invariant. Thus, we only
need to measure the 2n independent stabilizer generators in
order to obtain full syndrome information. Furthermore, we
can generalize this result to arbitrary qudit dimensions D
by using a different proof technique based on lattice theory
instead due to technical difficulties. The proof is given in
Appendix A. This result is quite remarkable, because one
needs no additional measurements in order to obtain the addi-
tional syndrome information of the higher-level code, which
consists of up to 2n (Pauli) stabilizer generators for the case
of nonprime D. While such minimal measurements have been
proposed in an ad hoc way for some codes [6,40], in the next
sections we discuss two schemes which allow us to obtain
the full syndrome information in a systematic way for general
GKP codes concatenated with stabilizer codes employing only
GKP-like states, linear optics, and homodyne measurements.

A. Teleportation-based error correction

1. GKP syndrome

Here we will discuss how to obtain the syndrome infor-
mation of a general GKP code which will be a building
block for the scheme that additionally also gives the syndrome
information of the high-level code. Let us first discuss the
special case of a GKP qudit code using a square lattice and
show that it is possible to obtain the syndrome information
without needing inline squeezing operations. Recall that the
(Weyl-Heisenberg) stabilizers of such a code encoding a qudit
(with dimension D) are given by

exp(−i p̂
√

2πD) and exp(iq̂
√

2πD), (11)

where q̂ and p̂ are quadrature operators of the harmonic oscil-
lator. The logical Pauli operators of the GKP code are given
by

X = exp

(
−i p̂

√
2π

D

)
and Z = exp

(
iq̂

√
2π

D

)
. (12)

Therefore, the logical information encoded in |ψ〉GKP is en-
coded in modular quadrature operators. Let us consider a qudit
Bell state

|	00〉2,3 := 1√
D

D−1∑
k=0

|k, k〉2,3, (13)

which can also be described by the two (qudit) stabilizers X2X3

and Z2Z−1
3 [41]. We can construct all other Bell states via

|	rs〉2,3 := X
r
2Z

s
2|	00〉2,3, (14)

FIG. 2. A logical qudit is encoded in mode 1 and is affected by
Gaussian errors (GE). Then it is coupled with one half of a logical
Bell state pair via a balanced beam splitter (BS). The position and
momentum quadratures of the beam splitter output are measured.
We can use these measurement results for error correction of the
GKP code and for correcting the higher-level code. The teleportation
protocol actually also involves applying conditional displacements.
However, when considering multiple rounds of this teleportation
protocol we actually do not need to apply the displacement in every
step, but we can keep track of the displacements and apply only one
displacement in the end, because they only shift the measurement
results of the next error-correction cycle. This is similar to the Pauli
frame for qubits. The dotted line denotes that modes 2 and 3 share an
entangled state.

where r, s ∈ ZD. If we have such a qudit Bell state encoded
in two GKP qudits, the Bell state stabilizer conditions are
equivalent to(

p̂2 + p̂3 − s

√
2π

D
mod

√
2πD

)
|	rs〉GKP

2,3 = 0, (15)(
q̂2 − q̂3 − r

√
2π

D
mod

√
2πD

)
|	rs〉GKP

2,3 = 0. (16)

Notice that these two stabilizers alone do not define a
GKP Bell state uniquely, because for example an in-
finitely squeezed two-mode squeezed state also satisfies these
conditions.

We consider a beam splitter with the transformations

ˆ̃q = 1√
2

(q̂1 − q̂2), (17)

ˆ̃p = 1√
2

( p̂1 + p̂2). (18)

Let us first assume an ideal ancilla state |	rs〉GKP
2,3 and also

an arbitrary ideal data state |ψ〉GKP
1 . Now we first show that

we can use the circuit illustrated in Fig. 2 for teleporting the
information encoded in the GKP qudit:

q̂1 mod
√

2πD|ψ〉GKP
1 |	rs〉GKP

2,3

= q̂1 − q̂3 + q̂3 mod
√

2πD|ψ〉GKP
1 |	rs〉GKP

2,3

= q̂1 − q̂2 + r

√
2π

D
+ q̂3 mod

√
2πD|ψ〉GKP

1 |	rs〉GKP
2,3

= q̂3 +
√

2 ˆ̃q + r

√
2π

D
mod

√
2πD|ψ〉GKP

1 |	rs〉GKP
2,3 .

(19)

Here we only used the stabilizer property of the GKP Bell

state. If we measure ˆ̃q and shift q̂3 by
√

2q̃ + r
√

2π
D , we then

have successfully teleported the information encoded in the
modular position quadrature. Similarly we can teleport the
information encoded in the modular momentum quadrature
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by measuring ˆ̃p and shifting p̂3 accordingly:

p̂1 mod
√

2πD|ψ〉GKP
1 |	rs〉GKP

2,3

= p̂1 − p̂3 + p̂3 mod
√

2πD|ψ〉GKP
1 |	rs〉GKP

2,3

= p̂1 + p̂2 + p̂3 − s

√
2π

D
mod

√
2πD|ψ〉GKP

1 |	rs〉GKP
2,3

= p̂3 +
√

2 ˆ̃p − s

√
2π

D
mod

√
2πD|ψ〉GKP

1 |	rs〉GKP
2,3 .

(20)

The demonstrated teleportation is exactly the well-known qu-
dit teleportation applied to GKP qudits, if we assume that
the GKP states are in their code space such that they are
well-defined qudits. We already saw that we can use the
measurement result from the two homodyne detections for
shifting the GKP states back into the code space. Thus we can
understand the protocol in the following way: First we use
the homodyne measurement for correcting small shifts to the
nearest codeword in mode 1 and then we perform a common
qudit teleportation protocol, teleporting the encoded infor-
mation into mode 3. Therefore, the only actually interesting
observation lies in the fact that the homodyne measurements
give us information about the measured GKP Bell state and
the GKP syndrome information at the same time. Also notice
that the displacement for correcting the small shift together
with the displacement from the teleportation protocol reduces
to a single GKP Pauli operation.

2. Incoherent noise

Up to now, we considered only ideal GKP states which
are clearly unphysical since they are not normalizable and
have infinite energy. Realizable approximate GKP states are
for example given by a coherent superposition of Gaussian
displacements acting on an ideal GKP state. For simplicity
we will consider an error model of finite squeezing where we
replace the coherent displacements by stochastic ones.

First we will show that we can correct Gaussian shift errors
acting on the data mode, while assuming noiseless ancilla
states. Later we show that we can also consider noisy ancilla
states (in our error model) and this is equivalent to considering
noiseless ancilla states, but with more noise on the data mode.

In order to perform error correction of the GKP code

we actually have to measure q̂ mod
√

2π
D and p̂ mod

√
2π
D

which give the result “0” for square-lattice GKP codewords.
For correcting shift errors we simply apply the smallest shift
needed to obtain a codeword again:

√
2 ˆ̃q mod

√
2π

D
|ψ〉GKP

1 |	rs〉GKP
2,3

= q̂1 − q̂2 mod

√
2π

D
|ψ〉GKP

1 |	rs〉GKP
2,3

= q̂1 mod

√
2π

D
|ψ〉GKP

1 |	rs〉GKP
2,3 . (21)

For the last step we used our assumption that mode 2 is part

of a perfect GKP state and thus q̂2 mod
√

2π
D = 0. Hence,

we know the syndrome information and can apply the corre-
sponding correction shift onto mode 3. When we consider the
shift from the teleportation and the correction shift together,
we obtain simply a Pauli operator. The same reasoning holds
for the modular momentum quadrature.

Let us now consider also noisy ancilla states (assuming
a random shift model). Let vi denote the random variable
describing the momentum shift acting on mode i and ui denote
the corresponding random variable for the position shifts. As
it can be seen in Eq. (18) a shift of p̂1 by v1 and a shift of p̂2

by v2 have the same outcome of the measurement as a shift
of p̂1 by v1 + v2. Similarly one can show by using Eq. (17)
that the position shifts acting on modes 1 and 2 have the same
effect on the measurement outcome as a shift of q̂1 by u1 − u2.
We interpret the shift errors on mode 2 as additional shifts
on mode 1 and the shifts of mode 3 are the finite squeezing
shifts of the data GKP qudit in the next error-correction step.
Also notice that there is no need (in the random shift model)
to perform the displacement operations after each correction
step, but one can keep track of them similar to a Pauli frame.
We did not assume a particular distribution of the random vari-
ables describing the shift errors and their possible correlations.
We will do this later when we discuss different approaches of
generating GKP Bell states.

3. General GKP codes

Let us now generalize this scheme from a GKP code based
on a square lattice to general GKP codes which may even
be defined on n modes. The stabilizer generators span a lat-
tice in the 2n-dimensional phase space. The corresponding
logical Pauli operators are of the form X j = exp(−ia jP̂j )
and Z j = exp(ib jQ̂ j ) where Q̂ and P̂ are linear combinations
of quadrature operators, fulfilling the canonical commuta-
tion relation [q̂k, p̂l ] = iδkl , and some a j, b j ∈ R. Since we
are considering quantum teleportation, our resource states
must be Bell states encoded in the same code as the in-
put modes. For measuring the Bell states we only need
to measure X j,1X j,2 = exp[−ia j (P̂j,1 + P̂j,2)] and Z j,1Z

−1
j,2 =

exp[−ib j (Q̂ j,1 − Q̂ j,2)]. However, the observables P̂j,1 + P̂j,2

and Q̂ j,1 − Q̂ j,2 commute such that we can measure them si-
multaneously instead of only measuring the quantities modulo
some constant. We have shown that it is possible to inter-
pret mode 2 as noiseless when considering more noise on
mode 1. Measuring the relevant syndrome means measuring
Q̂ j,1mod 2π

Daj
and P̂j,1mod 2π

Dbj
. However, we know that the state

in mode 2 is part of the logical Bell state and therefore the
relevant modulos of mode 2’s quadrature operators are zero.
Thus, we can obtain the modulo of the quadrature operators
of mode 1 by applying the mod function on the measure-
ment outcome of the commuting observables Q̂ j,1 − Q̂ j,2 and
P̂j,1 + P̂j,2. Recall that P̂ and Q̂ are linear combinations of
quadrature operators and therefore we can measure them with
passive, linear optics and homodyne measurements.

Let us first explain why this is possible in the single-mode
case. In order to measure Q̂1 − Q̂2 and P̂1 + P̂2 we have to
couple modes 1 and 2 at a 50:50 beam splitter and then we
need to measure the resulting operators ˆ̃Q2 and ˆ̃P1 which
are both linear combinations of position and momentum
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operators. Equivalently, it is possible to represent this linear
combination in polar coordinates αq̂ + β p̂ = γ [cos(θ )q̂ +
sin(θ ) p̂] with α, β, γ , θ ∈ R. Thus, the measurement of the
linear combination can be understood as the measurement of
a rotated quadrature which was squeezed in the direction of
θ where the squeezing corresponds to the factor γ . However,
we can also understand the measurement of the linear combi-
nation as a measurement of the rotated quadrature operator
where we classically rescale the measurement outcome by
a factor γ . In other words we have replaced the squeezing
operation by multiplication in a postprocessing step of the
measurement data. Let us now discuss the general multi-
mode case (n � 1). We need to measure all ˆ̃Pj and ˆ̃Qj ( j ∈
{1, . . . , n}). Here, we only consider the case of ˆ̃Pj , because the
other one works analogously. In the symplectic representation
P̃j of the operators ˆ̃Pj , we see that spanR(P̃1, . . . , P̃n) gen-
erates an n-dimensional linear subspace of the phase space.
However, notice that the basis {P̃1, . . . , P̃n} does not nec-
essarily form an orthonormal basis. Let {ξ̃1, . . . , ξ̃n} be an
orthonormal basis of the same linear subspace. Then there
exists an invertible (n × n) matrix A relating both bases via

P̃j =
n∑

i=1

Ajiξ̃i. (22)

Thus, we can implement a measurement of ( ˆ̃p j, . . . , ˆ̃p2) by

measuring ( ˆ̃ξ1, . . . ,
ˆ̃ξn) and applying the matrix A onto the

classical measurement data. Since {ξ̃1, . . . , ξ̃n} is an orthonor-
mal basis, we can employ linear-optical transformations,
which induce arbitrary orthogonal transformations on this
n-dimensional linear subspace (symplectic, orthogonal trans-
formations on the whole 2n-dimensional phase space), and
quadrature measurements of independent modes in order to
measure {ξ̃1, . . . , ξ̃n}.

Therefore, for measuring the syndrome of any GKP code
we only need offline-squeezing operations and all inline oper-
ations are passive, linear optics and homodyne measurements.
This result is not obvious, because initially we only knew that
it is possible for the square-lattice GKP code. A straightfor-
ward way of showing this generalization would be by going
from a general lattice to a square one, performing the syn-
drome measurement, and going back to the general lattice.
The transformation between two GKP codes is realized by
a Gaussian operation, which in general involves squeezing
operations; thus the resulting circuit for performing the syn-
drome measurement is given by a linear-optical operation
conjugated by a Gaussian one. However, after conjugation
we do not necessarily obtain a linear-optical operation (for
a single-mode counterexample consider, e.g., a π

2 phase shift
conjugated by a squeezing operation).

B. Obtaining the higher-level syndrome

Let us furthermore not only consider GKP qudit codes,
but a concatenation with a high-level [n, k, d]D stabilizer code
built with GKP qudits. Here, in order to obtain the syndrome
of the high-level code we explicitly perform Knill’s error cor-
rection by teleportation scheme [32]. The qudit teleportation
in the Knill scheme is here given by the GKP teleportation

discussed previously, which is also capable of additionally ob-
taining the syndrome of the GKP code provided the resource
state is a GKP Bell state. A logical Bell state is given by a
superposition of GKP Bell states, because the set of Bell states
forms an orthonormal basis for two qudits. As it can be seen in
Eq. (21), we can obtain the error syndrome of the GKP code
for any GKP Bell state and therefore by linearity also when
using the logical Bell state. We can then use this syndrome
information for mapping mode 1 into the code space (via
classical postprocessing) and then we can correct errors of the
high-level code simply by applying Knill’s error correction by
teleportation protocol and treating each of the three modes as
a qudit.

As a consequence, this scheme demonstrates that, on the
one hand, one does not need to measure the 2n stabilizers
in order to obtain the syndrome of the individual GKP qu-
dits followed by an additional measurement of the high-level
code’s stabilizer, but 2n measurements suffice and, on the
other hand, inline squeezing is neither needed for correcting
small shifts on GKP qudits nor for obtaining the high-level
error syndrome. In the original paper [32] it was shown that
the Knill scheme works for arbitrary qubit codes. In Appendix
C we show that it also works for qudit CSS codes with an
arbitrary qudit dimension D. Furthermore, for non-CSS codes
one can find a similar scheme where we need an ancilla state
different from a logical Bell state. This difference comes from
the asymmetry in the stabilizers Z1Z−1

2 and X1X2 of a qudit
Bell state. X and Z are treated differently in the general qudit
case, while in the special case of qubits, X and Z are treated
equally, because the Pauli operators are self-inverse.

C. Example: Three-mode code

As an example let us consider the error correction of
the concatenation of square GKP qubits with the three-qubit
bit-flip code. It was already shown in Ref. [6] that the
code’s performance can be improved significantly by using the
complete (analog) error syndrome of the GKP syndrome mea-
surement in the decoder of the high-level stabilizer code. This
means we assign a value of reliability to every single GKP
error correction; i.e., the further we are away from a codeword
the lower the value of reliability. As it can be seen in Fig. 3 we
perform error correction by coupling the (three-mode) input
state with one-half of an ancilla state consisting of a Bell
state encoded in two three-qubit codes with transversal 50:50
beam splitters. Then we perform homodyne measurements on
the first six modes which allow us to calculate the needed
correction shifts as the six measurements contain the same
information as the measurement of the code’s six stabilizer
generators (explicit stabilizers are given in Appendix G).

When we consider ideal codes followed by independent
and identically distributed (i.i.d.) Gaussian noise, we can cal-
culate the resulting error channel we obtain when using the
analog information in an exact approach instead of requiring
simulations as in Refs. [6,13]. The crucial observation allow-
ing this is that the concatenation of square GKP codes with a
stabilizer code is a code with a more sophisticated lattice in
the phase space. The exact calculation can be performed by
calculating the Voronoi cells for L⊥/L. More details can be
found in Appendix G.
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FIG. 3. Error correction by teleportation for the concatenation of
a square GKP code with a three-qubit repetition code. In the first
three modes we have the noisy input encoded in the code. In modes
4–9 we have an encoded Bell state of the full code where we then
couple the first half with the three input modes transversally with
beam splitters. We then perform homodyne measurements and apply
conditional displacements on the second half of the encoded Bell
state.

D. Linear-optics state generation

1. GKP Bell states

Up to now we have not assumed anything about the random
variables despite their being Gaussian. However, depending
on the actual state generation there might be correlations
involved. For example, let us consider the case where we gen-
erate a square GKP Bell state by coupling a noisy |+〉2 and a
noisy |0〉3 with a CSUM gate. We further assume that the noise
of both GKP qubits consists of i.i.d. Gaussian shifts in position
(u∗

2, u∗
3) and momentum (v∗

2 , v
∗
3 ) with variance 2. Due to the

CSUM gate we see that the random variables u2 = u∗
2, v2 =

v∗
2 − v∗

3 and u3 = u∗
2 + u∗

3, v3 = v∗
3 contain some correlations.

The states of modes 2 and 3 are used in different error-
correction steps and in usual decoding schemes (quite recently
decoders making use of the syndrome information of multiple
rounds have been considered [34]) it is assumed that each
correction step only uses local information, neglecting the
correlations. Therefore, it seems that the CSUM gate amplifies
the noise such that we have momentum shifts with variance
22 in mode 2 and position shifts of variance 22 in mode
3. When additionally considering the noise from mode 1 we
obtain the same result as in Ref. [33] that the sum of initially
three random variables of individual variance 2 should be
smaller than

√
2π
D /2. Thus, in terms of thresholds we do not

gain anything by using a teleportation scheme instead of the
Knill-Glancy scheme.

Let us now consider a different scheme for generating Bell
states as introduced in Ref. [36] using only a beam splitter to

couple two noisy GKP-like states. Thanks to the simple linear-
optical coupling the resulting random variables u2, u3, v2, v3

are all i.i.d. with variance 2. This allows us to use simple
decoders depending only on the syndrome information from
this correction step without losing the capability of correcting
errors. Thus, in an error correction by teleportation we only
need to consider 2σ 2

sq using this beam splitter approach instead
of 3σ 2

sq when using CSUMs for generating the Bell states and
neglecting correlations between different teleportation steps.

In Ref. [36], it was shown for a square GKP qubit code
that a Bell state can be obtained by mixing two “qunaught”
states at a 50:50 beam splitter by using the state picture. Here,
we will first reproduce this result in the stabilizer formalism,
such that it will be easy to generalize the result to more general
GKP codes.

Now we will consider the slightly more general case of a
square-lattice GKP code with even qudit dimension D. Con-
sider the two single-mode states described by the stabilizer
group generated by the set of stabilizer generators:{

exp(i
√

πDq̂1), exp

(
i

√
4π

D
p̂1

)
,

exp

(
i

√
4π

D
q̂2

)
, exp(i

√
πDp̂2)

}
. (23)

Let us apply a 50:50 beam splitter mixing both modes, result-
ing in the stabilizer generators{

exp

(
i

√
πD

2
(q̂1 + q̂2)

)
, exp

(
i

√
2π

D
( p̂1 + p̂2)

)
,

exp

(
i

√
2π

D
(q̂1 − q̂2)

)
, exp

(
i

√
πD

2
( p̂1 − p̂2)

)}
. (24)

This set of stabilizer generators already describes the canon-
ical Bell state of the square GKP code. However, we will
consider a different set of stabilizer generators by multiplying
stabilizers such that it is more obvious that this set stabilizes
the Bell state:{

exp(i
√

2πDq̂1), exp

(
i

√
2π

D
( p̂1 + p̂2)

)
,

exp

(
i

√
2π

D
(q̂1 − q̂2)

)
, exp(i

√
2πDp̂1)

}
. (25)

Here we multiplied the first (fourth) stabilizer generator D/2
times with the third (second) stabilizer generator. Since the
number of multiplications must be an integer, we have the
restriction that D has to be even. For odd D it seems that
no scheme using only linear optics and two product states
is possible (a simple beam splitter solution does not exist),
but we have no rigorous proof for this. We obtained our
results (n = 1) by going through the above steps in opposite
direction in order to obtain the input state. We started with
the stabilizers of the desired Bell state [Eq. (25)], applied
an arbitrary two-mode passive linear-optical transformation,
and tried to multiply stabilizers such that there are only local
stabilizer pairs for each mode [Eq. (23)]. Notice that this
arbitrary operation can be decomposed into a relative phase
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followed by a beam splitter followed by another relative phase
and a global phase. The two phases applied after the beam
splitter are single-mode operations and are therefore useless
for changing entanglement, so we can ignore them.

Furthermore, it is also possible to show similar results (for
even D) not only for the square-lattice GKP code, but for more
general ones. However, this is meant in the sense that we can
obtain a 2n-mode Bell state by mixing two n-mode states at
n 50:50 beam splitters in a transversal fashion. The proof for
this is given in Appendix B.

2. Higher encoded GKP Bell states

The most important ingredient for the error correction
by teleportation of the high-level code is the generation of
the logical Bell state. Here, we discuss the possibility of
generating these high-level states by sending product states
of single-mode grid states through a linear optical network.
Such a generation would be nice for two reasons. First, the
linear-optical operations do not amplify the noise (we assume
the initial noise is isotropic), and second, inline squeezing is
experimentally demanding and usually implemented via the
teleportation of a finitely squeezed state necessarily introduc-
ing errors due to the finite squeezing. It is easy to see that this
linear-optical network is unable to transform small GKP codes
and states into a concatenation of a GKP code with a stabi-
lizer code, because linear-optical operations are represented
by symplectic, orthogonal matrices in phase space and due to
the orthogonality the code distance remains invariant (details
are given in Appendix F). However, while this shows that it
is impossible to encode arbitrary quantum information into a
code of higher code distance using linear-optical transforma-
tions, it might still be possible to generate some codewords
which can then be used for performing error correction.

As the next step we discuss this loophole for relevant cases.
Remember that linear-optical transformations are represented
by orthogonal and symplectic linear maps in the phase-space
representation. We will now use the orthogonality in order to
obtain necessary conditions. Thus, we need to check whether
the desired state admits a lattice representation with an orthog-
onal basis. Conditions for the existence of an orthogonal basis
are discussed in Ref. [42] for so-called construction-A lat-
tices (for every linear code C ∈ Zn

p we can construct a lattice
{x ∈ Zn|x mod p ∈ C}), which appear when we consider the
concatenation of a GKP code with a high-level CSS code (the
codewords of C correspond to the stabilizers of the high-level
code, while the mod corresponds to the stabilizers of the low-
level GKP code), where the stabilizers of this concatenation
are given by the columns of the matrix

A = 1√
D
12n×2n ·

(
GX 0
0 GZ

)
. (26)

Each column of GX , GZ corresponds to a basis element of
the corresponding construction-A lattice and each column of

1√
D
12n×2n gives the phase-space representation of the X and

Z operators of the square-lattice GKP code. Because much
experimental effort has been made in order to generate rectan-
gular grid states [4,5], it is a relevant question whether these
states can be transformed into codewords of the concatenation
of the square-lattice GKP code with a CSS code by passive

linear-optical operations. Thus, we want A = U · A′ to hold
where U is an orthogonal, symplectic matrix describing the
passive transformation and A′ is a diagonal matrix denoting
the stabilizers of independent rectangular grid states. Since
A′ and U are orthogonal matrices, it is necessary that A and
therefore also GX and GZ (needs to hold for at least one
basis) have to be orthogonal matrices in order for a passive
transformation to exist.

Before we consider a large class of CSS codes let us first
consider a specific example, namely, the three-qubit GKP-
GHZ state. Its qubit stabilizer generators are X1X2X3, Z1Z2,
and Z2Z3. As a consequence we obtain

GX =
⎛
⎝1 0 0

1 2 0
1 0 2

⎞
⎠, GZ =

⎛
⎝1 0 0

1 1 0
0 1 2

⎞
⎠, (27)

as a possible basis of the construction-A lattices gener-
ated by the code C = C1 ⊕ C2 = spanZ2 (0, 0, 0|1, 1, 1) ⊕
spanZ2 ((1, 1, 0|0, 0, 0), (0, 1, 1|0, 0, 0)). Since C1 has code
distance of 3, it is obvious that code C cannot be factored into
(permutated) linear subcodes of maximum length 2. Hence, by
Ref. [42] there exists no orthogonal basis and thus we are not
able to generate the GHZ state from single-mode grid states
and linear optics.

In CSS codes the set of X -type operators (involving sta-
bilizers and logical operators) corresponds to codewords of
CZ and the set of Z-type operators corresponds to codewords
of CX . Therefore, all operators stabilizing a logical Pauli
eigenstate correspond to a subcode of CZ ⊕ CX using the
symplectic representation and its code distance d (CZ ⊕ CX )
is given by min (d (CZ ), d (CX )). We are mostly interested in
codes which are able to correct at least arbitrary single-qubit
errors demanding that the minimum code distance is at least
3. In Ref. [42] it was shown that a construction-A lattice
over a binary field can only have an orthogonal basis if the
corresponding code can be decomposed in a specific structure
with a code distance of at most 2. Thus it is impossible
in the qubit case to find such a passive transformation. In
the qutrit case we can make a similar argument where the
code distance must not be greater than 3 (it might still be
impossible for 3); i.e., we can exclude the possibility of a
passive transformation for high-distance codes. Up to now we
only considered the concatenation with a square-lattice GKP
code, but in our argument we only used the property that the
matrix representing the X and Z operators of the GKP code is
orthogonal. Therefore, the result also holds for concatenations
involving any GKP code fulfilling this relation.

Up to now we assumed idealized infinitely squeezed GKP
states in the proof of the above no-go statement, but a similar
argument also works for the physically more relevant case of
approximate GKP states with coherent Gaussian displacement
errors where the Gaussian’s covariance matrix needs to be
proportional to the identity up to symplectic transformations.
We make use of the finite-squeezing stabilizers introduced
in Ref. [43], where finite squeezing with coherent Gaussian
displacement errors (covariance matrix proportional to the
identity) is applied by the operator e−2 n̂ (2 as a parame-
ter in order to be consistent with the notation of Ref. [43])
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transforming the stabilizer of an ideal GKP state exp(iĝ) to

e−2 n̂ exp(iĝ)e2 n̂ = exp{i[ĝcosh(2) + i ˆ̃g sinh(2)]},
(28)

where ĝ and ˆ̃g are (real) linear combinations of quadrature
operators and n̂ is the total photon number in all modes.
Using the (canonical extension of the) symplectic represen-
tation one can map the stabilizer conditions of the finitely
squeezed states to a lattice embedded in C2n instead of R2n.
Since Gaussian unitary operations do not couple the real and
imaginary parts in the symplectic representation, the real part
of the lattice also needs to fulfill the orthogonality constraints
as for the ideal GKP states independent from the imaginary
part. Up to scaling factors we have the same problem as in the
infinite squeezing case and since scaling factors are irrelevant
for orthogonality, we again obtain a no-go result. Let us now
briefly show that this holds for all Gaussians with a covariance
matrix which is related by a symplectic transformation A to
a covariance matrix proportional to the identity. We can see
this by first applying Â−1 to the ideal desired state, followed
by e−2 n̂ in order to introduce the isotropic Gaussian noise
followed by Â bringing the covariance matrix to the desired
form. The resulting stabilizer is then given by

exp{i[ÂÂ−1ĝÂÂ−1 cosh(2) + iÂ
ˆ̃

A−1gA ˆA−1 sinh(2)]}

= exp{i[ĝcosh(2) + iÂ
ˆ̃

A−1gA ˆA−1 sinh(2)]},

which has the exact form as in Eq. (28).
As it is impossible to build logical Bell states of a

high-level GKP code from single-mode grid states with linear-
optical transformations, one might be wondering if one could
use linear-optical transformations and two suitable n-mode
grid states as a resource instead. However, this also turns out
to be impossible for simple transversal beam splitters (see
Appendix B), although we have not proven yet the impossi-
bility of this with general linear optics.

An alternative approach to get rid of inline squeezing oper-
ations circumventing this no-go case was shown in Ref. [15]
where the authors propose to generate an n-mode GKP cluster
state by applying a linear-optical transformation on 4n rect-
angular GKP states, performing homodyne measurements on
3n modes and applying conditional displacements. Thus one
might think that one also obtains the advantage of amplifying
no noise. While technically true, one adds additional noise
due to the additional finitely squeezed GKP states. Strictly
speaking this approach would introduce even more noise than
the canonical circuit involving (ideal) controlled-Z (CZ) gates,
because by applying circuit identities one can show (see Fig. 2
of Ref. [15]) that the linear-optical scheme is equivalent to
the canonical scheme up to some CSUM gates which act as
the identity on the code space, but propagate noise from the
auxiliary states to the data state. Another disadvantage of this
scheme, despite its conceptual beauty and other possible prac-
tical advantages, lies in the overhead of the required costly
GKP states.

It is an interesting question whether there exist similar
schemes with a lower overhead, potentially introducing less
noise than the canonical encoding scheme.

V. KNILL-GLANCY ERROR CORRECTION

In the previous section we discussed one scheme al-
lowing us to obtain the full error syndrome without using
inline squeezing. In this section we will consider another
such scheme. This scheme is an improvement of the Knill-
Glancy scheme such that all squeezing operations only act
on ancilla states. For the square-lattice qubit GKP code this
improved scheme was already (independently from our work)
proposed in Ref. [34].

Here we will first discuss the stabilizer formalism and mea-
surements by discussing the error correction of one quadrature
in the original Knill-Glancy scheme as an example. Then it
is easy to first generalize the improved Knill-Glancy scheme
to arbitrary n-mode GKP codes encoding qudits of arbitrary
dimension D (see Appendix D) and later we also show that
we can obtain an analogous scheme in the case where we con-
catenate these general GKP codes with arbitrary CSS codes
(see Appendix E).

The stabilizers of the square qubit GKP code are
exp(i2

√
π q̂) and exp(i2

√
π p̂). Let us first consider the cor-

rection of position shifts. Thus we have to consider a general
GKP state and a GKP-|+〉 state. After the Gaussian error
channel we have an (unknown) error operator exp[i(v1q̂1 +
v2q̂2 − u1 p̂1 − u2 p̂2)]. After this error the two-mode state is
stabilized by the following four stabilizers:

exp(−iv12
√

π ) exp(i2
√

π p̂1),

exp(−iu12
√

π ) exp(i2
√

π q̂1),

exp(−iv2
√

π ) exp(i
√

π p̂2),

exp(−iu22
√

π ) exp(i2
√

π q̂2).

After applying the beam splitter, we obtain the stabilizer
generators:

exp(−iv12
√

π ) exp(i
√

2π ( ˆ̃p1 + ˆ̃p2)),

exp(−iu12
√

π ) exp(i
√

2π ( ˆ̃q1 + ˆ̃q2)),

exp(−iv2
√

π ) exp

(
i

√
π

2
( ˆ̃p1 − ˆ̃p2)

)
,

exp(−iu22
√

π ) exp(i
√

2π ( ˆ̃q1 − ˆ̃q2)).

As the next step we perform a position measurement of mode
2. We can then use the stabilizers to find the set of possi-
ble measurement outcomes. By multiplication we find that
exp[−i2

√
π (u1 − u2)] exp(i2

√
2π ˆ̃q2) is also a stabilizer and

thus possible measurement values of q̃2 take the form of
u1−u2√

2
+

√
π√
2

z for z ∈ Z. In order to obtain the stabilizers after

the measurement we simply replace ˆ̃q2 by the measurement
value of q̃2. For the stabilizers involving ˆ̃p we simply take
the smallest product of stabilizer generators such that there
appears no ˆ̃p2. This is quite similar to the qubit stabilizer
formalism, where one takes products of stabilizer generators
such that there is only one stabilizer generator which anti-
commutes with the observable. Since we are not interested
in the eigenstate after obtaining the measurement result we
can discard this mode, such that we only need two stabilizer
generators to specify our state. Thus the stabilizer generators
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are given by

exp[−i2
√

π (v1 + v2)] exp(i2
√

2π ˆ̃p1),

(−1)z exp[−i
√

π (u1 + u2)] exp(i
√

2π ˆ̃q1).

It is now easy to check that after applying a squeezing op-
eration (reducing the q variances by a factor of 1/2) and a
position displacement by q̃2√

2
− 1

2 mod2
√

π (2
√

2q̃2) [44] we
completed the error correction and are in a state which is
stabilized by

exp[−i2
√

π (v1 + v2)] exp(i2
√

π ˆ̃p1),

exp
{ − i2

√
π
[
u1 + 1

2 mod2
√

π (2u2 − 2u1)
]}

exp(i2
√

π ˆ̃q1).

However, this only shows that we are close to the code
space of a GKP code, but we do not know if the infor-
mation within the code space is disturbed. Therefore, we
have to check that up to small phases (corresponding to
small errors remaining after the error correction) we also
have exp(i

√
π q̂1) → exp(i

√
π
2

ˆ̃q1) which is easy to check
(before applying the squeezing operation). However, in or-
der to show exp(i

√
π p̂1) → exp(i

√
2π ˆ̃p1) we also need to

exploit that the ancilla GKP qubit is in the |+〉 state, be-
cause otherwise we cannot have the product exp[i

√
π
2 ( ˆ̃p1 −

ˆ̃p2)] exp[i
√

π
2 ( ˆ̃p1 + ˆ̃p2)] = exp(i

√
2π ˆ̃p1). When considering

shift errors one simply has to check if the overall phase at
the end is approximately “0” (no error) or “π” (error). Since
we discarded stabilizer generators after the homodyne mea-
surement it could be possible that we discarded too many
such that we allow for too many states. However, after the
measurement we only have one mode of interest, but still two
independent stabilizer generators defining the code. Thus we
did not discard too many stabilizers.

In the improved Knill-Glancy scheme the first ancilla is
still a |+〉 state, but the second ancilla is now a |0〉 state which
is squeezed by a factor

√
2 which can already be incorporated

in the state generation, while we do not use inline squeezing of
the data mode [see Fig. 1(c)]. For the case where we consider a
concatenation with a CSS code we simply have to do the same
and replace the GKP Pauli eigenstates by Pauli eigenstates
of the high-level code and all beam splitters and homodyne
measurements are applied in a transversal manner.

VI. ERROR PROPAGATION IN STABILIZER
MEASUREMENTS

Let us consider prime qudit dimension D and a high-level
CSS code. Such a stabilizer code is also defined by n − k sta-
bilizer generators which generate the whole stabilizer group.
Usually the syndrome of a stabilizer code is obtained by
directly measuring the n − k stabilizer generators. In order to
measure the stabilizers, we couple an ancilla with the code’s
GKP qudits. The ancillas are finitely squeezed and therefore
we need to carefully design our stabilizer measurements in
such a way that a shift on one ancilla does not introduce
errors in other stabilizer measurements. This has been done
for the surface code in Ref. [7]. Here, we discuss whether this
is possible for every CSS code and how these measurements
need to be modified.

In this section we restrict ourselves to square-lattice GKP
codes concatenated with CSS codes. In order to perform stabi-
lizer measurements of CSS codes one couples an ancilla state
with the data qubits with controlled-X (CXi, j) operations. For
example, measuring the stabilizer

∏
i∈support Xi can be realized

by measuring the ancilla a of
∏

i CXa,i|+〉a in the X basis,
while the stabilizer

∏
i∈support Zi can be measured by measur-

ing
∏

i CXi,a|0〉a in the Z basis. We implement the CX gate
by using a CSUM gate since we consider a square-lattice GKP
code. Notice that operators acting equally within the code
space do not necessarily act the same way outside of the code
space. Furthermore, because ideal GKP states are unphysical,
we are almost surely outside of the code space and should
therefore take these differences into account.

When performing the Z-stabilizer measurements in a stan-
dard way the CSUM gates transfer momentum shifts from
the ancilla state originating from the finite squeezing to the
data GKP states resulting in correlated momentum shifts on
multiple data GKP qudits. When performing the X -stabilizer
measurements later these shifts may introduce errors in the
syndrome. Especially due to the correlations these shifts can
easily add up and overcome the threshold of correctable shifts
as the variance of the sum of n independent random variables
increases linearly while the variance of n times the same
random variable increases quadratically. Furthermore, due to
the correlated shifts the faults of the stabilizer measurements
would no longer be independent.

In Ref. [7] the authors introduced a way of using CSUM

and inverse CSUM gates to exploit the correlations of the shift
errors such that they cancel in the next stabilizer measure-
ment, and so there is no error propagation from one ancilla
to another ancilla for the planar-square surface code.

Let us now discuss this error propagation in a systematic
way in an attempt to generalize the scheme from Ref. [7] to
more general quantum error-correcting codes with parameters
[n, k, d]D. Let us define the vector

�T
data = (�ud , �vd ) = (ud,1, . . . , ud,n, vd,1, . . . , vd,n) (29)

of random variables describing the shift errors (u for position
shifts and v for momentum shifts) acting on data GKP qudits.
Similarly we can define such a vector for the ancilla GKP qu-
dits which are used to measure the X/Z stabilizer generators:

�T
X/Z = (�uX/Z , �vX/Z ) = (uX/Z,1, . . . , uX/Z,lX/Z , (30)

vX/Z,1, . . . , vX/Z,lX/Z ), (31)

where lX/Z gives the number of X - or Z-type stabilizer gener-
ators. Suppose we assume that all data GKP qudits performed
their syndrome measurement before measuring the stabilizers
of the higher code. This means that all u and v are i.i.d.
Gaussian random variables with mean zero and variance σ 2

sq.
We now first perform the X -stabilizer measurements and

due to the coupling we obtain the following error vectors:

�u′
d = �ud + HT

X �uX , (32)

�v′
d = �vd , (33)

�u′
X = �uX , (34)

�v′
X = �vX − HX �vd . (35)

042427-11



FRANK SCHMIDT AND PETER VAN LOOCK PHYSICAL REVIEW A 105, 042427 (2022)

In order to measure the X stabilizer we measure the momen-
tum quadrature of the ancillas and therefore we always obtain
a faulty syndrome whenever a random variable in �v′

X lies in
the set of uncorrectable errors.

When we now perform the Z-stabilizer measurements we
obtain due to the coupling the error vectors

�u′′
d = �u′

d = �ud + HT
X �uX , (36)

�v′′
d = �v′

d − HT
Z �vZ = �vd − HT

Z �vZ , (37)

�u′
Z = �uZ + HZ �u′

d = �uZ + HZ �ud + HZ HT
X �vX , (38)

�v′
Z = �vZ . (39)

In order to have a successful Z-stabilizer measurement
we demand that �u′

Z needs to lie in the set of correctable
errors. The variance of (�u′

Z ) j is given by (1 + ‖(HZ ) j,∗‖2 +
‖(HZHT

X ) j,∗‖2)σ 2
sq. Also note that HZ HT

X = 0 needs to hold in
order to avoid error propagation between the GKP ancillas.
However, up to now we only required that we are given a
valid CSS code, which means that all stabilizer generators
need to commute demanding HZ HT

X mod D = 0. These two
conditions are equivalent to requiring that the symplectic form
of any two rows of H vanishes (without or with mod D).
Therefore, it is useful to generalize the check matrix H ∈
Z(n−k)×2n

D to H̃ ∈ Z(n−k)×2n, where H ∼ H̃ mod D, ∼ de-
notes row equivalence with respect to the finite field ZD, and,
furthermore, we need that the symplectic form vanishes for
any two distinct rows of H̃ .

In a recent work (see Theorem 12 of Ref. [45]) in the
context of generalizing qubit to qudit codes, it was shown
that it is always possible to find such an H̃ . Thus, there is no
error propagation anymore. However, this construction does
not guarantee that the stabilizer weights remain small such
that the noise actually coming from the data qudits may be
amplified in the syndrome measurement.

As one possible approach to reduce the stabilizer weights
we can simply add rows of the matrix H̃ and try to minimize
the stabilizer weights, which means we simply look for a
different set of stabilizer generators. However, note that this
approach is not feasible, because the problem is equivalent to
being given a basis of a lattice and trying to find a different
basis with minimal length and this is also known as the short-
est basis problem on a lattice which was shown to be NP hard
[46].

A different approach relies on fixing the stabilizer weight
and trying to fulfill the symplectic condition. Here we will
look at the cases D = 2 and D > 2 separately, because in the
D = 2 case X and Z are self-inverse, giving us much more
freedom while having the same stabilizer weight.

For D > 2 it is not possible to sustain the minimal sta-
bilizer weight from the canonical scheme and avoid error
propagation for arbitrary CSS codes, as it can be seen for the
example of the [D, D − 2, 2]D error-detecting code with sta-
bilizers

∏D
j=1 Xj and

∏D
j=1 Zj . In order to sustain the minimal

stabilizer weight, we cannot modify the stabilizer genera-
tors, but their corresponding symplectic form does not vanish
(without mod D). However, for D = 2 we can consider the
stabilizers X1X2 and Z1Z−1

2 which still have minimal stabi-

lizer weight, but their corresponding symplectic form vanishes
(without mod D).

For D = 2 we can ideally fulfill the two conditions
H̃Z H̃T

X = 0 and ‖(H̃X/Z ) j,∗‖2 = ‖(HX/Z ) j,∗|2 simultaneously.
Let us now show some examples where we are able to fulfill
both conditions.

As the first example let us consider the quantum parity code
[47]; this is a CSS code and the Z stabilizers consist of weight
2 checks. Thus we choose H̃X = HX and for H̃Z we use HZ ,
but in each row we replace one of the two 1s by −1; thus the
symplectic form is given by 1 × 1 + 1 × (−1) = 0 (when it
does not vanish trivially). Also note that it is possible to define
the quantum parity code for qudits.

Let us now consider two-dimensional surface codes on
lattices without boundary. If all face stabilizers have an even
number of qubits in their support or if all vertex stabilizers
have an even number of qubits in their support it is possible
to achieve the optimal minimum. In order to do so we will
modify H̃X/Z for the type of stabilizers with even support (if
it works for both faces and vertices we can choose) and we
do not change the other. Notice that face and vertex operators
have either zero or two common qubits in their support. As
an example let us consider that our faces have even support.
Instead of assigning each edge (corresponding qubit) the value
1 we assign ±1 in an alternating way (“neighboring edges
have different values”). Thus similar to the quantum parity
code the symplectic form vanishes. Notice that this already
includes many surface codes such as those with square, trian-
gular, and hexagonal tilings or even [4,5] tilings in hyperbolic
geometry [48].

However, also note that many surface and color codes have
already been generalized from qubits to qudits by considering
inverse Pauli operations [49–52], implying that we can use
their orientations to avoid error propagation and also obtain
the optimal minimum.

VII. COMPARISON OF DIFFERENT SYNDROME
MEASUREMENTS

We have discussed two different approaches for obtain-
ing the GKP syndrome information, namely, an improvement
of the Knill-Glancy scheme and an adaption of the error
correction by teleportation scheme. Both schemes have the
advantage of using no inline squeezing in contrast to schemes
which make use of CSUM gates, which are only implemented
approximately. In general, the GKP Bell states needed for
the teleportation scheme can be considered more expensive
than the ancilla states for the Glancy-Knill scheme, because
the former consist of a 2n-mode entangled GKP state instead
of two n-mode entangled states. However, for the case of
even qudit dimension D we have shown that it is possible to
generate such a state by sending two n-mode entangled GKP
states transversally through n beam splitters. Because there
are only beam splitters and there is also no offline squeezing
we even get less noise than in the Knill-Glancy scheme.

For obtaining the high-level syndrome information we
have considered three different schemes. Two of them (varia-
tions of the teleportation and the Knill-Glancy scheme) need
no inline squeezing, but complicated ancilla states consisting
of high-level encoded Bell states or (presqueezed) high-level
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Pauli eigenstates. These two schemes also have the advan-
tage that we also obtain the GKP syndrome such that we
only need to perform 2n measurements in order to obtain the
full syndrome information. One might say that generating a
high-level Bell state of a CSS code is not much more prob-
lematic than producing high-level Pauli eigenstates because
one could implement the logical CNOT via transversal CSUM

gates, but there we also have the issue that we correlate or
rather amplify the noise of different modes if we ignore the
correlations. However, in the third scheme (only for square
GKP codes) we first use 2n measurements in order to correct
displacements on the GKP qudits and then we perform the
high-level stabilizer measurements by coupling ancilla states
with the data qudits via CSUM gates. This scheme has the
advantage that the needed ancilla states are rather easy to
generate, but one has various disadvantages: one needs inline
squeezing operations, one has to use already 2n measurements
in order to correct the small displacements, and then addi-
tionally one has to measure the high-level stabilizers which
also increases the noise of the already corrected data qudits
due to backpropagation of errors originating from the finitely
squeezed ancillas.

VIII. CONCLUSION

In this article we have considered syndrome measurements
of general GKP codes encoding qudits of dimension D and
their concatenation with stabilizer codes. We showed that we
can obtain the full syndrome information of such an arbitrary
n-mode code by making use of only 2n measurements. Fur-
thermore, we discussed two schemes which allow us to obtain
the GKP syndrome information by using either two suitable
n-mode ancilla states or a single 2n-mode GKP Bell state
ancilla, transversal beam splitters, and homodyne measure-
ments. For the case of even qudit dimension D we were able to
show how GKP Bell states can be generated with transversal
beam splitters and n-mode grid states.

Concerning the high-level syndrome information, we also
proposed two similar schemes without inline squeezing which
give us the whole syndrome information with 2n homodyne
measurements employing an ancilla state. We believe that not
only for the Knill and Steane schemes as explicitly presented
in this work, but for all fault-tolerant error-correction schemes
where the data modes are coupled by transversal CNOTs with
an ancilla state (e.g., Shor states; see Sec. 4 of Ref. [53]) in
order to perform the syndrome measurements of the higher
code, one can additionally obtain the GKP syndrome informa-
tion of all involved GKP codes. Moreover, we discussed error
propagation in usual stabilizer measurements and also showed
that linear-optical transformations leave the code distance of
GKP codes and more generally error-correcting properties
of codes against isotropic displacement noise invariant. We
further analyzed the possibility of generating high-level code-
words by rectangular single-mode grid states and linear optics.
Besides this, we proposed an approach to calculate the logical
error rates of a concatenation of a GKP code with a stabilizer
code making use of the analog syndrome information where
we calculate integrals instead of performing Monte Carlo sim-
ulations. Our main results can be summarized as follows:

(1) For GKP higher code syndrome detection, we pro-
posed a minimal stabilizer set to be measured to obtain the
full syndrome information.

(2) For logical qubits as well as qudits with nonprime di-
mensions the minimal measurement set is directly obtainable
through Knill’s error correction by teleportation on the higher
level using higher GKP Bell states; this directly provides an
operational interpretation leading to a possible implementa-
tion with transversal GKP qubit teleportations using beam
splitters.

(3) For general logical qudits the minimal set can be de-
rived via lattice theory.

(4) In a second scheme, different from Knill’s, we
achieved the same for higher code syndrome detections, gen-
eralizing known results for only the lower GKP level, still
avoiding inline squeezing.

(5) For GKP higher code state generation, given higher
n-mode GKP codes (k < n qudits), we showed that the cor-
responding higher GKP Bell states cannot be obtained via
transversal beam splitters; for arbitrary passive linear optics,
it remains open.

(6) For GKP higher code state generation, given copies of
arbitrary rectangular single-mode grid states, we have shown
that the codewords of the higher GKP codes can generally not
be obtained via passive linear optics.

(7) For GKP qudit Bell state generation, generalizing a
known result for GKP qubits, we showed that for even qudit
dimension the Bell states can be created from a number of
suitable input grid states via transversal beam splitters (this re-
sult includes states with k = n qudits encoded into n modes);
whether this is also possible for odd qudit dimensions remains
open.

Note added. At the final preparation stage of this work,
Ref. [54] was posted. Similar to our treatment, that work also
addresses the issue of a minimal stabilizer basis in higher GKP
codes. While there is also some overlap in terms of the meth-
ods used, overall the two works are complementary, where our
work has a particular focus on linear-optical realizations of the
error-correction schemes.
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APPENDIX A: MINIMAL SET OF STABILIZER
GENERATORS

Theorem 1. For any GKP code (n modes, arbitrary qudit
dimension D) concatenated with an arbitrary stabilizer code
it is possible to obtain the full syndrome information with 2n
measurements.

Proof. It is well known that the phase-space representation
of the stabilizers of a GKP code forms a lattice L ⊂ R2n. Sim-
ilarly, the phase-space representation of the set of operators
commuting with the stabilizers L⊥ ⊂ R2n also forms a lattice
(see Sec. VI of Ref. [2]). We can show that the phase-space
representation � of the stabilizers of a GKP code concate-
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nated with a higher-level stabilizer code also forms a lattice.
For this we have to show that � is a discrete, linear subgroup
of R2n and we will use the relation L ⊆ � ⊂ L⊥ (the last
relation holds because all stabilizers have to commute). Since
we can obtain � by adding additional points to L in a linear
way, it is easy to see that � forms a linear subset of R2n. Since
� is a subset of L⊥ which is discrete (since it is a lattice),
meaning that there exists an ε > 0 such that there is always at
most one lattice point in an ε neighborhood, it is clear that �

is also discrete and therefore also forms a lattice. Every lattice
has a basis (see Theorem 8 of Ref. [55]) and therefore we only
have to measure the 2n operators corresponding to the lattice
basis elements. �

APPENDIX B: LINEAR-OPTICAL DECOMPOSITION
OF BELL STATES

Here we show that it is possible for arbitrary GKP codes
with even qudit dimension D to generate Bell states by mixing
two GKP-like states at n beam splitters transversally. Let us
choose a fixed arbitrary GKP code (encoding k = n qudits in
n modes) and let us write the logical Pauli operators as X j =
exp(ix̂ j ) ( j ∈ {1, . . . , n}) implicitly defining x̂ j and we do the
same for ẑ j with Z j = exp(i ˆ̄z j ).

In the next step the first index will number the logical
operators of a GKP code and the second one will number the
two codes. We start with the product state stabilized by the 4n
stabilizers ( j takes every value in {1, . . . , n}){

exp

(
i

D√
2

ẑ j,1

)
, exp(i

√
2x̂ j,1),

exp(i
√

2ẑ j,2), exp

(
i

D√
2

x̂ j,2

)}
.

For the special case of n = 1 and D = 2 we have the four
stabilizers of the product state of two GKP “qunaught” states
(each representing a one-dimensional GKP space and hence a
state with equal lattice spacing along x and p,

√
2π).

After applying a 50:50 beam splitter transversally upon
every pair of code states 1 and 2 for every j, we obtain

{
exp

[
i
D

2
(ẑ j,1 + ẑ j,2)

]
, exp[i(x̂ j,1 + x̂ j,2)],

exp[i(ẑ j,1 − ẑ j,2)], exp
[
i
D

2
(x̂ j,1 − x̂ j,2)

]}
.

After a suitable multiplication (strictly assuming even D to
make sure an integer number of multiplications) of the stabi-
lizers as discussed in the main text, we get

{exp(iDẑ j,1), exp[i(x̂ j,1 + x̂ j,2)],

exp[i(ẑ j,1 − ẑ j,2)], exp(iDx̂ j,1)},
where it is obvious that this set stabilizes GKP Bell states as
this set contains X 1X 2 and Z1Z

−1
1 which are the stabilizers of a

Bell state and furthermore we have two independent stabilizer
generators from the original GKP code. For the cases with odd
D we do not know whether GKP Bell states can be built from
two n-mode code states with linear optics.

When we consider a code encoding k < n qudits in n
modes, unfortunately it is impossible to generate logical Bell
states by coupling two product states by simple transversal
beam splitters. In this case, the code space is defined by 4n
independent stabilizer generators and 4k of them are propor-
tional to logical Pauli operators. For these stabilizer generators
we already know what the input stabilizers should look like.
Thus, we only need to know what the remaining input stabiliz-
ers should look like. In order to obtain these we first consider
the desired stabilizer generators and transform them by the
inverse beam splitters (our beam splitters are self-inverse).
Also notice that these stabilizer generators are independent
(linearly independent in the symplectic representation) and
thus we only need to consider a pair of equivalent stabilizers
of both codes:

{exp(iĝ1), exp[i(ĝ1 + ĝ2)]}

→
{

exp

[
i√
2

(ĝ1 + ĝ2)

]
, exp(i

√
2ĝ1)

}
.

It is obvious then that it is impossible to multiply the first
stabilizer with the second one in such a way that the first
stabilizer only acts on the modes belonging to code 2.

APPENDIX C: KNILL ERROR CORRECTION FOR QUDITS

Here we generalize the error correction by teleportation
scheme proposed by Knill [32] from qubits to qudits. Al-
though this scheme works for arbitrary qubit stabilizer codes,
we have to restrict ourselves to CSS codes for the generaliza-
tion to qudits, because the Pauli operators are not self-inverse
anymore.

The projection operator onto the code space with syndrome
s is given by (Q is a matrix where each row corresponds
to the symplectic representation of a stabilizer generator,
see Ref. [32])

�(Q, e) =
∏

l

(
D−1∑
j=0

(exp(iωel )ĝl )
j

)
, (C1)

where ĝl is the lth stabilizer generator of the code represented
by the matrix Q, and

�2(Q, 0)|	+〉⊗n
12 (C2)

= �2(Q, 0)�2(Q, 0)|	+〉⊗n
12 (C3)

= �2(Q, 0)�1(Q̃, 0)|	+〉⊗n
12 . (C4)

In the first step, we wrote down the state which is needed to
follow Knill’s proof. We then try to simplify this expression.
In the second line we used the idempotence of projection
operators. In the next step we used that qudit Bell states are
stabilized by the X1X2 and Z1Z−1

2 . Therefore, the projection
onto the code represented by the matrix Q with syndrome 0 on
the second n qudits is equivalent to a projection onto the code
represented by Q̃ with syndrome 0 on the first n qudits. Here Q̃
is given via Q where all entries corresponding to X operators
are multiplied by −1. If Q is a CSS code then this means that
some rows have to be multiplied by −1 and their syndrome
should yield 0. One can multiply these rows again by −1 to
obtain Q, but the syndrome does not change. This can also
be understood in the following way: all X -type operators in
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the stabilizer generators have been inverted. Thus for CSS
codes the stabilizer group remains invariant. However, if Q
does not represent a CSS code it may describe a different
code from Q̃. We checked it for the five-qudit (with stabilizer
generators X ⊗ Z ⊗ Z−1 ⊗ X −1 ⊗ 1 and cyclic permutations
thereof) code that the stabilizer group generated by Q does not
equal the group generated by Q̃ for D > 2 in general.

The remaining proof is completely analogous to Knill’s
proof where he changes the order of the conditional Pauli
operations and the projection operator, resulting in a changed
syndrome and using the fact that the quantum teleportation
protocol implements the identity.

APPENDIX D: LINEAR-OPTICAL KNILL-GLANCY
SCHEME FOR GENERAL GKP CODES

Let us consider an n-mode GKP code which encodes qudits
of dimension D, but now without concatenation with a stabi-
lizer code. Let us consider normalized quadrature operators û j

( j ∈ {1, . . . , n}) generating Xj and normalized quadrature op-
erators v̂ j generating Zj . Thus we know that only [ûk, v̂k] �= 0
and all other commutators vanish. Furthermore, for a quadra-
ture operator ŝ there exists a symplectic representation as a
2n-dimensional vector. We will refer to this symplectic rep-
resentation as well as a measurement result of ŝ as s, but it
should always be clear from the context what the meaning
is in each case. The quantity ω(·, ·) denotes the canonical
symplectic form.

The stabilizers are then given by X D
j and ZD

j ( j ∈
{1, . . . , n}) with

Xj = exp

(
iû j

1√
Dω(u j, v j )

)
, (D1)

Zj = exp

(
iv̂ j

1√
Dω(u j, v j )

)
. (D2)

Without loss of generality we have assumed that ω(u j, v j ) >

0 (the square GKP code is obtained with û j = −p̂ j and v̂ j =
q̂ j). In order to consider shift errors in the stabilizer formalism
we use the identity

eiâeib̂e−iâ = eib̂e−i2πω(a,b). (D3)

Let us now briefly discuss how the stabilizers of a GKP
code transform under shift errors eiâ:

|ψ〉 = eib̂|ψ〉, (D4)

|ψ̃〉 := eiâ|ψ〉 = eiâeib̂|ψ〉 = eiâeib̂e−iâeiâ|ψ〉 (D5)

= ei(b̂−2πω(a,b))|ψ̃〉. (D6)

We will now show that we can apply the linear-optical
Knill-Glancy scheme to general GKP codes. In the first stage
the n data modes and the first n ancilla modes are given by
the following stabilizers assuming displacement errors with
symplectic representation e1 and e2, and subscripts 1 and 2
refer to the data and half of the ancilla modes, respectively:

exp

(
i(û j,1 − 2πω(e1, u j ))

√
D

ω(u j, v j )

)
,

exp

(
i(v̂ j,1 − 2πω(e1, v j ))

√
D

ω(u j, v j )

)
,

exp

(
i(û j,2 − 2πω(e2, u j ))

√
1

Dω(u j, v j )

)
,

exp

(
i(v̂ j,2 − 2πω(e2, v j ))

√
D

ω(u j, v j )

)
.

After applying the 50:50 beam splitters we obtain the follow-
ing stabilizers:

exp

(
i

( ˆ̃u j,1 + ˆ̃u j,2√
2

− 2πω(e1, u j )

)√
D

ω(u j, v j )

)
,

exp

(
i

( ˆ̃v j,1 + ˆ̃v j,2√
2

− 2πω(e1, v j )

)√
D

ω(u j, v j )

)
,

exp

(
i

( ˆ̃uj,1 − ˆ̃u j,2√
2

− 2πω(e2, u j )

)√
1

Dω(u j, v j )

)
,

exp

(
i

( ˆ̃v j,1 − ˆ̃v j,2√
2

− 2πω(e2, v j )

)√
D

ω(u j, v j )

)
.

In the next step we perform measurements of ˆ̃v j,2 and the
measurement outcomes ṽ j,2 give us partial information about
ω(e1 − e2, v j ) as it can be seen by the stabilizers (before the
measurement):

exp

(
i(
√

2ˆ̃v j,2 − 2πω(e1 − e2, v j ))

√
D

ω(u j, v j )

)
.

After the measurement the stabilizers of the data qudits are
given by

exp

(
i
(√

2 ˆ̃u j,1 − 2πω(e1 + e2, u j )
)√ D

ω(u j, v j )

)
,

exp

(
i

( ˆ̃v j,1 + ṽ j,2√
2

− 2πω(e1, v j )

)√
D

ω(u j, v j )

)
.

We then apply a shift exp(i ˆ̃u j,1
ṽ j,2

2πω(u j ,v j )
). The stabilizers in

the second phase of the scheme are

exp

(
i(
√

2 ˆ̃u j,1 − 2πω(e1 + e2, u j ))

√
D

ω(u j, v j )

)
,

exp

(
i

( ˆ̃v j,1√
2

− 2πω(e1, v j )

)√
D

ω(u j, v j )

)
,

exp

(
i(
√

2 ˆ̃u j,3 −
√

22πω(e3, u j ))

√
D

ω(u j, v j )

)
,

exp

(
i

( ˆ̃v j,3√
2

− 2πω(e3, v j )√
2

)√
1

Dω(u j, v j )

)
.
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After applying the beam splitter we obtain

exp

(
i( ˆ̃̃u j,1 + ˆ̃̃u j,3 − 2πω(e1 + e2, u j ))

√
D

ω(u j, v j )

)
,

exp

(
i

(
ˆ̃̃v j,1 + ˆ̃̃v j,3

2
− 2πω(e1, v j )

)√
D

ω(u j, v j )

)
,

exp

(
i( ˆ̃̃u j,1 − ˆ̃̃u j,3 −

√
22πω(e3, u j ))

√
D

ω(u j, v j )

)
,

exp

(
i

(
ˆ̃̃v j,1 − ˆ̃̃v j,3

2
− 2πω(e3, v j )√

2

)√
1

Dω(u j, v j )

)
.

We then measure the operators ˆ̃̃u j,3 which are again con-
strained by a stabilizer and this gives us partial information
about ω(e1 + e2 − √

2e3, u j ). Thus, after the measurement
the GKP code is stabilized by

exp

(
i

(
ˆ̃̃v j,1 − 2πω

(
e1 + e3√

2
, v j

))√
D

ω(u j, v j )

)
,

exp

(
i( ˆ̃̃uj,1 + ˜̃u j,3 − 2πω(e1 + e2, u j ))

√
D

ω(u j, v j )

)
.

Similarly as before we apply a shift exp(−i ˆ̃̃v j,1
˜̃u j,3

2πω(u j ,v j )
) in

order to obtain the stabilizer

exp

(
i( ˆ̃̃uj,1 − 2πω(e1 + e2, u j ))

√
D

ω(u j, v j )

)
.

A similar calculation can be done for the logical operators
X and Z . When doing this for X one can see that the logical
operator transforms as

exp

(
i(û j,1 − 2πω(e1, u j ))

√
1

Dω(u j, v j )

)

→ exp

(
i( ˆ̃̃u j,1 − 2πω(e1 + e2, u j ))

√
1

Dω(u j, v j )

)
,

(D7)

which means we need to know ω(e1 + e2, u j ) in order to
perform the error correction, but we only know ω(e1 + e2 −√

2e3, u j ) mod 2π
√

ω(u j ,v j )
D from our measurement results.

Up to small displacements originating from the noise on
the ancilla states, we now have the same state as before the
error correction, but we can use our measurement results for a
maximum-likelihood estimation (which might also consider
correlations between the measurement results) of ω(e1, v j )
and ω(e1 + e2, u j ) and apply correction shifts accordingly.
Since we never use the periodicity of the exponential it is
straightforward to see that a similar calculation also holds if
one assumes that the data qudits are stabilized by either Xj

or Zj . Thus logical errors can only occur if the maximum-
likelihood estimation fails.

APPENDIX E: LINEAR-OPTICAL KNILL-GLANCY
SCHEME FOR CONCATENATED CSS CODES

Here we show that it is possible to obtain the full syndrome
information in a scheme similar to the one described in the
previous section. We only have to consider (squeezed) logical
Pauli eigenstates of the high-level code instead of the GKP
code. Since we consider a concatenation of a GKP code and a
high-level code, we also have the GKP code stabilizers and
additional ones from the high-level code. Thus, we obtain
the syndrome information of the GKP code completely analo-
gously as in the proof in the previous section and we only need
to prove that we are able to obtain the syndrome information
of the high-level code. However, notice that our new stabilizer
set does not contain GKP Pauli operators, which were needed
in order to ensure that the information encoded in the GKP
code is not corrupted. This looks like a big problem, but
actually we do not care whether the information in single GKP
codes is corrupted. We only want that the information encoded
in the concatenation of the GKP and the high-level code
remains unchanged. This is achieved by having (squeezed)
logical Pauli operators of the high-level code instead of those
for the low-level GKP codes in the stabilizer group.

Let us now prove that we are able to obtain the syn-
drome information of the high-level code. The stabilizers
corresponding to the high-level code are given by (subscript
l numbers independent stabilizer generators of the high-level
qudit code)

exp

(
i

n∑
j=1

(û j,1 − 2πω(e1, u j ))H
û
jl

√
1

Dω(u j, v j )

)
,

exp

(
i

n∑
j=1

(v̂ j,1 − 2πω(e1, v j ))H
v̂
jl

√
1

Dω(u j, v j )

)
,

exp

(
i

n∑
j=1

(û j,2 − 2πω(e2, u j ))H
û
jl

√
1

Dω(u j, v j )

)
,

exp

(
i

n∑
j=1

(v̂ j,2 − 2πω(e2, v j ))H
v̂
jl

√
1

Dω(u j, v j )

)
.

After applying the 50:50 beam splitter we obtain

exp

(
i

n∑
j=1

( ˆ̃u j,1 + ˆ̃u j,2√
2

− 2πω(e1, u j )

)
Hû

jl

√
1

Dω(u j, v j )

)
,

exp

(
i

n∑
j=1

( ˆ̃v j,1 + ˆ̃v j,2√
2

− 2πω(e1, v j )

)
H v̂

jl

√
1

Dω(u j, v j )

)
,

exp

(
i

n∑
j=1

( ˆ̃u j,1 − ˆ̃u j,2√
2

− 2πω(e2, u j )

)
Hû

jl

√
1

Dω(u j, v j )

)
,

exp

(
i

n∑
j=1

( ˆ̃v j,1 − ˆ̃v j,2√
2

− 2πω(e2, v j )

)
H v̂

jl

√
1

Dω(u j, v j )

)
.
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We then measure ˆ̃v j,2 which is constrained by stabilizer
conditions

exp

(
i

n∑
j=1

(
√

2ˆ̃v j,2 − 2πω(e1 − e2, v j ))H
v̂
jl

√
1

Dω(u j, v j )

)
,

giving us partial information about the displacement errors. If
we perform an ideal formal stabilizer measurement we would
learn the stabilizer

exp

(
i

n∑
j=1

( ˆ̃v j,2 − 2πω(e1, v j ))H
v̂
jl

√
1

Dω(u j, v j )

)
.

Thus, up to a bit of noise originating from the noisy ancilla and
a rescaling by a factor of

√
2, both approaches give the same

information about the displacement errors. The state after the
measurement, considering the new ancilla, is then given by

exp

(
i

n∑
j=1

(
√

2 ˆ̃u j,1 − 2πω(e1 + e2, u j ))H
û
jl

√
1

Dω(u j, v j )

)
,

exp

(
i

n∑
j=1

( ˆ̃v j,1 + ṽ j,2√
2

− 2πω(e1, v j )

)
H v̂

jl

√
1

Dω(u j, v j )

)
,

exp

(
i

n∑
j=1

(
√

2 ˆ̃u j,3 −
√

22πω(e3, u j ))H
û
jl

√
1

Dω(u j, v j )

)
,

exp

(
i

n∑
j=1

( ˆ̃v j,3√
2

− 1√
2

2πω(e3, v j )

)
H v̂

jl

√
1

Dω(u j, v j )

)
.

By applying a corresponding displacement shift as in the
previous section, we can remove the phase depending on ṽ j,2.
After applying the second beam splitter we obtain

exp

(
i

n∑
j=1

( ˆ̃̃u j,1+ ˆ̃̃u j,3−2πω(e1+e2, u j ))H
û
jl

√
1

Dω(u j, v j )

)
,

exp

(
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n∑
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(
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2
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)
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jl

√
1

Dω(u j, v j )

)
,

exp

(
i

n∑
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( ˆ̃̃u j,1 − ˆ̃̃u j,3 −
√

22πω(e3, u j ))H
û
jl

√
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)
,

exp

(
i
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2
− 1√

2
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× H v̂
jl

√
1

Dω(u j, v j )

)
.

We then measure ˆ̃̃u j,3 where we obtain partial information
about the displacement errors due to the stabilizer constraint:

exp

(
i

n∑
j=1

(2 ˆ̃̃u j,2 − 2πω(e1 + e2 −
√

2e3, u j ))

× Hû
j,l

√
1

Dω(u j, v j )

)
.

After the measurement the states are approximately (be-
cause of the small displacements on the ancillas) back to the
code space and we have obtained the full syndrome informa-
tion. The steps involving the logical Pauli operators showing
that the logical information is not corrupted work completely
analogously as in main text where we discuss the original
Knill-Glancy scheme.

APPENDIX F: LINEAR OPTICS PRESERVES
CODE DISTANCE

(Passive) Linear-optical operations acting on n modes are
described by elements of the unitary group U (n) acting on
the mode operators. Using the two-out-of-three property (see
p. 44 of Ref. [56]) of unitaries we see that U (n) ∼= O(2n) ∩
Sp(2n). Therefore, the linear-optical operation is represented
by an orthogonal and symplectic matrix in the 2n-dimensional
phase space.

Let us consider a lattice S ⊂ R2n where the symplectic
form between any two lattice points yields an integer repre-
senting the commutation condition of stabilizer groups in the
symplectic representation. This includes the case of general
GKP codes and concatenations with higher-level stabilizer
codes. Furthermore, we define the dual (with respect to the
symplectic form) lattice L⊥(S) as the set of points whose
symplectic form yields an integer with every point of the
lattice S. The code distance of the corresponding code is then
defined as min

u,v∈L(S)/S
u �=v

‖u − v‖2 [57].

When we now apply a linear-optical transformation to
the corresponding state, we have to transform our lattice by
multiplying it by an orthogonal and symplectic matrix M.
Therefore, the new lattice is given by MS, where the product
is defined elementwise for every element of the group S.
Since symplectic matrices do not change symplectic forms,
it can be seen from the definition of the dual lattice that
ML⊥(S) ⊆ L⊥(MS). However, since M is invertible, we even
have equality between both sets (for a proof first apply M and
then M−1 and obtain a sequence of subsets where the left and
right sides are the same). We now calculate the code distance
after applying M and see that it is left invariant since unitaries
do not change the norm:

min
u′,v′∈L(MS)/(MS)

u′ �=v′

‖u′ − v′‖2 = min
u,v∈L(S)/S

u �=v

‖M(u − v)‖2

= min
u,v∈L(S)/S

u �=v

‖u − v‖2.

Thus, linear-optical transformations preserve the code dis-
tance of general GKP codes and we cannot hope to find a
linear-optical circuit transforming independent GKP codes
into a high-level concatenated GKP code. However, it might
still be possible that some codewords of the high-level code
can be generated easily by individual GKP-like states and
linear optics. One application of this possible loophole is the
generation of the ancilla states that we need for our error-
correction schemes.

Furthermore, it is also easy to see that two general quantum
error-correcting codes (not necessarily GKP codes) which
are equivalent up to some linear-optical transformation have
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the same error-correcting properties against isotropic dis-
placement error channels (e.g., i.i.d. Gaussian displacements).
Instead of transforming the codes we can transform the noise
channel accordingly. However, the isotropic displacement
error channel is left invariant by the linear-optical transfor-
mation, because the probability distribution of the isotropic
displacement noise channel only depends on the 2-norm
of the displacement vector. This norm is preserved by the
transformation as it acts as an orthogonal matrix in the phase-
space representation. As a consequence, the error-correcting
properties of these two codes are the same against isotropic
displacement error channels.

APPENDIX G: EXACT CALCULATION OF ANALOG
INFORMATION IN THE THREE-QUBIT

REPETITION CODE

When using a minimum-weight decoding scheme, we are
applying a correction shift of minimum weight such that we
recover the code space; i.e., the combination of the error and
correction shift is an element of the dual lattice L⊥. Since
the three-qubit repetition code is a CSS code, we can correct
position and momentum shifts independently, reducing the
dimensionality of the computational problem by a factor of
2. Here we will also only discuss the position shifts as the
momentum stabilizers are those of independent square-lattice
GKP qubits. The stabilizer generators and representatives of
logical operators of the code are given by

exp[i
√

π (q̂1 − q̂2)], exp[i
√

π (q̂2 − q̂3)],

exp(i2
√

π q̂3), exp(i2
√

π p̂1),

exp(i2
√

π p̂2), exp(i2
√

π p̂3),

X = exp[i
√

π ( p̂1 + p̂2 + p̂3)],

Z = exp(i
√

π q̂1).

We can then decompose L⊥ = L⊥
1 ∪ L⊥

X, corresponding
to the represented operator X . In order to obtain the set of
correctable errors we have to calculate the Voronoi cells,
where each cell consists of all points being closest to a given
lattice point, of L⊥ and consider the union of all Voronoi
cells including a point in L⊥

1 . This can easily be done by
generating a finite-size lattice and using the SCIPY func-
tion scipy.spatial.Voronoi for calculating the Voronoi
cells. Using the translation invariance of the actual lat-
tice we can then obtain all Voronoi cells by applying it
to cells which are not distorted due to finite-size effects.

FIG. 4. Logical bit-flip error rate of square GKP code concate-
nated with the three-qubit bit-flip code using our exact calculation.
Our results are in good agreement with Fig. 2 of Ref. [6], where the
results were obtained by a Monte Carlo simulation. However, due to
the simple numerical integration we are able to calculate small error
rates where a Monte Carlo approach would be infeasible.

Since we consider a three-dimensional (3D) lattice this can
be visualized nicely and one sees that the correctable set
of errors is given by a union of octagons where the ele-
mentary octagon is given by the convex span of the points
(± 3

√
π

2 , 0, 0), (0,± 3
√

π

2 , 0), (0, 0,± 3
√

π

2 ) and the other ones
can be obtained by translations of 2

√
π (Z,Z,Z).

In order to obtain the probability of no bit-flip error we
have to integrate the probability distribution of displacement
errors over the set of correctable errors. The overall set of
correctable errors is too complicated for integration and there-
fore we integrate over a subset of octagons and obtain lower
bounds on the probability of success (when considering the
union we must not count some areas twice).

Let us now consider the most common case of i.i.d. Gaus-
sian noise with a variance of σ 2. For the elementary octagon
(and all others which are only displaced along one axis)
we can split the octagon into two pyramids and consider
new rotated integration variables, such that the base of the
pyramid is aligned with the integration axes. This way we
can do these integrations analytically and we are only left

with the integral 2√
2πσ 2

∫ 3
√

π

2
0 exp(− z2

2σ 2 )erf(( 3
√

π

2 − z) 1
2σ

)2dz
for the probability of no bit-flip error which then can be cal-
culated numerically. The results of this calculation are shown
in Fig. 4 and compared with the case where we do not make
use of the analog GKP syndrome information.
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and A. Zeilinger, Violations of Local Realism by Two Entan-
gled N-Dimensional Systems are Stronger than for Two Qubits,
Phys. Rev. Lett. 85, 4418 (2000).

[20] D. Collins, N. Gisin, N. Linden, S. Massar, and S. Popescu, Bell
Inequalities for Arbitrarily High-Dimensional Systems, Phys.
Rev. Lett. 88, 040404 (2002).

[21] N. J. Cerf, M. Bourennane, A. Karlsson, and N. Gisin, Security
of Quantum Key Distribution Using d-Level Systems, Phys.
Rev. Lett. 88, 127902 (2002).

[22] D. Aharonov and M. Ben-Or, Fault-tolerant quantum computa-
tion with constant error rate, SIAM J. Comput. 38, 1207 (2008).

[23] We denote this continuous Weyl-Heisenberg group simply as a
Weyl-Heisenberg group, while we refer to the discrete Weyl-
Heisenberg group as a Pauli group.

[24] Every point in the lattice corresponds to a member of the
stabilizer group. However, we defined the stabilizer group
by products of stabilizer generators and when converting the

product into a single Weyl-Heisenberg operator by using the
Baker-Campbell-Hausdorff formula a phase of ±1 can appear.
This sign ambiguity, however, does not affect our results.

[25] For a given noise channel increasing the code dimension D of
the GKP code also increases the error rate and it is a nontrivial
task to evaluate whether the increased noise robustness and
higher code dimension can compensate the higher error rates
on the physical qudit level. The present work only addresses
improved techniques for obtaining the syndrome information,
and an evaluation of the concatenation of GKP codes with
actual qudit codes is left for future research.

[26] T. Matsuura, H. Yamasaki, and M. Koashi, Equivalence of ap-
proximate Gottesman-Kitaev-Preskill codes, Phys. Rev. A 102,
032408 (2020).

[27] Y. Wang, Quantum error correction with the GKP code and
concatenation with stabilizer codes, arXiv:1908.00147.

[28] J. Conrad, Twirling and Hamiltonian engineering via dynamical
decoupling for Gottesman-Kitaev-Preskill quantum computing,
Phys. Rev. A 103, 022404 (2021).

[29] B. Q. Baragiola, G. Pantaleoni, R. N. Alexander, A. Karanjai,
and N. C. Menicucci, All-Gaussian Universality and Fault Tol-
erance with the Gottesman-Kitaev-Preskill Code, Phys. Rev.
Lett. 123, 200502 (2019).

[30] S. D. Bartlett, B. C. Sanders, S. L. Braunstein, and K. Nemoto,
Efficient Classical Simulation of Continuous Variable Quantum
Information Processes, Phys. Rev. Lett. 88, 097904 (2002).

[31] A. M. Steane, Active Stabilization, Quantum Computation,
and Quantum State Synthesis, Phys. Rev. Lett. 78, 2252
(1997).

[32] E. Knill, Scalable quantum computing in the presence of large
detected-error rates, Phys. Rev. A 71, 042322 (2005).

[33] S. Glancy and E. Knill, Error analysis for encoding a qubit in
an oscillator, Phys. Rev. A 73, 012325 (2006).

[34] K. H. Wan, A. Neville, and S. Kolthammer, Memory-assisted
decoder for approximate Gottesman-Kitaev-Preskill codes,
Phys. Rev. Research 2, 043280 (2020).

[35] I. Tzitrin, J. E. Bourassa, N. C. Menicucci, and K. K. Sabapathy,
Progress towards practical qubit computation using approx-
imate Gottesman-Kitaev-Preskill codes, Phys. Rev. A 101,
032315 (2020).

[36] B. W. Walshe, B. Q. Baragiola, R. N. Alexander, and N. C.
Menicucci, Continuous-variable gate teleportation and bosonic-
code error correction, Phys. Rev. A 102, 062411 (2020).

[37] H. Vahlbruch, M. Mehmet, K. Danzmann, and R. Schnabel,
Detection of 15 dB Squeezed States of Light and their Appli-
cation for the Absolute Calibration of Photoelectric Quantum
Efficiency, Phys. Rev. Lett. 117, 110801 (2016).

[38] R. Filip, P. Marek, and U. L. Andersen, Measurement-induced
continuous-variable quantum interactions, Phys. Rev. A 71,
042308 (2005).

[39] J.-i. Yoshikawa, Y. Miwa, A. Huck, U. L. Andersen, P.
van Loock, and A. Furusawa, Demonstration of a Quan-
tum Nondemolition Sum Gate, Phys. Rev. Lett. 101, 250501
(2008).

[40] In Ref. [6] the authors proposed to measure the stabilizers
exp(i

√
π (q̂1 + q̂2)), exp(i

√
π (q̂2 + q̂3)), exp(i2

√
π q̂3).

[41] Even for nonprime D there are no additional stabilizers needed.
[42] K. Chandrasekaran, V. Gandikota, and E. Grigorescu, Decid-

ing orthogonality in construction-A lattices, SIAM J. Discrete
Math. 31, 1244 (2017).

042427-19



FRANK SCHMIDT AND PETER VAN LOOCK PHYSICAL REVIEW A 105, 042427 (2022)

[43] B. Royer, S. Singh, and S. M. Girvin, Stabilization of Finite-
Energy Gottesman-Kitaev-Preskill States, Phys. Rev. Lett. 125,
260509 (2020).

[44] This expression differs by a factor of −1 from Eq. (14) in
Ref. [33] as we use a beam splitter with different phases.

[45] L. G. Gunderman, Local-dimension-invariant qudit stabilizer
codes, Phys. Rev. A 101, 052343 (2020).

[46] J. Blömer and J.-P. Seifert, On the complexity of computing
short linearly independent vectors and short bases in a lattice,
in Proceedings of the Thirty-First Annual ACM Symposium on
Theory of Computing, STOC ’99 (Association for Computing
Machinery, New York, 1999), pp. 711–720.

[47] T. C. Ralph, A. J. F. Hayes, and A. Gilchrist, Loss-
Tolerant Optical Qubits, Phys. Rev. Lett. 95, 100501
(2005).

[48] N. P. Breuckmann, C. Vuillot, E. Campbell, A. Krishna,
and B. M. Terhal, Hyperbolic and semi-hyperbolic surface
codes for quantum storage, Quantum Sci. Technol. 2, 035007
(2017).

[49] S. S. Bullock and G. K. Brennen, Qudit surface codes and gauge
theory with finite cyclic groups, J. Phys. A: Math. Theor. 40,
3481 (2007).

[50] H. Bombin and M. A. Martin-Delgado, Homological error
correction: Classical and quantum codes, J. Math. Phys. 48,
052105 (2007).

[51] P. Sarvepalli, Topological color codes over higher alphabet, in
2010 IEEE Information Theory Workshop (IEEE, Piscataway,
NJ, 2010), pp. 1–5.

[52] F. H. E. Watson, E. T. Campbell, H. Anwar, and D. E. Browne,
Qudit color codes and gauge color codes in all spatial dimen-
sions, Phys. Rev. A 92, 022312 (2015).

[53] P. Shor, Fault-tolerant quantum computation, in Proceedings of
37th Conference on Foundations of Computer Science (IEEE,
Piscataway, NJ, 1996), pp. 56–65.

[54] J. Conrad, J. Eisert, and F. Arzani, Gottesman-Kitaev-Preskill
codes: A lattice perspective, Quantum 6, 648 (2022).

[55] A. Basu, Lectures on modern approaches to cutting planes,
https://www.ams.jhu.edu/∼abasu9/RFG/lecture_notes.pdf.

[56] D. McDuff and D. Salamon, Introduction to Symplectic Topol-
ogy, Oxford Mathematical Monographs (Oxford University
Press, Oxford, UK, 2017).

[57] We consider the 2-norm because for Gaussian noise the prob-
ability density only depends on the 2-norm of the symplectic
error representation.

042427-20



Paper IV

Exact rate analysis for quantum repeaters with imperfect
memories and entanglement swapping as soon as possible

Lars Kamin, Evgeny Shchukin, Frank Schmidt, and Peter van Loock,

Phys. Rev. Research 5, 023086 (2023)

145



PHYSICAL REVIEW RESEARCH 5, 023086 (2023)

Exact rate analysis for quantum repeaters with imperfect memories
and entanglement swapping as soon as possible

Lars Kamin ,* Evgeny Shchukin ,† Frank Schmidt ,‡ and Peter van Loock§

Johannes-Gutenberg University of Mainz, Institute of Physics, Staudingerweg 7, 55128 Mainz, Germany

(Received 30 May 2022; revised 31 January 2023; accepted 3 February 2023; published 10 May 2023)

We present an exact rate analysis for a secret key that can be shared among two parties employing a linear
quantum repeater chain. One of our main motivations is to address the question whether simply placing quantum
memories along a quantum communication channel can be beneficial in a realistic setting. The underlying model
assumes deterministic entanglement swapping of single-spin quantum memories and it excludes probabilistic
entanglement distillation, and thus two-way classical communication, on higher nesting levels. Within this
framework, we identify the essential properties of any optimal repeater scheme: entanglement distribution in
parallel, entanglement swapping as soon and parallel quantum storage as little as possible. While these features
are obvious or trivial for the simplest repeater with one middle station, for more stations they cannot always be
combined. We propose an optimal scheme including channel loss and memory dephasing, proving its optimality
for the case of two stations and conjecturing it for the general case. In an even more realistic setting, we
consider additional tools and parameters such as memory cutoffs, multiplexing, initial state and swapping
gate fidelities, and finite link coupling efficiencies in order to identify potential regimes in memory-assisted
quantum key distribution beyond one middle station that exceed the rates of the smallest quantum repeaters as
well as those obtainable in all-optical schemes unassisted by stationary memory qubits and two-way classical
communication. Our analytical treatment enables us to determine simultaneous trade-offs between various
parameters, their scaling, and their influence on the performance ordering among different types of protocols,
comparing two-photon interference after dual-rail qubit transmission with one-photon interference of single-rail
qubits or, similarly, optical interference of coherent states. We find that for experimental parameter values that
are highly demanding but not impossible (up to 10 s coherence time, about 80% link coupling, and state or gate
infidelities in the regime of 1%–2%), one secret bit can be shared per second at a total channel loss budget of
157.6 dB, i.e. a total distance of 800 km for a fiber attenuation length of 22 km with repeater stations placed at
every 100 km—a clear improvement over realistic twin-field or, much more pronouncedly, ideal point-to-point
quantum key distribution at GHz clock rates.

DOI: 10.1103/PhysRevResearch.5.023086

I. INTRODUCTION

Recent progress on quantum computers with tens of qubits
led to experimental demonstrations of quantum devices able
to solve specifically adapted problems not efficiently soluble
with the help of classical computers alone. Typically, these
devices are based on solid-state (superconducting) systems
[1,2], however, there are also photonics approaches [3]. While
these schemes still have to be enhanced in terms of size,
i.e., the number of qubits (scalability), their error robustness
and corresponding logical encoding (fault tolerance), as well
as their range of applicability (eventually reaching univer-
sality), this progress represents a threat to common classical
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communication systems. Eventually, this may compromise
current key distribution protocols. Although there are recent
developments in classical cryptography to address the threat
imposed by such quantum devices (“postquantum cryptog-
raphy”), quantum mechanics also gives a possible solution
to this by means of quantum key distribution (QKD) [4,5].
Many QKD protocols have been proposed such as the most
prominent, so-called BB84 scheme [6]. Among the various
quantum technologies that promise to enable their users to
fulfill tasks impossible without quantum resources, quantum
communication is special. Unlike quantum computers there
are already commercially available quantum communication
systems intended for costumers who wish to communicate
in the classical, real world in a basically unconditionally
secure fashion—independent of mathematically unproven as-
sumptions exploiting the concept of QKD. QKD systems are
naturally realized for photonic systems using nonclassical op-
tical quantum states such as single-photon, weak [7,8], or even
bright coherent states [5].

Current point-to-point QKD systems, directly connecting
the sender (Alice) and the receiver (Bob) via an optical-fiber
channel, are limited in distance due to the exponentially grow-
ing transmission loss along the channel. Typical maximal
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distances are 100–200 km. A very recent QKD variant, so-
called twin-field (TF) QKD [9], allows to push these limits
farther (basically doubling the effective distance) by placing
an (untrusted) middle station between Alice and Bob. Re-
markably, TF QKD achieves this loss scaling advantage in an
all-optical fashion with no need for quantum storage at the
middle station and at an, in principle, unlimited clock rate
with no need for two-way classical communication. It further
inherits the improved security features of measurement-
device-independent (MDI) QKD schemes [10,11]. However,
the original TF QKD concept is not known to be further
scalable beyond the effective distance doubling.

A. Quantum repeaters: Previous works

In classical communication, the distance problem is
straightforwardly overcome by introducing repeater stations
along the fiber channel (about every 50–100 km) in or-
der to reamplify (and typically reshape) the optical pulses.
On a fundamental level, the famous No-Cloning-theorem
[12,13], prohibits such solutions for quantum communica-
tion. As a possible remedy, the concept of quantum repeaters
has been developed [14–16]. With the help of sufficiently
short-range entanglement distributions, quantum memories,
entanglement distillation and swapping, in principle, scalable
long-distance, fiber-based quantum communication becomes
possible, including long-range QKD. While this original
quantum repeater concept would still impose high experi-
mental requirements on the various implementation platforms
[17–21], these first proposals made a possible realization of a
large-scale quantum repeater more likely. Nonetheless, even
when completely implemented, such schemes would still be
fundamentally limited in their achievable (secret) key rates
per second. The reason for this is the need for two-way
classical communication on all, including the highest “nest-
ing” levels in order to conduct entanglement distillation and
confirm successful entanglement swappings when these are
probabilistic. Today this type of quantum repeater schemes are
referred to as first-generation quantum repeaters. Alternative
schemes circumventing the fundamental limitations are the
so-called second- and third-generation quantum repeaters that
exploit quantum error correction codes to suppress the effect
of memory (and gate) errors or channel loss (and gate errors),
respectively [22].

It is important to stress that all these quantum repeaters
are designed to allow for a genuine long-distance quantum
state transfer. In the QKD context, this means that the inter-
mediate stations along the repeater channel may be untrusted.
If instead sufficiently many trusted stations can be placed
along the channel between Alice and Bob, and the quantum
signals can be converted into classical information at each
station (as a whole, effectively corresponding to classically
connected, independent, sufficiently short-range QKD links),
large-scale QKD is already possible and being demonstrated
[23]. Conceptually, this also applies to long-range links en-
abled by satellites [24,25]. It is only the genuine quantum
repeater that incorporates two main features at the same time:
long-distance scalability and long-distance privacy.

From a practical point of view, it is expected that global
quantum communication systems will be a combination of

both elements: genuine fiber-based quantum repeaters over
intermediate distances (thousands of kilometers) and satellite-
based quantum links bridging even longer distances (tens of
thousands of kilometers; the earth’s circumference is about
40 000 km). While such truly global quantum communication
may eventually lead to some form of a “quantum internet”
[26], only the coherent long-distance quantum state transfer
as enabled by a genuine quantum repeater allows to con-
sider applications that go beyond long-range QKD. In fact,
the original quantum repeater proposals were not specifically
intended for or adapted to long-range QKD. They can be
used for any application that relies upon the distribution of
entangled states over large distances including large-scale
quantum networks. Obvious applications are distributed quan-
tum tasks such as distributed quantum computing, coherently
connecting quantum computers which are spatially far apart.
These ultimate long-distance quantum communication ap-
plications will then impose much higher demands on the
fault tolerance of the experimental quantum states and gates.
In particular, QKD-specifc classical postprocessing will no
longer be applicable. In this work, we shall consider small to
intermediate-scale quantum repeaters that allow to do QKD
or coherently connect quantum nodes at a corresponding size
and at a reasonably practical clock rate.

B. Quantum repeaters: Present work

In this work, we will focus on small-scale or medium-
size quantum repeater systems beyond a single middle station
and without probabilistic entanglement distillation on higher
“nesting levels.” This class of quantum repeaters is of great
interest for at least two reasons.

(i) There are now first experiments of memory-enhanced
quantum communication basically demonstrating memory-
assisted MDI QKD [27,28]. Therefore the natural next step
for the experimentalists will be to connect such elementary
modules to obtain larger repeater systems with two or more in-
termediate stations, thus bridging larger distances and, unlike
memory-assisted MDI QKD, ultimately relying upon classical
communication between the repeater stations [29].

These next near-term experiments will aim at a distance
extension still independent of additional and more compli-
cated schemes such as entanglement distillation on “higher
nesting levels.” Restricting the entanglement manipulations to
the level of the elementary repeater segments will also help
to avoid the use of long-distance two-way classical signalling
like in a fully scalable first-generation quantum repeater, and
hence allow for still limited but reasonable repeater clock
rates. In this regime, comparing (secret key) rates per second
of the quantum repeaters with those of an (ideal) point-to-
point link or TF QKD scheme is in some way most fair and
meaningful.

While the current experimental repeater demonstrations
with a single repeater station [27,28] would still suffer from
too low clock rates and link coupling efficiencies before
giving a practical repeater advantage, an urgent theoretical
question is whether, under practical realistic circumstances,
it really helps to place memory stations along a quantum
communication channel and execute memory-assisted QKD
without extra active quantum error correction. In principle,
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placing a middle station between Alice and Bob allows to gain
a repeater advantage per channel use [29–31].

Omitting the nonscalable all-optical TF approach, is there
a practical benefit also in terms of secret bits per second
when using a two-segment quantum repeater? Moreover, and
this is the focus of the present work, is there even a further
advantage when adding more stations beyond a single middle
station under realistic assumptions and with no extra quantum
error correction? We will see that for up to eight repeater seg-
ments, covering distances up to around 800 km, the quantum
repeaters treated in this work, assuming experimental param-
eter values that are demanding but not impossible to achieve
in practice, can exceed the performance limits of the other
schemes. For larger distances, the attainable absolute rates
of point-to-point quantum communication become extremely
small. However, for quantum repeaters, additional elements
of quantum error correction will be needed, as otherwise the
final rates would vanish and no gain can be expected over
point-to-point communication.

(ii) The second point refers to the theoretical treat-
ment. Typically, the repeater rates can be calculated either
numerically including many protocol variations and (experi-
mental) degrees of freedom [32] or approximately in certain
regimes [18] (there are also semi-analytical approaches, see
Refs. [33,34]).

If errors are neglected an exact and even optimized raw
rate calculation is possible even for nonunit (but constant)
entanglement swapping probabilities using the formalism
of Markov chains and decision processes [35,36] (see also
Refs. [37,38]). This approach works well for repeaters up to
about ten segments; for too many repeater segments the result-
ing linear equation systems become intractable. Nonetheless,
for the smallest repeaters with only a single middle station, it
was shown how to calculate secret key rates even including
various experimental parameters, though partially also em-
ploying approximations for the raw rates [30,31]. In this work
we will go beyond the case of a single middle station and
present exact calculations of secret key rates obtainable with
realistic small and intermediate-scale quantum repeaters. The
theoretical difficulty here is, even already when only channel
loss and memory dephasing is considered, that for repeaters
beyond a single middle station there are various distribution
and swapping strategies and so it becomes nontrivial to de-
termine the optimal ones. The usual treatment in this case
is based upon the so-called doubling strategy where for a
repeater with a power-of-two number of segments only certain
pairs of segments will be connected in order to double the
distances at each repeater level. As a consequence, sometimes
entanglement connections will be postponed even though
neighboring pairs may be ready already, thus unnecessarily
accumulating more memory dephasing errors. With regards
to memory dephasing, the best strategy appears to be to swap
as soon as possible and here we will show how this type of
repeater strategy can be exactly and analytically treated. This
element is the crucial step that enables us to propose optimal
quantum repeater schemes.

On the hardware side, memory-based quantum repeaters
require sufficiently long-lived quantum memories and effi-
cient, typically light-matter-based interfaces converting flying
into stationary qubits. In the context of our theoretical treat-

ment, the stationary qubits are assumed to be represented
by single spins in a suitable solid-state quantum node such
as color (NV or SiV) centers in diamond, usually separately
treated as short-lived electronic and long-lived nuclear spins
[39,40]. As for efficient quantum emitters and short-lived
quantum memories semiconductor quantum dots may be con-
sidered too [29]. Alternatively, various types of atom or ion
qubits could be taken into account [29].

While all these different hardware platforms have their
own assets and disadvantages (e.g., the required temper-
atures which range from room or modestly low temper-
atures for atoms/ions/NV to cryogenic temperatures for
NV/SiV/quantum dots), and every one eventually requires a
specifically adapted physical model, to a certain extent the
quantum repeater performance based on these elements and
assuming only a single repeater station can be assessed (or at
least qualitatively bounded from above) using a fairly simple
physical model that includes three experimental parameters:
the link coupling efficiency, the memory coherence time, and
the experimental clock rate [29].

In order to incorporate an appropriate experimental mem-
ory coherence time into the model, qubit dephasing errors
can be considered where the stationary qubit is never lost
but subject to random phase flips with a probability expo-
nentially growing with the storage time. Already this rather
simple model is theoretically nontrivial, because it leads to
two distinct impacts on the final secret key rates. On the one
hand, a finite link coupling efficiency (including all constant
inefficiencies per segment from the sources, detectors, and
interfaces) and a segment-length-dependent transmission ef-
ficiency affect the raw rate of the qubit transmission (which,
if expressed as rate per second, also directly depends on
the repeater clock rate). Thereby, in logarithmic rate-versus-
distance plots (like those frequently shown later in this paper),
a finite link coupling leads to an offset towards smaller rates
at zero distance, while a finite channel transmission results in
a certain (negative) slope. On the other hand, a finite memory
coherence time influences the final Alice-Bob state fidelity or
QKD error rate (which also indirectly depends on the repeater
clock rate, i.e., the time duration per entanglement distribu-
tion attempt per segment, determining the possible number of
distribution attempts within a given memory coherence time).
This becomes manifest as an increase of the (negative) slope
for growing distances, moving from an initially repeaterlike
slope towards one corresponding to a point-to-point transmis-
sion.

There are interesting concepts to suppress this latter effect
by introducing more sophisticated memory models such as
(spatial or temporal) memory buffers or cutoffs. Especially a
memory cutoff [41] has turned out to be useful without the
need for additional experimental resources. It means that a
maximal storage time is imposed at every memory node and
any loaded stationary qubits waiting for a longer duration will
be reinitialized. As a result, state fidelities can be kept high
at the expense of a decreasing raw rate due to the frequently
occurring reinitializations (which implies that a memory cut-
off must neither be set too low nor too high). Theoretically,
including memory cutoffs into the rate analysis significantly
increases the complexity (becoming manifest in, e.g., quickly
growing Markov-chain matrices) [35].
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For small quantum repeaters, especially those with only
one middle station, a secret key rate analysis remains possible
[29,31]. For larger quantum repeaters, the effective rates may
be calculated via recursively obtained expressions [42], via
different kinds of approximations and assumptions [43] or
with the help of numerical simulations [32]. Nonetheless, in
our treatment, we shall explicitly include a memory cutoff in
some protocols allowing us to extrapolate its positive impact
on other schemes.

We choose to incorporate random dephasing as the dom-
inating source of memory errors. While memory dephasing
is generally an error to be taken into account, it is particu-
larly important for those stationary qubits encoded into single
solid-state spins, e.g., for color centers or quantum dots [29].
We omit (time-dependent) memory decay (loss) which ad-
ditionally becomes relevant for atomic memories, either as
collective spin modes of atomic ensembles or in the form of an
individual atom in a cavity (generally, atoms and trapped ions
may be subject to both dephasing and decay) [17,21,28,44].
It turns out that the effect of memory dephasing can be ac-
curately included into the statistical repeater model, since the
total, accumulated dephasing in the final Alice-Bob density
operator follows a simple sum rule [45]. Thus, the statistical
averaging can be applied to the final state, for which we derive
a recursive formula that also includes depolarizing errors from
the initially distributed states and from the imperfect Bell
measurement gates in every entanglement swapping opera-
tion. The main complication will be to determine the correct
dephasing variables for the different swapping strategies and
identify the optimal schemes. As a result, we extend the sim-
ple model of Ref. [29] not only with regards to the repeater’s
size, but also to include additional experimental parameters:
besides the above three parameters we then have one or two
extra parameters for the initially distributed states (taking into
account initial dephasing or depolarization errors depending
on the protocol) and one extra depolarization parameter for
the local gates and Bell measurements.

Our analytical treatment enables us to identify the scaling
of the various parameters, their specific impact onto the re-
peater performance (for QKD, affecting either the raw rate
or the error-dependent secret key fraction), and the result-
ing trade-offs. Most apparent is the trade-off for quantum
repeaters with n segments and n − 1 intermediate memory
stations leading to an improved loss scaling with an n-
times bigger effective attenuation distance compared with
a point-to-point link (n = 1), but a final state fidelity pa-
rameter decreasing as the power of 2n − 1 (assuming equal
gate and initial state error rates). We will then be able to
consider repeater protocol variations with an improved scal-
ing of the basic loss and fidelity parameters. Based upon
the above-mentioned TF concept with coherent states or
basically replacing two-photon by one-photon interferences
at the beam splitter stations, these repeaters exhibit a 2n-
times bigger effective attenuation distance while keeping the
2n − 1 power scaling of the final state fidelity parameter
for n − 1 memory stations [45]. However, they are subject
to some extra intrinsic (dephasing) errors even when only
channel loss is considered, which will turn out to be an
essential complication that prevents to fully exploit the im-
proved scaling of the basic parameters in comparison with the

standard repeater protocols that do not suffer from intrinsic
dephasing.

Comparing different repeater protocols and incorporating
the optimized memory dephasing from our statistical model
into them, we find that for experimental parameter values that
are highly demanding but not impossible (up to 10 s coherence
time, 80% link coupling, and state or gate infidelities in the
regime of 1%–2%), one secret bit can be shared per second
over a total distance of 800 km. This represents a significant
improvement over ideal point-to-point or realistic TF QKD at
GHz clock rates. In particular, the repeaterless, point-to-point
bound [46], for, e.g., 800 km is 3 × 10−16 bits per channel use
or 0.3 μbits per second (at GHz clock rate).1 We will see that,
in order to clearly beat this with those reasonable experimental
parameters from above, the number of repeater stations must
neither be too high nor too low, and so placing a station at
every 100 km will work well.

As mentioned before, our schemes are generally indepen-
dent of the typically used doubling strategies in quantum
repeaters (which are most suitable to incorporate entangle-
ment distillation in a systematic way and which are included
as a special case in our sets of swapping strategies). Instead
we will consider general memory-assisted entanglement dis-
tribution with possible QKD applications. Compatible with
our analysis are also schemes that aim at an enhanced ini-
tial state distribution efficiency or fidelity as, for example,
in multiplexing-assisted or the above-mentioned second-
generation quantum repeaters. In any case, the subsequent
steps after the initial distributions in each repeater segment
are simple entanglement swapping steps combined with quan-
tum storage in single spins. For the entanglement swapping
we assume unit success probability. This assumption is ex-
perimentally justified for systems where Bell measurements
or, more generally, (entangling) gates can be performed in a

1The most recent TF QKD experiments achieve remarkably large
distances in the range between 509 and 833 km [64–67]. Espe-
cially the most recent demonstration of Ref. [67] over 833 km is
a strong statement in favour of the TF QKD approach. However,
it is important to notice that low-loss fibers were employed in that
demonstration corresponding to Latt = 25.747 km, 0.168 dB/km, or
a tolerated total loss budget of 140 dB/833.8 km. This loss budget, if
ultra-low-loss fibers were used corresponding to Latt = 30.606 km or
0.1419 dB/km, would even allow to reach distances near 1000 km.
Nonetheless, in our theoretical rate analysis, we assume standard
fiber transmission throughout, corresponding to Latt = 22 km or
0.197 dB/km. For these values, ideal TF QKD achieves about 1 se-
cret bit per second over 800 km (this is a bound which is also related
to the one-way distillable entanglement) [22,68]. Any realistic TF
QKD experiment over such distances will certainly perform worse
than this ideal bound or, in other words, for a ultra-low-loss fiber
transmission also the ideal TF QKD rate would move up, e.g., for
Latt = 30 km, to a value as high as about 100 secret bits per second
for 800 km. The results of the experiment of Ref. [67], of course,
are also clearly below the ideal TF QKD bound when compared
with identical fiber transmission parameters. Our optimized quantum
repeater that achieves 1 secret bit per second over 800 km would
correspond to a scheme that tolerates a total channel loss budget of
157.6 dB. With improved, low-loss fiber channels, this loss budget
would also allow us to go to much larger distances beyond 1000 km.
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deterministic fashion, for instance, with atoms or ions or solid-
state-based spin qubits [29]. For a linear quantum repeater
chain, this system is still remarkably complex.

The assumption of deterministic entanglement swapping
will allow us to calculate the exact (secret key) rates in a
quantum repeater up to eight segments. We will distinguish
schemes with sequential and parallel entanglement distribu-
tions and also consider different swapping strategies. Based
on two characteristic random variables, the total repeater
waiting time and the accumulated dephasing time of the final
state, and their probability generating functions, we will be
able to determine exact, optimized secret key rates. In prin-
ciple, this gives us access to the full statistics of this class
of quantum repeaters. Optimality here refers to the minimal
dephasing among all parallel-distribution (and hence maximal
raw-rate) schemes. For three segments and two intermediate
stations, we show that the resulting secret key rates are opti-
mal among all schemes (with distribution attempts in every
segment limited by equal signaling time units). For more
segments, we conjecture this to hold too, however, there is
the loophole that sequential-distribution schemes (generally
exhibiting smaller raw rates) may accumulate less dephasing
and as a result, in combination, lead to a higher secret key rate.
We conclude that our treatment gives evidence for any optimal
scheme to distribute entangled pairs in parallel, to swap as
soon as possible, and to simultaneously store qubits as little
as possible. However, here the first and the third property are
not compatible, which leads to another trade-off between high
efficiencies (raw rates) and small state fidelities (high error
rates) as commonly encountered for entanglement distribution
and quantum repeaters. The (partially or fully) sequential
schemes have the advantage that parallel storage of qubits can
be avoided to a certain (or even a full) extent. However, since
the sequential schemes are overall slower, their total dephas-
ing may still exceed that of the fastest repeater schemes with
parallel storage. For up to eight repeater segments, our optimal
scheme, exhibiting the smallest total dephasing among all fast
repeater schemes, also exhibits a smaller total dephasing than
the fully sequential scheme.

The outline of the paper is as follows. In Sec. II, we first
review the known results and existing approaches to analyze
secret key rates for the smallest possible quantum repeater
based upon a single middle station, including calculations of
the repeater raw rate and physical error models to describe
the evolution of the relevant density operators. The methods
for the statistical analysis—probability generating functions,
and the figure of merit to quantitatively assess the repeater
performance—a QKD secret key rate, will be introduced in
Sec. III. In Sec. IV, we start introducing our new, general-
ized treatment for quantum repeaters beyond a single middle
station. We present two sections on the two characteristic
random variables—the waiting time and the dephasing time,
which contain the entire statistical information of the class
of quantum repeaters considered in our work. In order to
be able to take into account optimal strategies for the initial
entanglement distribution and the subsequent entanglement
swapping in more complex quantum repeaters with two or
more intermediate repeater stations, we discuss in detail in
various sections sequential and parallel distribution as well as
optimal swapping schemes. Still in Sec. IV, we show how

FIG. 1. A two-segment quantum repeater. Each segment has
length L0 and is characterized by a distribution success probability p,
a (geometrically distributed) random number of distribution attempts
N (with expectation value N̄ = 1/p), and a “final” two-qubit state
ρ̂ (subscripts denote segments or qubits at the nodes). “Final” here
means that the, in general, imperfectly distributed states may be
further subject to memory dephasing for a maximal number of m time
steps (distribution attempts). After an imperfect swapping operation
S (error parameter μ), the repeater end nodes share an entangled
state over distance 2L0.

these optimizations can be applied to the statistics of vari-
ous quantum repeaters, explicitly calculating the probability
generating functions of the two basic random variables for
two-, three-, four-, and eight-segment quantum repeaters. In
particular, for the four- and eight-segment cases we will show
how and to what extent our optimized and exact treatment of
the memory dephasing will improve the relevant quantities of
the final state density operators as compared with the usually
employed, canonical schemes such as “doubling.” The inter-
esting case of a three-segment repeater and its optimization
will be discussed in more detail in an Appendix. Finally, in
Sec. V we will analyze the secret key rates of all proposed
schemes and compare them for various repeater sizes with
the “PLOB” bound [46].2 For this, we will explicitly consider
the extended set of experimental parameters and insert exper-
imentally meaningful values (representing current and future
experimental capabilities) for them. A particular focus will be
on the initial state and gate parameters and their impact on
the repeater performance. We shall compare the performances
of different schemes, discuss the possibility of including mul-
tiplexing, and examine what influence a memory cutoff and
what (scaling) advantages the different types of encoding for
the flying qubits can have. For the latter, we discuss in more
detail schemes based on the TF concept and, for the compari-
son between different schemes and encodings, the final secret
key rates per second. Section VI concludes the paper with a
final summary of the results and their implications. Various
additional technical details can be found in the appendices.

II. QUANTUM REPEATERS WITH ONE MIDDLE STATION

A small quantum repeater composed of two segments
and one middle station, as schematically shown in Fig. 1,

2See also Ref. [61] for a related work on the general secret key loss
scaling in a point-to-point link, and also the more recent Refs. [69,70]
on bounds on the key and entanglement rates that can be achieved
by means of repeaters (assisted by local operations and classical
communication).
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is pretty well understood and it is known how to obtain
the secret key rates in a QKD scheme assisted by a single
memory station, even including experimental imperfections
[29–31,45], including memory cutoffs [29,31,35,41], and for
general, probabilistic entanglement swappping [35]. First
experimental demonstrations of memory-enhanced quantum
communication are also based on this simplest repeater setting
[27]. In such a small quantum repeater, there is only a single
Bell measurement on the spin memories at the central station,
and so the entanglement swapping “strategy” is clear. Later
we will briefly discuss the two-segment case as a special case
of our more general rate analysis treatment, easily deriving
the statistical properties of the two basic random repeater
variables, the total waiting and dephasing times, and obtaining
the optimal scheme [29,45].

The smallest, two-segment quantum repeater also serves as
a basic building block for general, larger quantum repeaters.
In the scheme of Fig. 1, each segment distributes an entangled
pair of (mostly) stationary qubits by connecting its end nodes
through flying qubits. The goal is to share entanglement be-
tween the two qubits at the end nodes of the whole repeater.
The specific entanglement distribution scheme in each seg-
ment depends on the repeater protocol and it may involve
memory nodes sending or receiving photons [29].

In the notation of Fig. 1, from an entangled state �̂12 of
qubits 1 and 2 and an entangled state �̂34 of qubits 3 and 4, we
create an entangled state �̂14 of qubits 1 and 4. The states �̂12

and �̂34 subject to the Bell measurement for the entanglement
swapping operation are those quantum states present in the
segments at the moment when the swapping is performed. If,
for example, segment 1 generates an entangled state earlier
than segment 2, then �̂12 enters the swapping step in the form
of the initially, distributed state (which is not necessarily a
pure maximally entangled state) after it was subject to mem-
ory dephasing while waiting for segment 2. Thus our physical
model includes state imperfections that originate from the
initial distribution as well as from the storage time, as we shall
discuss in detail below. In addition, we will include an error
parameter for the swapping gate itself.

A. Raw rate

The entanglement distribution in an elementary segment
is typically not a deterministic process and several attempts
are necessary to successfully share an entangled pair of qubits
among two neighboring stations. If the probability of suc-
cessful generation in each attempt is p, then the number of
time steps until success is a geometrically distributed random
variable N with success parameter p. We denote the fail-
ure probability as q = 1 − p. The parameter p is primarily
given by the probability that a photonic qubit is success-
fully transmitted via a fiber channel of length L0 connecting
two stations, exp(−L0/22 km). It also includes local state
preparation/detection, fiber coupling, frequency conversion,
and memory “write-in” efficiencies. The random variables for
different segments (in Fig. 1 denoted as N1 and N2 for the
first and the second segment, respectively) are independent
and identically distributed geometric random variables. Only
when both segments have generated an entangled state, we
perform a swapping operation on the adjacent ends (nodes 2

and 3) of the segments and, when successful, we will be left
with an entangled state of qubits 1 and 4.

In general, the swapping operation is also nondetermin-
istic, but here we consider only the case of deterministic
swapping. Under this simple assumption, we can still cover
a large class of physically relevant and realistic repeater
schemes and obtain exact and optimized rates for them. More-
over, especially for larger repeaters (still with no entanglement
distillations), this assumption allows to circumvent the need
for classical communication times longer than the elementary
time τ (as defined below) in order to confirm successful en-
tanglement swapping operations on “higher” repeater levels
beyond the initial distributions in each segment. Physically,
this assumption requires that in our schemes the Bell mea-
surements for entanglement swapping (including the memory
“read-out” operations) can be performed deterministically.
Nonetheless, the swapping operations can still be imperfect,
introducing errors in the states, as will be described below.

Due to the nondeterministic nature of the initial en-
tanglement generation, the whole process of entanglement
distribution is also nondeterministic and fully described by
the number of attempts up to and including the successful
distribution (so, this number is always larger than zero). The
real, wall-clock time needed for entanglement generation or
distribution can be obtained from the number of attempts
by multiplying it with an elementary time unit, typically
τ = L0/c f , where again L0 is the length of the segment and
c f = c/nr is the speed of light in the optical fiber (c is the
speed of light in vacuum and nr is the index of refraction of
the fiber, and depending on the specific distribution protocol
there may be an extra factor 2). The elementary time unit is
actually composed of the classical (and quantum) signaling
time per segment τ and the local processing time. However,
for typical L0 values as considered here, the former largely
dominates over the latter, and so we may neglect the local
times, as they would hardly change the final secret key rates
[29].

If one of the two segments generates entanglement earlier
than the other, then the created state must be kept in memory.
The exact technique employed to implement this quantum
memory is irrelevant for our analysis. The simplest model as-
sumes that the state can be kept in memory for arbitrarily long.
A useful assumption in the realistic setting with imperfect
quantum memories is to set a certain limit of m time units on
the memory storage time, thus restarting the creation process
whenever this threshold is reached.

B. Errors

When the quantum repeater is employed for long-range
QKD, errors will become manifest in terms of a reduced
secret key fraction, as introduced in the subsequent section.
In order to compute this secret key fraction, we need to know
the finally distributed state (density operator) of the complete
repeater system, and for this we require a more detailed phys-
ical model. We shall establish a relation between the finally
distributed state as a function of the initial states in each
segment and various errors that appear in the process of en-
tanglement distribution. The physical model is rather common
and has been used before in several works, both analytical and
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numerical. Especially, a two-segment quantum repeater can be
treated analytically based on simple Pauli errors representing
memory dephasing and gate (Bell measurement) errors.

We address the effect of imperfect quantum storage at a
memory node via a dephasing model where the stored quan-
tum state is waiting for an adjacent segment to successfully
generate or distribute entanglement. This kind of memory
error can be modelled by a one-qubit dephasing channel,

�λ(�̂) = (1 − λ)�̂ + λZ�̂Z, (1)

where Z is a qubit Pauli phase flip operator. We assume that
0 � λ < 1/2, and any such number can be represented as λ =
(1 − e−α )/2 for some α > 0. We denote the map in Eq. (1)
also as �α . To avoid confusion, throughout this work we use
the following definition:

�α (�̂) = 1 + e−α

2
�̂ + 1 − e−α

2
Z�̂Z. (2)

The definition for a dephasing two-qubit channel is obtained
from Eqs. (1) and (2) by the replacement Z → Z ⊗ I if the
dephasing acts on the first qubit and by Z → I ⊗ Z if the
dephasing acts on the second qubit.

Errors may also occur when a Bell state measurement is
performed. This kind of errors is modelled by a two-qubit
depolarizing channel,

�̃μ(�̂) = μ�̂ + (1 − μ)
1̂

4
. (3)

We do not consider dark counts of the detectors, since the op-
tical propagation distances L0 after which a detection attempt
takes place remain sufficiently small in any quantum relay or
repeater. Thanks to recent technological developments typical
dark count rates can be reduced far below 1 dark count per
second. In Ref. [47], they were shown to be in the range of
mHz. Dark counts of such a low frequency have no significant
impact on the secret key rate in our schemes.

Let us now apply this to the case of a two-segment quantum
repeater. The Bell measurement of qubits 2 and 3 produces
from a pair of states �̂12 and �̂34 a state �̂14, see Fig. 1. The
initial state �̂1234 = �̂12 ⊗ �̂34 of all four qubits 1, 2, 3, and 4
is the product of the states of qubits 1, 2 and qubits 3, 4. After
the measurement the state �̂14 of qubits 1 and 4 becomes

�̂14 ≡ S (�̂1234) = Tr23(P̂23�̃μ,23(�̂1234)P̂23)

Tr(P̂23�̃μ,23(�̂1234)P̂23)
, (4)

where μ describes the imperfection of the measurement and
P̂23 = |�+〉23〈�+| is one of the four measurement operators
in the two-qubit Bell state basis of the central subsystem
(qubits 2 and 3), {|	±〉23〈	±|, |�±〉23〈�±|}, where |	±〉 =
(|00〉 ± |11〉)/

√
2, |�±〉 = (|10〉 ± |01〉)/

√
2, for qubits de-

fined via the two Z eigenstates |0〉, |1〉 (for any one of the
other three Bell measurement outcomes, the analysis below is
similarly applicable). In this case, Eq. (4) reduces to

�̂14 ≡ S (�̂1234) = 23〈�+|�̃μ,23(�̂1234)|�+〉23

Tr(23〈�+|�̃μ,23(�̂1234)|�+〉23)
. (5)

A simple way to compute the right-hand side of this relation
for an arbitrary density operator �̂1234 is given in Appendix B.

In general, states of the form

�̂0 = �̃μ0 (F0|�+〉〈�+| + (1 − F0)|�−〉〈�−|) (6)

play an important role in the full theory presented below. It is
easy to verify that

(I ⊗ Z )�̂0(I ⊗ Z ) = (Z ⊗ I )�̂0(Z ⊗ I ), (7)

so it does not matter whether �α acts on the first or second
qubit of �̂0 and either application we simply denote as �α (�̂0).
An easily checkable relation is

�α (�̂0) = �̃μ0 (F |�+〉〈�+| + (1 − F )|�−〉〈�−|), (8)

where the new parameter F is expressed in terms of the
original one, F0, as

F = 1
2 (2F0 − 1)e−α + 1

2 . (9)

The initial fidelity parameter F0 (describing an initial
dephasing of the distributed states) combined with the μ0-
dependent initial depolarization are both included in the initial
ρ̂0 in Eq. (6), because later this will allow for an elegant
recursive state relation for larger repeaters. It will also allow
to switch between different initial physical errors depending
on the specific repeater realization. In general, the maps in
Eq. (2) satisfy the relation �α ◦ �β = �α+β . In particular, we
have �α ◦ . . . ◦ �α = �kα , where �α is used k times on the
left-hand side. So, applying �α to the state �̂0 given by Eq. (6)
several times, we have to multiply α in Eq. (9) by this number
of times.

In a two-segment quantum repeater, if we start with the
distributed states �̂12 and �̂34 of the special form [similar to
Eq. (6)]

�̂12 = �̃μ1 (F1|�+〉12〈�+| + (1 − F1)|�−〉12〈�−|),
�̂34 = �̃μ2 (F2|�+〉34〈�+| + (1 − F2)|�−〉34〈�−|), (10)

then the “swapped,” finally distributed state �̂14, given by
Eq. (5), is also of the same form

�̂14 = �̃μd (Fd |�+〉14〈�+| + (1 − Fd )|�−〉14〈�−|), (11)

where μd = μμ1μ2 and Fd reads as

Fd = 1
2 (2F1 − 1)(2F2 − 1) + 1

2 . (12)

We see that the form of the state is preserved by the total
distribution procedure of a two-segment repeater. The same
conclusion will be applicable to larger repeaters as well—if
all segments start in a state of the form given by Eq. (6), then
the finally distributed state will also be of the same form.

For the two-segment repeater, let us now assume that
both segments generate the same state as in Eq. (6), but
not necessarily simultaneously, and so generally only after
some waiting time we perform the entanglement swapping
and distribute entanglement over the two segments. If the
first segment generates entanglement after N1 time units, and
the second segment after N2 time units, and we perform the
entanglement swapping after N time units, with N � N1, N2,
then the states �̂12 and �̂34 prior to swapping will be of the
form in Eq. (10) with μ1 = μ2 = μ0 and

F1 = 1
2 (2F0 − 1)e−(N−N1 )α + 1

2 ,

F2 = 1
2 (2F0 − 1)e−(N−N2 )α + 1

2 . (13)
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The final, distributed state is then given by Eq. (11) where,
according to Eq. (12), the parameters are μd = μμ2

0 and

Fd = 1
2 (2F0 − 1)2e−(2N−N1−N2 )α + 1

2 . (14)

This distributed state is subject to less dephasing when we
swap as early as possible, thus N = max(N1, N2), so the inte-
ger term in front of α is equal to 2 max(N1, N2) − N1 − N2 =
|N1 − N2|. The precise physical meaning of α will be dis-
cussed later when we calculate the memory-assisted secret key
rates in a quantum repeater. Here we omitted explicit factors
depending on the number of memory qubits that are subject to
dephasing in a single repeater segment (in our model this will
be one or, typically, two corresponding to one distributed spin
pair). These factors can be absorbed into α.

III. METHODS AND FIGURE OF MERIT

Before we move to the more general case of more than
two segments and more than just one middle station, we need
some general methods and tools from statistics. This will
enable us to derive an analytic, statistical model for larger
quantum repeaters beyond one middle station (the physical
model remains basically the same as for the elementary two-
segment quantum repeater) and to calculate average values or
moments of two random variables: the total repeater waiting
time Kn and the total (i.e., the totally accumulated) memory
dephasing time Dn. As a quantitative figure of merit, it is
useful to consider the secret key rate of QKD, as it combines
in a single quantity the two typically competing effects in a
quantum repeater system: the speed at which quantum states
can be distributed over the entire communication distance and
the quality of the totally distributed quantum states. These
two effects are naturally related to the above-mentioned two
random variables. For our purposes here, throughout we shall
rely on asymptotic expressions for the secret key rate omitting
effects of finite key lengths. Of course, alternatively, one could
also treat the total state distribution efficiencies and qualities
(fidelities) separately and individually, and then also consider
quantum repeater applications beyond long-range QKD.

A. Probability generating function

The method of probability generating functions (PGFs)
plays an important role in our treatment of statistical proper-
ties of quantum repeaters. For any random variable X , taking
integer non-negative values its PGF GX (t ) is defined via

GX (t ) = E[tX ] =
+∞∑
k=0

P(X = k)t k . (15)

The series on the right-hand side converges at least for all
complex values of t such that |t | � 1. The PGF contains all
statistical information about X , which can be easily extracted
if an explicit expression for GX (t ) is known. For example, the
average value of X , E[X ] ≡ X , and its variance V[X ] ≡ σ 2

X =
E[(X − X )2], are expressed as follows:

E(X ) = G′
X (1),

V(X ) = G′′
X (1) + G′

X (1) − G′2
X (1). (16)

For any α � 0 the random variable e−αX has a finite average
value, which can be computed as

E[e−αX ] = GX (e−α ). (17)

Note that for this random variable, besides the mean or aver-
age value, any statistical moment can be easily obtained and
the kth-moment simply becomes E[e−αkX ] = GX (e−kα ). Two
kinds of random variables appear in our model of quantum
repeaters where one is related to the raw rate and the other
to the secret key fraction of QKD as introduced below. It
is not always possible to get a compact expression for the
PGF of these random variables explicitly, but when it is, we
use the equations above to obtain statistical properties of the
corresponding random variables.

B. Secret key rate

The main figure of merit in our study is the quantum
repeater secret key rate, which can be defined as the product
of two quantities,

S = Rr, (18)

where R is the raw rate and r is the secret key fraction. The
raw rate is simply the inverse average waiting time,

R = 1

T
, (19)

where T = E[K] is the average number of steps K needed
to successfully distribute one entangled qubit pair over the
entire communication distance between Alice and Bob (giving
an average time duration in seconds when multiplied with
an appropriate time unit τ ). The secret key fraction of the
BB84 QKD protocol [5,6], assuming one-way postprocessing,
is given by

r = 1 − h(ex ) − h(ez ), (20)

where ex and ez are the quantum bit error rates (QBERs),

ez = 〈00|�̂n|00〉 + 〈11|�̂n|11〉,
ex = 〈+ − |�̂n| + −〉 + 〈− + |�̂n| − +〉, (21)

and h(p) is the binary entropy function,

h(p) = −p log2(p) − (1 − p) log2(1 − p). (22)

The QBERs ex and ez in Eq. (21) are obtainable from the
final, distributed state �̂n of an n-segment quantum repeater,
which in our case will depend on the dephasing random vari-
able, and so we have to insert average values in Eq. (20)
as indicated by the bars. We thus need a complete model
of quantum repeaters to compute the statistical properties of
the relevant random variables associated with the number of
steps to distribute entanglement or the density operator of
the distributed state. Given such a model, the aim of our
work is to compute and analyze secret key rates of quantum
repeaters with an increasing size, up to eight segments, con-
sidering and optimizing different distribution and swapping
schemes. Besides the most common BB84 QKD protocol,
alternatively, we may also consider the six-state protocol [48]
which would slightly improve the secret key rate. Assuming
again one-way postprocessing, the secret key fraction r of the
six-state protocol is given by 1 − H (λ) [[4], App. A] where
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H (·) is the Shannon entropy and the vector λ must contain
the corresponding weights of the four Bell states in the final
density operator �̂n. Throughout this work all secret key rates
are calculated from their asymptotic expressions and hence ef-
fects of finite key lengths are not included here. This simplifies
the analytical treatment of a quantum repeater chain, which,
as we will see, quickly becomes rather complex for a growing
number of stations, involving many distinct choices and strate-
gies for the entanglement manipulations. Moreover, our rate
analysis shall also be useful to assess and compare the perfor-
mances of different quantum repeaters in applications beyond
QKD.

IV. QUANTUM REPEATERS BEYOND
ONE MIDDLE STATION

Larger repeaters with more than two segments and one
middle station can now be modeled in a way similar to the
two-segment case discussed above. However, the extended,
more general case is also more complex and there are both dif-
ferent ways to perform the initial entanglement distributions
in all elementary segments and different ways to connect the
successfully distributed segments via entanglement swapping.
For the initial distributions, we make a distinction between
sequential and parallel schemes, where the former refers to a
scheme in which, according to a predetermined order, the dis-
tributions are attempted step by step starting from e.g., the first
segment. In a parallel scheme, the distributions are attempted
simultaneously in all segments, which obviously leads to a
smaller total repeater waiting time than for the sequential dis-
tribution schemes. Nonetheless, since the sequential schemes
do make use of the quantum memories, they do already offer
the repeaterlike scaling advantage over point-to-point quan-
tum communication links. Even for a two-segment quantum
repeater, we may choose a sequential scheme, where we
first only distribute e.g., the left segment and only once we
succeeded there we attempt to distribute the right segment.
Experimentally, this can be of relevance for those realizations
where only a single short-term quantum memory is available
at every station for the light-matter interface and another
quantum memory for the longer-term storage (e.g., respec-
tively, an electronic and a nuclear spin in color-center-based
repeater nodes) [40,49]. Theoretically and conceptually, there
are at least two advantages of a (fully) sequential distribution
approach [45].

First, the two basic random variables of a quantum repeater
are very simple and so the secret key rates are fairly easy to
calculate. Second, always only at most one entangled qubit
pair (or even only a single spin if, e.g., Alice measures her
qubit immediately) may be subject to memory dephasing dur-
ing all distribution steps. For the entanglement connections
via entanglement swapping, the two-segment case is special,
as there is only one swapping to be performed at the end when
pairs in both segments are available. However, already with
three segments and two repeater stations there is no unique
swapping order anymore, and we may either fix the order or
“dynamically” choose where we swap as soon as swapping
is possible for two neighboring, successfully distributed seg-
ments. In a fixed scheme, two neighboring segments, though
ready, may have to wait before being connected. Thus the

choice of the entanglement swapping scheme has a significant
impact on the totally accumulated dephasing time. In a worst-
case scenario, we could wait until all segments have been
distributed and then do all the entanglement connections at
the very end; for deterministic entanglement swapping, like
in our model, this would not affect the raw waiting times,
but it would lead to a maximal total dephasing. In this case,
a sequential distribution where entanglement swapping takes
place immediately when a new, successfully bridged seg-
ment is available can lead to a higher secret key rate than
a combination of parallel distribution and swapping at the
end (where the rates of the latter scheme may still only be
obtainable approximately) [45]. The crucial innovation in our
analytical treatment here is that we will be able to obtain the
exact secret key rates for schemes that combine fast, parallel
distributions with fast, immediate swappings (and hence a
suppressed level of parallel storage). In other words, among
all parallel-distribution schemes we will calculate the exact
rates that are optimized with regards to the total repeater
dephasing.

A. Waiting times

The average total waiting times in a quantum repeater or
even the full statistics of the waiting-time random variable
can be, in principle, obtained via the Markov chain formalism,
even when the swapping is probabilistic [35,36]. More gener-
ally, the PGFs as introduced earlier contain the full statistical
information, and for deterministic swapping, we can obtain
the PGF of Kn through combinatorics. In order to minimize the
total waiting time, the distributions should occur in parallel.
However, there is no unique way to perform the entanglement
swapping, and so let us briefly consider this aspect in the
context of the waiting times. For example, for a four-segment
repeater, two possible swapping strategies are shown in Figs. 2
and 3. Both schemes are for a fixed swapping order, while
we may distribute the individual segments in parallel. In the
first scheme, typically referred to as “doubling”, we swap
the two halves of the repeater independently and only when
both are ready, we swap them too. In the second scheme,
we swap the segments one after the other starting in one of
the repeater’s ends (here the left end); we may refer to this
scheme as “iterative” swapping. Other schemes are possible,
and the more segments the repeater has, the more possibilities
for performing swappings there are. The raw rate of a repeater
is characterized by the number of steps, Kn, needed to success-
fully distribute an entangled pair, and this random variable can
be expressed in terms of the geometric random variables Ni

associated with each segment. For example, for the swapping
schemes shown in Figs. 2 and 3, when combined with parallel
distributions, we have K4 = max(N1, N2, N3, N4), so the two
schemes have the same raw rate. In general, the waiting times
of all such schemes that distribute in parallel are of a similar
form. Those schemes that we later classify as “optimal” in
terms of the whole secret key rate are assumed to be par-
allel distribution schemes. Conversely, combining iterative
swapping with sequential distribution can lead to a reduced
accumulated dephasing time at the expense of an increased
total repeater waiting time. We shall discuss the accumulated
dephasing times next.
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FIG. 2. “Doubling” swapping scheme for a four-segment quantum repeater. This is the most common swapping strategy which allows
to systematically include entanglement distillation at each repeater “nesting level.” Without extra distillation, however, “doubling” is never
optimal: combined with fast, parallel distributions it exhibits increased parallel storage times and hence memory dephasing (while combined
with sequential distributions the repeater waiting times become suboptimal). Memory cutoff parameters are omitted in the illustration.

B. Dephasing times

In order to treat the total dephasing time in a quantum
repeater with more than two segments, we have to general-
ize the methods and the model that led to the result for the
distributed state for two segments, Eqs. (11) and (12), and the
discussion below, to larger repeaters with, in pinciple, an arbi-
trary number of segments n. In fact, we did the two-segment
derivations in such a way that an n-segment extension is now
straightforward. We obtain the following expression for the
final, distributed state in the general case:

�̂n = �̃μn

[
1 + (2F0 − 1)ne−αDn

2
|�+〉〈�+|

+ 1 − (2F0 − 1)ne−αDn

2
|�−〉〈�−|

]
, (23)

where μn = μn−1μn
0 and Dn = Dn(N1, . . . , Nn) is a random

variable describing the total number of time units that con-
tribute to the total dephasing in the final output state. For
n = 2, the expression for D2(N1, N2) = |N1 − N2| has been
obtained before, for larger n the value of Dn now depends on
the swapping scheme. As before, we omitted explicit factors

depending on the number of memory qubits that are subject
to dephasing in a single repeater segment (one or two spins
in our model) which also depends on the application and the
specific execution of the protocol. Such factors can always be
absorbed into α. The precise physical meaning of α will be
discussed later when we calculate the memory-assisted secret
key rates in a quantum repeater. The QBERs for the state in
Eq. (23) are easy to compute,

ez = 1
2

(
1 − μn−1μn

0

)
,

ex = 1
2

(
1 − μn−1μn

0(2F0 − 1)ne−αDn
)
. (24)

For one of the averages, we have ez = ez, and in order to ob-
tain the other average ex we need to calculate the expectation
value E[e−αDn ]. This average can be obtained with the help of
Eq. (17) if we know the PGF of Dn. Again, in principle, we
can get the full statistics of Dn (and functions of it) from this
PGF. More specifically, according to Eq. (17), for the random
variable e−αDn we can easily obtain all statistical moments of
order k, E[e−αDnk]. This may be useful for a rate analysis that
includes keys of a finite length, though here in this work we
shall focus on asymptotic keys. The PGF of Dn, however,
is generally harder to obtain than that of Kn. For example,

FIG. 3. “Iterative” swapping scheme for a four-segment quantum repeater. The swapping operations are performed step by step (here from
left to right). Also this scheme, when executed with parallel distributions in each segment, leads to an increase of the total dephasing. However,
if combined with sequential distributions, the accumulated dephasing times can be reduced (with always at most one spin or spin pair being
subject to a long dephasing) at the expense of a growing repeater waiting time. Memory cutoff parameters are omitted in the illustration.
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the PGF of Dn is not obtainable via the absorption time of
a Markov chain (unlike that of Kn, which is obtainable even
when the entanglement swapping is probabilistic) [35,36].
Nonetheless, at least without considering the more compli-
cated case including a memory cutoff, we can calculate the
relevant PGF of Dn by analyzing all permutations of the basic
variables (there are also other, more elegant, but still not so
efficient and well scalable methods to treat the statistics of
Dn, e.g., based on algebraic geometry).

We see that in order to compute the secret key rate of a
quantum repeater we need to study the two integer-valued
random variables Kn and Dn. The former describes the num-
ber of steps to successfully distribute entanglement and is
responsible for the repeater’s raw rate. The latter describes
the quality of the final state and strongly depends on the
swapping scheme. For example, for a four-segment repeater
with a predetermined swapping order like the iterative scheme
in Fig. 3, we could actually also choose to adapt the initial
entanglement distributions to the swapping strategy and hence
wait with every subsequent distribution step until the corre-
sponding connection from the left has been performed. Since
this is no longer the parallel distribution (it is the “sequential”
distribution), we would obtain an increased total waiting time.
However, the accumulated dephasing time may be reduced
this way, as we discuss in the next section.

In general, we may also consider schemes with a memory
cutoff, where we put a certain restriction of m time units on
the maximum time a qubit can be kept in memory. So, in
this case, we study four variables—the total number of dis-
tribution steps and the total dephasing, both with and without
cutoff. In order to maximize the secret key rate we need a
scheme with small E[Kn] and large E[e−αDn ]. In the following
sections, we will introduce different schemes for performing
the entanglement swapping and, where possible, compute the
PGFs of the corresponding random variables. The PGF of
Kn is denoted as Gn(t ) and that of Dn as G̃n(t ). For the
corresponding quantities with cutoff m, we use the superscript
[m], e.g., K [m]

n . We will see and argue that there are three
basic properties that a quantum repeater protocol (unassisted
by additional quantum error detection or correction) should
exhibit: distribute the entangled states in each segment in par-
allel, swap the initially distributed states as soon as possible,
and avoid parallel storage of already distributed pairs as much
as possible. Obviously, all these three “rules” cannot be fully
obeyed at the same time. In particular, parallel distribution
will ultimately lead to some degree of parallel storage.

C. Sequential distribution schemes

In what we refer to as a sequential entanglement dis-
tribution scheme, the initial, individual pairs are no longer
distributed in parallel but strictly sequentially according to a
predetermined order. If this order is chosen in a suitable way,
it is possible that at any time during the repeater protocol at
most one entangled pair is subject to dephasing (apart from
small constant dephasing units for single attempts), because
once a new pair is available an entanglement connection can
be immediately performed and only then another new segment
starts distributing. This may lead to a reduced accumulated
dephasing time. Moreover, from a secret key rate analysis

point of view, an appropriate sequential scheme can allow for
a straightforward calculation of the statistics of both random
variables, the total waiting and the accumulated dephasing
times, even when a memory cutoff is included.

Let us consider a simple, sequential distribution and swap-
ping scheme where the above discussion applies and the secret
key rate can be computed exactly by means of elementary
combinatorics. In this scheme, we start by distributing entan-
glement in segment 1 (most left segment), and only after a
success we start to attempt distributions in segment 2. As soon
as we succeed there too, we immediately swap segments 1 and
2 and start to distribute entanglement in segment 3. As soon
as we succeed with the distribution in segment 3, we swap
segment 3 with the first two, already connected segments, start
distributing in segment 4, and so on, repeating this process
until entanglement has also been distributed in the most right
segment followed by a final entanglement swapping step. This
scheme, for n = 4, is also illustrated by Fig. 3. The variables
Kn and Dn for this scheme and general n are thus defined as

K seq
n = N1 + · · · + Nn, Dseq

n = N2 + · · · + Nn. (25)

The PGFs of these random variables are just powers of the
PGF of the geometric distribution:

Gseq
n (t ) =

(
pt

1 − qt

)n

, G̃seq
n (t ) =

(
pt

1 − qt

)n−1

. (26)

In Appendix C, we derive the following expressions for the
PGFs of the random variables with memory cutoff. We as-
sume an accumulated, global cutoff where the total storage
(dephasing) time across all segments must not exceed the
value m. The PGF of K [m]

n is given by

G[m]
n (t ) = pntn

∑m−n+1
j=0

( j+n−2
n−2

)
q jt j

1 − qt − p
∑n−2

i=0

(m
i

)
piqm−itm+1

, (27)

and the PGF of D[m]
n becomes

G̃[m]
n (t ) = t n−1 ∑m−n+1

j=0

( j+n−2
n−2

)
q jt j∑m−n+1

i=0

( m
i+n−1

)
piqm−n+1−i

. (28)

Because it takes at least one time step for each segment to suc-
ceed, we have the inequalities n � K [m]

n and n − 1 � D[m]
n �

m, which agree with the PGFs of these quantities presented
above. Moreover, for m → +∞, we have

G[+∞]
n (t ) = Gseq

n (t ), G̃[+∞]
n (t ) = G̃seq

n (t ). (29)

These relations are easy to prove, just note that

m−n+1∑
i=0

(
m

i + n − 1

)
piqm−n+1−i = 1

pn−1

[
1 −

n−2∑
i=0

(
m

i

)
piqm−i

]
.

(30)

The binomial coefficient
(m

i

)
is polynomial in m of ith degree,

and thus
(m

i

)
qm → 0 when m → +∞ for all i = 0, . . . , n − 2,

which proves the relations of Eq. (29).
There are also variations of the above sequential cutoff

scheme. In the previous scheme we only abort a round when
we already waited m time units. Now consider the case where
we already waited m/2 time units, but only a small number of
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segments succeeded. Hence, it is highly unlikely that we will
succeed in all segments within the m time steps. Therefore
it is better not to waste time and already abort the current
round to start from scratch. A very simple strategy following
this idea makes use of an individual (local) cutoff in each
segment. However, it is beneficial to use a different cutoff
in every segment; one should choose a smaller cutoff in the
first segments and then increase the cutoff for later segments.
The rationale behind this is that in the first segments we have
not invested much effort and can discard rather aggressively,
whereas later we should discard less aggressively since we
already consumed lots of resources.

The advanced protocol is uniquely defined by a vector of
cutoffs m = (m1, . . . , mn−1) and the random variables Kn and
Dn for this protocol and general n are given by

K seq,m
n = Ñ (mn−1 ) + (Tn−1 − 1)mn−1 +

Tn−1∑
j=1

K seq,m
n−1, j , (31)

where K seq,m
1 is geometrically distributed with parameter p,

Ñ (mn−1 ) follows a truncated geometric distribution with cutoff
mn−1, and Tn−1 is a geometric random variable with parameter
(1 − qmn−1 ) describing the number of starts of the protocol. For
the dephasing we have

Dseq,m
n = Ñm1 + · · · + Ñmn−1 . (32)

The PGF of K seq,m
n is given recursively by (see Ap-

pendix C)

G[m]
n (t ) = G[mn−1]

2 (t )t−mn−1 P(mn−1 )
(
G[m]

n−1(t )tmn−1
)
, (33)

where P(m)(t ) = (1−qm )t
1−qmt and G[m]

1 = Gseq
1 . The PGF of Dseq,m

n

is simply given by

G̃[m]
n (t ) =

n−1∏
j=1

G̃
[mj ]
2 (t ), (34)

since the sum of independent random variables translates to
a product for PGFs. As the state quality only depends on the
total dephasing time, the best sequential protocol would count
the total number of storage steps and discard based on a cutoff
as a function of the number of already succeeded segments,
and one may also employ an early aggressive discarding.

D. Parallel distribution schemes

A more efficient class of schemes is constructed when we
do not wait for some segments to finish before we start others.
In these schemes, we start all segments independently and
distribute in parallel. It follows that for these schemes without
a cutoff, we have

Kpar
n = max(N1, . . . , Nn), (35)

i.e., all such schemes give the same raw rate. In Appendix A,
we derive the following expressions for the PGF of Kn:

Gpar
n (t ) = t

n∑
i=1

(−1)i+1

(
n

i

)
1 − qi

1 − qit

= 1 + (1 − t )
n∑

i=1

(−1)i

(
n

i

)
1

1 − qit
. (36)

The two expressions are identical, since their difference re-
duces to (1 − 1)n = 0. From the first expression, it is clear
that the values of Kn start at 1, as it must be, because it
takes at least one time unit to distribute entanglement. In the
other expression, the necessary property of all PGFs becomes
manifest, Gn(1) = 1. From the first relation of Eqs. (16), we
get the well-known expression for the average waiting time of
a quantum repeater with parallel distribution and deterministic
entanglement swapping (at any time possible, e.g., at the very
end)

Kpar
n = d

dt
Gpar

n (t )
∣∣∣
t=1

=
n∑

i=1

(−1)i+1

(
n

i

)
1

1 − qi
, (37)

previously obtained in Ref. [50] (not including the full prob-
ability distribution). All other relevant expressions, the total
number of distribution steps including memory cutoff as well
as the finally distributed quantum state including memory
imperfections, both for the model with and without memory
cutoff, depend on the particular swapping strategy chosen
(e.g., unnecessarily postponing some or even all entanglement
swapping steps until the very end maximizes the amount
of parallel storage and hence the total dephasing in the fi-
nal state). For this, there is a growing number of choices
for larger repeaters, and in the following we shall derive
an optimal swapping scheme that results in a minimal to-
tal dephasing time (while sharing the high raw rates, i.e.,
the minimal total waiting times, with all parallel distribution
schemes).

1. Optimal swapping scheme

Because all schemes (without a cutoff) considered in this
section have equal raw rates, the best secret key rate is de-
termined by the optimal scheme with regards to the secret
key fraction. In this section, we shall present this scheme.
In contrast to the schemes presented in Figs. 2 and 3, which
are fixed, the optimal swapping scheme is dynamic. In a fixed
scheme the order of swappings is fixed at the beginning and
does not depend on the order in which the segments become
ready. For example, for the “doubling” scheme as shown in
Fig. 2 for n = 4, we never swap segments 2 and 3, even if
they are ready and segments 1 and 4 are not. We always wait
for segments 1 and 2 or segments 3 and 4 to become ready,
swap these pairs, and then swap the larger segments to finish
the entanglement distribution over the whole repeater. In a
dynamical scheme, we do not follow a prescribed order and
can swap the segments based on their state. Of course, we
can freely mix and match fixed and dynamic behaviors. For
example, for n = 8, we can first swap four pairs of segments
in a fixed way and then swap the four new, larger segments
dynamically. We now show that the fully dynamic scheme,
where we always swap the segments that are ready, is the
optimal one.

To prove this we give two characterizations of this fully
dynamic scheme. One is the straightforward translation of the
description to the definition, but this definition is not explicitly
optimal. The other one is optimal by construction, but is not
fully dynamic explicitly. We then show that the two construc-
tions coincide demonstrating the validity of our statement.
Swapping an earliest pair of segments means that we choose
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an index i for which max(Ni, Ni+1) is minimal (there can be
several such indices), swap the pair of segments i and i + 1,
and recursively apply this procedure to the other segments (if

there are several such pairs, choose one of them arbitrarily).
If we denote the dephasing random variable of this scheme as
D̃n, its formal definition reads as

D̃n(N1, . . . , Nn) = ∣∣Ni0 − Ni0+1

∣∣ + D̃n−1
(
N1, . . . , Ni0−1, max

(
Ni0 , Ni0+1

)
, Ni0+2, . . . , Nn

)
, (38)

where i0 = argmini max(Ni, Ni+1). This definition is a greedy, locally optimal scheme, which optimizes only one step. As it is
known from algorithm theory, greedy algorithms do not always produce globally optimal results. By doing only locally optimal
steps, we may miss an opportunity for a much better reward in the future if we make a nonoptimal step now. Fortunately, in this
case the greedy, locally optimal scheme expressed by Eq. (38) does give the globally optimal result, as we show below.

In any scheme, the first step will be to swap a pair of neighboring segments, let us say segments i and i + 1. We do this at the
time moment max(Ni, Ni+1), and the contribution of these segments to the total dephasing is |Ni − Ni+1|. After this swapping, we
are left with n − 1 new segments, one of which is the combination of two original ones. Any initial segment j, where j �= i, i + 1,
generates an entangled state after Nj time units, and the combined segment “generates” entanglement after max(Ni, Ni+1) time
units. If we swap these n − 1 segments in any way in Dn−1 time units, then the total swapping takes Dn = |Ni − Ni+1| + Dn−1

time units. To find the minimal dephasing we simply take the minimum over i = 1, . . . , n − 1 of this expression, and recursively
apply it for the new segments. If we denote the dephasing random variable corresponding to this scheme as D�

n, this description
translates into the following definition:

D�
n(N1, . . . , Nn) = min

i=1,...,n−1
[|Ni − Ni+1| + D�

n−1(N1, . . . , Ni−1, max(Ni, Ni+1), Ni+2, . . . , Nn)]. (39)

The base case of this recursive definition is D�
2(N1, N2) ≡

D2(N1, N2) = |N1 − N2|. This definition by construction gives
the globally minimal number of dephasing time units required
to distribute long-distance entanglement if it takes Ni time
units for segment i to generate entanglement.

We now have two quantities, the locally optimal one, given
by Eq. (38), and the globally optimal one, given by Eq. (39).
The former has semantics of swapping the earliest, but may
not be globally optimal. The latter is optimal by construction,
but does not necessarily correspond to the swapping earliest
strategy. It turns out that the two quantities coincide, at least
for all n = 2, . . . , 8. A straightforward way to check this is
to consider all possible inequality relations between Ni. There
are n! such relations, which correspond to the permutations of
Ni in the following inequality:

N1 � · · · � Nn. (40)

For any given inequality relation between Ni, we can compute
both quantities explicitly in terms of Ni. For example, for the
relation in Eq. (40), both quantities reduce to the same expres-
sion, D̃n = D�

n = Nn − N1. For all other possible relations, we
have

D̃n(N1, . . . , Nn) = D�
n(N1, . . . , Nn), (41)

for all n = 2, . . . , 8. This can be easily verified with the help
of a computer algebra system. Our conjecture is that the
statement is valid for all n � 2, but in this work, we consider
repeaters with up to eight segments only, and for such n we
have verified this statement directly.

In contrast to the sequential scheme introduced earlier,
there is no compact expression for the PGF of the optimal
scheme here. Each case will be considered separately in the
next sections. Where possible, we present explicit expressions
of the PGFs of the quantities in question. The main difficulty
is encountered for those schemes with memory cutoff, and
hence when including a cutoff, even for smaller repeaters
(but n > 2), we only consider the fully sequential scheme,

for which we have got the exact expressions. In the following
sections, we discuss quantum repeaters for n = 2, 3, 4, and
8 segments. Although the case n = 2 is rather well known
and there is no set of different swapping strategies to choose
from in this case, it will be briefly reproduced based on the
formalism introduced in this work. The case n = 3 is interest-
ing, as it represents the simplest, nontrivial case beyond one
middle station, already requiring a choice regarding distribu-
tion and swapping strategies (here, in the main text, the focus
remains on schemes with an optimal dephasing for parallel
distribution; in Appendix E, we discuss the full secret key rate
for n = 3 including all possible distribution schemes). Finally,
the cases n = 4 and n = 8 are chosen, as they allow for a
comparison with “doubling” (see Fig. 2). Larger quantum
repeaters with n > 8 become increasingly difficult to treat (in
terms of the optimized total dephasing). We will later also see
that for n = 8, without additional methods of quantum error
detection or correction, the necessary experimental parameter
values in our model become already highly demanding.

2. Two-segment repeater

This is the simplest kind of a quantum repeater. The PGF
G2(t ) of K2 = max(N1, N2) is given by Eq. (36) with n = 2
and in this case reads as

G2(t ) = p2t (1 + qt )

(1 − qt )(1 − q2t )
. (42)

As we noted before, there is only one choice for the de-
phasing variable, D2 = |N1 − N2| (parallel distribution). In
Appendix D, we derive the following expression for the PGF
of this variable:

G̃2(t ) = p2

1 − q2

1 + qt

1 − qt
. (43)
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There we also show that the PGFs of the variables with cutoffs
are

G[m]
2 (t ) = p2t (1 + qt − 2(qt )m+1)

(1 − qt )(1 − q2t − 2p(qt )m+1)
,

G̃[m]
2 (t ) = p

1 + q − 2qm+1

1 + qt − 2(qt )m+1

1 − qt
. (44)

It is obvious that we have the same consistency relations as
for the sequential distribution scheme:

G[+∞]
2 (t ) = G2(t ), G̃[+∞]

2 (t ) = G̃2(t ). (45)

3. Three-segment repeater

For three segments, there are various ways how to
distribute entanglement. One could use a fully sequential
scheme, start at one end and distribute entanglement in con-
current segments. Alternatively, one could consider schemes
where pairs of segments generate entanglement in parallel and
the remaining segment goes last or, the other way around, it
goes first. There are also combined distribution schemes with
“overlapping” parallel and sequential distributions. Finally,
there are those schemes which attempt to generate entan-
glement in all segments at once and thereby use different
swapping schemes. Among the latter here only the potentially
optimal scheme is of interest, as it minimizes the accumulated
dephasing, while having the same total waiting time as any
other parallel distribution scheme.

However, it could still be the case that a scheme from the
other, slower class of schemes performs better in terms of the
full secret key rate. This is possible, because there is typically
a trade-off between the raw rate and the dephasing or, more
generally, the QBER. In particular, the fully sequential distri-
bution scheme is interesting, since its total dephasing becomes
minimal, as there is basically always only one segment wait-
ing at every time step. On the other hand, for the fully parallel
schemes the raw rate is optimal.

In Appendix E, we present all possible schemes for n = 3
and calculate the PGFs of their total waiting and dephasing
times. Then we use these results to obtain the secret key
rate for each scheme and to compare the different schemes.
We also show in the Appendix that the PGF of the optimal
dephasing random variable, equivalently defined by Eqs. (38)
and (39), reads as

G̃�
3(t ) = p3

1 − q3

1 + (q + 2q2)t − (2q2 + q3)t3 − q4t4

(1 − qt )(1 − q2t )(1 − qt2)
.

(46)
It turns out that with regards to the full secret key rate

the parallel-distribution optimal-dephasing scheme is indeed
optimal in all relevant regimes and especially in the limit of
improving hardware parameters, which can be seen in Figs. 22
and 23 for two different memory coherence times. In the same
section one can also find a more detailed discussion of the
figures. In addition, aiming at the most general treatment of
the n = 3 case, we also consider the scenario where Alice and
Bob measure their qubits immediately, thus suppressing their
memory dephasing, and we apply this to all possible schemes.
The comparison of these “immediate-measurement” schemes
is shown in Figs. 20 and 21, again for two different coherence
times. The conclusion remains the same: overall “optimal” is

optimal. However, note that the option with immediate mea-
surements for Alice and Bob only exists when they operate the
quantum repeater for the purpose of long-range QKD.3 More
advanced quantum repeater applications may require quantum
storage for the qubits at each end (user) node. In any case, the
memory qubits at each intermediate repeater node are (jointly)
measured as soon as possible when the two adjacent segments
are filled with an entangled pair (or even later, depending on
the particular swapping strategy, but in Appendix E, we only
consider swap-as-soon-as-possible schemes that minimize the
dephasing).

The above discussion leads us to the conclusion that there
are three basic properties that a quantum repeater protocol
(unassisted by additional quantum error detection or correc-
tion) should exhibit: distribute the entangled states in each
segment in parallel, swap the initially distributed states as
soon as possible, and avoid parallel storage of already dis-
tributed pairs as much as possible. It is obvious that all these
three “rules” cannot be fully obeyed at the same time. How-
ever, our optimal scheme has the optimal balance with regards
to these rules for three segments. We conjecture that this also
holds true for larger n > 3-segment repeaters.

4. Four-segment repeater

Of particular interest to us is the case of a four-segment
repeater which is commonly operated via “doubling.” Here
we are now able to discuss more general schemes, especially
those that would always swap as soon as possible, unlike
doubling where the second and third segments may not be
immediately connected even when they are both ready. Over-
all there are many more schemes than in the previous n = 3
case, and here for n = 4 we focus on the parallel-distribution
schemes. All these schemes (without cutoff) have identical
K4 = max(N1, N2, N3, N4), whose PGF is given by Eq. (36)
for n = 4. The dephasing variable D4 and its PGF become
different for different schemes. One such scheme, the com-
mon “doubling,” is illustrated in Fig. 2, where we first swap
the pairs of segments 1, 2 and 3, 4 independently and then
swap the two larger segments. Note that the swappings will
typically take place at different moments in time - one pair of
segments will usually swap earlier than the other. The state
of the faster pair that goes into the final swapping operation
is the state of these segments after their connection and at
the moment when the final swapping is done, and so the state
has been subject to a corresponding memory dephasing. For
example, if the swapping of segments 1 and 2 is done first, the
state of the distributed state over segments 1 and 2 just after
the swapping is �̂14 = S (�̂12 ⊗ �̂34). If k time units later seg-
ments 3 and 4 swap, producing the state �̂58 = S (�̂56 ⊗ �̂78),
the former state becomes �kα (�̂14), and the state distributed
over the whole repeater is

�̂18 = S (�kα (S (�̂12 ⊗ �̂34)) ⊗ S (�̂56 ⊗ �̂78)), (47)

3For QKD applications, there is another variation that would indeed
allow to achieve higher secret key rates, namely, when Alice and Bob
send their signals at a high clock rate and the memory stations can
locally decide how to process the arriving qubits [29].
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instead of just �̂18 = S (S (�̂12 ⊗ �̂34) ⊗ S (�̂56 ⊗ �̂78)).
Again, as before, we omitted any extra factors that depend
on the number of spins subject to dephasing in a single
repeater segment. So, Fig. 2 shows just a workflow of
swapping operations, while the exact expressions should be
adjusted according to the respective time differences. The
dephasing variable D4 in this doubling scheme is defined as
follows:

Ddbl
4 = |N1 − N2| + |N3 − N4|

+ | max(N1, N2) − max(N3, N4)|. (48)

The first two terms are due to the possible time difference
for generating entangled states within each pair of segments.
The last term is due to the time difference between the pairs
[e.g., the difference of the two maxima is k time steps in
Eq. (47)]. Note that this particular form of Ddbl

4 is consis-
tent with the commonly used “doubling” where the initial
distributions happen in parallel, but the swapping strategy is
fixed and sometimes disallows to swap as soon as possible.
In Appendix D, we derive the PGF of this random dephasing
variable,

G̃dbl
4 (t ) = p4

1 − q4

Pdbl
4 (q, t )

Qdbl
4 (q, t )

, (49)

where the numerator and denominator are given by

Pdbl
4 (q, t ) = 1 + (q2 + 3q3)t + (3q + 3q2 − q5)t2

− (q3 − q5)t3 + (q3 − 3q6 − 3q7)t4

− (3q5 + q6)t5 − q8t6,

Qdbl
4 (q, t ) = (1 − q2t )(1 − q3t )(1 − qt2)(1 − q2t2).

The dephasing variable corresponding to the iterated
scheme as shown in Fig. 3 differs from that of the doubling
scheme. In the iterative scheme, we first distribute entangle-
ment over segments 1 and 2, then extend it over segment 3,
and finally over segment 4. Note that the figure can be un-
derstood to illustrate both sequential distribution and iterated
swapping. In the sequential distribution scheme, we would
start to generate entanglement in each segment only when all
previous segments (e.g., from left to right) have successfully
generated entanglement. In the iterated swapping scheme, all
segments may start simultaneously (parallel distribution), thus
increasing the chances to swap sooner, but also the number of
qubits potentially stored in parallel. The variable Ditr

4 for this
scheme is

Ditr
4 (N1, N2, N3, N4) = |N1 − N2| + | max(N1, N2) − N3|

+ | max(N1, N2, N3) − N4|.

The PGF of this random variable is rather large and reads as

G̃itr
4 (t ) = p4

1 − q4

Pitr
4 (q, t )

Qitr
4 (q, t )

, (50)

where the numerator and denominator are given by

Pitr
4 (q, t ) = 1 + 3q3t + (4q2 − q4 − 2q5)t2

+ (q − q2 − 3q3 − 6q4 + 2q5 + q6)t3

+ (−2q2 − 5q3 + q4 + 2q5 − q6 − 3q7)t4

+ (−2q2 + 4q4 − 4q6 + 2q8)t5

+ (3q3 + q4 − 2q5 − q6 + 5q7 + 2q8)t6

+ (−q4 − 2q5 + 6q6 + 3q7 + q8 − q9)t7

+ (2q5 + q6 − 4q8)t8 − 3q7t9 − q10t10,

Qitr
4 (q, t ) = (1 − qt )(1 − q2t )(1 − q3t )(1 − qt2)

× (1 − q2t2)(1 − qt3).

We present an example for another, mixed swapping strategy
in Appendix G.

For the dephasing random variable D�
4, corresponding to

the optimal swapping scheme given by Eq. (39) for n = 4, we
derive the following PGF:

G̃�
4(t ) = p4

1 − q4

P�
4 (q, t )

Q�
4(q, t )

, (51)

where the numerator and denominator read as

P�
4 (q, t ) = 1 + (q + 2q2 + 3q3)t + (q + 2q2 + q4)t2

− (3q2 + 4q3 + 4q4)t3 − (4q5 + 4q6 + 3q7)t4

+ (q5 + 2q7 + q8)t5+(3q6 + 2q7 + q8)t6+ q9t7,

Q�
4(q, t ) = (1 − qt )(1 − q2t )(1 − q3t )(1 − qt2)(1 − q2t2).

5. Eight-segment repeater

As before, again all parallel-distribution schemes (with-
out cutoff) have identical total waiting times, K8 =
max(N1, . . . , N8), whose PGF is given by Eq. (36) for n =
8. For the dephasing variable, there are many more possi-
bilities now. We shall consider and compare five different
schemes—the doubling and the optimal schemes, and three
less important schemes, which nevertheless exhibit an in-
teresting behavior. The somewhat less important ones are
described and discussed in Appendix G.

The optimal dephasing D�
8 is defined equivalently by

Eqs. (38) and (39) for n = 8 and the doubling dephasing Ddbl
8

is defined recursively as

Ddbl
8 (N1, . . . , N8) = Ddbl

4 (N1, . . . , N4) + Ddbl
4 (N5, . . . , N8)

+ | max(N1, . . . , N4)

− max(N5, . . . , N8)|, (52)

with Ddbl
4 defined as in Eq. (48). The comparison of the five

different schemes can be found in Appendix G. In this Ap-
pendix, Appendix G, we present some figures showing the
ratios between the average dephasing of the four sub-optimal
schemes and the optimal scheme, with and without exponenti-
ation. We can then compare the relative positions of the curves
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in Fig. 26 with those of the curves of the ratios

E
[
Dsch

8

]
E

[
Dopt

8

] = G̃sch′
8 (1)

G̃opt′
8 (1)

, (53)

which are shown in Fig. 27. Looking at the two figures, we
see that

E
[
Ddbl

8

]
> E

[
D44

8

]
, E

[
e−αDdbl

8
]

< E
[
e−αD44

8
]
. (54)

This behavior is in full agreement with the properties of the
exponential function: if x > y � 0 and α > 0, then e−αx <

e−αy. However, for the other pair of schemes, we have

E
[
D242

8

]
> E

[
D2222

8

]
, E

[
e−αD242

8
]

> E
[
e−αD2222

8
]
. (55)

Nonetheless there is no contradiction here. This is a known
property of nonlinear functions of random variables. This
property can be observed even in the simplest case of ran-
dom variables X and Y each taking two values only. One
can easily construct an example such that E[X ] > E[Y ] and
E[e−αX ] > E[e−αY ]. However, the inequalities (55) show that
it is not necessary to consider artificial constructions. This
property can be observed for simple and natural schemes.

The important conclusion is that the optimal scheme by
construction minimizes E[D], but to have the highest fidelity
of the distributed state we need to maximize E[e−αD]. For an
ordinary nonnegative function f (x) and a positive parameter
α > 0 the minimum of f (x) is the maximum of e−α f (x) and
vice versa, but for random variables, this is not necessarily
true. Strictly speaking, in general, we know only the scheme
that minimizes E[D], but not the scheme that maximizes
E[e−αD]. The two schemes seem to be identical, but there is
no strict proof of this statement. We have to rely on evidence
based on computing the properties of some schemes explicitly
and comparing them. For the examples for n = 8 given in
this section and in the Appendix, we see that dividing the
exponentiated dephasing of all other schemes by that of the
optimal scheme gives a number smaller than one, whereas
the same ratios without exponentiation give a number greater
than one. Thus minimal dephasing corresponds to minimal
dephasing errors, and the optimal dephasing scheme exhibits
the smallest fraction of dephasing errors.

To summarize, our optimization of the secret key rates
obtainable with different distribution and swapping strategies
is based on three steps. First, we can rely upon the proof
of the minimal dephasing variable for up to n = 8 segments
given in Sec. IV D 1 assuming parallel initial distributions (it
is already nontrivial to extend this proof to larger n > 8).
Second, in order to compare the average dephasing errors in
the final density operators, we need to consider the average
dephasing exponentials for the different schemes. Finally, in
order to assess the optimality of the secret key rate over all
possible schemes, we have to take into account also those
schemes where the initial distributions no longer occur in
parallel which generally leads to smaller raw rates, but at
the same time can result in a smaller dephasing by (partially)
avoiding parallel storage. For the first nontrivial case beyond
a single middle station, we have explicitly gone through all
these three steps, namely, for the case of a three-segment re-
peater with two intermediate stations (Appendix E), and found
that “optimal” is optimal. For larger repeaters beyond eight

segments, n > 8, we conjecture that our “optimal” scheme
also gives the best secret key rate. This includes conjecturing
that our minimized dephasing is minimal also for n > 8, that
it minimizes the dephasing errors in the final density operator,
and that overall the dephasing-optimized parallel-distribution
approach is superior to any partially or fully sequential dis-
tribution scheme. Especially the last point cannot be taken
for granted. In Appendix F, we present some rate calcula-
tions for n = 8 where, beyond a certain distance, “optimal”
can be beaten by a sequential scheme. However, there we
allow for immediate measurements at an end node only for
the sequential scheme (for which this is easy to include),
but not for “optimal”; a comparison which is slightly unfair
and also only relevant for QKD applications. In the case
of nonimmediate-measurement schemes including potential
beyond-QKD applications, “optimal” remains optimal.

V. SECRET KEY RATE ANALYSIS

A useful and practically relevant figure of merit for quan-
tifying a quantum repeater’s performance is its secret key rate
in long-range QKD, which determines the amount of secret
key generated in bits per channel use or second. As briefly
reviewed in Sec. III B, the secret key rate consists of two
parts: the raw rate or yield and the secret key fraction. The
former quantifies how long it takes to send a raw quantum
bit or to (effectively) generate entanglement, independent of
the quality of the final state; the latter then determines the
average amount of secret key that can be extracted from a
single raw bit, depending on the particular QKD protocol
chosen and including the corresponding procedures for the
classical postprocessing.

Here we will focus on the asymptotic BB84 secret key
rate S = Rr = r/T with one-way postprocessing. In the most
general scenario of long-range memory-assisted QKD, i.e.,
including a finite swapping probability a and a memory cutoff
parameter m, it is given by

S(p, a, m) = 1 − h(ex(p, a, m)) − h(ez(p, a, m))

T (p, a, m)
, (56)

where h is the binary entropy function, T the average number
of steps needed to successfully distribute long-distance entan-
glement, and ex, ez are the QBERs of Eq. (24). The probability
of successful entanglement generation in a single attempt in
a single elementary segment is p, as introduced in Sec. II A.
The denominator of S, T = E[K], is basically the total raw
waiting time of the repeater which generally depends on p and
a where a is a finite success probability of the entanglement
swapping using the same notation as in Refs. [35,36] (where it
was shown how to compute [35] and optimize [36] T = E[K]
for arbitrary a). The dependency on the cutoff parameter m
means: the smaller m becomes, the longer it takes to dis-
tribute an entangled state. The numerator of S, r, generally
also depends on p, a, and m through the QBERs. Recall that
we have to take the averages here, ez = ez and ex obtainable
via E[e−αDn ]. A smaller m can lead to a higher state quality
with a smaller total dephasing and thus to a larger secret key
fraction r. It is generally hard to optimize S over general p,
a, and m. Our approach here is based on the simplifying (and
experimentally still relevant) assumption a = 1 (deterministic
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entanglement swapping) and the idea that the highest secret
key rates will be obtainable with the fastest schemes (parallel
distributions minimizing the total waiting time) and, among
these, with those that swap entanglement as soon as possible
(minimizing the total dephasing time, see Sec. IV D 1). While
for a two-segment repeater the cases of deterministic and non-
deterministic swapping can be treated similarly, for repeater
chains beyond a single middle station (n > 2) our results
for optimizing distribution and swapping strategies only hold
for the deterministic swapping case. Using the results of all
previous sections, the secret key rate can then be calculated.
Thus, in what follows, we always have a = 1.

The above secret key rate S is expressed in terms of bits
per channel use. For a rate per second, the average total
number of distribution attempts T must by multiplied with the
duration of a single attempt in seconds, i.e., the elementary
time unit τ = L0/c f . Note that a single attempt or channel
use is uniquely defined only for direct channel transmission
in a point-to-point link, whereas the channel in a quantum
repeater is used directly only between neighboring memory
stations. Since our model always assumes that the interfaces
at each station connect a single channel (to the left or to the
right) with a single memory qubit (unit memory “buffer”),
those channel segments that belong to already successfully
distributed pairs remain unused until new attempts in these
segments will be started (e.g., when the memory cutoff has
been exceeded or when a long-distance pair has been finally
created). Nonetheless, at every attempt, we shall always count
a full channel use over the entire distance despite the growing
number of unused channel segments during memory-assisted
long-distance entanglement distribution. Thus, strictly speak-
ing, we underestimate the secret key rate per channel use and
one could continue distributing pairs in all channel segments
provided sufficient memory qubits are available.

The parameter values as given in Table I have been used
to obtain the quantitative results discussed in this section.
Most parameters there have been introduced in the previous
sections in the context of our physical model. The resulting
probability to distribute entanglement over one link in terms
of the parameters of Table I now includes a zero-distance
link-coupling efficiency

p(L0) = plink e− L0
Latt , (57)

with p(0) = plink and where plink = ηc ηd ηp incorporates var-
ious efficiencies of the experimental hardware independent of
the channel transmission itself, especially wavelength conver-
sion, fiber coupling, preparation, and detector efficiencies.

In the context of our statistical and physical model, the
memory coherence time τcoh in Table I, an experimentally
determined parameter that describes the average speed of the
memory dephasing, can be converted into a (dimensionless)
effective coherence time in units of the repeater’s elementary
time unit, τcoh/τ . Equivalently, we can say that the (num-
ber of) dephasing time (steps) Dn is to be multiplied with
an elementary time τ before it can be divided by τcoh in
E[e−Dnτ/τcoh ]. In any case, we absorb both τ and τcoh in our
dimensionless α dephasing parameter,

α(L0) = τ

τcoh
= L0

c f τcoh
. (58)

TABLE I. Experimental parameter values used to calculate se-
cret key rates. The star symbols * allow for various choices. The
exact choices vary for each experimental platform. Some of the “im-
proved values” are the ideal values which allow to consider idealized,
fundamental scenarios such as “channel-loss-only” or “channel-loss-
and-memory-dephasing-only” (for which we may also set plink = 1).

Constant Meaning
Current
value

Improved
value

a Swapping probability 1 1
τcoh Coherence time 0.1 s 10 s
μ Gate depolarization (Bell

measurement)
0.97 1

μ0 Initial state depolarization 0.97 1
F0 Initial state fidelity

(dephasing)
1 1

Latt Attenuation length 22 km 22 km
nr Index of refraction 1.44 1.44
ηp Preparation efficiency * *
ηc photon-fibre coupling

efficiency ×
* *

wavelength conversion
ηd Detector efficiency * *
plink := Total efficiency 0.05 0.7
ηc · ηd · ηp

Thus α can be referred to as an inverse effective coherence
time. Note that in order to count the dephasing times appropri-
ately in a specific protocol, we may have to add an extra factor
of 2 (depending on the number of spins dephasing at each
time step in a certain elementary or extended segment) and a
constant dephasing term ∼2n that takes into account memory
dephasing that occurs even when the first distribution attempt
in a segment succeeds. Any missing factors in the dephasing
can be reinterpreted in terms of α or τcoh, e.g., a missing factor
of 2 corresponds to a coherence time twice as big.

In Table I, two sets of current and improved parameter
values are listed, which specifically refer to τcoh and plink for
which we choose 0.1 s or 10 s and 0.05 or 0.7, respectively.
The other state and gate fidelity parameters will be either set to
unity or close to but below one (in some of the following plots
we will also treat them as a free parameter). We will see that
in memory-assisted QKD without additional quantum error
detection or correction, the fidelity parameters must always
be above a certain threshold value which (obviously) grows
with the number of stations (and which generally depends on
the particular QKD protocol and the classical postprocessing
method).

To compare the performance of each repeater protocol with
a direct point-to-point link over the total distance L, we will
use the PLOB bound [46], which is given by

SPLOB(L) = − log2(1 − e− L
Latt ). (59)

It represents an upper bound on the number of secret bits that

can be shared per channel use. For example, for e− L
Latt = 1/2

corresponding to L = 15 km, we have SPLOB = 1, and so at
most one secret bit can be distributed per channel use (per
mode) independent of the optical encoding. It will also be
useful to consider an upper bound on the number of secret
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FIG. 4. Contour plots illustrating the minimal fidelity requirements to overcome the PLOB bound by a two-segment repeater with different
parameters: (a) τcoh = 0.1 s, plink = 0.05, m = 10; (b) τcoh = 0.1 s, plink = 0.7, m = 50; (c) τcoh = 10 s, plink = 0.05, m = 3000; and (d) τcoh =
10 s, plink = 0.7, m = 5000. In all contour plots, μ = μ0 and F0 = 1 has been used.

bits that can be shared with the help of a quantum repeater
[51],

SPLOB,QR(L0) = − log2(1 − e− L0
Latt ), (60)

corresponding to the PLOB bound for one segment (in the
case of equal segment lengths L0). For a point-to-point
link, n = 1 with L = L0, we thus use the notation SPLOB =
SPLOB,QR. The rates we will focus on first in the following are
to be understood as secret key rates per channel use. Later we
shall also discuss secret key rates per second.

A. Two-segment repeater

Let us start with the rates for the simplest case: a two-
segment quantum repeater with one middle station. We shall
only consider one scheme, the “optimal” scheme, with and
without a memory cutoff. First, we address the question
whether and when it is possible to overcome the PLOB bound
with a two-segment repeater given the (current and improved)
parameter values from Table I. We stick to F0 = 1 and, for
illustrative clarity, we set μ = μ0 (while, first, μ is not fixed).

Physically, this means that the repeater states when initially
distributed in each segment and then manipulated at the mid-
dle station for the Bell measurement are subject to the same
depolarizing error channels (and there is no extra initial de-
phasing). The cutoff parameter m is chosen most appropriately
such that the final secret key rate is close to optimal over the
entire range.

In Fig. 4, one can see various contour plots of the secret
key rate. For convenience, we translated the error parameter μ

into a fidelity, F = (3μ + 1)/4. The plots clearly indicate the
minimal fidelity values below which the rates drop below the
PLOB bound or even to zero rates, for different total repeater
distances L. The resulting contours are color-coded such that
a particular color represents the secret key rate to be, e.g.,
twice the rate of the PLOB bound. Thus one can see that in
certain parameter regimes it becomes impossible to beat the
PLOB bound with a two-segment repeater. However, if both
the memory coherence time τcoh and the link efficiency plink

take on their improved values, it is possible to reach secret
key rates as high as 500 times the rate of the PLOB bound,
and beyond, in a certain distance regime.
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FIG. 5. Rates (secret key or raw) for a two-segment repeater over distance L for different experimental parameters: (a) τcoh = 0.1 s, plink =
0.05, μ = μ0 = 0.97; (b) τcoh = 0.1 s, plink = 0.05, μ = μ0 = 1; (c) τcoh = 0.1 s, plink = 0.7, μ = μ0 = 0.97; (d) τcoh = 0.1 s, plink = 0.7,
μ = μ0 = 1; (e) τcoh = 10 s, plink = 0.05, μ = μ0 = 0.97; (f) τcoh = 10 s, plink = 0.05, μ = μ0 = 1; (g) τcoh = 10 s, plink = 0.7, μ = μ0 =
0.97; and (h) τcoh = 10 s, plink = 0.7, μ = μ0 = 1.

In Fig. 5, we show the resulting secret key rates for the
experimental parameters from Table I, for both the scheme
with and without a memory cutoff. This time the error param-
eter μ = μ0 is fixed, and it either takes on its “current” or
its “improved” (ideal) value. For comparison, as a reference,
we also included the raw rates in each case. The loss scaling
of the rates in all schemes is, as expected, proportional to

plink e− L
2Latt = plink

√
e
− L

Latt (corresponding to a linear decrease
with distance due to the log scale representation). The effect of
the different experimental parameter values is clearly visible.
The choice of plink = 0.05 or plink = 0.7 determines the offset
along the y axis (rate axis) at zero distance. A higher plink

allows to cross the PLOB bound at a smaller distance. Note
that the PLOB bound itself can arbitrarily exceed the value
of one secret bit towards zero distance; in our schemes we

always distribute qubits and so one secret bit per channel use
is the maximum (and depending on the number of modes to
encode the photonic qubits there could be extra factors, “per
mode”). The choice of τcoh = 0.1 s or τcoh = 10 s determines
when (at which distance) the (negative) slope of the secret
key rate increases such that the repeater switches from a√

e
− L

Latt to a e− L
Latt (PLOB-like) scaling, or even worse. This

effect is an effect of the memory dephasing that occurs even
when μ = μ0 = 1. If, in addition, μ = μ0 = 0.97 < 1, the
secret key rates can drop abruptly down to zero, since then
the QBERs have nonzero contributions both in ez and ex, see
Eq. (24). Note that this effect happens also when either of the
two parameters, μ or μ0, drop below one, i.e., when either
the gates or the initial states become imperfect. Also note that
nonunit μ or μ0 in addition lead to an increased y-axis offset
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FIG. 6. Contour plots illustrating the minimal fidelity requirements to overcome the PLOB bound by a four-segment repeater for different
parameters: (a) τcoh = 0.1 s, plink = 0.05; (b) τcoh = 0.1 s, plink = 0.7; (c) τcoh = 10 s, plink = 0.05; and (d) τcoh = 10 s, plink = 0.7. In all
contour plots, μ = μ0 and F0 = 1 has been used.

which will become more apparent for larger repeaters with
larger n.

However, a memory cutoff can significantly change the
picture, and it can increase the achievable distance compared
to the scheme without a cutoff (compare the solid yellow with
the solid green curves in Fig. 5). More specifically, beyond
distances when the rates of the no cutoff scheme drop dramat-
ically, the cutoff scheme still scales proportional to the PLOB
bound. Note that for the scheme with a cutoff, even the raw
rates (dashed green curves) can switch from an L/2 to an L
scaling (like PLOB), because a finite cutoff value “simulates”
an imperfect memory in the raw rate (whose loss scaling
resembles the scaling without a quantum memory, i.e., that of
the PLOB bound, in the limit of m = 1) [41]. Again, one can
also see that with “current” parameter values, see Fig. 5(a),
it is impossible to beat the PLOB bound [here even when
μ = μ0 = 1, see Fig. 5(b)], but with improving values for the
coherence time and the link efficiency, it becomes possible.
This holds even when only one of the two parameters, plink

or τcoh, is improved, as long as we can cross PLOB at a

sufficiently small distance or maintain the repeater’s slope
for sufficiently long, respectively. In the next section we will
turn to a four-segment repeater (a three-segment repeater is
discussed in great detail in Appendix E).

B. Four-segment repeater

As we have seen in Sec. IV D 4, there are various swapping
strategies possible for a four-segment repeater in contrast to
a simple two-segment repeater. Our conjecture is (see also
Appendix E for the case n = 3) that the “optimal” scheme is
optimal in the regimes of increasingly good hardware param-
eters. Thus let us first again focus on the minimal fidelities
to overcome the PLOB bound for this scheme, similar to our
analysis for two segments, but now without cutoff only. The
results are shown in Fig. 6. It becomes apparent that now a
much higher fidelity or equivalently μ is needed, but in turn
also much higher secret key rates, 104-times the PLOB rate
and beyond, are possible. Since we have n = 4 now, nonunit μ

values have a stronger impact on the QBERs, see Eq. (24). At
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FIG. 7. Rates (secret key or raw) for a four-segment repeater over distance L for different experimental parameters: (a) τcoh = 0.1 s, plink =
0.05, μ = μ0 = 0.97; (b) τcoh = 0.1 s, plink = 0.05, μ = μ0 = 1; (c) τcoh = 0.1 s, plink = 0.7, μ = μ0 = 0.97; (d) τcoh = 0.1 s, plink = 0.7,
μ = μ0 = 1; (e) τcoh = 10 s, plink = 0.05, μ = μ0 = 0.97; (f) τcoh = 10 s, plink = 0.05, μ = μ0 = 1; (g) τcoh = 10 s, plink = 0.7, μ = μ0 =
0.97; and (h) τcoh = 10 s, plink = 0.7, μ = μ0 = 1.

the same time, however, the loss scaling becomes proportional

to plink e− L
4Latt = plink

4
√

e
− L

Latt . Furthermore, note that a different
scaling of the contours is observable, due to the lack of a
memory cutoff.

Next, we consider the secret key rates for a particular
choice of the experimental parameters including μ = μ0 ac-
cording to Table I. Besides the “optimal” scheme, now we also
include the sequential and the doubling schemes in the rate
analysis (sequential/iterative swapping together with sequen-
tial distributions and doubling with parallel distributions). In
Fig. 7, one can see the PLOB bound and the secret key rates
for the sequential scheme with and without a cutoff, for the
doubling scheme and for the optimal scheme (both without a

cutoff). In addition, again the raw rates are shown as a refer-
ence, and the corresponding three dashed curves are the raw
rates for (equivalently) doubling and “optimal,” and for the
sequential scheme with and without cutoff. Compared to the
previous two-segment repeater, it is now easier to overcome
the PLOB bound, but the crossing happens at longer distances,
since the four-segment repeater starts with a lower rate at
L = 0 km.

C. Eight-segment repeater

In comparison with the usual treatment of quantum re-
peaters via doubling the links at each repeater level, the next
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FIG. 8. Contour plots illustrating the minimal fidelity requirements to overcome the PLOB bound by an eight-segment repeater for different
parameters: (a) τcoh = 0.1 s, plink = 0.05; (b) τcoh = 0.1 s, plink = 0.7; (c) τcoh = 10 s, plink = 0.05; and (d) τcoh = 10 s, plink = 0.7. In all
contour plots, μ = μ0 and F0 = 1 has been used.

logical step is to consider an eight-segment repeater. For eight
segments, there is an increasing number of possible distribu-
tion and swapping strategies, and for the swapping we have
discussed this in more detail in Sec. IV D 5. Here we will
only consider the sequential, the doubling, and the optimal
schemes (the former one with sequential distributions, the
latter two with parallel distributions). Again, in Fig. 8, we
present limitations on the error parameter μ to overcome the
PLOB rate at different distances. The regions are color-coded
as before. Compared to the limits observed for a two-segment
repeater they exhibit a different behavior now, but this is again
due to the fact that we do not consider a cutoff scheme here.
The requirements for the fidelity or μ are higher, but this
was expected, since the secret key fraction includes terms
∝ μ2n−1, again setting μ0 = μ. Nevertheless, for sufficiently
high fidelities, the attainable secret key rates are much higher

than for any of the previously considered repeater schemes,
becoming as high as 108 times the rate of the PLOB bound,
and beyond.

Finally, we have also evaluated the performance of an
eight-segment repeater for our experimental parameter set.
Now caution is required when these plots are compared di-
rectly with the previous ones, as we had to improve the
“current,” nonunit value of μ to μ = 0.99. Without this fi-
delity adjustment, it would be impossible to achieve a nonzero
secret key rate for an eight-segment repeater (see next sec-
tion). The μ scaling with n in the QBERs prohibits to scale
up a realistic quantum repeater to arbitrarily large distances
and n values, as long as no extra elements for quantum error
detection or correction are included. For example, in a second-
generation quantum repeater, the effective μ0 and μ values
could be kept close to one, at the expense of extra resources
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FIG. 9. Rates (secret key/raw) for an eight-segment repeater over distance L for different experimental parameters: (a) τcoh = 0.1 s, plink =
0.05, μ = μ0 = 0.99; (b) τcoh = 0.1 s, plink = 0.05, μ = μ0 = 1; (c) τcoh = 0.1 s, plink = 0.7, μ = μ0 = 0.99; (d) τcoh = 0.1 s, plink = 0.7,
μ = μ0 = 1; (e) τcoh = 10 s, plink = 0.05, μ = μ0 = 0.99; (f) τcoh = 10 s, plink = 0.05, μ = μ0 = 1; (g) τcoh = 10 s, plink = 0.7, μ = μ0 =
0.99; and (h) τcoh = 10 s, plink = 0.7, μ = μ0 = 1.

for quantum error correction and a typically decreasing ini-
tial distribution efficiency p (e.g., due to an extra step of
entanglement distillation for the distributed, encoded memory
qubits). Our formalism could be also applied to such a more
sophisticated scenario by considering the effective changes
of μ, μ0, and p (and possibly α too). Nevertheless, our
plots in Fig. 9 show that an eight-segment quantum repeater
in a memory-assisted QKD scheme is, in principle, already
able to cover large distances by reaching usable rates up to
1000 km or even 1200 km, provided that μ = 0.99 or μ → 1,
respectively. Besides this, the behavior of an eight-segment
repeater is very similar to that of the previous four-segment
repeater.

D. Minimal μ values

We have already seen that the secret key rate of memory-
assisted QKD is highly sensitive to the depolarizing errors
that we use to model the imperfect gates and the imperfect
initial states in the quantum repeater. Here let us explicitly
give some minimal values for the error parameter μ which
at least have to be achieved in order to obtain a nonzero
secret key fraction for QKD protocols restricted to one-way
postprocessing (see Table II). More generally, in principle,
much higher error rates can be tolerated by allowing for
two-way postprocessing in the QKD protocols [52]. However,
in this work, we primarily utilize the secret key rate as a
practical and useful quantitative figure of merit to assess a

023086-23



KAMIN, SHCHUKIN, SCHMIDT, AND VAN LOOCK PHYSICAL REVIEW RESEARCH 5, 023086 (2023)

TABLE II. Minimal values of μ required for a nonzero secret key
rate in one-way postprocessing protocols.

μ0 = 1, μ0 = μ, μ0 = 1, μ0 = μ,
n BB84 BB84 6-state 6-state

2 0.780 0.920 0.748 0.908
4 0.920 0.965 0.908 0.959
8 0.965 0.984 0.959 0.981

quantum repeater’s performance. Nonetheless, the quantum
repeater schemes that we consider may also be employed for
other, more general quantum information and communication
tasks. Thus we decided not to include schemes with two-way
postprocessing, as this would certainly lead to a narrower spe-
cialization towards QKD applications. Clearly, in the context
of long-range QKD, we believe that considering schemes with
two-way postprocessing will be very valuable, since potential,
future large-scale quantum repeaters will be rather noisy and
therefore protocols which still work for large error rates are
very useful. Such a further optimization of our schemes with
a special focus on long-range QKD is possible and we leave
this option for future work.

It is easy to check that the concatenation of two depolar-
izing channels with parameters μ1 and μ2 is equivalent to a
single depolarizing channel with parameter μ1μ2. Thus, for
an n-segment repeater, we would expect a total depolarizing
channel with parameter μn = μn

0μ
n−1. We have carefully and

systematically checked and confirmed this in the first part of
the paper including other parameters too, such as constant ini-
tial and time-dependent memory dephasing. For the BB84 and
the six-state protocols, the amount of tolerable noise, such that
a secret key can still be obtained with one-way postprocessing,
has been extensively studied. For BB84 the error threshold lies
at Q = 11.0% and for the six-state protocol it is Q = 12.6%
[[4], Appendix A]. Since a maximally mixed state results in
an error rate of 50%, this gives us a constraint on the minimal
values of μn � 1 − 2Q.

More specifically, the BB84 secret key fraction of Eq. (20)
on which we focus here vanishes when the two QBERs both
exceed Q = 11%. This holds true for μn < 1 − 2Q even when
all other elements are perfect, i.e., even when there is no mem-
ory dephasing at all (α → 0). In this case, the two QBERs as
described by Eq. (24) coincide (assuming zero initial dephas-
ing F0 = 1) and neither includes a random variable. These
two constant QBERs then express the sole faultiness of the
repeater elements without any time-dependent quantum stor-
age (i.e., only the initial states and the gates) which can suffice
to prevent Alice and Bob from finally sharing a nonzero secret
key.

E. Comparisons

1. Sequential versus doubling versus optimal schemes

In the previous sections (together with the Appendix), we
have presented our results for the obtainable secret key rates
of two-, three-, four-, and eight-segment quantum repeaters
based on various entanglement distribution and swapping
strategies. While it is generally straightforward to include a

memory cutoff for the case of two segments, for more than
two segments, we have achieved this only for the fully sequen-
tial scheme. This was depicted in green in the (noncontour)
plots for four and eight segments. The memory cutoff allows
to maintain a scaling proportional to the PLOB bound even
beyond the distance where the scheme without cutoff drops
more quickly. As a consequence, the cutoff can significantly
increase the achievable distance. However, it is hard to obtain
an exact result for the secret key rate for the more complicated
swapping strategies. Nonetheless, for larger distances, one
could extrapolate the behavior of the doubling and optimal
schemes including a cutoff by simply continuing the curves
with lines parallel to the PLOB bound after the drops. Alter-
natively, inferring from our plots, at larger distances one can
rely on a continuation of the curves that behaves exactly like
the sequential scheme with a memory cutoff. Both approaches
give us a fairly good picture of the behavior of the doubling
and optimal schemes including the cutoff.

Nevertheless, the optimal scheme outperforms all other
schemes without a cutoff before each one drops completely.
The doubling scheme achieves almost similar rates, although
it starts earlier to decline. The secret key rates are similar
thanks to the equivalent, high raw rates of the doubling and
optimal schemes (both being based upon parallel entangle-
ment distributions), and due to our general assumption of
deterministic entanglement swapping with a = 1 [36].4 Thus,
for the doubling scheme, one could additionally incorporate
nested entanglement distillations in the usual, well-known
way, which would allow to reduce the QBERs at the expense
of the effective raw rates and with the need of extra physical
resources. The differences between the doubling and optimal
schemes may not be so large for the repeater sizes mainly
considered here (n � 8). However, note that for doubling we
kept a constant signaling time τ = L0/c f independent of the
nesting level. As a consequence, we certainly overestimate
doubling, since signaling beyond the elementary segments
can become necessary for a fixed doubling scheme (which
could be compensated via “blind swapping” at higher nest-
ing levels [16,53]). Our exact statistical treatment enabled
us to determine the optimal swapping scheme (optimizing
the dephasing) and thus allows for a quantitative comparison
with the nonoptimal doubling and possible other (including
“mixed”) schemes. The fully sequential scheme, based on
sequential entanglement distributions, leads to the lowest raw
rate. The longer total waiting times of this scheme also con-
tribute to an increased accumulated dephasing. On the other
hand, the dephasing of the fully sequential scheme remains
limited, as only one segment is waiting at any time step. Over-
all, although the sequential scheme is the easiest to analyze
theoretically, it would typically result in the lowest secret key
rate. Nonetheless, the fully sequential scheme is conceptually
special and serves as a useful reference for comparison with
the other schemes.

4For a < 1, regimes exist where for the raw rates “doubling” per-
forms strictly worse than “swap as soon as possible” [36], similar
to regimes here for the full secret key rates with a = 1 when the
dephasing becomes dominant.
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2. Two- versus four- versus eight-segment repeaters

In this section, let us finally address one of the main ques-
tions that motivates the exact secret key rate analysis that we
have presented: is there an actual benefit of additional (mem-
ory) stations and repeater segments compared with schemes
that work entirely without quantum memories (such as point-
to-point links or twin-field QKD) or compared to schemes
with a smaller number of memory stations? More specifically,
is it useful to replace a simple two-segment repeater by a
four- or eight-segment repeater in a realistic setting, i.e., even
when the extra quantum memories are subject to additional
preparation and operational errors and contribute to an in-
creased accumulated memory dephasing? In the preceding
section with Table II, we saw that the sole faultiness of the
memory qubit initial states and gates, even with no time- and
distance-dependent memory dephasing, can make the secret
key rate completely vanish, and this effect grows with the
segment number n. In the last section of the paper, we shall
also look at schemes that minimize the actual number of mem-
ory stations by combining the twin-field QKD and repeater
memory concepts, for instance, in a four-segment scheme with
only one of the three intermediate stations being equipped
with memory qubits.

Now here we only consider the “optimal” scheme (gener-
ally and rigorously only without memory cutoff, as discussed
before), since this ensures we always consider the highest
possible secret key rates. By adding extra repeater stations
the requirements on the initial state preparations and the Bell
measurements become much higher, where the corresponding
terms scale as ∝ μn−1μn

0 in the QBERs. We stress again
that in order to achieve a nonzero secret key rate for the
eight-segment repeater, we had to alter the nonideal value
of μ of Table I to a sufficiently large value, μ = 0.99, see
also Table II. For a fair comparison, this value is then also
used here to obtain the curves of the two- and four-segment
repeaters.

The resulting secret key rates can be seen in Fig. 10. As one

would expect, for example, the scaling changes from
√

e
− L

Latt

to
8
√

e
− L

Latt when the transition from a two-segment to an eight-
segment repeater is considered. However, the rate at L = 0 km
decreases when increasing the number of segments. This ef-
fect occurs for the raw rates (and the secret key rates assuming
μ = 1), but it becomes more apparent for μ = 0.99. Still,
at long distances, eight segments are superior to a smaller
number of segments. Therefore acknowledging that the neces-
sary μ requirements are extremely demanding but not entirely
impossible to achieve in practice, we conclude that it is indeed
beneficial to add repeater stations. In particular, the effect of
the memory dephasing alone (besides channel loss), for possi-
ble coherence times like those in Table I and used throughout
the plots, will not prevent the benefit of adding more stations.
Even when both plink and τcoh take on their lowest of the
two considered values as shown in Fig. 10(b), by placing
seven memory stations along the channel it is in principle still
possible to exceed the PLOB bound significantly. However,
realistically, when μ < 1 like in Fig. 10(a), all secret key rates
stay below the PLOB bound. In this case, it becomes crucial
that either plink [Fig. 10(c)] or τcoh [Fig. 10(e)] is sufficiently
large such that the curves can cross PLOB at a sufficiently

small distance (thanks to the small y-axis offset) or they can
maintain their repeater loss scaling for sufficiently long dis-
tances, respectively. Recall that all rates shown and discussed
here are per channel use. Further it should be stressed here
that we did not explicitly include time-dependent memory loss
(assuming that the memory imperfections are dominated by
the time-dependent memory dephasing), which can addition-
ally jeopardize the benefits of adding more, in this case lossy
memory stations [54]. (If this loss is detectable it may lead to a
nondeterministic entanglement swapping like in the “DLCZ”
quantum repeater, which is harder to accurately analyze and
optimize even for a constant swapping probability [36]; if the
loss remains partially undetected at each station, it can lead to
a reduced final state fidelity and thus an increased QBER.)

Let us discuss the comparison of repeaters with different
segment numbers in a little more detail. It is indeed quite sub-
tle and for this we shall also take into account larger repeater
systems, far beyond the n = 8 case. For the general discus-
sion, it is helpful to first consider the fully sequential scheme,
as in this case we have access to all relevant (physical and
statistical) quantities even for large repeaters, see Table III. If
we only consider channel loss or, equivalently, if we only look
at the raw rates, there is an optimal number of segments for a
given total distance. In Table III, among the possibilities con-
sidered there, this is n = 80 for L = 800 km, and so we should
put stations every L0 = 10 km. If we include the memory de-
phasing (“channel-loss-and-memory-dephasing-only case”),
we observe that not only the average (number of) waiting time
(steps) E[Kn], but also the average (number of) dephasing time
(steps) E[Dn] is minimized for n = 80 when L = 800 km.
In fact, these two averages, n/p and (n − 1)/p, respectively,
become identical for larger n, and both grow in the two lim-
its of many and very few segments, L0 → 0 (n → ∞) and
L0 → L/2 (n → 2), respectively. However, when changing
the segment length L0, also the inverse effective coherence
time α = L0/(c f τcoh ) will change, where now α is simply
maximal at L0 = L/2 and it steadily becomes smaller when
L0 → 0 at fixed τcoh. Note that below a certain L0 value the
repeater’s elementary time unit is no longer dominated by the
classical communication times and instead the maximal local
processing times must go into α which we refer to as αloc.
This effect implies that in order to maximize the effective
coherence time τcoh/τ , one should simply use as many stations
as possible, eventually approaching the limitation given by the
local processing times at each station. For these, we may typ-
ically assume αloc

1 = τ/τcoh = MHz−1/0.1 s = 0.00001 and
αloc

2 = τ/τcoh = MHz−1/10 s = 0.0000001.
However, the first really relevant quantity to assess the

effect of the memory dephasing is the effective average
dephasing time αE[Dn] that is related to the memory dephas-
ing channel evolution. Interestingly, for the fully sequential
scheme, this quantity, αE[Dn] = (L/n)(n − 1)/(c f τcoh p),
converges for growing n (small L0) to L/(c f τcoh p) with
p → 1. For example, in Table III, for L = 800 km,
we have L/(c f τcoh p) = 0.0374 for τcoh = 0.1 s and
L/(c f τcoh p) = 0.0004 for τcoh = 10 s. These limits are
attainable for about n = 8000 and for n = 800, respectively.
With τcoh = 10 s the limit is also almost attainable for n = 80,
so again L0 = 10 km, and there is no further benefit by further
increasing n. However, we also have αloc

1 E[Dn] = 0.00001 ×
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FIG. 10. Comparison of secret key rates of two-, four-, and eight-segment repeaters at total distances L for different experimental
parameters: (a) τcoh = 0.1 s, plink = 0.05, μ = μ0 = 0.99; (b) τcoh = 0.1 s, plink = 0.05, μ = μ0 = 1; (c) τcoh = 0.1 s, plink = 0.7, μ = μ0 =
0.99; (d) τcoh = 0.1 s, plink = 0.7, μ = μ0 = 1; (e) τcoh = 10 s, plink = 0.05, μ = μ0 = 0.99; (f) τcoh = 10 s, plink = 0.05, μ = μ0 = 1;
(g) τcoh = 10 s, plink = 0.7, μ = μ0 = 0.99; and (h) τcoh = 10 s, plink = 0.7, μ = μ0 = 1.

(n − 1)/p = 0.0804 for n = 8000 and αloc
2 E[Dn] =

0.0000001 × (n − 1)/p = 0.0001 for n = 800.
Next let us consider the relevant quantities for the optimal

scheme as presented in Table IV. In this case, we no longer
have access to all exact values for larger repeaters n > 8.
However, there is a distinction between the waiting times Kn

and the dephasing times Dn. For the total waiting times or
the raw rates R we can calculate the numbers for small and
also for larger n according to the exact analytical expression
in Eq. (37). There are also good approximations for both
small n (small p) and larger n (p closer to one) which may
be easier to calculate [35,43,55]. Importantly, unlike the case
of the fully sequential scheme, the raw rate R now grows
with all n (though slowly for larger n) thanks to the fast,

parallel distributions in all segments together with the loss
scaling that improves with n. This behavior even matches that
of the repeater-assisted capacity bounds for increasing n, as
given in the last row of Table IV. However, recall that for our
qubit-based quantum repeaters the raw rate can never exceed
one secret bit per channel use, whereas SPLOB,QR(L0) can, for
decreasing L0.

For the average total dephasing we can calculate the exact
values up to n = 8. Comparing these values in Tables III and
IV, we see that the optimal scheme accumulates less dephas-
ing than the fully sequential scheme when n = 4 and 8. The
two competing effects in the fully sequential scheme, long
total waiting time versus minimal number of simultaneously
stored memory qubits per elementary time unit, overall result
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TABLE III. Overview of the relevant quantities for the fully sequential scheme: segment number n, segment length L0 (km), average
(number of) waiting time (steps) E[Kn], raw rate R, average (number of) dephasing time (steps) E[Dn], inverse effective coherence time
α1 = L0/(c f 0.1s), effective average dephasing time α1E[Dn], inverse effective coherence time α2 = L0/(c f 10 s), effective average dephasing
time α2E[Dn], average dephasing fractions E[e−α1Dn ] and E[e−α2Dn ], secret key fractions and rates, r and S, for different μ = μ0 (subscript
corresponds to the choice of α1 or α2, μ = 1 is the channel-loss-and-memory-dephasing-only case), and the (repeater-assisted) capacity bound
SPLOB,QR(L0). We further assumed plink = F0 = 1 for the link coupling efficiency and the initial state dephasing.

n 1 2 4 8 80 800 8000

L0 (km) 800 400 200 100 10 1 0.1
E[Kn] ∼1016 ∼108 35497 754 126 837 8036
R ∼10−16 ∼10−8 ∼10−5 0.0013 0.0079 0.0012 0.0001
E[Dn] − ∼108 26623 659 124 836 8035
α1 − 0.0192 0.0096 0.0048 0.0005 ∼10−5 ∼10−6

α1E[Dn] − ∼106 256 3.1674 0.0598 0.0402 0.0386
α2 − 0.0002 0.0001 ∼10−5 ∼10−6 ∼10−7 ∼10−8

α2E[Dn] − 15131 2.5576 0.0317 0.0006 0.0004 0.0004
E[e−α1Dn ] − ∼10−6 ∼10−6 0.0729 0.9420 0.9606 0.9621
E[e−α2Dn ] − 0.0001 0.1573 0.9689 0.9994 0.9996 0.9996
r1(μ = 1) − ∼10−13 ∼10−12 0.0038 0.8106 0.8603 0.8646
r2(μ = 1) − ∼10−9 0.0179 0.8843 0.9961 0.9972 0.9973
r1(μ = 0.99) − 0 0 0 0 0 0
r2(μ = 0.99) − 0 0 0.2203 0 0 0
S1(μ = 1) − ∼10−21 ∼10−17 ∼10−5 0.0064 0.0010 0.0001
S2(μ = 1) − ∼10−17 ∼10−6 0.0012 0.0079 0.0012 0.0001
S1(μ = 0.99) − 0 0 0 0 0 0
S2(μ = 0.99) − 0 0 0.0003 0 0 0
SPLOB,QR(L0) ∼10−16 ∼10−8 0.0002 0.0154 1.4530 4.4921 7.7846

TABLE IV. Overview of the relevant quantities for the optimal scheme: segment number n, segment length L0 (km), average (number of)
waiting time (steps) E[Kn], raw rate R, average (number of) dephasing time (steps) E[Dn], inverse effective coherence time α1 = L0/(c f 0.1 s),
effective average dephasing time α1E[Dn], inverse effective coherence time α2 = L0/(c f 10 s), effective average dephasing time α2E[Dn],
average dephasing fractions E[e−α1Dn ] and E[e−α2Dn ], secret key fractions and rates, r and S, for different μ = μ0 (subscript corresponds to
the choice of α1 or α2, μ = 1 is the channel-loss-and-memory-dephasing-only case), and the (repeater-assisted) capacity bound SPLOB,QR(L0).
For the cases n > 8, not all exact values are available and hence we inserted approximate values or (lower or upper) bounds. We assumed
plink = F0 = 1 for the link coupling efficiency and the initial state dephasing.

n 1 2 4 8 80 800 8000

L0 (km) 800 400 200 100 10 1 0.1
E[Kn] ∼1016 ∼108 18487 255 5.4 2.9 2.2
R ∼10−16 ∼10−8 0.0001 0.0039 0.1841 0.3490 0.4646
E[Dn] − ∼108 22923 488 < 124 <836 <8035
α1 − 0.0192 0.0096 0.0048 0.0005 ∼10−5 ∼10−6

α1E[Dn] − ∼106 220 2.3484 <0.0598 <0.0402 <0.0386
α2 − 0.0002 0.0001 ∼10−5 ∼10−6 ∼10−7 ∼10−8

α2E[Dn] − 15131 2.2022 0.0235 <0.0006 <0.0004 <0.0004
E[e−α1Dn ] − ∼10−6 ∼10−5 0.1552 >0.9420 >0.9606 >0.9621
E[e−α2Dn ] − 0.0001 0.2215 0.9769 >0.9994 >0.9996 >0.9996
r1(μ = 1) − ∼10−13 ∼10−11 0.0174 >0.8106 >0.8603 >0.8646
r2(μ = 1) − ∼10−9 0.0357 0.9090 >0.9961 >0.9972 >0.9973
r1(μ = 0.99) − 0 0 0 0 0 0
r2(μ = 0.99) − 0 0 0.2323 0 0 0
S1(μ = 1) − ∼10−21 ∼10−15 0.0001 >0.1492 >0.3002 >0.3997
S2(μ = 1) − ∼10−17 ∼10−6 0.0036 >0.1834 >0.3480 >0.4633
S1(μ = 0.99) − 0 0 0 0 0 0
S2(μ = 0.99) − 0 0 0.0009 0 0 0
SPLOB,QR(L0) ∼10−16 ∼10−8 0.0002 0.0154 1.4530 4.4921 7.7846
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in a larger dephasing rate in comparison with our optimal
scheme for n � 8. We extrapolate this relative behavior to
larger n and therefore assume that the dephasing values of
the fully sequential scheme may serve as upper bounds on
those for the optimal scheme when n > 8 in Table IV. We
make the same assumption for the other dephasing-dependent
quantities, in particular, the secret key fractions, for which the
fully sequential values then serve as lower bounds. Looking
at the entries of Table IV for the optimal scheme, as a final
result, we conclude that while for μ = 1 (“channel-loss-and-
memory-dephasing-only” case) it may be best to choose as
many segments as n = 80 (i.e., stations are placed at every
10 km), similar to what is best for the fully sequential scheme
(Table III), for μ = 0.99 < 1, we must not go to segment
numbers higher than n = 8. In fact, for μ = 0.99, both for
the sequential and the optimal schemes, effectively the only
nonzero secret key rate is obtainable for n = 8 and the larger
of the two coherence times considered, with a factor-three
enhancement for the optimal scheme over the sequential one.
If n > 8, the faulty states and gates make S vanish, if n < 8
the small raw rates and the high effective average dephasing
times do not permit practically usable secret key rates. Note
that the entire discussion here in the context of Tables III and
IV is for a total distance of L = 800 km. We may infer that an
elementary segment length of L0 ∼ 100 km is not only highly
compatible with existing classical repeater and fiber network
architectures, but also seems to offer a good balance between
an improved memory-assisted loss scaling and an only limited
addition of extra faulty elements. This conclusion here holds
for our repeater setting based upon heralded loss-tolerant
entanglement distribution, deterministic entanglement swap-
ping, and a memory dephasing model. Similar elementary
lengths have been used before for schemes with probabilis-
tic entanglement swapping and memory loss [17,18]. For
schemes with deterministic entanglement swapping, but a
less loss-tolerant entanglement distribution mechanism, [21]
smaller segment lengths may be preferable. We will include
such schemes, exhibiting an intrinsic channel-loss-dependent
dephasing, into the discussion in a later section. Let us now
consider a simple form of multiplexing in order to improve
the repeater performance, provided sufficient extra resources
are available.

F. Multiplexing

Operating M repeater chains in parallel automatically leads
to an enhancement of the overall rates by a factor of M. How-
ever, since in this case the corresponding number of channels
grows as well by a factor of M, the rates per channel use
remain unchanged. The situation becomes different though
when the chains can “interact” with each other. In particular,
the loss scaling of heralded entanglement distributions can be
improved, at least for small systems in an MDI QKD setting
(even without the use of quantum memories but with the need
for a nondestructive heralding) [56]. For memory-based quan-
tum repeaters, memory imperfections may be compensated
via multiplexing techniques [41,53,57,58]. Experimentally,
multiplexing can be realized through various degrees of free-
dom. Apart from spatial multiplexing with additional memory
qubits at each station that can be coupled to additional fiber

FIG. 11. Multiplexing in a two-segment repeater.

channels, this can be forms of temporal or spectral multi-
plexing where a single fiber may be employed sequentially
at a high clock rate [59] or at the same time with multiple
wavelengths, respectively. In this section, we shall incorpo-
rate a simple form of multiplexing into our formalism and
our repeater models and systems. We have seen that either
high total efficiencies or sufficiently long coherence times are
needed to achieve usable secret key rates at long distances.
We will now see that multiplexing can be understood as a
means to effectively enhance the memory coherence time. In
the following, we will describe in more detail which kind
of multiplexing we consider and why it indeed effectively
increases the coherence time.

The simplest way to include multiplexing in our repeater
models is by using M memories simultaneously to generate
entanglement. These memories can either be connected to the
same fiber by a switch or they may each be coupled to their
own fiber channel. For simplicity, we consider the switch to
be perfect such that both approaches become equivalent (and
where the additional channel uses take place either in time or
in space). A lossy switch could be easily incorporated into our
model by using an additional parameter which is included in
plink (note that the loss from the switch is time-independent
and so always the same). A possible setup for a two-segment
repeater with multiplexing is shown in Fig. 11. Here all entan-
glement distribution attempts happen simultaneously. Since
we have M replica of all memories and channels, this setup
acts as if p �→ 1 − (1 − p)M , provided that memory qubits
from different chains can talk to each other in the middle
station so that we may again swap as soon as possible.

For an M multiplexing, let us thus define the effective dis-
tribution probability peff = 1 − (1 − p)M . For small p, only
keeping linear terms, we have peff ≈ M p. As the expected
waiting time in a single segment is then given by 1

M p , we
can already gain insight on the possibility that multiplexing
increases the effective coherence time by a factor of M. More
specifically, for example, for the fully sequential scheme the
expectation value of Dn is (n − 1)/p, thus the transition p �→
peff ≈ M p reduces the number of dephasing steps, on average,
by a factor of 1/M. This is equivalent to an increase of the
coherence time by a factor M. In the following, let us be more
precise and show what “small” p really means in terms of
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FIG. 12. (a) peff for M = 10 (b) rule of thumb: the orange points
show the numerical minimization for different M and the blue line
shows the fitted function. It was obtained by fitting the numerical
function for all values in the interval (3,1000) (for M = 2 our algo-
rithm has convergence problems.) However, it also works well for
larger M like, e.g., 104 up to some small deviations at high M prob-
ably due to the numerical precision. For the meaning of the fitting
parameters, see main text. As always, we assumed Latt = 22 km.

the corresponding segment length L0. In fact, including mul-
tiplexing, the secret key rates in dependence of the repeater
distance behave in a more complicated way and one can see
that for small distances the rate is nearly constant and only for
larger distances the rates behave as we would expect from the
nonmultiplexed schemes.

In the general, exact model using peff = 1 − (1 − p)M , it
becomes clear that the above-mentioned behavior originates
from this general expression for peff . In Fig. 12(a), one can see
that peff can be divided in three regimes. In the first regime of
small L0, peff is a constant. In the second regime of large L0,
peff is a simple exponential decay, while in between it has a
more complicated form interpolating both regimes. In the first
regime, the effective probability is nearly constant, because
in our simple multiplexing protocol we only make use of a
single “entanglement excitation” in each segment of the par-
allelized repeater chains, but for small L0 we would typically
have multiple excitations in each segment. Thus increasing L0

decreases the number of excitations, but as we anyway only
make use of a single one, this barely matters (making use

of more excitations and keeping the “residual entanglement”
could potentially further enhance the rates [60]; however, here
our focus is on a simple and clear interpretation of the impact
of the multiplexing on the coherence time and the memory
dephasing in our statistical model). In the second regime of
rather large L0, the contributions of multiple excitations can
be neglected and therefore the rates behave exactly like in the
M = 1 case. Hence, this regime two is exactly that where we
can increase the effective coherence time by a factor of M
with the help of multiplexing. We can give a rough rule of
thumb for the minimal length of L0 when one may use the
simple approximation of increasing the coherence time by a
factor of M. For this we assume p = exp(− L0

Latt
)5 and take the

minimizing argument of ∂2 ln(peff )
∂L2

0
for a given M in order to

estimate the midpoint of the interpolating regime. For general
M, this expression can be nicely fitted to an expression of
the form c1 ln(c2M + c3) + c4, as one can see in Fig. 12(b).
One should then consider L0 to be slightly larger for the
approximation to hold.

Let us give another, more rigorous derivation of the ef-
fective coherence time in the presence of multiplexing. The
coherence time primarily characterizes the increasing decline
of the secret key rate with distance. However, a massive
drop actually happens when the secret key fraction r reaches
zero, which is possible when ez > 0, i.e., when μ < 1 or
μ0 < 1. Thus let us determine the probability at which r = 0
holds with multiplexing and from that deduce an equivalent
coherence time without multiplexing. Since the QBER ez is
constant (ez = ez ), we have to solve for the expectation value
of ex such that

1 − h(ez )
!= h(ex ). (61)

In order to find the probability p or equivalently the distance
at which the drop happens, let us use the Taylor series of the
binary entropy function at x = 1

2 ,

h(x) = 1 − 1

2 ln(2)

∞∑
n=1

(1 − 2x)2n

n(2n − 1)
, ∀ 0 < x < 1. (62)

Then one finds for ex up to first order:

ex = 1

2
−

√
ln(2)h(ez )

2
, (63)

where only the negative root is possible, as 0 � ex � 1
2 . In-

serting ex and solving for E[e−αDn ] gives

E[e−αDn ] =
√

2 ln(2)h(ez )

μn−1μn
0(2F0 − 1)n . (64)

If μ = μ0 = 1, including especially the channel-loss-and-
memory-dephasing-only case (for which also F0 = 1), we
have h(ez ) = 0 and so the requirement becomes E[e−αDn ] =
0, which is impossible. However, as soon as ez > 0, i.e., μ < 1
or μ0 < 1, a sufficiently small nonzero (average) dephasing
fraction E[e−αDn ] leads to a zero secret key fraction. As we
can always calculate this expectation value by our previously

5When considering plink < 1 one can incorporate this as an addi-
tional length of − ln(plink )Latt regarding L0.

023086-29



KAMIN, SHCHUKIN, SCHMIDT, AND VAN LOOCK PHYSICAL REVIEW RESEARCH 5, 023086 (2023)

FIG. 13. Rates (secret key/raw) of [(a) and (b)] two- and [(c) and (d)] four-segment repeaters using multiplexing M = 10 at distances
L for different experimental parameters: [(a) and (c)] τcoh = 0.1 s, plink = 0.7, μ = μ0 = 0.97 and [(b) and (d)] τcoh = 10 s, plink = 0.05,
μ = μ0 = 0.97. The rate of a repeater without multiplexing, but with the same coherence time is shown in orange, whereas the rate of a
repeater using multiplexing is shown in red. Additionally, a repeater without multiplexing, but with an equivalent effective coherence time is
presented in dashed black. All rates are expressed per channel use and hence include a division by M.

derived PGFs, we now have an accurate and systematic way
to derive the probability p (or the total distance L = nL0) at
which the drop takes place for given values of n, τcoh, μ,
μ0, and F0. Recall that the inverse effective coherence time
α = L0/(c f τcoh ) typically also depends on L0. On the other
hand, we may use the above relation to determine an (inverse)
effective coherence time by calculating the drop for a repeater
with multiplexing and then the equivalent α, which would be
needed to achieve the same distance without any multiplexing.
From this α, one can recover the coherence time τcoh and finds
the approximate relation

τcoh �→ M · τcoh, (65)

when a multiplexing of M is used and the remaining setup
is kept the same. Thus one can achieve an M-times longer
effective coherence time with the help of multiplexing.

In Fig. 13, we show the rates of two- and four-segment
repeaters using a multiplexing of M = 10 in red. Note that be-
cause we use the SKR per channel use, the rates are obtained
including a division by M. The rates of the same repeaters
without multiplexing are presented in orange. Furthermore, a
repeater without multiplexing, but with the equivalent ‘effec-
tive’ coherence time of τeff = Mτcoh is shown in dashed black.
One can see that for small distances, i.e large probabilities, the
multiplexed repeater does not quite behave like its nonmul-
tiplexed counterpart with an effectively increased coherence
time. A clear splitting between the red and black curves is vis-
ible. However, for larger distances, especially after crossing
the PLOB bound, the multiplexed repeater behaves exactly
the same as if simply memories with an effectively longer
coherence time were used. For smaller link efficiencies, the
splitting becomes much less pronounced, as can be seen in
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the plots on the right of Fig. 13. All this holds for both two
and four segments, according to Fig. 13. In particular, for
small link efficiencies, the secret key rate of an equivalent
repeater with τeff = Mτcoh is almost indistinguishable from
a repeater with multiplexing. This is in agreement with the
above discussion on the occurrence of single versus multiple
‘entanglement excitations’ in each segment where the latter
are then highly suppressed even at short distances due to
the small value of plink. Thus, for practical purposes, in all
our discussions, we may treat several cases equivalently, for
instance, a repeater with τcoh = 10 s and M = 1 would be
equivalent to a repeater with τcoh = 1 s and M = 10.

G. Secret key rate per second

In a real-world application, the important figure of merit
is not the rate per channel use, it will be the rate per
second. In particular, a memory-asissted QKD system or gen-
erally a memory-based quantum repeater, as typically based
upon light-matter interactions and classical communication
at least between neighboring stations, has a limited “clock
rate.” Classical communication is needed to declare successful
transmission of photons for the entanglement distribution. In
general, also extra communication would be needed to signal
any successful entanglement swapping, but as we assumed
deterministic swapping no such communication is needed in
our repeater models.

As we already discussed frequently throughout the paper,
a repeater’s performance generally depends on an elementary
time unit τ , which is contained in the inverse effective co-
herence time α = τ/τcoh, where generally τ = τclock + L0/c f

including the experimental local processing time τclock. We
have mostly argued that in the relevant distance regimes, this
quantity is dominated by the (quantum and classical) commu-
nication times between neighboring stations, thus τ = L0/c f

and α = L0/(c f τcoh ). Already with segment lengths above
10 km, one can neglect the local clock rates, since these are
much higher than the rates given by the transmission times.
An extra factor of two could be included in τ for some
protocols due to the L0 transmission of a photon entangled
with a memory qubit and the classical answer (sent back
over L0) heralding its successful transmission. However, this
would depend on the specific protocol and so we have cho-
sen the simplest, minimal form τ = L0/c f . Only for very
short segment lengths do we have α ≈ αloc = τclock/τcoh =
MHz−1/τcoh with experimental clock rates τ−1

clock typically of
the order of MHz.

However, there are repeater schemes that are independent
of additional classical communication and the decision to
keep or reinitialize a memory state can be made at the memory
station. These schemes may be referred to as “node receives
photons” (NRP) unlike the class of schemes “node sends
photons” (NSP) [29]. An NRP protocol and application that
circumvents the need of extra signal waiting times can be
realized with two “segments” and a middle station in memory-
assisted MDI QKD [29].

Such a scheme, when treating it as an elementary quan-
tum repeater unit or module many of which a large-scale
repeater can be made of, may be referred to as a “quantum
repeater cell,” actually composed of two half-segments [[29],

Fig. 6(b)]. In this case, even for large (half-)segment length L0,
we have α = αloc = τclock/τcoh. For completeness, we show
the rates of such an NRP-based two-segment scheme in the
form of contour plots in Appendix H. By circumventing the
need for extra classical communication and thus significantly
reducing the effective memory dephasing, the minimal state
and gate fidelity values can even be kept constant over large
distance regimes. However, as soon as the NRP concept is
applied to larger repeaters effectively connecting several com-
plete repeater segments [[29], Fig. 6(a)], the need for extra
classical communication to initiate an entanglement swapping
operation can no longer be entirely avoided (though there are
ideas to still partially benefit from the NRP concept [59]). A
quantum repeater cell can also be considered employing the
NSP protocol [30] and one such cell (two half-segments) or
the corresponding complete segment can then be used as an
elementary quantum repeater unit [[29], Fig. 4]. For the NSP
concept, the extra signal waiting time is generally required
at every distribution attempt. In any case or protocol, the
repeater’s elementary time unit τ determines the effective
coherence time τcoh/τ and as such, even when the rates per
channel use are considered, it determines how many distribu-
tion attempts are possible within a given τcoh and hence how
big the effective dephasing time αDn becomes.

Compared with memory-assisted quantum communication
schemes, a big asset of an all-optical point-to-point quantum
communication link is that it can operate at a high clock
rate, typically of the order of GHz, only limited by the speed
of Alice’s laser (quantum state) source and Bob’s (quantum
state) detector. For such a direct state transmission, no extra
classical communication is required as for heralding the suc-
cessful transfer of entangled photons between repeater links.
Thus the rate per second is simply given by the two local clock
rates, especially the time it takes to generate the photonic qubit
states or any other quantum states in QKD based on different
types of encoding (however, due to the known linear bounds
on the key distribution via a long and lossy point-to-point
quantum communication channel [46,61], it is clear that the
rate scaling of qubit-based QKD cannot be beaten by any form
of nonqubit encoding).

Other all-optical schemes such as MDI QKD or twin-field
QKD, which are no longer point-to-point and do include a
middle station between Alice and Bob, also benefit from such
high clock rates. The remarkable feature of twin-field QKD
is that it shares both advantages: the high clock rate with
point-to-point quantum communication and the L → L/2 loss
scaling gain with memory-based two-segment quantum re-
peaters. In order to assess whether there is a real benefit of
employing a two-segment quantum repeater or even adding
extra repeater stations, we must eventually consider the rates
per second and take into account the corresponding clock rates
in all schemes. As a consequence, comparing clock rates of
MHz with those of GHz (of memory-based versus all-optical
quantum communication), there is a penalty of a factor of
about 1000 from the start for the memory-based approach.
In the regime where α ≈ L0/(c f τcoh ), this penalty even gets
worse. In this case, when τ ≈ L0/c f , there are at least two
disadvantages of τ growing with L0: a reduced effective co-
herence time τcoh/τ and a reduced raw rate per second R/τ .
Beating the PLOB bound for the rates per channel use is only
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TABLE V. Overview of the relevant quantities for the fully sequential scheme of Table III calculated per second (shown are only those
entries that change, but again with segment number n, segment length L0 (km)): raw rate R/τ , secret key rate S/τ for different μ = μ0 (again
subscript corresponds to the choice of α1 or α2, μ = 1 is the channel-loss-and-memory-dephasing-only case), and the (repeater-assisted)
capacity bound per elementary time unit SPLOB,QR(L0)/τ where we choose τ = GHz−1 for the cases n = 1, 2, i.e., the bounds, expressed per
second, on all-optical point-to-point and twin-field QKD. Note that for realistic but still GHz-clock-rate twin-field QKD, we rather have S/τ ∼
1 Hz. In any of the other, memory-based scenarios, we choose τ = τclock + L0/c f with τclock = MHz−1. We again assumed plink = F0 = 1 for
the link coupling efficiency and the initial state dephasing.

n 1 2 4 8 80 800 8000

L0 (km) 800 400 200 100 10 1 0.1
R/τ ∼10−14 Hz ∼10−6 Hz 0.0293 Hz 2.8 Hz 165.2 Hz 248.7 Hz 259.1 Hz
S1(μ = 1)/τ − ∼10−18 Hz ∼10−14 Hz 0.0106 Hz 133.9 Hz 213.9 Hz 224.0 Hz
S2(μ = 1)/τ − ∼10−14 Hz 0.0005 Hz 2.4 Hz 164.5 Hz 248.0 Hz 258.4 Hz
S1(μ = 0.99)/τ − 0 Hz 0 Hz 0 Hz 0 Hz 0 Hz 0 Hz
S2(μ = 0.99)/τ − 0 Hz 0 Hz 0.6086 Hz 0 Hz 0 Hz 0 Hz
SPLOB,QR(L0)/τ ∼10−7 Hz 18.3 Hz 0.2 MHz 15.5 MHz 1.5 GHz 4.5 GHz 7.8 GHz

a necessary criterion that a quantum repeater can be beneficial.
In order to confirm a real benefit, we have to consider the
secret key rates per second S/τ = rR/τ . Thus even with per-
fect memories τcoh → ∞, the different τ values matter. The
situation is similar to throwing two or more dices at once at
a fast rate. To get all dices showing six eyes, this may still be
faster than throwing them very slowly while being allowed to
only continue with the unsuccessful dices in each round. The
final raw and secret key rates per second obtainable with our
two most prominent and mostly discussed repeater schemes,
the fully sequential and the optimal schemes, are given in
Tables V and VI, respectively.

H. Application and comparison of protocols

Let us now consider various quantum repeater protocols
based on different types of the optical encoding and calcu-
late their corresponding secret key rates per second using the
methods developed in the preceding sections. We shall look
at (i) a kind of standard scheme employing two-mode (dual-
rail, DR) photonic qubits distributed through the optical-fiber
channels (either emitted from a central source of entangled
photon pairs and written into the spin memory qubits or
emitted from the repeater nodes employing spin-photon en-

tangled states and utilizing two-photon interference in the
middle of each segment) [29], (ii) a scheme based upon
spin-photon (spin-light-mode) entanglement and one-photon
interference with an encoding similar to that introduced by
Cabrillo et al. [62] effectively using one-mode (single-rail,
SR) photonic qubits, and (iii) a scheme that extends the con-
cepts of twin-field QKD with coherent states to a specific
variant of memory-assisted QKD, i.e., a kind of twin-field
quantum repeater [45]. We refer to scheme (ii) as the Cabrillo
scheme and discuss it in more detail in Appendix I. For
all three schemes we consider a quantum repeater with
n = 1, 2, 3, 4, 8 segments matching the size of the repeater
systems that we have formally/theoretically treated in great
detail in the first parts of this paper. We always use the
previously derived “optimal” quantum repeater protocol that
belongs to the fastest schemes and gives the smallest dephas-
ing among all fast schemes.

The two schemes (ii) and (iii) share the potential benefit
that for quantum repeaters with n segments and n − 1 in-
termediate memory stations (not counting the memories at
Alice and Bob or assuming immediate measurements there)
they lead to an improved loss scaling with a 2n times bigger
effective attenuation distance compared with a point-to-point
link (unlike the standard scheme (i) that only achieves an

TABLE VI. Overview of the relevant quantities for the optimal scheme of Table IV calculated per second [shown are only those entries that
change, but again with segment number n, segment length L0 (km)]: raw rate R/τ , secret key rate S/τ for different μ = μ0 (again subscript
corresponds to the choice of α1 or α2, μ = 1 is the channel-loss-and-memory-dephasing-only case), and the (repeater-assisted) capacity bound
per elementary time unit SPLOB,QR(L0)/τ where we choose τ = GHz−1 for the cases n = 1, 2, i.e., the bounds, expressed per second, on
all-optical point-to-point and twin-field QKD. Note that for realistic but still GHz-clock-rate twin-field QKD we rather have S/τ ∼ 1 Hz. In
any of the other, memory-based scenarios, we choose τ = τclock + L0/c f with τclock = MHz−1. We again assumed plink = F0 = 1 for the link
coupling efficiency and the initial state dephasing.

n 1 2 4 8 80 800 8000

L0 (km) 800 400 200 100 10 1 0.1
R/τ ∼10−14 Hz ∼10−6 Hz 0.0563 Hz 8.2 Hz 3.8 kHz 72.7 kHz 967.2 kHz
S1(μ = 1)/τ − ∼10−18 Hz ∼10−12 Hz 0.1423 Hz >3.1 kHz >62.5 kHz >832.1 kHz
S2(μ = 1)/τ − ∼10−14 Hz 0.0020 Hz 7.4 Hz >3.8 kHz >72.4 kHz >964.5 kHz
S1(μ = 0.99)/τ − 0 Hz 0 Hz 0 Hz 0 Hz 0 Hz 0 Hz
S2(μ = 0.99)/τ − 0 Hz 0 Hz 1.9 Hz 0 Hz 0 Hz 0 Hz
SPLOB,QR(L0)/τ ∼10−7 Hz 18.3 Hz 0.2 MHz 15.5 MHz 1.5 GHz 4.5 GHz 7.8 GHz
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n-times bigger effective attenuation distance), but a final state
fidelity parameter still decreasing as the power of 2n − 1
(assuming equal gate and initial state error rates) like the
standard scheme (i). However, scheme (ii) has an intrinsic
error during the distribution step due to the initial two-photon
terms in combination with channel loss. Similarly, scheme
(iii) is more sensitive to channel loss exhibiting an intrin-
sic loss-dependent dehasing error, because the optical state
is a phase-sensitive continuous-variable state [21]. The two
models of channel-loss-induced errors for schemes (ii) and
(iii) thus slightly differ, while the transmission loss scaling
is identical. As a consequence, for both (ii) and (iii), we have
the constraint that the excitation amplitudes (the weights of
the nonvacuum terms) must not become too large. Despite the
above-mentioned benefits compared with scheme (i) it will
turn out that the intrinsic errors of schemes (ii) and (iii) rep-
resent an essential complication that prevents to fully exploit
the improved scaling of the basic parameters in comparison
with the standard repeater protocols.

For a fair comparison, assuming similar types of initial
state imperfections in all three schemes, we set μ0 = 1 with
F0 = 0.99, 0.98 and so replace the initial depolarizing error
for scheme (i) by an initial dephasing error. Thus, in the
expressions of the QBERs as given by Eq. (24), the contri-
bution of μn

0 to the initial error scaling from the analysis of
the preceding sections (where F0 = 1) is now replaced by
a corresponding scaling with F0 < 1. The gate error scaling
with μn−1 remains unchanged in all schemes. Of course, our
formalism also allows to focus on specific schemes includ-
ing initial state errors with μ0 < 1. In this case, the specific
contributions of the different elements in each elementary re-
peater unit (segments, half-segments, “cells”) [29] to the link
coupling efficiency plink and the initial state error parameters
μ0 or F0 depend on the protocol [29].

For example, zooming in on an NSP segment [29], we
have a squared contribution from the two spin-photon entan-
gled states on the left and on the right, μ2

sp,ph, and another
possible gate error factor, μOBM, coming from the optical
Bell measurement in the middle of the segment. In this sce-
nario, already in a single segment, we effectively have one
imperfect entanglement swapping operation (acting on the
two photons in the middle of the segment) connecting two
initially distributed, depolarized entangled states (the two
spin-photon states), to which our physical model directly ap-
plies replacing our initial μ0 for one segment according to
μ0 → μ2

sp,phμOBM. This overall initial distribution error will
most likely be dominated by the imperfect spin-photon states,
assuming near-error-free (though probabilistic) photonic Bell
measurements, thus μ0 ∼ μ2

sp,ph.
In a full NRP segment, the memory write-in may be re-

alized via quantum teleportation using a locally prepared
spin-photon state and an optical Bell measurement on the
photon that arrives from the fiber channel and the local pho-
ton. In this scenario, already in a single complete segment,
we may effectively have three initial entangled states (two
local spin-photon states on the left and on the right together
with one distributed entangled photon pair emitted from a
source in the middle of the segment) and two optical Bell
measurements, [[29], Fig. 6(a)] with our model resulting in

a μ0 ∼ μph,phμ
2
sp,phμ

2
OBM scaling of the initial error parameter

for one segment (i.e., similar to the effective final scaling of
a three-segment repeater in our more abstract model, with
μ0 → μsp,ph and μ → μOBM, and setting for this simplify-
ing analogy, quite unrealistically, μsp,ph = μph,ph). Assuming
near-error-free Bell measurements, and near-perfect (though
possibly only probabilistically created) photon pairs, we
would again arrive at an overall scaling of μ0 ∼ μ2

sp,ph for
the initial error parameter. In case of an entangled photon
pair source that deterministically produces imperfect photon-
photon states (such as a quantum dot source), we would have
μ0 ∼ μph,phμ

2
sp,ph instead. There is also the option of a her-

alded memory write-in that no longer relies on the generation
of local spin-photon states and optical Bell measurements
[28]. In this case, our physical model has to be slightly adapted
to such a scenario and a decomposition of the different error
channels, including an imperfect memory write-in operation,
into one effective initial error channel should be considered.

Thus zooming in on our general initial-state error parame-
ters μ0 or F0 for a specific implementation is straightforwardly
possible, but it will eventually lead to even stronger fidelity
requirements for the individual experimental components that
contribute to μ0 or F0. The different contributions to the
link coupling efficiencies plink can be similarly decomposed
into the different experimental elements, also including some
differences for the different types of quantum repeater units
and protocols [29]. However, note that for our comparison in
this section, especially assuming that two photonic states are
combined in the middle of each segment (i.e., in a kind of NSP
scenario), the two-photon interference of scheme (i) results in
a quadratic disadvantage not only for the channel transmission
but also in terms of the link coupling efficiency plink in com-
parison with the protocols based on one-photon interference
[schemes (ii) and (iii)], plink,(i) = p2

link,(ii) = p2
link,(iii). For this,

let us write in short plink,DR = p2
link,TF, given the similarity of

schemes (ii) and (iii).
In Fig. 14, we compare the secret key rates for the dual-rail

scheme (i) (DR), the Cabrillo scheme (ii), and the twin-field
repeater (iii) (TF). The two twin-field-type schemes include a
free parameter describing the number of excitations. More ex-
citations lead to a higher transmission rate at the expense of a
lower state quality. In the plots, we optimize this parameter for
each data point to obtain the maximal secret key rate. Recall,
for the DR scheme, we introduce a small dephasing via the
parameter F0 < 1 in order to avoid comparing perfect initial
entangled states with noisy ones. When comparing schemes
(ii) and (iii) one can see that for μ ≈ 1 (iii) performs better
while for lower μ (ii) is the better performing scheme. This is
because the probability of an error is smaller for the Cabrillo
scheme, but the error would affect both QBERs of the BB84
protocol, significantly reducing the secret key rate. For the TF
scheme (iii), we have an effect on only one of the two error
rates. When μ gets smaller, all schemes have a nonvanishing
error rate in both bases and therefore the lower error rate of
the Cabrillo scheme is helpful.

Figure 14 shows that, although the DR scheme has a scal-
ing disadvantage in comparison to both other schemes, it is
often highly competitive, since both twin-field-type schemes
suffer from their low initial probabilities of success when
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FIG. 14. Secret key rates per second. We always assume a coherence time τcoh = 10 s, plink,TF = 0.9, and M = 1.

only weak excitations can be used to avoid introducing too
much noise from the loss channel. Considering a memory
coherence time of 10 seconds, a gate error parameter μ �
0.97, and coupling efficiencies as plink,TF = 0.9, one can al-
ready overcome the PLOB bound with only three memory
stations using either the DR scheme (i) or the TF protocol
(iii). For this comparison, in terms of secret bits per second,
we assume a source repetition rate of 1 GHz for an ideal
point-to-point link as associated with the PLOB bound per
channel use. Note that we do not include an extra factor of
1/2 for the final rates which would strictly be needed in the
DR-based scheme in comparison with the PLOB bound for
a single-mode loss channel. Here the parallel transmission
of the two modes for a DR qubit does not change the rates
per second and this optical encoding does not cause an extra
experimental resource overhead (in fact, it even simplifies the
optical transmission circumventing the need for long-distance
phase stabilization as for the TF-type schemes). Moreover, an
optical point-to-point direct transmission would most likely be
based on DR qubit transmission as well. The other, previously
mentioned factor 2 that occurs in front of the effective inverse
coherence time α when the two spins of a two-qubit spin
pair simultaneously dephase while waiting in one segment
has now been included here for each segment (i.e., a small
improvement would be possible when Alice and Bob measure
their spins immediately).

In Fig. 14, we always assume a coherence time τcoh = 10 s,
plink,TF = 0.9, and M = 1. Recall from our discussions of
the possibility of multiplexing that we may equivalently con-
sider schemes for which, for instance, τcoh = 1 s and M = 10
according to Eq. (65). The plots lead to the following observa-
tions. The two TF-type schemes (ii) and (iii) more heavily rely
upon sufficiently good error parameters than the DR scheme

(i). In Figs. 14(a) and 14(b), for two different initial dephasing
fidelities (which is only relevant for DR), we see that only the
TF scheme (iii) performs as good as DR with a gate error as
low as μ = 0.999. In this case, for the given parameters, TF
even allows to reach slightly larger distances compared with
DR, both going well above L = 1200 km giving more than a
hundredth of a secret bit per second at such distances. Note
that in order to achieve this, the TF scheme requires a loss
scaling with a 16 times bigger effective attenuation distance
compared with a point-to-point link, whereas the DR scheme
only has to exhibit an 8 times bigger effective attenuation
distance (“n = 8 TF” versus “n = 8 DR”). The number of
memory stations is the same for both, namely, seven (not
counting those at Alice and Bob).

With increasing gate errors μ � 0.99, as shown in
Figs. 14(c)–14(g), only the DR scheme allows to reach dis-
tances above or near L = 1000 km. If both error parameters,
that for the gates, μ, and that for the initial states, F0, are no
longer sufficiently good (both or in combination), also the DR
scheme ceases to reach large distances and barely beats the
PLOB bound [see Figs. 14(f) and 14(g)]. For the two TF-type
schemes (ii) and (iii), we generally checked both types of
detectors, on-off as well as photon-number-resolving (Fig. 14
shows the results for on-off detections), and we did not see a
significant difference in the logarithmic plots of the secret key
rates for both schemes. The reason is that for larger distances
the two-photon events at either of the two detectors (detectable
via PNRDs) get increasingly unlikely compared with one-
photon detection events coming from the two-photon terms in
combination with the loss of one photon during transmission
(causing errors which remain undetectable via PNRDs).

The practically most relevant situation is shown in
Figs. 14(c)–14(e). In particular, for the numbers chosen there,
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i.e., state and gate errors of the order of 1%–2%, the DR
scheme reaches a distance of L = 800 km with about one
secret bit per second, and even beyond with a lower rate.
The link coupling efficiency for this scenario, like in all oth-
ers, is plink,DR = p2

link,TF = 0.81; the coherence time is τcoh =
10 s. The number of segments is n = 8 (“n = 8 DR”, dotted
yellow curve) corresponding to a memory station placed at
every L0 = 100 km. The result for this scheme is consistent
with the results obtained for S2(μ = 0.99) and especially
S2(μ = 0.99)/τ in Tables IV and VI, respectively, for n = 8.
However, note that for the values in Tables IV and VI we
chose plink = F0 = 1 and μ = μ0, slightly different from the
parameter choice for Fig. 14(c) where μ0 = 1 and F0 = 0.99
playing the role of an imperfect state parameter instead of μ0

(in addition, we have plink = 0.81 for DR, and also two spins
dephasing at any time step included). Reiterating the previous
discussions in Secs. V E 2, the choice of L0 ∼ 100 km seems
not only highly compatible with existing classical repeater and
fiber network architectures, but also offers a good balance be-
tween an improved memory-assisted loss scaling and an only
limited addition of extra faulty elements. Here now we found,
in particular, that the standard DR scheme (i) provides another
good choice in order to really benefit from these well balanced
parameters. Finally, we also considered the six-state QKD
protocol [48] instead of BB84, but this only improved the
final rates marginally. In the case of μ = 0.98 and μ0 = 1, the
rate could be, in principle, improved significantly for n = 8,
but for these parameters, in practice, it is easier to use BB84
and n = 4 instead. When considering sufficiently good error
parameter values like μ = 0.99, such that n = 8 outperforms
n = 4, then again there is only a minimal improvement by
employing the six-state QKD protocol.

VI. CONCLUSION

We presented a statistical model based on two random
variables and their probability-generating functions (PGFs) in
order to describe, in principle, the full statistics of the rates
obtainable in a memory-based quantum repeater chain. The
physical repeater model assumes a heralded initial entangle-
ment distribution with a certain elementary probability for
each repeater segment (including fiber channel transmission
and all link coupling efficiencies), deterministic entanglement
swapping to connect the segments, and single-spin quan-
tum memories at each repeater station that are subject to
time-dependent memory dephasing. No active quantum error
correction is performed on any of the repeater “levels,” while
our model does not even rely upon the basic assumption of
any nested repeater level structure. The two basic statistical
variables associated with this physical repeater model are the
total repeater waiting time and the total, accumulated dephas-
ing time.

In the context of an application in long-range quantum
cryptography, our model corresponds to a form of memory-
assisted quantum key distribution, for which we calculated
the (asymptotic, primarily BB84-type) secret key rates as a
figure of merit to assess the repeater performance against
known benchmarks and all-optical quantum communication
schemes. Apart from the theoretical complexity that grows
with the size of the repeater (i.e., the number of repeater

segments), it was clear from the start that experimentally the
memory-assisted schemes of our model cannot go arbitrarily
far while still producing a nonzero secret key rate. One mo-
tivation and goal of our work was to quantify this intuition
and to provide an answer to the question whether it is actually
beneficial, in a real setting, to add faulty memory stations
to a quantum communication line. Existing works had their
focus on the smallest repeaters with only two segments and
one middle station. So, the aim was to further explore these
smallest repeaters and then extend them to repeaters of a larger
scale, answering the above question.

Within this framework, we determined an optimal repeater
scheme that belongs to the class of the fastest schemes (min-
imizing the average total waiting time and hence maximizing
the long-distance entanglement distribution “raw rate”) and,
in addition, minimizes the average accumulated memory de-
phasing within the class of the fastest schemes. We have
achieved this optimization for medium-size quantum repeaters
with up to eight segments. In particular, for the minimal de-
phasing, this led us to a scheme to “swap as soon as possible.”
The technically most challenging element of our treatment is
to determine an explicit analytical expression for the random
dephasing variable of the fast schemes and its PGF. In order to
confirm the correspondence of the minimum of the dephasing
variable with the minimal QKD quantum bit error rate (for
the variable related to memory dephasing), we calculated the
relevant expectation values and compared the optimal scheme
with schemes based on other, different swapping strategies.
More generally, our formalism enables one to also consider
mixed strategies in which different types of entanglement
distribution and swapping can be combined, including the tra-
ditionally used doubling strategy that allows to systematically
incorporate methods for quantum error detection (entangle-
ment distillation).

Our new results especially apply to quantum repeaters
beyond one middle station for which an optimization of the
distribution and swapping strategies is no longer obvious. For
the special case of three repeater segments, assuming only
channel loss and memory dephasing, and with equal distribu-
tion time units in every segment given by the signaling time,
we showed that our optimal scheme gives the highest secret
key rate among not only all the fastest schemes but among
all schemes including overall slower schemes that may still
potentially lead to a smaller accumulated dephasing. We con-
jecture that our optimal scheme also gives the highest secret
key rate for more than three segments under the same physical
assumptions. A rigorous proof of this is nontrivial, because
the number of distinct swapping and distribution strategies
grows fast with the number of repeater segments. Moreover,
in a long-range QKD application, some of the spin qubits may
be measured immediately which is generally hard to include
in the statistical analysis and the optimization for all possi-
ble schemes; for three segments though we did include this
additional complexity of the protocols. Towards applications
beyond QKD, this extra variation may no longer be relevant.

We identified three criteria that should be satisfied by an
optimal repeater scheme: distribute entanglement in parallel
as fast as possible, store entanglement in parallel as little as
possible, and swap entanglement as soon as possible. It is
not always possible to satisfy these conditions at the same
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time, and we discussed specific schemes that are particularly
good or bad with regards to some of the criteria. For exam-
ple, a fully sequential repeater scheme is particularly slow,
but avoids parallel storage of many spin qubits. Nonetheless,
since it is overall slow, the fully sequential scheme can still
accumulate more dephasing. We presented a detailed analysis
comparing such different repeater protocols and approaches.

With regards to a more realistic quantum repeater mod-
eling, we considered additional tools and parameters such
as memory cutoffs, multiplexing, initial state and swap-
ping gate fidelities in order to identify potential regimes
in memory-assisted quantum key distribution beyond one
middle station where, exploiting our optimized swapping
strategy, it becomes useful to add further memory stations
along the communication line and connect them via two-
qubit swapping operations. Importantly, we found that the
initial state and gate fidelities must exceed certain minimal
values (generally depending on the specific QKD protocol
including postprocessing), as otherwise the sole faultiness
of the spin-qubit preparations and operations prevents to
obtain a nonzero secret key rate even when no imperfect
quantum storage (no memory dephasing) at all takes place
and independent of the finite channel transmission. This ef-
fect becomes stronger with an increasing number of repeater
nodes, scaling with the power of 2n − 1 for the error param-
eters in the QKD secret key rate. Once this minimal state
and gate fidelity criterion is fulfilled and when the other
experimental imperfections are included too, especially the
time-dependent memory dephasing, it is essential to consider
the exact secret key rates obtainable in optimized repeater
protocols in order to conclude whether a genuine quantum
repeater advantage over direct transmission schemes is pos-
sible or not. This is what our work aimed at and achieved
based on the standard notion of asymptotic QKD figures of
merit.

By quantifying the influence of (within our physical
model) basically all relevant experimental parameters on the
final long-range QKD rate, we were able to determine the
scaling and trade-offs of these parameters and analytically
calculate exact, optimal rates. A quantum repeater of n =
L/L0 segments is thereby characterized by the parameter set
(p, a, α) where p is the entanglement distribution probability
per segment (including the n-dependent channel transmission
and zero-distance link coupling efficiency per segment), a
is the entanglement swapping success probability, and α is
the inverse effective memory coherence time which, in most
protocols, depends on n via the quantum and classical com-
munication times per distribution attempt (we also considered
small-scale two-segment protocols without this dependence
and ideas exist to minimize the impact of the inevitable signal
waiting times for the elementary units of larger repeaters in
combination with high experimental source and processing
clock rates [59]). In addition, we have introduced a set of
initial state and gate parameters (μ0/F0, μ) where μ0 and F0

can be adapted to the specific protocols. Additional memory
parameters can be collected as (m, M, B) where m is the mem-
ory cutoff (maximal time at which any spin qubit is stored), M
is the number of simultaneously employed memory qubits in
a simple multiplexing scenario with M repeater chains used in
parallel, and B is the (spatial) “memory buffer” (the number of

memory qubits per half station in a single repeater chain). In
our work, we focused on schemes with a = 1 and B = 1. The
use of B > 1 memories at each station would allow to continue
the optical quantum state transfer even in segments that al-
ready possess successfully distributed states and to potentially
replace the earlier distributed lower-quality pairs (subject to
memory dephasing) by the later distributed pairs. We also did
not put the main emphasis on the use and optimization of m,
though we did include this option in some schemes. We found
that M > 1 leads to an effective improvement of the memory
coherence time by a factor of M.

In this setting, the three essential experimental parame-
ters that have to be sufficiently good are the link coupling
efficiency (via p), the memory coherence time (via α), and
the state/gate error parameter μ0/μ. While the latter must
not go below the above-mentioned limits, generally two of
these three parameters should be sufficiently good as a rule of
thumb in order to exceed the repeaterless bound and obtain
practically meaningful rates. If this is the case, or even better,
if all three are of high quality, memory-assisted quantum key
distribution based on heralded entanglement distribution and
swapping without additional quantum error correction or de-
tection is possible to allow Alice and Bob to share a secret key
at a rate orders of magnitude faster than in all-optical quantum
state transmission schemes. For instance, for a total distance
of 800 km and experimental parameter values that are highly
demanding but not impossible (up to 10 s coherence time,
about 80% link coupling, and state or gate infidelities in the
regime of 1%–2%), one secret bit can be shared per second
with repeater stations placed at every 100 km, providing the
best balance between a minimal number of extra faulty re-
peater elements and a sufficient number of repeater stations
for an improved loss scaling.
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APPENDIX A: DERIVATION OF EQ. (36)

In this section, we derive the PGF Gn(t ) of the random
variable Kn defined via

Kn = max(N1, . . . , Nn), (A1)

where Ni are the geometrically distributed random variables
with parameter p. We have

Gn(t ) =
+∞∑

k1,...,kn=1

pqk1−1 . . . pqkn−1tmax(k1,...,kn )

= pntFn(q, t ), (A2)

where the function Fn(x, t ) is defined as

Fn(x, t ) =
+∞∑

k1,...,kn=0

xk1+...+kntmax(k1,...,kn ). (A3)
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The series on the right-hand side of this definition converges
for all |x| < 1 and |t | � 1, since we have

|Fn(x, t )| �
+∞∑

k1,...,kn=0

|x|k1+...+kn = 1

(1 − |x|)n
. (A4)

The function Fn(x, t ) can be written in a compact form, having
only a finite number of terms. We have

Fn(x, t )

1 − t
=

+∞∑
k1,...,kn=0

+∞∑
k=max(k1,...,kn )

xk1+...+knt k

=
+∞∑
k=0

t k
k∑

k1,...,kn=0

xk1+...+kn

=
+∞∑
k=0

t k

(
1 − xk+1

1 − x

)n

. (A5)

Expanding the nth power on the right-hand side and apply-
ing simple algebraic transformations, we obtain the following
compact expression:

Fn(x, t ) = 1 − t

(1 − x)nt

n∑
i=0

(−1)i

(
n

i

)
1

1 − xit
. (A6)

From Eq. (A2), we derive the following expression for the
PGF of Kn:

Gn(t ) = (1 − t )
n∑

i=0

(−1)i

(
n

i

)
1

1 − qit

= 1 + (1 − t )
n∑

i=1

(−1)i

(
n

i

)
1

1 − qit
, (A7)

which is exactly the expression of the main text.

APPENDIX B: TRACE IDENTITIES

We have

23〈�+|�̃μ,23(�̂1234)|�+〉23

= μ · 23〈�+|�̂1234|�+〉23 + 1 − μ

4
Tr23(�̂1234). (B1)

Here we show how to compute the quantities on the right-hand
side of this equality. A simple way is to work with density
matrices. We use the order of basis elements induced by the
tensor product. From the one-qubit basis (|0〉, |1〉)T we obtain
the two-qubit basis

(|0〉
|1〉

)
⊗

(|0〉
|1〉

)
=

⎛
⎜⎜⎜⎝

|00〉
|01〉
|10〉
|11〉

⎞
⎟⎟⎟⎠. (B2)

Taking the tensor product once again, we obtain the ordering
of four-qubit basis vectors |0000〉, |0001〉, |0010〉, |0011〉,
|0100〉, |0101〉, |0110〉, |0111〉, |1000〉, |1001〉, |1010〉, |1011〉,
|1100〉, |1101〉, |1110〉, |1111〉. If a four-qubit state is de-
scribed by a density operator �̂1234 which has a 16 × 16
density matrix � in the standard basis ordered as described

above, then two-qubit partial diagonal states have the follow-
ing matrices in the basis (B2):

23〈00|�̂1234|00〉23 = ρ[1, 2, 9, 10],

23〈01|�̂1234|01〉23 = ρ[3, 4, 11, 12],

23〈10|�̂1234|10〉23 = ρ[5, 6, 13, 14],

23〈11|�̂1234|11〉23 = ρ[7, 8, 15, 16], (B3)

where �[I], I being a set of 1-based indices, is the submatrix
of � with row and column indices in I . For the off-diagonal
states, we have

23〈01|�̂1234|10〉23 = ρ[3, 4, 11, 12|5, 6, 13, 14],

23〈10|�̂1234|01〉23 = ρ[5, 6, 13, 14|3, 4, 11, 12], (B4)

where �[I|J] is the submatrix of � with row indices in I and
column indices in J .

The state of the form given by Eq. (10)

�̂ = �̃μ(F |�+〉〈�+| + (1 − F )|�−〉〈�−|) (B5)

has the following density matrix in the basis (B2):

� = 1

4

⎛
⎜⎜⎜⎝

1 − μ 0 0 0
0 1 + μ 2μ(2F − 1) 0
0 2μ(2F − 1) 1 + μ 0
0 0 0 1 − μ

⎞
⎟⎟⎟⎠.

(B6)
Taking the Kronecker product of two states of this form,
Eq. (B1) together with the relations Eqs. (B3) and (B4) lead
to the final form of the distributed state in Eq. (11).

APPENDIX C: COMPUTING PGFs OF
THE SEQUENTIAL SCHEME

In the sequential scheme, the number of steps Kn and the
dephasing Dn are given by

Kn = N1 + · · · + Nn, Dn = N2 + · · · + Nn. (C1)

Their PGFs are thus the nth and (n − 1)th power of the single-
segment PGF:

Gn(t ) =
(

pt

1 − qt

)n

, G̃n(t ) =
(

pt

1 − qt

)n−1

. (C2)

In the case of a cutoff, the process of entanglement dis-
tribution is visualized in Fig. 15. There are zero or more
failure parts, with number of steps generating function B[m]

n (t ),
and one and only one success part, with generating function
A[m]

n (t ). The total PGF G[m]
n (t ) of the number of steps K [m]

n is
thus given by

G[m]
n (t ) = A[m]

n (t )

1 − B[m]
n (t )

. (C3)

We start with the derivation of the failure part’s PGF. The PGF
of the top line is clearly

G0(t ) = pt

1 − qt
. (C4)

Among the rest n − 1 lines there are i lines that succeed,
where 0 � i � n − 2, so we have to put i p’s into m places
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FIG. 15. A visualization of the entanglement distribution process with the sequential scheme for n = 4. (a) The general structure of failure
periods (if any) and the success period. (b) A detailed view of the failure part generating function B(t ). (c) A detailed view of the success part
generating function A(t ).

and the rest m − i places will be taken by q’s. We thus have

B[m]
n (t ) = G0(t )

n−2∑
i=0

(
m

i

)
piqm−itm. (C5)

For the success part’s PGF, we have

A[m]
n (t ) = G0(t )

m∑
j=n−1

(
j − 1

n − 2

)
pn−1q j−n+1t j, (C6)

since the length of the success part can vary from n − 1 to
m (we need to put at least n − 1 p’s there). The position of
the last p is fixed, so we need to place n − 2 p’s into j − 1
places and the rest j − n + 1 will be taken by q’s. Making
substitution j → j − n + 1, we arrive to the expression (27)
of the main text.

The random variable for the waiting time of the scheme
involving multiple cutoffs is given by

K seq,m
n = Ñ (mn−1 ) − mn−1 +

Tn−1∑
j=1

(Kn−1, j + mn−1). (C7)

Exploiting that sums of independent random variables corre-
spond to products of their PGFs and using [[63], Satz 3.8] for
the sum one immediately obtains the result in the main text.

APPENDIX D: COMPUTING DEPHASING
PGFs FOR PARALLEL SCHEMES

In this section, we derive explicit expressions for the PGFs
of the dephasing random variables Dn for different schemes
considered in the main text. All these schemes have the same
property—if the order of Ni’s is known then one can obtain an
analytical expression for the corresponding random variable
Dn explicitly. Having an explicit expression for Dn, we can
compute a part of its PGF corresponding to a given order of
arguments. Combining these parts for all possible ordering of
arguments, we get the expression for PGF of Dn.

More formally, the space � = Nn of elementary events
consists of all n vectors N = (N1, . . . , Nn) of positive integers.
The components Ni are independent identically distributed
(i.i.d.) random variables with geometric distribution with suc-
cess probability p, so Ni is the number of attempts (including
the last successful one) of the ith segment to distribute en-
tanglement. The failure probability we denote q = 1 − p. To
every point N = (N1, . . . , Nn) ∈ �, we assign the probability

P(N) = pqN1−1 . . . pqNn−1 = pnqN1+...+Nn−n. (D1)

The sum of these probabilities is obviously 1, so we have a
valid probability space (�, P).

The PGF of every component Ni is given by the following
simple expression:

gNi (t ) = pt

1 − qt
. (D2)

To find PGFs of more complicated random variables involving
several components, we appropriately partition �, compute
the partial PGF on each part and then combine these partial
results into the full expression. For every permutation π ∈ Sn,
we define a subset of � which is determined by the corre-
sponding relations between n arguments. For n = 2, we have
two permutations (12) and (21) with corresponding relations
N1 � N2 and N2 < N1. For n = 3, we have six permutations
and six corresponding relations

N1 � N2 � N3, N1 � N3 < N2, N2 < N1 � N3,

N2 � N3 < N1, N3 < N1 � N2, N3 < N2 < N1. (D3)

To make all these subsets nonoverlapping, we use strict in-
equality between an inversion and nonstrict inequality in other
positions between numbers in permutations. We thus have the
following decomposition:

� =
⊔
π∈Sn

�π, (D4)
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TABLE VII. Explicit expressions for the optimal and doubling
dephasing for all possible relations between arguments in the case of
n = 4.

Permutation D�
4(N) Ddbl

4 (N)

N1 � N2 � N3 � N4 N4 − N1 2N4 − N1 − N3

N1 � N2 � N4 < N3 2N3 − N1 − N4 2N3 − N1 − N4

N1 � N3 < N2 � N4 N2 + N4 − N1 − N3 2N4 − N1 − N3

N1 � N3 � N4 < N2 2N2 − N1 − N3 2N2 − N1 − N3

N1 � N4 < N2 � N3 2N3 − N1 − N4 2N3 − N1 − N4

N1 � N4 < N3 < N2 2N2 − N1 − N4 2N2 − N1 − N4

N2 < N1 � N3 � N4 N4 − N2 2N4 − N2 − N3

N2 < N1 � N4 < N3 2N3 − N2 − N4 2N3 − N2 − N4

N2 � N3 < N1 � N4 N4 − N2 2N4 − N2 − N3

N2 � N3 � N4 < N1 N1 − N2 2N1 − N2 − N3

N2 � N4 < N1 � N3 2N3 − N2 − N4 2N3 − N2 − N4

N2 � N4 < N3 < N1 N1 + N3 − N2 − N4 2N1 − N2 − N4

N3 < N1 � N2 � N4 N2 + N4 − N1 − N3 2N4 − N1 − N3

N3 < N1 � N4 < N2 2N2 − N1 − N3 2N2 − N1 − N3

N3 < N2 < N1 � N4 N4 − N3 2N4 − N2 − N3

N3 < N2 � N4 < N1 N1 − N3 2N1 − N2 − N3

N3 � N4 < N1 � N2 2N2 − N1 − N3 2N2 − N1 − N3

N3 � N4 < N2 < N1 N1 − N3 2N1 − N2 − N3

N4 < N1 � N2 � N3 2N3 − N1 − N4 2N3 − N1 − N4

N4 < N1 � N3 < N2 2N2 − N1 − N4 2N2 − N1 − N4

N4 < N2 < N1 � N3 2N3 − N2 − N4 2N3 − N2 − N4

N4 < N2 � N3 < N1 N1 + N3 − N2 − N4 2N1 − N2 − N4

N4 < N3 < N1 � N2 2N2 − N1 − N4 2N2 − N1 − N4

N4 < N3 < N2 < N1 N1 − N4 2N1 − N2 − N4

where �π is the subset determined by the relations corre-
sponding to π . For any point N ∈ �π , we can obtain an
explicit expression for Dn for any scheme. In Table VII, we
show all possible relations between four arguments and the ex-
pression corresponding to the optimal and doubling schemes
in the case of n = 4. Expressions corresponding to different π

might be the same, as can be seen for the doubling scheme.
The PGF of Dn is defined as

G̃n(t ) =
+∞∑
d=0

P(Dn = d )t d =
∑
N∈�

P(N)tDn (N). (D5)

Using the decomposition in Eq. (D4), we introduce the partial
PGFs via

G̃n(π |t ) =
∑

N∈�π

pnqN1+...+Nn−ntDn(N1,...,Nn ), (D6)

where Dn(N1, . . . , Nn) is given explicitly as an appropriate
linear combination of Ni’s. The total PGF G̃n(t ) is then just
the sum of all of these partial PGFs:

G̃n(t ) =
∑
π∈Sn

G̃n(π |t ). (D7)

We demonstrate computing these sums by an example for n =
4. We have the correspondence

π = (2134) → N2 < N1 � N3 � N4 (D8)

and the explicit expressions

D�
4(N1, N2, N3, N4) = N4 − N2,

Ddbl
4 (N1, N2, N3, N4) = 2N4 − N2 − N3. (D9)

For the partial PGFs, we have

G̃�
4(π |t ) =

+∞∑
N2=1

+∞∑
N1=N2+1

+∞∑
N3=N1

+∞∑
N4=N3

p4qN1+N2+N3+N4−4tN4−N2

= p4

1 − q4

q3t

(1 − qt )(1 − q2t )(1 − q3t )
,

G̃dbl
4 (π |t ) =

+∞∑
N2=1

+∞∑
N1=N2+1

+∞∑
N3=N1

×
+∞∑

N4=N3

p4qN1+N2+N3+N4−4t2N4−N2−N3

= p4

1 − q4

q3t

(1 − q2t )(1 − q3t )(1 − qt2)
. (D10)

Summing up the expression for all π ∈ S4, we obtain the
expressions for G̃�

4(t ) and G̃dbl
4 (t ) presented in the main text.

For completeness, we also give the optimal PGFs for n = 2
and n = 3:

G̃�
2(t ) = p2

1 − q2

1 + qt

1 − qt
,

G̃�
3(t ) = p3

1 − q3

1 + (q + 2q2)t − (2q2 + q3)t3 − q4t4

(1 − qt )(1 − q2t )(1 − qt2)
.

The size of the expressions grows rather quickly with n, so we
do not present them explicitly for n > 4. We see that obtaining
G̃n(t ) reduces to computing sums of many geometrical series,
which is a rather trivial task. The only nontrivial part of
this algorithm is its superexponential n!-complexity. So, this
algorithm is applicable only for small n; we used it up to a
practically relevant n = 8.

APPENDIX E: OPTIMALITY FOR THREE SEGMENTS

Here we will compare the secret key rates of all possible
schemes for a three-segment repeater, when swapping is ap-
plied as soon as possible. We will not consider any scheme
that delays swapping and swaps at the end, further increasing
the dephasing. For each scheme we calculate the random
variables for the waiting time and the dephasing. In case of the
dephasing the probability generating function is most useful,
whereas for the waiting time we only have to consider the
expectation value. Moreover, we will examine two different
types of schemes. The first type, indicated by “imm,” de-
scribes schemes where Alice and Bob measure their qubits
immediately. This scenario is useful for QKD applications.
The second type of schemes is indicated by a subscript “non.”
Here, Alice and Bob no longer measure immediately and this
type of schemes is important in applications beyond QKD. A
possible application is transferring quantum information be-
tween quantum computers by exchanging entangled photons.
In this case, Alice and Bob will not measure their qubits until
they share an entangled state.
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FIG. 16. Sequential arrangements of entanglement generation in
a three-segment repeater. The number in each segment corresponds
to the order when it starts.

Note that for schemes adapted to QKD, there is another
variation that would indeed allow to achieve higher secret
key rates than our optimal scheme, namely when Alice and
Bob send their signals at a high clock rate and the memory
stations can locally decide how to process the arriving qubits,
i.e., in a “node receives photon” (NRP) setting [29]. In our
model and optimization here, we assume throughout that the
distribution attempts in every segment are treated equally and
hence are limited by the same elementary time unit τ = L0/c f

incorporating all necessary signaling times. This also means
that we may overestimate the fixed swapping schemes, since
these can require signaling beyond neighboring stations.

1. Sequential schemes

Let us start with sequential schemes, where entanglement
generation only takes places in one segment after another.
There are three possibilities. First, one starts generating en-
tanglement in Alice’s or Bob’s segment and always connects
adjacent segments after the previous one has finished success-
fully. Note that here entanglement swapping is performed as
soon as possible. We will call this scheme “sequential a,” see
Fig. 16(a). The second possibility is given by starting with the
left or right segment, followed by the segment on the opposite
side. Thus no entanglement swapping is possible. Finally, the
middle segment is connected. Let us call this scheme “sequen-
tial b,” see Fig. 16(b). The third possible arrangement is given
by starting in the middle, continuing with the left or right
segment and finishing with the remaining segment on the op-
posite side, see Fig. 16(c). All other sequential arrangements
for three segments are equivalent to those three schemes.

These three sequential schemes share the same waiting
time, which is

K seq
3 = N1 + N2 + N3, (E1)

and has the expectation value

E
[
K seq

3

] = 3

p
. (E2)

Obviously, the dephasing of the schemes differs, and we
also have to distinguish between schemes measuring immedi-
ately and nonimmediately. At first, let us consider immediate
schemes, as it will turn out the random variables of the nonim-
mediate schemes are just scaled by a factor of two, although
it might not be the random variable of the same scheme. We

find

Dseq,a
3,imm = N2 + N3, Dseq,b

3,imm = 2N2 + N3,

Dseq,c
3,imm = 2N1 + N3. (E3)

Since N2 and N3 are i.i.d., the probability generating func-
tion (PGF) of Dseq,a

3,imm is given by

G̃seq,a
3,imm(t ) = gN2 (t ) · gN3 (t ) =

(
pt

1 − qt

)2

. (E4)

Due to the general relation

g2X (t ) = E[t2X ] = E[(t2)X ] = gX (t2) (E5)

valid for any discrete random variable X , we have

G̃seq,b
3,imm(t ) = gN2 (t2) · gN3 (t ) = p2t3

(1 − qt )(1 − qt2)
. (E6)

The same holds true for the PGF of the immediate measure-
ment scheme “sequential c,” because N1 and N2 are i.i.d.. Thus
its PGF is also given by

G̃seq,c
3,imm(t ) = p2t3

(1 − qt )(1 − qt2)
, (E7)

which shows, that this scheme is actually equivalent to “se-
quential b” and will not be considered separately in the later
comparison.

On the other hand, for nonimmediate measurements, we
find the random variables to be

Dseq,a
3,non = 2Dseq,a

3,imm = 2(N2 + N3),

Dseq,b
3,non = 2Dseq,b

3,imm = 2(2N2 + N3),

Dseq,c
3,non = 2Dseq,a

3,imm = 2(N1 + N3). (E8)

By using the same argument as before, we find the corre-
sponding PGFs

G̃seq,a
3,non(t ) = G̃seq,a

3,imm(t2), G̃seq,b
3,non(t ) = G̃seq,b

3,imm(t2),

G̃seq,c
3,non(t ) = G̃seq,a

3,imm(t2). (E9)

Again, the scheme “sequential c” is equivalent to another
scheme, but now it is “sequential a.” Therefore the nonimme-
diate version of “sequential c” will not be treated separately
from “sequential a.”

2. Two segments simultaneously at the start

When we generate entanglement in two segments simulta-
neously, we can do that by starting with these two segments
or by finishing with these two. Here we will consider the case
where one starts with them and we only have two different
arrangements. However, we still have to distinguish between
measuring immediately or not.

For the first scheme in consideration, the middle and the
left (or equivalently right) segment start generating entangle-
ment at once. They swap as soon as both are done and then the
last segment starts generating entanglement, see Fig. 17(a).
Let us call this scheme “start a.” The dephasing random vari-
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FIG. 17. Possible arrangements of entanglement generation in a
three-segment repeater, when two segments start simultaneously. The
number in each segment corresponds to the order when it starts.

ables in this case are

Dstart,a
3,imm =

{
N2 − N1 + N3 N1 � N2

2(N1 − N2) + N3 N2 < N1
,

Dstart,a
3,non = 2|N1 − N2| + 2N3. (E10)

The PGF of Dstart,a
3,non obviously reads as

G̃start,a
3,non (t ) = G̃2(t2) · gN3 (t2) = p3t2(1 + qt2)

(1 − q2)(1 − qt2)2
. (E11)

For immediate measurements, we use the methods pre-
sented in the previous section and derive the PGF of Dstart,a

3,imm,

G̃start,a
3,imm(t ) = p3t (1 − q2t3)

(1 − q2)(1 − qt )2(1 − qt2)
. (E12)

The second scheme is realized when we start with both the
left and the right segment at once. As in the second sequential
scheme there is no swapping possible, when both segments
finished and one has to wait for the middle segment. We will
call this scheme “start b.” Schematically, it can be seen in
Fig. 17(b). Here we have for the dephasing random variables

Dstart,b
3,imm = |N1 − N3| + 2N2,

Dstart,b
3,non = 2|N1 − N3| + 4N2 = 2Dstart,b

3,imm. (E13)

We can simplify the calculation, by considering the immediate
scheme first and using g2X (t ) = gX (t2). The PGF is given by

G̃start,b
3,imm(t ) = G̃2(t ) · g2N3 (t ) = p3t2(1 + qt )

(1 − q2)(1 − qt )(1 − qt2)
.

Hence, the PGF of the nonimmediate version is simply

G̃start,b
3,non (t ) = G̃start,b

3,imm(t2). (E14)

The waiting time is the same for both schemes in this
section and amounts to

K simult.
3 = max(N1, N2) + N3, (E15)

with an expectation value of

E[K simult.
3 ] = 5 − 3p

(2 − p)p
. (E16)

3. Two segments simultaneously at the end

Finally, the last possible arrangement of two simultaneous
segments is to start them in the last step. The waiting time
stays the same as in the previous case, but again, there are
two possibilities for the dephasing and two to perform mea-
surements,i.e., immediate or nonimmediate. The first scheme

FIG. 18. Possible arrangements of entanglement generation in a
three-segment repeater, when only one segment starts and the rest
finishes simultaneously. The number in each segment corresponds to
the order when it starts.

is realized, when we start with the segment in the middle and
when it finishes, the left and right segment start generating
entanglement simultaneously. We will call this scheme “end
a” and it is shown schematically in Fig. 18(a). In this case, the
dephasing random variables are given by

Dend,a
3,imm = N1 + N3, Dend,a

3,non = 2 max(N1, N3), (E17)

with the PGFs

G̃end,a
3,imm(t ) = G̃seq,a

3,imm(t ) =
(

pt

1 − qt

)2

,

G̃end,a
3,non(t ) = G̃par

n (t2) = p2t2(1 + qt2)

(1 − qt2)(1 − q2t2)
. (E18)

The second possibility is to start with the left or right
segment and after it finished generate entanglement simulta-
neously in the remaining segments. The schemes and random
variables are equivalent independent whether one starts with
the left or right segment. We will call this scheme “end b”
and its schematic representation, when starting with the left
segment, is shown in Fig. 18(b). Similarly to the scheme “start
a,” the dephasing random variables depended on the order of
successful entanglement generation.

Let us consider the scheme where we do not measure
immediately as an example. First, assume that we started with
the left segment and it finished successfully after N1 attempts.
Then both the middle and the right segment start generating
entanglement simultaneously. If the middle segments suc-
ceeds first after N2 attempts, we can swap immediately and
again have only one segment waiting. Eventually, the right
segment will succeed after N3 attempts, and we can also swap
it. In total the dephasing will equal Dend,b

3,non = 2N3, because 2N2

cancels out. This is the optimal case of this scheme.

FIG. 19. Possible arrangements of entanglement generation in
a three-segment repeater, when two segments start simultaneously
and the remaining segment starts as soon as one is successful. The
number in each segment corresponds to the order when it starts and
the star indicates that this segment starts as soon as one of the others
finished.
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TABLE VIII. The values of D�
3,non and D�

3,imm on the domains of
the partition.

Domain D�
3,non D�

3,imm

N1 � N2 � N3 2(N3 − N1) N3 − N1

N1 � N3 < N2 2(2N2 − N1 − N3) 2N2 − N3 − N1

N2 < N1 � N3 2(N3 − N2) N1 + N3 − 2N2

N2 � N3 < N1 2(N1 − N2) N1 + N3 − 2N2

N3 < N1 � N2 2(2N2 − N1 − N3) 2N2 − N3 − N1

N3 < N2 < N1 2(N1 − N3) N1 − N3

Alternatively, it could also happen that the right segment
finishes first, and we have two segments waiting for the middle
to succeed. In this case, we have Dend,b

3,non = 4N2 − 2N3. Hence,
in total the dephasing is

Dend,b
3,non =

{
2N3 N3 � N2

4N2 − 2N3 N3 < N2
. (E19)

A similar consideration yields the dephasing random variable
of the immediate measurement scheme to be

Dend,b
3,imm =

{
N3 N3 � N2

2N2 − N3 N3 < N2
. (E20)

As mentioned a few times so far, we can exploit that g2X (t ) =
gX (t2), and thus we calculate the PGF of the immediate

scheme first, which reads as

G̃end,b
3,imm(t ) = p2t (1 − q2t3)

(1 − qt )(1 − q2t )(1 − qt2)
. (E21)

Therefore the PGF of Dend,b
3,non is given by

G̃end,b
3,non(t ) = G̃end,b

3,imm(t2), (E22)

and we covered all possibles schemes of this section.

4. Overlapping schemes

Let us now turn our attention to mixed schemes, not only
combining sequential and parallel distributions as before, but
even “overlapping” them. Therefore, we will call the schemes
of this section overlapping schemes. The procedure is as
follows. We start generating entanglement in two segments
simultaneously and as soon as one of the two segments fin-
ishes, we start with the remaining one as well. Thus, the
two processes of entanglement generation are overlapping,
explaining the naming. In Fig. 19, a schematic version of the
overlapping schemes can be seen.

There are two different possible arrangements presented in
Figs. 19(a) and 19(b). In the former, the left (or equivalently
the right) and the middle segments start from the beginning.
This scheme will be called “overlapping, a.” The latter scheme
starts with both outer segments and will be called “overlap-
ping, b.”

FIG. 20. Comparison of secret key rates of three-segment repeaters performing immediate measurements for a total distance L and different
experimental parameters: (a) plink = 0.05, μ = μ0 = 0.97; (b) plink = 0.05, μ = μ0 = 1; (c) plink = 0.7, μ = μ0 = 0.97; (d) plink = 0.7, μ =
μ0 = 1; and (e) plink = μ = μ0 = 1. For all figures, a coherence time of τcoh = 0.1 s has been used.
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FIG. 21. Comparison of secret key rates of three-segment repeaters performing immediate measurements for a total distance L and different
experimental parameters: (a) plink = 0.05, μ = μ0 = 0.97; (b) plink = 0.05, μ = μ0 = 1; (c) plink = 0.7, μ = μ0 = 0.97; (d) plink = 0.7, μ =
μ0 = 1; and (e) plink = μ = μ0 = 1. For all figures, a coherence time of τcoh = 10 s has been used.

For the scheme “overlapping, a” we find with immediate
measurements the dephasing random variable to be

Dover,a
3,imm =

⎧⎪⎨
⎪⎩

N3 �1

2(N2 − N1) − N3 �2

N1 − N2 + N3 �3

, (E23)

where we have chosen the partition � = N3 = �1 � �2 � �3

given by the following inequalities:

�1 = N1 � N2, N2 − N1 � N3,

�2 = N1 < N2, N2 − N1 > N3,

�3 = N2 < N1. (E24)

The dephasing varies depending on the order in which the
segments finish, since one cannot swap or measure depending
on which segment is done first. Thus we have three different
cases. One can calculate the full PGF of the dephasing in a
similar way to the previous schemes and finds

G̃over,a
3,imm(t ) = p3t (1 + q − 2q2t − qt2 + q4t4)

(1 − q2)(1 − qt )2(1 − q2t )(1 − qt2)
. (E25)

For the nonimmediate version of the scheme “overlapping,
a,” we do not have to take the measurements into account,
but this still does not result in more symmetries simplifying
the expression. Hence, one has to consider all possible orders

separately and we find the dephasing

Dover,a
3,non =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2N3 �1

2(2(N2 − N1) − N3) �2

2N3 �3

2(N1 − N2) �4

, (E26)

where the partition in this case is given by

�1 = N1 � N2, N2 − N1 � N3,

�2 = N1 < N2, N2 − N1 > N3,

�3 = N2 < N1, N1 − N2 � N3,

�4 = N2 < N1, N1 − N2 > N3. (E27)

The resulting PGF reads as

G̃over,a
3,non (t ) = p3t2(1 + 2q − q(1 + q)t4 − q3t6)

(1 − q2)(1 − qt2)(1 − q2t2)(1 − qt4)
.

The other overlapping scheme possesses more symmetry,
thus we find more compact expressions for the random vari-
ables. It mainly depends on the relative difference of steps
between the outer segments. We find for the immediate and
nonimmediate schemes:

Dover,b
3,imm =

{
2N2 − |N1 − N3| |N1 − N3| < N2

|N1 − N3| |N1 − N3| � N2
,

Dover,b
3,non =

{
4N2 − 2|N1 − N3| |N1 − N3| < N2

2|N1 − N3| |N1 − N3| � N2
. (E28)
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FIG. 22. Comparison of secret key rates of three-segment repeaters performing nonimmediate measurements for a total distance L and
different experimental parameters: (a) plink = 0.05, μ = μ0 = 0.97; (b) plink = 0.05, μ = μ0 = 1; (c) plink = 0.7, μ = μ0 = 0.97; (d) plink =
0.7, μ = μ0 = 1; and (e) plink = μ = μ0 = 1. A coherence time of τcoh = 0.1 s has been used throughout.

By case analyses, we derive the PGFs

G̃over,b
3,imm(t ) = p3t (t + q(2 − t2(1 + q + q2t )))

(1 − q2)(1 − qt )(1 − q2t )(1 − qt2)
,

G̃over,b
3,non (t ) = G̃over,b

3,imm(t2). (E29)

Finally, the only missing piece is the waiting time of the
overlapping schemes and its expectation value. The random
variable of the waiting time is

Kover
3 = min(N1, N2) + max(|N1 − N2|, N3). (E30)

Its expectation value is found to be

E
[
Kover

3

] = 8 − 3p(3 − p)

p(2 − p)2 . (E31)

5. Parallel schemes

Here we only consider the potentially optimal scheme,
since all parallel schemes posses the same raw rate, but differ
in dephasing. In the optimal scheme, the dephasing is mini-
mized, such that it has the best secret key rate of all schemes
of this class.

The waiting time is Kpar
3 = max(N1, N2, N3) and following

(37) or Appendix A its expectation value is

E
[
Kpar

3

] = 1 + q(4 + 3q(1 + q))

1 + q − q3 − q4
. (E32)

The dephasing PGF can be computed with our partitioning
approach. The six domains and the values of the dephasing

variables in these domains are given in Table VIII. The final
result reads as

G̃�
3,non(t ) = p3

1 − q3

1 + q(1 + 2q)t2 − q2(2 + q)t6 − q4t8

(1 − qt2)(1 − q2t2)(1 − qt4)
,

G̃�
3,imm(t ) = p3

1 − q3

1 + q2t − 2q3t2 − 2q2t3 + q3t4 + q5t5

(1 − qt )2(1 − q2t )(1 − qt2)
.

6. Comparisons

Finally, as we have calculated all necessary statistical
quantities we are able to compare the previously discussed
schemes. Again as a remark, we only considered schemes
here, which swap as soon as possible, as delaying the en-
tanglement swapping increases the dephasing, which in turn
decreases the SKR.

First, we consider the immediate measurement schemes.
In Fig. 20 (τcoh = 0.1 s) and Fig. 21 (τcoh = 10 s), one can
see a comparison of all immediate measurement schemes
for a three-segment repeater using the previously discussed
schemes. In both figures, the SKR of the “optimal” scheme
is represented in orange. As mentioned earlier, the scheme
“seq, c” is equivalent to “seq, b” in this setting and thus not
considered separately. For both coherence times, the optimal
schemes outperforms all other schemes. Especially for shorter
distances, the optimal scheme performs clearly better than
others. Only for longer distances, where the rate of any three-
segment repeater drops, the schemes “over, b,” “over, a,” and
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FIG. 23. Comparison of secret key rates of three-segment repeaters performing nonimmediate measurements for a total distance L and
different experimental parameters: (a) plink = 0.05, μ = μ0 = 0.97; (b) plink = 0.05, μ = μ0 = 1; (c) plink = 0.7, μ = μ0 = 0.97; (d) plink =
0.7, μ = μ0 = 1; and (e) plink = μ = μ0 = 1. A coherence time of τcoh = 10 s has been used throughout.

“end, b” catch up, but do not surpass it. Typically, one would
not use this regime of a repeater, as the rates are too low.
Additionally, in the limit of increasing hardware parameters,
i.e., plink → 1, μ → 1, μ0 → 1, the optimal scheme keeps
performing the best. Thus we conclude that the immediate
measurement version of the optimal scheme is truly optimal
for n � 3.

Next, in Fig. 22 (τcoh = 0.1 s) and Fig. 23 (τcoh = 10 s),
one can see the same comparison of different swapping
schemes using nonimmediate measurements. Again, the “op-
timal” scheme is presented in orange. This time the sequential
schemes “seq, a” and “seq, c” are equivalent and thus are not
considered separately. As one can see, the optimal scheme
outperforms all other schemes in the ideal case when μ =
μ0 = 1 for all choices of τcoh and plink. Furthermore, it also
provides the highest secret key rate in the nonideal case until
close to the drop-off. The scheme “end a” surpasses it only at
those distances either close to where or after both start declin-
ing dramatically, thus increasing the achievable distance. As
discussed before, one would typically not operate the repeater
in this regime. However, if the main goal is to obtain the
longest achievable distance possible, then the scheme “end a”
performs the best. Overall, again our optimal scheme provides
the best secret key rate for the most realistic use scenarios.
Moreover, it is truly optimal in the limit of increasing hard-
ware parameters, i.e., plink → 1, μ → 1, and μ0 → 1. Thus
it will be beneficial to use the “optimal” scheme as technology
progresses and hardware improves. Hence, our conclusion for
nonimmediate schemes is again that the “optimal” scheme

is optimal with increasing hardware parameters for n � 3.
On the whole, we conjecture that the same is true for both
immediate and nonimmediate measurement schemes for all
n � 3-segment repeaters. This should be further investigated
in future research.

APPENDIX F: COMPARISON OF “OPTIMAL”
WITH FULLY SEQUENTIAL AND ALICE

IMMEDIATELY MEASURING (n = 8)

The fully sequential scheme, in which repeater segments
are sequentially filled with entangled pairs from, for example,
left to right is the overall slowest scheme leading to the small-
est raw rates. However, a potential benefit is that parallel qubit
storage can be almost entirely avoided. More specifically,
when the first segment on the left is filled and waiting for the
second segment to be filled too, the first segment waits for
a random number of N2 steps, whereas the second segment
always only waits for one constant dephasing unit (for each
distribution attempt in the second segment). Thus omitting the
constant dephasing in each segment, the accumulated time-
dependent random dephasing of the fully sequential scheme
has only contributions from a single memory pair subject to
memory dephasing at any elementary time step. On average,
this gives a total dephasing of (n − 1)/p, which is the sum
of the average waiting time in one segment for segments 2
through n, as discussed in detail in the main text.

In a QKD application, Alice’s qubit can be measured im-
mediately (and so can Bob’s qubit at the very end when the

023086-45



KAMIN, SHCHUKIN, SCHMIDT, AND VAN LOOCK PHYSICAL REVIEW RESEARCH 5, 023086 (2023)

FIG. 24. Comparison of eight-segment repeaters for a total distance L and different experimental parameters: (a) τcoh = 0.1 s, plink = 0.05,
μ = μ0 = 0.99; (b) τcoh = 0.1 s, plink = 0.05, μ = μ0 = 1; (c) τcoh = 0.1 s, plink = 0.7, μ = μ0 = 0.99; (d) τcoh = 0.1 s, plink = 0.7, μ =
μ0 = 1; (e) τcoh = 10 s, plink = 0.05, μ = μ0 = 0.99; (f) τcoh = 10 s, plink = 0.05, μ = μ0 = 1; (g) τcoh = 10 s, plink = 0.7, μ = μ0 = 0.99;
and (h) τcoh = 10 s, plink = 0.7, μ = μ0 = 1. The “optimal” scheme (red) performing BB84 measurements at the end is compared with the
fully sequential scheme (orange without the memory cutoff, green with the cutoff) performing immediate measurements on Alice’s/Bob’s
sides.

entangled pair of the most right segment is being distributed).
This way there is another factor of 1/2 improvement possible
for the effective dephasing, since at any elementary time step
there is always only a single memory qubit dephasing instead
of a qubit pair. In Fig. 24, for eight repeater segments, we
compare this fully sequential scheme and immediate measure-
ments by Alice and Bob with the “optimal” scheme (parallel
distribution and swap as soon as possible) where Alice and
Bob store their qubits during the whole long-distance distri-
bution procedure to do the BB84 measurements only at the
very end. We see that a QKD protocol in which Alice and
Bob measure their qubits immediately can be useful in order

to go a bit farther. However, note that in the “optimal” scheme
Alice and Bob may also measure their qubits immediately,
resulting in higher rates but also requiring a more complicated
rate analysis.

APPENDIX G: MIXED STRATEGIES FOR
DISTRIBUTION AND SWAPPING

In this Appendix, we shall illustrate that our formalism
based on the calculation of PGFs for the two basic random
variables is so versatile that we can also obtain the rates for
all kinds of mixed strategies. This applies to both the initial
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entanglement distributions and the entanglement swappings.
In fact, for the case of three repeater segments (n = 3), we
have already explicitly calculated the secret key rates for all
possible schemes with swapping as soon as possible, but with
variations in the initial distribution strategies, see Appendix E.
This enabled us to consider schemes that are overall slower
(exhibiting smaller raw rates), but can have a smaller accu-
mulated dephasing. While swapping as soon as possible is
optimal with regards to a minimal dephasing time, it may
sometimes also be useful to consider a different swapping
strategy. The most commonly considered swapping strategy
is doubling which implies that it can sometimes happen that
neighboring, ready segments will not be connected, as this
would be inconsistent with a doubling of the covered repeater
distances at each step. A conceptual argument for doubling
could be that for a scalable (nested) repeater system one can
incorporate entanglement distillation steps in a systematic
way. A theoretical motivation to focus on doubling has been
that rates are more easy to calculate—a motivation that is ren-
dered obsolete through the present work, at least for repeaters
of size up to n = 8. Nonetheless we shall give a few examples
for mixed strategies for n = 4 and n = 8 segments.

For n = 4 segments, in addition to those schemes discussed
in the main text, let us consider another possibility where
we distribute entanglement over the first three segments in
the optimal way and then extend it over the last segment.
Note that this scheme is a variation of the swapping strat-
egy, while the initial distributions still occur in parallel. As
a consequence, it can happen that either segment 4 waits
for the first three segments to accomplish their distributions
and connections or the first three segments have to wait for
segment 4. The scheme serves as an illustration of the rich
choice of possibilities for the swapping strategies even when
only n = 4. We have D31

4 (N1, N2, N3, N4) = D�
3(N1, N2, N3) +

| max(N1, N2, N3) − N4| and the PGF of this random variable

reads as G̃31
4 (t ) = p4

1−q4
P31

4 (q,t )
Q31

4 (q,t )
, with the following numerator

and denominator,

P31
4 (q, t ) = 1 + (q2 + 3q3)t + (q + 3q2 − q4 − q5)t2

+ (−2q2 − 4q3 − 4q4 + q5 + q6)t3

+ (−q2 − 3q3 − q4 − 3q6 − 3q7)t4

+ (−2q2 − q3 + 2q4 − 2q6 + q7 + 2q8)t5

+ (3q3 + 3q4 + q6 + 3q7 + q8)t6

+ (−q4 − q5 + 4q6 + 4q7 + 2q8)t7

+ (q5+ q6− 3q8− q9)t8− (3q7+ q8)t9 − q10t10,

Q31
4 (q, t ) = (1 − qt )(1 − q2t )(1 − q3t )(1 − qt2)

× (1 − q2t2)(1 − qt3).

If we take the derivatives [see Eq. (16)], we can obtain the
following relation:

E
[
Ddbl

4

] = E
[
D31

4

]
. (G1)

This means that the two random variables have the same
expectation values, even though their distributions are differ-

FIG. 25. The ratio given by Eq. (G2) as a function of α for p =
0.01 (corresponding to a segment length of 100 km for ideal link
coupling).

ent. For the secret key fraction, we need the averages of the
exponential of these variables, which essentially leads to the
values of the corresponding PGFs [see Eq. (17)]. These do
differ, as Fig. 25 illustrates. It shows the ratio

E
[
e−αD31

4
]

E
[
e−αDdbl

4
] = G̃31

4 (e−α )

G̃dbl
4 (e−α )

, (G2)

as a function of α. The two random variables have the
same average, but the average E[e−αD31

4 ] is larger than the
other, so in the scheme corresponding to the random variable
D31

4 (N1, N2, N3, N4) the distributed state has a higher fidelity
than the final state in the doubling scheme.

For the case n = 8, among a large number of other possi-
bilities to swap the segments, we consider the following three
(in addition, the doubling and optimal schemes are discussed
in the main text). The first scheme is to swap the two halves
of the repeater in the optimal way (for four segments) and
then swap the two larger segments. We loosely denote the
dephasing variable of these scheme as D44

8 , whose definition
reads as

D44
8 (N1, . . . , N8) = D�

4(N1, . . . , N4) + D�
4(N5, . . . , N8)

+ | max(N1, . . . , N4)

− max(N5, . . . , N8)|. (G3)

Another possibility is to divide the repeater in four pairs, swap
them and then swap the four larger segments optimally. The
expression for this dephasing variable D2222

8 is a straightfor-
ward translation of this description:

D2222
8 (N1, . . . , N8) = |N1 − N2| + . . . + |N7 − N8|

+ D�
4(max(N1, N2), . . . , max(N7, N8)).

(G4)

Finally, we can divide the segments into three groups, consist-
ing of two, four, and two segments. The middle group we swap
optimally (for four segments), and then we swap the three
larger segments in the optimal way (for three segments). The
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FIG. 26. The ratio in Eq. (G7) for sch = dbl (blue), 2222 (or-
ange), 242 (green), and 44 (red), as a function of α and for p = 0.01
(100 km segment length).

definition of the corresponding random variable D242
8 reads as

D242
8 (N1, . . . , N8) = |N1 − N2| + |N7 − N8|

+ D�
4(N3, . . . , N6) + D�

3(max(N1, N2),

× max(N3, . . . , N6), max(N7, N8)).
(G5)

The PGFs of all these variables have all the same form,

p8

1 − q8

P(q, t )

Q(q, t )
, (G6)

with appropriate polynomials P(q, t ) and Q(q, t ). The nu-
merator polynomials P(q, t ) are quite large and contain

FIG. 27. The ratio in Eq. (53) for sch = dbl (blue), 2222 (or-
ange), 242 (green), and 44 (red), as a function of p.

around one thousand terms, so we do not present them
here.

We can compare the performances of different schemes by
plotting the ratios

E
[
e−αDsch

8
]

E
[
e−αDopt

8
] = G̃sch

8 (e−α )

G̃opt
8 (e−α )

, (G7)

similar to Eq. (G2), for sch = dbl, 2222, 242, 44. We see that
among the five schemes the doubling scheme is the worst with
regards to dephasing, and the scheme 44 is the closest to the
optimal scheme, see Figs. 26 and 27. This means that the
commonly used parallel-distribution doubling scheme, though
fast in terms of K8, is inefficient in terms of dephasing D8 by
disallowing to swap when neighboring segments are ready on
all “nesting” levels [36].

APPENDIX H: TWO-SEGMENT “NODE-RECEIVES-PHOTON” REPEATERS

Figure 28 shows the BB84 rates in a two-segment quantum repeater based on the NRP concept with one middle station
receiving optical quantum signals sent from two outer stations at Alice and Bob. By circumventing the need for extra classical
communication and thus significantly reducing the effective memory dephasing, the minimal state and gate fidelity values can
even be kept constant over large distance regimes. For the experimental clock rate, we have chosen τclock = 10 MHz, limited by
the local interaction and processing times of the light-matter interface at the middle station.

APPENDIX I: CALCULATION FOR CABRILLO’S SCHEME

First, we consider two entangled states of a single-rail qubit with a quantum memory (γ ∈ R)

1

1 + γ 2
[|↑,↑, 0, 0〉 + γ |↑,↓, 0, 1〉 + γ |↓,↑, 1, 0〉 + γ 2|↓,↓, 1, 1〉]. (I1)

After applying a lossy channel with transmission parameter η = plink exp(− L0
2Latt

) to both optical modes, we obtain the following
state after introducing two additional environmental modes

1

1 + γ 2
[γ 2|↓,↓〉 ⊗ (η|1, 1, 0, 0〉 +

√
η(1 − η)(|1, 0, 0, 1〉 + |0, 1, 1, 0〉) + (1 − η)|0, 0, 1, 1〉)

+ γ |↑,↓〉 ⊗ (
√

η|0, 1, 0, 0〉 +
√

1 − η|0, 0, 0, 1〉) + γ |↓,↑〉 ⊗ (
√

η|1, 0, 0, 0〉 +
√

1 − η|0.0, 1, 0〉) + |↑,↑, 0, 0, 0, 0〉].
(I2)
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FIG. 28. Contour plots illustrating the minimal fidelity requirements to overcome the PLOB bound by a two-segment NRP repeater for
different experimental parameters: (a) τcoh = 0.1 s, plink = 0.05, m = 1500; (b) τcoh = 0.1 s, plink = 0.7, m = 1500; (c) τcoh = 10 s, plink =
0.05, m = 1.5 × 105; and (d) τcoh = 10 s, plink = 0.7, m = 1.5 × 105. In all contour plots, μ = μ0, τclock = 10 MHz, and F0 = 1 has been
used.

We apply a 50:50 beam splitter to the (nonenvironmental) optical mode and obtain the state

1

1 + γ 2

[
γ 2|↓,↓〉 ⊗

√
η(1 − η)

2
(|1, 0, 0, 1〉 + |0, 1, 0, 1〉 + |1, 0, 1, 0〉 − |0, 1, 1, 0〉)

+ γ 2|↓,↓〉 ⊗ η

2
(|2, 0, 0, 0〉 − |0, 2, 0, 0〉) + γ 2|↓,↓〉 ⊗ (1 − η)|0, 0, 1, 1〉

+ γ |↑,↓〉 ⊗
(√

η

2
(|1, 0, 0, 0〉 − |0, 1, 0, 0〉) +

√
1 − η|0, 0, 0, 1〉

)

+ γ |↓,↑〉 ⊗
(√

η

2
(|1, 0, 0, 0〉 + |0, 1, 0, 0〉) +

√
1 − η|0, 0, 1, 0〉

)
+ |↑,↑, 0, 0, 0, 0〉

]
. (I3)

We can obtain entangled memory states by postselecting sin-
gle photon events at the detectors. If we detect a single photon

at the first detector and no photon at the other, we obtain
the following (unnormalized) two-memory reduced density
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operator (see Ref. [[45], Appendix E])

γ 2η

(1 + γ )2
[|�+〉〈�+| + γ 2(1 − η)|↓,↓〉〈↓,↓|]. (I4)

When using simple on/off detectors instead of photon number
resolving detectors (PNRD) two-photon events will also lead
to a detection event. The two-memory state after a two-photon
event is given by

γ 4η2

4(1 + γ 2)2
|↓,↓〉〈↓,↓|. (I5)

Thus the probability of a successful entanglement genera-
tion is given by pPNRD = 2γ 2η

(1+γ 2 )2 (1 + γ 2(1 − η)), when using

PNRD, and pon/off = 2γ 2η

(1+γ 2 )2 (1 + γ 2(1 − 3
4η)), when using

on/off detectors. The factor 2 comes from the possibility to
detect the photon at the other detector instead, although in this
case the memory state differs by a single-qubit Z-operation.
After a suitable twirling, we can find a one-qubit Pauli channel
which maps the state |�+〉〈�+| to the actual memory state,
i.e., we can claim that the loss channel acting on the optical
modes induces a Pauli channel on the memories. We can

parametrize this Pauli channel by the tuple of error probabil-
ities (pI , pX , pY , pZ ) and for the case with PNRDs this tuple
is given by

1

1 + γ 2(1 − η)

(
1,

γ 2

2
(1 − η),

γ 2

2
(1 − η), 0

)
, (I6)

and for on/off detectors it is given by

1

1 + γ 2
(
1 − 3

4η
)(

1,
γ 2

2

(
1 − 3

4
η

)
,
γ 2

2

(
1 − 3

4
η

)
, 0

)
.

(I7)

When we consider an n-segment repeater, we have to consider
a concatenation of n such Pauli channels and we finally obtain
the error rates

ex = 1

2

(
1 − μn−1μn

0
(2F0 − 1)nE[e−αDn ]

(1 + γ 2(1 − η))n

)
, (I8)

ez = 1

2

(
1 − μn−1μn

0

(
1 − γ 2(1 − η)

1 + γ 2(1 − η)

)n
)

, (I9)

in the case of PNRDs. When we consider on/off detectors, we
can simply replace η by 3

4η in the error rates.
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The Gottesman-Kitaev-Preskill (GKP) code offers the possibility to encode
higher-dimensional qudits into individual bosonic modes with, for instance,
photonic excitations. Since photons enable the reliable transmission of quan-
tum information over long distances and since GKP states subject to photon
loss can be recovered to some extent, the GKP code has found recent applica-
tions in theoretical investigations of quantum communication protocols. While
previous studies have primarily focused on GKP qubits, the possible practi-
cal benefits of higher-dimensional GKP qudits are hitherto widely unexplored.
In this paper, we carry out performance analyses for three quantum repeater
protocols based on GKP qudits including concatenations with a multi-qudit
quantum polynomial code. We find that the potential data transmission gains
for qudits are often hampered by their decreased GKP error-correcting capa-
bilities. However, we also identify parameter regimes in which having access to
an increased number of quantum levels per mode can enhance the theoretically
achievable secret-key rate of the quantum repeater. Some of our protocols share
the attractive feature that local processing and complete error syndrome iden-
tification are realizable without online squeezing. Provided a supply of suitable
multi-mode GKP states is available, this can be realized with a minimal set of
passive linear optical operations, even when the logical qudits are composed of
many physical qudits.
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1 Introduction
Quantum technologies rely on the availability of precisely controllable quantum systems,
e.g., qubits, which can be realized with various physical implementations. In 2000, Gottes-
man, Kitaev, and Preskill (GKP) proposed a method to encode finite-dimensional quantum
systems (qudits) into quantum-mechanical harmonic oscillators [1]. More recent theoreti-
cal developments include further proposals and assessments of GKP state preparation with
superconducting devices [2, 3]. After years of experimental progress, GKP qubits finally
have been demonstrated in superconducting microwave cavities [4-6] and in the harmonic
motion of ions [7, 8].

In the optical domain, on the other hand, preparing GKP states is notoriously dif-
ficult. The main problem is that reliable and strong nonlinearities are required but not
readily available. In one approach, Gaussian Boson Sampling [9, 10], one exploits that
measurements can induce nonlinear effects. Here, Gaussian resource states are combined
via passive linear optics and partially read out via photon-number resolving measurements.
In this way, high-quality optical GKP states can be obtained, albeit only probabilistically.
Gaussian Boson Sampling requires detectors with a sufficiently high level of photon-number
resolution as well as increasingly complex linear circuits [9, 10]. To shift the experimental
burden associated with this, alternative approaches have been proposed [11, 12]. If non-
Gaussian resource states or non-Gaussian optical elements are available, a recursive appli-
cation of short linear circuits and homodyne measurements is sufficient for the preparation
of GKP states [13-15]. There also exist alternatives which do not rely on measurements
at all [15, 16]. A final option is to combine photon-subtraction- and homodyne-based ele-
ments to convert many-mode Gaussian cluster states into non-Gaussian few-mode states,
which can be further processed into GKP states [17]. Such an approach is compatible with
measurement-based, continuous-variable quantum computation [15,18].

While the best method for creating optical GKP states has not yet been identified,
it is safe to assume that their physical realization will require extremely sophisticated
experimental procedures. Once such technology is available, however, it will be compara-
tively straightforward to extend it to higher-dimensional GKP qudits and to concatenated
multi-qubit or -qudit GKP codes. For example, multiple GKP qubits can be entangled
via Gaussian operations [1]. Furthermore, ordinary beam splitters enable the generation of
certain collective GKP ancilla states such as Bell states with GKP qubits [19] or qudits [20],
as well as the collective detection of their error syndromes [20]. To guide such future ex-
periments, we find it meaningful to investigate the performance of advanced multi-qudit
GKP protocols in the realm of quantum communication.

The GKP encoding enables the correction of small displacement errors of the oscilla-
tor’s quadratures, in particular, those that originate from typical Gaussian error channels
such as amplitude damping or photon loss. However, large displacement errors cannot be
avoided completely, especially for realistic, finitely-squeezed GKP states. This can cause
misidentification of error syndromes, which leads to discrete logical errors on the affected
GKP qudits.

In order to correct such errors, a higher-level quantum error-correcting code (QECC)
can be employed to encode a few logical qudits into a larger number of physical GKP
qudits [3, 21-26]. Hereby, the error correction capability of the higher-level QECC can
benefit from analog information in the single-qudit GKP syndrome measurements [21-24].
In order to satisfy the quantum singleton bound n− k ≥ 2(d− 1), every QECC with code
parameters Jn, k, dK must trade off the number of correctable (arbitrary) single-qudit errors
against the number of physical qudits per logical qudit, which are given by b(d − 1)/2c
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and n/k, respectively [27-29]. An optimal trade-off is obtained by those QECCs that meet
the quantum singleton bound with equality and are called maximum distance separable
(MDS) codes. While, for qubits, the only [30] nontrivial (i.e., d ≥ 3 and k ≥ 1) MDS code
encodes one logical qubit into five physical qubits [31], there is a plethora of MDS codes for
higher-dimensional qudits. Such QECCs are explicitly available in the form of quantum
polynomial codes, which exist for every qudit dimension being a prime power [32-35].

Currently, experimental realizations of long-distance quantum communication protocols
are limited by the rapid decay of photonic signals that are sent through optical fibers. This
process is formally described by a pure-loss bosonic channel L(η), which arises from mixing
the bosonic signal mode with an environmental mode in the vacuum state using a beam
splitter with transmittance η. In the long-distance limit of η → 0, the secret-key capacity
of the single-mode pure-loss channel scales linearly with η [36], more precisely, it is given by
− log2(1− η) ≈ 1.44 η [37]. In consequence, the secret-key rate of point-to-point quantum
key distribution (QKD) is exponentially suppressed in the length L of an optical fiber,
which typically has a transmittance of η = exp(−L/22 km).

To overcome this problem, quantum repeaters have been proposed [38]. By introducing
repeater stations, a long channel is split into multiple shorter ones. To cope with the loss,
different strategies have been conceptualized and, subsequently, been classified into three
so-called generations of quantum repeaters [39]. These generations fundamentally differ
in their speed of operation and in the level of technological maturity required for their
realization.

First-generation quantum repeaters are based on heralded, probabilistic entanglement
distribution [38]. Once a Bell pair is successfully distributed between two neighboring re-
peater stations, it is stored in local quantum memories, where it resides until a second Bell
pair, which connects the two repeater stations to a third one, is created. Whenever two
parts of different Bell pairs are present in a single repeater station, entanglement swapping
can be executed, which results in a single Bell pair ranging over a larger distance. This
process is repeated until a long-distance Bell pair is shared between Alice and Bob. In ad-
dition to channel loss, unavoidable operational gate and storage errors pose a challenge for
quantum repeaters. To cope with such errors, first-generation quantum repeaters employ
nested entanglement purification [40], a probabilistic protocol for the distillation of multi-
ple low-fidelity Bell pairs into a smaller number of states with higher fidelities, involving
two-way classical communication. In the worst case, entanglement purification has to be
performed across the total distance L of the entire quantum repeater chain, which slows
down the achievable repetition rate to c/L or less, where c = 2.14× 108 m

s is the speed of
photons in fiber (for both classical and quantum signaling).

To avoid this slow-down, second-generation quantum repeaters [41] replace entangle-
ment purification by QECCs for the local memories. With this modification in place, the
rate bottleneck is now posed by classical communication between neighboring repeater
stations, which are separated by a distance of L0. Only after a failed entanglement dis-
tribution attempt has been heralded, the quantum memories can be freed up for the next
attempt. Therefore, the improved upper bound on the repetition rate is now given by
c/L0, which is typically on the order of 1 kHz for L0 ∼ 100 km to 1MHz for L0 ∼ 100m.
The only possibility to speed up the classical two-way communication is to reduce L0,
i.e., to invest in a larger number of, realistically imperfect, faulty repeater stations whose
quantum information must be consistently protected by the QECC.

Finally, third-generation quantum repeaters enable ultrafast quantum communication
as they dispense with the temporary storage of quantum information and classical two-way
communication altogether [42-44]. Instead, these repeaters employ QECCs to correct both
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channel losses and operational errors. The repetition rates in this case are only limited by
the speed of state preparations, local gate operations, and measurements in the individual
repeater stations. Whereas the preparation of QECC-encoded multi-photon states typically
relies on some form of light-matter interaction, all other components of a third-generation
quantum repeater can, in principle, be realized in an all-optical fashion [45-49].

In this paper, we theoretically analyze the performance of third-generation quantum
repeaters based on optical GKP qudits. Our investigation also includes cases where the
GKP code is concatenated with a higher-level QECC. Here, we focus on quantum poly-
nomial codes that previously have been considered in combination with multi-mode and
Fock-encoded qudits [50-53]. For GKP-encoded states, similar performance studies have
only been carried out in the special case of qubits [54-56]. Our work thus closes the gap
between these two approaches to a certain extent as it offers a treatment of the remaining
case of GKP qudits. The consideration of qudits, which can transmit more quantum infor-
mation per channel use than qubits, in the context of GKP and third-generation quantum
repeaters is particularly attractive due to the existence of hardware-efficient GKP-qudit
operations and syndrome extraction routines based on linear-optical elements alone. In
this way, the only fundamental experimental challenge that remains is to provide a supply
of suitable multi-mode GKP ancilla states, a problem that can be tackled independently.

This paper is structured as follows. In Sec. 2, we describe the details of our study:
we begin with introducing the repeater protocols under investigation in Secs. 2.1 and 2.2
and proceed with our noise model in Sec. 2.3. In Sec. 3, we present the secret-key rates
obtainable with the different GKP qudit repeater protocols and discuss the influence of
various experimental parameters. Finally, in Sec. 4, we summarize our results and conclude
with a recommendation of the most promising quantum repeater protocol based on GKP
qudits as identified in this work.

2 Setting
GKP codes encode a D-dimensional qudit within the Fock space F of a quantum mechan-
ical harmonic oscillator [1]. We denote the annihilation operator of the oscillator by â and
its quadrature operators by p̂ = i√

2(â† − â) and q̂ = 1√
2(â† + â). For simplicity, we focus

in this paper on the square GKP code, which is defined as the D-dimensional subspace of
F that is invariant under the action of SX = exp(−i

√
2πDp̂) and SZ = exp(i

√
2πDq̂). By

repeated non-destructive measurements of the stabilizer operators SX and SZ , followed by
appropriate displacement operations (or, at least, through tracking of the corresponding
generalized Pauli frame), one can enforce the state of the oscillator to (effectively) remain
in the GKP code space. Since the logical Pauli operators of the square GKP code are
given by X = exp(−i

√
2π
D p̂) and Z = exp(i

√
2π
D q̂), it is thereby possible (in the idealizing

limit of perfect GKP states) to correct arbitrary displacement errors that are smaller than√
π/2D in magnitude. To implement two-qudit gates between GKP qudits, one can utilize

common two-mode Gaussian gates. For example, on the level of GKP qudits, the bosonic
CSum-gate, exp (−iq̂1p̂2), acts as a two-qudit controlled-X gate, CX = ∑D−1

k=0 |k〉〈k|1⊗Xk
2 .

A similarly defined CZ-gate is implemented by means of a CPhase-gate, exp (iq̂1q̂2).

2.1 Repeater protocols
Since GKP qudits can be encoded into photons, which are the ideal carriers of "flying"
quantum information propagating at maximal speed, they have been envisioned in the
context of quantum communication [55-57]. In this paper, we investigate certain quantum
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communication protocols that only require qudit Clifford operations and generalized Pauli
measurements [58], which can be simply realized with GKP qudits by means of Gaussian
optics and homodyne detection, respectively. More precisely, we analyze and compare the
performance of three third-generation quantum repeater protocols introduced in the follow-
ing subsections. For each protocol, the term “qudit” may either refer to a bare (physical)
GKP qudit or to an ensemble of multiple GKP qudits encoding a single (logical) qudit
using a higher-level QECC, in particular, in combination with Knill’s error-correction-by-
teleportation procedure [20,59]. Even in the absence of a higher-level QECC, our protocols
represent instances of error-corrected (third-generation) quantum repeaters, as the avail-
ability of GKP syndrome information facilitates the correction of displacement errors to a
certain extent.

2.1.1 Two-way teleportation protocol with classical post-amplification

The first of the three quantum repeater chains under investigation is portrayed in Fig. 1 (a).
For this protocol, every repeater station prepares a pair of qudits in a (logical) Bell state.
One of the qudits is sent in the direction of the next repeater station, while the other one
is sent backward. In the middle between two neighboring repeater stations, the forward-
and backward-propagating qudits are joined in a (logical) Bell measurement, which is im-
plementable on the physical level with (transversal) beam splitters and two homodyne
detectors per physical Bell measurement [20]. During the transmission from the repeater
stations to the central Bell measurement apparatus, the states of the qudits are altered
due to the finite transmittance of the optical fiber channel. For the general case of many
physical qudits representing one logical qudit, the optical loss channels act individually
and independently (i.i.d.) upon the different modes of the physical multi-mode state that
propagates through each fiber segment. To facilitate a direct comparison with the other
protocols, we denote the channel transmittance by √η = exp(−L0/2Latt), as the relevant
length of the fiber is given by L0/2 here. Throughout this paper, L0 denotes the dis-
tance between two adjacent repeater stations, and Latt = 22 km is the attenuation length
of a typical fiber at the telecommunication wavelength of 1550 nm. In order to compen-
sate for the loss-induced state change (with damped quadrature amplitudes), the classical
measurement signal of the Bell measurements needs to be correspondingly amplified by a
factor of √η−1 before decoding the GKP syndrome. Overall, this protocol produces an
imperfect Bell pair ranging from one end of the repeater chain to the other. Note that
classical communication is only needed for post-processing and, therefore, it does not slow
down the repetition rates of this protocol. Further note that for the case of a logical qudit
composed of many physical qudits, classical post-amplification is performed individually
for each physical Bell measurement to obtain the syndrome of the higher-level QECC [20].

2.1.2 One-way teleportation protocol with optical pre-amplification

As a modification of the protocol from Sec. 2.1.1, we also consider a quantum repeater
chain where the Bell measurements are executed within the repeater stations, see Fig. 1 (b).
Here, only one qudit per Bell pair is transmitted through the fiber channel. This time, the
transmittance is given by η = exp(−L0/Latt) because the traveling distance of the photons
now covers a full repeater segment, i.e., twice the distance as in the previous scenario. To
cope with the fiber losses, an optical pre-amplification channel A (η−1) is i.i.d. applied
to each (physical) GKP mode before it is sent through the fiber; this step replaces the
classical post-amplification of the measurement signal from Sec. 2.1.1.
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Figure 1: Unit cells of the quantum repeater protocols considered in this work. The transmittance
η = exp(−L0/Latt) of the bosonic pure-loss channel L(η) is exponentially suppressed in the distance
L0 between adjacent repeater stations (dashed blue boxes). Here, the qudits can be either individual
GKP qudits or logical qudits that are comprised of multiple GKP qudits by means of a higher-level
Jn, 1, dKD QECC. (a) In the two-way teleportation protocol, every repeater station prepares two
qudits in the maximally entangled state |Φ〉 = 1√

D

∑D−1
k=0 |k, k〉. One of the two qudits is sent forward

and the other one backward. After propagating a distance of L0/2, at which each physical mode has
been subject to a loss channel L(√η), a Bell measurement (BM) is performed. (b) Also in the one-way
teleportation protocol, two qudits are prepared in state |Φ〉. In contrast to (a), only one of the qudits
is sent to an adjacent repeater station. To compensate for loss, a quantum-limited amplification channel
A(η−1) with gain η−1 is applied to each of the physical GKP modes. After propagating a distance
of L0, a BM combines the forward-moving qudit with the stationary qudit of the subsequent repeater
station. (c) The one-way half-teleportation protocol is a GKP-adaptation of a previously-studied
discrete-variable protocol [53]. Here, we add measurements to convert displacement errors into Pauli
errors. Overlined ancilla states represent codewords of the higher-level Jn, 1, dKD QECC, while ancilla
states without overscore stand for GKP codewords. The CX-gates correspond to transversal CSum-
gates and the CZ-gates corresponds to semi-transversal CPhase-gates. Measurements of q and p
denote the measurement of the position and momentum quadrature, respectively. Loss and amplifier
channels are again to be understood to act individually and independently on the physical GKP modes.
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2.1.3 One-way half-teleportation protocol with optical pre-amplification

The utilization of a Bell measurement (protocols described in Sec. 2.1.1 and Sec. 2.1.2)
provides GKP syndrome information for both quadratures. This facilitates the correction
of displacement errors on the level of the (physical and logical) GKP qudits. For the final
repeater chain under consideration, on the other hand, every repeater station is respon-
sible for preparing and measuring only a single logical GKP qudit, see Fig. 1 (c). This
protocol has two core components. First, a lower-level GKP error correction converts nat-
urally occurring Gaussian displacement errors into Pauli errors on the physical qudits, see
Sec. 2.3.3. Second, a higher-level QECC is utilized to cope with the resulting Pauli errors.
At the start of the repeater chain, Alice prepares two higher-level logical qudits in the state
|+〉 = ∑

k |k〉/
√
D and entangles them with a logical CZ-gate. Since we restrict ourselves

to quantum polynomial codes, the CZ-gate admits a semi-transversal implementation with
favorable error-spreading properties [33]. Alice stores one of the logical qudits and to the
second one, she applies a quantum-limited amplifier with gain η−1 to each of the physical
GKP modes before she sends them jointly through a lossy fiber of transmittance η to the
first repeater station, where the incoming logical qudit is entangled with a new logical
qudit in state |+〉. A subsequent destructive, (physical) quditwise p-measurement effec-
tively transfers the encoded quantum information onto the next qudit and simultaneously
delivers syndrome information involving X-stabilizers. These steps are then repeated at
every repeater station. Besides yielding higher-level X-syndromes, the p-measurements
are also responsible for providing lower-level GKP syndrome information p mod

√
2π/D.

The physical CZ-gates propagate Gaussian p-errors on one mode into q-errors on the next
one. To prevent these q-errors from merging with q-errors that occur at the subsequent
transmission, we introduce an additional ancilla-based GKP syndrome measurement in
every repeater station. This can be done in multiple ways, as discussed in App. B.2. To
complete the protocol, all measurement results are communicated to Bob, who applies a
suitable correction operator depending on the measurement outcomes [52]. Assuming N
is even and in the absence of errors, this protocol is equivalent to N/2 teleportation sub-
routines spread over N + 1 different laboratories. For this reason, we refer to this protocol
as half-teleportation.

2.2 Some comments on potential realizations of qudit repeaters
To compensate for fiber loss, it is crucial to amplify the signal. For the two protocols in
Secs. 2.1.1 and 2.1.2, one may opt between optical pre-amplification and classical post-
amplification. For the half-teleportation protocol in Sec. 2.1.3, on the other hand, optical
pre-amplification is the only option. This is because the GKP qudits need to be correctly
scaled, i.e., they need to be in the GKP code space up to a displacement, before the
CZ-gate is applied. Since classical post-amplification can be carried out conveniently in
software, lacking this option may be considered as a disadvantage of the half-teleportation
protocol.

While we analyze their performance for GKP qudits, these protocols can be straight-
forwardly adapted to other qudit encodings, such as multi-mode (MM) qudits, which
have been experimentally demonstrated in the context of (repeaterless) higher-dimensional
quantum key distribution in the form of orbital angular momentum [60] and time-bin qu-
dits [61]. Two of the three repeater protocols under consideration rely on Bell measure-
ments. For GKP qudits, a deterministic Bell measurement can easily be implemented with
static linear optics by employing a balanced beam splitter and continuous-variable homo-
dyne measurements. Experimental implementations of Bell measurements for MM-encoded
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qudits, on the other hand, are disproportionately more involved. Moreover, deterministic
CX-gates for MM qudits require strong nonlinearities that are typically mediated through
auxiliary matter qudits, which reduces the achievable repetition rates to the order of MHz.
This is in stark contrast to all-optical implementations that can reach GHz repetition rates.
An attempt to circumvent this shortcoming of MM qudits is based on probabilistic linear
optical Bell measurements, enabling an all-optical error correction step at every repeater
station [45-49]. Such probabilistic Bell measurements cannot exceed 50% for MM qubits
in the simplest setting without additional resources such as photonic ancilla states [62-64].
For a deterministic Bell measurement, nonlinear optics is required. Furthermore, prob-
abilistic unambiguous state discrimination measurement of the corresponding two-qudit
Bell states, making only use of linear optics and photon counting without ancilla photons,
is impossible for MM qudits with D > 2 [65,66]. Therefore, overall, the GKP concept and
the GKP-based QR protocols presented in this work represent a unique way to combine
an increased communication capacity based on photonic qudit encoding with an enhanced
loss (and error) robustness based on photonic qudit quantum error correction.

2.3 Noise model
GKP codes are designed to correct displacement errors. As we review next, this allows
us to model photon loss and imperfect GKP state preparation with incoherent Gaussian
displacement channels. For our error analyses, it will suffice to keep track of their variances.

2.3.1 Transmission loss and coupling inefficiencies

The bosonic pure-loss channel L(η) is commonly used to model fiber loss and coupling
inefficiencies in quantum communication protocols [67, 68]. When L(η) is applied to a
GKP state, its quadratures are damped, which shrinks the GKP lattice. To rescale the
lattice, one has to amplify the signal. Depending on whether this amplification is carried
out optically before L(η), optically after L(η), or classically after the measurement of a
quadrature operator, the effective error channel on the GKP subspace is altered.

For the one-way protocols in Secs. 2.1.2 and 2.1.3, we consider the usage of an optical
amplification channel A(η−1). If A(η−1) is applied after L(η), the result is a Gaussian
displacement channel with variance σ2 = (1 − η)/η [54]. If A(η−1) is applied before
L(η), however, the variance is improved to σ2 = 1 − η, as this avoids amplifying noise
that occurs during transmission [57]. In our analyses of the one-way protocols, we will
therefore consider the latter strategy. Furthermore, we will assume a total transmittance
of ηtot = ηc exp (−L0/Latt), where ηc denotes the efficiency for coupling into the fiber
(ηc = 0.99 unless stated otherwise) and Latt = 22 km is the attenuation length.

For the two-way teleportation-based protocol in Sec. 2.1.1, it is possible and beneficial
to replace A(√η−1) with a classical amplification of the measured signal. Effectively, this
turns the loss into a Gaussian error channel with variance σ2 = 1/√ηtot − 1 [56], where
ηtot = η2

c exp (−L0/Latt) takes into account that, in a two-way protocol, two signals are
coupled into the fiber.

2.3.2 Approximate GKP state generation

The second, important noise contribution arises during the preparation of GKP states. In
position basis, the state vector of an ideal square GKP qudit takes the form

|j〉 =
∑

k∈Z

∣∣∣∣∣q̂ =
√

2π
D

(j +Dk)
〉
, (1)
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where j ∈ {0, . . . , D−1} labels a computational basis state. These ideal states are unphys-
ical as they are neither normalizable nor superpositions of finite-width peaks. To describe
normalizable, physical instances of GKP states and eventually also predict real-world ex-
perimental performances, we instead consider approximate GKP states for which multiple
realizations have been proposed that are essentially1 equivalent [1,69,70]. Normalizability
can be restored using an overall slowly decaying Gaussian envelope and the delta peaks can
be approximated with (a still infinite number of) highly squeezed Gaussian peaks. This
results in approximate GKP states of the form

∣∣∣j̃
〉
∝
∑

k∈Z
exp

(
−πκ

2

D
(j +Dk)2

)∫ ∞

−∞
dq exp


−

(q −
√

2π
D (j +Dk))2

2∆2


 |q̂ = q〉, (2)

where ∆ and κ are squeezing parameters corresponding to the peaks’ width in position and
momentum representation, respectively. Alternatively, |j̃〉 can be interpreted as an ideal
GKP state |j〉 to which coherent Gaussian displacements have been applied, i.e.,

∣∣∣j̃
〉
∝
∫

R2
du dv exp

(
−1

2

(
u2

γ2 + v2

δ2

)
+ i
(−up̂+ vq̂√

2

))
|j〉, (3)

where the squeezing parameters γ and δ are in one-to-one correspondence to ∆ and κ, see
Thrm. 1 in Ref. [70]. In this work, we only consider the symmetric case of γ = δ. As
a further simplification, we assume incoherent Gaussian displacements with variance σ2

sq,
which can be understood as a twirling-approximation [22, App. A]. Numerical simulations
confirm that such an approximation does not overestimate the approximate GKP state’s
fidelity [71]. Following Refs. [22,69,72], we define the squeezing parameter (given in dB),

sGKP = −10 log10

(
σ2
sq

σ2
vac

)
, (4)

where σ2
vac = 1/2 denotes the quadrature variance of the vacuum state.

By means of a higher-level QECC, it is possible to concatenate multiple approximate
GKP qudits, each of which is modeled by an ideal GKP state followed by Gaussian squeez-
ing errors, into a single logical qudit. The corresponding unitary encoding circuit may
redistribute the error probabilities between the modes, which in principle leads to corre-
lated errors [52]. The resulting error probabilities have a complicated dependence on the
selected encoding circuit, thus, they cannot be easily captured in full generality in our
analytical model. Therefore, we leave such details for future work. For the purpose of the
present investigation, we are satisfied with a noise model, where unphysical, ideal GKP
states are first encoded using a higher-level QECC and, afterward, physicality is restored
by applying Gaussian squeezing channels i.i.d. to each qudit, as motivated above.

2.3.3 Converting Gaussian noise into Pauli errors

The purpose of the GKP error-correction step shown in Fig. 1 is to discretize the continuous
displacement errors that build up on the GKP qudits. In general, a single-qudit Pauli
error channel is completely described by its joint error probability distribution of X- and

1The state given in Eq. (2) is not symmetric under exchange of position and momentum. However, this
state can be squeezed by a factor of

√
1 + κ2∆2 to obtain the parameterization given in Eq. (3).
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Z-errors [52]. We denote such a distribution by

P(X,Z) =




P (X0, Z0) . . . P (X0, ZD−1)
...

. . .
...

P (XD−1, Z0) . . . P (XD−1, ZD−1)


 . (5)

Let us calculate, for a square-lattice GKP qudit, the Pauli error channel that results from
a Gaussian noise channel with zero mean and a covariance matrix Σsq = σ2I (with respect
to q and p). We find that X- and Z-errors are independent because the same is true for
the two Gaussian random variables describing q- and p-shifts. In other words, the matrix
Psq(X,Z) = Psq(X)⊗Psq(Z) factors into the outer product of the error probability vectors
that store the marginal distributions of X- and Z-errors. By symmetry of the square
lattice, we have Psq(X) = Psq(Z). The probability to suffer k ∈ {0, . . . , D − 1} shifts can
be expressed as

Psq(Xk, σ2) =
∑

j∈Z

∫ √ 2π
D

(jD+k+ 1
2 )

√
2π
D

(jD+k− 1
2 )

1√
2πσ2

exp
(
− q2

2σ2

)
dq (6)

=
∑

j∈Z

1
2

(
erf

(√
2π
D

jD + k + 1
2

σ

)
− erf

(√
2π
D

jD + k − 1
2

σ

))
,

where erf(x) = 2√
π

∫ x
0 exp(−q2)dq is the error function. For our purposes, it is sufficient to

keep only the three terms with |j| ≤ 1.

3 Secret-key rates of quantum repeaters
The central figure of merit that we employ to compare the performance of different repeater
protocols is the secret-key rate (SKR) per channel use. More precisely, we use log2(D) −
H(P), which is a lower bound on the two-way capacity [37], where H(P) denotes the
Shannon entropy of a Pauli error probability distribution P as in Eq. (5). Note that this
bound can be achieved by a qudit generalization (using D + 1 bases, assuming D to be
prime) of the six-state protocol [73] in the asymptotic limit, where almost every round the
same basis is used [74]. Moreover, if X- and Z-errors are independent, the same rate is
obtainable with a generalization of the BB84 protocol [75] (2 bases, arbitrary D).2

3.1 Repeater performance with GKP error correction only
For near-term applications, it is certainly more convenient to operate a quantum repeater
with bare GKP qudits and not with multiple GKP qudits in a QECC. To guide such
initial experiments, we begin our discussion with this important special case. For the two
protocols considered with bare GKP qudits, which are described in Secs. 2.1.1 and 2.1.2,
lower-level error correction is performed via a teleportation step on the logical level of
the GKP code, which leads to independent X- and Z-errors. As mentioned above, the
SKR per channel use is thus given by log2(D) − H(P) not only for the generalized six-
state protocol (D prime) but also for the generalized BB84 protocol (D arbitrary). The
precise value of H(P) has a complicated dependence on the repeater spacing L0, on the
total repeater length L, on the squeezing parameter sGKP that characterizes approximate

2The secret-key fraction is given by I(A,B)− I(A,E) = log2(D)−H(
˜
q01)− I(A,E), where expressions

of the mutual information I(A,E) between Alice and Eve are provided in Eqs. (5) and (7) of Ref. [74].
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Figure 2: Optimal dimension D of bare GKP qudits utilized in a quantum repeater line with coupling
efficiencies ηc = 99% and an intermediate repeater spacing of L0 = 500m, where the (a) one-way or
(b) two-way teleportation protocol is used. For each choice of total repeater length L and squeezing
parameter sGKP, the qudit dimension is adjusted such that the SKR per channel use, log2(D)−H(P),
is optimized (inset lines). In the parameter regions of D = 1, it is not possible to generate secret keys.

GKP states, and on the qudit dimension D. However, we can numerically assess H(P),
see App. A. In Fig. 2, we show the optimal choice (color-coded) of qudit dimension D
for different values of L and sGKP, where L0 = 500m is fixed. Using inset lines, we also
display the corresponding (maximal) value of the SKR per channel use. As expected, the
key rate vanishes if the GKP approximation is too bad (small sGKP) or too much loss
accumulates (large L). Since increasing the squeezing poses a core experimental challenge,
the smallest value of sGKP at which a nonzero SKR can be achieved is of particular interest.
Below sGKP = 10 dB, neither protocol is suitable for generating secret keys. For both
protocols and for every fixed value of L, we observe that GKP qubits (D = 2) represent
the leading contender for near-term quantum repeaters based on the GKP code. To some
degree, this result is surprising because in the ideal case, the SKR per channel use is given
by log2(D), and increasing the qudit dimension would be beneficial. In the presence of
noise, however, higher-dimensional GKP qudits have the severe disadvantage of decreased
error correction capabilities: a D-dimensional GKP qudit can only correct displacement
errors that are smaller than

√
π/2D in magnitude. Only in the regime of very small

errors, i.e., where the qubit GKP protocol has almost reached its maximum performance
of log2(D)−H(P) = log2(2)− 0 = 1.0, it is beneficial to employ qutrits (D = 3) instead
of qubits. To see such benefits at all, we need at least sGKP & 18 dB. For repeater lines
of modest lengths of a few ten kilometers, however, larger squeezing levels of 20 dB-25 dB
are required to compensate for additional loss. At some value of L, loss errors become so
severe that only an unrealistically disproportional improvement of sGKP could compensate
them. For the one-way protocol in Fig. 2 (a), qutrits cease to be the optimal option for
repeaters longer than a few hundred kilometers, whereas the two-way protocol in Fig. 2 (b)
can still benefit from qutrits even for repeaters exceeding L = 10, 000 km. For the latter,
however, a squeezing level above 30 dB is required, which will only be available in the long
term (if at all). The reason for the better performance of the two-way protocol is the
lower required amplification factor √η−1 in the usage of the classical post-amplification,
as discussed in Sec. 2.3.1.

Finally note that, in our error analysis, we distinguish the cases of even and odd qudit
dimensions. Only if D is even, we can leverage a beneficial linear-optics protocol for
the generation of GKP Bell pairs, see App. A. For very short repeater chains, we indeed
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Figure 3: Lower bound on the SKR per logical channel use, log2(D)−H(P), as a function of the total
length L for a quantum repeater line with coupling efficiencies ηc = 99%, an intermediate repeater
spacing of L0 = 100m, and squeezing levels of (a) sGKP = 20 dB or (b) sGKP = 30 dB. The highlighted
area shows the achievable SKR per physical channel use of a bare GKP repeater as in Fig. 2 (b).

observe that GKP qudits with D even outperform those with D odd. For larger values of
L, however, loss errors begin to dominate and parameter regions emerge where the optimal
SKR is obtained by odd-dimensional GKP qudits.

3.2 Repeater performance with both GKP and higher-level error correction
In comparison to the experimental challenge of creating high-quality GKP qudits in the
first place, concatenating multiple of them into a single logical qudit by means of a higher-
level QECC is relatively straightforward. In the following, we study the performance of
third-generation quantum repeaters that make use of JD, 1, D+1

2 KD quantum polynomial
codes (D ≥ 3 prime), as reviewed in a related context in App. A of Ref. [52]. The Pauli
weight of the stabilizer generators is immense for quantum polynomial codes, which renders
them unsuitable for applications in quantum computing. For quantum repeaters, on the
other hand, this is not an issue, as non-destructive measurements of stabilizer operators
are not required. Instead, destructively measuring all qudits individually is sufficient here.
This facilitates syndrome extraction and decoding in a purely classical manner. Since the
distance of a quantum polynomial code is given by d = D+1

2 , any collection of errors that
affect no more than bd−1

2 c = bD−1
4 c qudits can be corrected. For error patterns that

affect more qudits than this, we assume (as a worst-case approximation) that a uniformly
random logical error occurs. This maximizes the Shannon entropy H(P) and lower bounds
the SKR, log2(D) − H(P), that would be achieved if a more sophisticated decoder for
correcting specific high-weight errors was used. Thus, it makes sense for us to limit the
discussion to prime qudit dimensions where D − 1 is a multiple of four. We defer our
derivation of H(P) for this suboptimal decoder to App. B.

In Fig. 3, we plot the (lower bound on the) SKR per logical channel use as a function of
L, where L0 = 100m is fixed. For each of the three repeater protocols introduced in Sec. 2.1,
we show the SKR for D = 5 (green), D = 13 (red), D = 17 (black), and D = 29 (blue).
For any fixed value of D, we again (as in Fig. 2) observe that the two-way teleportation
protocol (dash-dotted curve) from Sec. 2.1.1 performs best. It is followed by the one-way
teleportation protocol (dashed curve) from Sec. 2.1.2. The least-efficient protocol is the
one-way half-teleportation protocol (solid curve) from Sec. 2.1.3. We attribute the poor
performance of the latter protocol to the fact that it employs only half as many (compared
to the other protocols) logical measurements, which facilitate the correction of errors.
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Recall from Sec. 3.1 that for bare GKP repeaters, the decreased error-correcting capa-
bilities render higher-dimensional qudits unfeasible for near-term applications. Since the
code distance d = D+1

2 grows with D, one could expect that concatenating bare GKP
qudits with quantum polynomial codes would turn the tide. We see that this is not the
case: for an optimistic but conceivable value of sGKP = 20 dB, we see in Fig. 3 (a) that
only the smallest code with D = 5 achieves a nonzero SKR for repeater lengths L > 70 km.
To assess the performance of larger codes, we need to assume exorbitant squeezing levels,
e.g., sGKP = 30 dB as in Fig. 3 (b). In this scenario, the J5, 1, 3K5-code operates near
its maximum performance of log2(5) ≈ 2.3 for all considered values of L. Depending on
the distance L, the largest value of log2(D)−H(P) is obtained by a different code: until
L ≈ 100 km, the J29, 1, 15K29-code achieves a value beyond the optimal performance of
log2(17) ≈ 4.1 of the J17, 1, 9K17-code. The latter starts to lose performance after a few
thousand kilometers, where it falls behind the J13, 1, 7K13-code. For comparison, we also
show in Fig. 3 the performance of the two-way repeater protocol with bare GKP qudits
(shaded region), where we select the value of D that optimizes the SKR, as in Fig. 2 (b).
For sGKP = 20 dB in Fig. 3 (a), bare GKP ququarts (D = 4) are optimal until L ≈ 200 km.
For longer repeaters, too much loss accumulates, and lower-dimensional GKP codes with
higher error-correcting capabilities become beneficial: in a small range of L, bare qutrits
are the optimal choice, but already for L & 300 km, qubits perform best. As before, this
advantage of even dimensions over odd ones is due to improved Bell state availability [20].
For sGKP = 30 dB in Fig. 3 (b), losses are less of an issue and eight-dimensional GKP
qudits are optimal until L ≈ 20 km. For 30 km . L . 200km, D = 6 is optimal. For
1000 km . L . 50, 000km, a bare GKP repeater should operate with D = 4.

It is important to stress that, from a practical perspective and for the considered
parameters, it is not useful to employ higher-level QECCs if the application is quantum
key distribution (QKD). For example, if sGKP = 30 dB and L = 1000 km, the two-way
teleportation protocol with a logical J17, 1, 9K17-code achieves the largest rate of about
four secret bits per logical channel use. To accomplish this, however, seventeen GKP
qudits (entangled in a QECC), i.e., seventeen GKP-encoded and entangled optical modes,
need to be transmitted. With an even lower experimental effort, one could simply transmit
in parallel seventeen bare GKP ququarts, i.e., seventeen GKP-encoded but unentangled
optical modes, each of which establishes almost two secret bits. In other words, here the
best bare protocol is more efficient than the best higher-level encoded one by a factor of
about 8.5.

3.2.1 Optimal choice of the repeater spacing

In our discussion of Fig. 3, we have pointed out that no practical benefit is to be expected
when switching from bare GKP qudits to a higher-level QECC if the repeater spacing
is fixed to L0 = 100m. This raises the question of how the choice of L0 influences this
conclusion. Since implementation cost scales with the total number N = L/L0 of repeater
stations, here we focus on SKR/N as a figure of merit. In a commercial setting, SKR/N is
roughly proportional to the return on investment. In Fig. 4, we plot SKR/N as a function of
L0 for a quantum repeater line of fixed length L = 2000 km. The colors and line styles have
the same meaning as in Fig. 3. This time, we assume a more optimistic value of ηc = 99.9%,
which benefits higher-level QECCs. Despite this optimistic assumption, we still find that
(for QKD) bare GKP qudits outperform those encoded into quantum polynomial codes.
For example, for sGKP = 20 dB in Fig. 4 (a), the J5, 1, 3K5-code performs best among the
quantum polynomial codes and reaches the optimal value of SKR/N at a repeater spacing
of L0 ≈ 0.55 km. For this optimal repeater configuration, the J5, 1, 3K5-code can generate
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Figure 4: Lower bound on the SKR per logical channel use, log2(D)−H(P), normalized by the number
N of repeater segments (N−1 repeater stations) as a function of the repeater spacing L0 for a repeater
line of total length L = NL0 = 2000 km, coupling efficiencies ηc = 99.9%, and squeezing levels of (a)
sGKP = 20 dB or (b) sGKP = 30 dB.

approximately 1.8 secret bits by transmitting five GKP ququints (D = 5). In the same
setting, one can generate almost 5.0 secret bits by transmitting five bare GKP qubits
(not shown). The same behavior is observed for sGKP = 30 dB in Fig. 4 (b), where the
J5, 1, 3K5-code now achieves approximately 2.0 secret bits per logical channel use at the
optimal operating point of L0 ≈ 1.1 km. In the same setting, transmitting five bare GKP
qutrits would generate more than 5.6 secret bits.

From Fig. 4, we can also infer the maximal repeater spacing at which the secret-key
rate drops to zero. For the considered parameters, the best higher-level encoded protocol,
i.e., the two-way protocol from Sec. 2.1.1 with the J5, 1, 3K5-code and sGKP = 30 dB,
is operational for all values of L0 < 1.5 km, however, L0 ≈ 1.1 km is most effective.
For the one-way protocols from Secs. 2.1.2 and 2.1.3, the J5, 1, 3K5-code already fails for
L0 ≈ 0.7 km. As expected, we find that better repeaters (larger sGKP, smaller D) allow
for a larger repeater spacing.

3.2.2 Identifying and overcoming noise bottlenecks

Before one takes a great effort of building a quantum repeater based on GKP qudits, it is
important to ensure that the experimental building blocks work sufficiently well. There are
multiple components for which improvements might be beneficial or even necessary. Thus,
it is important to identify and remove the noise bottleneck, which would otherwise diminish
the performance. We distinguish three error mechanisms: input noise, fiber channel losses,
and imperfect homodyne measurements. Since measurements work comparatively well and
we have already discussed the impact of fiber loss, here we focus on input noise that arises
from approximate GKP state preparation and coupling losses. As explained in Sec. 2.3,
both processes can be modeled by Gaussian noise. Errors propagate through the circuit
and eventually accumulate on individual measurement results in the repeater stations,
which for the two-way post-amplification protocol from Sec. 2.1.1 can be described by a
Gaussian channel with variance

σ2
in = 3σ2

sq + 1− ηc
ηc

exp
(

L0
2Latt

)
. (7)

Indeed, there are three sources from which GKP state preparation errors can propagate to
the measurements, which leads to the first term in Eq. (7). The second term in Eq. (7) ac-
counts for coupling losses: since the variance (incorporating both coupling and fiber channel
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Figure 5: (a) Variance σ2
in of Gaussian noise effectively affecting a physical GKP qudit after it has been

coupled into fiber as a function of the squeezing level sGKP and coupling efficiency ηc. (b) Lower bound
on the SKR per logical channel use, log2(D)−H(P), as a function of σ2

in for a quantum repeater line
with a total transmission distance of L = 5000 km and a repeater spacing of L0 = 500m, where the
two-way protocol in combination with a JD, 1, D+1

2 KD quantum polynomial code is utilized.

losses) of a length-L0 link in the two-way protocol is given by (ηc exp(−L0/2Latt))−1 − 1,
the noise difference between a link with coupling errors and without is given by

((ηc exp(− L0
2Latt

))−1 − 1)− ((exp(− L0
2Latt

))−1 − 1) = 1− ηc
ηc

exp
(

L0
2Latt

)
. (8)

In Fig. 5 (a), we plot σ2
in as a function of both sGKP and ηc. Recall that σ2

sq and
sGKP can be converted into each other via Eq. (4). Here, we assume a repeater spacing
of L0 = 500m, however, the situation remains almost unchanged if L0 takes any other
value between 1m and 1 km. The contour lines in Fig. 5 can be used to infer whether one
should work on improving sGKP or ηc: since moving along a contour line does not improve
performance, a series of improvements should instead correspond to a path orthogonal
to the contour lines. For example, for sGKP = 6 dB and ηc = 0.99, we have σ2

in ≈ 0.4,
which can be reduced to σ2

in ≈ 0.2 if the GKP approximation is improved to sGKP = 9 dB;
increasing ηc, on the other hand, would not help at all. Conversely, if coupling losses
dominate, e.g., sGKP = 30 dB and ηc = 0.92, the variance σ2

in ≈ 0.1 can be reduced by a
factor of two if coupling efficiencies are improved to ηc = 0.97; increasing sGKP, however,
would show no significant effect here.

In Fig. 5 (b), we depict the influence of σ2
in on the SKR obtained with the two-way

protocol from Sec. 2.1.1 for an error-corrected quantum repeater line with L = 5000 km,
L0 = 500m, and a JD, 1, D+1

2 KD-code. Here, each physical GKP qudit in every repeater
station is affected by a Gaussian channel with variance σ2

in. Note that also the effect
of imperfect homodyne measurements can be inferred from Fig. 5 (b) if a corresponding
variance term σ2

meas is added to σ2
in. As before, we find that a larger value of D both allows

for a larger SKR per logical channel use in the low-noise regime and for a smaller noise
level to be tolerated before the SKR drops to zero. We also observe that the parameter
range of σ2

in where the SKR drops from its optimal value to zero is alarmingly small. This
effect is most pronounced for the J5, 1, 3K5-code, which has almost optimal performance
until σ2

in ≈ 0.01 but already for σ2
in ≈ 0.02 its SKR is equal to zero. This showcases that

moderate improvements can have a huge impact if they address a noise bottleneck.
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3.2.3 Leveraging lower-level syndrome information to improve higher-level error correction

So far, we have independently treated the error correction procedures of lower-level GKP
qudits and the higher-level QECC. More precisely, we assumed that, in the first step,
displacement errors on the physical GKP qudits are removed. This may or may not result
in a logical GKP qudit error. Then, in a second step, the higher-level Jn, 1, dKD-code deals
with potential errors on the GKP qudits: the correction succeeds if the number of errors
with unknown locations is not larger than d−1

2 . In this final subsection, we investigate the
more general case, where the location of some of the errors are known. The modified error
correction routine succeeds whenever tk + 2tu < d, where tk and tu denote the number
of errors with known and unknown locations, respectively. To obtain some information
about error location, one can exploit the continous, “analog” results of the homodyne
measurements in the repeater stations [21,23]. If a displacement error of the form exp(iεp̂)
occurs, the homodyne measurement of q̂ reveals the value of ε modulo

√
2π/D, which we

call analog GKP syndrome. In particular, every displacement error with |ε| <
√
π/2D can

be corrected. The probability of successful error correction is large if ε is small. When an
error of magnitude ε ≈

√
π/2D occurs, however, the situation is less clear. Borrowing ideas

from Ref. [76], we introduce a discarding parameter γ ∈ [0, 1], and treat any instances of
ε which are closer than

√
π/2D(1− γ) from the boundary of two bins as an erasure error

with a known location. In the case γ = 1, we do not discard any qudits, which corresponds
to the strategy considered so far. The other extreme, γ = 0, corresponds to the absurd
approach where all qudits are always discarded.

The advantage of this modification is that, for every qudit that is not discarded, the
probabilities for errors (with unknown locations) are improved from Eq. (6) to

P (γ)
sq (Xk, σ2) ∝

∑

j∈Z

∫ √ 2π
D

(jD+k+ γ
2 )

√
2π
D

(jD+k− γ2 )

1√
2πσ2

exp
(
− q2

2σ2

)
dq, (9)

where the proportionality constant follows from
∑D−1
k=0 P

(γ)
sq (Xk, σ2) = 1. This improve-

ment comes at the expense that we have to introduce an erasure error with probability

pdiscard = 1−
D−1∑

k=0

∑

j∈Z

∫ √ 2π
D

(jD+k+ γ
2 )

√
2π
D

(jD+k− γ2 )

1√
2πσ2

exp
(
− q2

2σ2

)
dq, (10)

however, we can still exploit our knowledge about the location of this error.
Denote the probability that a single GKP qudit is free of errors by p0 = P

(γ)
sq (X0, σ2).

Then, the condition tk + 2tu < d and basic combinatorics leads to the probability of a
failed error correction attempt

pfail(γ) = 1−
d−1∑

tk=0

(
n

tk

)
ptkdiscard(1− pdiscard)n−tk

tu,max∑

tu=0

(
n− tk
tu

)
pn−tk−tu0 (1− p0)tu , (11)

where tu,max = b(d− tk − 1)/2c is the maximal number of correctable errors with unknown
locations, assuming that tk erasures occurred, and n is the number of physical GKP qudits.

In Fig. 6, we show how the logical failure rate (red) depends on the discarding parameter
γ for a J13, 1, 7K-code. For each physical GKP qudit, we assume that all noise combined
(stemming, e.g., from GKP approximation, coupling, or transmission) corresponds to a
fairly small but finite variance σ2 = 0.01 of the overall Gaussian noise channel. For
γ = 1, i.e., without discarding (black), the failure rate has a remarkably low value of
pfail ≈ 5 × 10−11, which is due to the low level of noise and the high error-correcting
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Figure 6: Failure probability pfail for decoding the result of a logical measurement for a J13, 1, 7K13-code
as a function of the discarding parameter γ. Each physical GKP qudit is subject to Gaussian noise with
variance σ2 = 0.01.

distance of d = 7. We observe a local minimum at γopt ≈ 0.82, where the failure rate is
improved by more than an order of magnitude to pfail(γopt) ≈ 3× 10−12. If γ is decreased
below γopt, we begin to introduce more erasures than the QECC can deal with, and the
failure rate increases. On the other hand, if γ is increased above γopt, then the error rates
P

(γ)
sq (Xk, σ2) start to deteriorate. This causes an increasing amount of errors with unknown

locations and leads to the rise in pfail. A curious effect in Fig. 6 is that the performance in
the seldom-discarding regime (γ > 0.96) is worse than in the never-discarding case (γ = 1).
We attribute this to the fact, that for 0.96 < γ < 1.0, those cases dominate where only a
single erasure error is introduced, i.e., tk = 1 and the number of correctable errors with
unknown locations is decreased to tu,max = 2. At the same time, the error probabilities
P

(γ)
sq (Xk, σ2) are only slightly improved because they continuously depend on γ. Thus, the

performance is worse than for the naive approach with γ = 1, i.e., tk = 0 and tu,max = 3.

4 Conclusion and outlook
In this paper, we have analyzed the performance of third-generation quantum repeaters
that operate with higher-dimensional GKP qudits. We have focused on the GKP square
lattice and also considered concatenations with quantum polynomial codes.

The missing component that is currently holding back an experimental realization
of such repeaters is efficient sources of high-quality GKP states. Once such sources are
available, however, there will be no need for quantum memories or classical two-way com-
munication. Therefore, the achievable repetition rates will only be limited by fast optical
elements for the local processing of GKP qudits.

Our initial motivation for the present investigation was that, at a first glance, GKP
qudits and quantum polynomial codes seem like a perfect match in the context of quan-
tum repeaters: GKP states can be encoded into photons, which is crucial for repeaters;
polynomial codes achieve the singleton bound at the expense of high-weight stabilizers,
which is a problem for quantum computation but not for quantum repeaters; polynomial
codes require higher-dimensional qudits, which the GKP encoding has to offer. However,
our study revealed that the decreased lower-level error-correcting capabilities of higher-
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dimensional GKP qudits severely limit their potential benefits. While this finding might
disappoint to a certain extent, it is somewhat good news for experimentalists. Indeed, the
most promising GKP repeater protocol identified in this work is also the one, which is the
easiest to implement.

Our recommendation for a first experimental target is a repeater protocol (Sec. 2.1.1)
that makes use of two-dimensional GKP qubits. Admittedly, these qubits will require chal-
lenging squeezing levels beyond 10 dB. However, the identified protocol has the advantage
of readily available syndrome measurements based on balanced beam splitters and homo-
dyne measurements alone. Furthermore, this protocol is compatible with rescaling the
GKP lattice in classical software, whereas other protocols would require optical amplifiers
to compensate for the loss.

We also found that, in the medium-to-long term, when squeezing levels above 20 dB will
be available, the error-correcting capabilities of bare GKP qutrits will suffice to outperform
GKP qubits for meaningful repeater lengths. Only in the very long term, if squeezing levels
around 30 dB can possibly be reached, we expect some benefit from concatenating multiple
GKP qudits using quantum polynomial codes, however, only for tasks like entanglement
distribution where utmost fidelities are important. For the application of quantum key
distribution, on the other hand, our analysis showed that it is typically more cost-effective
to operate bare GKP qudit repeaters instead. With regards to potential experimental
realizations, a useful feature of the case with bare GKP qudits is that the necessary GKP
two-qudit Bell pair for teleportation-based syndrome detection and error correction can
often be directly created by applying a balanced beam splitter upon two suitable, individual
single-mode GKP/grid states [19,20]. In case that the concatenation with the higher-level
code is employed, for potential, future high-fidelity quantum network applications, the
complete syndrome information of the QECC can still be obtained in one linear-optics step
with no need for any online squeezing operations and also with no need for separating the
physical GKP qudit from the higher-level code’s syndrome measurements and adding extra
GKP ancilla states for the higher-code detections. This only works, however, provided a
suitable logical, higher-level Bell pair is available [20].

In this paper, we have focused on the cases of single GKP qudits and multiple GKP
qudits that are concatenated by means of a higher-level qudit stabilizer code. This is,
however, not the only possibility that can be envisioned. An interesting open research
direction is to study the performance of multi-mode GKP codes that do not arise as a
concatenation of physical GKP states and a higher-level stabilizer code [20, 77-80]. For
such an analysis, theoretical insights about multi-mode Gaussian channels might become
important [81]. Moreover, one could analyze how bosonic encodings other than GKP
perform in a quantum repeater setting, e.g., cat codes [82,83], spherical codes [84], etc. [85,
86].
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A Error analysis of bare GKP repeaters
We begin our error analysis by reviewing how Gaussian displacement errors of the form
exp(εq̂i) and exp(εp̂i), where ε ∈ R is the error magnitude, propagate across CSum- and
CPhase-gates. The CSum-gate, exp (−iq̂1p̂2) acts as CX1,2 = ∑D−1

k=0 |k〉〈k|1⊗Xk
2 on GKP

qudits, while the CPhase-gate, exp (iq̂1q̂2), implements CZ1,2 = ∑D−1
k=0 |k〉〈k|1 ⊗ Zk2 [1].

Hereby, X = ∑D−1
k=0 |k + 1 mod D〉〈k| and Z = ∑D−1

k=0 (e2πi/D)k|k〉〈k| denote the unitary
generalizations of the qubit Pauli X- and Z-gates to the case of D-dimensional qudits. It
is well known that single-qudit Pauli errors are propagated across CX- and CZ-gates via

CZ1,2X1 = X1Z2CZ1,2,

CX1,2X1 = X1X2CX1,2,

and CX1,2Z2 = Z†1Z2CX1,2,

(12)

see, e.g., Refs. [1, 52]. The error propagation rules of Eq. (12) have their bosonic analogs:
applying the Baker-Campbell-Hausdorff formula yields

exp (iq̂1q̂2) exp (ip̂1) = exp (i(p̂1 − q̂2)) exp (iq̂1q̂2) ,
exp (−iq̂1p̂2) exp (ip̂1) = exp (i(p̂1 + p̂2)) exp (−iq̂1p̂2) ,

and exp (−iq̂1p̂2) exp (iq̂2) = exp (i(q̂2 − q̂1)) exp (−iq̂1p̂2) .
(13)

In the two repeater protocols from Sec. 2.1.1 and 2.1.2, every repeater station is re-
sponsible for performing a Bell measurement. This is achieved by a beam splitter, followed
by two homodyne measurements. For both of these homodyne measurements, the results
are post-processed (binned) into a measurement outcome of the GKP qudit. Errors on the
GKP qudit lead to errors on the measurement outcomes. The latter can be described by
a Pauli error channel Psq(X,σ2), as in Eq. (6), where the variance σ2 comprises all Gaus-
sian noise contributions that have propagated to the measurement device. As discussed in
Sec. 2.3, we take the following error sources into account:

• Loss that arises when GKP qudits are coupled into an optical fiber. The resulting
coupling efficiency is denoted by ηc.

• Loss that arises during transmission. If the traveling distance is L0, the associated
transmittance is given by η = exp(−L0/Latt), where Latt is the attenuation distance.

• Unavoidable approximation errors of square GKP qudits. These are modeled by a
Gaussian channel of variance σ2

sq.

Since beam splitters and homodyne measurements only require passive linear optical ele-
ments, we assume they work perfectly. Similarly, we ignore errors stemming from Gaussian
elements, i.e., from CSum- and CPhase-gates.

For the two-way teleportation protocol from Sec. 2.1.1, transmission and coupling losses
lead to a Gaussian error channel with variance 1

ηc
√
η −1, see Sec. 2.3.1. Furthermore, there

are three GKP state preparations in the causal light cone of any given measurement. All
in all, this amounts to a final variance of σ2

2-way = 3σ2
sq + 1

ηc
√
η − 1.

For the one-way teleportation protocol from Sec. 2.1.2, the only difference is that the
Gaussian error channel arising from losses now has a variance of 1 − ηcη, see Sec. 2.3.1.
Therefore, the final variance is given by σ2

1-way = 3σ2
sq + 1− ηcη.

If D is even, it is possible to directly generate a two-qudit GKP Bell pair by applying a
balanced beam splitter to two grid states [19,20]. Unlike general Gaussian transformations,
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this linear optical transformation does not amplify the noise. In consequence, the above
variances are improved to σ2

2-way = 2σ2
sq + 1

ηc
√
η − 1 and σ2

1-way = 2σ2
sq + 1− ηcη.

On the physical level, every Bell measurement is comprised of two homodyne measure-
ments. Errors on the measurement of one quadrature effectively propagate into X-errors
on Bob’s qudits, while those of the other quadrature lead to Z-errors. By symmetry,
the final probability distributions for X- and Z-errors coincide, and it suffices to com-
pute it in one case. Ignoring finite size effects3 and potential correlations between the
error probabilities of different repeater stations, we estimate the final X-error distribution
Pfin(X) = P∗Nsq (X,σ2) on Bob’s qudit as the N -fold discrete convolution of Psq(X,σ2),
where N denotes the number of repeater stations. We expect that this estimate captures
the general behavior of the performance of GKP qudit repeaters. In principle, comput-
ing this convolution can be sped up by diagonalizing the corresponding error-probability
matrix [52]. For our purposes, however, a direct implementation is sufficient. Then, we
compute the outer product Pfin(X,Z) = Pfin(X) ⊗ Pfin(Z). The secret-key rate of the
repeater line, finally, is given by log2(D)−H(Pfin(X,Z)) = log2(D)− 2H(Pfin(X)).

B Error analysis of GKP repeaters with higher-level codes
In this appendix, we lift our error analysis from App. A to the logical level. First, we
discuss in App. B.1 the two repeater protocols from Sec. 2.1.1 and 2.1.2. In App. B.2, we
discuss the optimal placement of the lower-level GKP measurements for the third protocol
from Sec. 2.1.3 and analyze its performance.

B.1 Logical performance of GKP qudits concatenated with quantum polynomial codes
In App. A, we showed that the error probability distribution for measurements in repeater
stations is given by Psq(X,σ2), where σ2

2-way = 3σ2
sq+ 1

ηc
√
η−1 and σ2

1-way = 3σ2
sq+1−ηcη for

the two-way and one-way teleportation protocol, respectively. When the protocol is lifted
to its logical version, we still find the same error distribution for each of the measurements
of the physical GKP qudits (of which there are D). This is because CZ = (CZ†)⊗D is
semitransversal for the quantum polynomial code with parameters JD, 1, D+1

2 KD [33].
Here, we consider a simple decoder that only corrects errors occurring on a number of

qudits not more than half the distance d = D+1
2 . Thus, the probability that a correctable

error pattern occurs at a repeater station is given by

pcor =

d−1
2∑

k=0

(
D

k

)
pD−k0 (1− p0)k, (14)

where p0 = Psq(X0, σ2), as in Eq. (6). If the decoding attempt fails, we replace the
measured state with the maximally mixed state (as a worst-case approximation). In other
words: with probability 1 − pcor, we insert a logical error, uniformly at random from the
set {1, . . . , D−1}. Therefore, the error probability distribution on measurement outcomes
in any repeater station is given by

Prep(Xk) =
{
pcor if k = 0

1
D−1(1− pcor) otherwise.

(15)

3In principle, the measurements near the ends of the repeater line have smaller error probabilities.
Ignoring this slightly underestimates performance, however, the difference is vanishingly small for a large
number of repeater stations.
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If the probability of errors is so large that pcor < 1
D−1(1− pcor), we replace Eq. (15) by the

uniform distribution. Again, ignoring correlations between error distributions on different
repeater stations, we estimate the final error distribution of the encoded repeater line as
Pfin(X,Z) = P∗Nrep (X)⊗ P∗Nrep (Z).

B.2 Error analysis of the half-teleportation protocol for various placements of GKP
syndrome measurements

In this appendix, we discuss how introducing additional ancilla-based measurements of
lower-level GKP stabilizers can improve the performance of the one-way half-teleportation
protocol with optical pre-amplification from Sec. 2.1.3. Such measurements are pictured
in Fig. 1 (c) of the main text. As discussed in Sec. 2.3.1, every transmission from one
repeater station to the next is associated with a Gaussian error channel with variance
σ2
loss = 1 − ηcη, where η = exp(−L0/Latt). In every repeater station, all incoming GKP

qudits are measured in the p-quadrature. Before this, however, each GKP qudit is coupled
via a physical CPhase†-gate to a qudit in the next logical block. Since the CPhase†-gate
spreads p-errors into q-errors, but q-errors are not propagated to the next mode, every
error source only has a limited range. A p-error that arises during one transmission, does
not directly affect p-measurements on the qudit it occurred to, however, it propagates into
a q-error on the subsequent GKP qudit, which alters the p-measurement outcome of that
qudit. Furthermore, a p-error during GKP state preparation backpropagates through the
CPhase†-gate and causes a q-error on the readout of the preceding GKP qudit.

In the plain version (without lower-level GKP stabilizer measurements), errors on phys-
ical readouts (in the repeater stations) follow an error distribution Psq(Z, 2σ2

loss + 3σ2
sq),

where the variance takes noise from two transmissions and three GKP state preparations
into account. By introducing a lower-level GKP stabilizer measurement in every repeater
station, we can correct displacement errors after a single transmission. In this way, we effec-
tively avoid combining the two transmission loss channels. Instead, all Gaussian errors in
one quadrature are replaced by the discrete Pauli error channel from Eq. (6). Such discrete
qudit Pauli errors will propagate to the measurements in the usual way [52]. Depending
on where in the repeater station we place the ancilla-based GKP stabilizer measurement,
the final error distribution will vary. We discuss four options:

(i) No additional GKP stabilizer measurements are performed, see Fig. 7 for the error
analysis.

(ii) After every CZ-gate, the (physical) target qudit is subjected to a GKP stabilizer
measurement of SX = exp(−i

√
2πDp̂). This is achieved by preparing an ancillary

GKP qudit in state |0〉, applying a CSum-gate from the ancilla to the repeater qudit,
and a p-measurement of the ancilla GKP qudit, see Fig. 8 for the error analysis.

(iii) Before every CZ-gate, the control qudit is subjected to a GKP stabilizer measure-
ment of SZ = exp(i

√
2πDq̂). This is achieved by preparing a GKP ancilla in state

|+〉, applying a CSum-gate from the repeater qudit to the ancilla, followed by a
q-measurement of the ancilla, see Fig. 9 for the error analysis.

(iv) We alternate between options (ii) and (iii), see Fig. 10 for the error analysis.

In option (i), the error analysis from App. B.1 with σ2 = 2σ2
loss + 3σ2

sq applies, see Fig. 7.
Both in option (ii) and (iii), which we refer to as symmetric placements of the GKP
stabilizer measurements, it turns out that every p-measurement is subject to two discrete
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Figure 8: Propagation of Gaussian errors for the half-teleportation protocol with additional GKP
stabilizer measurements after every CZ-gate. Because of periodic boundary conditions, we have
σ2

in,p = σ2
out,p = 2σ2

sq and σ2
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p-measurements is given by σ2
sq + σ2

in,q + 1 − η = 2σ2
sq + 1 − η. In addition to these continuous dis-

placement errors, a discrete Pauli error channel Psq(Z, σ2
GKP) leads to lower-level logical errors on every

X-measurement, where σ2
GKP = 2σ2

sq + σ2
in,p + 1− η = 4σ2

sq + 1− η is the variance of q-errors reaching
the lower-level GKP stabilizer measurement.

Pauli error channels as in Eq. (6), one having variance 2σ2
sq + σ2

loss and the other one
4σ2

sq + σ2
loss. Thus, the error analysis from App. B.1 applies after we insert

psym0 =
D−1∑

k=0
Psq(Xk, 2σ2

sq + σ2
loss)Psq(XD−k, 2σ2

sq + σ2
loss) (16)

into Eq. (14). Finally, in option (iv) both GKP stabilizer and logical measurements are
subject to Gaussian errors with variance 3σ2

sq + σ2
loss. This time, we thus have to insert

palt0 =
D−1∑

k=0
Psq(Xk, 3σ2

sq + σ2
loss)Psq(XD−k, 3σ2

sq + σ2
loss) (17)

into Eq. (14).
In Fig. 11, we show how the placement of GKP stabilizer measurements influences the

performance of the half-teleportation protocol, using the exact same setting as in Fig. 4 of
the main text. Overall, the situation is very similar to that in Fig. 4: for sGKP = 20 dB in
Fig. 11 (a), only the J5, 1, 3KD-code (green) offers a nonzero SKR, whereas for sGKP = 20 dB
in Fig. 11 (b) also the J13, 1, 7KD-code (red) and the J17, 1, 9KD-code (black) have the
potential to distribute secret keys. We see in Fig. 11 that an alternating placement of
GKP stabilizer measurements (solid curves) leads to the highest values of SKR/N . For both
option (ii) and (iii), the symmetric placements (dotted curves) are governed by Eq. (16),
and therefore lead to the same performance. We see that not performing any additional
GKP stabilizer measurements (dash-dotted curve) leads to the lowest performance, which
is easily explained by the large variance 2σ2

loss + 3σ2
sq. The other options break the term

2σ2
loss and, therefore, perform better. For the symmetric placement, the bottleneck is
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the lower-level GKP stabilizer measurement. Originally, the lower-level GKP stabilizer measurement
results in a discrete Pauli error channel Psq(X,σ2

GKP), which is then propagated to a Pauli error channel
Psq(Z, σ2

GKP) in the next segment due to the CZ-gate.
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Figure 10: Propagation of Gaussian errors for the half-teleportation protocol with additional GKP
stabilizer measurements at alternating placements. Because of periodic boundary conditions, we have
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sq + 1 − η. In addition to these

continuous displacement errors, a discrete Pauli error channel Psq(Z, σ2
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errors on every X-measurement, where σ2
GKP = 2σ2

sq + σ2
in,p + 1− η = 3σ2

sq + 1− η is the variance of
errors reaching and altering lower-level GKP stabilizer measurements.

posed by the term 4σ2
sq in Eq. (16), which is worse than 3σ2

sq in Eq. (17) for the alternating
placement. This explains why the latter performs best. For a large squeezing value of
sGKP = 30 dB, the difference between 3σ2

sq and 4σ2
sq is negligible, which causes a nearly

perfect overlapping of the dotted and solid curves in Fig. 11 (b).
Since the alternating placement of GKP stabilizer measurements has the best perfor-

mance, we have assumed this option for the one-way half-teleportation protocol throughout
the main text of this paper.
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Figure 11: Lower bound on the SKR per logical channel use, log2(D) − H(P), normalized by the
number N of repeater stations for the one-way half-teleportation protocol and various placements of
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