
1.  Introduction
In the last decades, seismic imaging techniques like travel-time tomography (Cimini & De Gori, 2001; Lucente 
et al., 1999; Piromallo & Morelli, 2003; Scafidi et al., 2009; Wortel & Spakman, 2000), ambient noise tomog-
raphy (Molinari et al., 2015) and receiver functions (Chiarabba et al., 2020; Di Stefano et al., 2011) have illumi-
nated the deep crust and upper mantle under the Italian peninsula. Despite the model peculiarities and resolution 
differences, all studies detect a high-Vp body, which is shallower and sub-vertical beneath the Northern Apen-
nines and reaches a depth of ∼670 km beneath the Calabria region. In the transitional zone between the Central 
and Southern Apennines, the body's presence is debated due to its absence in most of the tomographic models 
and the lack of sub-crustal seismic activity (Latorre et al., 2022). The interpretation of this gap involved tear 
faults due to the retreat of a subducted slab (Wortel & Spakman, 2000) or its breakoff caused by an asthenosphere 
upwelling (Cimini & De Gori, 2001). Other works justified this evidence with petrological differences in the slab 
(Giacomuzzi et al., 2022) or the absence of the Adriatic subduction (Bell et al., 2013; Lavecchia & Creati, 2006). 
Independently of their interpretation, the lithospheric assessment directly influences the crustal structure and the 
surface expression of tectonic and volcanic features (Rosenbaum et al., 2008).

Abstract  Despite the high detection level of the Italian seismic network and the risk associated with its 
fault networks, Central-Southern Italy has no unique geophysical model of the crust able to illuminate its 
complex tectonics. Here, we obtain seismic attenuation and scattering tomography models of this area; both 
reveal high attenuation and scattering anomalies characterizing the entire Apenninic Chain and related to its 
East- and West-dipping extensional Quaternary tectonic alignments. Fault-associated fractured zones become 
preferential ways for circulating and degassing high-attenuation CO2-bearing fluids. A previously undetected 
fluid source area is a high-attenuation volume below the Matese complex, while a similar smaller anomaly 
supports a fluid source near L'Aquila. The most prominent low attenuation and scattering volumes reveal 
a locked aseismic zone corresponding to the Fucino-Morrone-Porrara fault systems, representing a zone of 
significant seismic hazard.

Plain Language Summary  Geophysical methods are the most used tools for imaging the 
subsurface. Still, their resolution and reliability depend on the amount of good-quality data and the sensitivity 
of the technique used for the target structures. Improvements in the seismic detection infrastructures of 
the last decade allow imaging zones characterized by sparse seismicity, like Central-Southern Italy. Once 
combined with these data, new imaging techniques targeting attributes with higher sensitivity to stress and 
fluid saturation provide unprecedented resolution on tectonic interactions and fluid sources in this area. Here, 
we measured and mapped in 3D the energy lost by seismic waves during their propagation. Our results show a 
high-attenuation volume elongated in the direction of the Apenninic Chain and particularly intense in Southern 
Italy, mapping fluid-filled fracturing and a fluid source likely coinciding with the Matese area. The principal 
normal and reverse faults in the area control high-attenuation zones. The most prominent low attenuation and 
scattering volume marked locked areas with low seismic energy release, suggesting them as the zones of stress 
accumulation.
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In this context, shallow seismic imaging can reveal crustal geometries at the first tens of kilometers, connect-
ing the lithospheric context with the surface or sub-surface geology. However, no seismic crustal image of the 
Central-Southern Apennines transition zone is currently available. Published tomographic models only reach 
the area marginally (Chiarabba et al., 2010; Improta et al., 2014; Zhao et al., 2016). This is primarily due to the 
low rates of seismic activity (Bagh et al., 2007; Frepoli et al., 2017; Romano et al., 2013; Trionfera et al., 2019). 
Nevertheless, the increased detection capability of the Italian permanent seismic network during the last two 
decades provides sufficient data for obtaining a regional-scale tomographic crustal model of the area.

Attenuation tomography techniques use seismic amplitudes from earthquake recordings to measure and model the 
energy lost by P- and S-waves while propagating through space (Haberland & Rietbrock, 2001; Lees & Lindley, 1994). 
Especially effective when targeting fluid and melt propagation at the lithospheric scale, the technique has been 
remarkably efficient in imaging melt sills and fluid reservoirs in volcanoes (De Siena, Thomas, & Aster, 2014; 
De Siena, Thomas, Waite, et al., 2014; De Siena et al., 2017; Prudencio, De Siena, et al., 2015; Prudencio, Ibáñez, 
et al., 2015). Its most recent applications to fault networks and mountain ranges show increased sensitivity of the 
technique to fluid-driven processes and strain accumulation (Amoroso et al., 2017; Sketsiou et al., 2021), as expected 
from laboratory experiment and modeling results (Di Martino et al., 2022; Tisato & Quintal, 2014).

Fracture networks attenuate body waves primarily by scattering (King et al., 2022; Sato et al., 2012), so much 
so that scattering tomography is increasingly used to map structural barriers, like thrusts and significant faults, 
across mountain ranges and volcanoes (Gabrielli et al., 2023; Napolitano et al., 2020; Reiss et al., 2022). Coda 
waves are the signature of such scattering processes (Sato et al., 2012). With increasing heterogeneity, codas 
build up, broadening waveforms, and delaying the peak of seismic envelopes (Saito, 2002). Peak delays increase 
abruptly at stations near shear zones due to trapped and resonant waves, providing an excellent marker of these 
features (King et al., 2022, 2023). Late lapse-time coda wave energies can also normalize direct-wave energies 
(coda normalization), removing source and site trade-offs from path-dependent attenuation measurements (Sato 
et al., 2012). The coda-normalization method has thus become a standard in attenuation tomography in volca-
noes (Del Pezzo et al., 2006; De Siena, Thomas, & Aster, 2014; De Siena, Thomas, Waite, et al., 2014; De Siena 
et al., 2017; Prudencio, De Siena, et al., 2015; Prudencio, Ibáñez, et al., 2015) and tectonic contexts (Sketsiou 
et al., 2021). This paper presents novel 3D seismic attenuation and scattering models of Central-Southern Italy, 
interpreting them as images of the principal tectonic structures and fluid pathways.

2.  Seismotectonic Setting
The Apenninic Chain is a Miocene—early Pliocene thrust-and-fold belt created by the convergence between 
Africa and Euroasiatic plates and the rifting of the Tyrrhenian Basin (Lavecchia, 1988; Patacca & Scandone, 2007; 
Patacca et  al.,  2008). The NE migration of the Chain is driven by W-dipping thrusts that superimpose inner 
stratigraphical domains on more external ones (Figure 1a). Late Pliocene-Quaternary high-angle SW-dipping 
normal faults dissect the pre-existing compressional structures (Barchi, 2010). These structures are responsible 
for devastating historical and instrumental earthquakes and represent upper-crust structures antithetic to signifi-
cant systems of low-angle NE-dipping faults (Brozzetti, 2011; Brozzetti et al., 2009). Across peninsular Italy, the 
W- and E- dipping faults bound an upper-crust extensional seismogenic domain comprising most earthquakes of 
the Italian seismic catalog (Figure 1b, Lavecchia et al., 2021). The intra-Apennine extensional domain overlays a 
deeper compressive province developed at the hanging wall of the west-dipping outermost front of the Apennine 
compressional system (de Nardis et al., 2022; Ferrarini et al., 2021). Finally, the E-W striking transcurrent faults 
outcropping in the Gargano area and deepening toward the west (Argnani et al., 2009) define a strike-slip domain 
below the compressional one and contribute to the high seismic hazard of Central Italy.

Within the study area, the Quaternary extensional belt extends NNW-SSE across the Marche-northern Abruzzi 
sectors of the Central Apennines and propagates southwards in the WNW-ESE direction across the Molise-Northern 
Campania sector of the Southern Apennines (Figure 1a) (Carafa et al., 2020; Lavecchia et al., 2017, 2022). The 
Marche-northern Abruzzi sectors consist of many WSW-dipping high-angle normal faults, including the Fucino 
fault and the Paganica faults, responsible for Avezzano 1915 (Mw7, 10.000 casualties) and L'Aquila 2009 (Mw 
6.3, 330 deaths) earthquakes, respectively. The outer front of the west-dipping system runs from the Gran-Sasso 
south-dipping structure to the WSW-dipping Morrone-Porrara alignment. The Marche-northern Abruzzi faults 
detach on an east-dipping basal detachment (Castaldo et al., 2018) referred to as Latium-Abruzzi extensional 
detachment, in Lavecchia et al. (2017) that deepens eastward to a depth of about 12–15 km.
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The Molise-Northern Campania extensional sector consists of eastward and westward fault systems developed in a 
prevailing WNW-ESE direction for a width perpendicular to a strike of about 40 km. The most external system is the 
eastward-dipping Isernia-Bojano fault alignment along the eastern side of the Matese Massif (Ferrarini et al., 2017). 
WSW-dipping normal faults dissect the western side of the Matese Massif. The Outer compressional Front has an 
arcuate eastward convex shape and is articulated in two minor arcs, the Abruzzo Citeriore Arc northward and the 
Frentani Arc southward (Ferrarini et al., 2021). The frontal thrust and its splay are buried under Plio-Pleistocene 
deposits, but they are evident in seismic lines and highlighted in morphotectonic studies. The Outermost Basal 
detachment and/or the Casoli and Bomba major inner splays are considered responsible for the most signifi-
cant historical events of the area, which are the 1706 (Mw 6.8) and 1933 (Mw 5.9) earthquakes (DISS Working 
Group, 2015; Lavecchia et al., 2021). The westernmost sector of the study area comprises part of the Roman Comag-
matic Province (Peccerillo, 1985) near the Tyrrhenian coast, more specifically, the area lacking volcanism between 
the Southernmost tip of the Albani Hills (Latium) and the Roccamonfina Volcano (Campania). The Province is the 
primary source of gas emissions in Central-Southern Italy (Chiodini et al., 2004; Frondini et al., 2019).

3.  Data and Methods
Our starting data set comprises earthquake waveforms recorded within the study area (latitude: 41.1–42.5, longi-
tude: 12.5–15.5) by the Italian seismic network in the period 2009–2023, corresponding to the stable config-
uration of the network. We selected available events having a magnitude range of 2.0 ≤ ML ≤ 4.5 and a depth 

Figure 1.  The seismotectonic framework of the Central-Southern Apennine transition zone. (a) Main tectonic domains, fault 
traces and the Roman Comagmatic Province from Ferrarini et al. (2021) and Lavecchia et al. (2017, 2022). (b) Main historical 
and Instrumental seismicity (black dots—01 January 1985–16 January 2023) from Italian seismic catalogs (Catalogo 
Parametrico dei Terremoti Italiani—CPTI15 v3.0, ISIDe Working Group, 2007; Rovida et al., 2020).
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between 0 and 50 km. We inverted the coda-normalized direct-wave energies and mapped the peak delay times 
by using the MuRAT package (De Siena, Thomas, & Aster, 2014; De Siena, Thomas, Waite, et al., 2014; Reiss 
et  al.,  2022), which computationally implements coda-normalization and peak-delay techniques, providing a 
complete open-access tool for attenuation and scattering tomography. After downloading and checking the avail-
able waveforms, we used a final input data set that comprises 240 earthquakes and 7,287 waveforms (Figure S1 
in Supporting Information S1). MuRAT also requires seismic velocities for tracing rays. However, no unique 3D 
velocity model exists for the area: we thus use as a reference the 1D model (Table S1 in Supporting Informa-
tion S1) from Trionfera et al. (2019) extended over a grid spaced about 10 (horizontal) and 5 km (vertical).

Before applying MuRAT, we analyzed the frequency contents, the P- and S- arrival time distribution, and the 
start time of the coda in the SAC waveforms (the statistical analysis can be found in the Text S1 in Supporting 
Information S1). The pre-processing guided the selection of central frequencies (Figures S2 and S3 in Support-
ing Information S1) and other inputs for the attenuation and scattering tomography. We tested the stability of 
the attenuation and scattering measurements (Figure S4 in Supporting Information S1), explicitly checking that 
(a) the logarithm of peak delay increases linearly with source-station distance and (b) the logarithm of the total 
coda-normalized P-wave decreases with increasing travel time (Sketsiou et al., 2021). We used P-phases as a 
reference for the attenuation tomography because of the high number and quality of the detections for this phase; 
instead, we used S-waves for the peak-delay model due to the sensitivity to heterogeneities and the lack of trade-
off with the Vp/Vs structures (De Siena et al., 2016; Takahashi et al., 2009).

The total attenuation and scattering measurements have been performed at 3 and 6 Hz, respectively; they both 
have ray-dependent sensitivity. A standard regionalization procedure, which divides the volume into cells having 
the same values, is applied for the 3D peak-delay (PD) model (Gabrielli et al., 2023), while a different representa-
tion method is used for the Q model: MuRAT inverts coda-normalized direct-wave P-wave energies for the  total 
attenuation (Q) (Del Pezzo et al., 2006; Sketsiou et al., 2021) and inverts the attenuation values along the seismic 
raypath. Checkerboard and spike tests for this method show differences in resolution across the entire region and 
for interpreted anomalies, respectively (Figures S5–S9 in Supporting Information S1). We realized an interpo-
lated map of values for each depth layer using the Inverse Distance Weighted interpolation method. Only anom-
alies recovered by testing and that can be recognized in both the Q and PD models were interpreted in relation to 
existing geological features.

4.  Results and Discussions
4.1.  Attenuation and Peak-Delay Models

We provide new 3D models of total seismic attenuation (inverse total quality factor—Q model) and scattering 
(Peak-Delay models, hereinafter PD) for Central-Southern Italy (Figure 2). The horizontal slices of the attenu-
ation model show four significant anomalies (labeled A-D in Figure 2). Their dimensions are comparable with 
the average resolution of the models (about 20 km), and the synthetic tests demonstrate they are resolvable at 
different frequencies (Figures S5–S12 in Supporting Information S1).

Along the Apennines Chain, at depths of 5.6 km, a nearly continuous high-attenuation zone extends NW-SE from 
L'Aquila to Benevento. This zone is identified in Figure 2b and exhibits two prominent anomalies labeled A and 
B. Anomaly A spans approximately 110 km (NNW-SSE) and shows a complex pattern (a1, a2, a3 in Figures 2b 
and 2c). Feature a1 is in the southern Apennines and extends primarily along the Matese Massif and the Volturno 
Plain, bordering the volcanic area of Roccamonfina to the southwest. The area is partially characterized by 
high CO2 emissions at the surface (Frondini et al., 2019; Vitale et al., 2023) (Figure 3). Anomalies a2 and a3 
mainly extend in the southern Abruzzo region, along the Apennine axis (a2) and eastward, on the foothills (a3). 
Anomaly B, located in the Central Apennines near the Rocca di Mezzo fault system, extends for ∼20 km in the 
SW-NE direction (Figures 2a–2c). It is south of L'Aquila town, which experienced a long and destructive seismic 
sequence in 2009. The spatial distribution of the seismicity associated with this sequence abruptly interrupts 
North of the B anomaly (Figure 2b). The third well-resolved shallow high-attenuation volume (C) is located on 
the eastern side of the study area, between Benevento and Campobasso (Figures 2b and 2c). At a depth of approx-
imately 12 km, anomaly D elongates NW-SE between Benevento and Isernia (Figures 2d and 2e). This anomaly 
shows attenuation values greater than 0.015 and can be divided into two separate areas: the southernmost volume 
north of Benevento (d1) and the one beneath the Matese Mountains (d2). The seismicity between 8 and 13 km is 
located in the low attenuation region between d1 and d2 (Figures 2d and 2e).
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Anomalies A, B, C, and D are roughly identified in the PD model (Figures 2c and 2e), but their boundaries are 
better defined in the Q model. Their shape could differ due to differences in regionalization and grid-based inver-
sion methods. Therefore, we used total attenuation to reference their boundaries and shapes. Also, in the PD model 
and at shallow depths, anomalies A and B show high scattering values interspersed with lower to negative values 
(Figure 2d). The external shallow (C) and 12-km-deep (D) anomalies appear as high-scattering zones (Figures 2c 
and 2e). The Q and PD maps agree on the sharp variation between A and B anomalies. Low-to-high attenuation 
and negative-to-positive PD characterize the area, including the fault segments of Morrone-Porrara and Fucino.

4.2.  Control of Tectonic Structures on Seismic Attenuation and Scattering

The most likely cause of high seismic attenuation and scattering volumes are rock fracturing and morphological 
variations (Gabrielli et al., 2023; Napolitano et al., 2020). Our results reveal significant attenuation and scattering 
values within both extensional and contractional domains (Figures 1a and 2). These attenuation maps exhibit a 

Figure 2.  (a) Summary of the main tectonic features in the area; faults colors are the same as in Figure 1. (b–e) Horizontal 
maps of total attenuation parameter (Q) (b, d) and scattering proxy (peak-delay [PD]) (c, e). Q parameter refers to P-waves, 
and PD refers to S-waves. The rows show results at depths of 5.6 and 11.7 km, respectively. The seismicity distribution of 
Figure 1 is projected on each map with a semi-width of 2.5 km: earthquake ranges are 3–8 km (5.6 km, (b, c)) and 8–13 km 
(11.7 km, (d, e)). Black dashed lines and labels are the anomalies described in the main text.
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clear spatial relation with active normal and reverse fault systems, with A and C trending NW-SE along the Apen-
nine chain and east of it. The A anomaly predominantly stretches within the extensional domain and is controlled 
by the west-dipping active normal faults. The highest attenuation values align in a WNW-ESE direction (a1) 
in the southern Apennines and an NW-SE (a2) in the central Apennines. Specifically, a1 is controlled by the 
southwest dipping Eastern Matese fault system and the western border faults of the Volturno Plain. Consistently, 
the Monte Greco-Barrea alignment control a2 anomaly. A dense pattern of faults characterizes the northern-
most part of A, with the highest attenuation values extending eastward. The anomaly a3 could be controlled by 
the alignment of normal faults Morrone-Porrara or by the Casoli-Bomba thrust system (Calamita et al., 2009; 
Ferrarini et al., 2021; Patacca et al., 2008), which would intercept the high-attenuation volume at about 6 km 
(assuming a mean dip angle of 20°). Its WSW-ENE trend is replicated in the north by anomaly B, perpendicular 
to the primary NW-SE trend of the central Apennine fault systems, located between the west-dipping Paganica 
and Salto Valley-Velino fault systems. B comprises three minor WSW-dipping en-echelon faults bounding a small 
Quaternary basin; the envelope of these faults appears to control the anomaly.

The C anomaly and the southern N-S trending segment of the Frentani Arc of the Outer Thrust System follow 
similar trends (Figures 2a–2c). The Q image shows an arcuate trend following the thrust trace, but its shape is 
unclear in the PD model. Here, we interpret the anomaly as associated with the southern portion of the Frentani 
Arc. The peak delay maps strengthen and confirm the results obtained by inverting for the total attenuation. The 
two main high attenuation volumes at shallow depths (A, C) correspond to regions with dense and complex fault 
patterns able to release significant earthquakes. These fractured shear zones trap seismic waves, dramatically 
increasing peak delays while waves propagate within their fractures (King et al., 2022, 2023).

The spatial relation between total and scattering attenuation suggests a primary contribution of strain release 
to energy loss; even more relevant appears the link between low scattering and total attenuation and zones of 

Figure 3.  Map of surface CO2 flux in Central-Southern Italy interpolated from the degassing measurement in 
correspondence with springs (Frondini et al., 2019). White dashed and dotted lines are the contours of anomalies in the Q(p) 
and peak-delay (PD) models. The CO2 flux (Frondini et al., 2019; Vitale et al., 2023) is compared with the anomalies from 
the Q and PD models at 5.6 km (a, b) and 11.7 km (c, d).
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stress accumulation (Gabrielli et al., 2023; King et al., 2022). While low scattering attenuation values are linked 
to compact, undamaged rocks, recent studies demonstrate their ability to define aseismic, locked volumes most 
likely to generate large earthquakes (Gabrielli et al., 2023), justifying the result as caused by a deformation of the 
heterogeneities due to the high-stress level in the proximity of the faults (King et al., 2022). A WSW-ESE-trending 
aseismic low 1/Q and low PD gap extending continuously for ∼120 km transversely to the Apennine fault system, 
from the Latium Volcanic Province to the Maiella Massif, separates anomalies B and a3 (Figures 2b and 2c). 
In the past, several destructive earthquakes struck the area, like the 1706 and 1933 events (Io greater than IX, 
Guidoboni et al., 2019). We propose that this low-attenuation and low-scattering barrier for earthquakes compris-
ing exposed normal faults (Frepoli et  al.,  2017; Romano et  al.,  2013) is a locked zone where seismic stress 
accumulates, prone to release strong earthquakes. In particular, the Morrone fault system is known as a relevant 
seismic gap in the central Apennines (Chiarabba et al., 2009; Galadini & Galli, 2000; Gori et al., 2011; Romano 
et al., 2013; Vignaroli et al., 2022).

At a depth of about 12 km, the only anomaly with very high attenuation values is D, which is potentially controlled 
by the east-dipping structures bordering the Volturno plain. This anomaly is better related to fluid distribution and 
gas emissions across Southern Italy.

4.3.  The Role of Fluids

Seismic absorption is better suited than scattering or total attenuation when imaging fluid reservoirs and molten 
bodies (Napolitano et al., 2020; Reiss et al., 2022; Sato et al., 2012). However, diffusive coda waves present 
absorption sensitivity kernels that depend heavily on source and station locations (Del Pezzo et al., 2018); differ-
ently from small volcanic and tectonic regions, where seismicity can diffuse over long periods, at our scale 
3D coda-dependent absorption tomography provides much lower resolution than ray-dependent imaging. After 
using MuRAT to obtain absorption tomography models, we realized these were also unstable, that is dependent 
on few available measurements in parts of the models. Therefore, we grounded our interpretation on the spatial 
relation between total and scattering tomography anomalies, as fractures strongly contribute to fluid migration 
and storage.

Additional factors such as rock composition, mineralogy, and the presence of fluids can also play a role in influ-
encing the attenuation of seismic waves. The westernmost sector of the study area comprises the Southern tip of 
the Roman Magmatic Province. This sector is characterized by diffuse volcanic phenomena such as CO2 degas-
sing (Frondini et al., 2019; Vitale et al., 2023) (Figure 3). Here, a high-attenuation/high-scattering volume coin-
cides with the Albani Hills area, underlying the well-known correlation between seismic attenuation and fluids 
sources in volcanic systems (Grab et al., 2017; Hudson et al., 2023; Schurr et al., 2003). Its features are unresolved 
(Figure S9 in Supporting Information S1), but values are similar to those of B (Figure 2), which comprises a 
Quaternary basin. While portions of B present artifacts due to the source-receiver distribution (Figure S9 in 
Supporting Information S1), it also corresponds to the volume interested by the 2009 sequence: the fluids that 
permeate fractures likely increase attenuation. We propose this transversal fracturing zone as a reservoir for the 
fluids involved in the seismic sequence (Martinelli et al., 2020; Quattrocchi et al., 2011; Terakawa et al., 2010). 
Nevertheless, our models have insufficient resolution to supply the exact shape of this reservoir.

A similar relation between fluids and seismic attenuation and scattering is proposed in the Southern Apennines, 
where D (d1, d2) dominates between 10 and 15 km (Figures 2d and 2e). In the PD map, this feature propagates 
mainly SW. It reaches higher scattering values in correspondence with the Campanian Volcanic Province and 
the associated large CO2 flux (Figure 3d). The high 1/Q instead borders the high CO2 flux zone (Figure 3c). The 
position of the anomaly relative to gas fluxes suggests a deep reservoir separated from the volcanic area of the 
Campanian Volcanic Province. The Volturno Plain normal fault alignment (Figure 2a) could represent the barrier 
that separates the two fluid sources, avoiding their mixing. The reservoirs created by the Campanian Volcanic 
Province degas through tectonic and volcanic structures, while d1 and d2 appear trapped at depths of about 
12 km. These fluids can partially fill the tectonic fractures following the principal W- and E- dipping normal 
faults; consequently, they can reach shallower depths and contribute to the high-attenuation, high-scattering 
values of the wider A anomaly. This prominent feature is the first evidence of a fluid-saturated fracture zone that 
likely sources fluids to the fracturing system crossing the Southern part of our study area, and that could have a 
crucial role in the seismotectonic assessment and the earthquake triggering. Our results are consistent with the 
analysis of Di Luccio et al. (2018), which provided additional insights into the genesis of seismic events in this 
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area, attributing them to tectonic loading, over-pressurized CO2 reservoirs at upper crust depths, or intrusive 
episodes of magmatic sources at greater depths. A recent paper by Vitale et al. (2023) also confirmed the presence 
of deep fluids in the area, unveiling four gas vents around the Matese Massif area (Figure 3).

5.  Conclusions
The lack of a homogeneous geophysical model for Central-Southern Italy significantly limits the understanding 
of shallow and deep crustal structures and their hazard assessment. In this paper, we address filling this gap by 
obtaining 3D total attenuation and scattering models for the area. The two independent parameters reveal similar 
wide-scale features, reinforcing their reliability and allowing a multiparametric interpretation. Major tectonic 
structures control the distribution of high-attenuation volumes. In particular, high attenuation in Southern Italy is 
related to the W-dipping Boiano, Monte Greco-Barrea, and the E-dipping Volturno-Benevento Fault Systems. We 
also detect the Southern prosecution of the Frentani Arc as an arcuate high-attenuation zone.

High scattering and attenuation characterize a deeper fluid-saturated volume separated from the Campanian 
Magmatic Province by the Piedimonte Matese fault system. We propose this reservoir as the source region for 
shallower fluid circulation through the tectonic fracture network that interests the South of the inspected area. 
In the Central Apennines, diffuse low values of PD and 1/Q mark seismic stress accumulation in the area of the 
Morrone-Porrara fault alignment, where they coincide with a seismic gap. At the southern and northern borders 
of this volume, high-attenuation anomalies rotate WSW-ENE perpendicular to the Apennine axis. These signa-
tures lead us to propose transversal fluid-filled volumes that “stop” earthquake propagation toward the North and 
South by reducing the normal stress on the faults and favoring an almost continuous stress release. Due to the 
stress accumulated, large earthquakes could strike the aseismic low-attenuation and scattering gap in the future.

Data Availability Statement
The workspace used to perform analyses with the open-access MuRAT3D MATLAB © code is available at 
MuRAT 3.0 (2021). The plots in Supporting Information S1 were generated using the Generic Mapping Tools, 
version 6.2.0 (Wessel & Smith, 1998). Data records are from the INGV database (INGV, 1988; ISIDe Working 
Group, 2007). All attenuation and scattering models produced in this work are available at Talone (2023).
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