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Summary 
Cancer is largely driven by accumulation of somatic mutations that can be subdivided into 
small mutations (single nucleotide variations (SNVs), small insertions and deletions) and large 
structural variations (SVs). While SNVs affect single nucleotide, SVs can affect large stretches 
of DNA. Reliable identification of all mutations is key to understanding genetic diseases like 
cancer.  
SVs can be identified by whole genome sequencing with conventional Illumina short-read 
sequencing (cWGS) being the most widely used approach. However, reliable prediction of SVs 
with short-reads (50-150bp) from fragmented DNA (~0.5kb) is challenging due to ambiguous 
mapping reads at repetitive regions and typically only few short reads span rearranged SV 
breakpoints with limited sequence overlap (due to read length). The 10X Genomics linked-
reads sequencing (10XWGS) technology aims to mitigate limitations by linking short-reads to 
the original larger fragment of DNA (~10kb). In this study, we performed an unbiased 
evaluation of these two technologies with different types and sizes of SVs and compared their 
performance. The SVs commonly identified by both the technologies were highly specific, while 
the validation rate dropped for uncommon SVs. Despite the technological advantage, a 
particularly high false discovery rate (FDR) was observed for SVs found only by 10XWGS 
without any significant improvement in sensitivity. We proposed a sensitive and specific 
statistical approach to improve SV predictions from both technologies and characterized SVs 
from MCF7 breast cancer cell line and a primary breast tumor with high precision.  
Due to the limited benefit of 10XWGS for sensitivity, we trained a random forest classifier in 
FuseSV for accurate predictions only from cWGS sequencing data. FuseSV integrates SV 
predictions from multiple bioinformatics tools and mitigates high FDR of cWGS with a novel 
set of features derived from alignment of reads to the reference genome, biological 
mechanisms of SVs and breakpoints of SVs clustered together to consider complex genomic 
rearrangements (CGRs). The performance of FuseSV classifiers was superior to all individual 
bioinformatics tools as well as combined use with 10XWGS.  
SVs whether simple or complex can form chimeric fusion transcripts (CMTs). CMTs can be 
predicted from RNA-sequencing (RNA-seq) data but include also transcripts that occur without 
underlying mutation and are also present in healthy tissues. Here we propose a novel pipeline, 
FUdGE, that predict three types of CMT directly from somatic SVs: These include direct fusion 
transcripts or classical fusion genes, transcripts with intron (IR) and intergenic region retained 
(INR). FUdGE allows independent confirmation of expressed CMTs from matched RNA-seq 
data. We validated the approach in the same MCF7 cell line and a primary breast tumor sample 
and investigate CMTs in a cohort of liposarcoma samples. Here we observed that the majority 
of confirmed SV driven CMTs were classical fusion genes with a much smaller number of IR 
and INR events.  
Conclusively, FuseSV enables accurate prediction of somatic SVs in cancer using only cWGS. 
While FUdGE provides an RNA-seq independent strategy for direct prediction of CMTs formed 
due to somatic SV event. The respective expressed CMT candidates can be confirmed 
independently with RNA-seq data. This alternative approach only predicts tumor-specific 
somatic SV driven CMTs, which is advantageous for personalized immunotherapy 
interventions considering CMTs as neo-antigen candidates.  
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Zusammenfassung 
Krebs wird weitgehend durch die Ansammlung somatischer Mutationen verursacht. Hier 
werden kleine Mutationen (Einzelnukleotidvariationen (SNVs), kleine Insertionen und 
Deletionen) und große strukturelle Variationen (SVs) unterschieden. Während SNVs einzelne 
Nukleotide betreffen, können SVs große Abschnitte der DNA verändern. Die akkurate 
Detektion aller Mutationen ist der Schlüssel zum Verständnis genetischer Krankheiten wie 
Krebs.  
SVs können durch Genomsequenzierung identifiziert werden, wobei die Illumina 
Sequenzierung  (cWGS), welche kurze Sequenzen erzeugt, die am häufigsten verwendete 
Methode ist. Eine zuverlässige Vorhersage von SVs aus kurzen Sequenzen (50-150bp) von 
fragmentierter DNA (~0,5kb) ist jedoch schwierig, weil kurze Sequenzen besonders in 
repetitiven Regionen oft nicht eindeutig zugeordnet werden können und weil nur wenige 
Sequenzen tatsächliche die Bruchpunkte von SVs überspannen und dann auch nur einen 
geringen Überlapp zu jeder Seite haben. Die 10X Genomics linked-reads 
Sequenzierungstechnologie (10XWGS) zielt darauf ab, diese Einschränkungen durch die 
Verknüpfung mehrerer kurzer Sequenzstücke von einem ursprünglichen größeren DNA-
Fragment (~10kb) zu überwinden. Wir haben daher eine unvoreingenommene Testung beider 
Technologien für verschiedene Arten und Größen von SVs durchgeführt. Hier waren die von 
beiden Technologien gemeinsam identifizierten SVs hochspezifisch, während die 
Validierungsrate bei separat gefunden SVs geringer war. Trotz des technologischen Vorteils 
wurde eine besonders hohe Falschentdeckungsrate (FDR) für SVs beobachtet, die nur mit 
10XWGS gefunden wurden, ohne dass sich die Sensitivität wesentlich verbesserte. Für beide 
Technologien haben wir einen sensitiven und spezifischen Vorhersagealgorithmus entwickelt 
und charakterisierten SVs aus der MCF7 Burstkrebszelllinie und einem primären Brusttumor 
mit hoher Präzision.  
Aufgrund des geringen Nutzens von 10XWGS für die Sensitivität, trainierten wir einen 
Random-Forest-Klassifikator in FuseSV für die genaue Vorhersagen von SVs nur aus cWGS-
Sequenzierungsdaten. FuseSV integriert SV-Vorhersagen aus mehreren bioinformatischen 
Tools und kompensiert eine hohe FDR mit einem neuartigen Set von Merkmalen, die aus dem 
Alignment von Sequenzen zum Referenzgenom, den biologischen Mechanismen zur 
Entstehung von SVs und gruppierten Bruchpunkten im Falle von komplexen genomischen 
Rearrangements (CGR) abgeleitet werden. Unter Verwendung dieser Merkmale ermöglicht 
der FuseSV Klassifikator eine akkuratere Vorhersage als die einzelnen bioinformatischen 
Tools und auch als die kombinierte Nutzung mit 10XWGS.  
SVs, ob einfach oder komplex, können chimäre Fusionstranskripte (CMTs) bilden. CMTs 
können aus RNA-Sequenzierungsdaten (RNA-seq) vorhergesagt werden, enthalten dann aber 
auch Transkripte die ohne eine unterliegende Mutation entstehen und auch in gesunden 
Geweben vorkommen können. Hier stellen wir FUdGE vor, welches drei Arten von CMTs direkt 
aus somatischen SVs vorhersagen kann: Dazu gehören direkte Fusionstranskripte oder 
klassische Fusionsgene, Transkripte mit intronischen (IR) und intergenischen Sequenzen 
(INR). FUdGE ermöglicht eine unabhängige Bestätigung vorhergesagter und exprimierter 
CMTs anhand von RNA-seq Daten desselben Samples. Wir validierten unseren Ansatz in der 
MCF7 Zelllinie und einem primären Brusttumor und untersuchten die Häufigkeit von CMTs in 
einer Liposarkom-Kohorte. Die große Mehrheit der bestätigten CMTs waren klassische 
Fusionsgene, wobei nur eine geringe Anzahl IR und INR durch ein somatisches SV-Ereignis 
gebildet wurde.  
Zusammenfassend, ermöglicht FuseSV eine genaue Vorhersage von somatischen SVs in 
Tumorproben von cWGS Daten alleine. FUdGE hingegen bietet eine RNA-seq unabhängige 
Strategie zur direkten Vorhersage von CMTs, die durch somatische SVs entstehen. Die 
exprimierten CMT-Kandidaten können unabhängig anhand der RNA-seq Daten bestätigt 
werden. Dieser alternative Ansatz sagt nur tumorspezifische durch somatische SV bedingte 
CMTs vorher, was von Vorteil ist, wenn für personalisierte Immuntherapien CMTs als 
Neoantigen-Kandidaten berücksichtigt werden sollen.  
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1 Introduction 
Cancer is the uncontrolled growth of normal cells in the body that can mutate, expand and 
spread to other regions of body from the local site. A continuous effort in the cancer research 
began as early as 460-370 B.C. with coining of the term “carcinos” and “carcinoma” by Greek 
physician Hippocrates. A key milestone in this effort was contributed by Percivall Pott in 1775 
with his study of squamous cell carcinoma by exposure to chimney soot (1). As reviewed in 
(2), a simultaneous effort on the origin of cancer were proposed in the late 19th and early 20th 
century. A theory proposed by David Paul von Hansemann and Theodor Boveri involved 
observation of abnormality in the numbers of chromosomes and mitosis in cancer cells. 
However, the research by Paul Ehrlich in 1909 linked cancer with suppression of immune 
system through the concept immune surveillance. This serves as a basis for treatment of 
cancer by immunotherapy where the inherent immune system is trained and enhanced to fight 
cancer. 
The cancer cells are characterized by a broad spectrum of mutations, varying from single 
nucletoide variants (SNV), small insertions and deletions (INDEL) to structural variations (SVs) 
that affect more than 50 base pairs (bp). Several studies have associated SVs to a genetic 
disease (3,4) but not all SVs have functional impact. Generally, mutations in cancer can be 
germline i.e., inherited from parents or acquired from environmental factors leading to somatic 
mutations solely found in cancer cells. These mutations can be beneficial, neutral (passenger 
mutations) or harmful (driver mutations) based on its functional impact. The genetic disease 
like cancer is driven by higher ratio of driver mutations in comparison to the passenger 
mutations (5). These driver mutations affect normal functions of the cell and are often localized 
in the tumor suppressor genes (example BRCA1, BRCA2, p53 genes), oncogenes (example 
RAS, HER2 genes) and DNA repair genes (example BRCA1, BRCA2). Thus, correct 
identification such driver mutations is crucial for better understanding of the cancer biology, its 
diagnosis and treatment. 

1.1 Structural variations (SVs) 
Simple SVs include deletion of genomic segments, duplication, inversion and translocation of 
genomic segments between different chromosomes. Each SV contains at least two 
breakpoints that merges two distant genomic locations. Deletions and duplications are also 
known as copy number variations (CNV) as the genomic segment is deleted or duplicated 
respectively. While copy neutral variations include inversions where a segment is inverted and 
inserted at same or any other location, and translocations where a genomic segments from 
different chromosomes merge. Translocation can be balanced when segments from different 
chromosomes are exchanged or unbalanced when segment from one chromosome is either 
deleted, duplicated or inverted and inserted at another chromosome. SVs can also be complex 
in nature where multiple events are incorporated in the genome. One of such complex genomic 
rearrangement (CGR) is chromothripsis where the chromosome is shattered in a single 
catastrophic event (6). It is characterized by localization of multiple breakpoints in a confined 
genomic section with an alternating oscillation of 2 or 3 copy numbers. It is prominently found 
on one chromosome while another type of CGR like chromoplexy involves several 
chromosomes being joined together with multiple DNA strand breakage and joining (7). This 
causes clustering of multiple breakpoints from more than five chromosomes with balanced 
rearrangements. One of the earliest discovered forms of CGR was breakage fusion bridge 
(BFB) cycles (8). It was first detected by Barbara McClintock in 1930s where two sister 
chromatids fuse together due to lack of telomeres and form mitotic bridges leading to DNA 
breakage. BFB cycles are characterized with fold-back-inversions with copy number changes.  
With the advancement in algorithms and technologies many new types of CGR are discovered 
in various cancer types (4). These include chains, cycles and bridges of templated insertions 
that involve shuffling of different chromosome sections in a string that can either form bridges 
(when start chromosome has a gap), chains (when string of inserted sections do not revert to 
start chromosome) and cycles (a cycle of inserted sections from multiple chromosomes is 
observed). Furthermore, (9) explored other types of CGR like pyrgo and rigma. The pyrgo 
contains clusters of duplication like events with low number of junction-copy numbers in a 
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confined genomic segment while rigma has clusters of deletion like events with low number of 
junctions merged where an interval section also reached zero copy number. In the pan-cancer 
analysis of CGR, it was seen that endometrial, ovarian and breast cancer were significantly 
enriched with pyrgo while rigma was significantly enriched in Barrett’s esophagus and 
esophageal adenocarcinoma. Henceforth, most cancer genomes are enriched with different 
types of SVs and CGRs that are being discovered with the advancements in cancer research. 

1.2 Technologies for identification of SVs  
The advancement in cancer research is also linked to the advancement in technologies used 
to study the cancer cells. One of the earliest technologies used for the detection of cancer-
related abnormalities includes cytogenetic techniques. It was Peter Nowell and David 
Hungerford in 1960 who first detected Philadelphia chromosome in chronic myeloid leukemia 
(CML) by visualization of cancer cells under the microscope (10). Later in 1980 researchers 
developed DNA fluorescence in situ hybridization (FISH) technology that binds fluorescent 
probes to section of DNA (11) to visualize rearrangements under the fluorescence microscope. 
This cost-effective technique allowed cancer biologists to visualize several abnormalities in 
cancer cell including CGR like breakage-fusion-bridges (12). 
Apart from cytogenetic techniques, hybridization-based techniques became popular since 90s. 
These technique use labeled complementary DNA or RNA probes to bind specific DNA or RNA 
sequence on a plate. It has been used extensively to identify DNA copy number changes and 
point mutations in tumor cells with comparative genomic hybridization (CGH) (13) and single 
nucleotide polymorphism (SNP) arrays (14). These techniques provide better resolution than 
cytogenetic technique, but they are inadequate for detection of balanced copy neutral 
variations like inversions.  
A big revolution in cancer research came with development of next generation sequencing 
(NGS) techniques. With the base pair sequence information at disposal, it has been possible 
to link mutations in genome (including both coding and non-coding/intergenic regions) with the 
evolution of cancer and its metastasis. This enabled pan-cancer analysis of mutations (both 
SNPs and SVs) in 38 sub-types of cancer cells from 2658 patients under PCAWG consortium 
(4). Such joint efforts have revealed several patterns and signatures of SVs and CGR in 
different cancer by usage of paired-end short reads sequencing from the Illumina platform.   

1.2.1 Illumina short-reads sequencing 
One of the most predominant NGS technologies used in research is Illumina’s paired–end 
short reads sequencing. The detection of mutations with Illumina’s NGS involves following 
steps:   
Library preparation: A short insert of ~0.5kb is prepared from the isolated genomic DNA or 
cDNA and ligated with 5’ and 3’ adapter sequences. The tagged fragments are then amplified 
by PCR and purified. 
Cluster generation: The amplified libraries are loaded on flow cells where they bind to oligos 
complementary to the adapters. Next, the bridge amplification amplifies attached libraries in 
the clusters.   
Sequencing-by-synthesis: Illumina technology uses base-by-base sequencing where a 
terminator-bound dNTPs is added. The dNTPs are fluorescently labeled that allows 
visualization of sequence when they are incorporated in sequence of reads that would be 
synthesized as complementary to the library’s sequence. This is repeated for “n” cycles that 
generates a read of length “n” bases. In case of paired-end sequencing, the fragment is 
sequenced from both the sides as depicted in figure. 
Bioinformatics analysis: After the generation of reads, they are aligned to the reference 
genome and signals from aligned reads can be used to detect different types of variations.  
A major shortcoming of this technology is contributed by the short-fragment DNA library 
preparation that are sequenced with even shorter reads of length typically 2x150 bp. As a 
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result, this technique proves inefficient in aligning reads originating from repetitive elements in 
the human genome that are often associated with SVs (15) .  

1.2.2 10X Genomics linked-reads sequencing 
To deal with limitations of Illumina short-reads sequencing, recently linked-reads sequencing 
technology (10XWGS) was introduced by 10X Genomics. This utilizes reads derived from high 
molecular weight (HMW) DNA with typical fragment size between 50 – 100 kb in order to supply 
long-range information (16). This approach captures high molecular weight (HMW) DNA 
molecules in “Gel beads in EMulsion (GEM)”. After encapsulation, HMW DNA is sheared into 
smaller fragments (0.5 kb), labeled with GEM specific barcodes and subjected to Illumina 
short-reads sequencing (paired-end). The attached barcodes link each short read-pair to its 
originating HMW DNA. The 10XWGS bioinformatics pipeline utilizes this information to 
reconstruct the initial long HMW DNA molecule that links longer sections of the genome 
together into a phased haplotype and resolving SVs in low complexity regions of the genome. 
Theoretically, this enables highly specific and sensitive prediction of SVs.  

1.3 Mechanisms of SVs 
The cellular mechanisms behind the generation of SVs are an active field of research. 
Primarily, an SV occurs due to inefficient DNA repair of a double stranded break (DSB) in DNA, 
collapse of the replication fork, telomere decay or enzymatic activity. The genomic sequence 
around the repaired breakpoints can indicate the active DNA repair mechanism in the cell. One 
of the key genomic signatures suggesting the repair mechanism is the length of microhomology 
around the broken DNA and presence of small INDEL at the repaired DNA section (17). 
Microhomology is defined as the length of nucleotides that are same around the broken DNA 
that eventually constitutes the two breakpoints of an SV. These can be located at the junction 
or at some distance from the merged genomic segments of the SV.  
Different DNA repair mechanisms are categorized into break and ligate, and template and 
ligate. As reviewed in (17) and (18), template and ligate repair mechanisms typically begin with 
the resection of DNA by BLM helicase and DNA2 endonuclease or EXO1 exonuclease, next 
is the formation of 3’single stranded tails, RAD51-mediated strand invasion and DNA synthesis 
by polymerase.  One of the mechanisms included in this category is homologous 
recombination (HR) that uses sister chromatid or corresponding homologous sequence as 
template to fix broken DNA section. This is usually error free and requires long stretches of 
homologous sequences around the breakpoints. The DNA-RAD51 nucleoprotein combination 
searches for suitable template by the formation of displacement-loop. Next in the synthesis 
dependent strand annealing, the D-loop is dissociated after synthesis of several hundred base 
pairs and nascent strand pairs with single-stranded DNA on opposite side of break. The 
double-strand break repair (DSBR) model involves creation of a double holliday junction 
structure which completes the repair (19). Although HR is accurate in repair, but sometimes 
RAD51-DNA complex can use nearly similar sequence from non-allelic template. This is called 
non-allelic homologous recombination (NAHR). NAHR can generate a lot of chromosomal 
rearrangements as nearly 45% of human genome is rich in repeats. One of the NAHR derived 
variation is seen in BRCA1 gene whose intronic region is covered with Alu repeats. The 
inaccurate DNA repair is the major cause of mutations in BRCA1 deficient cancers like breast 
cancer (20). Another error-prone HR pathway is break-induced replication (BIR) that involves 
invasion of the homologous template by one broken DNA end and synthesis of extremely long 
DNA >100kb. Such breaks are often observed in the collapsed replication fork or eroded 
telomeres that were reported in many cancers (21). The BIR pathway prefers one ended DSB, 
however, this mechanism is also active when there is limited homology of <150bp around the 
two ended DSB (22). One of the variations of BIR is microhomology mediated BIR (MMBIR) 
pathway that relies on smaller homologous sequence (or microhomology) of 2-5bp around the 
break for annealing the dissociated single-stranded DNA. MMBIR is also referred to as fork 
stalling and template switching (FoSTeS) that involves multiple rounds of template switching 
often leading to CGR (23).  
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The break and ligate mechanisms include classical non-homologous end-joining (c-NHEJ), 
alternate end-joining (alt-EJ) and single strand annealing (SSA). The c-NHEJ repair 
mechanism is normally accurate or with small INDEL around the DNA breaks and require 
minimal microhomology (0-4bp) (24). It is active during the interphase and begins by 
attachment of Ku70/80 heterodimers to blunt DNA ends or ssDNA with less than 5 bp. Further, 
the breaks are ligated via DNA ligase 4 or other enzymes depending on whether DNA break 
can be ligated directly or not (25). Another break and ligate mechanism include alternate end-
joining (alt-EJ) which is originally described for all the repair mechanisms active in the absence 
of c-NHEJ. It is an error-prone mechanism that require microhomology of 1-8bp around the 
DNA breaks. Alt-EJ can be further classified based on the properties of repair junctions. The 
first one is microhomology-mediated end joining (MMEJ) that begins by the resection of DNA 
to ssDNA, annealing of microhomologous sequences at the breaks, deletion of 3’ tails of non-
homologous ends, fill-in-synthesis and ligation. It requires microhomologous sequence of 
length between 1-8 bp for annealing. The second one is the synthesis-dependent MMEJ (SD-
MMEJ) that introduces de novo microhomologous sequence as an additional step during the 
DNA synthesis. SD-MMEJ is characterized with the presence of INDELs around the DNA 
breaks once repaired (26). Another version of MMEJ uses DNA Polymerase theta for end 
joining of the nicked DNA (27). The DNA Polymerase theta uses very short microhomology of 
1-2 bp to prime DNA synthesis. Because of the multiple rounds of annealing, synthesis and 
dissociation, template insertions can be introduced in the genome. Apart from the above-
mentioned break and ligate mechanisms, another type is the SSA. It is like HR based DNA 
repair as it requires DNA resection and formation of 3’ single strand DNA ends (28). However, 
instead of RAD51-mediated DNA repair, the SSA uses small section of homologous 
sequences for annealing, 3’ single-stranded tails are clipped and ligated. It is characterized 
with presence of homologous sequence of length greater than 15bp but less than 100bp.  
The cancer cells undergo extreme stress imposed by high degree of DNA replication or stress 
imposed by chemotherapeutic agents. Consequently, they rely on error prone DSB repair for 
survival that introduces mutations in genome. The mutational signatures observed in several 
cancer sub-types can indicate the type of repair mechanism. One well known example is 
“BRCAness” signature which is reported as Signature 3 in Catalog of Somatic Mutations in 
Cancer (COSMIC). This signature is observed in HR-deficient cancer types and is 
characterized by base substitutions, INDEL>3bp with microhomology around the breakpoints 
which indicates alt-EJ repair pathway (29). Hence, understanding the genomic features around 
the breakpoints of SVs can point to the most prominent DNA repair mechanism used by cancer 
cells for its survival. 

1.4 Functional consequences of SVs    
SVs in the cancer genome can rearrange the genome and have several forms of functional 
impact. These include following:      

1.4.1 Fusion gene 
A fusion transcript is generated when a gene is placed next to other gene due to SV and is 
expressed. Such chimeric fusion transcripts can drive cancer as seen in following cases: BCR-
ABL fusion gene in CML (10), TMPRSS2-ERG in prostate cancer (7) and EML4-ALK in non-
small cell lung cancer (30).  

1.4.2 Gene dosage 
SVs can increase or decrease copy number of sections of the genome. This cause 
transcriptional dosage changes like higher expression of oncogenes or reduced to no 
expression of tumor suppressor genes. A canonical example of this case is the overexpression 
of MYC oncogene in 13-17% cases of the breast cancer (31) and loss of CDKN2A tumor 
suppressor gene in the brain cancer (32).  
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1.4.3 Enhancer hijacking and altered expression 
The disruption of topologically associated domain (TAD) boundaries by SVs can also alter the 
expression of genes. TAD are the DNA sequences on chromosomes that interact physically 
with each other during the tightly packed interphase stage of cell cycle. The two different TAD 
boundaries can be separated by megabases but bring an enhancer close to a distant gene 
when packed tightly. Moreover, deletion of a TAD boundary can establish new promoter-
enhancer relationships that can alter gene expression and drive diseases (33–35).  
Enhancer hijacking and remodeling of chromatin topology has been observed in several 
cancer types like acute myeloid leukemia (36), medulloblastoma (37) and T-cell acute 
lymphoblastic leukemia (38).  

1.4.4 Intron-retention in expressed transcripts 
Intron-retention (IR) in transcripts is one of the classes of transcripts generated due to 
alternative splicing. This involves expression of transcripts with intron region due to mis-
splicing of the introns in mRNA and is primarily active after transcription. Such IR transcripts 
can play regulatory role in controlling the expression of genes (39). Additionally, a recent study 
in the cancer patients have inferred nearly 18% of SNV related to splicing lead to IR transcripts 
(40). While several studies have indicated widespread evidence of IR transcripts in the cancer 
cells (41,42), the expression of IR transcripts in normal/wild-type cells have also been reported 
(41). This indicates that their expression in cancer studies might be overestimated and requires 
effort in finding IR transcripts expressed only in the cancer cells. The detection of somatic IR 
transcripts can help link several mutations in the genome (like SNV and SV) with their 
functional impact as creation of chimeric transcript with retained intron region. 

1.5 Relevance of SVs in immunotherapy 
The cancer cells adapt to survive attacks from the immune system by various mechanisms. 
One of the mechanisms include blockage of immune checkpoints on T lymphocytes to mimic 
immunosuppressive activity. The discovery of such checkpoint inhibitors and the mechanism 
to hijack this pathway led to Nobel Prize award in 2018 to two immunologists, namely, James 
P. Allison and Tasuku Honjo. Their work led to immunotherapies blocking immune checkpoints 
(PD-1 (43) and CTLA-4 (44)) with monoclonal antibodies that enhanced anti-tumor immune 
response in the cancer patients.  
Immune checkpoint-based therapies are promising treatment for cancer, but they have lower 
efficacy in the solid tumors. Henceforth, novel personalized interventions with neoantigen 
based immunotherapy can be particularly attractive in such cases. As reviewed in (45) and 
discussed at the beginning, the cancer cells are driven by genomic mutations like SNV, SVs, 
INDEL etc. These variants and their derived mutant proteins are presented on the surface of 
antigen presenting cells via major histocompatibility complex (MHC)-I or MHC-II in the human 
body. The mutated protein-MHC combination can elicit an immune response by interacting 
with T lymphocytes (CD8+ or CD4+) and eliminate those cancer cells by expansion of T-cell 
clones recognizing the mutant protein. The derived mutant proteins from somatic mutations 
that occur only in the cancer cells have particularly strong immunological response that is also 
exempt from central tolerance. Such cancer specific antigens are called as neoantigens. The 
neoantigens are further classified into shared or personalized neoantigens. The shared 
neoantigens is derived from mutated proteins that are common amongst different cancer 
patients while personalized neoantigen is derived from mutated protein that are uniquely 
present in individual cancer patient. The cancer vaccines targeting neoantigens can decrease 
the probability of immune escape of cancer cells. Some of the examples of cancer vaccination 
programmes targeting shared neoantigens include mutRas and mutP53. On the other hand, 
the personalized neoantigen based vaccine are designed for specific patient and thus, exploit 
their complete mutanome for best treatment of cancer. Many such personalized vaccine 
development programmes are under clinical trials that hold an optimistic future in cancer 
treatment.  
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The current repertoire of neoantigens based cancer vaccine programmes is primarily derived 
from SNV with little to no exploitation of neoantigens derived from SVs. This can be attributed 
to several reasons like unreliable predictions of SVs by existing bioinformatics tools, lack of 
bioinformatics tools to directly predict functional consequences of SVs, enrichment of SVs in 
repetitive regions of the human genome that are difficult to resolve by NGS, complex nature of 
cancer derived mutations that can be clonal and sub-clonal, and cost associated with whole 
genome sequencing (WGS) for prediction of SVs. Nevertheless, few recently published 
research studies have shown promising immune response to neoantigens derived from SVs 
or fusion genes that can be formed due to SV event. The first study demonstrated T cell 
response in PBMC of the mesothelioma patient that was treated with peptides of potential 
neoantigens derived from chromosomal rearrangements (46). The other studies have shown 
stimulatory T cell response to the neoantigens derived from fusion genes (47,48). This implies 
promising potential of undiscovered neoantigens derived from SVs that can elicit an 
immunological response, including cancers with low mutation burden like head and neck 
cancer (47).   

1.6 SVs in liposarcoma  
In this thesis we focus on expanding the genomic landscape of liposarcoma. It is the most 
common form of adult soft-tissue sarcoma (STS) that has mesenchymal origin and is highly 
heterogenous (~70 subtypes classified by WHO (49)). This cancer type is difficult to diagnose 
and treat because of its great diversity. There are six aggressive forms of liposarcoma with 
complex karyotypes: 1. Well-differentiated liposarcoma (WDLS), 2. De-differentiated 
liposarcoma (DDLS), 3. Myxoid liposarcoma (MLS), 4. Pleomorphic liposarcoma (PLS), 5. 
Myxoid pleomorphic liposarcoma (MPLS), and 6. Undifferentiated pleomorphic liposarcoma 
(UPLS).  
WDLS covers 40-45% of liposarcoma cases in adults and are characterized with ring 
chromosomes amplifying MDM2 proto-oncogene. It can develop to a poorly differentiated form 
of sarcoma in non-adipocytes, known as DDLS. Like WDLS, DDLS is also characterized with 
ring chromosomes that amplifies MDM2 along with other oncogenes on chromosome 
12q13~15 arm (50–52). DDLS is more aggressive than WDLS with some common mutational 
landscape. Even though both these form of liposarcoma have MDM2 amplification, its 
association with prognosis of disease is debatable. One study observed negligent prognosis 
effect with MDM2 amplification (53) while two other studies reported low survival rate of 
patients with high MDM2 amplification (54,55). Moreover, 90% of WDLS/DDLS patients have 
CDK4 amplified (also located on amplified chromosome 12 arm) (56). But, in this case, higher 
amplification levels of CDK4 are linked to prognosis in WDLS/DDLS. However, only high-grade 
DDLS is established to have higher CDK4 amplification levels in comparison to WDLS and 
low-grade DDLS (57). Since amplification of chromosome 12q arm is common between 
WDLS/DDLS cases, majority of genes in this section are amplified that also include other 
genes like HMGA2, TSPAN31, CPM and YEATS4 (57). Moreover, mutational load of both 
WDLS and DDLS is low and very few DDLS patients have mutated TP53 as published in TCGA 
dataset (58). One difference in the genomic landscape of WDLS and DDLS is presence of 
CTDSP1/2-DNM3OS fusion gene in DDLS patients which is completely absent in WDLS 
patients (59).   
MLS constitutes 15-20% of liposarcoma cases in world. It is characterized by translocation 
between chromosome 12 and 16 and poorly differentiated round cell morphology (60). The 
translocation causes fusion of FUS-DDIT3 genes that is present in majority of MLS patients 
(61). In the remaining cases, a chromosome translocation between chromosome 12 and 22 is 
reported that fuses DDIT3 with EWSR1 (62,63). Both these fusions have been reported in 
number of studies but none of these fusions has prognostic value (64).  
PLS is highly malignant and rare type of sarcoma that occurs in 5-10% of liposarcoma cases 
and is characterized with pleomorphic lipoblasts (65). Another rare form of liposarcoma 
includes myxoid pleomorphic liposarcoma (MPLS) is the most recent, aggressive subtype of 
sarcoma that is prominent in children and adolescents. This tumor’s histologic features are 
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similar to MLS and PLS but doesn’t contain fusion genes and amplified regions that are 
established in MLS, PLS, WDLS and DDLS. MPLS has been observed to have whole 
chromosome gains in chromosomes 1, 6-8 and 18-21 with losses in chromosomes 13, 16 and 
17 that also cause loss of tumor suppressor gene RB1 (65). Undifferentiated pleomorphic 
liposarcoma (UPLS) is another rare, highly aggressive, high-grade myofibroblastic sarcoma 
whose cell of origin is unclear (49).  
The general treatment of liposarcoma is removal of localized tumor, radiotherapy for reduction 
of tumor size and chemotherapy to treat metastatic disease. Some of the types of liposarcoma 
are sensitive to chemotherapy like MLS (66) but many others (25-50%) sarcoma patients 
redevelop tumor or metastatic tumor. The heterogeneity of sarcoma makes the usual treatment 
of disease inadequate. Hence, it is required to understand both genomic and clinical aspects 
of different liposarcoma types and find novel treatments. Two past studies have compared the 
landscape of genomic mutations (considering SNV, CNV, fusion genes and expressed genes) 
in adult STS (58,67). It was reported that STS had lower somatic mutation burden in terms of 
SNV (1.7 SNVs in STS in comparison to 6.1 in melanoma). Contrastingly, STS have higher 
percentage of CNV and fusion genes in comparison to many other cancer types like renal 
carcinoma and melanoma respectively. Moreover, immune cell infiltration was often detected 
in DDLS and UPS patients. Considering liposarcoma have lower mutation burden but higher 
number of expressed fusion genes, this type of cancer can benefit from neoantigen based 
immunotherapy. 

1.7 Outline of thesis 
This thesis is further divided into following chapters: a) Chapter 2 covers a published 
benchmarking study for prediction of SVs from Illumina short-reads and 10X Genomics linked-
reads sequencing. In this study, a logistic regression machine learning model was trained for 
accurate prediction of SVs when a sample is sequenced by either or both the technologies; b) 
Chapter 3 focuses on the development of machine learning pipeline for reliable prediction of 
SVs using Illumina short-reads sequencing. This approach is an improvement over logistic 
regression model by inclusion of novel features derived from mechanisms of SV and CGR; c) 
Chapter 4 focusses on functional impact of SVs in terms of direct prediction of expressed 
chimeric fusion transcripts with an underlying SV event. I further analyzed a cohort of 
liposarcoma patients to study the landscape of genomic variations contributed by SVs and 
chimeric fusion transcripts in this low mutational burden class of cancer. 
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2 Integrative analysis of structural variations using short-reads and 
linked-reads yields highly specific and sensitive predictions 

 
Sethi R, Becker J, Graaf Jd, Löwer M, Suchan M, et al. (2020). Integrative analysis of 
structural variations using short-reads and linked-reads yields highly specific and sensitive 
predictions. PLOS Computational Biology 16(11): e1008397.  
Abstract: 
Genetic diseases are driven by aberrations of the human genome. Identification of such 
aberrations including structural variations (SVs) is key to our understanding. Conventional 
short-reads whole genome sequencing (cWGS) can identify SVs to base-pair resolution, but 
utilizes only short-range information and suffers from high false discovery rate (FDR). Linked-
reads sequencing (10XWGS) utilizes long-range information by linkage of short-reads 
originating from the same large DNA molecule. This can mitigate alignment-based artefacts 
especially in repetitive regions and should enable better prediction of SVs. However, an 
unbiased evaluation of this technology is not available. In this study, we performed a 
comprehensive analysis of different types and sizes of SVs predicted by both the technologies 
and validated with an independent PCR based approach. The SVs commonly identified by 
both the technologies were highly specific, while validation rate dropped for uncommon events. 
A particularly high FDR was observed for SVs only found by 10XWGS. To improve FDR and 
sensitivity, statistical models for both the technologies were trained. Using our approach, we 
characterized SVs from the MCF7 cell line and a primary breast cancer tumor with high 
precision. This approach improves SV prediction and can therefore help in understanding the 
underlying genetics in various diseases. 

My contribution:  
Algorithm development: 90% 

Data Processing: 100% 
Data Analysis: 85% 

Manuscript Writing: 85% 
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Abstract

Genetic diseases are driven by aberrations of the human genome. Identification of such

aberrations including structural variations (SVs) is key to our understanding. Conventional

short-reads whole genome sequencing (cWGS) can identify SVs to base-pair resolution,

but utilizes only short-range information and suffers from high false discovery rate (FDR).

Linked-reads sequencing (10XWGS) utilizes long-range information by linkage of short-

reads originating from the same large DNA molecule. This can mitigate alignment-based

artefacts especially in repetitive regions and should enable better prediction of SVs. How-

ever, an unbiased evaluation of this technology is not available. In this study, we performed

a comprehensive analysis of different types and sizes of SVs predicted by both the technolo-

gies and validated with an independent PCR based approach. The SVs commonly identified

by both the technologies were highly specific, while validation rate dropped for uncommon

events. A particularly high FDR was observed for SVs only found by 10XWGS. To improve

FDR and sensitivity, statistical models for both the technologies were trained. Using our

approach, we characterized SVs from the MCF7 cell line and a primary breast cancer tumor

with high precision. This approach improves SV prediction and can therefore help in under-

standing the underlying genetics in various diseases.

Author summary

Cancer and many other diseases are often driven by structural rearrangements in the

patients. Their precise identification is necessary to understand evolution and cure for the

disease. In this study, we have compared two sequencing technologies for the identifica-

tion of structural variations i.e. Illumina’s short-reads and 10X Genomics linked-reads

sequencing. Short-reads sequencing is already known to have high false discovery rate for

structural variations, while, an unbiased performance evaluation of linked-reads sequenc-

ing is missing. Hence, we evaluate the performance of these two technologies using
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computational and PCR based methodologies. Moreover, we also present a statistical

approach to increase their performance, supporting better detection of structural varia-

tions and thus further research into disease biology.

This is a PLOS Computational Biology Benchmarking paper.

Introduction

Structural variations (SVs) are large rearrangements in the genome, including deletions, dupli-

cations, inversions, translocations and insertions, and drive the development of diseases like

cancer, autism and mendelian disorders [1]. One well-known example is the Philadelphia

chromosome, an interchromosomal rearrangement (translocation) between chromosome 22

and chromosome 9 in chronic myeloid leukemia. This SV causes the fusion of two distantly

located genes, BCR and ABL1, forming an active tyrosine kinase which leads to uncontrolled

growth of cells [2]. Even a single SV can alter the expression of genes by functional impacts

such as enhancer hijacking, truncation or disruption of tumor suppressor genes and amplifica-

tions of oncogenes. Hence, resolving such chromosomal rearrangements holds the key to

understanding the causes behind genetic diseases [1].

Historically, large genomic alterations could be identified microscopically using karyotyp-

ing that allows genome wide identification but only at a very low resolution. More recently,

SVs that lead to copy number variations (CNVs) could also be identified using array-compara-

tive genomic hybridization, but without breakpoint information.

The onset of next-generation sequencing enabled a genome-wide read out for all SV types

at base pair resolution. In theory, conventional whole genome sequencing (cWGS) by Illumina

allows the identification of all SVs in an individual sample. However, a major shortcoming of

this technology is contributed by the short-fragment DNA library preparation for sequencing

with DNA fragment of size typically below 0.5 kb. Moreover, these short-fragments are

sequenced with even shorter reads of length typically 2x150 bp. Therefore, this technique

proves inefficient in aligning reads originating from repetitive elements in the human genome

that are often associated with SVs [3]. Multiple tools and algorithms exist for prediction of SVs

from cWGS data [4], but due to the described limitations, they often lack sensitivity and have

high false discovery rates (FDR), especially in repetitive regions [5]. To reduce FDR, many

studies consider SVs predicted by multiple bioinformatics tools in consensus as true positives

[6–8] at the cost of losing sensitivity. This approach might not be appropriate in a clinical set-

ting where the treatment of a patient relies on sensitive discovery of true somatic variants. In

general, these bioinformatics tools identify SVs by using up to three different signals from

aligned reads: (a) Read-depth information for inferring CNVs from non-uniform coverage in

the regions, (b) discordant read-pairs that map with unexpected distance or orientation, and

(c) split reads that have portions of a read mapping to different locations.

To deal with limitations of cWGS, recently “linked-reads sequencing” (10XWGS) technol-

ogy was introduced. This utilizes reads derived from high molecular weight (HMW) DNA

with typical fragment size between 50–100 kb in order to supply long-range information [7].

This approach captures HMW DNA molecules in so-called “Gel beads in Emulsion (GEM)”.

After encapsulation, HMW DNA is sheared into smaller fragments (0.5 kb), labelled with

GEM specific barcodes and subjected to cWGS (2x150 bp). The attached barcodes link each
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short read-pair to its originating HMW DNA. The 10XWGS bioinformatics pipeline (Long

Ranger) utilizes this information to reconstruct the initial long HMW DNA molecule. This

also allows linking longer sections of the genome together into a phased haplotype and resolv-

ing SVs in low complexity regions of the genome. Theoretically, this should enable highly spe-

cific and sensitive prediction of SVs.

Several studies have recently used 10XWGS for molecular characterization of either large-

sized SVs [8,9] or complex genomic rearrangements [10]. This is not limited to the normal

human genome [11] but also feasible for different types of cancer and other diseases [12–14].

However, these studies predominantly use 10XWGS technology for orthogonal validation of

SVs, but a comprehensive comparison of all SVs identified with 10XWGS and cWGS as an

independent finding is currently not available.

Here, we performed an in-depth analysis of SVs from the MCF7 breast cancer cell line and

a primary breast cancer sample. The goals of this study were: a) to evaluate and compare

10XWGS and cWGS technology for the prediction of different types and sizes of SVs; b) to

identify an approach to predict highly specific SVs from both the technologies; c) to analyse

GEM count as a predictor of true positive SVs. With this analysis, we also propose a statistical

approach to determine highly specific and sensitive SVs amongst many false positive calls

from both technologies that can also serve as a high confidence benchmarking set.

Materials and methods

Genomic DNA samples

The MCF7 breast cancer cell line was obtained from American Type Culture Collection

(ATCC), Manassas, VA. Cells were maintained in EMEM medium with 0.01 mg/ml of insulin

and 10% fetal bovine serum (FBS). The cells were incubated at 37˚C and in a 5% CO2 humidi-

fied environment.

The primary tumor tissue was purchased from BioIVT (https://www.bioivt.com/) and was

available as a fresh frozen sample. The sample is a triple negative breast cancer primary tissue

with 50% tumor content based on histopathological examination. The data was analysed

anonymously.

cWGS

DNA from MCF7 and the primary tumor sample was extracted with Qiagen’s DNeasy blood

and tissue kit (Qiagen, Hilden, Germany). Whole genome libraries for NGS were prepared by

fragmenting 1 μg genomic DNA to achieve an average fragment size of 550 bp. Subsequently,

the library was prepared using KAPA hyper prep kit (Roche, Basel, Switzerland) using 8 bp

single-index NEXTflex DNA barcodes and sufficient library yield was achieved by 4 cycles of

PCR. Leftover adaptors were removed with 1X bead purification performed with Agencourt

AMPure XP beads (Beckman Coulter, Brea, USA). The Qubit dsDNA HS assay kit (Invitrogen,

Carlsbad, USA) and Bioanalyzer high sensitivity DNA kit (Agilent Technologies, Santa Clara,

USA) were used for quality control. The libraries were sequenced on Illumina’s NovaSeq 6000

platform with S2 Reagent Kit for 300 cycles with a sequencing length of 2x150 bp (paired-end

reads sequencing) with coverage as in S1 Table.

10XWGS

HMW genomic DNA was extracted from MCF7 and primary tumor tissue with MagAttract

HMW DNA kit (Qiagen, Hilden, Germany). With 1 ng of HMW DNA, 10X Chromium

reagents and gel beads library was prepared using the 10X Genomics Chromium genome
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reagent kit V2 user guide. Initial library construction takes place within droplets containing

beads with unique barcodes. During library construction, a unique barcode (16 bp in length)

is incorporated adjacent to Read-1. Final libraries were quantified on the Qubit using dsDNA

HS assay kit (Invitrogen, Carlsbad, USA) and fragment length was determined using Bioanaly-

zer high sensitivity DNA kit (Agilent Technologies, Santa Clara, USA).

Prediction of SVs from cWGS

The Illumina paired-end reads were aligned to the GRCh38 reference genome using BWA-

MEM (version 0.7.17) [15], duplicates were removed using Samblaster v0.1.24–0 [16] and

alignment files were sorted using Samtools v1.3.1 [17]. We referred to two review studies

[18,19] for the selection of tools for prediction of SVs from cWGS. An ensemble of tools was

chosen for better sensitivity and specificity that utilized multiple sources of evidence like dis-

cordant read-pairs, split reads, read depth and local de novo assembly. Since there is no single

ensemble of tools that outperforms other ensembles [18], we selected three tools based on their

popularity, easy usability, prediction of all SV types that can also be predicted by 10XWGS

tools and inclusion of an assembly based tool. This ensemble included Delly (v0.7.6) [20],

Lumpy (v0.2.13) [21] and SvABA (v0.2.1) [22]. All these tools utilize discordant read-pairs and

split-reads, while Delly also utilizes read-depth and SvABA utilizes local de novo assembly.

After the predictions from all the tools, SVs of the same type (deletion, duplication, inversion

and translocation), sharing the same orientation (3’to5’, 5’to3’, 3’to3’ 5’to5’) and breakpoints

within a 500-bp window were merged as a single SV call. This window size was selected as

short-fragment sequence analysis can confidently relate breakpoints that are within the

median fragment size (~500 bp) [23]. The CNVs predicted only by read-depth methodology

were not analysed here, as exact breakpoints necessary for further comparison could not be

inferred. In order to maximize sensitivity we considered all high quality calls (predicted with

filter “PASS”) along with low quality calls (predicted without filter “PASS”) from all the three

tools. Moreover, to assess the confidence level of calls from cWGS pipeline, we allotted high

confidence calls to the predictions that were predicted with filter “PASS” by at least one of the

tools.

Prediction of SVs from 10XWGS

The sequenced linked-reads were analysed and processed using Long Ranger v2.2.2 wgs com-

mand with–somatic flag. The reads were aligned to the GRCh38 reference genome using Lariat

and SNPs were predicted by freebayes v0.9.21-7-g7dd41db-dirty. The Long Ranger from 10X

Genomics performs haplotype phasing and predicts SV after estimating a probability of bar-

code overlap between linked-reads and split reads for refining the breakpoints of rearrange-

ments. The Long Ranger reports following types of SVs: deletion, duplication, inversion,

translocation and some unresolved variants labelled as ‘Unknown-UNK’. The CNVs predicted

only by read-depth were not considered for analysis here. For a fair comparison with cWGS

pipeline and to maximize sensitivity, we included two more tools utilizing linked-reads for

prediction of SVs. The tool NAIBR v1.0 also performs haplotype phasing and constructs a

probabilistic model to find novel adjacencies using discordant read-pairs and split barcoded

molecules from linked-reads sequencing [24]. While GROC-SV v0.2.5 [25] utilizes a similar

approach as Long Ranger additionally with local assembly at breakpoints using linked-reads.

All the high quality calls (reported with filtered “PASS”) and low quality calls (reported with-

out filter “PASS”) were considered for the comparison. The SVs from three tools were merged

with the same scheme followed for intersection by cWGS pipeline. In order to estimate the
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confidence level of SVs from 10XWGS pipeline, each call was allotted high confidence when

predicted with filter “PASS” by at least one of the tools.

Requantification of supporting reads for SVs

In order to evaluate the two technologies, we used an approach that quantifies the number of

supporting reads for the SVs. The workflow (S1A Fig) involves construction of a synthetic

genomic template from the sequence of reference genome. For SVs larger than 1 kb, a 1 kb

template is constructed by retrieving 500 bp reference genome sequences to either side of the

breakpoints, which are then fused according to the orientation of reported SV (S2 Fig). For

SVs below 1 kb, the size of genomic template is reduced to atleast twice the size of SV. Next,

short-reads are aligned to this synthetic genomic template with BWA-aln (version 0.7.17).

From each SV alignment, we calculate the number of reads overlapping the fusion breakpoint

for at least 15 bp (junction reads, JR) and read-pairs that span breakpoints (spanning pairs,

SP). Only the reads with at least 70% of its bases aligning to the genomic template were consid-

ered for JR and SP. JR and SP were normalized as:

Normalized junction reads JRð Þ ¼
Number of junction reads supporting SV

Total number of reads
� 108 ð1Þ

Normalized spanning pairs SPð Þ ¼
Number of spanning pairs supporting SV

Total number of read � pairs
� 108 ð2Þ

Joint requantification support ðJRSÞ ¼ JRþ SP ð3Þ

The requantification support was calculated from reads from both the technologies. Since,

cWGS samples were sequenced at higher coverage than 10XWGS samples, we downsampled

cWGS reads for calculation of requantification support. Moreover, read-1 from 10XWGS con-

tains a 16 bp barcode sequence. Thus, for calculation of requantification support we trimmed

the reads to a length of 125 bp, thereby removing the barcode. JR, SP and JRS were labelled

with their sources as cWGS or 10XWGS.

GEM quantification for SVs

We also calculated the number of unique barcodes or GEMs containing read-pairs that sup-

port SVs reported from both the technologies. For this we used 10XWGS generated alignment

file to first separate read-pairs that are aligned without a normal alignment FLAG. This was

done using tool Samblaster v0.1.24–0 [16]. Next we counted number of unique barcodes or

GEM (with BX tag in BAM file) that support a particular type and orientation of SV (S1B Fig).

The unique GEMs were retrieved in the window wi around breakpoints. The window size was

selected as the ratio of average molecule length and N50 linked-reads per molecule from

10XWGS experiment. The GEM count was normalized as:

Normalized GEM count ¼
Number of GEM supporting SV

Total GEM detected
� 106 ð4Þ

Annotation of SVs and comparison from cWGS and 10XWGS

Each breakpoint of the SV was annotated with repeat region masked in RepeatMasker and

poor mappability region [26]. In order to investigate the advantage of 10XWGS technology,
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we also calculated local coverage around the breakpoints in a window of size 400 bp for each

SV. This was calculated using samtools pileup command and the local coverage was normal-

ized by average coverage of the sequenced sample.

The SVs with size greater than 50 bp from both technologies were compared based on their

breakpoint positions (within a window of 500 bp), type and orientation. As the 10XWGS pipe-

line reports inversions and duplications with size greater than 10 kb only, comparison was per-

formed for those size ranges of inversions and duplications.

PCR confirmation of SVs

Some of the SVs that were common and uncommon between the technologies were selected

for validation by PCR. We randomly selected a comparable number of candidate SVs from

shared, 10XWGS only and cWGS only identified SVs. PCR primers were designed according

to the predicted breakpoint spanning the junction site of the rearrangement with one primer

positioned upstream and the corresponding primer downstream of the fusion. The genomic

template for primer designing was produced according to the type and orientation of SV (S3

Fig).

Each PCR contained 10 ng sample DNA and primers with a final concentration of

0.333 μM each. The final volume was 30 μl using HotStarTaq Master Mix Kit (QIAGEN Cat.

No. 203443) and 3 step-PCR with an annealing temperature of 60˚C for 40 cycles according to

the manufacturer’s recommendation.

Subsequently, the PCR products were analyzed on a QIAxcel capillary gel electrophoresis

instrument using QIAxcel DNA Screening Kit (QIAGEN Cat. No. 929004). For alignment and

size determination, a 15 bp / 500 bp marker (QIAGEN Cat.No. 929520) was used.

Sanger sequencing

To further confirm the PCR products, Sanger sequencing was performed in forward and

reverse direction with primers used for the PCR. Samples were sent to Eurofins genomics

(https://www.eurofinsgenomics.eu/) for sequencing.

Statistical analysis

All statistical tests were performed in R (version 3.6). The nonparametric Wilcoxon Rank sum

test was used to compare positive and negative groups of PCR validated SVs. It was also used

to compare local coverage around the breakpoints of SV derived from cWGS and 10XWGS

alignments. While pairwise Kruskal-Wallis test was used to compare three groups of SVs: com-

mon SVs (predicted by both the technologies), only 10XWGS SVs (predicted only by

10XWGS) and only cWGS SVs (predicted only by cWGS).

Logistic regression model

Two logistic regression models were trained for filtering true positive calls from the cWGS and

10XWGS technology respectively. The features common between models were type of SVs

(deletion, duplication, inversion and translocation), normalized junction reads (JR), spanning

read-pairs (SP), size of the SV and local coverage around the positions. These were calculated

from reads originating from the respective sequencing technology. Comparatively, the

10XWGS model also included GEM count as another feature. Only the SVs internally tested

by PCR and predicted with respective technology were used for training and testing the model

(for cWGS: Positive SVs = 178, Negative SVs = 75; and for 10XWGS: Positive SVs = 131, Nega-

tive SVs = 106). The respective data set was divided in 70:30 ratio as training and test data set.
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The performance of models was measured on test data chosen with bootstrap resampling with

10 resamples (S17 Fig). Since the training data set for cWGS model was unbalanced, we also

tested the performance of models with different type of sampling strategies (down sampling,

up sampling and SMOTE). However, different samplings to balance the unbalanced data did

not improve the performance of original cWGS model. Hence, we trained the cWGS model

with unbalanced data only. Finally, we predicted true SVs as the ones predicted by either

model with probability greater than 60%. The training of the classification model was carried

out with the package caret in R v3.6 and importance of individual features was calculated with

varImp function of caret. The varImp function calculates importance based on the absolute

value of their t-statistics. The relative importance of features was calculated using dominance

analysis [27] that derives importance of one feature over others by creating a subset of models

with different combinations of features.

Results

cWGS and 10XWGS predict different numbers and classes of SVs

We compared cWGS and 10XWGS in terms of the numbers and classes of SVs predicted in

two samples: a breast cancer cell line (MCF7) and a primary breast cancer sample. MCF7 and

primary breast cancer sample was sequenced with 51X and 92X by cWGS technology. Their

sequencing coverage was 17.4X and 17.7X respectively, by 10XWGS technology. The physical

fragment coverage achieved by 10XWGS technology was 87X and 88.5X for MCF7 and pri-

mary breast cancer (nearly equivalent to average coverage of samples sequenced by cWGS) (S1

Table).

SVs were predicted by combining calls from an ensemble of three SV detection tools for

cWGS data (SvABA, Delly and Lumpy) and three tools for 10XWGS data (Long Ranger,

NAIBR, GROC-SV). The set of cWGS tools included Delly and Lumpy that use discordant

read-pairs, split reads for detection of SVs and are widely accepted tools. Additionally, SvABA,

a local assembly tool, was also included as Cameron et. al. [18] proposed an ensemble with a

local de novo assembly tool for best performing collection of cWGS tools for SVs. Considering

this, we created an ensemble of 10XWGS tools that use discordant read-pairs, split barcode

molecules, barcode overlap and local de novo assembly. This included Long Ranger,

GROC-SV and NAIBR. All the high and low quality SV calls from tools were considered and

merged according to the type, orientation and their breakpoints. They are also referred to as

high and low confidence calls respectively.

First, we investigated the different types of SVs identified by the cWGS and 10XWGS

pipelines in both samples (Figs 1 and S4). There was significant difference in the number of

different types of SVs predicted by the two pipelines (irrespective of high or low confidence

calls). The ensemble of cWGS tools predicted comparatively higher number of all SV types

(especially translocations). When looking in more detail into different size ranges, both the

cWGS and 10XWGS pipelines identified deletion of all size range (S4E and S4F Fig) but the

10XWGS pipeline predicted nearly 5 times less deletions. The highest number of deletions

in the cWGS pipeline came from low quality calls of SvABA while in the 10XWGS pipeline

they came from high quality calls of Long Ranger (S4E and S4F Fig). Moreover, the

10XWGS pipeline predicted about 6 times less duplications in comparison to the cWGS

pipeline when we consider both high and low confidence calls. This can also be attributed

to the fact that tools in the 10XWGS pipeline predicted duplications with size>10 kb only

(S4E and S4F Fig). However, tools in the cWGS pipeline predicted all sizes of duplications

where most of them are low quality calls from SvABA and Delly (S5B and S6B Figs). Similar

to the duplications, the 10XWGS pipeline predicted inversions greater than 10 kb only.
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However, ~99% of inversions in the 10XWGS pipeline are predicted as low quality calls

from Long Ranger that lie in the size range of 10–100 kb. This seems to be an attribute of

Long Ranger methodology as other tools (NAIBR and GROC-SV) did not predicted such

high number of inversion (S4, S5C and S6C Figs). The 10XWGS pipeline detected 100–200

fold fewer SVs with size >100 kb compared to the cWGS pipeline (S4E and S4F Fig). Since

the 10XWGS pipeline generates long-range information from short-reads, it should be able

to minimize alignment-based artefacts and therefore have a specificity advantage especially

for those larger events.

The most remarkable difference in numbers was observed for translocations (Figs 1A,

1B, S4A and S4B). The cWGS pipeline predicted a much higher number of translocation in

comparison to the 10XWGS pipeline. Majority of these translocations in the cWGS pipeline

are contributed by low quality calls from SvABA and Delly (S5D and S6D Figs), which can

be result of imprecise breakpoints, low mapping quality of reads, lower support in terms of

discordant read-pars or split read etc. Moreover, as for other large SVs >100 kb from the

10XWGS pipeline, long-range information and low false discovery rate (FDR) translated

into more precise number of translocations. Overall, the order of magnitude of predicted

SVs is comparable between the cell line and the primary tumor sample, but the overlap is

low.

Fig 1. cWGS and 10XWGS predict a variable number of SVs with low proportion of common predictions. (A and

B) Number of different types of SVs predicted with high confidence by cWGS and 10XWGS pipelines for (A) MCF7

and (B) primary breast tumor. (C and D) Number of high confidence SVs commonly predicted by both technologies

for (C) MCF7 and (D) primary breast tumor. (E and F) Percentages of the indicated high confidence SVs commonly

predicted by the two approaches for (E) MCF7 and (F) primary breast tumor.

https://doi.org/10.1371/journal.pcbi.1008397.g001
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Debarcoded and downsampled MCF7 SVs

Since the average genomic coverage of cWGS MCF7 sample was higher than 10XWGS MCF7,

we tested SV prediction pipeline on downsampled cWGS reads (downsampled MCF7, equiva-

lent genomic coverage as 10XWGS). We also tested a strategy to use cWGS tools with

10XWGS linked-reads. For this, barcodes in 10XWGS linked-reads were trimmed and the

reads were processed in cWGS pipeline (debarcoded 10XWGS MCF7). It was observed in S7

Fig, the overall number of predicted SVs is reduced in the downsampled and debarcoded sam-

ples. This was especially true for the only cWGS predicted SVs (drops to ~50% and 70%

respectively), while the number of common remained stable (~99.1% for debarcoded and

85.3% for downsampled samples). It is also evident from the debarcoded sample that allows

analysis of exactly the same reads without linkage information in cWGS pipeline. However,

the cWGS pipeline with debarcoded reads predicted very high number of small size SVs (size

<1 kb, as seen in S7A Fig). This can be a ripple effect of reads from a different technology pro-

cessed by algorithms designed for alternate technology. For further analysis, we decided to

stick with the sequenced cWGS data sets whose genomic coverage matches physical coverage

of the 10XWGS data.

A small fraction of predicted SVs is common to both cWGS and 10XWGS

pipelines

We compared the calls between both technologies according to the breakpoints (within a win-

dow of ±500 bp), type and orientation of SVs: Fig 1C and 1D depicted the rather small overlap

between both technologies for high confidence calls. This overlap was even smaller when low

confidence calls were also considered in S4C and S4D Fig. Since we pool SV calls from multi-

ple tools in both cWGS and 10XWGS pipelines, it is expected to have a high number of false

positive predictions but higher true positive as well. However, this aggregation of the cWGS

calls should result in high sensitivity and have rather higher overlap with 10XWGS calls. Con-

trastingly, the majority of high confidence 10XWGS calls do not overlap and only 35.5% and

32.3% of 10XWGS-predicted SVs were also predicted by the cWGS pipeline for MCF7 and the

primary tumor, respectively. This raises the question of whether 10XWGS predicts SVs inac-

cessible by cWGS technology or whether the 10XWGS suffers from a high FDR. Or, vice versa,

cWGS technology is more sensitive than 10XWGS, which misses many SVs.

There were differences with respect to different types of SVs (Fig 1E and 1F). Nearly 35.6%

and 37.9% of high confidence translocations as predicted by 10XWGS were also predicted by

cWGS from MCF7 and primary tumor respectively. The overlap increased slightly to 48.2%

and 53.2% for MCF7 and primary tumor respectively, when low confidence calls were also

considered (S4G and S4H Fig). Conversely, the percentage of common translocations by

cWGS was extremely small (1.4% for MCF7 and 0.6% for primary tumor) due to the much

higher number of predicted events. This implies that the cWGS pipeline is possibly sensitive,

but has a very high FDR especially for translocations.

Additionally, we investigated whether high confidence calls by either pipeline are enriched

among the common SVs. As depicted in S8A Fig, 41.1% and 35.1% of high confidence

10XWGS calls in MCF7 and primary tumor, respectively, were common between both the

technologies. And, only 1.6% and 1.3% of low confidence 10XWGS calls were common in

MCF7 and primary tumor, respectively. Comparatively, 20.4% and 15.5% of high confidence

cWGS calls in MCF7 and primary tumor, respectively, were common between both the tech-

nologies. But, only 0.18% and 0.11% of low confidence cWGS calls were common in MCF7

and primary tumor, respectively. This indicates that common calls are high confidence calls

from respective technologies. Moreover, 38.4% and 54.9% of calls predicted by all three tools
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in the cWGS dataset for MCF7 and the primary tumor (S8C and S8D Fig) were also predicted

by 10XWGS. Comparably, all the calls predicted by all three tools in 10XWGS were predicted

by cWGS pipeline. However, as depicted in S5, S6 and S8E Figs, very few calls were commonly

predicted by all three tools in the 10XWGS pipeline. This is exemplified by the fact that 50% of

common calls were predicted by all three tools in cWGS pipeline, while only 1.2% of common

calls were predicted by all tools of the 10XWGS pipeline for MCF7.

Common SVs have higher read and GEM coverage

Since junction reads (JR), spanning pairs (SP) from both the technologies and unique barcodes

(GEM) from linked-reads sequencing are the main cues for true SVs, we quantified them by a

common computational approach for all identified SVs (Eqs 1, 2, 3 and 4). This allowed us to

investigate differences in different categories of SVs: calls predicted by both the technologies

(common SVs), calls predicted only by cWGS technology (only cWGS SVs) and calls predicted

only by 10XWGS technology (only 10XWGS SVs). Common SVs had a significantly higher

median count for JRS (median = 1.9) and GEM (median = 1.73) in comparison to only cWGS

SVs (JRS: median = 0, GEM: median = 0) and only 10XWGS SVs (JRS: median = 0, GEM:

median = 0) (Fig 2A and 2B). This inference was also drawn when different types of SVs were

considered separately (Figs 2C, S9 and S10). Furthermore, since there might be differences in

the libraries of the two technologies, we also calculated requantification support using

10XWGS reads. As depicted in S9–S12 Figs, we can draw same inference irrespective of the

source of reads (cWGS or 10XWGS). Conclusively, regardless of the used technology and the

used metric (JRS or GEM), common SVs were in all situations better supported.

Overall 63.5% of common SVs were supported by at least two JRS from cWGS data for

MCF7. While 9.9% of only cWGS SVs and 6.6% of only 10XWGS SVs had at least a JRS of two

from the respective technology. When high confidence calls were considered from the respec-

tive pipelines, 31.7% of only cWGS SVs and 14.6% of only 10XWGS SVs had at least a JRS sup-

port of two from their respective technology. It is surprising to note that the only cWGS SVs

also had support from 10XWGS linked-reads: 30.4% of only cWGS high confidence calls were

also supported with at least a JRS of two calculated from 10XWGS linked-reads. Compara-

tively, only 10.8% of only 10XWGS high confidence calls had at least a JRS of two from cWGS

data. It is somehow expected that each technology gives overall higher support to the SVs iden-

tified by them. However, we observed that a higher fraction of high confidence SVs only pre-

dicted by cWGS still had higher requantification support in comparison to the ones predicted

only by 10XWGS. This implies that many of the SVs predicted only by the cWGS pipeline do

have evidence in the 10XWGS sequenced data (overlapping GEMs, JRs and SPs) but the

10XWGS tools did not identify them (Figs 2A, 2B and S11). Vice versa, high confidence SVs

predicted only by 10XWGS have overall lower support from both the technologies. The same

observations that are described here for MCF7 were also made for the primary tumor sample

(S10 and S12 Figs). This data indicated that common events are most likely enriched for true

positive events. Nevertheless, additional true positive events are contained in only cWGS SVs

while only 10XWGS SVs contributes a lower number of true SVs.

To further characterize differences between both sequencing technologies, we annotated

each breakpoint of the SVs for repetitive regions and ambiguous mappability regions. It is well

established that short-reads originating from repetitive regions are often misaligned [3]. Con-

sidering the breakpoints of high confidence SVs from both pipelines in Fig 2D, it was observed

that breakpoints of 57.2% common SVs and 54.3% only 10XWGS SVs are inside a repetitive

region with majority being in SINE and LINE (S13B Fig). However, for only cWGS SVs,

71.8% of the breakpoints were inside repeats where satellite and simple repeats contributed
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towards 49% of the breakpoints. This indicates that a high fraction of these calls may be false

positive calls due to misalignment. Secondly, when considered all the SVs (both high and low

confidence ones), the percentage of breakpoints in ambiguous mappability regions were

higher for only cWGS SVs than only 10XWGS SVs (S13C Fig). When only high confidence

calls were considered in Fig 2E, more than 90% of breakpoints were in unique mappability

Fig 2. Requantification support and GEM coverage for SVs common between cWGS and 10XWGS is higher than

that predicted by a single technology. (A) Distribution of GEMs containing SVs that were predicted by both the

technologies (common) or only by one technology (only cWGS or only 10XWGS) for MCF7. (B) Shown is the

combined requantification support (JRS) as the sum of junction and spanning reads from cWGS data for common SVs

and SVs predicted only by cWGS or 10XWGS for MCF7. p-values were calculated using Kruskal-wallis test and

pairwise Wilcoxon rank sum test. ���� represents a p-value<0.0001. (C) Comparison of requantification support

(Junction reads-JR, Spanning pairs-SP, JRS = JR+SP) and GEMs for different type of SVs that are common between

technologies and only predicted by 10XWGS or cWGS for MCF7. The black lines in the boxes represent median

(centre line), upper quartile (upper line) and lower quartile (lower line), respectively. The area of violin plots is scaled

to the number of observations. (D) Percentage of breakpoints of high confidence SVs from two technologies covered

by repetitive regions. (E) Percentage of breakpoints of high confidence SVs from two technologies covered by unique

mappability regions. (F) Distribution of normalized local coverage around the positions of high confidence SVs (size

>10 kb), calculated from cWGS and 10XWGS aligned reads respectively. p-values were calculated by pairwise

Wilcoxon rank sum test and ‘M’ is median of normalized local coverage.

https://doi.org/10.1371/journal.pcbi.1008397.g002
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regions. Overall, cWGS and 10XWGS technology contributed fewer SVs with breakpoints in

low complexity and LTR regions, while SVs with breakpoints in SINE and LINE elements

were common in both.

The 10XWGS technology links short-reads to their larger size DNA fragment and is

assumed to improve local physical coverage of SV breakpoints. Thus, we compared the nor-

malized local coverage derived from both cWGS and 10XWGS aligned reads for all SVs greater

than 10kb. When we considered all SVs (both high and low confidence calls), we did not

observe a significant difference in local coverage for 10XWGS only calls between the two tech-

nologies (except in inversions) (S13D Fig). However, in Fig 2F we considered only the high

confidence calls and had shown that the local coverage in only 10XWGS SVs is higher when

10XWGS aligned reads were considered (except in translocations). Moreover, common and

only cWGS calls had higher local coverage from cWGS aligned reads. This indicates that pre-

diction of additional SVs from 10XWGS might indeed be the result of improved coverage,

with these SVs missed by cWGS sequencing.

PCR confirms high specificity of common SVs

We validated a comparable number of randomly selected common and uncommon SVs from the

three categories: 135 common SVs, 118 only cWGS SVs and 102 only 10XWGS SVs (S2 Table).

The orthogonal validation was performed with PCR and Sanger sequencing of SVs from MCF7.

Fig 3A exemplifies the PCR validation results for seven SVs: Five SVs led to amplification of a

product of expected size and were therefore determined as positive. Additionally we selected a sub-

set of positive amplicons for Sanger sequencing for confirmation of the sequence across the break-

point, as depicted in Fig 3A. In total, we confirmed 36 out of 42 amplicons by Sanger sequencing.

The remaining six amplicons had poor quality sequence traces and could not be analysed.

The pie charts in Fig 3B illustrated the confirmation rate for SVs from the respective catego-

ries. 89% of common SVs were confirmed by PCR. This indicated that the combined approach

of 10XWGS and cWGS is highly specific for the prediction of SVs. Only 15 common SVs were

not confirmed by PCR. We followed these up in detail by manual inspection of the sequence

alignment from cWGS data. Here, we observed that either the breakpoints were in repetitive

Fig 3. Orthogonal validation of SVs using PCR and Sanger sequencing. (A) SVs within the MCF7 dataset were

selected for validation by PCR and Sanger sequencing. From the PCR-amplified products, a subset was further

confirmed by Sanger sequencing. Shown are representative results involving seven SVs. (B) Number and percentage of

PCR-validated SVs for the three categories: SVs common between cWGS and 10XWGS (common SVs), SVs only

predicted by cWGS pipeline (only cWGS SVs) and SVs only predicted by 10XWGS pipeline (only 10XWGS SVs) are

shown. (C) The difference in normalized counts of combined requantification support (JRS from cWGS reads) and

GEM for PCR-validated SVs is shown. Each data point represents counts for PCR tested SVs and box-and-whisker

plots represent lower quartile, median and upper quartile. p-values were derived from Wilcoxon rank sum test. (D)

Percentage and number of repetitive element classes in PCR validated SVs for three categories: common, only cWGS

and only 10XWGS SVs.

https://doi.org/10.1371/journal.pcbi.1008397.g003
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regions, SVs lacked proper read support, reference genome region was not annotated or the

SV events shared the same breakpoint i.e. they were complex in nature (S14 Fig). In contrast,

the confirmation rate for SVs only predicted by cWGS and 10XWGS dropped to 49% and 11%

respectively. This confirms that the 10XWGS pipeline is prone to prediction of false positive

SVs. We further investigated the PCR validation rate for SVs that are an overlap between tools

from respective pipelines. S15 Fig shows that cWGS SVs predicted by the consensus of all tools

have a maximum PCR confirmation rate (i.e. 84.4%). This is in agreement with the popular

approach of considering consensus SV calls from multiple tools to reduce false positive calls by

cWGS technology. Similarly, consensus predictions from the 10XWGS pipeline had 84% con-

firmation rate. The confirmation rate for consensus deletions and duplications by 10XWGS

was 100% and 60% respectively. However, confirmation rate for duplications predicted by two

tools of the 10XWGS pipeline was higher at 84.2%. A similar trend of most confirmation rates

for calls predicted by all three tools of the 10XWGS pipeline was followed for inversions (75%)

and translocations (100%) and also by all the SV types in cWGS pipeline.

In order to confirm that requantification support and GEM counts can serve as a metric to

filter out true positive SVs, we plotted their counts for PCR-tested SVs in Fig 3C. The PCR-

positive SVs had significantly higher requantification support (JRS) and GEM coverage in

comparison to ones that are tested PCR-negative. This was also true for requantification sup-

port calculated using 10XWGS reads (S16 Fig). Moreover, we compared the confirmation rate

for PCR validated SVs with respect to the repeat class of breakpoints in Fig 3D. It was observed

that validation rate for SVs in simple repeats was lower, while differences in validation rates

for other classes could not be derived. Moreover, a higher percentage of SVs only predicted by

cWGS in simple repeats could not be confirmed by PCR. As expected, this indicates that

cWGS pipeline cannot resolve SVs in simple repeats.

For a direct comparison of these two technologies, we calculated the sensitivity and FDR

using PCR-tested SVs in Fig 4A. The SVs predicted by both technologies had 62.8% sensitivity

Fig 4. Prediction of SVs by trained models for the cWGS and 10XWGS technology. Two logistic regression models

were trained on PCR tested SVs from the respective technologies. (A) The table depicts the performance of different

categories of SVs or technologies derived from PCR tested SVs. (B) Numbers and percentage of SVs common between

the technologies before (lighter shades) and after (darker shades) applying the respective trained models. (C) Number

of SVs predicted by the cWGS technology within the MCF7, and percentage predicted positive by the combined

models. (D) Number of SVs predicted by the 10XWGS technology within the MCF7, and percentage predicted positive

by the combined models. (E) Plot for performance of combined model and all other tools on internally validated SVs.

https://doi.org/10.1371/journal.pcbi.1008397.g004
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with a very low FDR of 11.1%. However, SVs only predicted by one of the technologies had

much higher FDR. Overall the cWGS pipeline had high sensitivity (89%) but with a high FDR

of 23%. Comparatively, the 10XWGS pipeline had lower sensitivity (66.4%) with an even

higher FDR of 32.4%. This indicated that even the 10XWGS pipeline is prone to high FDR and

requires more stringent filtering criteria to further enrich true positive SVs.

Enrichment of true positive SV calls using requantification support and

GEM count

The data indicates that for a highly specific and sensitive prediction of SVs a combined

approach using cWGS and 10XWGS prediction data might be advisable. Nonetheless, we cre-

ated prediction models for both the technologies independently to improve the prediction as

much as possible for situations when only data from one of the technologies is available. Addi-

tionally, we combined all predictions into a unified approach to offer best sensitivity and FDR

when both analyses are available. Initially, we also tested a simple filtering approach based on

the number of supporting reads to enrich for true positive events, but observed poor sensitivity

as there is no clear separation between PCR positive and negative SVs (Fig 3C).

To this end, we generated two logistic regression models using PCR validated data, one for

the 10XWGS data and a second one for the cWGS data. In Fig 4A, we measured sensitivity

and FDR of both the models based on PCR tested SVs. It was evident that FDR reduces drasti-

cally after applying the trained models. Predictions from the cWGS model and the 10XWGS

model show a reduced FDR from 23% to 10.4% and from 32.4% to 11%, respectively. However,

this came at the cost of reduced sensitivity, which decreased from 89% to 81.1% for the cWGS

model and from 66.4% to 63.3% for the 10XWGS model. Moreover, SVs predicted by both

technologies had a very low FDR but with sensitivity lower than for the overall cWGS pipeline

(as shown by PCR). Application of both models increased the percentage of SVs common

between both the technologies from 1.2% to 8.02% for cWGS and 23.2% to 71.05% for

10XWGS in MCF7 (Fig 4B). This is another evidence for the decrease in FDR achieved by

both the models. A similar increase in overlap was also seen in an independent primary tumor

sample (S18 Fig).

All three approaches (common SVs, cWGS model and 10XWGS model) aim to enrich dif-

ferent subset of true positive SVs. We therefore considered all these calls in a combined model

for best sensitivity and low FDR and tested its performance on PCR validated SVs. To this end,

we observed a reduced FDR to 10.3% and a high sensitivity of 81.6% similar to the cWGS

model (Fig 4A). Application of the integrated approach made a dramatic difference on the

overall landscape of predicted SVs from cWGS and 10XWGS (Figs 4C, 4D and S18): The com-

bined model filtered out 85.3% and 86.9% of total calls in MCF7 and primary tumor respec-

tively. Moreover, the most significant reduction in MCF7 was observed for translocations

from cWGS where we observed a reduction to 8.6% of total calls. In case of the 10XWGS tech-

nology, we observed a maximum reduction of inversions to 3.36%.

Overall, the combined model gathered good sensitivity and precision for overall perfor-

mance against the other tools (Fig 4E), for internal PCR validated SVs. The combined model

achieved 81.68% sensitivity and 89.66% precision on the full MCF7 sample. Comparatively,

only Delly and Lumpy had comparable sensitivity of 81.68% and 85.85% respectively. How-

ever, their precision was around 9% lower than for the combined model. SvABA had shown

slightly superior precision with 90.52%, but at the cost of much lower sensitivity (54.97%).

Therefore, the combined model offered best overall performance tradeoff in terms of sensitiv-

ity and precision. Compared to the 10XWGS tools the advantage was even more apparent. The

combined model also greatly reduced cWGS only calls predicted in simple repeat and satellite
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regions (compare S19 to S13 Fig). Therefore, 10XWGS only calls contained a higher fraction

of SVs in simple repeat regions. This is in-line with the notion that 10XWGS offers superior

performance in these low complexity regions due to use of long range information. Of note,

even when only cWGS or 10XWGS data is used, our established models can still compete well

with the other tools of the respective technology. Moreover, we also compared the perfor-

mance of the combined model against other tools, when the reads were downsampled or

debarcoded. As depicted in S20 Fig, results on downsampled and debarcoded datasets had

shown decreased sensitivity for all tools, but are otherwise very comparable.

Benchmarking combined model

We tested the performance of combined logistic regression model also on previously validated

SVs in MCF7. A list was gathered from Li et. al [28] (external study 1) that included 183 SVs of

size greater than 500 kb. These calls were detected by the tool Weaver and confirmed with

optical mapping. Another set of 70 validated SVs was collected from Hillmer et. al [29] (exter-

nal study 2) that was detected by a long-span paired-end-tag sequencing approach and was val-

idated by PCR. We also benchmarked the model with germline SV calls as available in

gnomAD study to confirm shared germline events present in MCF7 [30].

On the external study 1 data set, the combined model achieved sensitivity of 76.69% which

was lower than Delly (94.54%) and Lumpy (95.06%) (S20 Fig). However, it was superior in

terms of sensitivity to SvABA (72.13%), Long Ranger (26.23%), NAIBR (34.97%) and

GROC-SV (10.93%). Here, the results differ from our own data, but this study only contains

large structural variants and therefore offers insights into this subset of SVs only. For the exter-

nal study 2 calls, the combined model achieved a sensitivity of 84.29%, which is comparable to

Delly (85.71%) and Lumpy (84.29%). However, it was superior in terms of sensitivity to

SvABA (58.57%), Long Ranger (62.86%), NAIBR (70%) and GROC-SV (11.43%). For this data

set we observed similar sensitivities to our data set. When considering the germline SVs from

gnomAD study as another set of validation, the calculated sensitivity was very small as only a

small subset of known germ line SVs is expected in in MCF7 cell line (S20A, S20B and S20C

Fig). Nevertheless, the combined model achieved better sensitivity in comparison to all other

tools. When considering all gnomAD germline SVs present in MCF7, the combined model

maintains good sensitivity compared to all unfiltered predictions (2629/3076 ~ 85.47%; S20F

Fig). When we look at SV predictions with downsampled and debarcoded reads, then the com-

bined model consistently performed better than all the tools (S20B, S20C, S20D and S20E Fig).

This shows the robustness of the combined model for even lower genomic coverage samples.

When calculating precision based on these external datasets, we observed artificially poor val-

ues for our combined model (S3 Table). However, these datasets only partially reflect the entire

range of SVs (e.g. limited size range, only germ line SVs). Therefore, any general approach

towards SV prediction will perform poor in such an analysis.

Taken together, the here presented logistic regression model provides a sensitive and accu-

rate filter to predict true positive SVs. The model can also be utilized for reads from only one

technology (cWGS or 10XWGS), but of course, at the cost of reduced sensitivity.

Discussion

Structural variations can have diverse functional impacts in humans; therefore, when perform-

ing genomic analysis of any disease state, it is imperative to find true positive SVs that might

be associated with a certain phenotype. A popular approach to identify SVs is the cWGS tech-

nology, which suffers from high FDR (up to 85%) and varying sensitivity (30–70%) [31–33].

Here, we aimed to boost sensitivity for SV detection by integration of multiple bioinformatics
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tools, which is a common practise utilized in many studies [19,33,34]. Typically this comes at

the cost of high FDRs. In order to reduce the FDR, many studies consider only the consensus

from multiple bioinformatics tools [19,33,34]. In our analysis, we could show that the focus on

SVs that are found by multiple tools can indeed achieve low FDR, but at the cost of much

reduced sensitivity. This shows that better approaches are needed to enrich true positive SVs

in such scenarios.

More recently, the development of 10XWGS technology seem to offer an elegant solution

by taking into account long-range mapping information for the prediction of SVs. Our valida-

tion data had shown a relatively high FDR of 10XWGS for SVs which is improved when only

high confidence calls are considered. However, compared to cWGS sequencing, 10XWGS had

lower sensitivity when considering all types of SVs. This is in line with previous studies that

reported varying sensitivity of 35–88.4% and moderate FDR of 50% for the 10XWGS technol-

ogy [10,35]. Since 10XWGS is the latest technology, there are currently fewer algorithms avail-

able for the analysis of data. Nevertheless, we compared the performance of set of those

algorithms against cWGS tools here. Contrary to previous studies, where performance metrics

were derived from publically available datasets that are limited in type and size of SVs and are

derived from diploid genomes, we presented a comprehensive analysis of all types of SVs in a

cancer cell line and a tumor sample. Of note, sensitivity was here analysed with regard to all

identified and confirmed SVs. However, true sensitivity may be lower, because additional SVs

might exist that are neither detected by cWGS nor 10XWGS sequencing.

The reduced sensitivity in 10XWGS data raised a question whether it was a limitation of the

analysis pipeline (ensemble of 10XWGS tools) or the technology did not cover the affected

genomic regions. Interestingly, we observed that SVs, which were not identified by 10XWGS

tools, did have support in the aligned linked-reads (i.e. overlapping GEM, JR and SP). We fur-

ther analysed this by removal of barcodes in linked-reads and processed it with classical cWGS

prediction tools. With the debarcoded sample, we were able to identify additional SVs that

were missed by 10XWGS specific tools. This indicates that additional information is present in

the raw 10XWGS sequencing data that is not fully utilized by currently available tools.

Although the existing 10XWGS tools use similar category of evidence as cWGS tools (discor-

dant read-pairs, split molecules, de novo assembly) apart from GEM coverage, they, however,

seem to miss many true calls.

Previously, studies have shown that 10XWGS technology was especially useful in identify-

ing complex genomic rearrangements or chained SVs [10]. Here we did not specifically

address this subset of SVs, as we were interested in the overall performance of SV prediction.

Nonetheless, the added benefit of 10XWGS sequencing becomes visible when looking at large

SVs and translocations. This class of SVs is particularly difficult to resolve by the cWGS tech-

nology and suffers from high FDRs [36]. Utilization of long-range information by the

10XWGS pipeline should be powerful in resolving them. This was demonstrated by the fact

that the 10XWGS pipeline reported a much lower and much more plausible number of trans-

locations in comparison to the cWGS pipeline. We also observed for translocations the highest

overlap (~48–53%) of the 10XWGS predictions with the cWGS pipeline that were all con-

firmed by PCR. However, only 65% of all high confidence translocations from the 10XWGS

pipeline were confirmed by PCR. This suggests that not all translocations predicted by the

10XWGS pipeline are true events or are chained SVs. On the other hand, we were also able to

confirm translocations reported only by the cWGS pipeline that were missed by the 10XWGS

pipeline. Nevertheless, the 10XWGS pipeline was superior in predicting translocations in com-

parison to the cWGS pipeline.

The performance of cWGS technology suffers from high FDRs in low mappability and low

complexity regions, such as simple repeats and LTRs [18], while the performance has
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previously been shown to be unaffected by SINE, LINE and DNA elements in the genome. In

line with that, we identified a higher fraction of SVs in repetitive regions for cWGS technology

compared to 10XWGS, especially in microsatellite, simple repeat and SINE elements. Further-

more, we observed a lower validation success rate for these SVs, demonstrating that a high

fraction of predicted SVs in those regions are potentially false positive. Utilization of the long

range information provided by 10XWGS seems to be able to greatly reduce these false positive

predictions as indicated by a much smaller fraction of predicted SVs in those regions.

For both technologies we identified only a small fraction of SVs in regions with an ambigu-

ous mapping of reads. Nonetheless, the fraction of SVs only identified with 10XWGS in such

regions was more than double in comparison to cWGS. Moreover, 10XWGS technology did

improve local coverage around breakpoints for SVs that were missed by cWGS pipeline. With

the exception of translocations, all other type of large size SVs (size >10 kb) that were only

identified by 10XWGS had significantly higher median local coverage around breakpoints

from 10XWGS technology than cWGS. This indicated that the long range information utilized

by 10XWGS allows improved mapping and coverage to those regions and improved subse-

quent identification of SVs.

Taken together, 10XWGS enabled more accurate detection of translocations and of SVs in

low complexity regions. However, when all predicted SVs were considered, an improved

detection on this subset does not translate into an overall improved FDR or sensitivity. This is

also corroborated by other studies [10,33]. Our data had shown that this is largely due to meth-

odology issues, demonstrating that the relatively new 10XWGS technology needs to catch up

with methodological advancements from cWGS prediction tools.

Previous studies have also used a combination of cWGS and 10XWGS to predict SVs where

10XWGS data was often used as an orthogonal validation set. Confirming SVs predicted from

cWGS technology with 10XWGS technology would lead to highly specific SVs, as we could

confirm here by PCR. However, this comes also at the cost of missing a considerable fraction

of true events.

Here we proposed an integrated statistical approach using both the technologies to achieve

optimized FDR and sensitivity for all types of SVs. We tested the combined model on an

exhaustive set of internally validated SVs and two externally validated data sets. We observed

lower FDRs in comparison to FDRs of both technologies, however at the cost of minimal loss

in sensitivity. The model efficiently combined different features as requantification, GEM sup-

port, type and size of SVs and local coverage around breakpoints. However, one limitation of

this model would be for application in detection of chained SVs. Those events would have par-

tial or no support from requantification pipeline. Nevertheless, it outperforms other tools for

simple SVs and even a simple heuristic filter for the read support. We could also show the

robustness of model with downsampled and debarcoded reads.

Another limitation of such an integrated approach is the requirement to run two sequenc-

ing experiments for each sample. Therefore, we generated models based on 10XWGS and

cWGS pipeline independently. The overall performance of model was superior compared to

the individual tools for the respective technologies. The individual models for cWGS and

10XWGS enables their usage when only one technology is available. This is of particular rele-

vance for the 10XWGS data as our model provides a very prominent improvement in perfor-

mance compared to the three tested 10XWGS tools. However, without cWGS data, a gap in

sensitivity is evident. The debarcoding of 10XWGS data and its subsequent analysis with

cWGS pipeline could provide an opportunity to boost sensitivity to almost the same level.

We also investigated shared germline SVs present in the gnomAD database. The fraction of

MCF7 SVs present in gnomAD was low. However, individual or low frequency germline SVs

of the respective samples are not covered by this analysis. Only the analysis of a matched
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sample would enable clear separation of germline and somatic SVs. Nonetheless we observed

best sensitivity for known germline SVs with the combined model, indicating that these can be

predicted with similar high sensitivity.

The sensitivities observed in our internally validated data set and existing datasets confirms

this claim. Convincingly, the hereby used logistic regression approach with unique set of fea-

tures opens up a broader application of the model.

Conclusively, our analysis for true SV events could show that specific and sensitive predic-

tion of SVs is possible, but requires an integrative approach for best results. We could show

that 10XWGS predicted SVs could be used for orthogonal validation but considering only

those calls would miss many true events. Our combined model approach takes into account all

the available data points to maintain high sensitivity and low FDR. Sensitive identification of

SVs is necessary to get a complete picture of the mutational landscape in cancer and gain a bet-

ter understanding of the disease. Additionally, the complex nature of many hereditary and

genetic diseases could be resolved with reliable and sensitive prediction of SVs. Thus, we

believe that the presented integrated prediction approach is a valuable tool that may identify

novel targets for disease treatment.

Supporting information

S1 Fig. Workflow for calculation of requantification support with short-reads and GEM

coverage for SVs. (A) Workflow to requantify supporting short-reads for SV. The reference

genome sequence around the breakpoints A and B are extracted and fused according to the

type and orientation of SVs. The short-reads are aligned to this fused genomic template. Junc-

tion reads (JR) and Spanning pairs (SP) are counted as requantification support. (B) Workflow

to quantify unique GEMs or barcodes containing read-pairs that support a particular type and

orientation of SV. First, discordant read pairs or split reads are retrieved from the 10XWGS

pipeline generated alignment file. Then, unique GEMs are counted that support a particular

SV type and orientation with breakpoints in window wi.

(TIF)

S2 Fig. Construction of synthetic genomic template from the reference genome for calcula-

tion of requantification support. Illustration of the procedure to extract the reference

genome sequence around the SV breakpoints that are fused to generate 1kb genomic tem-

plates. The fusion of genomic sequence around the breakpoints of SVs is performed according

to the type of SV and the respective orientation (deletion-3’to5’, duplication-5’to3’, inversion

fusion1-3’to3’, inversion fusion2-5’to5’). The same strategy is followed for translocation with

the difference that the regions extracted belong to different chromosomes.

(TIF)

S3 Fig. PCR primer design for different types of SVs.The left primer (LP) and right primer

(RP) were designed at least 100bp up- and downstream the predicted breakpoints and

were designed based upon the amplicon template formed according to the structural varia-

tion (deletion, duplication, inversion, translocation) and its orientation (3’to5’, 5’to3’,

3’to3’ and 5’to5’).

(TIF)

S4 Fig. SV type, sizes distribution of SVs predicted by cWGS and 10XWGS technology and

percentage of common SVs amongst them. (A), (B) Number of different type of SVs pre-

dicted by two technologies in MCF7 and Primary tumor respectively. (C), (D) Percentage of

high and low confidence calls overlapping between technologies for MCF7 and Primary tumor

respectively. (E), (F) Distribution of size of different type of SVs from both the technologies in
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MCF7 Primary tumor respectively. (G), (H) Percentage of different SV types predicted by both

the technologies in MCF7 and Primary tumor respectively.

(TIF)

S5 Fig. Distribution of all SV calls from all cWGS and 10XWGS tools and their overlap, in

MCF7 sequenced sample. (A) SV calls for all deletion, (B) duplication, (C) inversion, and (D)

translocation. Low confidence calls are marked by “LowQ” and high confidence calls are

marked by “PASS”.

(TIF)

S6 Fig. Distribution of all SV calls from all cWGS and 10XWGS tools and their overlap, in

Primary tumor. (A) SV calls for all deletions, (B) duplications, (C) inversions, and (D) translo-

cations. Low confidence calls are marked by “LowQ” and high confidence calls are marked by

“PASS”.

(TIF)

S7 Fig. Distribution of SV calls (both high and low confidence) from cWGS sequenced

MCF7, 10XWGS sequenced MCF7, downsampled cWGS reads in MCF7 to equivalent cov-

erage as 10XWGS MCF7 (downsampled cWGS), removal of barcodes in 10XWGS linked-

reads and processing them through cWGS tools (debarcoded 10XWGS). (A) The size distri-

bution of different SV types for all mentioned samples, (B) Number of calls commonly pre-

dicted by 10XWGS, sequenced cWGS and downsampled cWGS; and number of calls

commonly predicted by 10XWGS, sequenced cWGS and debarcoded 10XWGS (NOTE: Some

of the SV calls from sequenced cWGS overlaps with multiple debarcoded 10XWGS and down-

sampled cWGS calls), (C) Number of SV calls processed from all mentioned samples (consid-

ering all SVs except duplications and inversions of size>10kb).

(TIF)

S8 Fig. Only a small fraction of SVs overlap between the 10XWGS and cWGS predictions.

(A), (B) Percentage of high and low confidence SVs from cWGS and 10XWGS pipeline that

are common between technologies, in MCF7 and Primary tumor respectively. (C), (D) Per-

centage of 1 tool, 2 tools, 3 tools SVs from cWGS and 10XWGS pipeline common between the

technologies, in MCF7 and Primay tumor respectively. (E) Number and percentage of com-

mon SV between two technologies that are predicted by 1 tool, 2 tools and 3 tools.

(TIF)

S9 Fig. Common SVs have significantly higher support in terms of requantification

(Sample = MCF7). Different requantification support (junction reads-JR, spanning pairs-SP,

JR+SP = JRS) and GEM count plotted for common SVs, only cWGS SVs and only 10XWGS

SVs. The requantification support was calculated from two sources of reads (cWGS and

10XWGS). p-value calculated with Kruskal-wallis test for comparison of three categories and

pairwise Wilcoxon rank sum test. ���� represents p-value <0.0001.

(TIF)

S10 Fig. Common SVs have significantly higher support in terms of requantification

(Sample = Primary tumor). Different requantification support (junction reads-JR, spanning

pairs-SP, JR+SP = JRS) and GEM count plotted for common SVs, only cWGS SVs and only

10XWGS SVs. The requantification support was calculated from two sources of reads (cWGS

and 10XWGS). p-value calculated with Kruskal-wallis test for comparison of three categories

and pairwise Wilcoxon rank sum test. ���� represents p-value <0.0001.

(TIF)
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S11 Fig. Requantification support and GEM count is higher for common SVs for different

types of SVs (Sample = MCF7) for all calls or only high-confidence calls. The plot of three

categories of SVs (common, only cWGS and only 10XWGS) and different type of SVs with

respect to requantification support and GEM count. Requantification count was calculated

from cWGS reads and 10XWGS reads separately. Junction reads (JR), spanning pairs (SP),

combined support (JRS = JR+SP). ‘N’ represents the total number of SVs in the particular cate-

gory.

(TIF)

S12 Fig. Requantification support and GEM count is higher for common SVs for different

types of SVs (Sample = Primary Tumor) for all calls or only high-confidence calls. The plot

of three categories of SVs (common, only cWGS and only 10XWGS) and different type of SVs

with respect to requantification support and GEM count. Requantification count was calcu-

lated from cWGS reads and 10XWGS reads separately. Junction reads (JR), spanning pairs

(SP), combined support (JRS = JR+SP). ‘N’ represents the total number of SVs in the particular

category.

(TIF)

S13 Fig. Annotation of breakpoints of SVs shared between technologies indicate the advan-

tage of each technology. (A) Breakpoints of all SVs (both high and low confidence) annotated

with repetitive regions and their percentage across categories of SVs: common, only cWGS

and only 10XWGS SVs. (B) Breakpoints of only high confidence SVs annotated with repetitive

regions and their percentage across common SVs, only cWGS SVs and only 10XWGS SVs. (C)

Breakpoints of all the SVs (both high and low confidence calls) annotated with unique mapp-

ability regions. (D) Normalized local coverage across two positions of each SV event in cWGS

and 10XWGS aligned reads. All these figures depict annotation of breakpoints in MCF7 sam-

ple.

(TIF)

S14 Fig. Some of the SVs common between technologies were not validated by PCR as

their breakpoints lie in repetitive region, poor mappability region or when the reference

genome was not annotated (Sample = MCF7). The table describes the possible reason for

common SV calls that were not validated by PCR. Alignment of cWGS reads against reference

genome for some negatively validated common SVs are shown in the form of IGV images.

(TIF)

S15 Fig. Validation rate for SVs shared between all tools is higher for cWGS (A, B & C) and

10XWGS technology (D, E & F)-Sample MCF7. (A) Ratio of PCR validated SVs from the

cWGS technology that were predicted by 1, 2 or 3 tools. (B) Ratio of different type of SVs from

cWGS technology validated by PCR. (C) Ratio of different type of SVs validated by PCR with

respect to prediction by 1, 2 or 3 tools for the cWGS technology. (D) Ratio of PCR validated

SVs from the cWGS technology that were predicted by 1, 2 or 3 tools. (E) Ratio of different

type of SVs by the 10XWGS technology validated by PCR. (F) Ratio of different type of SVs

validated by PCR with respect to prediction by 1, 2 or 3 tools for the cWGS technology.

(TIF)

S16 Fig. PCR validated SVs have significantly higher GEM and requantification support.

p-values were derived from Wilcoxon-rank sum test

(TIF)

S17 Fig. Training and testing logistic regression model for cWGS and 10XWGS on the test

data set. (A) An unbalanced data set for training as number of PCR validated SVs are higher
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than negative class from the cWGS technology. (B) Percentage importance of each feature

used in the training of cWGS model calculated using varImp function of caret package. (C)

Performance of the cWGS trained model on test data with different type of sampling for bal-

ancing the training data. (D) Percentage of relative feature importance calculated with domi-

nance analysis using the complete set of PCR validated SVs trained with features derived from

cWGS technology. The statistical significance was calculated using two-tailed test correspond-

ing to z-ratio. (E) A balanced data set for training a model for 10XWGS technology. (F) Per-

centage importance of each feature used in the training of 10XWGS model calculated using

varImp function of caret package. (G) Performance of the 10XWGS trained model on test

data. (H) Percentage of relative feature importance calculated using dominance analysis with

complete set of PCR validated SVs trained with features derived from 10XWGS technology.

The statistical test was calculated using two-tailed test corresponding to z-ratio. The signifi-

cance levels are: p-value<0.001 ‘���’, p-value<0.01 ‘��’, p-value<0.05 ‘�’, p-value<0.1

(TIF)

S18 Fig. SVs predictions by trained combined model from cWGS and 10XWGS SVs in pri-

mary tumor. (A) Number of SVs prediction by the cWGS technology and percentage pre-

dicted by applying combined model. (B) Number of SVs prediction by the 10XWGS

technology and percentage predicted by applying combined model. (C) Numbers and percent-

age of SVs common between technologies before (light colour) and after (dark colour) apply-

ing respective trained models.

(TIF)

S19 Fig. Majority of breakpoints of filtered SVs by model lie in Non-repetitive, SINE or

LINE regions in MCF7. (A) The graph depicts percentage of breakpoints of SVs that lie in dif-

ferent repetitive regions. The SVs were filtered with the best trained combined model. (B)

Breakpoints of SVs filtered by best trained combined model annotated with repetitive regions

and their percentage across common, only cWGS and only 10XWGS SVs.

(TIF)

S20 Fig. The performance of combined model on internally validated SVs, two external

data sets and gnomAD data set (Sample = MCF7). Sensitivity of combined model and other

tools on the four data sets where SVs were predicted from (A) sequenced MCF7 sample. (B)

downsampled cWGS MCF7 (equivalent coverage to 10XWGS MCF7 sample). (C) debarcoded

10XWGS linked-reads and processed with cWGS pipeline (for MCF7). (D) Overall perfor-

mance of combined model on internally validated SVs with SVs predicted from downsampled

cWGS reads. (E) Overall performance of combined model on internally validated SVs with

SVs predicted from debarcoded 10XWGS linked-reads and processed with cWGS pipeline

(for MCF7). (F) Number of gnomAD calls also present in SV calls filtered by the combined

model in sequenced MCF7 sample.

(TIF)

S1 Table. Sequencing statistics for MCF7 and Primary tumor with both the technologies.

(XLSX)

S2 Table. PCR primers, PCR and Sanger sequencing results for SVs tested in MCF7.

(CSV)

S3 Table. Sensitivity and precision of combined model against other tools on external data

set 1, 2 and gnomAD calls.

(XLSX)
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3 Reliable predictions of SVs from Illumina short-reads sequencing 
3.1 Introduction 
The structural variations (SVs) are a source of genetic variation and evolution that are 
responsible for diseases like cancer. The rearrangement of genomic space with SVs are well 
established for different sub-types of cancer (68). Such rearrangements could be simpler like 
deletion, duplication, inversion of genomic section on the same chromosome and 
rearrangement of multiple chromosomes with translocation. Apart from the simple SV events, 
various types of complex genomic rearrangements (CGR) like chromothripsis, chromoplexy, 
chains of template insertions etc. are also prevalent in cancer (4,68). Reliable and accurate 
pipeline for their detection would be of utmost importance in the cancer treatment. 
Several new technologies like 10X Genomics linked-reads sequencing (16), long reads from 
Pacific Biosciences single molecule real time, Oxford nanopore sequencing (69,70) and HiC 
(71) etc. have emerged for the detection of SVs. However, they are expensive and demanding 
in terms of the input sample material and computational resources. Comparatively, the 
Illumina’s short-reads sequencing technology is more accessible and stable with advanced 
bioinformatics tools for analysis. But this technology suffers from high false discovery rate 
(FDR). This fact was also reiterated in the benchmarking study that compared Illumina’s short-
reads sequencing with 10X Genomics linked-reads sequencing technology (72). Despite of 
high FDR, the Illumina’s short-reads sequencing technology was sensitive for the prediction of 
SVs. It was the right ensemble of state-of-the-art bioinformatics tools that improved FDR for 
the prediction of SVs with short-reads.  
Different strategies and combination of bioinformatics tools in an ensemble pipeline have been 
discussed in (73–75). A perfect ensemble of tools amalgamates the SV calls predicted with all 
the possible signals extracted from short-reads aligned to the reference genome. These 
include discordant read-pairs (RP) as pair of reads aligned with an unexpected distance or 
orientation to the reference genome, split reads (SR) as reads whose sequence aligns to two 
different locations on the reference genome that captures the exact breakpoints of SV, read 
depth (RD) as quantification of reads mapping in the affected genomic section covering the 
SV, and local de novo assembly (LA) where the reads around breakpoints are reassembled. 
Apart from different signals, an ensemble pipeline uses different filtering criteria to enlist 
possible SVs. The traditional approach involves filtering SV calls predicted by more than one 
tool as true SVs. This approach reduces FDR but also reduces sensitivity. A more recent 
approach considers all the calls from tools and uses algorithms from data mining to resolve 
the breakpoints of SVs predicted by multiple tools (76). This approach (as implemented in 
FusorSV) can improve sensitivity and reduce FDR of Illumina short-reads technology. 
However, it is limited to the prediction of simple SVs like deletion and duplication while SVs 
from CGR are not considered. The SVs arising from CGR in the cancer complicate the 
resolution of breakpoints, their type and thus, impact both sensitivity and FDR. There are 
specialized algorithms for predicting CGR related SVs (77–79). Henceforth, SVs related to 
CGR needs special treatment in an ensemble pipeline that has not been addressed previously.  
Generally, the SVs are formed while repairing a nick in a DNA chromosome. There are two 
DNA repair mechanisms, namely template and ligate and break and ligate. The template and 
ligate mechanisms require a template of homologous DNA to fix the broken DNA. Based on 
the length of template sequence, processing and ligation involved in fixing the nicked DNA, 
this mechanism is further classified into homologous recombination (HR), non-allelic 
homologous recombination (NAHR), break induced replication (BIR) and microhomology-
mediated break induced replication (MMBIR), also known as fork stalling and template 
switching (FoSTeS) (17,18). On the other hand, the break and ligate mechanisms directly 
ligates the nicked DNA without a homologous template. This mechanism includes the classical 
non-homologous end joining (NHEJ), alternate end-joining (alt-EJ) and single strand annealing 
(SSA) that differs based on initiation, processing and ligation proteins for the DNA repair.  
Several studies have linked the length of sequence homology and presence and length of 
small insertion-deletion (INDEL) around the breakpoints of SVs with the active DNA repair 



 

 34 

mechanism responsible for somatic SVs in a pan-cancer analysis (17,68). They inferred 
dominance of non-homology and microhomology based DNA repair mechanisms active in 
cancer cells. However, none of the studies have explored these criterions for filtering true 
somatic SV calls.  
Here, the proposed FuseSV pipeline uses Illumina short-reads based SV calls from the 
combination of bioinformatics tools for maximum sensitivity and implements a random forest 
classifier for maximum precision. The classifier explores a novel set of features grouped into 
basic, homology and cluster features. The basic features comprise of discriminating features 
of SVs that can be predicted from the sequencing reads aligned to the reference genome. The 
homology features use the length of sequence homology and small INDELs around the 
breakpoint that are associated with different mechanisms of DNA repair that introduces SVs in 
the cancer cell. And the cluster features are derived from clustering of multiple breakpoints in 
a CGR region.  The classifier is trained with validated SVs curated from several published and 
in-house studies that contain both simple and nested SVs with back-to-back calls like inverted 
duplication. The FuseSV trained classifier is applied to a liposarcoma cohort, a cancer type 
established with low somatic SNP burden and complex karyotypes (58). With this, the 
landscape of somatic SVs and prominent mechanisms of SVs are explored in liposarcoma for 
novel insights into treatment and diagnosis of this cancer type.  

3.2 Results 
3.2.1 Overview of FuseSV 
A reliable prediction of somatic SVs in a clinical setting is essential for understanding tumor-
specific mutations driving the disease. To address this issue, the FuseSV pipeline aligns WGS 
short-reads from Illumina technology from tumor and its paired normal to the reference genome 
and predicts somatic SVs with the five state-of-the-art bioinformatics tools (Delly (80), Lumpy 
(81), SvABA (82), Manta (83) and BIC-Seq2 (84)). These tools were selected due to different 
combination of signals they use for prediction (Figure 3-1) and their all-round performance for 
prediction of different types of SVs (74,75). The SV calls from multiple tools are integrated in 
a window of ‘w’ bp according to the type of SVs (deletion, duplication, inversion and 
translocation) and their orientation (3’to5’, 5’to3’, 3’to3’ and 5’to5’). The SVs from BIC-Seq2 
are not included in this integration as it reports large size copy number variations (CNV) using 
read depth information that is not accurate in terms of breakpoints. The breakpoints of 
overlapping calls are resolved using the requantification process. As also explained in (72), 
the requantification process first generates a synthetic template of 1kb size that contains 500bp 
of reference genome’s sequences around the breakpoints of SVs. The WGS reads are aligned 
to this template and supporting reads at the junction of merged segments (junction reads) and 
read-pairs that span the merged segments (spanning read-pairs) are quantified. The presence 
of junction reads indicates correct breakpoints of respective SVs, therefore, breakpoints with 
maximum number of junction reads is selected for the overlapping calls (Figure 3-1 and 
Supplementary figure 3-1A). With the SV calls containing resolved breakpoints, a novel set of 
features are extracted for training a random forest classifier that are explained in detail in 
Supplementary table 3-2. These include:  
Basic features 
They are the discriminating features of a true SV some of which were established in the 
benchmarking studies (74,75). These include features like number of tools predicting the same 
SV, type and size of SV, local coverage around the breakpoints, presence of INDEL around 
the breakpoints and mappability of predicted breakpoints. It also includes features derived from 
the requantification process like junction reads, spanning read-pairs and number of reads 
mapping in the individual segments of merged genomic templates. Additionally, the features 
indicating presence of CNV are also captured in this set.  
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Figure 3-1: FuseSV integrates calls and use machine learning for the accurate predictions of SVs. 
The SV predictions are made by Delly, Lumpy, SvABA, Manta and BIC-Seq2 using aligned WGS 
reads.  All calls are combined based on their breakpoint and type of SV. The breakpoints of 
overlapping SV calls are resolved by requantification. This involves creation of a synthetic 
genomic template with neighboring sequences around the breakpoints in a window of 500bp and 
alignment of reads to it. The breakpoints of SV with maximum reads mapping to the junction of 
merged genomic segments (junction reads) is selected. For each SV call, features are extracted 
for random forest classifier. These include basic, homology and cluster features. The basic 
feature like junction reads, spanning pairs, reads mapping to each section of merged synthetic 
genomic template (genea_reads, geneb_reads) are extracted from the requantification process. 
The homology feature is derived from basic local alignment of sequences around the breakpoints 
of the SV using BLASTN. The cluster feature is quantified with the number of breakpoints of SVs 
clustering in variable range of window (100bp, 1kb, 5kb, 10kb). The trained classifier with these 
features is used to predict probability of true SV calls (FuseSV score). RP: Discordant read-pairs, 
SR: Split reads, RD:  Read depth, LA: de-novo local assembly. 
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Homology features 
These set of features are inspired from the fact that several error-prone DNA repair 
mechanisms that introduces SV in the genome such as NHEJ, NAHR, alt-EJ, SSA, MMBIR 
relies on small to higher degree of sequence homology around their breakpoints. The length 
of sequence identical around the breakpoints and presence and length of INDEL indicates 
prominent mechanism of DNA repair active in the cell. This indirectly refers to the prominent 
mechanisms by which an SV was created. Such features were derived by basic local alignment 
of sequences around the breakpoints of SV using BLASTN (85) (Supplementary figure 3-1B). 
The length of identical sequences, percentage identity, expectation value of BLASTN hits and 
their respective bit scores were the key features explored in this set. 
Cluster features 
This set of features aimed to serve two purposes. It is established that CGR are prevalent in 
cancer genome (68). With Illumina’s short-reads sequencing technology, discovery and 
resolution of CGR is skewed that requires specialized set of tools. These tools use advanced 
technologies like linked-reads from 10X Genomics and long reads from Pacific Biosciences or 
Oxford Nanopore. However, the breakpoints of such rearrangements in aligned short-reads 
can be predicted with some sensitivity that requires incorporation of multiple SV events 
together for complete resolution (86). In FuseSV we aim to learn difference in features between 
simple SVs and SVs in CGR rather than resolve the breakpoints. The other purpose is to 
account for the SVs arising due to alignment-based artefacts which are often located in low 
complexity regions like simple repeats. Henceforth, this includes calculation of number of 
breakpoints clustering together in the variable set of windows around the breakpoints (100bp, 
1kb, 5kb and 10kb) (Figure 3-1 and Supplementary figure 3-1C).  
With the collection of mentioned features, a random forest classifier is trained on carefully 
curated set of SVs from various cancer cell lines and tumor genomes that have been 
additionally validated with PCR (Supplementary table 3-1). 

3.2.2 FuseSV predicts SVs with high sensitivity and precision 
Four random forest classifiers were trained with different combination of the features included 
in three main sets i.e., basic, homology and cluster features (Basic, Basic+Cluster, 
Basic+Homology, and, Basic+Homology+Cluster features). These classifiers were trained with 
1138 SVs (varying sizes of deletions, duplications, inversions, translocations and nested SVs 
like Supplementary figure 3-2) that were collated from several studies and validated with PCR 
(Supplementary table 3-1). Since a high number of features were included in three sets of 
features, they were screened based on their relative importance in order to prevent overfitting. 
The features with 5% or higher relative feature importance was selected for training of the final 
models (Supplementary figure 3-3). Overall, the basic set of features had relatively higher 
feature importance in comparison to the homology and cluster set of features (Figure 3-2A). 
Amongst the basic features, the number of tools predicting a SV (NumberTools), spanning 
reads (Span_reads) and junction reads (Junc_reads) from the requantification pipeline 
achieved 97.8%, 87.4% and 52.1% of relative feature importance. Moreover, the homology 
features with the expectation value from BLASTN local alignment of sequences around the 
breakpoints (BestBlastHomologyEvalue), their bit scores (BestBlastHomologyBitscore) and 
the length of sequence similar around the breakpoints of SVs (BestBlastHomologyLength) 
achieved relative feature importance of 24.6%, 24.5% and 20.5% respectively. Amidst the 
cluster features, the number of breakpoints clustered in 10kb (Cluster_10kb) and 5kb 
(Cluster_5kb) window around a SV’s breakpoints achieved 10.9% and 8.1% of relative feature 
importance. 
The performance of trained classifiers was tested with two approaches (Supplementary table 
3-1). They were analysed with 5-fold cross-validation repeated 10 times and two test data sets. 
The cross-validation analysis for the trained classifiers revealed the classifier with basic, 
homology and cluster features with maximum area under curve (AUC) of 0.962 in the receiver 
operating curve (ROC) (Figure 3-2B). However, the performance of other trained classifiers 
was comparable with AUC as 0.956 (Basic), 0.958 (Basic+Cluster) and 0.962 
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(Basic+Homology). Nevertheless, each of the trained classifier had better performance than 
the individual (Delly: 0.82, Lumpy: 0.797, SvABA: 0.819, Manta: 0.884) and the calls predicted 
by all the tools (Consensus: 0.827).  
 

 
 
Figure 3-2: The ensemble of SV prediction tools and the random forest (RF) classifier in FuseSV 
generates higher sensitivity and precision. A) Percentage relative importance of features used 
in the classifier trained with all the set of features. This data was derived from the average values 
obtained with 5-fold cross-validation repeated 10 times. B) Area under curve (AUC) in receiver 
operating classifier (ROC) curve for FuseSV with different combination of extracted features 
(Basic, Basic+Cluster, Basic+Homology and Basic+Homology+Cluster) is higher than the 
individual tools and SV calls predicted by all the tools (Consensus). The ROC curve was 
generated with 5-fold cross-validation repeated 10 times. C) Performance of FuseSV (different 
combination of features) and individual tools is higher on the test data. This test data was derived 
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from SKBR3 SVs predicted by Pacific Biosciences long reads and validated by PCR and Sanger 
sequencing. D) Sensitivity of FuseSV (different combination of features in trained classifiers) 
and individual tools on test data generated with 10X Genomics linked-reads sequencing 
validated calls in the MCF7 cell line and a primary breast tumor. 

The performance of classifiers was further tested on two test data sets. The first data set 
included SVs in SKBR3 predicted by Pacific Biosciences long reads that were validated by 
PCR and Sanger sequencing (87). This test data set included calls that were both validated 
and not validated by Sanger sequencing and thus, we compared sensitivity and precision for 
each classifier and individual tools. As depicted in Figure 3-2C, the classifier trained with all 
the set of features had maximum sensitivity and precision of 59.75% and 90.48% respectively. 
The improvement in precision by inclusion of homology and cluster features is clearly evident 
when precision increased from 83.83% in the classifier trained with only basic features to 
90.48% in the classifier trained with all the features (Basic+Homology+Cluster). 
Comparatively, the consensus SVs as calls predicted by all the tools had minimum sensitivity 
of 10.53% and surprisingly, lower precision of 58.82%. However, sensitivity of Delly (58.49%) 
and Lumpy (58.49%) was comparable to the trained classifiers while their precision was lower 
(Delly: 67.88%, Lumpy: 68.38%). The performance of both SvABA (sensitivity: 16.38%, 
precision: 65%) and Manta (sensitivity: 28.93%, precision: 60.53%) was lower in this test data 
set. The second data set included SVs in the MCF7 cell line and a primary breast tumor that 
was validated with 10X Genomics linked-reads sequencing (72). As depicted in Figure 3-2D, 
the sensitivity of the classifiers trained with all three sets of features was slightly lower than the 
classifier trained with only basic features (Basic+Cluster: 92.34% in MCF7 and 91.48% in a 
primary breast tumor, Basic+Homology: 95.35% in MCF7 and 94.49% in a primary breast 
tumor, Basic+Homology+Cluster: 89.69% in MCF7 and 89.26% in primary breast tumor). 
Nevertheless, it was better in comparison to the other tools (Delly: 86.22% in MCF7 and 
86.46% in primary breast tumor, Lumpy: 71.01% in MCF7 and 54.86% in primary breast tumor, 
SvABA: 5.18% in MCF7 and 4.58% in primary breast tumor, Manta: 82.75% in MCF7 and 
86.38% in primary breast tumor, Consensus: 1.82% in MCF7 and 0.77% in primary breast 
tumor). 
In conclusion, our trained model achieved maximum performance with higher sensitivity and 
precision in comparison to other tools and calls predicted by all the tools (Consensus). Since 
there is always a trade-off between sensitivity and precision, with minimal drop in sensitivity 
the trained classifier with all the set of features attained better precision. The performance of 
trained classifiers over different test data sets indicates the robustness of FuseSV.   

3.2.3 Application of FuseSV to liposarcoma cohort 
31 liposarcoma samples (DDLS: 21 samples, MLS: 8 samples, WDLS: 2 samples) with 
average median coverage of 74.5X in DDLS samples, 77.4X in MLS samples and 74X in 
WDLS samples with 2X151bp (paired-end reads) of read length were analysed with the 
FuseSV pipeline.  
A total of 116624 of high confidence somatic SVs (with FuseSV score>=0.7) were identified in 
the liposarcoma samples. Amongst all the sub-types of liposarcoma analysed in this study, the 
DDLS sample had significantly higher average number of SVs (4029 SVs per sample) in 
comparison to MLS (3075 SVs per sample) (Figure 3-3A). The WDLS sub-type had an average 
of 3708 SVs per sample. However, the significance of difference in numbers between this sub-
type with others was not established as only two samples were classified with WDLS 
liposarcoma.  
The CNV profiles of the samples of different sub-types of liposarcoma were investigated in 
Figure 3-3B. Around 90% of the DDLS samples were characterised with the amplification in 
chromosome 12q arm that was also observed in the two WDLS samples. Moreover, the WDLS 
samples also had amplification on chromosome 6q arm. Contrastingly, these amplifications 
were absent in the MLS samples that were characterised with an amplification in chromosome 
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8q arm in nearly 50% of the samples. Overall, DDLS samples had a more complex CNV profile 
with many amplifications and deep deletions on different chromosomes. 

The distribution of different types of somatic SVs (deletion, duplication, inversion, translocation 
and complex SVs that contained more than 10 breakpoints in the cluster of 5kb window) was 
investigated in Figure 3-3C and Supplementary table 3-3. The deletions were most prevalent 
in all the liposarcoma samples. The DDLS samples had an average of 61% deletions, 6.7% 
duplications, 11.4% inversions, 15% translocations and 5.5% complex SVs per sample. While 
the MLS samples had an average of 75% deletions, 5.85% duplications, 9.45% inversions, 
9.45% translocations and 1.2% complex SVs per sample. The average SVs frequency in the 

Figure 3-3: DDLS type of sarcoma has significantly higher number of SV. A) Predicted number 
of SVs amongst different sarcoma type. B) The copy number variation (CNV) and its frequency 
in sarcoma samples. C) The number of large sized SV (size>100kb) of different types (deletion, 
duplication, inversion, translocation and complex) predicted across different liposarcoma 
samples. The p-values in all these plots is derived with Kruskal-Wallis test with following 
significance levels: ns-not significant, *-value <0.05, **-value <0.01, ***-value <0.001, ****-value 
<0.0001. The mean value of number of SV for sample type in graph is mentioned at bottom in 
bold.  
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WDLS samples were like the DDLS samples (68.8% deletions, 6.7% duplications, 10.7% 
inversions, 10.8% translocations and 2.8% complex SVs). Furthermore, the frequency of 
different types and sizes of somatic SVs were explored in Figure 3-3D, Supplementary figure 
3-4 and Supplementary table 3-3). The major difference in the number of SVs between DDLS 
and MLS samples were attributed to significantly higher number of large-sized SVs 
(size>100kb or translocations and complex SVs) present in the DDLS samples. The mean 
number of large-sized SVs per sample in the DDLS were 140 deletions, 131 duplications, 280 
inversions, 644 translocations and 252 complex events. Relatively, the MLS samples had 43 
deletions, 41 duplications, 100 inversions, 285 translocations and 45 complex SVs. The mean 
number of large-sized SVs observed in WDLS were 131 deletions, 102 duplications, 221 
inversions, 404 translocations and 104 complex SVs. These numbers were closer to the 
umbers reported in DDLS samples. 

3.2.4 Chromosome shattering in DDLS and WDLS sub-types of liposarcoma 
The chromosome 12 was amplified in 90% of the DDLS samples as visualized in (Figure 3-
3B). On further analysis, it was observed that nearly 60% and 70% of complex SVs had 
breakpoint on chromosome 12 in DDLS and WDLS cohort respectively (Figure 3-4A). In 
contrast, only 9.5% of complex SVs in the MLS samples had breakpoints on chromosome 12. 
These results indicate immense shattering and rearrangement of chromosome 12 in the DDLS 
and WDLS samples.  

The CGR in the liposarcoma samples were further investigated with svpluscnv package (77). 
This package integrates the CNV and SV information to find common regions shattered 
amongst the samples. Amongst the DDLS samples, 19 out of 21 (except H028-VEJN and 
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Figure 3-4: Chromosome 12 in majority of the DDLS samples is shattered and rearranged. A) 
Percentage of complex SVs on chromosome 12 within different type of liposarcoma samples 
(DDLS, MLS and WDLS). The mean (M) proportion of complex SV on chromosome 12 is depicted 
in bold. B) Circos plot of two DDLS samples representing different type of SVs (deletion-DEL, 
duplication-DUP, inversion-INV, translocation-TRA) and rearrangement of the shattered 
chromosome 12. C) Proportion of DDLS samples with the shattered chromosome 12q arm. 
Figure B and C were generated with svpluscnv (77) package in R.  
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H028-3SBYLY) samples had chromosome 12 102012374-112012374 coordinates severely 
rearranged (as seen in circos plot of two DDLS samples in Figure 3-4B). This region lies on 
chromosome 12q arm that is significantly shattered in 90% of the DDLS samples (Figure 3-4C 
and Supplementary figure 3-5). In the DDLS samples, chromosome 12q shattering resembled 
chromothripsis where oscillation between different copy numbers and SVs was observed. 
Moreover, the events resembling breakage-fusion-bridges that affect telomeres with fold back 
inversions were also observed in 9 out of 21 DDLS samples. Some of the samples like K02K-
S5HJ3F and K02K-6TSNNB had severely rearranged chromosomes with multiple events 
oscillating between chromosome 6, 12, 2 and 5. The shattering of chromosome 12q was also 
observed in the two WDLS samples with two hotspots of shattered regions were: 68012374-
78012374 and 90012374-100012374 (Supplementary figure 3-6). Even though MLS samples 
included complex SV events, a common genomic region shattered between the samples was 
not seen. When all the large-sized SVs (size>100kb, translocation and complex events) were 
considered, shattering was observed only in one sample of MLS cohort (K02K-4WMX7Q). This 
caused rearrangement of chromosome 1 (76049148-86049148, 156049148-166049148, 
172049148-182049148), chromosome 8 (30071162-40071162), chromosome 11 
(100192287-110192287) and chromosome 13 (22180033-32180033, 44180033-54180033) 
as seen in Supplementary figure 3-7. Such pattern of shattering resembled chromoplexy with 
chains of rearrangement in a closed loop. 

3.2.5 Mechanisms of SVs across liposarcoma 
The formation of SVs via different DNA-repair mechanisms like NAHR, NHEJ, alt-EJ, 
FoSTeS/MMBIR, SSA etc. are explored in this section. The length of homologous sequence 
around the breakpoints, presence of INDEL at the merged genomic sections and its length can 
indicate the prevalent DNA-repair mechanisms for the SV formation. For example, NAHR is 
known to be prominent mechanism when the neighboring region around the breakpoints have 
longer homology. Whereas NHEJ is active when no to very small microhomology (0-4bp) along 
with small INDELs at the breakpoints are observed. Different alt-EJ mechanisms like MMEJ, 
SD-MMEJ and TMEJ are associated with small microhomology of 1-8bp around the 
breakpoints. SSA is prominent mechanism when 15-70bp of homologous sequences are found 
around the breakpoints whereas FoSTeS/MMBIR mechanism are known to form complex SVs 
which are often found with INDELs and microhomology at the merged genomic section. Here 

Figure 3-5: Majority of SVs across liposarcoma samples have 4-15bp homology around the 
breakpoints. A) The plot depicts percentage of SVs in each sample that have variable length of 
homology around the breakpoints and INDEL at the merged genomic section. B) The plot depicts 
percentage of different type of SVs (DEL-deletion, DUP-duplication, INV-inversion, TRA- 
translocation and Complex) in each sample with variable length of homology around the 
breakpoints and INDEL at the merged genomic section.  
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we analyse these parameters with BestBlastHomologyLength and INDEL length features that 
were calculated in the FuseSV pipeline applied to the liposarcoma sample.  
As depicted in Figure 3-5A, 47% of SVs had microhomology between 4-15bp around the 
breakpoints amongst all the samples. This indicates alt-EJ pathways is the most active 
mechanisms of DNA repair in liposarcoma. Furthermore, 20% SVs had 15-70bp homology 
around the breakpoints, 16.3% SVs had INDEL of length 1-10bp at the merged genomic 
section, 13% SVs had homology greater than 100bp, 2.6% SVs had 70-100bp homology, 0.8% 
SVs had INDEL of length greater than 10bp. This indicates that apart from alt-EJ, the SSA 
repair mechanism that is characterized with presence of 15-70bp of homology around the 
breakpoints of SVs is the next most active DNA repair mechanisms in liposarcoma.  
Amongst the different type of SVs in Figure 3-5B, 46.6% and 25.6% of deletions contained 4-
15bp and 15-70bp of homology around the breakpoints respectively. While 37.4% and 28.4% 
of duplications had 4-15bp and greater than 100bp of homology around the breakpoints 
respectively. Like duplications, inversions had 40.3% and 26.6% with 4-15bp and greater than 
100bp homology around the breakpoints respectively.  However, amidst translocations, 50% 
and 32.2% had 4-15bp homology around the breakpoints and INDELs of 1-10bp length at the 
merged genomic sections respectively. The SVs characterized as complex followed a pattern 
like translocations i.e., 54.4% and 18.4% had 4-15bp homology around the breakpoints and 
INDELs of 1-10bp length at the merged genomic section respectively. It can be estimated from 
the distribution that deletions are predominantly formed via alt-EJ and SSA pathways, 
duplications and inversions with alt-EJ and NAHR pathways, and translocations and complex 
SVs with alt-EJ and FoSTeS/MMBIR pathways. Since this cohort has very high number of 
small-sized deletions (size<=1kb), we investigated the prominent mechanisms active for the 
formation of large-sized SVs (size>100kb, translocation or complex SVs) in Supplementary 
figure 3-8. It was observed that majority of deletions, duplications and inversions had 4-15bp 
and greater than 100bp homology around the breakpoints. This indicates prevalence of alt-EJ 
and NAHR repair mechanisms that leads to formation of large sized deletions, duplications 
and inversions.  
Since chromosome 12 in DDLS and WDLS samples was significantly rearranged, we 
investigated the prominent repair mechanism observed with the SVs having breakpoints on 
chromosome 12. As observed in Figure 3-6A, two most dominant mechanism in the DDLS 
samples had homology of 4-15bp around the breakpoints (60.3% of chromosome 12 SVs 
against 45.5% in SVs on other chromosomes) and INDELs of 1-10bp length at the merged 
genomic section (17.8% of chromosome 12 SVs against 15.8% in SVs on other 
chromosomes). Moreover, SVs with breakpoints on chromosome 12 had significantly lower 
calls with homology greater than 100bp and significantly higher calls with homology of 4-15bp 
around the breakpoints against SVs on other chromosomes in the DDLS samples (Figure 3-
6B). This indicates prevalence of alt-EJ and MMBIR/FoSTeS and downregulation of NAHR 
repair mechanisms for the formation of SVs on chromosome 12. This significant difference in 
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percentages was not established between MLS and WDLS samples. Nevertheless, WDLS 
samples followed a similar pattern as DDLS samples. 

3.3 Discussion 
Using an ensemble of SV prediction tools comes with advantages and disadvantages. The 
advantage includes predicting SVs of various types and sizes with higher sensitivity and 
precision. The proposed FuseSV pipeline presents these advantages while overcoming the 
challenges in resolution of calls from multiple tools along with consideration of SVs arising in 
the CGRs that are prevalent in complex diseases like cancer. Moreover, we also explored 
novel features like homology around the breakpoints of somatic SVs that further improved 
precision without much compromise in the sensitivity. With the unique combination of features 
in a machine learning approach, FuseSV was robust in prediction of all types of SVs. However, 
there are few limitations to the FuseSV pipeline. Currently, FuseSV accepts SVs calls from 
Delly, Lumpy, SvABA, Manta and BIC-Seq2, and the future update would include calls from 
other bioinformatics tools as well. Secondly, the random forest classifiers were trained with 
SVs predicted by the Illumina short-reads sequencing technology that has its inherent 
limitations. One of the future updates would include SV calls from other sequencing 
technologies for training. Nevertheless, FuseSV classifiers were trained with SVs from the 
cancer cell lines and primary tumors that imitates cancer model more closely in comparison to 
other tools that were trained with SVs from normal human genome (example FusorSV (76)). 
Adult soft tissue sarcoma is one of the many highly aggressive cancer types with variable type 
of karyotypes from simple to more complex ones and low mutational burden in terms of SNV. 
In this study, we analysed samples from a specific class of sarcoma, liposarcoma, with three 
pathologically classified sub-types i.e., DDLS, MLS and WDLS. Complementary to the findings 
by Abeshouse et. al. (58), we also observed the amplification of chromosome 12q arms in the 
DDLS and WDLS sub-types of liposarcoma. The DDLS sub-type is known to originate when 

Figure 3-6: SVs on chromosome 12 of the DDLS samples are created with mechanism that utilize 
homology of length 4-15bp around the breakpoints. A) Different liposarcoma samples plotted 
against percentage of SVs containing variable length of homology and INDELs around the 
breakpoints. B) Percentage of SVs on chromosome 12 against SVs on other chromosomes with 
different homology length for different liposarcoma sub-types. The significant difference in 
proportion of SVs with different homology length on chromosome 12 against another 
chromosome’s SV was derived with Wilcoxon paired test. The p-values are mentioned as: ns- 
not significant, *-value <0.05, **-value <0.01, ***-value <0.001, ****-value <0.0001.  
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WDLS invades non-lipogenic regions and becomes more aggressive. This is substantiated 
with a similarity in the SV and CNV profiles amongst DDLS and WDLS samples. However, the 
DDLS samples had a much wider complex spectrum of copy number changes in comparison 
to WDLS and MLS samples. This was also demonstrated with significantly higher number of 
SVs in the DDLS samples that was associated with the higher frequency of large-sized SVs 
(size>100kb), translocations and complex SVs. The characterization of liposarcoma samples 
with higher number of complex SV events was also established in the PCAWG study (68). 
However, further classification of soft tissue liposarcoma to different sub-types is missing in 
the PCAWG study.  
The genomic landscape of complex SVs in DDLS samples was specifically prominent on 
chromosome 12. The clustering of several breakpoints on this chromosome was observed in 
90% of DDLS samples. This indicated severe shattering of chromosome 12q arm that might 
be under selection pressure in DDLS patients. The pattern of rearrangements on the 
chromosome 12 sometimes resemble chromothripsis and breakage-fusion-bridges, but often 
it is highly complex without any known classification of CGR. This was also reported in the 
PCAWG study of sarcoma samples (68), where 25% of soft tissue liposarcoma samples 
resembled chromothripsis while remaining events were other CGR types. Nevertheless, the 
chromothripsis is postulated to be an initiator event for rearrangements involved on 
chromosome 12 of DDLS and WDLS (88) that is followed by multiple rearrangements like 
formation of double minutes and neochromosomes. Interestingly, chromothripsis in tumors is 
associated with lower infiltration of cytolytic T cells, natural killer cells and tumor antigen 
presentation markers, and tumor aneuploidy (88). Additionally, tumor aneuploidy is associated 
with reduced response to the immune checkpoint-based immunotherapy (89). An indirect 
inference from these studies would suggest lower efficacy of classical immunotherapy for the 
treatment of DDLS sub-type of liposarcoma. Henceforth, personalized vaccines developed 
from neoantigens would be efficient in managing this sub-type of cancer. However, further 
research and investigation is required in this direction.   
Apart from characterization of CGR on chromosome 12 in the DDLS samples, we also 
investigated the prominent DNA repair mechanisms actively involved for somatic SVs on 
chromosome 12. There was a significant increase in SVs utilizing 4-15bp microhomology 
around the breakpoints and presence of INDELs of 1-10bp size in SVs on chromosome 12. 
This implies dominance of alt-EJ and MMBIR pathways for the DNA repair on this 
chromosome. SVs on chromosome 12 are part of CGR that to some extent resemble 
chromothripsis in our DDLS samples. Our findings are consistent with a study that hypothesis 
formation of chromothripsis like events with alt-EJ pathway (9). While there has also been 
evidence for the involvement of NHEJ and MMBIR pathways in chromothripsis events (90). 
Conclusively, alt-EJ pathways play an important role in the formation of SVs on chromosome 
12 of DDLS and WDLS samples, while contribution by MMBIR and NHEJ pathways is 
inevitable.  
Illumina short-reads sequencing technology is a popular approach for detecting SVs, however, 
third generation sequencing technologies like Pacific Biosciences and Oxford nanopore long 
reads sequencing, 10X Genomics linked-reads sequencing and HiC can detect more types of 
SVs that are not approachable with shorter reads. Going forward combination of different 
technologies for overall detection of SVs would shed light over novel insights in mechanisms 
of DNA repair used for formation of SVs. This would also expand the current landscape of 
rearrangements in any cancer genome and offer diagnosis and treatment related advice by 
the medical doctors. 

3.4 Methods 
3.4.1 Whole genome sequencing (WGS) samples and upstream processing 
WGS samples were obtained from various sources as mentioned in Supplementary table 3-1. 
These included MCF7 breast cancer cell line, SKBR3 breast cancer cell line, MZ-GaBa-018 
breast cancer cell line and 5 primary breast tumor (obtained from two sources).  The fastq files 
containing reads of respective samples were aligned to the reference genome GRCh38 using 
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BWA-MEM (v0.7.17), duplicate reads were removed with Samblaster (v0.1.24-0) and aligned 
reads sorted by coordinated with Samtools sort (v1.3.1).  

3.4.2 Prediction of SVs with an ensemble of bioinformatics tools 
The short-reads aligned to the reference genome the .bam file served as input to the 
bioinformatics tools. Generally, bioinformatics tools use discordant read-pairs (RP), split reads 
(SR) and local de novo assembly (LA) to predict SVs. They can be used to identify different 
types of SVs like deletion, duplication, inversion and translocations. Apart from these 
strategies, read depth (RD) or variable number of reads against neighbouring sections can be 
used to identify CNV like deletions and duplications. An ensemble of tools was chosen to 
combine all these signals. This was inspired from (72) along with an additional tool utilizing RD 
information for detection of CNV. This ensemble included Delly (v0.7.6), Lumpy (v0.2.13), 
SvABA (v0.2.1), Manta (v1.6.0), and BIC-Seq2 (normalization v0.2.4 and segmentation 
v0.7.2). 
Each SV call was classified into deletion, duplication, inversion, translocation and complex 
events. A deletion was defined as an event when section was deleted (associated with 3’to5’ 
orientation). A duplication was defined as an event when section was duplicated (associated 
with 5’to3’ orientation) and inserted back-to-back (this type was checked with requantification 
process as explained in the next section). However, duplication events with insertion 
somewhere else are also considered but they were not verified by requantification. Inversions 
were defined with two events where two different genomic segments merged (associated with 
3’to3’ and 5’to5’ orientation). All the inter-chromosomal events were classified as translocation. 
The events that had more than 10 number of breakpoints clustering in a 5 kb window around 
the breakpoints were classified as complex SVs. 

3.4.3 Integration of calls 
Each SV call from tools (predicted with filter “PASS”) were classified according to the 
orientation predicted by the tools. For example, an inversion can have two corresponding 
orientation 3’to3’ and 5’to5’. Each of this orientation is counted as two calls. With this, calls 
from all the tools (except Bic-Seq2) were integrated as one when their breakpoints lie within a 
500 bp window and have same orientation. The strategy described as requantification was 
inspired from (72) for the resolution of breakpoints of overlapping calls. The process involved 
creation of a synthetic genomic template of 1kb size with 500bp on each side of the breakpoint. 
This template was generated with the sequence from reference genome around the 
breakpoints. Further, the WGS reads of the sample were aligned to this template using BWA-
aln. With the aligned reads on the template, junction reads as the reads mapping on the 
merged segments were retrieved for resolving the breakpoints. The breakpoints with maximum 
junction reads were considered as final breakpoints of that SV call (Supplementary figure 3-
1A). 

3.4.4 Feature extraction 
Three set of features were extracted for each SV call for training random forest classifiers. 
They were categorized as basic, homology and cluster features. As listed in Supplementary 
table 3-2,  the basic features included junction reads, spanning read-pairs, number of reads 
mapping to the first and second segment merged in synthetic genomic template of the 
requantification pipeline, number of tools predicting a SV, overlap of SV with CNV from BIC-
Seq2 and vice-versa, presence of INDEL around the breakpoints, size and type of SV, local 
coverage around the breakpoints and ratio of reads mapping between breakpoints of SV.  
The homology features involved the calculation of homologous sequence around the 
breakpoints of SVs and INDEL at the merged segments. These features were extracted from 
output results of BLASTN (v2.5.0) of 200 bp of genomic sequence around each breakpoint of 
each SV call (Supplementary table 3-2 and Supplementary figure 3-1B). This included the 
length of homologous sequence hits, its identity, bit score and expectation value as reported 
with BLASTN. The length of INDELs at SV’s merged segments were calculated with the 
requantification pipeline while aligning reads to the synthetic genomic segment. 
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The cluster features were calculated as the number of SV breakpoints clustering in a variable 
size of windows. The sizes of window were 100bp, 1kb, 5kb and 10kb (Supplementary table 
3-2 and Supplementary figure 3-1C). 

3.4.5 Random forest classifier 
A validated list of SVs was collated from several sources and samples (Supplementary table 
3-1). The labels for training were derived from SVs that were validated by PCR that included 
1138 data points with 875 positive calls and 263 negative calls (Supplementary table 3-4). Four 
random forest classifiers were trained with different sets of features. First was trained with 
basic features, second with basic and cluster, third with basic and homology features and 
fourth with all three sets of features.  A random forest algorithm was selected for training 
because of its robustness over unbalanced data set and prevention of overfitting. All these 
models were first trained with all the features listed in Supplementary table 3-2. However, the 
relative feature importance of each feature in the fourth model trained with all the sets depicted 
lower to no importance for many of homology and basic features (Supplementary figure 3-3). 
Hence, we selected a smaller number of features from these three sets considering their 
relative feature importance was more than 5%. The final set of features used for training are 
mentioned in Figure 3-2A. 
The four trained classifier were tested with two approaches. Firstly, 5-fold cross-validation 
repeated 10 times was used to test models and performance was measured with area under 
the curve (AUC) in ROC curve. Secondly, sensitivity or validation rate of models were 
compared with two independent test data sets (not used for training). The first test data 
included PCR validated SKBR3 SVs predicted from Pacific Biosciences long reads (87) and 
validated with PCR, and second test data included MCF7 SVs, and a primary breast tumor 
SVs validated with linked-reads sequencing (common SVs predicted with both Illumina short-
reads and 10X Genomics linked-reads sequencing pipeline in (72)).  
Each random forest classifier was trained with 500 trees and 10 nodesize with randomForest 
package in R. The probability of true SV was measured as P(Y=True SV | X = xi) where xi is 
set of features for training. Calls with probability>0.5 were considered true and used for the 
measurement of performance. 

3.4.6 Liposarcoma samples 
31 WGS liposarcoma samples comprising of 21 DDLS, 8 MLS and 2 WDLS samples were 
obtained from University of Medical Centre, Mainz. The DNA from tumor (stored in FF or FFPE) 
was extracted and whole genome sequenced with Illumina technology with short insert size of 
400-500bp and paired-end reads of 2X151bp length. The average coverage of tumor samples 
in DDLS cohort was 74.5X, 77.4X in MLS and 74X in WDLS samples. Since the paired normal 
tissue for each tumor sample was also sequenced, the somatic SV calls were predicted by 
FuseSV pipeline. The fastq files of each sample was processed as mentioned above and SVs 
with probability>0.7 were considered as true.  

3.4.7 Shattering of chromosome 
The CGR with complex SVs were calculated with svpluscnv (77) package in R. The frequency 
of CNV distribution (Figure 3-3B) in the liposarcoma samples, circos plot depicting shattered 
chromosomes (Figure 3-4B and Supplementary figure 3-6) and shattered chromosome 
frequency in DDLS samples (Figure 3-4C) was plotted with the same package. 

3.4.8 Statistical analysis and graphs 
The statistical analysis and assessment of trained models was performed in Rv3.6. The graphs 
were plotted with ggplot2 (91) package in R. 
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3.5 Supplementary figures 
 

 
Supplementary figure 3-1: Representation of basic/requantification, homology and cluster features of 
FuseSV pipeline. A) The requantification pipeline for resolution of breakpoints of overlapping SV calls 
using junction reads. Other basic features derived from requantification includes spanning reads, 
genea_reads (number of reads mapping on segment 1) and geneb_reads (number of reads mapping 
on segment 2). B) Homology features derived from BLASTN of query sequence (left segment of merged 
genomic templates) and subject sequence (right segment of merged genomic templates). A 200bp of 
sequence around each breakpoint of each SV was utilized for local sequence alignment by BLASTN. 
C) Cluster features calculated by counting number of breakpoints of different SVs that lie in a certain 
window. The figure shows clustered breakpoints in a 5kb window and the derived Cluster_5kb feature. 
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Supplementary figure 3-2: Nested SV in MZ-GaBa-018 cell line with back-to-back deletion and 
inversion event. The figure was adapted from (92). It depicts the genomic coordinates of deletion and 
inversion occurring together in the MZ-GaBa-018 cell line and the call predicted by ensemble of tools in 
FuseSV. Such nested SVs were also used for training the FuseSV random forest classifiers. 
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Supplementary figure 3-3: The relative importance of features in trained random forest classifier. 
These include relative importance of all tested features in three sets (basic, homology and cluster) in 
the trained classifier with all the features (Basic+Homology+Cluster). This was obtained with varImp 
function random forest in R. 
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Supplementary figure 3-4: Landscape of different sizes of SVs in three sub-types of liposarcoma 
(DDLS, MLS and WDLS). The plot depicts number of SV of different types (Deletion, Duplication, 
Inversion, Translocation, Complex SV) with the mean number of SVs mentioned in bold at the zero 
coordinate. All the events with more than 10 SV breakpoints clustered in a 5kb window are categorized 
as complex. The statistics for difference in number amongst sub-types of liposarcoma were derived with 
Kruskal-Wallis test with p-values as:  ns-not significant, *-value <0.05, **-value <0.01, ***-value <0.001, 
****-value <0.0001. 
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Supplementary figure 3-5: The shattering of chromosome 12 in DDLS samples. The circos plot 
generated with svpluscnv package in R depicts different SVs and chromosomes involved in complex 
SVs in DDLS samples. The figure shows plots for following samples: H028-J9DKH8, K02K-T2J6LB, 
K02K-S5HJ3F, K02K-6TSNNB, H028-NJVEPQ, H028-F6GWVF, H028-CS4S2W, H028-BYQXQ7, 
H028-AQ3S7Y, H028-7XSCUY, H028-31QYZW, H028-2V74XZ, H028-19K68K, H021-Y799BH, H028-
TT6Q, H021-QFC8A8, H021-99G9EH and H021-8GEBK9.  
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Supplementary figure 3-6: The shattering of chromosome 12 in WDLS samples. The circos plot 
generated with svpluscnv package shows shattering of chromosome 12 in WDLS samples that included 
complex SVs. The peak region shattered in both these samples were: 68012374-78012374 and 
90012374-100012374 on chromosome 12. 
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Supplementary figure 3-7: The shattering of chromosomes in K02K-4WMX7Q MLS sample. Only one 
sample in MLS cohort had shattering of chromosomes that involved chromosome 1, 8, 11 and 13. 
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Supplementary figure 3-8: Majority of large sized SVs (size>100kb) are formed with DNA repair 
mechanisms utilizing long stretches of homology around the breakpoints. The plot depicts percentage 
of SVs with size greater than 100kb or translocation and complex events with variable length of 
homology and INDEL around the breakpoints amongst different type of SVs. 
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3.6 Supplementary tables 
Supplementary table 3-1: The list of WGS samples and validated SVs used for training and testing 
FuseSV pipeline. The table mentions different WGS samples, the source of next generation sequencing 
reads, source of validated SVs in the respective samples, their validation techniques and the strategy 
the validated calls were used for testing FuseSV. 

S.No. Sample WGS source Validated SVs 
source 

FuseSV 
testing 

Validation 
technique 

1 MCF7 doi:10.1371/journal.p
cbi.1008397 

doi:10.1371/jour
nal.pcbi.1008397 

Cross-
validation 

PCR 

2 MCF7 doi:10.1371/jour
nal.pcbi.1008397 

Test data 2 10X 
Genomic 
linked-reads 
sequencing 

3 MCF7 doi: 10.1016/j.cel
s.2016.05.007 

Cross-
validation 

Optical 
mapping 

4 MCF7 doi: 10.1101/gr.1
13555.110  

Cross-
validation 

PCR 

5 SKBR3 doi:10.1101/gr.2311
00.117 

doi:10.1101/gr.2
31100.117 

Test data 1 PacBio long 
reads and 
PCR 

6 Primary breast 
tumor 

doi:10.1371/journal.p
cbi.1008397 

doi:10.1371/jour
nal.pcbi.1008397 

Test data 2 10X 
Genomic 
linked-reads 
sequencing 

7 Mz-GaBa-018 Sequenced with 
33.6X coverage, 
2X101 read length 

In-house Cross-
validation 

PCR 

8 4 ICGC 
primary breast 
tumor 
(PD4088, 
PD4116, 
PD4107, 
PD4103) 

https://doi.org/10.10
38/nature17676 

 EGAS00001000161 

https://doi.org/10
.1038/nature176
76 

Cross-
validation 

PCR 
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Supplementary table 3-2: Explanation of different features included in three set of features (basic, 
homology and cluster) for training the random forest classifiers. 

Basic features 

1. NumberTools/Concordance Number of tools predicting same SV (when 
breakpoints overlap within 500bp). 

2. Span_reads Number of spanning read pairs derived from 
requantification. 

3.  Junc_reads Number of junction reads derived from 
requantification. 

4. genea_reads Number of reads aligned to segment 1 of 
merged genomic template in requantification. 

5.  geneb_reads Number of reads aligned to segment 2 of 
merged genomic template in requantification. 

6. LocalCoverage_Pos1_Tumor Average coverage in 200bp window around the 
position 1. 

7. LocalCoverage_Pos2_Tumor Average coverage in 200bp window around the 
position 2. 

8. Pileup_Pos1_Tumor Number of reads at the position 1 of SV 
(calculated using samtools pileup). 

9. Pileup_Pos2_Tumor Number of reads at the position 1 of SV 
(calculated using samtools pileup). 

10. Size Size of SV 

11. ReadRatio_Tumor Average read coverage between breakpoints of 
SV in tumor sample: T_1/((N_1+N_2)/2) 

 

 

12. Overlap1 Percentage overlap of SV with copy number 
variant predicted by BIC-Seq2. 

13. Overlap2 Percentage overlap of copy number variant 
predicted by BIC-Seq2 with SV. 

14. SVType Type of SV (Dels, Dups, Invs, Trans) 

15. Mappability_Pos1 Unique or ambiguous mappability of position 1 
of SV 

16. Mappability_Pos2 Unique or ambiguous mappability of position 2 
of SV 

17. INDEL Presence of INDEL around the breakpoints. 

Homology features 
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1. BestBlastHomologyLength Maximum length of query sequence (left 
segment) that aligns with subject sequence 
(right segment) around the breakpoints of SV. 

2. BestBlastHomologyPercent Maximum percentage of query sequence (left 
segment) is identical to subject sequence (right 
segment) around the breakpoints of SV. 

3. BestBlastHomologyEvalue e-value reported by BLAST for query 
sequence’s similarity to subject sequence that is 
not by chance. 

4. BestBlastHomologyBitscore Maximum bit score reported by BLAST for all the 
possible alignments of query and subject 
sequence around the breakpoints. 

5. TotalHomologyReported Total number of possible alignments of query 
and subject sequences reported by BLAST. 

6. HomologyGreaterThan25bp Whether length of alignment between query and 
subject sequence is greater than 25bp (Yes or 
No). 

7. HomologyGreaterThan25bp_Length The length of alignment between query and 
subject sequence around the breakpoints, if 
length is greater than 25bp. 

8. HomologyGreaterThan25bp_Percent Maximum percentage of identity between query 
and subject sequence if length of similarity is 
greater than 25bp. 

9. HomologyGreaterThan25bp_Evalue Best evalue reported by BLAST between query 
and subject sequence at the breakpoints if 
length is greater than 25bp. 

10. HomologyGreaterThan25bp_Bitscore Best Bit score reported by BLAST between 
query and subject sequence at the breakpoints 
if length is greater than 25bp. 

11. Microhomology5_25bp_Counts Number of alignments reported by BLAST when 
length of identical sequence between query and 
subject sequence is between 5 to 25bp.  

12. Microhomology5_25bp_Length Maximum length of identical query and subject 
sequence that are identical, if the length is 
between 5-25bp. 

13. Microhomology5_25bp_Percent Maximum percentage of sequence identical 
between query and subject sequence, if the 
length of this sequence is between 5-25bp. 

14. Microhomology5_25bp_Evalue e-value of selected aligned query and subject 
sequence, if length is between 5-25bp 

15. Microhomology5_25bp_Bitscore Bitscore of selected aligned query and subject 
sequence, if length is between 5-25bp. 
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16. Microhomology2_4bp_Counts Number of identical sequence in query and 
subject sequence around the breakpoints that 
are 2 to 4 bp in length. 

17. Microhomology2_4bp_Length Maximum length of identical sequence in query 
and subject sequence around the breakpoints 
that are 2 to 4 bp in length.  

18. Microhomology2_4bp_Percent Maximum percentage of identical sequence in 
query and subject sequence around the 
breakpoints that are 2 to 4 bp in length. 

Cluster features 

1. Cluster_100bp Number of breakpoints clustered within 100bp of 
SV breakpoints. 

2. Cluster_1kb Number of breakpoints clustered within 1kb of 
SV breakpoints. 

3. Cluster_5kb Number of breakpoints clustered within 5kb of 
SV breakpoints. 

4. Cluster_10kb Number of breakpoints clustered within 10kb of 
SV breakpoints. 
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Supplementary table 3-3: Number of different type and size of SVs in liposarcoma samples. The table 
tabulates number of SV events of different types (DEL: deletion, DUP: duplication, INV: inversion, TRA: 
translocation, COMPLEX: Complex SVs events with more than 10 breakpoints clustered in 5kb window) 
and different sizes (Bin 1: Size<=1kb, Bin 2: 1kb<Size<=10kb, Bin 3: 10kb<Size<=100kb, Bin 4: 
Size>100kb). 

 

Sample 

DEL DUP INV 

TRA 
COMP
LEX Bin1 

Bin
2 

Bin
3 

Bin
4 

Bin
1 

Bin
2 

Bin
3 

Bin
4 

Bin
1 

Bin
2 

Bin
3 

Bin
4 

H021-
8GEBK9 1869 560 83 161 44 57 43 136 46 77 68 313 451 108 

H021-
99G9EH 1736 539 67 147 54 39 37 138 55 70 69 248 623 676 

H021-
QFC8A8 1728 509 68 134 51 48 50 142 50 59 57 263 472 245 

H028-
TT6Q 1588 479 71 98 50 47 44 110 39 54 46 225 516 175 

H028-
VEJN 1536 475 68 103 36 48 32 90 36 78 52 173 352 28 

H021-
Y799BH 1673 504 76 249 51 47 42 240 63 82 69 570 767 195 

H028-
19K68K 1432 457 58 205 37 31 39 183 47 63 46 429 417 126 

H028-
2V74XZ 1501 436 41 101 48 48 26 64 54 66 43 157 755 141 

H028-
31QYZW 1608 474 72 135 39 43 39 142 46 68 62 265 1022 224 

H028-
3SBYLY 1673 557 63 66 73 49 35 57 53 70 41 140 299 28 

H028-
5PCRRR 1837 552 78 151 42 69 46 144 56 70 68 327 552 161 

H028-
7XSCUY 1669 502 71 189 48 43 38 191 46 80 76 398 925 451 

H028-
AQ3S7Y 1551 459 56 64 44 47 33 57 46 51 52 153 363 51 

H028-
BYQXQ7 1639 476 75 187 46 48 47 180 55 72 64 364 410 185 

H028-
CS4S2W 1782 540 67 180 45 56 40 150 62 87 62 309 509 93 

H028-
F6GWVF 1858 560 74 185 56 48 34 156 61 59 73 394 470 181 

H028-
J9DKH8 1728 502 67 72 57 67 43 68 42 59 48 147 377 102 

H028-
NJVEPQ 1690 502 65 104 41 45 35 105 52 83 51 233 521 192 
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K02K-
6TSNNB 1741 585 83 174 44 55 41 178 71 69 68 336 2305 1055 

K02K-
S5HJ3F 1832 529 86 155 54 57 48 133 63 65 76 301 1007 804 

K02K-
T2J6LB 1684 529 73 76 58 45 39 77 56 63 60 143 405 79 

H021-
N5YRV7 1840 522 61 43 44 59 52 53 54 52 55 100 283 38 

H021-
VRTGDW 1834 531 70 55 57 50 50 45 68 71 59 123 366 38 

H021-
XPPAA6 1881 570 71 39 60 48 42 50 55 72 51 126 343 40 

H028-
S1JM 1706 532 58 37 46 48 37 43 35 63 54 90 202 32 

H021-
TCPMY4 2181 854 108 42 43 39 48 37 42 50 48 96 231 100 

H021-
YG488C 786 219 26 16 48 20 11 16 27 35 15 46 184 9 

H028-
FLB78G 1514 478 44 39 35 43 35 36 41 56 45 73 188 20 

K02K-
4WMX7Q 1740 506 69 74 57 57 45 68 51 55 63 143 482 63 

H021-
E26QTY 1812 571 77 127 59 57 39 96 61 73 66 211 445 104 

K02K-
TGE33D 1789 523 69 135 63 51 26 107 46 51 60 231 362 105 

 
Supplementary table 3-4: List of PCR validated data points used for training the random forest 
classifier. Available at gitlab: 

https://gitlab.rlp.net/tron/FuseSV/-/blob/master/Supplementary/SupplementaryTable4.xlsx  
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4 Direct prediction of neo-antigens from somatic SVs 
4.1 Introduction 
The structural variations (SVs) causing rearrangements of the genome alter the order of 
functional sequences (like regulatory regions containing promoter, enhancer etc.) as well as 
the transcript elements (like exons, introns, untranslated regions etc.). This rearrangement of 
elements can affect expression of genes via modification of regulatory regions, create altered 
mRNA transcripts (AMTs) via deletion of splice sites, and generate chimeric mRNA transcripts 
(CMTs) via fusion of open reading frames of two genes. The AMTs and CMTs derived from 
somatic SVs are a source of neoantigens that can activate the immune system against tumor 
cells in a cancer patient (47) and can be targeted in the personalized cancer treatments of that 
patient (48,93). Moreover, the recurrent CMTs from fusion genes in a sub-type of cancer might 
be ideal drug targets. One of the established ones is the BCR-ABL1 fusion transcript that is 
targeted with the kinase inhibitors- dasatinib, imatinib and ponatinib in chronic myeloid 
leukaemia patients (94).   
The integrated analysis of WGS and RNA sequencing (RNA-seq) in cancer cohorts have 
revealed a diverse landscape of the CMTs generated by various mechanisms from SV’s 
breakpoints both within the gene and intergenic region (95). After the genomic rearrangement, 
an additional layer of diversity in CMTs is contributed by the process of RNA splicing of intron 
in pre-mRNA that relies on functional splicing sites located in the intron. While detection of 
CMTs from RNA-seq data allows the direct identification of all forms of expressed transcripts, 
their detection from SVs in WGS data requires application of transcription and splicing rules to 
infer correct order of transcript elements. In this study, we focus on identification of three forms 
of CMTs i.e., direct fusion transcripts, intron-retained (IR) and intergenic region retained (INR) 
transcripts (Figure 4-1). A direct fusion transcript comprises of CMTs formed due to fusion of 
two annotated genes/genomic elements where the breakpoints of SV can be in intergenic 
and/or within gene. This also covers the CMTs formed as a part of classical fusion genes where 
the breakpoint of SVs within the intron of two different genes can combine functional splicing 
sites of the respective genes and cause fusion of their exon boundaries (as depicted in direct 
fusion transcripts in Figure 4-1). However, when one of the breakpoints is within an exon while 
other is in intron, the nearest functional splicing site in intron is unavailable. In such cases, the 
splicing machinery can either utilize the next proximal splicing sites leading to exon skipping 
or inefficient splicing leading to IR fusion transcripts (Figure 4-1). It is also possible for the 
splicing machinery to utilize an alternate splice site in the intron sequence. While these events 
can occur within a gene giving rise to an AMTs, this study explores the creation and expression 
of CMTs with fusion of two genomic elements. In addition to direct and IR fusion transcripts, 
we explore CMTs derived from SVs with one breakpoint within an intergenic region while 
second breakpoint is within annotated gene. Similar to the scenario of intron-retention, fusion 
of gene with an intergenic region might prevent proper splicing and lead to a shorter AMT or a 
transcript containing sequence of an intergenic region. Such cases lead to formation of the 
CMTs with intergenic region (INR). However, this scenario an intergenic region could by 
chance harbour an element that serves as an alternate splice site, but we do not consider such 
cases in this study.  
The bioinformatics tools identifying the classical fusion genes with WGS and RNA-seq achieve 
higher accuracy in comparison to the ones utilizing only RNA-seq data. Such tools integrate 
information from these two sequencing modalities in different settings. For example, 
INTEGRATE utilizes RNA-seq data for prediction of the fusion mRNA transcripts and 
subsequently find genomic breakpoints from paired WGS data to support that fusion (96). On 
the other hand, nFuse (97) identifies complex genomic rearrangements (CGR) from WGS and 
use RNA-seq data for support. These existing tools concentrate only on the classical fusion 
genes. 
In order to explore three categories of above-mentioned CMTs (direct/classical fusion gene, 
intron-retained and intergenic region retained fusion transcript), we propose a computational 
pipeline called FUdGE (FUsion of GEnomic segments). The novelty of our approach is 
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inference of the final transcript makeup with information from the detected SVs and annotated 
genomic elements. Subsequently, RNA-seq data is used to prove expression of predicted 
CMTs on mRNA level. Focusing on the somatic SVs predicted from WGS data, we apply our 
pipeline to a liposarcoma cohort containing dedifferentiated liposarcoma (DDLS), myxoid 
liposarcoma (MLS) and well-differentiated liposarcoma (WDLS) samples and explore the 
expression of CMTs with paired RNA-seq data. 
 

Figure 4-1: Explored categories of the chimeric mRNA transcripts (CMTs) due to an SV event in 
this study. The direct fusion transcript includes the CMTs generated by an SV (deletion with 
breakpoints X and Y) causing fusion of annotated exons of two different genes. An SV event can 
also generate intron-retained CMTs due to the loss of functional splicing site and expression of 
annotated intron of one gene fused with exon of a different gene (intron retained fusion 
transcripts). The intergenic region retained fusion transcripts involves expression of 
unannotated intergenic region with annotated exon of a gene caused due to an SV event.  
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4.2 Results 
4.2.1 FUdGE Scheme 

 

 
Figure 4-2: The scheme followed by FUdGE for the prediction of CMTs. First a list of SVs in a 
sample was collated with the paired-end WGS reads used in the FuseSV pipeline. This is the 
input to FUdGE where each breakpoint of SVs is labelled with ENSEMBL genome annotations 
along with exons of nearest annotated genomic sections. The mRNA structure of three different 
types of CMTs (direct, intron retained and intergenic retained) are predicted and a synthetic 
genomic template with the fused sequence around a window of ‘w’ bp in the CMTs is created. 
Next, the RNA-seq reads from same sample are aligned to this synthetic genomic template and 
supporting reads in terms of junction and spanning reads are calculated in the requantification 
step. The possible CMTs with supporting junction or spanning reads are returned as the 
expressed CMTs. 

FUdGE predicts different possible CMTs formed due to the structural rearrangement of the 
genome. As depicted in Figure 4-2, it requires a list of SVs with its genomic breakpoints, 
orientation and type (deletion, duplication, inversion and translocation). In this study, we 
utilized paired-end WGS reads from the respective sample in the FuseSV pipeline for 
prediction of the SVs (Chapter 3). The FUdGE annotates each breakpoint of SVs with genome 
annotations from ENSEMBL along with their nearest neighbouring genes and their closest 
exons. The genome annotations from ENSEMBL include protein-coding genes, pseudogenes 
and different known non-coding RNA like long non-coding RNA, miRNA etc. and unannotated 
intergenic regions. With the breakpoints of each SV, the mRNA sequence for three possible 
CMTs types are predicted. The first type includes direct fusion transcripts where the two 
nearest neighbouring exons around the annotated genomic section are fused due to an SV 
event (Supplementary figure 4-1). The other categories predicted by FUdGE includes intron 
and intergenic regions retained with the annotated exons. The basis for creation of such CMTs 
is the localization of one breakpoint of SV within an exon of an annotated genomic section and 
other breakpoint in an intron or unannotated intergenic region to produce intron-retained (IR) 
CMTs or intergenic region retained CMT (INR) respectively. We suspect higher chances of a 
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retained intron or intergenic sequence within a coding region in a mRNA transcript with such 
breakpoints. Subsequently, the matched RNA-seq reads are aligned to the predicted sequence 
for respective CMTs in the requantification pipeline. With this approach, we quantify number 
of reads specific for the predicted CMTs. Such reads mapping at the junction of fused sections 
are junction reads and the read-pairs spanning the fused sections are spanning reads (Figure 
4-2). 
There are multiple biological and technical reasons for FUdGE predicted CMTs to not be 
confirmed with RNA-seq data. The technical reason include false positive SV predicted by the 
SV prediction tool that leads to false positive CMTs predicted by FUdGE. Even though the 
predicted SVs are true, the FUdGE pipeline can also predict incorrect CMTs. From the 
biological point of view, there is a possibility of a correctly predicted CMT to not be expressed 
within the sample. Therefore, we cannot completely differentiate between non-expressed 
CMTs and false predicted CMTs. Nevertheless, CMTs that are formed due to an SV event and 
are also expressed can certainly give rise to altered proteins that can further be targeted by 
personalized immunotherapy related interventions. Henceforth, the term expressed or 
confirmed on RNA are used interchangeably.  

4.2.2 Confirmation of FUdGE predicted CMTs by RNA-seq in breast cancer cell 
line and primary breast tumor sample 

The SVs were predicted in the MCF7 breast cancer cell line and a primary breast tumor sample 
with the FuseSV pipeline (Chapter 3), and the FUdGE pipeline predicted three above-
mentioned categories of CMTs.  
Considering all the SV events from FuseSV, the FUdGE predicted 844469 direct, 770 IR and 
1001 INR fusion transcripts in the MCF7 (Figure 4-3). Amongst the predicted direct fusion 
transcripts in MCF7, 89.2% of SVs had both breakpoints within intergenic region, 9.3% of SVs 
had one breakpoint within gene and other in intergenic region, and only 1.5% of SVs had both 
the breakpoints within gene (Supplementary table 4-1). Moreover, amongst all types of CMTs 
predicted, only 0.1% direct, 1.9% IR and 2.3% INR fusion transcripts were confirmed to be 
expressed on RNA (with at least one junction or spanning reads). Comparatively, there was 
higher number of CMTs predicted in the primary breast tumor sample: 2190781 direct, 2267 
IR and 3666 INR fusion transcripts. Amongst the predicted direct fusion transcripts in the 
primary breast tumor, 85% of SVs had both breakpoints within intergenic region, 12.8% of SVs 
had one breakpoint within gene and other in intergenic region, and only 2.2% of SVs had both 
the breakpoints within gene (Supplementary table 4-1). Like the numbers expressed in MCF7, 
0.1% direct and 2.7% INR fusion transcripts were expressed in the primary breast tumor 
sample. However, the percentage of expressed IR fusion transcripts (7.7%) was much higher 
in the primary breast tumor sample than in MCF7.  
The distribution of genomic breakpoints of expressed direct fusion transcripts was investigated 
and is shown in Supplementary table 4-1. Most genomic breakpoints of underlying SVs leading 
to expressed direct fusion transcripts lie within gene (77.2% in MCF7 and 62.7% in the primary 
breast tumor sample), followed by cases with both the genomic breakpoints within intergenic 
regions (13.7% in MCF7 and 25.4% in the primary breast tumor sample) and least cases with 
one breakpoint within a gene and the other breakpoint in an intergenic region (9.12% in MCF7 
and 11.9% in the primary breast tumor sample). Thus, SV with breakpoints in intergenic region 
can also leading to direct fusion transcripts.  
Within different types of expressed CMTs, direct fusion transcripts had the highest confirmation 
rate by RNA (97% in MCF7 and 91.1% in the primary breast tumor sample). Relatively, a lower 
number of IR (1.2%) and INR transcripts (1.8%) were confirmed by MCF7 RNA-seq reads, 
while the primary breast tumor sample had a higher percentage of confirmed IR (5.6%) and 
INR (3.3%) fusion transcripts.  
Next, we explored the probability score of SV events reported by FuseSV that generated 
expressed CMTs. Most expressed CMTs classes (except IR transcripts in MCF7) had 
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significantly higher FuseSV score compared to the ones not expressed in MCF7 and the 
primary breast tumor sample (Figure 4-3).  
 

  
Figure 4-3: Distribution of possible and confirmed chimeric mRNA transcripts (CMTs) in MCF7 
and the primary breast tumor sample. The pie plots depict the number (N) and percentage of the 
CMTs (direct, intron retained and intergenic retained) with an underlying SV predicted by FUdGE 
and confirmed by RNA-seq reads in the respective samples. The violin plots below the respective 
pie chart compares the probability score of confirmed CMTs to the not confirmed CMTs. The 
significance of difference in the median FuseSV score (M) between confirmed CMTs and not 
confirmed CMTs was estimated with Wilcoxon rank sum test. The p-values for each comparison 
are marked in the respective violin plots. 
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This indicates that SVs leading to expressed CMTs are enriched for true positive SVs that 
received a higher FuseSV prediction score due to confirmation of relevant sequence for CMTs 
(Supplementary figure 4-2) and sequence for rearranged genomic breakpoints 
(Supplementary figure 4-3). This was especially true for the direct fusion transcripts where 
presence of junction reads mapping to the predicted sequence of CMTs indicated that FUdGE 
predicted precise breakpoints of the fusion. However, the IR and INR fusion transcripts lacked 
support from junction RNA-seq reads (Supplementary figure 4-2) that merged boundaries of 
intron with exon or intergenic region merged with exon respectively. These two classes of 
CMTs rely more closely on the genomic breakpoints that could merge. In case of direct fusion 
transcript predictions, CMT sequence rely on the boundaries of nearest exon merged. Thus, if 
a breakpoint of SV is not precise for IR and INR fusion transcript, then a sequence with some 
difference in the merged breakpoint would be created. And this would not have junction reads 
mapping to the predicted sequence of CMT. This explains the reason for absence of junction 
reads for IR and INR fusion transcripts. Such cases were nonetheless considered expressed 
when a supporting spanning RNA-seq reads was calculated. Interestingly, such transcripts had 
both junction and spanning reads from WGS data supporting the underlying genomic 
breakpoints of the SV event (Supplementary figure 4-3).       

4.2.3 Confirmation of FUdGE predicted CMTs by qRT-PCR in breast cancer cell 
line and primary breast tumor sample 

Apart from confirming FUdGE predictions with RNA-seq reads, we also checked its 
performance with a list of qRT-PCR validated classical fusion genes collated from (48). This 
list of direct fusion transcripts arising from the classical fusion genes were first gathered from 
various published research studies. Subsequently, they were validated in-house with qRT-
PCR/qPCR and published in (48).   

 
Figure 4-4: The performance of FUdGE on qPCR validated fusion transcripts from classical 
fusion genes. The plot represents the distribution of FuseSV score for underlying SV events of 
FUdGE predicted fusion transcripts (Predicted) amongst the ones tested by qPCR. Plot A and C 
represent the direct fusion transcripts tested in MCF7 and the primary breast tumor sample 
respectively. The pie charts represent number of qPCR positive fusion transcripts not predicted 
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with FUdGE. Plot B and D represent the possible reasons for the missing detection of direct 
fusion transcript by FUdGE in MCF7 and the primary breast tumor sample respectively.  
As seen in Figure 4-4, FUdGE predicted ~56% (38 out of 68) and ~43% (29 out of 68) of qPCR 
positive fusion transcripts in MCF7 and the primary breast tumor sample respectively. These 
predictions were also confirmed by RNA-seq reads with at least one junction or spanning 
reads. Moreover, the median FuseSV score of underlying SV events giving rise to confirmed 
direct fusion transcripts was very high with 0.933 in MCF7 and 0.906 in the primary breast 
tumor sample. On the other hand, some qPCR negative fusion transcripts were also predicted 
by FUdGE: ~21% (15 out of 71) in MCF7 and ~19% (4 out of 21) in the primary breast tumor 
sample. They were also confirmed by RNA-seq data with at least one junction or spanning 
reads. Moreover, they also had a high FuseSV score (0.932 in MCF7 and 0.952 in the primary 
breast tumor sample). As seen in Supplementary figure 4-4, no significant difference in junction 
and spanning RNA-seq reads amongst positive and negative qPCR fusion transcripts was 
established (except for junction reads in MCF7).  This indicates that these are most likely true 
candidates but were not confirmed by qPCR due to very low expression of transcripts 
(attributed by low CT value in qPCR). Since FUdGE predicts fusion transcripts directly with an 
underlying SV event, it is not dependant on expression levels. 
Furthermore, we investigated the reasons for qPCR positive fusion transcripts missed by 
FUdGE. As seen in Figure 4-4B and D, many missed fusion transcripts (40% in MCF7 and 
43.5% in the primary breast tumor sample) are fusions of the neighbouring genes. These can 
likely be attributed to read-through transcription of neighbouring genes that can occur without 
any underlying SVs. Such cases cannot be predicted by FUdGE due to absence of the 
genomic footprint. Since the read-through transcription events can also occur in the normal 
tissue, their exclusion by FUdGE which focus on somatic SV driven CMTs is seen as an 
advantage with our approach. Nevertheless, we cannot reject the possibility of an SV event 
missed in the input list of SVs from FuseSV. Nevertheless, the enrichment for neighbouring 
genes indicates a high rate of read-through transcripts among the missed qRT-PCR confirmed 
CMTs. 
Furthermore, 20% and 12.8% of qRT-PCR confirmed fusion transcripts missed by FUdGE in 
MCF7 and the primary breast tumor sample respectively, corresponded to a different exon 
boundary of FUdGE predicted fusion genes. This can be attributed to CMTs with exon skipping. 
In the future this limitation could be resolved by including additional CMTs with additional 
neighbouring exon boundaries.  The remaining missed qRT-PCR confirmed fusion transcripts 
included the ones generated from multiple SV events (~27% in MCF7 and 28.2% in the primary 
breast tumor sample) and difference in annotation of genome amongst various research 
studies from which the list of validated fusion transcripts was generated (~13% in MCF7 and 
15.4% in the primary breast tumor sample). On ignoring the missed cases that lacked genomic 
footprints (like read-through transcription, alternative splicing and exon skipping) or mis-
labelled annotations, FUdGE achieved a validation rate of 82.6% in MCF7 and 72.5% in the 
primary breast tumor sample.  

4.2.4 Analysis of somatic CMTs in liposarcoma cohort 
The FUdGE pipeline was applied to 26 liposarcoma samples (18 DDLS, 6 MLS and 2 WDLS) 
with both WGS and RNA-seq data available from a collaboration1. The predictions for somatic 
SVs were made with FuseSV with a probability score threshold of 0.7 or greater (a slightly 
stringent criteria). Next, different CMTs were predicted with FUdGE requiring at least 3 junction 
or spanning RNA-seq reads for confirmation by RNA-seq data.  
On an average FUdGE predicted 410, 176 and 279 confirmed direct fusion transcripts in DDLS, 
MLS and WDLS samples, respectively (Figure 4-5A). The number of confirmed direct fusion 
transcripts was significantly higher in DDLS than MLS. Moreover, as evident in Figure 4-5B, 
most genomic breakpoints of underlying SV events for such transcripts were within known 
genes (on an average 70.8% in DDLS, 74% in MLS and 64.5% in WDLS). Nevertheless, there 

 
1 Collaboration with Prof. Thomas Kindler at University Center for Tumor Diseases, Mainz, Germany 
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were confirmed direct fusion transcripts with SV breakpoints in intergenic regions (one 
breakpoint of SV in intergenic region: 17.9% in DDLS, 11.5% in MLS, 19.3% in WDLS; and 
both breakpoints of SV in intergenic regions: 11.2% in DDLS, 14.5% in MLS and 16.1% in 
WDLS).  

 
Figure 4-5: Landscape of direct fusion transcripts in the liposarcoma cohort. A) The bar plot 
depicts the number of expressed direct fusion transcripts within DDLS, MLS and WDLS samples. 
The median number (M) of expressed fusion transcripts within a sample type is shown.  B) The 
percentage of confirmed direct fusion transcripts with underlying SV breakpoints within a gene 
or intergenic region in DDLS, MLS and WDLS samples that have breakpoints within a gene or in 
an intergenic region. C) The fraction of expressed direct fusion transcripts with breakpoints on 
chromosome 12 is significantly higher in DDLS samples in comparison to MLS and WDLS 
samples. The median percentage (M) of expressed direct fusion transcripts is shown. The p-
values in all these plots are computed derived with the Wilcoxon rank sum test with following 
significance levels: ns-not significant, *-value <0.05, **-value <0.01, ***-value <0.001, ****-value 
<0.0001. 

Since it is established that chromosome 12q arms in DDLS samples are highly rearranged 
(64), we investigated the percentage of confirmed direct fusion transcripts originating from 
chromosome 12. As expected, a significantly higher number of such fusion transcripts from 
chromosome 12 was reported in DDLS (23%) than in MLS (6%) samples (Figure 4-5C). Within 
WDLS samples, a high percentage of 33% confirmed fusions from chromosome 12 was 
observed, but the significance was not established due to a lower number of WDLS samples 
analysed in this study.  

4.2.5 Limited expression of intron and intergenic-retained CMTs in liposarcoma 
Somatic intron-retained (IR) and intergenic-region retained (INR) fusion transcripts detected 
by FUdGE were investigated in the liposarcoma sample cohort (Figure 4-6). The samples 
classified as DDLS and WDLS had a median number of 13 and 10 confirmed IR transcripts, 
respectively. Comparatively, MLS samples had a higher median number (M=18) of confirmed 
IR transcript but a significant difference between different liposarcoma cohorts was not 
established (Figure 4-6A). The number of confirmed INR transcripts was much lower in 
comparison to other CMTs. As seen in Figure 4-6B, the median number of events in this 
category of transcripts was 5, 4 and 3 in DDLS, MLS and WDLS respectively. Moreover, a 
significant difference in confirmed INR transcripts was established between DDLS and MLS 
samples.  
The frequency of different CMTs confirmed by RNA-seq data in the sub-types of liposarcoma 
was investigated in Figure 4-6C. The majority of confirmed CMTs were direct fusion transcripts 
in all sub-types of liposarcoma (95.8% in DDLS, 88.8% in MLS and 95.5% in WDLS). 
Comparatively, a small percentage of IR transcripts were confirmed in DDLS (3%) and WDLS 
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(3.4%) samples. However, 9% of IR transcripts were confirmed within MLS samples. Amongst 
all categories of CMTs, INR fusion transcripts had the lowest confirmation rate by RNA-seq 
data (1% in DDLS, 2% in MLS and 1% in WDLS samples). 

 
Figure 4-6: Landscape of somatic intron-retained and intergenic-retained fusion transcripts in 
the liposarcoma cohort. Plot A depicts the distribution of intron-retained fusion transcripts that 
were confirmed with RNA-seq data in different liposarcoma samples. Plot B depicts the 
distribution of intergenic-retained fusion transcripts confirmed with RNA-seq data in different 
liposarcoma samples. For each distribution in plot A and B, median number (M) of confirmed 
chimeric transcripts is shown and p-values are computed with the Wilcoxon rank sum test with 
following significance levels: ns-not significant, *-value <0.05, **-value <0.01, ***-value <0.001, 
****-value <0.0001. Plot C depicts the percentage of median CMTs that were confirmed with RNA-
seq data in different liposarcoma sub-types. 
 

4.2.6 Recurrent CMTs in liposarcoma 
Next, the recurrently occurring CMTs was investigated amongst the samples in the DDLS, 
MLS and WDLS sub-types of liposarcoma. As seen in Supplementary figure 4-5 and 
Supplementary table 4-2, there were very few recurrent classical fusion genes within the sub-
types. Nevertheless, 88.3% of MLS (5 out of 6 samples) were characterized by the fusion gene 
transcript with FUS fused with DDIT3. This follows the published studies that report more than 
90% of MLS samples with this fusion gene (98,99). The FUS gene encodes for multifunctional 
protein involved in various regulatory pathways like DNA repair, splicing and transcriptional 
regulation (100). On the other hand, DDIT3 (also known as CHOP: C/EBP homologous 
protein) is a transcription factor with cellular function as stress sensor that is highly expressed 
under stress conditions like nutrient deprivation, DNA damage, growth stress etc. (101). The 
fusion of FUS and DDIT3 produces an oncogenic protein that drives MLS. 
Moreover, 61.1% DDLS samples and 100% WDLS samples contained a CTSC-RAB38 fusion 
gene. CTSC is the Cathepsin C gene that encodes for lysosomal proteinase involved in 
activation of serine proteinases in the immune cells and RAB38 is a member of RAS family of 
oncogenes. The CTSC-RAB38 fusion gene is also characterised in the renal cell carcinoma 
(102) and brain arteriovenous malformations (103). However, these two genes are the 
neighbouring genes and other studies characterize it as read-through fusion gene. Here 
CTSC-RAB38 was predicted by FUdGE due to a ~320bp deletion in the intergenic region 
between these two genes.  The small somatic deletion event might increase the frequency of 
read-through transcription between these two gene in WDLS and DDLS samples leading to 
high recurrence. Nonetheless, we cannot exclude the possibility of the same event occurring 
in unmutated wild-type cells. Apart from this fusion gene, FUdGE also predicted fusion of 
paralogous genes like ADGRE2-ADGRE5, ZNF and the HLA related family of genes. This 
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might be an artefact reported by FUdGE considering high sequence similarity (causing 
alignment artefacts) of the paralogous genes. 
Apart from the classical fusion genes that involve fusion between protein-coding genes, we 
also explored recurrent direct fusion transcripts with annotated genomic sequences apart from 
protein-coding genes. ~88.9% (16 out of 18) DDLS samples were characterized with a RP4-
592A1.2-AK2 direct fusion gene. The protein-coding gene AK2 encodes for an adenylate 
kinase involved in adenine composition while RP4-592A1.2 is a processed pseudogene whose 
function is unknown. High expression of the AK2 gene is implicated in lung cancer (104), 
potentially suggesting a functional role of this fusion transcript. The fusion between these two 
genomic segments was also present in 66.6% of MLS samples.  
The recurrent IR and INR fusion transcripts are shown in Supplementary figure 4-6 and 
Supplementary figure 4-7.  The IR transcripts with ADGRE2 and ADGRE5 fusions were 
present in 66.67%, 33.3% and 50% of DDLS, MLS and WDLS samples, respectively. Fusions 
between these two paralogous genes might be artificial and require experimental validation. In 
case of INR transcripts, a fusion of the AK2 gene with an unannotated intergenic region was 
found in 83.3%, 66.6% and 50% of DDLS, MLS and WDLS samples, respectively. 
Overall, the liposarcoma samples explored in this study had higher number of direct fusion 
transcripts than IR and INR fusion transcripts. Apart from FUS-DDIT3 in MLS samples and 
CTSC-RAB38 in DDLS and WDLS samples, there were very few fusion transcripts recurrently 
present in the sub-types or all the samples.  

4.3 Discussion 
Here, a novel computation pipeline as FUdGE was presented for prediction of somatic CMTs 
with an underlying chromosomal rearrangement event. It covers CMTs produced due to fusion 
of annotated segments of genome along with less studied intron-retained and intergenic-region 
retained mRNA transcripts. The pipeline used a top-down approach to first detect somatic SVs 
from WGS data with the FuseSV pipeline, predict different mRNA structures of chimeric 
transcripts and then check the expression with paired RNA-seq data. This approach 
demonstrates several advantages. First, the tumor specificity of somatic genomic 
rearrangements and the generated CMTs. Second, predictions from both WGS and RNA-seq 
data is more specific in comparison to predictions coming only from RNA-seq data that is 
confounded with coverage of the cancer transcriptome according to the expression levels.  
Moreover, this approach cannot account for CMTs generated at RNA level via trans-splicing, 
cis-splicing (read-throughs, alternative splicing, loss of splice site, exon-skipping etc.) that are 
not driven by genomic mutation are not necessarily tumor-specific (105). However, one of the 
disadvantages of this approach is that WGS of tumor and normal tissue with paired RNA-seq 
is required and analysis of the data is exhaustive in terms of computational resources. Even 
though FUdGE was successful in predicting the classical fusion genes, following 
enhancements would be required in future: a) Prediction of somatic CMTs generated due to 
multiple SV events because of a CGR. Currently FUdGE does not predict CMTs from such 
cases as the resolution and detection of SVs in CGR require special algorithms and filtering 
strategy, b) Reduction of false positive CMTs that are predicted due to high sequence similarity 
of the genomic regions involved in the fusion transcript. Nevertheless, this approach can be a 
boon for researchers targeting only tumor-specific fusion transcripts.  
We also explored the landscape of liposarcoma cohort with above-mentioned classes of 
CMTs. In terms of distribution of expressed or CMTs confirmed with RNA-seq data in the 
liposarcoma samples, the highest percentage was represented by direct fusion transcripts 
(~88-95%) while IR and INR transcripts contributed ~3-9% and ~1-2% respectively. This is in 
concordance with a recent study that reported highest expression of chimeric transcripts from 
protein-coding genes in nuclear fraction of HeLa cells (106). Nevertheless, we suspect lower 
number of IR and INR fusion transcripts reported by FUdGE as the focus in this study was only 
on somatic SVs derived fusion transcripts while other studies looked at single nucleotide 
variants (SNVs) derived CMTs. Additionally, it is well known that the IR transcripts are known 
to be generated by alternative splicing, a factor predominant at RNA level in both tumor and 
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wild-type cells. Thus, a lower number of tumor-specific IR transcripts was confirmed in our 
study against a published study that considered all IR transcripts predicted in tumor cells that 
is not necessarily tumor-specific (41). In spite of higher expression of direct fusion transcripts, 
only MLS samples had a recurrent classical fusion gene between FUS and DDIT3. Although 
WDLS and DDLS samples had a classical fusion gene (CTSC-RAB38), but we suspect it was 
formed due to the read-through transcription and might not be tumor specific. Overall, the 
DDLS samples had higher number of expressed direct fusion transcripts in comparison to the 
MLS and WDLS samples.  Considering neoantigens derived from fusion genes have higher 
immunogenicity in comparison to SNVs or small insertion deletion derived neoantigens (107), 
the DDLS sub-type of liposarcoma might benefit from immune checkpoint blockade-based 
immunotherapy. Henceforth, the application of FUdGE for tumor specific CMTs in low SNVs 
mutation burden cancer sub-types can be particularly attractive. The prediction of CMTs in 
cancer transcriptome and associated neo-antigens can open immunotherapy related treatment 
opportunities for cancer patients. 
Both IR and INR fusion transcript in cancer transcriptome is an actively evolving field. Previous 
studies have reported widespread expression of IR transcripts in cancer (41) and a source of 
neoantigens (108). The higher neoantigen load from IR fusion transcripts are also associated 
with poor survival in the multiple myeloma patients (109). Such studies signifies that the current 
repertoire of neoantigens can further be expanded with neoantigens derived from all possible 
tumor-specific mutations. However, the tumor-specific detection of CMTs from RNA-seq data 
remain a concern in the research community (110). The FUdGE pipeline can offer an 
advantage in such scenario. Moreover, the continuously evolving intergenic genomic space 
and the functional consequence of CMTs with transcribed long non-coding RNAs (111), 
pseudogenes (112) and upstream and downstream region of annotated genes (106) can 
provide key insights in transcriptional regulation of the genes in cancer cell. In order to treat 
cancer patients with classical immunotherapy or emerging immunotherapy approaches, 
FUdGE can further expand the repertoire of neoantigens that will entail higher and more 
specific immune response in the patients.  

4.4 Methods 
4.4.1 Chimeric fusion transcripts (CMT) predictions from SVs in FUdGE 
Figure 4-2 describes the schematic pipeline of FUdGE for prediction of several chimeric mRNA 
fusion transcripts (CMTs). A list of SV events with the genomic coordinates, type and 
orientation of SV is given as input. An SV can be a deletion, duplication, inversion and 
translocation with 3to5, 5to3, 3to3 and 5to5 orientation as explained in (Chapter 3). Each SV’s 
genomic coordinate is annotated using ENSEMBL 86 genome annotation file (.gtf) for GRCh38 
genome. Each genomic breakpoint is annotated with two upstream and downstream exons of 
neighbouring genes on both the strands.  Based on the location of breakpoints, type and 
orientation of SVs, the possible mRNA structure of CMTs is predicted as shown in Figure 4-1. 
Three possible categories of CMTs include direct, intron-retained (IR) and intergenic-retained 
(INR) fusion transcripts. The concept behind direct fusion transcripts involves merging of 
neighbouring exons of annotated genomic segment upstream and downstream with different 
possible combinations as outlined in Supplementary figure 4-1. For the case when the genomic 
coordinate of underlying SV is located within exon of two different annotated sections, the 
exact coordinate in exons is merged in the direct fusion transcript. Next, the plausible IR fusion 
transcripts are generated when at least one breakpoint is within intron of one annotated section 
and other is in exon of a different annotated section. Similarly, INR fusion transcripts cases are 
predicted when one breakpoint is within an unannotated intergenic region while other is within 
an exon of annotated section.  
Each of the possible call is enlisted with the breakpoints or coordinates that would merge in 
the CMTs. Next, the sequence of 200bp around those merged breakpoints is retrieved from 
the GRCh38 reference genome and a synthetic genomic template is created. In the 
requantification step, the RNA-seq reads of respective tumor samples are aligned to this 
template using STAR (v2.6.1) (113). The supporting reads in terms of junction reads (reads 
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mapping at the breakpoints with at least 10bp around the merged segments) and spanning 
reads (paired-end read pair with one read mapping to first segment and second read mapping 
to another merged segment) are calculated. The CMTs are considered expressed or confirmed 
when at least some number of junction or spanning reads support it.  

4.4.2 Application of FUdGE to MCF7 and primary breast tumor sample 
The Illumina paired-end WGS reads for MCF7 and primary breast tumor were obtained from 
(72). A list of SVs was obtained with FuseSV pipeline (Chapter 3) and the probability score 
from FuseSV was used to benchmark performance of FUdGE with the qPCR validated direct 
fusion transcripts. The CMTs were confirmed by RNA-seq data with at least 1 junction or 
spanning reads in the requantification step.  

4.4.3 Application of FUdGE to liposarcoma samples 
26 liposarcoma samples with paired tumor-normal Illumina WGS and RNA-seq of tumor 
sample was obtained from collaboration with Prof. Thomas Kindler at University Center of 
Tumor Diseases, Mainz. The WGS data of the liposarcoma samples was analysed as reported 
in Chapter 3. The paired RNA-seq data of the liposarcoma samples was analysed as described 
in the requantification step of FUdGE pipeline. 
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4.5 Supplementary figures 
 

 
Supplementary figure 4-1: The schema for prediction of direct fusion transcripts by FUdGE. The 
scheme followed for prediction of different direct fusion transcripts with location of SV’s breakpoints 
within an intergenic region or within a gene (in intron or exon) is shown. 
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Supplementary figure 4-2: Various FUdGE predicted CMTs (direct, intron-retention, intergenic-
retention) have support from RNA-seq data in MCF7 and the primary breast tumor sample. The plot 
depicts number of junction and spanning reads from the requantification of CMTs in RNA-seq data. The 
number of expressed direct fusion transcripts were 1238 and 2822 in MCF7 and the primary breast 
tumor sample respectively.  The number of expressed intron-retained fusion transcripts were 15 and 
175 in MCF7 and the primary breast tumor sample respectively. The number of expressed intergenic 
region retained fusion transcripts were 24 and 101 in MCF7 and the primary breast tumor sample 
respectively. 
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Supplementary figure 4-3: The underlying SVs for FUdGE predicted CMTs (direct, intron-retention, 
intergenic-retention) have support from WGS data in MCF7 and the primary breast tumor sample. The 
plot depicts number of junction and spanning reads from the requantification of SVs with WGS reads 
that generated CMTs that were expressed or confirmed with RNA-seq data. The number of expressed 
direct fusion transcripts were 1238 and 2822 in MCF7 and the primary breast tumor sample respectively. 
The number of expressed intron-retained fusion transcripts were 15 and 175 in MCF7 and the primary 
breast tumor sample respectively. The number of expressed intergenic region retained fusion transcripts 
were 24 and 101 in MCF7 and the primary breast tumor sample respectively. 
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Supplementary figure 4-4: The junction and spanning reads support FUdGE predicted direct fusion 
transcripts that were validated by qRT-PCR/qPCR. The figure plots junction and spanning RNA-seq 
reads for the direct fusion transcripts that were positive or negative by qPCR validation. Figure A and B 
represents data from MCF7 and the primary breast tumor sample respectively. 
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Supplementary figure 4-5: Most of the MLS samples in liposarcoma cohort are characterized with 
FUS-DDIT3 fusion gene. The plots depict percentage of different direct fusion transcripts in three sub-
types of liposarcoma i.e., DDLS, MLS and WDLS. The figure plots frequency of direct fusion transcripts 
that were confirmed with RNA-seq data with at least 3 junction or spanning reads within DDLS, MLS 
and WDLS samples. 
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Supplementary figure 4-6: The distribution of intron-retained transcripts expressed in the liposarcoma 
samples was confounded with fusions between paralogous genes. The plots depict percentage of 
different annotated sections of intron-retained CMTs in three sub-types of liposarcoma i.e., DDLS, MLS 
and WDLS. The figure plots frequency of intron-retained fusion transcripts that were confirmed with 
RNA-seq data with at least 3 junction or spanning reads within DDLS, MLS and WDLS samples. 
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Supplementary figure 4-7: The distribution of intergenic-retained fusion transcripts expressed in the 
liposarcoma samples was characterized with fusion of an intergenic region with the AK2 gene. The plots 
depict percentage of different annotated sections of intergenic-retained CMTs in three sub-types of 
liposarcoma i.e., DDLS, MLS and WDLS. The figure plots frequency of intergenic-retained fusion 
transcripts that were confirmed with RNA-seq data with at least 3 junction or spanning reads within 
DDLS, MLS and WDLS samples. 
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4.6 Supplementary tables 
Supplementary table 4-1: Distribution of the CMTs in MCF7 and the primary breast tumor sample that 
were confirmed with RNA-seq data. The table mentions number of various types of CMTs that were 
predicted by FUdGE and confirmed with RNA-seq data along with the location of the breakpoints of the 
underlying SVs in intergenic regions or within a gene. 

Sample 

  Direct Fusion Transcripts Intron-
retention 
Fusion 
Transcripts 

Intergenic-
retention 
Fusion 
Transcripts   Gene-Gene Gene-Intergenic Intergenic-Intergenic 

MCF7 

Confirme
d  845 (77.2%) 169(9.12%) 224 (13.7%) 15 24 

Possible 
CMTs 7680 (1.5%) 41470 (9.3%) 364384 (89.2%) 770 1001 

% 
confirmed 
CMTs 

97% (N=1238) 1.2% (N=15) 1.8% (N=24) 

Primary breast 
tumor 

Confirme
d  1363 (62.7%) 456 (11.9%) 1003 (25.4%) 175 101 

Possible 
CMTs 18145 (2.2%) 104450 (12.8%) 698140 (85%) 2267 3666 

% 
confirmed  

CMTs  
91.1% (N = 2822) 5.6% (N=175) 3.3% (N=101) 
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Supplementary table 4-2: The distribution of recurrent direct fusion transcripts in DDLS, MLS and 
WDLS type of liposarcoma samples. The table represents different fusion partners of direct fusion 
transcripts in sub-types of liposarcoma (DDLS: N=18; MLS: N=6; WDLS: N=6) that were recurrently 
detected in respective sub-types.  

Fusion partner 1 
(FP1) 

FP1-annotation Fusion partner 
2 (FP2) 

FP2-annotation Frequency Comment Type 

RP4-592A1.2 Pseudogene AK2 protein-coding 
gene 

88.89% Pseudogene-
gene 

DDLS 

ADGRE5 protein-coding 
gene 

ADGRE2 protein-coding 
gene 

77.78% Paralog-Paralog DDLS 

PYHIN5P Pseudogene PYHIN1 protein-coding 
gene 

72.20% Pseudogene-
tumor 
suppressor gene 

DDLS 

TDG protein-coding 
gene 

TDGP1 Pseudogene 72.20% gene-
Pseudogene 

DDLS 

ABCA9 protein-coding 
gene 

ABCA8 protein-coding 
gene 

66.67% Paralog-Paralog DDLS 

PTPN14 protein-coding 
gene 

AP3S1 Pseudogene 66.67% Tumor 
suppressor 
gene-
Pseudogene 

DDLS 

RP11-365D23.4 Pseudogene AP3S1 Pseudogene 66.67% Pseudogene-
Pseudogene 

DDLS 

ADGRE2 protein-coding 
gene 

ADGRE5 protein-coding 
gene 

61.11% Paralog-Paralog DDLS 

CTSC protein-coding 
gene 

RAB38 protein-coding 
gene 

61.11% gene-oncogene DDLS 

HLA-C protein-coding 
gene 

HLA-B protein-coding 
gene 

61.11% Paralog-Paralog DDLS 

ZNF100 protein-coding 
gene 

RP11-
420K14.1 

Pseudogene 61.11% gene-
Pseudogene 

DDLS 

CTC-513N18.7 protein-coding 
gene 

ZNF66 protein-coding 
gene 

55.55% Paralog-Paralog DDLS 

LINC00969 Long non-
coding RNA 

SDHAP1 Pseudogene 55.55% Long non-coding 
RNA-
Pseudogene 

DDLS 

PARP4P2 Pseudogene PARP4 protein-coding 
gene 

55.55% Pseudogene-
gene 

DDLS 

RP11-776A13.4 Pseudogene TMC1 protein-coding 
gene 

55.55% Pseudogene-
gene 

DDLS 

LILRB2 protein-coding 
gene 

LILRB1 protein-coding 
gene 

50% Paralog-Paralog DDLS 

RNF216 protein-coding 
gene 

RNF216P1 Pseudogene 50% gene-
Pseudogene 

DDLS 

FUS protein-coding 
gene 

DDIT3 protein-coding 
gene 

83.33% gene-gene MLS 

CTC-513N18.7 protein-coding 
gene (ZNF626) 

ZNF66 protein-coding 
gene 

66.66% Paralog-Paralog MLS 
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FAM53A protein-coding 
gene 

RP11-
1398P2.1 

Long non-coding 
RNA 

66.66% gene-Long non-
coding RNA 

MLS 

PARP4P2 Pseudogene PARP4 protein-coding 
gene 

66.66% Pseudogene-
gene 

MLS 

PYHIN5P Pseudogene PYHIN1 protein-coding 
gene 

66.66% Pseudogene- 
tumor 
suppressor gene 

MLS 

RP4-592A1.2 Pseudogene AK2 protein-coding 
gene 

66.66% Pseudogene-
gene 

MLS 

ZNF813 protein-coding 
gene 

ZNF765 protein-coding 
gene 

66.66% Paralog-Paralog MLS 

BPTF protein-coding 
gene 

AMZ2 protein-coding 
gene 

50.00% gene-gene MLS 

CES1 protein-coding 
gene 

CES1P1 Pseudogene 50.00% gene-
Pseudogene 

MLS 

FAM127B protein-coding 
gene 

FAM127C protein-coding 
gene 

50.00% Paralog-Paralog MLS 

HLA-C protein-coding 
gene 

HLA-B protein-coding 
gene 

50.00% Paralog-Paralog MLS 

LILRA2 protein-coding 
gene 

AC010518.2 Pseudogene 50.00% gene-
Pseudogene 

MLS 

LINC00969 Long non-
coding RNA 

SDHAP1 Pseudogene 50.00% Long non-coding 
RNA-
Pseudogene 

MLS 

PTPN14 protein-coding 
gene 

AP3S1 Pseudogene 50.00% Tumor 
suppressor 
gene-
Pseudogene 

MLS 

RP11-365D23.4 Pseudogene AP3S1 Pseudogene 50.00% Pseudogene-
Pseudogene 

MLS 

SVILP1 Pseudogene SVIL protein-coding 
gene 

50.00% Pseudogene-
gene 

MLS 

TDG protein-coding 
gene 

TDGP1 Pseudogene 50.00% gene-
Pseudogene 

MLS 

ZNF100 protein-coding 
gene 

RP11-
420K14.1 

Pseudogene 50.00% gene-
Pseudogene 

MLS 

ZNF702P Pseudogene ZNF83 protein-coding 
gene 

50.00% Pseudogene-
gene 

MLS 

ABCA9 protein-coding 
gene 

ABCA8 protein-coding 
gene 

100.00% Paralog-Paralog WDLS 

ARHGAP11B protein-coding 
gene 

ARHGAP11A protein-coding 
gene 

100.00% Paralog-Paralog WDLS 

CES1 protein-coding 
gene 

CES1P1 Pseudogene 100.00% gene-
Pseudogene 

WDLS 

CTC-513N18.7 protein-coding 
gene (ZNF626) 

ZNF66 protein-coding 
gene 

100.00% Paralog-Paralog WDLS 
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CTSC protein-coding 
gene 

RAB38 protein-coding 
gene 

100.00% gene-oncogene WDLS 

HLA-DQA1 protein-coding 
gene 

HLA-DQA2 protein-coding 
gene 

100.00% Paralog-Paralog WDLS 

PARP4P2 Pseudogene PARP4 protein-coding 
gene 

100.00% Pseudogene-
gene 

WDLS 

PRKRIP1 protein-coding 
gene 

PMS2P4 Pseudogene 100.00% gene-
Pseudogene 

WDLS 

PTPN14 protein-coding 
gene 

AP3S1 Pseudogene 100.00% Tumor 
suppressor 
gene-
Pseudogene 

WDLS 

PYHIN5P Pseudogene PYHIN1 protein-coding 
gene 

100.00% Pseudogene- 
tumor 
suppressor gene 

WDLS 

RP11-365D23.4 Pseudogene AP3S1 Pseudogene 100.00% Pseudogene-
Pseudogene 

WDLS 

TDG protein-coding 
gene 

TDGP1 Pseudogene 100.00% gene-
Pseudogene 

WDLS 

TMEM218 protein-coding 
gene 

ROBO4 protein-coding 
gene 

100.00% gene-gene WDLS 

ZNF100 protein-coding 
gene 

RP11-
420K14.1 

Pseudogene 100.00% gene-
Pseudogene 

WDLS 

 
  



 

 84 

5 Future outlook 
The technologies used for the identification of SVs have evolved over time. With the latest 
technologies it is now possible to define types of SVs with nucleotide base resolution of 
breakpoints. The most popular amongst them has been Illumina’s short-read sequencing 
technology. However, this technology suffers from a high false discovery rate which can be 
mitigated with the long read sequencing technology by PacBio and Oxford Nanopore. It 
enables discovery of novel mutations especially in the high complexity regions of the human 
genome that are difficult to resolve by short-reads. Nevertheless, the long read technology 
offers both advantages and disadvantages in detection of SVs. Its lower accuracy rate and 
high cost are some disadvantages. Consequently, this technology is primarily used for 
research or validation of mutations, while short-read sequencing has been used in several 
large consortiums/studies like 1000 Genomes and PCAWG. However, due to the longer read 
length it does offer an advantage in resolving SVs, especially the ones originating from high 
complexity regions of the genome and novel type of SVs like insertions. It is undeniable that 
the usage of the long read sequencing technology expands the detectable mutational 
landscape of a genome. As a future outlook for the detection of SVs, the combination of 
methods like short-reads paired with low coverage long read sequencing would in my opinion 
allow the best utilisation of both technologies with lower cost in comparison to high coverage 
sequencing of a genome from individual technologies.  
In complex diseases like cancer, SVs are often complicated in nature with back-to-back 
variations and highly rearranged genomes. The short-read sequencing technology and related 
SVs tools often struggle to resolve such variations that stitch several pieces of information 
together for interpretation. Some recent specialised algorithmic studies attempted to resolve 
them using short-reads, but long read sequencing technology has proven to be more efficient 
in resolving such SVs. Nevertheless, the interpretation of such complex SVs remains 
challenging. For example, interspersed duplication events can be interpreted as deletion and 
duplication or deletion and inversion (if the segments are located on the same chromosome) 
or deletion and translocation (if the segment is deleted and inserted on another chromosome). 
These types of interspersed duplications will have different read mapping signals that are 
difficult to resolve irrespective of the sequencing technology they are derived from. Advanced 
machine learning algorithms like deep learning might be able to offer some rebate in this 
aspect. However, the biggest hurdle in using deep learning algorithms is the lack of sufficient 
number of experimentally validated complex SVs. It would be possible to use deep learning 
algorithms with input mappings of short-reads/long-reads sequencing for resolution of complex 
SVs in the future.  
It is crucial to understand the impact of genomic mutations on the transcriptome or proteome 
in the context of a disease. One of the functional consequences of SVs is the formation of 
chimeric transcripts. In this case the presented software tool, FUdGE, can be beneficial to 
scientists studying the impact of somatic SVs in terms of novel chimeric transcripts created 
and dominant in a subtype of disease. The types of disease dominated by a characteristic SV 
or a chimeric transcript can benefit from non-targetable therapies like immunotherapy. In the 
past, immunotherapy drugs have proven to be effective for treatment of cancer patients with 
high mutational burden in terms of SNVs (like melanoma). Thus, it is plausible that diseases 
dominated by SVs or chimeric transcripts would be curable with an immunotherapy drug 
targeting it. However, the disease cases with lower mutational burden like sarcoma and rare 
diseases can also benefit from novel targeted therapies for somatic SVs/chimeric transcripts. 
One such approach would include studying the translation of somatic chimeric transcripts into 
neo-antigens and their presentation to immune cells in the body. Currently, such personalised 
treatments include only the neo-antigens derived from SNVs. I believe that the drastic 
rearrangement of the genome with SVs and chimeric transcripts derived from them, could lead 
to neo-antigens with much stronger immune response in comparison to SNVs derived neo-
antigens. There are limited studies displaying strong immune responses to fusion gene derived 
neo-antigens and henceforth, research in this direction can lead to better therapies for all the 
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patients. A logical step forward would be to study the impact of SVs derived chimeric transcripts 
in cancer patients in terms of immune response. 
Overall, the prediction of drug targets for many genetic diseases is multi-facet task that also 
requires scientists to gather the complete mutational profile of the genome and study its impact. 
In the past, the mutational landscape arising from SNVs was studied widely. The addition of 
SVs to this mutational landscape and its impact would allow novel targets for treatment of 
cancer. Apart from the generation of chimeric transcripts, SVs can also affect the 3D structure 
of the genome that can further impact DNA-DNA interactions and the expression of genes. 
This aspect can further widen our knowledge in understanding the effect of SVs in the genome. 
The more we discover and understand the impact of different mutations in a disease genome, 
the closer we would get to finding right targets for curing those diseases. 

  



 

 86 

6 References 
1.  Pott P. The Chirurgical Works. Vol. 1. T. Lowndes, J. Johnson, G. Robinson, T. Cadell, T. 

Evans, W. Fox, J. Bew and …; 1779.  
2.  Bignold LP. Variation,“evolution”, immortality and genetic instabilities in tumour cells. Cancer 

Lett. 2007;253(2):155–69.  
3.  Sudmant PH, Rausch T, Gardner EJ, Handsaker RE, Abyzov A, Huddleston J, et al. An 

integrated map of structural variation in 2,504 human genomes. Nature. 2015;526(7571):75–
81.  

4.  Yi K, Ju YS. Patterns and mechanisms of structural variations in human cancer. Exp Mol Med. 
2018;50(8):1–11.  

5.  Pan-cancer analysis of whole genomes. Nature. 2020;578(7793):82–93.  
6.  Stephens PJ, Greenman CD, Fu B, Yang F, Bignell GR, Mudie LJ, et al. Massive genomic 

rearrangement acquired in a single catastrophic event during cancer development. cell. 
2011;144(1):27–40.  

7.  Baca SC, Prandi D, Lawrence MS, Mosquera JM, Romanel A, Drier Y, et al. Punctuated 
evolution of prostate cancer genomes. Cell. 2013;153(3):666–77.  

8.  Zakov S, Kinsella M, Bafna V. An algorithmic approach for breakage-fusion-bridge detection 
in tumor genomes. Proceedings of the National Academy of Sciences. 2013;110(14):5546–
51.  

9.  Hadi K, Yao X, Behr JM, Deshpande A, Xanthopoulakis C, Tian H, et al. Distinct Classes of 
Complex Structural Variation Uncovered across Thousands of Cancer Genome Graphs. Cell. 
2020;183(1):197-210.e32.  

10.  Nowell PC. A minute chromosome in human chronic granulogytic leukemia. Science. 
1960;132:1497.  

11.  Langer-Safer PR, Levine M, Ward DC. Immunological method for mapping genes on 
Drosophila polytene chromosomes. Proceedings of the National Academy of Sciences. 
1982;79(14):4381–5.  

12.  Gisselsson D, Pettersson L, Höglund M, Heidenblad M, Gorunova L, Wiegant J, et al. 
Chromosomal breakage-fusion-bridge events cause genetic intratumor heterogeneity. 
Proceedings of the National Academy of Sciences. 2000;97(10):5357–62.  

13.  Kallioniemi A, Kallioniemi OP, Sudar D, Rutovitz D, Gray JW, Waldman F, et al. Comparative 
genomic hybridization for molecular cytogenetic analysis of solid tumors. Science (1979). 
1992;258(5083):818–21.  

14.  Bignell GR, Huang J, Greshock J, Watt S, Butler A, West S, et al. High-resolution analysis of 
DNA copy number using oligonucleotide microarrays. Genome Res. 2004;14(2):287–95.  

15.  Treangen TJ, Salzberg SL. Repetitive DNA and next-generation sequencing: computational 
challenges and solutions. Nature Reviews Genetics. 2012;13(1):36–46.  

16.  Zheng GXY, Lau BT, Schnall-Levin M, Jarosz M, Bell JM, Hindson CM, et al. Haplotyping 
germline and cancer genomes with high-throughput linked-read sequencing. Nat Biotechnol. 
2016;34(3):303–11.  

17.  Ottaviani D, LeCain M, Sheer D. The role of microhomology in genomic structural variation. 
Trends Genet. 2014;30(3):85–94.  

18.  Hanscom T, McVey M. Regulation of Error-Prone DNA Double-Strand Break Repair and Its 
Impact on Genome Evolution. Cells. 2020;9(7):1657.  

19.  Wright WD, Shah SS, Heyer WD. Homologous recombination and the repair of DNA double-
strand breaks. Journal of Biological Chemistry. 2018;293(27):10524–35.  



 

 87 

20.  White TB, Morales ME, Deininger PL. Alu elements and DNA double-strand break repair. 
Mobile Genetic Elements. 2015;5(6):81–5.  

21.  Costantino L, Sotiriou SK, Rantala JK, Magin S, Mladenov E, Helleday T, et al. Break-induced 
replication repair of damaged forks induces genomic duplications in human cells. Science 
(1979). 2014;343(6166):88–91.  

22.  Mehta A, Beach A, Haber JE. Homology requirements and competition between gene 
conversion and break-induced replication during double-strand break repair. Mol Cell. 
2017;65(3):515–26.  

23.  Hastings PJ, Lupski JR, Rosenberg SM, Ira G. Mechanisms of change in gene copy number. 
Nature Reviews Genetics. 2009;10(8):551–64.  

24.  Wyatt DW, Feng W, Conlin MP, Yousefzadeh MJ, Roberts SA, Mieczkowski P, et al. Essential 
roles for polymerase θ-mediated end joining in the repair of chromosome breaks. Mol Cell. 
2016;63(4):662–73.  

25.  Chang HHY, Pannunzio NR, Adachi N, Lieber MR. Non-homologous DNA end joining and 
alternative pathways to double-strand break repair. Nature reviews Molecular cell biology. 
2017;18(8):495–506.  

26.  Yu AM, McVey M. Synthesis-dependent microhomology-mediated end joining accounts for 
multiple types of repair junctions. Nucleic Acids Res. 2010;38(17):5706–17.  

27.  Bhargava R, Onyango DO, Stark JM. Regulation of single-strand annealing and its role in 
genome maintenance. Trends in Genetics. 2016;32(9):566–75.  

28.  Zelensky AN, Schimmel J, Kool H, Kanaar R, Tijsterman M. Inactivation of Pol θ and C-NHEJ 
eliminates off-target integration of exogenous DNA. Nat Commun. 2017;8(1):1–7.  

29.  Zámborszky J, Szikriszt B, Gervai JZ, Pipek O, Póti Á, Krzystanek M, et al. Loss of BRCA1 or 
BRCA2 markedly increases the rate of base substitution mutagenesis and has distinct effects 
on genomic deletions. Oncogene. 2017;36(6):746–55.  

30.  Sasaki T, Rodig SJ, Chirieac LR, Jänne PA. The biology and treatment of EML4-ALK non-
small cell lung cancer. Eur J Cancer. 2010;46(10):1773–80.  

31.  Zack TI, Schumacher SE, Carter SL, Cherniack AD, Saksena G, Tabak B, et al. Pan-cancer 
patterns of somatic copy number alteration. Nat Genet. 2013;45(10):1134–40.  

32.  Beroukhim R, Mermel CH, Porter D, Wei G, Raychaudhuri S, Donovan J, et al. The landscape 
of somatic copy-number alteration across human cancers. Nature. 2010;463(7283):899–905.  

33.  Jost D, Vaillant C, Meister P. Coupling 1D modifications and 3D nuclear organization: data, 
models and function. Curr Opin Cell Biol. 2017;44:20–7.  

34.  Zack TI, Schumacher SE, Carter SL, Cherniack AD, Saksena G, Tabak B, et al. Pan-cancer 
patterns of somatic copy number alteration. Nat Genet. 2013;45(10):1134–40.  

35.  Lupiáñez DG, Spielmann M, Mundlos S. Breaking TADs: how alterations of chromatin domains 
result in disease. Trends in Genetics. 2016;32(4):225–37.  

36.  Franke M, Ibrahim DM, Andrey G, Schwarzer W, Heinrich V, Schöpflin R, et al. Formation of 
new chromatin domains determines pathogenicity of genomic duplications. Nature. 
2016;538(7624):265–9.  

37.  Northcott PA, Lee C, Zichner T, Stütz AM, Erkek S, Kawauchi D, et al. Enhancer hijacking 
activates GFI1 family oncogenes in medulloblastoma. Nature. 2014;511(7510):428–34.  

38.  Gröschel S, Sanders MA, Hoogenboezem R, de Wit E, Bouwman BAM, Erpelinck C, et al. A 
single oncogenic enhancer rearrangement causes concomitant EVI1 and GATA2 deregulation 
in leukemia. Cell. 2014;157(2):369–81.  



 

 88 

39.  Braunschweig U, Barbosa-Morais NL, Pan Q, Nachman EN, Alipanahi B, Gonatopoulos-
Pournatzis T, et al. Widespread intron retention in mammals functionally tunes transcriptomes. 
Genome Res. 2014;24(11):1774–86.  

40.  Boutz PL, Bhutkar A, Sharp PA. Detained introns are a novel, widespread class of post-
transcriptionally spliced introns. Genes Dev. 2015;29(1):63–80.  

41.  Dvinge H, Bradley RK. Widespread intron retention diversifies most cancer transcriptomes. 
Genome Med. 2015;7(1):1–13.  

42.  Tan DJ, Mitra M, Chiu AM, Coller HA. Intron retention is a robust marker of intertumoral 
heterogeneity in pancreatic ductal adenocarcinoma. NPJ Genom Med. 2020;5(1):1–17.  

43.  Ishida Y, Agata Y, Shibahara K, Honjo T. Induced expression of PD-1, a novel member of the 
immunoglobulin gene superfamily, upon programmed cell death. EMBO J. 1992;11(11):3887–
95.  

44.  Leach DR, Krummel MF, Allison JP. Enhancement of antitumor immunity by CTLA-4 blockade. 
Science (1979). 1996;271(5256):1734–6.  

45.  Türeci Ö, Vormehr M, Diken M, Kreiter S, Huber C, Sahin U. Targeting the heterogeneity of 
cancer with individualized neoepitope vaccines. Clinical Cancer Research. 2016;22(8):1885–
96.  

46.  Mansfield AS, Peikert T, Vasmatzis G. Chromosomal rearrangements and their neoantigenic 
potential in mesothelioma. Translational Lung Cancer Research. 2020;9(Suppl 1):S92.  

47.  Yang W, Lee KW, Srivastava RM, Kuo F, Krishna C, Chowell D, et al. Immunogenic 
neoantigens derived from gene fusions stimulate T cell responses. Nat Med. 2019;25(5):767–
75.  

48.  Weber D, Ibn-Salem J, Sorn P, Suchan M, Holtsträter C, Lahrmann U, et al. Accurate detection 
of tumor-specific gene fusions reveals strongly immunogenic personal neo-antigens. Nature 
Biotechnology. 2022;1–9.  

49.  Sbaraglia M, Bellan E, Dei Tos AP. The 2020 WHO classification of soft tissue tumours: news 
and perspectives. Pathologica. 2021;113(2):70.  

50.  Mandahl N, Magnusson L, Nilsson J, Viklund B, Arbajian E, von Steyern FV, et al. Scattered 
genomic amplification in dedifferentiated liposarcoma. Mol Cytogenet. 2017;10(1):1–10.  

51.  Jour G, Gullet A, Liu M, Hoch BL. Prognostic relevance of Fédération Nationale des Centres 
de Lutte Contre le Cancer grade and MDM2 amplification levels in dedifferentiated 
liposarcoma: a study of 50 cases. Modern Pathology. 2015;28(1):37–47.  

52.  Pedeutour F, Forus A, Coindre J, Berner J, Nicolo G, Michiels J, et al. Structure of the 
supernumerary ring and giant rod chromosomes in adipose tissue tumors. Genes, 
Chromosomes and Cancer. 1999;24(1):30–41.  

53.  Ricciotti RW, Baraff AJ, Jour G, Kyriss M, Wu Y, Liu Y, et al. High amplification levels of MDM2 
and CDK4 correlate with poor outcome in patients with dedifferentiated liposarcoma: a 
cytogenomic microarray analysis of 47 cases. Cancer Genet. 2017;218:69–80.  

54.  Binh MBN, Sastre-Garau X, Guillou L, de Pinieux G, Terrier P, Lagacé R, et al. MDM2 and 
CDK4 immunostainings are useful adjuncts in diagnosing well-differentiated and 
dedifferentiated liposarcoma subtypes: a comparative analysis of 559 soft tissue neoplasms 
with genetic data. Am J Surg Pathol. 2005;29(10):1340–7.  

55.  Bill KLJ, Seligson ND, Hays JL, Awasthi A, Demoret B, Stets CW, et al. Degree of MDM2 
amplification affects clinical outcomes in dedifferentiated liposarcoma. The Oncologist. 
2019;24(7):989–96.  

56.  Lee SE, Kim YJ, Kwon MJ, Choi DI, Lee J, Cho J, et al. High level of CDK4 amplification is a 
poor prognostic factor in well-differentiated and dedifferentiated liposarcoma. 2014;  



 

 89 

57.  Amin-Mansour A, George S, Sioletic S, Carter SL, Rosenberg M, Taylor-Weiner A, et al. 
Genomic evolutionary patterns of leiomyosarcoma and liposarcoma. Clinical Cancer 
Research. 2019;25(16):5135–42.  

58.  Abeshouse A, Adebamowo C, Adebamowo SN, Akbani R, Akeredolu T, Ally A, et al. 
Comprehensive and integrated genomic characterization of adult soft tissue sarcomas. Cell. 
2017;171(4):950–65.  

59.  Hirata M, Asano N, Katayama K, Yoshida A, Tsuda Y, Sekimizu M, et al. Integrated exome 
and RNA sequencing of dedifferentiated liposarcoma. Nat Commun. 2019;10(1):1–12.  

60.  Jo VY, Fletcher CDM. WHO classification of soft tissue tumours: an update based on the 2013 
(4th) edition. Pathology. 2014;46(2):95–104.  

61.  Panagopoulos I, Mandahl N, Mitelman F, Aman P. Two distinct FUS breakpoint clusters in 
myxoid liposarcoma and acute myeloid leukemia with the translocations t (12; 16) and t (16; 
21). Oncogene. 1995;11(6):1133–7.  

62.  Antonescu CR, Tschernyavsky SJ, Decuseara R, Leung DH, Woodruff JM, Brennan MF, et al. 
Prognostic impact of P53 status, TLS-CHOP fusion transcript structure, and histological grade 
in myxoid liposarcoma: a molecular and clinicopathologic study of 82 cases. Clinical Cancer 
Research. 2001;7(12):3977–87.  

63.  Perez-Losada J, Sanchez-Martin M, Rodriguez-Garcia MA, Perez-Mancera PA, Pintado B, 
Flores T, et al. Liposarcoma initiated by FUS/TLS-CHOP: the FUS/TLS domain plays a critical 
role in the pathogenesis of liposarcoma. Oncogene. 2000;19(52):6015–22.  

64.  Lee ATJ, Thway K, Huang PH, Jones RL. Clinical and molecular spectrum of liposarcoma. 
Journal of Clinical Oncology. 2018;36(2):151.  

65.  Creytens D, Folpe AL, Koelsche C, Mentzel T, Ferdinande L, van Gorp JM, et al. Myxoid 
pleomorphic liposarcoma—a clinicopathologic, immunohistochemical, molecular genetic and 
epigenetic study of 12 cases, suggesting a possible relationship with conventional pleomorphic 
liposarcoma. Modern Pathology. 2021;34(11):2043–9.  

66.  Jones RL, Fisher C, Al-Muderis O, Judson IR. Differential sensitivity of liposarcoma subtypes 
to chemotherapy. Eur J Cancer. 2005;41(18):2853–60.  

67.  Bui NQ, Przybyl J, Trabucco SE, Frampton G, Hastie T, van de Rijn M, et al. A clinico-genomic 
analysis of soft tissue sarcoma patients reveals CDKN2A deletion as a biomarker for poor 
prognosis. Clin Sarcoma Res. 2019;9(1):1–11.  

68.  Li Y, Roberts ND, Wala JA, Shapira O, Schumacher SE, Kumar K, et al. Patterns of somatic 
structural variation in human cancer genomes. Nature. 2020;578(7793):112–21.  

69.  Metzker ML. Sequencing technologies — the next generation. Nature Reviews Genetics. 
2010;11(1):31–46.  

70.  Branton D, Deamer DW, Marziali A, Bayley H, Benner SA, Butler T, et al. The potential and 
challenges of nanopore sequencing. Nat Biotechnol. 2008;26(10):1146–53.  

71.  Selvaraj S, R Dixon J, Bansal V, Ren B. Whole-genome haplotype reconstruction using 
proximity-ligation and shotgun sequencing. Nat Biotechnol. 2013;31(12):1111–8.  

72.  Sethi R, Becker J, Graaf J de, Löwer M, Suchan M, Sahin U, et al. Integrative analysis of 
structural variations using short-reads and linked-reads yields highly specific and sensitive 
predictions. PLOS Computational Biology. 2020;16(11):e1008397.  

73.  van Belzen IAEM, Schönhuth A, Kemmeren P, Hehir-Kwa JY. Structural variant detection in 
cancer genomes. NPJ Precis Oncol. 2021;5(1):15.  

74.  Cameron DL, di Stefano L, Papenfuss AT. Comprehensive evaluation and characterisation of 
short read general-purpose structural variant calling software. Nature Communications. 
2019;10(1):3240.  



 

 90 

75.  Kosugi S, Momozawa Y, Liu X, Terao C, Kubo M, Kamatani Y. Comprehensive evaluation of 
structural variation detection algorithms for whole genome sequencing. Genome Biology. 
2019;20(1):117.  

76.  Becker T, Lee WP, Leone J, Zhu Q, Zhang C, Liu S, et al. FusorSV. Genome Biology. 
2018;19(1):38.  

77.  Lopez G, Egolf LE, Giorgi FM, Diskin SJ, Margolin AA. svpluscnv. Bioinformatics. 
2021;37(13):1912–4. 

78.  Shao H, Ganesamoorthy D, Duarte T, Cao MD, Hoggart CJ, Coin LJM. npInv. BMC 
Bioinformatics. 2018;19(1):261. 

79.  Spies N, Weng Z, Bishara A, McDaniel J, Catoe D, Zook JM, et al. Genome-wide 
reconstruction of complex structural variants using read clouds. Nat Methods. 2017;14(9):915–
20.  

80.  Rausch T, Zichner T, Schlattl A, Stutz AM, Benes V, Korbel JO. DELLY. Bioinformatics. 
2012;28(18):i333–9. 

81.  Layer RM, Chiang C, Quinlan AR, Hall IM. LUMPY. Genome Biology. 2014;15(6):R84.  
82.  Wala JA, Bandopadhayay P, Greenwald NF, O’Rourke R, Sharpe T, Stewart C, et al. SvABA. 

Genome Research. 2018;28(4):581–91 
83.  Chen X, Schulz-Trieglaff O, Shaw R, Barnes B, Schlesinger F, Källberg M, et al. Manta. 

Bioinformatics. 2016;32(8):1220–2. 
84.  Xi R, Lee S, Xia Y, Kim TM, Park PJ. Copy number analysis of whole-genome data using BIC-

seq2 and its application to detection of cancer susceptibility variants. Nucleic Acids Research. 
2016;44(13):6274–86. 

85.  Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. 
Journal of Molecular Biology. 1990;215(3):403–10.  

86.  Zhao X, Emery SB, Myers B, Kidd JM, Mills RE. Resolving complex structural genomic 
rearrangements using a randomized approach. Genome Biology. 2016;17(1):126.  

87.  Nattestad M, Goodwin S, Ng K, Baslan T, Sedlazeck FJ, Rescheneder P, et al. Complex 
rearrangements and oncogene amplifications revealed by long-read DNA and RNA 
sequencing of a breast cancer cell line. Genome Research. 2018;28(8):1126–35.  

88.  Cortés-Ciriano I, Lee JJK, Xi R, Jain D, Jung YL, Yang L, et al. Comprehensive analysis of 
chromothripsis in 2,658 human cancers using whole-genome sequencing. Nat Genet. 
2020;52(3):331–41.  

89.  Davoli T, Uno H, Wooten EC, Elledge SJ. Tumor aneuploidy correlates with markers of immune 
evasion and with reduced response to immunotherapy. Science. 2017;355(6322).  

90.  Zhang CZ, Spektor A, Cornils H, Francis JM, Jackson EK, Liu S, et al. Chromothripsis from 
DNA damage in micronuclei. Nature. 2015;522(7555):179–84.  

91.  Wickham H. ggplot2. Vol. 3. Wiley Interdisciplinary Reviews: Computational Statistics; 2011.  
92.  Sahin U, Derhovanessian E, Miller M, Kloke BP, Simon P, LÃ¶wer M, et al. Personalized RNA 

mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature. 
2017;547(7662):222–6.  

93.  Dumbrava EI, Meric-Bernstam F. Personalized cancer therapy—leveraging a knowledge base 
for clinical decision-making. Molecular Case Studies. 2018;4(2):a001578.  

94.  Soverini S, Mancini M, Bavaro L, Cavo M, Martinelli G. Chronic myeloid leukemia: the 
paradigm of targeting oncogenic tyrosine kinase signaling and counteracting resistance for 
successful cancer therapy. Mol Cancer. 2018;17(1):1–15.  



 

 91 

95.  Yun JW, Yang L, Park HY, Lee CW, Cha H, Shin HT, et al. Dysregulation of cancer genes by 
recurrent intergenic fusions. Genome Biol. 2020;21(1):1–20.  

96.  Zhang J, White NM, Schmidt HK, Fulton RS, Tomlinson C, Warren WC, et al. INTEGRATE: 
gene fusion discovery using whole genome and transcriptome data. Genome Res. 
2016;26(1):108–18.  

97.  McPherson A, Wu C, Wyatt AW, Shah S, Collins C, Sahinalp SC. nFuse: discovery of complex 
genomic rearrangements in cancer using high-throughput sequencing. Genome Res. 
2012;22(11):2250–61.  

98.  Rabbitts TH, Forster A, Larson R, Nathan P. Fusion of the dominant negative transcription 
regulator CHOP with a novel gene FUS by translocation t (12; 16) in malignant liposarcoma. 
Nat Genet. 1993;4(2):175–80.  

99.  Åman P, Ron D, Mandahl N, Fioretos T, Heim S, Arheden K, et al. Rearrangement of the 
transcription factor gene CHOP in myxoid liposarcomas with t (12; 16)(q13; p11). Genes, 
chromosomes and cancer. 1992;5(4):278–85.  

100.  Dormann D, Haass C. Fused in sarcoma (FUS): an oncogene goes awry in 
neurodegeneration. Molecular and Cellular Neuroscience. 2013;56:475–86.  

101.  Yang Y, Liu L, Naik I, Braunstein Z, Zhong J, Ren B. Transcription factor C/EBP homologous 
protein in health and diseases. Front Immunol. 2017;8:1612.  

102.  Grosso AR, Leite AP, Carvalho S, Matos MR, Martins FB, Vitor AC, et al. Pervasive 
transcription read-through promotes aberrant expression of oncogenes and RNA chimeras in 
renal carcinoma. Elife. 2015;4:e09214.  

103.  Yan Z, Fan G, Li H, Jiao Y, Fu W, Weng J, et al. The CTSC-RAB38 Fusion Transcript Is 
Associated With the Risk of Hemorrhage in Brain Arteriovenous Malformations. Journal of 
Neuropathology & Experimental Neurology. 2021;80(1):71–8.  

104.  Liu H, Pu Y, Amina Q, Wang Q, Zhang M, Song J, et al. Prognostic and therapeutic potential 
of Adenylate kinase 2 in lung adenocarcinoma. Sci Rep. 2019;9(1):1–10.  

105.  Kumar S, Razzaq SK, Vo AD, Gautam M, Li H. Identifying fusion transcripts using next 
generation sequencing. Wiley Interdisciplinary Reviews: RNA. 2016;7(6):811–23.  

106.  Agostini F, Zagalak J, Attig J, Ule J, Luscombe NM. Intergenic RNA mainly derives from 
nascent transcripts of known genes. Genome Biol. 2021;22(1):1–19.  

107.  Wei Z, Zhou C, Zhang Z, Guan M, Zhang C, Liu Z, et al. The landscape of tumor fusion 
neoantigens: a pan-cancer analysis. Iscience. 2019;21:249–60.  

108.  Smart AC, Margolis CA, Pimentel H, He MX, Miao D, Adeegbe D, et al. Intron retention is a 
source of neoepitopes in cancer. Nat Biotechnol. 2018;36(11):1056–8.  

109.  Dong C, Cesarano A, Bombaci G, Reiter JL, Yu CY, Wang Y, et al. Intron retention-induced 
neoantigen load correlates with unfavorable prognosis in multiple myeloma. Oncogene. 
2021;40(42):6130–8.  

110.  Haas BJ, Dobin A, Li B, Stransky N, Pochet N, Regev A. Accuracy assessment of fusion 
transcript detection via read-mapping and de novo fusion transcript assembly-based methods. 
Genome Biol. 2019;20(1):1–16.  

111.  Anastasiadou E, Jacob LS, Slack FJ. Non-coding RNA networks in cancer. Nature Reviews 
Cancer. 2018;18(1):5–18.  

112.  Szalmas A, Tomaić V, Basukala O, Massimi P, Mittal S, Konya J, et al. The PTPN14 tumor 
suppressor is a degradation target of human papillomavirus E7. J Virol. 2017;91(7):e00057-
17.  

113.  Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal 
RNA-seq aligner. Bioinformatics. 2013;29(1):15–21.  



Riccha Sethi
Bioinformatician

Address: 35 Somner Close
Canterbury

UK
Date of birth: 24 April 1986
H Phone: +44 (7392013648)

B Mail: ricchasethi@gmail.com
Nationality: Indian

Research Interests
Computational and machine learning approaches for solving interesting problems in
bioinformatics.

Education
Since 2016 PhD in Bioinformatics.

TRON gGmbH (Translational Oncology), Johannes Gutenberg University, Mainz,
Germany
Thesis: Identification of structural variations and fusion genes from whole genome
sequencing data of cancer patients
Advisors: Ugur Sahin, Martin Löwer, David Weber

2014-2016 Master in Bioinformatics.
Center for Bioinformatics (ZBI), Saarland University, Saarbrücken, Germany
GPA: 1.8/5 (inverted scale, 1.0 being the highest grade)

2009-2011 Master of Engineering (Biotechnology).
Birla Institute of Technology and Science (BITS), Pilani, India
CGPA: 8.73/10

2004-2008 Bachelor of Technology (Biotechnology).
Amity Institute of Biotechnology, Amity University, Noida, India
CGPA: 8.58/10

Work Experience
02/2022- Bioinformatics Data Scientist, BenevolentAI, United Kingdom.
Present Role: Process bulk transcriptomics, single cell RNA sequencing and proteomics data

for drug discovery using AI based models
11/2016- Doctoral Research Assistant, TRON, Johannes Gutenberg University, Germany.
09/2021 Topics: Structural variations (SV) from whole genome sequencing data (WGS),

benchmarking of Illumina short-reads with 10X Genomics linked-reads sequencing,
machine learning approach for reliable prediction of SV, direct prediction of fusion
genes, intron-retention and non-coding fusion transcripts from WGS
Advisors: Ugur Sahin, Martin Löwer, David Weber

10/2020- Mother, Maternity Leave (09/2020-07/2021).
Present Role played: Acquired skills like maternal instincts, efficient organization, effective

delivery of professional goals, time management, teaching and many more
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04/2016- Research Assistant, ZBI, Saarland University, Germany.
07/2016 Topic: Linking hematopoietic differentiation to co-expressed sets of pluripotency-

associated and imprinted genes and to regulatory microRNA-transcription factor
motifs
Advisor: Volkhard Helms

08/2014- Student Researcher, ZBI, Saarland University, Germany.
03/2016 Topic: Synthetic data generation for evaluation of state-of-the-art haplotype phasing

tools
Advisor: Tobias Marschall

07/2011- Senior Executive, Quality Assurance, Biocon Limited, India.
11/2013 Role played: Investigation of deviations and process changes in manufacturing of

pharmaceutical drugs, incorporation of corrective and preventive action using statistical
tools, face health authority audits like EU-GMP, handle change control request for
improvement in drug manufacturing

01/2011- Research Intern, Abexome Biosciences, India.
06/2011 Topic: Production of monoclonal antibody for biological use

Advisor: Brijesh N Bhatt
08/2009- Student Researcher, BITS, Pilani, Rajasthan, India.
12/2010 Topic: Effects of morphine analogs on immune system cell line

Advisor: Uma Dubey
07/2008- Trainee Scientist, NAM S&T Centre, Delhi, India.
11/2008 Role played: Planning, implementation, evaluation and assessment of scientific

programs of the centre

Publications
1. Integrative analysis of structural variations using short-reads and linked-reads

yields highly specific and sensitive predictions
with M. Löwer, U. Sahin and D. Weber
PLOS Computational Biology, 2020

2. STIM and ORAI genes, interactions with transcription factors, differential
gene expression and co-expression analysis on breast invasive carcinoma
dataset
with R. Mohamed, M. Hamed and V. Helms
Front. Pharmacol. Conference Abstract: International Conference on Drug Discovery
and Translational Medicine 2018 (ICDDTM ’18) “Seizing Opportunities and Addressing
Challenges of Precision Medicine”, 2018

3. Linking Hematopoietic Differentiation to Co-Expressed Sets of Pluripotency-
Associated and Imprinted Genes and to Regulatory microRNA-Transcription
Factor Motifs
with M. Hamed, V. Helms
PLoS One, 2017

4. Designer promoter: An artwork of cis-engineering
with R. Mehrotra, G. Gupta, N. Kumar and S. Mehrotra
Plant Molecular Biology, 2011



Selected talks
1. “Direct detection of fusion gene neoantigens from whole genome sequencing” at

Cancer Immunotherapy, CIMT (2019), Germany
2. “Direct identification of fusion genes from whole genome sequencing data” at Genome

Informatics (2018), Wellcome Genome Campus, UK
3. “FuseSV: a pipeline to integrate structural variations from different callers” at Cancer

Genomics conference (2017), EMBL, Germany
4. Presented and taught several topics (like sequencing technologies, neo-antigens

generation and analysis, biological mechanisms for structural variations) to colleagues

Skills
1. Experience in application and usage of machine learning algorithms and related libraries

(NumPy, Pandas, SciPy, scikit-learn, CARET etc.)
2. Experience in Unix/Linux systems
3. Experience in AWS, Kubeflow, DNAnexus and Amazon Redshift
4. Experience in standard NGS/DNA sequencing/RNA sequencing bioinformatics toolsets
5. Experience in data wrangling and robustness of code using unit tests
6. Knowledge of Git version control system and pipeline development in Nextflow
7. Knowledge in cancer genomics, immunology, machine learning, NGS and molecular

biology
8. Experience in laboratory experimentation like PCR, SDS-PAGE, Western blot, ELISA

etc.
9. Ability to colloborate in a team and work independently as well

10. Strong communication and organization skills

Programming languages
Python, R and SQL


