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Skyrmion-Vortex pairs dance in the sky
A sight to behold, they catch the eye

Tiny particles, yet so much power
To revolutionize quantum computing, they empower

Universally capable, they can compute it all
Wrap your mind around it, it’ll make you feel tall
The power to process beyond our wildest dreams
Skyrmion-Vortex pairs, they’re a sight to be seen

Quantum information, encrypted and secure
Processing speeds, lightning-fast and pure

A new horizon of computation awaits
Thanks to Skyrmion-Vortex pairs, opening new gates

Tiny but mighty, they pave the way
For computing to evolve, to a brighter day
Skyrmion-Vortex pairs, the future is near

To a new era of quantum computing, they steer

So look up at the sky and marvel at their dance
For Skyrmion-Vortex pairs aren’t left to chance
A glimpse into the future, they’re ready to share

Welcome the age of universal quantum computing, if you dare.

- ChatGPT, 07.04.2023
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Abstract

Topological excitations pervade many fields throughout physics. This thesis deals with
topological excitations in magnets, superconductors, and their heterostructures. The re-
sults of my dissertation can be divided into four main points: (I) We demonstrated that
topological magnetic structures, such as magnetic Vortices, droplets, and Skyrmions,
can serve as efficient frequency multipliers in spintronic systems. By exciting skyrmion-
bound modes at fractions of their eigenfrequencies, we extended the range of control-
lably accessible frequencies. (II) I extensively enhanced and extended a robust numeri-
cal framework to compute the eigensystem of a superconductor proximity-coupled to a
magnetic thin film. This computational framework facilitates an accurate analysis of the
adiabatic evolution of the self-consistently calculated superconducting order parameter.
(III) By studying superconductor-magnet heterostructures, we investigated the intricate
interactions between superconducting vortices and magnetic domain walls. The magne-
toelectric effect induced by spin-orbit coupling revealed a rich interplay of interactions
in these systems, that crucially depend on the domain wall helicity and the vortic-
ity of the Vortex. (IV) I explored the potential of utilizing Skyrmion-Vortex pairs in
superconductor-magnet heterostructures for topological quantum computing. Through
adiabatic braiding of these hybrid topological excitations, I numerically confirmed the
non-Abelian statistics of the attached Majorana zero modes. This braiding operation
provides the basis for a scalable topological quantum computing platform.



Kurzzusammenfassung

Topologische Anregungen sind in zahlreichen Bereichen der Physik verbreitet. Diese
Arbeit widmet sich den topologischen Anregungen in Magneten, Supraleitern und deren
Heterostrukturen. Die Ergebnisse meiner Dissertation lassen sich in vier Hauptpunkte
gliedern: (I) Wir konnten zeigen, dass topologische magnetische Strukturen wie mag-
netische Wirbel, Droplets und Skyrmionen in spintronischen Systemen effektiv als Fre-
quenzvervielfacher eingesetzt werden können. Durch gezielte Anregung gebundener
Moden in Skyrmionen bei Bruchteilen ihrer Eigenfrequenzen konnte ich den Bereich
der kontrollierbaren Frequenzen erweitern. (II) Ein besonderer Schwerpunkt meiner Ar-
beit lag auf der Entwicklung und Verbesserung eines robusten numerischen Rahmens
zur Berechnung des Eigensystems eines Supraleiters, der an einen magnetischen Dün-
nfilm gekoppelt ist. Mit dieser Methode war es möglich, die adiabatische Entwick-
lung des supraleitenden Ordnungsparameters präzise zu analysieren. (III) Durch unsere
Untersuchungen von Supraleiter-Magnet-Heterostrukturen konnte wir wertvolle Erken-
ntnisse über die komplexen Wechselwirkungen zwischen supraleitenden Wirbeln und
magnetischen Domänenwänden gewinnen. Besonders der magnetoelektrische Effekt, der
durch die Spin-Bahn-Kopplung induziert wird, enthüllte ein reichhaltiges Zusammenspiel
dieser Wechselwirkungen, das maßgeblich von der Helizität der Domänenwand und der
Wirbelstärke abhängt. (IV) Ein weiterer bedeutsamer Beitrag meiner Forschung war die
Untersuchung der Anwendbarkeit von Skyrmion-Vortex-Paaren in Supraleiter-Magnet-
Heterostrukturen für topologische Quantencomputer. Durch adiabatische Verflechtung
dieser hybriden topologischen Anregungen konnte ich die nicht-abelsche Statistik der
gebundenen Majorana-Nullmoden numerisch bestätigen. Dies eröffnet vielversprechende
Perspektiven für die Realisierung skalierbarer Plattformen für topologische Quantencom-
puter.
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1
Introduction

Topology is a mathematical discipline that analyzes objects’ characteristics that remain
unchanged under continuous transformations. Despite its abstract nature, it has unex-
pected connections to our daily lives. Take, for instance, the simple act of navigating
through a city. When we choose the most efficient path to reach a destination, we
are essentially also engaging in a topological problem. By considering the connectivity
and arrangement of streets, we optimize our routes, avoiding unnecessary detours, and
crossings, thereby minimizing travel time. This application of topology to everyday nav-
igation underscores its practical significance. Furthermore, the utilization of topological
concepts in designing technical devices, such as circuit boards and computer networks,
allows for efficient routing, fault tolerance, and robust communication, enabling seam-
less connectivity in our interconnected world. Topology permeates various domains of
physics, including excitations in magnets, superconductors, and their heterostructures
in this thesis. In particular, the intricate design and manipulation of superconductor-
magnet interfaces offer a unique platform to harness the principles of topology, allowing
for the emergence of topological excitations and their potential applications in fields such
as quantum computation and information storage.

1.1. Topology

Topology as a mathematical discipline can be traced back to the 18th and 19th cen-
turies. The pioneering works of mathematicians such as Leonhard Euler, Carl Friedrich
Gauss, and Bernhard Riemann laid the foundation for the development of this field [1].
The Euler characteristic [2], which relates the number of vertices, edges, and faces of a
polyhedron, exemplified the interplay between geometry and topology.

In the early 20th century, topology began to take shape as a distinct branch of mathe-
matics, with Henri Poincaré making significant contributions. Poincaré introduced the
concept of homotopy and homology, providing a rigorous framework for studying the
properties of spaces and their transformations. He also investigated the fundamental
group and the notion of a manifold, which are key elements in understanding the topo-
logical properties of objects [3].

The field of topology found surprising applications in condensed matter physics, partic-
ularly in the study of exotic phases of matter and their excitations. In recognition of
the significant contributions made in this area, the Nobel Prize in physics was awarded
to David J. Thouless, F. Duncan M. Haldane and J. Michael Kosterlitz [4]. Their the-
oretical discoveries of topological phase transitions and topological phases of matter
have had a profound impact on our understanding of condensed matter systems. These
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1. Introduction

groundbreaking achievements have paved the way for the exploration and development
of topological materials with unique properties, such as topological insulators and su-
perconductors. The field of topological superconductors has made significant progress
by combining superconducting materials and topological insulators. Moreover, this has
laid the foundation for research in superconductor-magnet heterostructures. Despite
topological insulators and superconductors, topology also plays a crucial role in magnets
with magnetic skyrmions being the most prominent example, which will be discussed in
the subsequent section.

1.2. Magnets and Topological Excitations

Magnetic materials were discovered as early as ancient times, when people found natu-
rally occurring magnetic minerals, such as lodestone. However, it was not until the 19th
century that systematic investigations into the properties of magnetic materials began.
The development of electromagnetic theory by James Clerk Maxwell [5] and the ground-
breaking discoveries of Michael Faraday [6] laid the foundation for understanding the
fundamental principles governing magnetism. Subsequent advancements in materials
science and quantum mechanics led to the exploration of various magnetic phenomena,
including ferromagnetism, antiferromagnetism, and spintronics.

The history of topological magnetic excitations dates back several decades and has wit-
nessed significant breakthroughs in our understanding of fundamental physics and the
potential applications of these novel phenomena. The journey began with the discovery
of magnetic solitons [7], which laid the foundation for exploring topological aspects of
magnetic systems.

In the early 1970s, the pioneering work of Tony Skyrme introduced the concept of soli-
tons in field theories and gauge theories, respectively [8, 9]. These solitons, known as
skyrmions, were initially proposed in the context of particle physics to describe topolog-
ically stable configurations.

Based on these concepts, also similar skyrmion field configurations were predicted in
condensed matter systems. In magnets, however, it was just within the last decade that
their existence was experimentally confirmed [10, 11, 12]. Since the initial discovery,
skyrmions have been observed in diverse materials, ranging from metallic systems to
insulating multilayers [13]. The realization of room-temperature skyrmions in thin films
of certain magnetic materials has been a significant milestone in this field [13]. Further
investigations revealed that magnetic skyrmions possess intriguing topological charac-
teristics, making them robust against external perturbations and highly mobile [14].
These attributes opened up new avenues for utilizing skyrmions in various technological
applications in spintronics [13, 15].

1.3. Topological Superconductors

Parallel to the progress in magnetic materials, the study of superconductivity emerged as
a distinct field in the early 20th century. The discovery of superconductivity in mercury

2



1.4. Superconductor-Magnet Heterostructures

by Heike Kamerlingh Onnes in 1911 marked a significant milestone [16]. Superconduc-
tivity, characterized by the absence of electrical resistance below a critical temperature,
has attracted the attention of scientists worldwide. Theoretical frameworks, such as
the BCS theory [17] proposed by John Bardeen, Leon Cooper, and Robert Schrieffer,
provided a fundamental understanding of conventional superconductivity.

There are two types of superconductors: Type I and Type II. Type I superconductors
exhibit the so-called Meissner effect, i.e. when subjected to a magnetic field they lose
their superconductivity abruptly when the magnetic field surpasses a critical value. In
contrast, Type II superconductors display a more complex response to magnetic fields,
allowing the penetration of magnetic flux in specific regions, where superconducting
vortices form. In the early 21st century, there was a growing focus on exploring the
topological aspects of superconductors. Alexei Kitaev’s seminal work in 2001 [18] rev-
olutionized the field by introducing the concept of topological superconductors. Kitaev
proposed a toy model [19] of a one-dimensional p-wave superconductor that hosted exotic
quasiparticles known as Majorana modes. These Majorana zero-energy modes, acting as
their own antiparticles, exhibit non-Abelian statistics and hold promise for fault-tolerant
quantum computation [20].

In 2008, Fu and Kane proposed a platform for the realization of topological supercon-
ductivity by combining topological insulators with superconducting materials [21]. This
combination of s-wave superconductivity with a topological insulator possessing strong
spin-orbit coupling and inducing proximity effects at their interfaces recovers an effective
p-wave superconductor [22]. Subsequent experimental efforts focused on the search for
topological superconductivity in various systems, including hybrid structures and exotic
materials [23, 24, 25].

1.4. Superconductor-Magnet Heterostructures

The study of type II superconductors laid the foundation for subsequent research on
superconductor-magnet systems [26]. Although strong magnetic fields destroy supercon-
ductivity, proximity effects have been harnessed to create hybrid structures composed
of superconductors and ferromagnetic or magnetic materials [27]. This breakthrough
allowed for precise control over the proximity-induced superconducting properties at the
interface between the two materials. The manipulation of the superconductor-magnet
interface enabled the exploration of intriguing phenomena, such as the possibility of
creating topological superconducting states.

In recent years, the field of superconductor-magnet heterostructures has witnessed a
surge of interest due to its potential applications in quantum information processing
and topological quantum computation. The search for Majorana zero modes, exotic
quasiparticles that possess non-Abelian statistics, has become a focal point of research
in this area. Superconductor-magnet heterostructures provide a promising platform for
the creation and manipulation of Majorana zero modes, which are essential building
blocks for fault-tolerant quantum computation.

3



1. Introduction

1.5. Content of this Thesis

This thesis contributes to the rich tapestry of research on topological excitations in
chiral magnets (Part I), superconductors (Part II), and their hybrid heterostructures
(Part III).

In part I, we present our findings on the utilization of magnetic Skyrmion eigenmodes for
frequency multiplication published in [28]. By employing micromagnetic simulations, we
demonstrate that the breathing mode and elliptical mode of Skyrmions can be excited
at fractions of their eigenfrequencies. Notably, we observe that exciting these eigen-
modes under low damping conditions lead to amplified amplitudes. Furthermore, the
tunability of these frequencies through temperature changes and magnetic or electric
fields showcases the potential for industrial applications. Importantly, our developed
theory establishes a framework that transcends the specific microscopic characteristics
of the magnetic structure, thus enabling broad applicability.

In part II, we discuss quantum computation with topological superconductors. We elu-
cidate the principles of braiding in a Kitaev chain. Additionally, we introduce a novel
method for eliminating numerical phases in zero energy eigenvalues, using the Kitaev
chain as an example. This method proves effective in both analytical and numerical
models, with potential applicability to more intricate systems. Moreover, we detail
the implementation of braiding in a T-junction discussed in the literature, achieved by
controlling the superconductor’s topological and trivial phases through the chemical po-
tential. Remarkably, our numerical simulations confirm the expected braiding statistics,
as demonstrated in Ivanov’s seminal work [29].

In part III, we explore the realm of superconductor-magnet heterostructures and their po-
tential for quantum computation. We establish a crucial link between these heterostruc-
tures, the Kitaev chain, and the associated physics. We propose a model Hamiltonian
that represents the key physics of the superconductor-magnet heterostructure. Subse-
quently, we develop a powerful numerical framework capable of computing the system’s
eigensystem and solving the self-consistency condition of the BCS theory. Using the nu-
merical tools we study the interaction between magnetic domain walls and superconduct-
ing vortices, enabling the manipulation and ordering of vortices. To explain our findings
of the interactions between magnetic domain walls and superconducting vortices, we
developed an effective analytic theory based on the emergent superconducting currents.
In a separate study, we predict the localization of Majorana modes at Skyrmion-Vortex
pairs, highlighting their potential for braiding enabling topological quantum computing.
The research findings have been incorporated into a pending patent [30] and have been
published in Ref. [31]. Leveraging these findings, we predict the creation, motion, and
fusion of Majoranas using Skyrmion-Vortex pairs on a scalable platform. Notably, we
demonstrate how Skyrmion-Vortex pairs can serve as qubit states and perform Clifford
gates, thus establishing their utility for quantum computation.

In summary, this thesis dives into the realms of magnetic materials, topological su-
perconductors, and superconductor-magnet heterostructures, connecting their historical
development with the contemporary focus on topological excitations.
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Chiral Magnets
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2
Micromagnetic Approach to Magnetism

macroscopic mesoscopic microscopic
(independent of scale) (1-1000 μm) (<1 nm)

Figure 2.1.: Overview of the different length scales.

Magnetically ordered materials can be studied on different length scales. A pictorial
description of the different length scales can be seen in Figure 2.1. We can explain the
origin and the magnitude of magnetic moments, crystal anisotropy and magnetoelastic
interaction on the atomic scale by dealing with the arrangement of spins on the crystal
lattice sites. Furthermore, we can also describe magnetism on a macroscopic length scale,
where the average magnetization is described. In between those two extreme cases, there
is the mesoscopic approach. In this instance, we do not consider the individual magnetic
moments, but their sums in a certain neighbourhood. In this way, one considers the
local average of magnetic moments over a small volume under the Curie temperature,
described by the magnetisation vector M . The magnitude of the magnetization vector
is called saturation magnetization Ms and it is in general a function of the temperature.
By dividing the magnetization by its magnitude we get a unit vector of magnetization
m(r) = M(r)/Ms with m2 = 1. In the following, we will consider the continuum
theory of micromagnetics within this mesoscopic length scale. Therefore, we will study
this vector field m(r) and its response to different energy terms. In this chapter, we
summarize the theory presented in [32, 33].

2.1. Magnetostatics

We begin our discussion by introducing magnetostatic theory, which involves finding the
equilibrium configuration of magnetic materials by minimizing their total energy. In the
context of a chiral ferromagnet, where inversion symmetry is broken at the surface, the
energy of the system can be expressed in a specific manner [34].

E[m] =
∫
dV Eexch[m] + Eani[m] + Eext[m] + EDM[m] + Edemag[m], (2.1)

6



2.1. Magnetostatics

where the different terms respectively represent the exchange interaction, the anisotropy
energy, the external magnetic field, the Dzyaloshinskii-Moriya interactions and the mag-
netostatic energy. Further properties of the material can be added to this energy func-
tional (2.1). Two examples of additional terms which are often used are magnetoelastic
energy, which describes the mechanical stress on a material, and magnetostrictive self-
energy, which describes the spontaneous deformations of the material due to certain
domain configurations. In our case, these further properties are neglected. In the fol-
lowing, we will describe the different micromagnetic energy terms in more detail.

Exchange interaction: The exchange interaction is based on the Pauli principle. When
two Fermions are exchanged their wave function changes its sign. In the case of ferro-
magnetic materials, this interaction leads to a constant magnetization direction of the
spins and deviations from this magnetization direction lead to an energy penalty. This
energy penalty can be expressed in the continuum limit as

Eexch = A (∇m)2 (2.2)

where A is the exchange stiffness and (∇m)2 is defined by ∑α,β(∂αmβ)(∂αmβ), where
summation includes all spatial indices α and β.

External magnetic field: If a magnetic field Hext is applied to the magnet it will
interact with the magnetization. This effect can be described by the Zeeman term

Eext = −µ0Ms Hext · m = −µ0MsHext cos(φ) (2.3)

in which φ is the angle between magnetization and field. Equation (2.3) is minimized
when the magnetization is aligned to the magnetic field (φ = 0).

Anisotropy: The magnetisation of a crystal tends to align along the structural axis
of the material. This effect originates from spin-orbit effects and is called anisotropy
energy. Since we consider a thin film, we will discuss the surface or interface anisotropy.
This type of anisotropy can be expressed in first-order as

Eani = −K (m2
z − 1), (2.4)

where we have chosen the direction of the vector normal to the surface of the thin film
along the ẑ-axis.

Magnetostatic interactions: The magnetisation in the magnetic material produces a
stray field, which has to be minimized in order to minimize the energy. In general,
this term is very hard to calculate since it is a long-range effect. In the case of a thin
film, one can approximate this term by considering an infinitely extended plate. In this
one-dimensional case, the magnetostatic term has the form of anisotropy energy [33].
We can then add it to our integral by modifying the anisotropy constant from K to
K +Kd = K − µ0

2 M
2
s [35].
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2. Micromagnetic Approach to Magnetism

Dzyaloshinskii-Moriya interaction (DMI): The DMI was first proposed phenomenolog-
ically by Dzyaloshinskii [36], and later derived from spin-orbit coupling by Moriya [37].
It is present in materials with no inversion symmetry or when inversion symmetry is
broken at interfaces. The most general form of the DMI can be written as

EDM = −Dα
ijmi∂αmj . (2.5)

The DMI is an asymmetric exchange interaction which tries to orient the closest neigh-
bours perpendicular to each other. In a crystal, this leads to a finite angle between
the magnetic moments, so that they are neither parallel nor antiparallel to each other.
In the bulk of chiral magnets, the DMI tensor simplifies to Dα

ij = Dϵiαj , which is
called Bloch DMI. In our case, we consider thin films where the inversion symmetry
along the normal direction of the film is broken. Therefore, the DMI tensor is given by
Dα
ij = D(δiαδjz − δizδjα), where the films normal vector is pointing in the ẑ-direction. If

we write that out we get

EDM = −Dm · ((ẑ×∇)×m) . (2.6)

Rewriting using the latter results, we get the following model

E[m] =
∫
dV
[
A (∇m)2 −Dm · ((ẑ×∇)×m) −K (m2

z − 1) − µ0Ms Hext · m]. (2.7)

Until this point, we discussed all these different terms separately. In the full model,
every energy contribution wants to align the magnetization in different directions. The
configuration with minimal energy ultimately depends on the relative strengths of the
coupling terms. This competition of the terms allows different structures to be real-
ized. We will discuss some of the most interesting structures throughout the thesis, for
example, Skyrmions, Antiskyrmions and domain walls.

2.2. Magnetisation Dynamics

The dynamics of a physical system can be described by studying the time derivative of the
internal structure. In our case, we will look at the time derivative of the magnetization.
Assuming a constant local magnitude of the magnetization vector as well as slow and
smooth magnetization dynamics the equation for the time derivative of magnetization
is the Landau-Lifshitz-Gilbert (LLG) equation [15, 28]

dm

dt
= −γm × Beff + αm × ṁ + τ , (2.8)

in which γ is the gyromagnetic ratio, Ms is the saturation magnetisation, α is the Gilbert
damping and τ represents additional torque terms. The core of this equation is the first
term in which an effective field is acting on the magnetisation. This effective field is given
by the functional derivative of the energy functional (2.1) concerning the magnetization
vector and is given by
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2.2. Magnetisation Dynamics

Beff = − 1
Ms

δE[m]
δm

. (2.9)

One can imagine that the action of this magnetic field is like a torque acting on the
magnetisation leading to a precession of the magnetisation around the magnetic field. If
we only consider the first term, the precession would continue forever and never reach
an equilibrium. However, in the real world, there is also damping which will lead the
magnetisation towards the direction of the magnetic field (depicted in Figure 2.2). Such
a damping term was first introduced by Landau and Lifshitz [38] and was later replaced
by the more physically intuitive term introduced by Gilbert leading to the Landau-
Lifshitz-Gilbert (LLG) equation [39].

Figure 2.2.: Schematic representation of a magnetic vector aligning with the effective field
due to the precession term and the damping term.

In general, this complex partial differential equation cannot be solved analytically. But
it can be solved numerically and we will discuss the techniques for the numerical solution
in the next section.

2.2.1. Numerical Implementation of the Landau-Lifshitz-Gilbert Equation

There are multiple different numeric implementations of the LLG equation such as mi-
cromagnum [40], OOMF [41] and mumax3 [42]. In the following, we will use mumax3

which uses two different interlocking methods to solve the differential equation. At first,
it calculates the magnetic ground state by calculating the interplay between the differ-
ent forces on the magnetisation presented in (2.7). In the second step, it calculates the
dynamics with the time integration method. The details on how one can define different
geometries and how the different energy terms are implemented can be read in their
paper [42].

Simulating magnetic ground states with mumax3: The numerical relaxation is imple-
mented by the function relax(), which attempts to find the system’s energy minimum.
We discussed before that the alignment of the magnetisation to the effective magnetic
field is represented by the damping term. The energy is minimized due to the alignment
with respect to this effective field. To reach this energy minimum faster, the precession
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2. Micromagnetic Approach to Magnetism

term of the LLG equation is neglected here. The first one relaxes until the total energy
cuts the noise floor, which means that we are already close to equilibrium. To approach
the equilibrium even closer one switches now to monitor the magnitude of the torque,
because close to the equilibrium the torque will decrease monotonically and it is less
noisy. We continue to relax like this and every time the torque cuts the noise floor one
sets the maximal error lower until a maximal error is much lower than the typical scales
of the system. At this point, the system can be seen as relaxed.

Simulating Magnetization Dynamics with mumax3: Mumax3 implements different
variants of explicit Runge-Kutta methods for advancing the Landau Lifshitz equation.
It is a well-established numerical method to integrate ordinary differential equations by
using a trial step at the midpoint of the interval to cancel out lower-order error terms.
Furthermore, mumax3 uses adaptive time step control which automatically chooses the
time step to keep the error step close to a preset error threshold.
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3
Dynamic Excitations of Magnetic Skyrmions

3.1. Magnetic Skyrmions

Using the model in equation (2.7), we have the opportunity to explore various mag-
netic configurations. Our specific focus lies on investigating a small region within the
phase diagram where Skyrmions manifest. Skyrmions represent topologically protected
vortices in the magnetization field, and their topological nature becomes evident when
the magnetization vector m is wrapped around the unit sphere. This wrapping allows
Skyrmions to be characterized by the number of times the magnetization winds around
the sphere, giving rise to the concept of the winding number, which can be expressed as
follows: [15, 13, 43, 44]

W = 1
4π

∫
dxdy m · (∂xm × ∂ym) . (3.1)

For a rotational symmetric Skyrmion, the magnetization profile can be written as [44]

m(r) = (cosΦ(φ) sinΘ(r), sinΦ(φ) cosΘ(r), cosΘ(r)) , (3.2)

where we introduce the polar coordinates r = (r cos(φ), r sin(φ)). If we plug this profile
into the winding number we get

W = 1
4π

∫ ∞

0
dr
∫ 2π

0
dφdΘ(r)

dr
dΦ(φ)

dφ sinΘ(r) = [cosΘ(r)]r=∞
r=0 [Φ(φ)]φ=2π

φ=0 . (3.3)

Suppose the magnetisation points up at r → ∞ and down at r = 0 , then [cosΘ(r)]r=∞
r=0 =

2. We can now write Φ(φ) = mφ + γ, where m is the vorticity and γ is the helicity
of the Skyrmion. In Figure 3.1, we show a configuration with m = 1, γ = 0, which
is called a Néel Skyrmion. Note that topology is a continuous theory and we classify
simulations and experiments, which are discrete systems. In discrete systems, non-
conserving transformations are allowed but have a finite non-zero energy penalty.

The formation of a spin configuration like the Skyrmion arises from competing inter-
actions, where certain interactions promote the alignment of magnetic moments, while
others prefer their twisting. In experiments, the first Skyrmions have been observed in
bulk crystals with broken inversion symmetry, where they form a Skyrmion lattice [10].
In this experiment Skyrmions are formed by a competition between a uniform stiffness
A, DMI strength D, an applied magnetic field B and thermal fluctuations at tempera-
tures slightly below the critical temperatures. There are different ways to achieve such a
configuration and the most prominent mechanisms are the following [44]: (1) In a system
with long-ranged magnetic dipolar interactions, favouring in-plane magnetisation, and
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3. Dynamic Excitations of Magnetic Skyrmions

Figure 3.1.: Depiction of a Néel Skyrmion.

perpendicular easy-axis anisotropy, favouring out-of-plane magnetization, we encounter
a competition between these interactions. This competition leads to the rotation of
magnetization in a plane perpendicular to the film, resulting in periodic stripes that can
further break up into magnetic bubbles or Skyrmions when subjected to a magnetic field.
(2) The presence of the Dzyaloshinskii-Moriya Interaction (DMI) induces a transforma-
tion from the helical spiral structure into a triangular Skyrmion crystal when an external
magnetic field is applied. (3) In the presence of frustrated exchange interactions, or (4)
four-spin interactions, the system can form atomic-sized Skyrmions.

Skyrmions were not only found as lattices in bulk materials but also as single objects [45,
46], as clusters [47] in a helimagnet background [48, 49] or inplane Skyrmions [50, 51].
They occur in various systems and not only in bulk materials as in the first experiments.
We are mostly interested in Skyrmions present in thin films [52]. Skyrmions can also be
present at room temperature in systems with a strong interfacial DMI [53, 54]. Apart
from Skyrmions being present in many different materials and exhibiting various shapes,
they also possess diverse properties. For example, they can be created through mag-
netic and electric fields, thermal excitations, and spin torques, and can be moved using
magnetic and electric fields, spin torques, magnons, temperature gradients, and ther-
mal fluctuations [13]. The multitude of techniques available for manipulating Skyrmions
makes them particularly intriguing for various applications. However, when a Skyrmion
is moved, it will move under an angle to the direction of the applied current. Given
this effect of Skyrmion Hall motion, many studies focus on its removal, especially in
applications like the Skyrmion racetrack memory [55].

Additionally, it is also interesting to study the excitations of Skyrmion lattices as well
as single Skyrmions. In the following, we will review the excitations of single Skyrmions
in chiral magnets and we will discuss the importance of magnons for these excitations
and how magnons interact with Skyrmions.
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3.2. Eigenmodes of Skyrmions

Magnons are the quanta of spin wave excitations and can move Skyrmions as well as
excite their eigenmodes. Thereby spin waves carry momentum but no charges, which will
be the main reason they can excite the eigenmodes. Mochizuki [56] introduced the terms
clockwise (CW), counterclockwise (CCW), and breathing modes to describe Skyrmion
lattices. These categories can also be applied to classify the eigenmodes of individual
Skyrmions. In Figure 3.2, we present magnon-Skyrmion bound states, which correspond
to modes that fall into these distinct classes. Here, the subscript of the frequency ω
labels the angular momentum quantum number n, where the sign of n determines the
rotation direction. The frequencies of the bound states can be calculated by solving
the Equation 2.8 without the damping term with the energy in equation (2.7) at zero
magnetic fields [57]. In this model, we exclude the damping term and the magnetic field
as the eigenfrequencies are determined analytically. The discussion on the damping term
and magnetic field will be reserved for the study of single Skyrmions using a numerical
framework.

Figure 3.2.: The eigenfrequencies ωµ of localized modes as functions of the normalized
DMI constant δ = d/d0. Reprinted figure with permission from [35]. Copyright 2018 by
the American Physical Society.

The eigenfrequencies of the analytic model can be excited by different mechanisms,
which we will then use in the simulations to excite eigenmodes. The mechanism of the
breathing mode is the following: When a magnetic field is applied, it aligns the spins
in the core of the Skyrmion which results in the core growing. A magnetic field oriented
antiparallel to the spins in the core results in the core shrinking. If the magnetic field now
oscillates in such a way that it matches the growing and shrinking of the Skyrmion, it
excites the corresponding mode of the Skyrmion. Since this motion looks like breathing,
this mode is called breathing mode. Such modes are radially symmetric and can be
excited best with an out-of-plane field, but it is also possible to excite them with an
in-plane field. The behaviour of the CW and CCW eigenmodes, corresponding to
the elliptical, triangular, and additional modes, is different. The shape of the Skyrmion
during a CW or CCW mode breaks rotational symmetry (see Figure 3.3) so the excitation
has to be one that also breaks rotational symmetry. That’s why these modes do not

13



3. Dynamic Excitations of Magnetic Skyrmions

couple to out-of-plane fields but only to in-plane fields. To explain the behaviour of these
rotational modes intuitively one has to explain how magnons and Skyrmions interact
with each other [58]. We begin with a magnetic system containing a Skyrmion and apply
an oscillating magnetic field, leading to the propagation of a magnon within the material.
The presence of a Skyrmion causes the magnon to scatter and transfer momentum to
the Skyrmion. When the magnons are not in resonance with any Skyrmion eigenmode,
they can induce a motion of the Skyrmion with a large Skyrmion Hall effect [59]. On the
other hand, if the magnons are in resonance with the Skyrmion eigenmodes, they form
magnon-skyrmion bound states [58]. These states originate from an initial bump that
a magnon induces on the Skyrmion due to momentum transfer [60]. This bump then
propagates along the Skyrmion. As the magnons are resonant with the bumps travelling
around the Skyrmions, the shape becomes clearer the longer the excitation lasts. The
Skyrmion will even remain in this excited state for a while after the oscillating magnetic
field is turned off.

To study the shape of these Skyrmion modes in more detail the Skyrmion can be de-
scribed by a domain wall that is connected on both ends and which can be parametrized
as [60]

X(s, t) = r(s, t) (cos(s), sin(s), 0) (3.4)

where s = [0, 2π) and r(s) is a smooth function with r(0, t) = r(2π, t). Under certain
conditions [60], we find that

r(s) ≈ rmin +∆r sin2
(
ns

2

)
(3.5)

where ∆r = rmax − rmin describes the difference between the minimal radius rmin and
the maximal radius rmax. Here n is an integer number representing the different modes
of the skyrmion. These equations define Skyrmion profiles with well-established bumps
that travel either clockwise or counterclockwise around the Skyrmion boundary. A
representation of these shapes can be found in Figure 3.3. The existence of two travelling
modes is connected to the particle-hole symmetry of the system [59] and it is represented
by Skyrmions with different polarities.

Figure 3.3.: Sketch of solutions described by Equation (3.5) with ∆r/rmin = 0.3 and
n = 1, 2, 3, 4. These solutions correspond to the excitations of circular skyrmions. Their
evolution in time is a rigid rotation with a frequency depending on their size. Notice
that the mode n = 1 corresponds to what is known as (counter)clockwise modes for
skyrmions. Reprinted figure with permission from [60]. Copyright 2018 by the American
Physical Society.
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4
Frequency multiplication of Skyrmion

Modes

Every computing system depends critically on the production of periodic signals, or
clocks. In the case of modern microprocessor integrated circuits and high-performance
broadband communications, clocks must be very steady over lengthy periods of time.
Standard oscillators, which can reach a broad frequency range, are not able to deliver
such stable oscillations. Here frequency multipliers are able to generate really stable
oscillations. They have the distinctive quality that, if the input frequency fluctuates
within a specified finite range, the frequency multipliers’ frequency multiplication ratio
is not significantly affected [61, 62, 63, 64, 65, 66]. One downside of frequency mul-
tipliers is that they can only provide frequency multiplication if the system provides
nonlinearity. Because of this, we want to employ topological objects which can provide
this non-linearity through their excitation modes. Currently, Skyrmion systems are used
in parameter regimes where a linear approach to their dynamics is appropriate for the
majority of applications. The Skyrmion excitation modes, however, are fundamentally
non-linear [28]. This implies, for example, an amplitude dependence of the excitation
mode frequencies, as well as the existence of harmonic generation, i.e. the excitation of
integer multiples of applied frequencies [28].

Input pertubation Excited magnon

Figure 4.1.: Sketch of an example of frequency multiplication using a magnetic Skyrmion.
Perturbations with a fraction of the eigenfrequency ωn can excite the corresponding eigen-
mode of the Skyrmion. Moreover, when the input perturbation is created by an AC mag-
netic field, the amplitude of the exited eigenmode can be larger than the amplitude of the
input magnon. The picture published in [28]

This part of the thesis is organized into different sections. In Section 4.1 we study the
spectrum of eigenfrequencies of the skyrmion to give an overview. Next, we study in
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4. Frequency multiplication of Skyrmion Modes

Parameters Symbol Value
Sample dimensions x, y, z 600nm, 600nm, 1nm

Saturation magnetization Ms 1.1 · 106 A
m

Exchange energy A 1.6 · 10−11 J
m

Anisotropy K 0.51 · 106 J
m3

Damping α 1.0 · 10−3

Table 4.1.: Sample Parameters of the magnetic material in which a Skyrmion is stabilized

Section 4.2 how applied perturbations with a fraction of the Skyrmion excitation eigen-
frequency leads to resonance at the corresponding eigenfrequency as shown in Figure 4.1.
For that, we analyze the breathing n = 0 mode in Section 4.2.1 of an isolated Skyrmion
by applying AC magnetic fields, both in-plane and out-of-plane, with half and a third of
the corresponding eigenfrequency. Additionally, we examine the amplitude dependence
of the excited eigenmode in terms of the amplitude of the applied AC field and the
damping parameter. We find the following interesting responses to applied fields

1. above a certain amplitude of the applied field, the Skyrmion mode is more effi-
ciently excited with half of its eigenfrequency.

2. the perturbations with fractional frequencies are not eigenmodes of the system and
decay after letting the system evolve for some time.

3. the eigenfrequencies are highly tunable since the material parameters can be tuned
by temperature changes or applied electromagnetic fields. This means that one can
design a device which can provide frequency multiplication for a continuous range
of different frequencies.

After that, we show in Section 4.2.2 that also the elliptical mode can be excited with
fractions of its eigenfrequency and it can be more efficient than exciting with its eigen-
frequency. Furthermore, we embed in Section 4.3 our findings in a more general theory
that not only proves that every mode in the Skyrmion can be excited with fractions of
its eigenfrequency but also that this is true for any nonlinear system. In Section 4.4 we
summarize the results and put them into a bigger context.

4.1. Determining Eigenfrequencies of the Skyrmion

In this section, we conduct micromagnetic simulations using mumax3 [42] to demon-
strate the excitation modes of a Néel Skyrmion can be excited with fractions of their
eigenfrequency. The Néel Skyrmion is stabilized by perpendicular anisotropy in a sam-
ple with the parameters detailed in Table 4.1. The model for these Skyrmions is given
by Equation (2.7), which incorporates an external magnetic field used to excite the
Skyrmion. We apply an oscillating in-plane magnetic field with an amplitude of 0.05
Tesla. The simulations consider D < Dc = 4

√
AK/π, ensuring that the ground state

remains ferromagnetic [67, 35, 68].

To obtain an overview of all eigenmodes of the Skyrmion in our sample, we numerically
reproduce Figure 3.2 from Kravchuk et al.’s paper [35]. The results are presented in
Figure 4.3, where the frequency ωn of the magnon-Skyrmion bound states is plotted
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Figure 4.2.: Sketch of the internal Skyrmion modes, where black means the magnetization
pointing down and white magnetization pointing up (opposite direction on the inside and
outside). R0 is the ground state radius of the Skyrmion, and, rn characterizes the bound
modes. The mode n = 0 represents the breathing mode. Modes with |n| > 0 rotate
(counter-) clockwise with an amplitude-dependent frequency. Picture published in [28]

Fig. 4.5

Fig. 4.8

Breathing mode

Elliptical mode

Gyrotropic mode

2nd generation
Breathing mode

Figure 4.3.: Eigenfrequencies of a Néel Skyrmion as a function of rescaled DMI strength
D/Dc (left panel). These modes increase in frequencies if we go to lower DMI until
they eventually disappear in the mangon continuum. The ferromagnetic resonance which
represents the start of the Magnon continuum amount to 25 GHz for the given param-
eters of the sample. The different colours in the plot associate the points with different
modes. Detailed analysis for a fixed DMI strength D/Dc = 0.86 (right panel). The power
spectrum in the right panel was obtained by performing a Fourier transform of the mag-
netization dynamics [69]. Picture published in [28]

with respect to the DMI. Each mode is represented by a different color, and for the
anisotropy-stabilized Skyrmions (modeled using Equation (2.7) at zero magnetic fields),
most of the modes are below the magnon gap and emerge close to the critical DMI
strength Dc [35, 70].
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We excite all modes of the Skyrmion simultaneously with an in-plane magnetic Sinc
pulse

h(t) = h · sin(2πf · t)/(2πf · t)), (4.1)

where h is the amplitude of the magnetic field and f is the cutoff frequency of the pulse.
To be sure that we excite every magnon-Skyrmion bound state we apply a train of
pulses with different cutoff frequencies (25 GHz, 50 GHz, 100 GHz, 200 GHz, 500 GHz).
After that, we let the system evolve for 20 ns to avoid any non-eigenmodes, which decay
much faster than the eigenmodes of the Skyrmion. Then, we let the eigenmodes evolve
for another 10 ns before we calculate the power spectral density (PSD) according to
Ref. [71]

Psd(f) =
∑

k=x,y,z

1
N

N∑
i=1

∣∣∣∣∣∣
n∑
j=1

mk(ri, tj)e−i2πftj

∣∣∣∣∣∣
2

, (4.2)

where we do a discrete Fourier transform on the x-, y- and z-component of every spin in
our system. We repeat the same approach for different DMI values, sorting out the points
that belong to the same mode and making them noticeable by using the same color for
all points that belong to the same mode. Additional to linearization calculations as in
Ref. [35] for the breathing mode, elliptical mode, and triangular mode, we also observe
the second harmonic of the breathing mode and a gyrotropic mode. The continuous
magnon modes are then above the anisotropy gap ω = (2γ/Ms)(K +Ak2) in which k is
the wave number [35]. The result of this analysis is presented in Figure 4.3.

4.2. Analysis of Eigenmodes

After having an overview plot shown in Figure 4.3 we can start by analyzing the different
modes in detail. Therefore, we apply an oscillating in-plane magnetic field and analyze
the time evolution of this mode.

To study the radius of the Skyrmion we extracted the contour of the Skyrmion. There-
fore, we first took the data we got from the time evolution we implemented in mumax3,
and then we took the absolute value of the data so that we are only sensitive to the
out-of-plane (black) and in-plane (white) components, as shown in Figure 4.4 a). Then
we find the inner (green) and outer (red) contours of the absolute values with the help
of a python package named skimage [72], which is a package for image processing. To
measure the radius of the Skyrmion, we determine the centroid of the Skyrmion from
the contours and calculate the distance of different points on the contour to the centroid.
This leaves us with a list of many radii, so that we have a skeleton of the Skyrmion which
we can analyze over time to find out the frequencies of the Skyrmion modes. Since we
have a complete skeleton of the Skyrmion, we can study the breathing mode as well as
the elliptical mode and even more complicated modes.

A time evolution of one point on the contour, while applying an oscillating magnetic field
with a frequency of 3.59 GHz, can be seen in Figure 4.4 b). In the beginning, the radius
changes a lot since the Skyrmion has to adjust to the frequency of the applied pulse.
After 40 ns, the oscillation of the Skyrmion has reached an equilibrium. Because of this,
we calculate the Fourier transform of the oscillation for every point on the contour and
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a)

b)

c)

Figure 4.4.: a) Schematic picture of the contour of a Skyrmion. The black colour represents
the out-of-plane spins and the white colour the in-plane spins. Therefore the white ring
represents the boundary of the Skyrmion. Using the measured package of Python we
were able to find the core (green) and the exterior (red) of the Skyrmion. b) Radius of
the Skyrmion as a function of time while excited with an oscillating magnetic field with a
frequency of 3.59 GHz. Approximately the first 40 ns the Skyrmion mode is in a transient
phase, where the eigenmodes are superimposed with the applied pulse. During this phase,
the Skyrmion adjusts to the applied frequency until it has reached an equilibrium where
only the eigenfrequencies are visible. On the right, we show a zoom of the oscillation
after reaching the equilibrium. c) Fourier transform of b) showing the breathing mode at
7.17 GHz as the most prominent mode. There are also some other modes excited by the
inplane oscillating magnetic field.

we take the mean of these Fourier transformations to identify the frequency of all modes
present in the Skyrmion. In Figure 4.4 c) the breathing mode is most prominent at a
frequency of 7.17 GHz. Since the in-plane magnetic field also couples to other modes
and multiples of these modes, they are also excited with a much smaller amplitude. We
study the excitation of the breathing mode and the elliptical mode in more detail in the
following sections.

4.2.1. Breathing Mode

In this section, we study the excitation of the breathing mode ω0 by different frequencies
ω of the magnetic field. In Figure 4.5, we plot the rescaled amplitude r0/R0 of the
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Figure 4.5.: Rescaled amplitude r0/R0 of the breathing (ω0) mode as a function of the
frequency of the in-plane applied field Bext = 0.05 T with α = 10−3. Here r0(t) =
r(t) − R0, where R0 is the radius of the relaxed Skyrmion without any excitation. An
applied field with fractions of the breathing eigenfrequency can still strongly excite the
breathing mode. Picture published in [28].

Skyrmion as a function of the applied frequency, where r0(t) = r(t) − R0 in which we
define R0 as the radius of the relaxed Skyrmion without any excitation. We noticed
that the eigenmodes are excited by applying fractions of the corresponding frequency,
i.e. ω = ωn/m where m ∈ Z. The most striking result is, that the amplitude of the mode
excited with half of the eigenfrequency has the highest amplitude.

Furthermore, we studied the excitation of the breathing mode excited by an out-of-plane
field. With an out-of-plane field, one only excites the breathing mode which enables us
to explore the breathing mode independently from all other modes1. We analyze the
amplitude of the eigenmode rn concerning the applied field amplitude Bext, and the
material damping α. We applied out-of-plane AC magnetic fields with half and one-
third of the breathing mode frequency ω0.

In Figure 4.6, we show the amplitudes as a function of the applied AC magnetic field
strengths Bext, extracted from the frequency spectrum (see right panel), of the breathing
mode r0 and the forced perturbation m̃ at the AC field frequency as a log-log plot. The
top (bottom) panel corresponds to ω0/2 (ω0/3) for a fix damping constant α = 10−3. The
second and third harmonic generation requires that the amplitude of the breathing mode
grows with power two for ω0/2 and with power three for ω0/3. In Figure 4.6 we represent
a slope with a power of 2 and a power of 3 by straight lines. For higher applied fields
the data points deviate from the straight line. This is because there will be additional
higher-order magnon scattering. At a certain value of the amplitude of the applied field,
the amplitude of the breathing mode exceeds the one of the forced perturbation, which
shows that exciting the breathing mode with fractions of its eigenfrequency can indeed
be more efficient than with its eigenfrequency.

1Notice that an out-of-plane AC field can only excite the breathing mode of an isolated radially
symmetric Skyrmion. Exciting the other modes requires a non-radially symmetric perturbation. This
can either be done by other means or by out-of-plane fields accompanied by an additional radial symmetry
breaking mechanism such as introducing temperature fluctuations.
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slope 2

slope 3

Figure 4.6.: Plots of the amplitude of the excited modes in terms of the amplitude of
the applied field with α = 10−3. We observe the growth of the second (third) harmonic
generation represented by the straight line growing with a power of 2 (3). Above a
certain amplitude of the applied field, the breathing mode exceeds the mode with the
same frequency. Picture published in [28]

Figure 4.7.: Plots of the amplitude of the excited modes in terms of the damping parameter
for an out-of-plane AC magnetic field Bext = 0.003. Picture published in [28]

In Figure 4.7, we show r0 and m̃ as a function of the damping parameter α for Bext =
0.003 T. Analogous to a), the left (right) panel corresponds to an applied AC magnetic
field with frequency ω0/2 (ω0/3). The forced perturbation amplitude m̃ is constant
concerning the damping which shows, that it is completely independent of the damping.
However, the breathing mode r0 reduces in amplitude for higher values of the damping.
This means, that the dissipation damps the energy flow from the forced perturbation
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to the resonant mode. So we find that the frequency multiplication is more efficient for
systems with small damping.

4.2.2. Elliptical Mode

We have demonstrated that the breathing mode can be excited with fractions of its
eigenfrequency. However, this phenomenon is not exclusive to the breathing mode, as
we will show using the elliptical mode, proving that it is possible for other Skyrmion
modes as well. Figure 4.5 displays the elliptical mode (n = 2) concerning the frequency
of the applied oscillating in-plane magnetic field. We extract the radius at various points
of the contour as shown in Figure 4.4. Interestingly, the mode is not radially symmetric
and rotates during the excitation. Nonetheless, by performing a Fourier transformation
of each radius on the contour and taking the average afterwards, we effectively capture
even this rotating mode. The elliptical mode can also be excited with fractions of its
eigenfrequency. In the next section, we aim to embed these findings in a general theory
to prove that this concept is not only applicable to all other Skyrmion modes but also
to any nonlinear system.

Figure 4.8.: Rescaled amplitude r0/R0 of the elliptical (ω2) mode as a function of the
frequency of the in-plane applied field Bext = 0.05 T with α = 10−3. The picture published
in [28].

4.3. Theory of Frequency Multiplication for Non-Linear
Systems

For any nonlinear system with a field ϕ, the dynamics of small perturbations ϕ̃(t) ≪ 1
of the static background can be expressed by

dϕ̃

dt
≈ L1(ϕ0)ϕ̃+ L2 (ϕ0)ϕ̃2 + · · · + Lp(ϕ0)ϕ̃p + · · · (4.3)

where the first term, L1ϕ̃, represents a linear approximation for the nonlinear system,
yielding eigenstates with frequencies ωn. The terms Lk with k > 1 account for in-
teractions between perturbations, causing a renormalization of the eigenfrequencies ωn
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and resulting in amplitude-dependent frequencies. By applying a perturbation with a
fraction of the eigenfrequency, like

ϕ̃(t) ≈ ϕωn/2 cos(ωnt/2) (4.4)

the quadratic term, up to constants, will take the form

ϕ̃(t)2 ≈ ϕ̃2
ωn/2 cos(ωnt) (4.5)

which corresponds to a linear term of a perturbation with the eigenfrequency. Since this
principle can be extended to m > 2, this reveals that an eigenmode ωn can be excited
with a fraction of the frequency and the amplitude growths with the mth-power of the
driving amplitude with frequency ωn/m. This general theory can be transferred to mag-
netic systems. Here, the dynamics of the unitary magnetization m = M/Ms, where
Ms is the saturation magnetization, is described by the Landau-Lifshitz-Gilbert (LLG)
Equation 2.8. If m corresponds for example to a Skyrmion solution, then the excitation
modes of the Skyrmion can be viewed as small perturbations of the ground state config-
uration of m (Figure 4.2) and recover the results of the breathing and elliptical mode
of the Skyrmion from before.

4.4. Discussion and Summary

In this project, we study the excitation of Skyrmion modes by applying a fraction of
the eigenfrequencies. With the help of micromagnetic simulations, we show that it is
possible to excite the breathing mode and the elliptical mode with a fraction of their
eigenfrequency as shown in Section 4.2. Moreover, we showed in this example of the
Skyrmion that exciting with a fraction of the eigenfrequency increases the amplitude of
the response in the low damping regime. Additionally, we showed that for higher values
of the Gilbert damping coefficient α, the energy flow from the forced perturbation to
the resonant mode is reduced. These results make experimental excitations of Skyrmion
modes realistic since lower frequencies are easier to produce and there are no magnons
that are resonantly excited at the pumping frequency because the applied frequency is
well below the magnon gap. On top of that, the eigenfrequencies are highly tunable since
the material parameters can be tuned by temperature changes or applied magnetic and
electric fields. This could lead to a device which can provide frequency multiplication
for a continuous range of different frequencies.

While we explicitly confirmed this effect using micromagnetic simulations of solitary
magnetic Skyrmions’ excitation modes, our theoretical analysis demonstrates its univer-
sal behaviour, i.e. being independent of microscopic features of the magnetic structures
as well as the source of the perturbation shown in Section 4.3. Not only does this
provide a new method to excite the eigenmodes by applying lower frequency ampli-
tudes, but this frequency multiplication mechanism also propounds novel applications
in spintronics devices such as an in-material frequency multiplier for magnonic applica-
tions [73, 74, 75, 76, 77]. In particular, bound modes are not excited via linear resonance
and are weakly coupled (e.g. by dipolar stray fields or spin-wave excitations). They serve
as a building block for so-called parametrons, a computing scheme which has seen a
strong revival in the recent discussions of oscillator-based computing [78]. Furthermore,
the tunability of the magnetic textures by altering the material properties, temperature
and applied fields makes them very versatile.
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5
Topological Quantum Computation

Quantum computers are advanced computational systems that hold the potential to ac-
celerate numerous processes across various domains. To harness the power of quantum
computing, researchers are actively pursuing the development of more stable systems
that can better withstand external disturbances. Among these efforts are the endeav-
ours to create topological quantum computers, which leverage the unique properties of
materials to enhance stability and enable robust quantum information processing. In the
subsequent sections, we will delve into the fundamental principles of quantum comput-
ers, exploring how the topological characteristics of materials can be utilised to realise
the vision of a topological quantum computer.

5.1. Quantum Computation

The concept of quantum computers arose from the idea of Richard Feynman to compute
quantum mechanical systems with a quantum simulator [79]. Compared to classical
computers, information is stored in so-called quantum bits (qubits) [80] instead of bits.
A qubit can be represented by a Bloch sphere as shown in Figure 5.1 a). For illustration
purposes, one considers a conceptual spin inside this Bloch sphere. A qubit, which is a
two-state quantum system described by a wave function, can occupy state |0⟩ and state
|1⟩, representing the conceptual spin pointing in the +z- or −z-direction, respectively.
These states serve as the basis for measurement outcomes of the qubit’s wave function.
Qubits possess a significant property known as superposition, enabling them to exist in a
combination of both |0⟩ and |1⟩ states simultaneously. This implies that the conceptual
spin can be oriented in any direction within the Bloch sphere. Various physical systems
can serve as qubits. However, for a quantum computer to be suitable for quantum
computation, it must satisfy the DiVincenzo criteria [81]. According to these criteria,
a quantum computer must. This implies that the conceptual spin can be oriented in
any direction within the Bloch sphere. Various physical systems can serve as qubits.
However, for a quantum computer to be suitable for quantum computation, it must
satisfy the DiVincenzo criteria [81]. According to these criteria, a quantum computer
must

1. consist of a scalable physical system with well-characterized qubits

2. have the ability to initialize the state of the qubits to a simple fiducial state

3. have long relevant coherence times

4. build a universal set of quantum gates
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5. Topological Quantum Computation

5. provide a qubit-specific measurement capability.

The manipulation of the conceptual spin to change the state of one or multiple qubits
is known as a quantum gate. Mathematically, these quantum gates are represented by
unitary matrices on an individual basis which act on the state of the qubit. In an ex-
perimental setup, such manipulation can be achieved through various means, such as
using a laser pulse or a microwave pulse. However, the specific method for manipulating
the qubit state depends on the details of the physical system under consideration. To
account for imperfections in the experimental manipulation of qubits, the introduction
of a quality measure, such as fidelity, becomes necessary to quantitatively assess the
accuracy of operations performed on qubits. Fidelity is a metric that assesses the simi-
larity between the desired state and the actual state achieved by a quantum operation.
The most intuitive modification of a point on the Bloch sphere by a rotation around
the x−, y− and z−axis by an arbitrary angle already gives us a complete set of 1-qubit
operations with which one can reach every point on the Bloch sphere. In terms of quan-
tum gates, the minimal set needed for universal quantum computation is the Clifford
gates together with the π

8 -gate [82]. The Pauli matrices give the Clifford gates, which
are only 1-qubit gates but can be generalized to n-qubit gates by combining different
Pauli matrices with a tensor product.

Pn =
{
eiθπ/2σj1 ⊗ · · · ⊗ σjn | θ = 0, 1, 2, 3; jk = 0, 1, 2, 3

}
(5.1)

N-qubit gates play a pivotal role in quantum computation by facilitating the creation
of entanglement between two qubits. Entanglement refers to the correlation between
particles, making the state of one particle inseparable from that of the others, which is
of fundamental importance for quantum computations. A representation of the 1-qubit
Clifford gates and the π

8 -gate are shown in Figure 5.1 b).

y

x

z

X Y Z T

a)

b)

Figure 5.1.: In a) a representation of a qubit as a Bloch sphere with the different basis states
|0⟩ , |1⟩ , |+⟩ , |−⟩ , |i⟩ , |−i⟩ is shown. In b) we also show different quantum operations in
the basis of |0⟩ and |1⟩, where the X,Y and Z gates as n-qubit gates together with the
π
8 -gate T build a universal set of gates.
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5.2. Physical Implementations of Quantum Computation

As quantum computing continues to push the boundaries of technology, exploring differ-
ent physical systems becomes imperative to uncover their distinctive attributes, paving
the way for more versatile and efficient quantum computing platforms. Let’s embark on
an intriguing exploration of diverse physical systems poised for quantum computation,
delving into their unique strengths and limitations. For an overview, we made a table
inspired by [83].

Quantum
computing
platform

Trapped
ion qubits

Superconducting
qubits

Silicon
qubits

Topological
quits

Number of
qubits

IonQ: 79
(2018) [84],
AQT: 24

(2021) [85]

IBM: 127
(2022) [86]
Google: 54
(2019) [87]

6 (2022)
[88]

In progress

Coherence
times

∼ 18 − 100 ms
[85]

∼ 16 − 98 ms
[87] [86]

∼ 2.5 − 45 µs
[88] -

Gate
Fidelity

∼ 99.5%-99.9%
[85] [89]

∼ 99.9%
[87] [86]

∼ 99.9%
[88]

Expected:
∼ 99.9999%

Gate
operation

time
∼ 15 µs [85]

∼ 12 − 470 ns
[87] [86] - -

Scalability Some potential Medium to
high potential

High
potential -

Trapped Ion Qubits

The fundamental idea is to trap charged ions with magnetic and electric fields to stay in
place. The conceptual spin is represented by the population of different energy levels of
the ion. The population of the different energy levels can be manipulated by applying a
laser pulse, which then relates to single qubit gates. The process of applying a laser pulse
to two ions results in the entanglement of those ions. In order to achieve entanglement
among multiple ions, segmented traps, as discussed in [90], are employed, offering the
flexibility to manipulate atoms along one dimension or within a two-dimensional space.
This movement of the ions has to be slow since even the motion of the ions can induce
vibrational modes (phonons) that can also have an effect on the qubit. Therefore trapped
ion qubits have really long coherence times but quantum gates are slow.

Superconducting qubits

In this approach, one uses a superconducting circuit to represent a qubit. There are
different ways to combine electrical components so that the circuit can act as a qubit:
In the charge qubit, the circuit consists of a bias voltage, a capacitor, and a Josephson
junction; a Flux qubit consists of an inductance, a flux line, and a Josephson junction;
a phase qubit consists of a bias current and a Josephson junction. In all circuits, one
uses a Josephson junction with which one creates an uneven spacing between the energy
levels of the circuit. This is important so that transitions to other energy levels are
suppressed. In these circuits, the conceptual spin is represented by the population of
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5. Topological Quantum Computation

the energy levels of the circuit. The population of these energy levels can be controlled
via microwave pulses which in turn implement quantum gates. Two circuits can then be
coupled by connecting both to an intermediate electrical coupling circuit. The presence
of these coupling circuits restricts the entanglement between every qubit, making the
construction of a quantum computer significantly less efficient. Overall, superconducting
qubits have really short coherence times and the quantum gates are really fast.

Silicon qubits

In these systems, the conceptual spin is directly represented by the electron spin, since
in such semiconductor systems, the movement of electrons or holes is restricted in all
three directions of space. Quantum gates can be implemented by manipulating the
electron spin using electrical and magnetic fields. Multiple qubit gates can be done by
modifying the exchange coupling between the electron spins by applying gate voltages.
This layout also hinders entanglement between arbitrary qubits. Until now one is not
able to reach big qubit systems with silicon qubits but they are expected to have a good
scaling towards a high number of qubits.

Topological qubits

Topological qubits function based on a fundamentally distinct principle from conven-
tional systems, overcoming challenges related to manipulating conceptual spins in clas-
sical qubits using electric and magnetic fields, which are susceptible to alignment and
environmental influences. To tackle this issue in classical qubit systems, quantum er-
ror correction is employed, wherein multiple physical qubits are paired to form a logical
qubit and specific algorithms are utilized to correct errors. In contrast, topological qubits
implement error correction at the hardware level [91, 92, 18], representing the conceptual
spin through the occupation of topological excitations that can be manipulated by the
spatial exchange.

Since topological qubits are a rather new field, no coherence times or gate times are
known yet. However, in the course of this work, we will understand in more detail why
the fidelity of the gates is so high and how the exchange of topological excitations can be
used for quantum computing. For this purpose, we will go into the theory of topological
quantum computation in the next chapter.

5.3. Theory of Topological Quantum Computation

In this chapter, we will discuss the theory of topological quantum computation with the
help of a review by Lathinen et. al. [93].

5.3.1. Anyons

In a three-dimensional system, there is only the possibility of Fermions and Bosons.
This means that the wavefunction describing the system can get a phase of eiφ, where
φ is π for Fermions and 2π for Bosons upon exchanging two particles. However, in a
two-dimensional system, there is a much bigger variety of statistics possible. Apart from
bosonic and fermionic exchange statistics, exchanging two particles can lead to arbitrary
phase factors or even non-trivial unitary evolutions. This difference can be explained
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5.3. Theory of Topological Quantum Computation

in the following way: In three dimensions every path of a particle encircling another
particle can be contracted to one point. So a path λ1 that does not encircle another
particle can be continuously deformed to a path λ2 which encircles another particle (the
path can be deformed to pass behind the other particle), see Figure 5.2.

3D 2D

Figure 5.2.: Exchange statistics in 2D vs. 3D. In 3D the path λ2 describing two particle
exchanges is continuously deformable to λ1 by taking it behind or in front of the right-
most particle, and in turn, λ1 is contractible to a point. Hence, all the paths have the
same topology and thus correspond to the same statistical quantum evolution. In 2D,
however, the paths λ2 and λ1 are topologically inequivalent since λ2 can not be deformed
through the right-most particle, while λ1 is still contractible to a point. Hence, the paths
now have different topologies and different statistical quantum evolutions can be assigned
to each [91].

This results in the condition

3D : |Ψ(λ2)⟩ = |Ψ(λ1)⟩ = |Ψ(0)⟩

As one particle encircles the other twice, the evolution of the system can be represented
by the exchange operator R such that |Ψ(λ2)⟩ = R2 |Ψ(0)⟩. The contractibility of the
loop requires that R2 = 1, which has only the solutions R = ±1 that correspond to
the exchange statistics of either Bosons or Fermions. Because of this, the order of
the exchange does not matter and the statistics can be described by the permutation
group. This can not be done in a two-dimensional system since the path λ2 can not be
continuously deformed (the path is not allowed to pass through the encircled particle)
to the contractable path λ1. This means that the final state |Ψ(λ2)⟩ no longer needs to
equal the initial state |Ψ(λ1)⟩ resulting in the condition

2D : |Ψ(λ2)⟩ ≠ |Ψ(λ1)⟩ = |Ψ(0)⟩ .

Hence, the exchange operator R is no longer constrained to square to identity either.
Instead, it can be represented by a complex phase or even a unitary matrix in the case
of a degenerate Hilbert space. In the first case, the anyons are called Abelian anyons
due to their commuting exchange operators, while in the latter case, the anyons are
referred to as non-Abelian anyons. In comparison to the three-dimensional system, the
statistics can be described by the braid group, a mathematical group that characterizes
how particles exchange positions in two dimensions.

Anyons can be described by a large theoretical and mathematical construct, which is
called topological quantum field theory [94]. In the view of topological quantum com-
putation, most of the mathematical details can be omitted and anyons are the central
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building block. This minimal model is referred to as the anyon model. It can be con-
veniently described by a diagrammatic notation, which we will introduce in the follow-
ing [95]. If we assume that the low energy dynamics is only described by anyons the
possible evolutions are limited to three scenarios:

• They can be created or annihilated in a pairwise fashion.

• They can be fused to form other types of anyons.

• They can be exchanged adiabatically.

The anyon model is spanned by some number of particles

M = 1, a, b, c, . . ., (5.2)

where the labels a, b, c, . . . correspond to topological charges carried by anyons, while
1 is a trivial label representing the vacuum state without anyons. These charges must
adhere to conservation laws, which are referred to as fusion rules for anyons, and are
defined as follows:

a× b =
∑
c∈M

N c
abc. (5.3)

The fusion coefficients N c
ab = 0, 1, . . . indicate the available topological charges (fusion

channels) resulting from the combination of particles a and b. When different fusion
outcomes occur for the anyons, it implies a state space spanned by various fusion possi-
bilities. This means that a and b can fuse into multiple c ∈ M , allowing for the definition
of orthonormal states |ab; c⟩. In this space, we can then define a scalar product

⟨ab; c|ab; d⟩ = δcd. (5.4)

The states |ab; c⟩ and |ab; d⟩ belong to distinct charge sectors, denoted by c and d respec-
tively. The scalar product between these states corresponds to a projective measurement
in the fusion space, where we detect the outcome of fusing two anyons. In this fusion
space, we have different operations that we can perform on the anyons: The F -matrices
and braiding. To explain the F -matrices we have to imagine a system where we have
three anyons a, b and c, which are constrained to fuse to d. There are now different
possibilities for how to fuse these particles. Either a and b fuse to a particle e and then
e fuses with c to d which would be denoted as |(ab)c; ec; d⟩. Or b and c fuse to f and a
and f fuse then to d which is denoted by |a(bc); af ; d⟩. The F -matrices are then used to
connect these two choices by a unitary matrix F dabc

|(ab)c; ec; d⟩ =
∑
f

(F dabc)ef |a(bc); af ; d⟩ (5.5)

where (F dabc)ef are the matrix elements of F dabc, and f is summed over all the anyons
that b and c can fuse to. The diagrammatic representation is shown in Figure 5.3. The
braiding operation on the anyons is represented in a similar manner by a matrix R and
they describe all possible unitary evolutions that can take place in the fusion space. If
we take the basis |(ab)c; ec; d⟩ and we exchange a and b it implements the unitary

|(ba)c; ec; d⟩ =
∑
f

Rfabδe,f |(ab)c; ec; d⟩ , (5.6)

30



5.3. Theory of Topological Quantum Computation

a b c
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d

a b c

d

ab c
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a bc
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a b c

e

d

f

Figure 5.3.: Diagrammatic representation of Equation (5.5), (5.6) and (5.7). The lines
correspond to the world lines of the anyons and two intersecting lines correspond to
fusing two anyons.

where f spans all possible fusion outcomes of a and b and δe,f is the Kronecker delta
function. However, if we want to exchange b and c in the same basis as before we first
have to change the basis |a(bc); af ; d⟩, where we fuse b and c first with the matrix F dabc,
then apply R and after that return to the original basis with (F dabc)−1. This can be
formalised as

|(ac)b; ec; d⟩ = (F dabc)−1RF dabc |(ab)c; ec; d⟩ (5.7)

The diagrammatic representation of these equations can be seen in Figure 5.3. With
combinations of F and R matrices one is able to perform all unitary evolutions due to
distinct exchanges of anyons.

After this general introduction of the formalism we will demonstrate it for the particular
case of Ising anyons, which are most relevant in our work.

5.3.2. Ising Anyons

This model consists of two non-trivial particles ψ (Fermion) and σ (anyon), which satisfy
the fusion rules

1 × 1 = 1, 1 × ψ = ψ, 1 × σ = σ,

ψ × ψ = 1, ψ × σ = σ,

σ × σ = 1 + ψ.

(5.8)

According to these fusion rules, two Fermions combine into a trivial particle while a
Fermion behaves like a trivial particle when brought together with an anyon. The last
fusion rule embodies the non-Abelian nature of the canyon. When fusing two anyons,
we can define two fusion channels denoted by |σσ; 1⟩ , |σσ, ψ⟩, which belong to different
charge sectors. In order to have a non-trivial fusion space in the same charge sector we
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need to consider at least three σ particles that can fuse to a single σ in two distinct ways
(or equivalently four σ anyons that fuse to 1). With that, the constrained fusion space
can be represented by the states

|(σσ)σ; 1σ;σ⟩ , |(σσ)σ;ψσ;σ⟩. (5.9)

In this space we can then define the F - and R-matrices by [96]

F = F σσσσ = 1√
2

(
1 1
1 −1

)

R =
(
R1
σσ 0
0 Rψσσ

)
= e−iπ

8

(
1 0
0 ei

π
2

) (5.10)

Here the two left-most σ anyons were exchanged with the R-matrix. If we would define
a qubit in this fusion space R would implement the phase gate up to an overall phase
factor. If we exchange the right-most anyons we get

F−1R2F = e−iπ
4

(
0 1
1 0,

)
(5.11)

which would correspond to a NOT-gate. Furthermore braiding the anyons changes the
fusion channel of the two leftmost ones between 1 and ψ. Since one can only implement
logical phase and NOT-gates on a single qubit, Ising anyons can only implement the Clif-
ford group by braiding [97, 98]. This means that Ising’s anyons, although non-Abelian,
are not universal for quantum computation by entanglement. In order to overcome this
shortcoming of the Ising anyons one has to introduce the use of non-topological opera-
tions. For example, can bring two anyons nearby which lifts the degeneracy of the fusion
channels by ∆E and they will dephase in time according to

U =
(

1 0
0 ei∆Et.

)
(5.12)

Assuming that bringing the anyons nearby and separating them again can be controlled
precisely such that ∆Et = π/4, then one would have implemented the desired π

8 -phase
gate, albeit in a non-topologically protected fashion. This dephasing we studied in the
course of the Master thesis by Stephan Kessler [99] In this thesis, we will demonstrate
the non-Abelian nature of anyons within a condensed matter system that prominently
features a superconductor. In the upcoming chapter, we will introduce the fundamental
concepts of superconductors.
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In 1911 H. K. Onnes managed to liquefy Helium. He used it to cool mercury down
to cryogenic temperatures and performed resistivity measurements on the cooled mer-
cury [100]. The resistivity measurements demonstrated that the resistance undergoes a
sudden drop when the temperature falls below a critical value of Tc = 4.2 K, signalling
the emergence of a superconducting phase characterized by the high conductivity of
electrons in the material. [16]. Superconducting phases have also been observed in other
metals like Lead (Pb) and Niobium (Nb), which are referred to as superconductors.
This started a great effort to find different materials that become superconductors at
low temperatures. In 1933 Meissner and Ochsenfeld discovered that superconductors
also expel magnetic fields, which has become to be known as the Meissner effect [101].
The first theory that was able to give an explanation of why magnetic fields are expelled
in superconductors was given by the London equations [102]. It was put forward by
Fritz and Heinz London in 1935. Another phenomenological theory that is to explain
the Meissner effect was the Ginzburg-Landau theory (1950) [103] of superconductivity.
With the Ginzburg-Landau theory, one was able to divide the superconductors into two
categories now referred to as Type I and Type II. In Type I superconductors, there exists
a critical magnetic field that, once exceeded, causes the material to lose its supercon-
ducting properties. In contrast, Type II superconductors exhibit two critical magnetic
fields: The first allows partial penetration of the magnetic field, while the second com-
pletely suppresses superconductivity. The microscopic theory of superconductors came
in 1957 and was developed by Bardeen, Cooper and Schrieffer and is therefore known as
the BCS theory [17, 104].

6.1. The BCS Model

More detailed studies of superconductors led to the observation that the critical tem-
perature of the elemental superconductors is inversely proportional to the square root
of the superconductor’s elemental mass m, i.e. Tc ∝ 1/

√
m [5]. The phonon frequencies

ωph of an elemental crystal follow the same relation ωph ∝ 1/
√
m, which suggests that

superconductivity originates from electrons interacting with atoms of mass m.

The main mechanism behind BCS theory is the electron-phonon interaction causing
an effective attractive electron-electron interaction. The illustrative example for such
an attraction is often imagined as two electrons travelling inside a lattice of positively
charged ions, shown in Figure 6.1. The first electron induces a slight displacement
of the positively charged ions in its vicinity as it travels through the crystal. These
displacements result in a weakly net positive charge density in the path travelled by the
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first electron. Due to the finite mass of the ions, they use some time to relax back to
their original positions. The second electron is then attracted by this path of net positive
charge, and hence there is an effective attraction between the electrons. This attraction
has been mediated by atom displacements, that is by phonons.

Figure 6.1.: Schematic picture of the electron-electron interaction described by the BCS
theory. The movement of the right (left) electron causes lattice vibrations in the material
resulting in a positively charged region. The left (right) electron is attracted by this
positively charged region. Because of the attraction of the electrons to each other they
move as a pair. Such pairs of electrons are called Cooper pairs.

This sketch gives a good view of the microscopics of the superconductor. The attractive
potential can be derived properly from a Hamiltonian describing electron-phonon scat-
tering. The resulting effective potential is attractive within a certain frequency range,
and repulsive above these frequencies. The simplest version of the BCS theory is there-
fore built on a simple assumption: There is an attractive potential of strength V between
electrons travelling in opposite directions within an energy interval EF ±ℏωD about the
Fermi level, where ωD is the Debye frequency of the phonons.

6.2. BCS Hamiltonian

The BCS Hamiltonian in the continuum limit reads [105]

H =
∫
dr c†

α(r)hαβ(r)cβ(r) − V

2 c
†
α(r)c†

β(r)cβ(r)cα(r) (6.1)

where c†
σ(r) creates an electron with spin σ at position r, hαβ is the Hamiltonian for

non-interacting electrons and V is the onsite potential term. Since it is quartic in the
fermionic creation/annihilation operators this Hamiltonian is very difficult to handle.
To make the second term quadratic we perform a mean-field approximation

AB = ⟨A⟩B +A⟨B⟩ − ⟨A⟩⟨B⟩ (6.2)

where operators are partly replaced by their expectation values. To describe supercon-
ductivity we will choose the Cooper pair channel which gives us A = c†

↑c
†
↓ and B = c↓c↑.
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6.2. BCS Hamiltonian

Applying Equation (6.2) to the second part of the Hamiltonian (6.1), while excluding
the ⟨A⟩⟨B⟩ term since it only adds an energy shift, one gets

H =
∫
dr c†

α(r)hαβ(r)cβ(r) +∆(r)c†
↑(r)c†

↓(r) +∆∗(r)c↓(r)c↑(r) (6.3)

where
∆(r) := −V ⟨c↓(r)c↑(r)⟩ = V ⟨c↑(r)c↓(r)⟩ = V

2 ραβ⟨cα(r)cβ(r)⟩ (6.4)

which uses ραβ = (iσy)αβ with σy being a Pauli matrix. The quantity ∆(r), called the
pairing potential, provides us information about the interaction strength of the Cooper
pairs.

6.2.1. Bogoliubov-de Gennes Equation

In this section, we want to rewrite the Hamiltonian (6.3) with new operators γ such
that it is diagonal with respect to these operators. Using the standard fermionic anti-
commutation relations we can calculate the useful commutator

[H, cσ(r)] = −hσβ(r)cβ(r) −∆(r)ρσβc†
β(r). (6.5)

Then we use the Bogoliubov transformation to rewrite the c operators in terms of the
new γ operators

cσ(r) =
∑
n

uσn(r)γn + v∗
σn(r)γ†

n (6.6)

where u, v are complex functions. This leads to H = ∑
n ϵnγ

†
nγn with ϵn being the

eigenvalues in the diagonal basis. This enables us to rewrite Equation (6.5) so that

[H, cσ(r)] =
∑
n

(−hσβuβn −∆(r)ρσβvβn)γn + (−hσβv∗
βn −∆(r)ρσβu∗

βn)γ†
n. (6.7)

But we can also insert Equation (6.6) directly into the commutation relation so that

[H, cσ] = [H,
∑
n

uσn(r)γn + v∗
σn(r)γ†

n]

=
∑
n

uσn(r)[H, γn] + v∗
σn(r)[H, γ†

n]

=
∑
n

−uσn(r)ϵnγn + v∗
σn(r)ϵnγ†

n

(6.8)

which uses the fact that H is diagonal in γ†
n, γn. Comparing Equation (6.7) and Equa-

tion (6.8) produces the following expressions:

ϵnuσn(r) = hσβuβn(r) +∆(r)ρσβvβn(r) (6.9)

and
ϵnvσn(r) = −h∗

σβvβn(r) −∆∗(r)ρσβuβn(r). (6.10)

We can rewrite these equations in matrix form ↔
h ∆(r)↔

ρ

−∆∗(r)↔
ρ

↔
h∗

(u⃗
v⃗

)
= ϵn

(
u⃗
v⃗

)
(6.11)
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with (
u⃗
v⃗

)
=


u↑
u↓
v↑
v↓

 . (6.12)

These equations are called the Bogoliubov-de Gennes equation (BdG equations). The
BdG equations allow us to shift our perspective from creating Fermions to directly
creating excitations on top of the superconductor’s ground state, which are the Cooper
pairs. By diagonalizing the Hamiltonian and solving the eigenvalue Equation (6.11), we
gain direct access to the energy spectrum. In this scenario, the resulting particles are
bosonic in nature, capable of carrying charge. Due to their bosonic nature, they can
undergo condensation. Consequently, all electrons occupy the ground state, preventing
scattering, and resulting in a vanishing resistivity.
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In this chapter, we aim to establish a connection between the preceding chapters by ex-
ploring the emergence of topological excitations within the context of superconductivity.
These topological excitations can manifest as Majorana zero modes, which can be iden-
tified with the Ising anyons mentioned earlier. The conditions under which Majorana
modes emerge can be best discussed in a minimal model of an electron chain. Since this
model was first introduced by Kitaev [18] it is known as the Kitaev chain toy model.
We will also discuss the braiding of Majorana modes within this analytically solvable
model and learn how to deal with problems which appear in numerical calculations.
After that, we connect two Kitaev chains to obtain a quasi-one dimensional T-shaped
structure known as a T-junction, which was introduced by Alicea [24]. In such a T-
junction we can study the braiding of Majorana modes more closely and recover their
non-Abelian statistics.

7.1. Kitaev Chain

The Kitaev chain toy model can be written as a one-dimensional tight-binding model
of a spinless p-wave superconductor, where p-wave superconductivity arises from the
pairing between electrons with opposite momenta and opposite spins, and is described
by the Hamiltonian

Hchain = −µ
N∑
i=1

ni −
N−1∑
i=1

(tc†
ici+1 −∆cici+1 + h.c.). (7.1)

The system represents a chain of electrons, and each occupied electron contributes the
chemical potential to the total energy. The electrons can hop from one site to another
with the hopping energy t and they attract each other with the p-wave superconducting
pairing ∆. Here the p-wave type comes from the pairing potential acting on two lattice
sites. This pairing has the strength |∆| and the phase ϕ and N is the number of sites
of the Kitaev chain. This model is schematically shown in Figure 7.1. The Kitaev chain
toy model can be rewritten if one considers an electron as two half Fermions shown in
the middle of Figure 7.1. Mathematically speaking this can be expressed by writing the
electronic operator as a real and an imaginary part1:

ci = 1√
2

(γi,1 + iγi,2) (7.2)

c†
i = 1√

2
(γi,1 − iγi,2). (7.3)

1which is a special form of the Bogoliubov transformation shown in Equation (6.6)
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Figure 7.1.: In the top the Kitaev chain is shown with a graphical representation of the
chemical potential, hopping and superconducting term. The arrow to the middle of the
picture embodies the transformation in Equation (7.3) and leads to the chain in the
middle of the figure, where the electrons are split in a red and blue half. These red and
blue halves can then be combined differently depending on the parameters. On the left
side, the halves are paired on the same site leading to a chain without any interaction
between the sites. On the right side, the halves are paired on different sites leading to a
chain without interactions between the electron halves on the same site and two unpaired
electron halves.

Here we get two new operators γi,1 and γi,2, which are their own antiparticles γi,j = γ†
i,j .

These particles are called Majorana particles [106] and obey the Fermion statistics
{γi,α, γi,β} = 2δijδαβ. If we rewrite the Hamiltonian now with the new operators we
get

Hchain = − µ

2

N∑
i=1

iγi,1γi,2 − 1
2

N−1∑
i=1

i[(t−∆)γi,1γi+1,2

− (t+∆)γi,2γi+1,1] − µ

2 .
(7.4)

The Hamiltonian in this form allows us to easily study the different limits of the model.

Limit µ ̸= 0 and ∆ = t = 0: In this scenario, the chain lacks interactions between its
sites, resulting in a trivial case. However, there is a non-zero value for µ, which can be
interpreted as the interaction between half electrons. This interaction is illustrated in
the bottom left of Figure 7.1. The corresponding Hamiltonian describes this limit.

Hchain = − i

2µ
N∑
i=1

γi,1γi,2 = −µ
N∑
i=1

c†
ici. (7.5)
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Limit µ = 0 and ∆ = t: This is the topological limit where we have the Majorana zero
modes γ1,1 and γN,2 and the Hamiltonian transforms to

Hchain = −it
N−1∑
i=1

γi,2γi+1,1. (7.6)

Since µ = 0 we don’t have any interaction between the electron halves on the same
site, which is replaced by an interaction between the electron halves on different sides.
When combining the electron halves on different sides, two-electron halves at the end of
the chain remain unpaired, as depicted in Figure 7.1. These unpaired electron halves,
known as Majorana modes, are of particular interest due to their non-Abelian statistics
and potential applications in topological quantum computing. Another feature of this
limit is that the Majorana modes at the ends of the chain γ1,1 and γN,2 do not appear
in the Hamiltonian (7.6) which means that they have zero energy.

7.2. Eliminating Numerical Phases in Zero Energy
Eigenvalues

During the calculation of the Majorana zero modes, we encounter a challenge wherein the
nearly degenerate zero energy eigenvalues result in multiple solutions, including linear
combinations of the Majorana zero modes with arbitrary phase factors. To extract the
Majorana zero modes we perform a two-step procedure, which we demonstrate in the fol-
lowing explicitly for two Majorana zero modes2. Note that numerically we are computing
a system of finite size. Therefore, instead of having two identical zero eigenenergies, we
have a small gap and thus we can define wave functions with energy E ≳ 0 and E ≲ 0,
because of particle-hole symmetry. As we are working in the BdG formalism every eigen-
state χ can be decomposed into an electronic part, u⃗ = (u1↑, u1↓, . . . , uN↑, uN↓)T , and a
hole part, v⃗ = (v1↑, v1↓, . . . , vN↑, vN↓)T , as

χ =
(
u⃗
v⃗

)
. (7.7)

Additionally, the particle-hole symmetry comes with a gauge choice in the sense that
any eigenstate with positive energy

χE≳0 = eiκ
(
u⃗
v⃗

)
, (7.8)

has a corresponding eigenstate, its particle-hole partner, with negative energy,

χE≲0 = PχE≳0 = e−iκ
(
v⃗∗

u⃗∗

)
. (7.9)

Here P = τxK is the particle-hole operator, consisting of the operation of exchanging
particles and holes combined with complex conjugation. We have explicitly taken into

2To disentangle multiple zero energy modes we iterate this procedure.
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7. Topological superconductivity

account an arbitrary, artificial phase factor eiκ, which can arise upon diagonalization. To
determine the wave functions and get rid of the arbitrary phase factor, we first write

χE≳0 = η χA +
√

1 − η2 χB, (7.10)

as a linear combination of the computed normalized eigenvectors χA and χB, where we
optimize the parameter η to ensure that the wave function has equal weights at both
vortex positions. Then we compute its particle-hole partner.

In a second step we compute the Majorana basis [107]

χl =
(
u⃗l
v⃗l

)
= 1√

2
(χ̃E≳0 + χ̃E≲0)

= 1√
2

(
ei(κ−β)u⃗+ e−i(κ−β)v⃗∗

ei(κ−β)v⃗ + e−i(κ−β)u⃗∗

)
,

(7.11)

χr =
(
u⃗r
v⃗r

)
= i√

2
(χ̃E≳0 − χ̃E≲0)

= i√
2

(
ei(κ−β)u⃗− e−i(κ−β)v⃗∗

ei(κ−β)v⃗ − e−i(κ−β)u⃗∗

)
,

(7.12)

where we introduced χ̃E≳0 = e−iβχE≳0 and χ̃E≲0 = eiβχE≲0. We optimize β such that
χl and χr are equally localized at the two ends of the chain. We chose the labels ‘l’ and
‘r’ for the initial left and right positions, respectively. Note that the left/right Majorana
zero mode has also a small weight localized at the position of the right/left one, which
is exponentially suppressed with the length of the chain.

In the next section, we will show that Majorana modes represent the Ising Anyons we
discussed before and can therefore build a Majorana qubit.

7.2.1. Majorana Qubit

In the following, we will demonstrate that a topological superconductor has the capability
to realize the Ising Anyons introduced in Section 5.3.2. For that, we need to associate the
three particles 1, ψ and σ of the Ising Model to particles in topological superconductors.
The localised Majorana modes can be seen as a pair of σ Anyons. Next, we will define
the ground state of the topological phase in the absence of Majorana zero modes as 1.
The fermionic particles correspond to ψ and the fusion rule ψ × ψ = 1 means nothing
else than that two Fermions can pair up to form a Cooper pair that vanishes into the
condensate, thus becoming part of the ground state 1. This also means that only the
parity of the ψ Fermions is conserved. When we consider a system of two Majorana zero
modes corresponding to σ Anyons, then the state with eigenvalue of d†d = (1 + iγ1γ2)/2
being 0 can be identified with the fusion channel σ×σ → 1 and the state with eigenvalue
1 will then represent the fusion channel σ× σ → ψ. So the topological phase consists of
the two fusion channels

iγ1γ2 |σσ; 1⟩ = − |σσ; 1⟩ , iγ1γ2 |σσ;ψ⟩ = + |σσ;ψ⟩ (7.13)

where |σσ;ψ⟩ = d† |σσ; 1⟩. With P = iγ1γ2 as the parity operator, it comes apparent
that these fusion channels belong to different parity sectors since they have different signs
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7.3. Braiding in a Kitaev Chain

and can therefore not form a coherent superposition. This in turn means that they cannot
form the basis of a qubit. To form a qubit we need four Majorana modes [108, 109, 110].
Here, we choose the even parity sector (P = +1) to encode a physical qubit

|0⟩ ≡ |σσ; 1⟩ |σσ; 1⟩ , |1⟩ ≡ |σσ;ψ⟩ |σσ;ψ⟩ . (7.14)

With the qubit defined, we can discuss how braiding can be implemented and related to
the braiding operator in Equation (5.11) for the Ising Anyons.

7.3. Braiding in a Kitaev Chain

a)

b)

Figure 7.2.: a) Rotation of the superconducting phase of the Kitaev Chain from the view
of the sample. b) Rotation of the sample while the superconducting phase is pointing to
the right. The color bar is showing the probability density of the Majorana mode.

Generally, the operations of topological quantum computation can be carried out by
braiding of Anyons. Any braiding operation can be split into a sequence of braids
involving only two Majoranas. The problem with a completely one-dimensional model
is that the notion of braiding is not directly imprinted in the model. This is because
one cannot move the Majorana modes through each other without merging them back
into an electron. So one has to think of a way that effectively changes the position
of the Majoranas. The only thing in the model that gives the notion of a direction
is the superconducting phase ϕ. So when we rotate this phase we effectively rotate the
Majorana modes around each other. A visualization of that can be seen in Figure 7.2. In
a) we keep the sample fixed and show how the superconducting phase turns from pointing
to the right to pointing to the left. In scenario b), we maintain a fixed superconducting
phase directed towards the right. This causes the sample to rotate, leading to a rotation
of the Majorana modes at the ends around themselves. Consequently, this rotation
results in the braiding of the Majorana modes within the Kitaev chain.
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7. Topological superconductivity

7.4. Analytical Braiding in the Kitaev Chain Toy Model

To justify the algorithm that we developed in Section 7.2 we study the effective braiding
of Majoranas analytically in a Kitaev chain as we described it before. For that, we have
to derive the Kitaev chain in the topological phase. In the sweet spot of the topological
limit described by µ = 0, t = ∆ and ∆ = |∆| · e−iϕ, the Kitaev chain Hamiltonian
reduces to

Htop
chain = −it

N−1∑
i=1

γi,2γi+1,1. (7.15)

Two possible zero energy eigenmodes as a function of ϕ in the Bogoliubov-de Gennes
formalism, are given by [111]

wA(ϕ) =
{
e−iϕ, 0, · · · , 0; 1, 0, · · · , 0

}
/
√

2 (7.16)

wB(ϕ) =
{

0, · · · , 0,−e−iϕ; 0, 0, · · · , 1
}
/
√

2, (7.17)

where the first part in front of the semicolon represents the electronic part and the
second part represents the hole part of the eigenvector. In the first step, we combine the
two eigenvectors as in Equation (7.10). For η = 1/

√
2 we obtain a pure electronic wave

function

wE≳0(ϕ) = (wA(ϕ) + wB(ϕ))/
√

2 =
{
e−iϕ, 0, · · · ,−e−iϕ; 1, 0, · · · , 1

}
/2 (7.18)

with its particle-hole symmetric partner

wE≲0 = PwE≳0(ϕ) =
{

1, 0, · · · , 1; eiϕ, 0, · · · ,−eiϕ
}
/2. (7.19)

With the ansatz w̃E≳0 = e−iβwE≳0 and w̃E≲0 = eiβwE≲0 we determine β from Equa-
tions (7.11) and (7.11) such that we have a left and a right localized mode. This yields
a phase β = ϕ/2 and the Majorana modes

wl(ϕ) =
{

− ie−iϕ/2
√

2
, 0, · · · , 0; ie

iϕ/2
√

2
, 0, · · · 0

}
(7.20)

wr(ϕ) =
{

0, 0, · · · , e
−iϕ/2
√

2
; 0, 0, · · · , e

iϕ/2
√

2

}
. (7.21)

The difference between wA(ϕ), wB(ϕ) and wr, wl gets apparent when we calculate the
Berry matrix given by

Γjk = −i
∫ Φ

0
dϕ ⟨w(j)(ϕ)| ∂ϕ|w(k)(ϕ)⟩. (7.22)

For the electronic part of wA(ϕ), wB(ϕ) we get Γjk = −Φ
2 δjk and for the electronic part

of wl, wr we get Γjk = −Φ
4 δj,k.

Next, we will discuss how we can calculate the exchange statistics of the Majorana zero
modes in the Kitaev chain toy model. For that, we have to exchange the Majorana zero
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7.4. Analytical Braiding in the Kitaev Chain Toy Model

modes as we discussed before by changing ϕ from 0 to π. This means that our Majorana
modes before the exchange with ϕ = 0 have the following form

wl(0) =
{

− i√
2
, 0, · · · , 0; i√

2
, 0, · · · 0

}
(7.23)

wr(0) =
{

0, 0, · · · , 1√
2

; 0, 0, · · · , 1√
2

}
. (7.24)

After the exchange, we have that ϕ = π resulting in the form

wl(π) =
{

− 1√
2
, 0, · · · , 0; − 1√

2
, 0, · · · 0

}
(7.25)

wr(π) =
{

0, 0, · · · ,− i√
2

; 0, 0, · · · , i√
2

}
. (7.26)

But the two edges are interchanged too. So overall the exchange resulted in a trans-
formation of the coefficients w(l)

i (π) → w
(r)
i (0) and w

(r)
i (π) → −w(l)

i (0). Expressed as a
matrix of overlaps we get

(Mlr)jk =
∑
i

[w(j)
i (ϕ = π)]∗w(k)

i (ϕ = 0) =
(

0 1
−1 0

)
. (7.27)

We can express this matrix also in the operator form by remembering that the Majorana
operator is given by the Bogoliubov-de Gennes formalism. The two zero energy Majorana
operators are given by γj = ∑

i(w
(j)
i ci + [w(j)

i ]∗c†
i ), where j = l, r. They satisfy the

anticommutation relations {γj , γk} = 2δjk, provided ∑i[w
(j)
i ]∗w(k)

i = δjk. Therefore the
exchange leads to the transformation in operator form as γl → γr and γr → −γl which
agrees with the work of Ivanov [29]. The exchange operator can then be defined as

Rlr = e−iπ
4 σz = e− π

4 γlγr = 1√
2

(
1 − γlγr

)
. (7.28)

This exchange operator relates to the exchange operator of the Ising Anyons in Equa-
tion (5.10) by an overall phase factor (and the direction of the exchange).

7.4.1. Numerical Braiding in the Kitaev Chain Toy Model

To diagonalize Equation (7.1), it is very useful to write the Hamiltonian according to
the Bogoliubov-de Gennes formalism [112], meaning that our Hamiltonian will be given
by H = 1

2C
†HBdGC with C a column vector containing all creation and annihilation

operators, C = (c1, ..., cN , c
†
1, ..., c

†
N )T , where the first part of the vector corresponds to

holes, and the second part corresponds to electrons. The 2N × 2N matrix HBdG can be
written in a compact way using Pauli matrices τi in particle-hole space, and denoting
with |n⟩ a column basis vector (0, ..., 1, ..., 0)T corresponding to the n-th site of the chain.
With these definitions, the Bogoliubov-de Gennes Hamiltonian is given by

HBdG = −µ
N∑
n=1

τz ⊗ |n⟩ ⟨n| −
N−1∑
n=1

[(tτz + i∆τy) ⊗ |n⟩ ⟨n+ 1| + h.c.] . (7.29)

In this form, we can get the energy spectrum by calculating the eigenvalues ϵn and
eigenvectors (u⃗, v⃗)T similarly to Equation (6.11). The phase of the zero energy modes
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Figure 7.3.: a+b) Numerical calculation of Equation (7.22). We plot j = 0, k = 0 (blue),
j = 0, k = 1 (orange) in the left figure and j = 1, k = 0 (blue), j = 1, k = 1 (orange) in the
middle figure. ϕ characterizes the angle of the superconducting phase. c) Eigenspectrum
of the Hamiltonian Equation (7.29) with µ = 1, 7, t = |∆| = 1 as a function of the
superconducting phase ϕ.

wl, wr is corrected by the algorithm presented in Section 7.2. We numerically calculated
the Berry matrix and the energy spectrum for µ = 1, 7, t = |∆| = 1 and the results
can be seen in Figure 7.3. The numerical calculations of the Berry matrix confirm the
results obtained from the analytical calculation. The energy spectrum demonstrates
that the zero-energy modes remain well-separated from the high-energy modes as the
superconducting phase changes from 0 to π. Additionally, we computed the overlap of
the eigenvectors before and after the process, which agrees with the matrix given in
Equation (7.27).

In the next section, we extend the model of the Kitaev chain to a model, where one is
also able to braid Majoranas in quasi-two dimensions. This also allows us to study the
exchange of Majorana zero modes in a system with four Majorana zero modes.

7.5. T-Junction

Instead of braiding the Majorana modes effectively with the help of the superconduct-
ing phase, we can also combine two Kitaev chains such that they build a T-junction.
The braiding is done in real space through a suitable manipulation of the chemical
potential in this effectively one-dimensional wires [24]. Going beyond the quasi-one-
dimensional system considered in the literature, we numerically study the T-junction
in a full two-dimensional system. This is achieved by constructing a two-dimensional
p-wave superconductor and selectively inducing the topological phase in specific regions,
forming a topological T-junction structure within the superconductor, while keeping the
remaining parts in the trivial phase. In the following, we will outline how the system
shown in Figure 7.4 can be implemented with the software that was written in the course
of this thesis. The software is based on a code that was written by Kjetil Hals [113]. We
consider a two-dimensional superconductor with px ± ipy-wave pairing described by the
Hamiltonian

H = −µ
∑
i

c†
ici − t

∑
⟨i,j⟩

(c†
icj + h.c.) +∆x

∑
i

(c†
ic

†
i+x̂ + h.c.) +∆y

∑
i

(
c†
ic

†
i+ŷ + h.c.

)
.

(7.30)
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Here µ is the chemical potential, t is the hopping parameter, ∆x is the pairing in the
x-direction and ∆y is the pairing in the y-direction. In this two-dimensional system,
every index for lattice sites corresponds to i = (x, y) and the symbol ⟨i, j⟩ indicates a
summation of the nearest-neighbour lattice sites. Since Majorana zero modes appear at

Electric Contacts

Superconductor

T-Junction

Figure 7.4.: Depiction of a quasi-two-dimensional superconductor with (px ± i py)-wave
pairing where the T-junction is controlled by electric contacts.

the ends of a topological region in a superconductor, we control the phase transition in
our system by changing the chemical potential µ. If µ < 2t the superconductor is in the
topological phase and if µ > 2t the superconductor is in the trivial phase. To imprint the
T-junction structure in our system we drive the chemical potential in the region outside
of the T-junction to the trivial phase and make it a constant. Inside the T-junction
we allow the chemical potential to change. This corresponds to the situation shown in
Figure 7.4, where the electrodes will be able to change the chemical potential locally
and define the T- Junction in the system. With the T-junction imprinted in the two-
dimensional superconductor, we study how two and four Majoranas can be generated
and exchanged to verify their statistics. In the case of two Majoranas, we drive the
horizontal wire into the topological phase to generate Majorana modes on the left and
the right side as shown in Figure 7.5 (a). The exchange procedure of the Majorana
modes is as follows [111]:

1. Move the left Majorana to the top of the vertical wire over the connection point
of the vertical and horizontal wire.

2. Move the right Majorana to the left of the horizontal wire.

3. Move the Majorana in the vertical wire to the right of the horizontal wire.

In the case of four Majoranas, we drive a few sites of the horizontal wire on the left
and the right in the topological phase as shown in Figure 7.5. With that, we have two
Majoranas on the left side and two Majoranas on the right side of the horizontal wire.
The exchange of the two central Majoranas follows the same procedure as for the case
of two Majoranas. Besides that now the middle part of the bottom wire is in a trivial
phase.
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1.

2.

3.1.

2.

3.

a) b)

Figure 7.5.: Schematic picture of braiding two Majoranas (a) and four Majoranas (b) in a
quasi-two-dimensional superconductor with a T-junction shown by a red box.

7.5.1. Numerical Implementation

Since the T-junction shape is much more difficult to calculate analytically we will cal-
culate the Hamiltonian in the Equation (7.30) numerically by bringing it to the form of
Equation (6.11) but without considering spin. This then results in the following form of
the BDG Hamiltonian  ↔

h ∆(r)
−∆∗(r)

↔
h∗,

 (7.31)

where
↔
h is given by the kinetic energy of free particles

↔
hkin = − ℏ

2m(∂2
x + ∂2

y) and ∆(r)
embodies the px ± i py-wave pairing. We can relate the parameters in Equation (7.30)
by discretizing

↔
hkin and ∆(r). Here we choose to discretize the Hamiltonian on a square

lattice where the neighbouring sites have a distance a to each other. Therefore, we use
the central differential approximation

df

dx
≈ fi+a − fi−a

2a
d2f

dx2 ≈ fi+a − 2fi + fi−a
a2

(7.32)

where i indicates a spatial site. By applying the central differential approximation to
↔
hkin we then get

↔
hkinu⃗ = Vi,j u⃗i,j + t(u⃗i+a,j + u⃗i,j+a) + t†(u⃗i−a,j + u⃗i,j−a), (7.33)

with the onsite term Vi,j = ( 2ℏ2

ma2 − µ)1 where 1 is the identity matrix and µ is the
chemical potential. And the hopping parameter t = − ℏ2

2ma21. The superconducting
pairing gives us

∆(r)u⃗ = ∆xu⃗i+a,j +∆†
xu⃗i−a,j +∆yu⃗i,j+a +∆†

yu⃗i,j−a. (7.34)

Having the numerics set up we can study the braiding of Majorana zero modes in the
T-junction.
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7.5.2. Numerical Braiding in the T-Junction

To braid the Majorana zero modes in a numerical setup starts with the situation in
Figure 7.6 where both Majorana zero modes are localized in the bottom wire. The region
between the Majoranas is driven in the topological phase and the rest of the system is
in the trivial phase. We can then move one of the Majoranas by driving the site where
the left Majorana is placed to the trivial phase. This results in the Majorana localizing
one site more to the right. With this procedure of moving the Majorana modes, we can
implement the exchange of the Majoranas described before. When the two Majoranas
are right above each other we perform the transformation ∆y → − ∆y to make sure
that we don’t get any spurious zero-energy modes as mentioned in the work of Alicea et
al [24]. For each of these adiabatic steps t 3 we then solve the eigensystem. The resulting
exchange of two Majorana modes is shown in Figure 7.6 a). In Figure 7.6 b) we show the
absolute overlap of the initial electronic wavefunction with the electronic wavefunction
after different adiabatic steps. After part one, only half of the wavefunction stayed at the
same places since we moved one of the Majorana modes to the vertical wire. During the
second part, the overlap goes to zero meaning that no Majorana is in the same position
as before. But at the end of the second part, we are again at an overlap of ⟨ψi|ψf ⟩ = 0.5.
When we proceed with the third part, we reproduce the situation of the beginning apart
from a non-abelian phase which results again in a perfect absolute overlap. In c) we show
how the energy of the different modes around zero energy transform. The important
observation here is, that the two zero-energy Majorana modes stay well separated from
the high energy modes during the whole process. This justifies our transformation from
the electronic wavefunctions to the Majorana wavefunction later on. Only the high-
energy modes are changing under the exchange of the Majorana modes.

If we numerically calculate the overlap matrix (7.27) we get

M12 =
(

0 1
−1 0

)
, (7.35)

where we numbered the Majoranas from left to right. This recovers the same exchange
operator we had for the Kitaev chain. In the T-junction, we can now also implement
a system with four Majoranas numerically. Therefore we drive some sites on the left
and right side in the topological phase and leave the rest of the system in the trivial
phase. The movement of the Majoranas can then be done by driving the site on the
right to the second Majorana in the topological phase. The second Majorana will then
localize on the site to the right resulting in a movement to the right. The exchange of
four Majorana modes is shown in Figure 7.7
The numerical calculation of the overlap matrix for the second and third Majorana then
leads to the matrix

M23 =
(

0 1
−1 0

)
. (7.36)

Expressed in the Majorana operators we get γ2 → γ3 and γ3 → −γ2. Since the braiding
involves the pair γ2 and γ3 it is convenient to consider the two qubits composed out of
the Majorana modes (γ2, γ3) and (γ1, γ4). Therefore we introduce the basis [114] |n+n−},

3We don’t do a full time evolution here.
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Figure 7.6.: a) Numerical braiding of two Majorana modes with Lx = 19 and Ly = 11.
b) Absolute overlap of the initial electronic wavefunction with the electronic wavefunction
after the adiabatic step t. c) Energies of the modes around zero during the exchange of
the Majorana modes. The color bar is showing the probability density of the Majorana
mode.

where n+ = 0, 1 is a qubit formed by (γ2 and γ3), while n− = 0, 1 is a qubit formed
by (γ1 and γ4). However, it is more convenient to define the exchange operators in the
basis |n1n2⟩ where the first qubit n1 is formed by (γ1 and γ2), while the second qubit
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Figure 7.7.: Numerical braiding of four Majoranas with Lx = 40 and Ly = 15. When the
Majorana mode is in the middle of the bottom wire it forms a triangle mode since it is
changing from one parity sector to the other parity sector.

is formed by (γ3 and γ4). These two bases can be related by the F-matrix we discussed
with the Ising Anyons given by [114]


|00}
|11}
|01}
|10}

 = 1√
2


1 1 0 0

−1 1 0 0
0 0 1 1
0 0 −1 1




|00⟩
|11⟩
|01⟩
|10⟩

 . (7.37)
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7. Topological superconductivity

The exchange operator R23 in the basis |n+n−} is given by as in Equation (7.28)

R23

(
|00}
|11}

)
= e−iπ

4 σz

(
|00}
|11}

)
=
(
e−iπ

4 0
0 ei

π
4

)(
|00}
|11}

)
(7.38)

R23

(
|01}
|10}

)
= e−iπ

4 σz

(
|01}
|10}

)
=
(
e−iπ

4 0
0 ei

π
4

)(
|01}
|10}

)
. (7.39)

With these three equations, we can then also write the exchange operator U23 in the
basis |n1n2⟩

R23


|00⟩
|01⟩
|10⟩
|11⟩

 = 1√
2


1 0 0 −i
0 1 −i 0
0 −i 1 0

−i 0 0 1




|00⟩
|01⟩
|10⟩
|11⟩

 , (7.40)

which relates to the exchange operator in a four Majorana system shown in [29].

To summarize, our work focused on the intersection of superconductors and topologi-
cal quantum computation, aiming to understand the essential components required for
implementing topological quantum operations. We started by investigating the Kitaev
chain toy model, a minimal system that undergoes a phase transition from a trivial
superconductor to a topological superconductor, leading to the emergence of Majorana
zero modes at its ends. These Majorana zero modes were then identified as Ising Anyons,
crucial for implementing quantum gates through their braiding statistics. We demon-
strated that even in this one-dimensional Kitaev chain model, the braiding of Majorana
zero modes can be achieved by varying the superconducting phase. Our calculations
verified that the braiding statistics of the Majorana zero modes align with those of the
Ising Anyons.

A key part of this chapter was the development of an algorithm to eliminate the numerical
phases associated with zero energy modes in the calculations. This algorithm allowed
us to accurately and reliably analyze the properties and behaviour of the Majorana zero
modes without being influenced by numerical artefacts. By implementing this algorithm,
we ensured that our results were robust and precise, enhancing the credibility of our
findings. With this novel approach, we were able to address the challenges posed by
numerical phases and obtain meaningful and accurate results in our study of topological
quantum computation with Majorana zero modes.

To provide a more comprehensive exploration, we extended our study to a two-dimensional
system involving four Majorana zero modes, formed by connecting two Kitaev chains at
a T-junction structure. Through this complex setup, we examined the braiding statistics
of four Majorana zero modes. While our previous models were minimal and challenging
to implement experimentally, our aim is to build a framework that enables the discussion
of systems that are more feasible to study in real-world experiments.
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8
Superconductor-Magnet Heterostructure

Model

In the previous chapter, we explored that p-wave superconductivity and Majorana zero
modes are relatively rare in materials. To overcome this limitation, researchers have
proposed combining different materials to create an effective p-wave superconductor,
thus creating an experimental system that hosts Majorana zero modes. Kane and Fu
were among the first to predict that topological insulators could achieve px ± ipy-wave-
like pairing with an s-wave superconductor, leading to new theoretical ideas for realizing
Majorana modes in physical systems. Some experimental studies have been conducted
on a few systems, revealing features that hint at the braiding of these quasiparticles, yet
the conclusive "smoking gun" experiment, demonstrating the braiding of two Majoranas
and their non-abelian statistics, remains elusive.

In our work, we study composite systems of thin ferromagnet layers and thin supercon-
ducting layers. Such systems are of special interest since they are in a superconducting
and ferromagnetic state at the same time in the region where the superconductor is in
contact with the magnet. This region can be driven into a phase where it is an effective
p-wave superconductor and can therefore host Majorana zero modes. In the following,
we show that superconducting vortices, which are able to bind the Majorana zero modes,
can be moved by domain walls in the magnet. Furthermore, we show that the braiding of
Majorana zero modes in two-dimensional real space can be done with Skyrmion-Vortex
pairs [31, 115].

8.1. Hamiltonian of a Superconductor-Magnet
Heterostructure

To study such a superconductor-magnet heterostructure we refine the Hamiltonian in
Equation (6.3):

H =
∫
dr⃗

[
ψ†
αr

(
p̂2

2m − µδαβ + hso,iαβ p̂i + hexαβ

)
ψβr + (∆ ψ↓rψ↑r + h.c.)

]
. (8.1)

Here, ψα is the real-space creation operator for a spin α, µ is the chemical potential, and
∆ is the pairing strength of the electrons in the superconductor. The first term of the
Hamiltonian represents the kinetic energy of the electrons in the superconductor, the
second term represents the spin-orbit coupling, the third term represents the proximity
coupling of the magnet with the superconductor and the last term represents the pairing
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8. Superconductor-Magnet Heterostructure Model

of electrons in an s-wave superconductor. In the following, we will discuss the different
terms in more detail.

8.1.1. Spin-Orbit Coupling at Interfaces

Considering a heterostructure where the spin-orbit coupling arises from the breaking
of inversion symmetry at the interface, we focus on Rashba spin-orbit coupling. In
accordance with [116], we summarize the origin and important properties of spin-orbit
coupling. This effect arises from the motion of an electron in an electric field, leading to
an effective magnetic field Beff ∼ E × p/mc2, which then couples to the electron spin as
µB σ · B. This results in the equation

hso,iαβ p̂i ∼ µB/mc
2(σ × E) · p. (8.2)

The corresponding electric field arises in materials where the structural inversion sym-
metry is broken along the growth direction. This is a fact that also results from the
time-reversal symmetry of the spin-orbit coupling. With the interfacial electric field
E = Ez this results in a spin-orbit coupling of the form

hso,iαβ p̂i = −iℏαR(σ × z) · p. (8.3)

where αR is known as the Rashba parameter. Another important property of the Rashba
spin-orbit coupling is that it locks spin to the linear momentum and split the sub-bands
in energy as shown in Figure 8.1.

Figure 8.1.: Schematic picture that shows how the spin-orbit coupling splits the energy
subbands. The arrows in the right panel represent the spin of the electrons with the
corresponding momentum in the x- and y-directions. Since the spin has to be orthogonal
to the momentum the picture shows the consequences of the spin locking.

8.1.2. Proximity Effect

When two materials are in close contact the properties of their interfaces change. In
the case of a superconductor-metal interface, the Cooper pairs can penetrate the normal
metal up to some distance. This means that superconducting-like properties may be
induced in the normal metal. This effect is called proximity effect [27]. Additionally, the
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leakage of Cooper pairs weakens the superconductivity near the interface, which is then
called the inverse proximity effect [27].

If we now replace the normal metal with a ferromagnet this effect gets dependent on
the spin of the electrons. A Cooper pair consists of two electrons with opposite spins
and momenta. In the ferromagnetic case, the spin-up electron, defined as having the
orientation of the exchange field, experiences a decrease in energy, while the spin-down
electron experiences an increase by the same value. This means that at the interface
between the superconductor and the ferromagnet the exchange field couples to the spin
of the electron which can be described by the term

hexαβ = h · σ. (8.4)

It is important to note here that this term is only valid at the interface between the
superconductor and the magnet.

8.2. Majorana Zero Modes in Superconductor-Magnet
Heterostructures

Moving forward, our objective is to examine the phases where topological superconduc-
tivity emerges. To accomplish this, we will review relevant aspects of the work by Alicea
et al. [22]. We commence this analysis by considering the one-dimensional Hamiltonian
described in Equation(8.1).

H =
∫
dx

[
ψ†
αx

(
−ℏ2∂x

2m − µ− iℏαR(ê · σ)∂x − hzσz

)
ψβx +

(
|∆|eiϕψ↓xψ↑x + h.c.

)]
.

(8.5)
The magnetic field here points in the z-direction and the vector e lies in the x-y plane.
The topological phase can be reached by going into a phase of the system where the
condition |hz| ≫ mα2

R is fulfilled. This condition ensures that the bands are separated
far enough so that the spins are nearly polarized and we can map the equation to a
one-band problem by writing ψ↑x ∼ (αR(ey + iex)/|hz|)∂xΨx and ψ↓x ∼ Ψx, with Ψx

the lower-band Fermion operator. We then have a spinless system as we have it in the
Kitaev chain. To leading order, one obtains

Heff =
∫
dx

[
Ψ †
x

(
−ℏ2∂x

2m − µeff

)
Ψx + |∆eff|eiϕeffΨx∂xΨx + h.c.

]
(8.6)

where µeff = µ+ |hz| and the effective p-wave pairing is

|∆eff|eiϕeff ≈ αR|∆|
|hz|

eiϕ(ey + iex). (8.7)

In the low-density limit, the effective Hamiltonian represents the Kitaev chain. The
presence of effective p-wave pairing is evident from the combination of spin-orbit cou-
pling, magnetic field, and s-wave pairing terms. This intriguing combination gives rise
to the same physics as observed in the Kitaev chain and strongly suggests the existence
of Majorana zero modes in such systems.
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8. Superconductor-Magnet Heterostructure Model

8.3. Numerical Implementation

Next, we will discuss how to discretize the Hamiltonian in Equation (8.1). For that, we
use again the central differential approximation from Equation (7.32). If we combine
the spin-orbit coupling, the proximity coupling and the kinetic term we get

↔
h = − ℏ

2m(∂2
x + ∂2

y) − iℏαR(σx∂y − σy∂x) + h · σ (8.8)

and using the central differential approximation this results in
↔
hu⃗ = Vi,j u⃗i,j + txu⃗i+a,j + t†xu⃗i−a,j + tyu⃗i,j+a + t†yu⃗i,j−a

∆
↔
ρu⃗ = i∆i,jσyu⃗i,j

(8.9)

where i, j indicate spatial site in x- and y-direction respectively and u⃗i,j are the spinors
at each spatial site. A few new terms are introduced:

Vi,j = ( 2ℏ2

ma2 − µ)1+ hi,j · σ. (8.10)

Here 1 is the identity matrix and µ is the chemical potential. Vi,j are called the onsite
terms. The hopping parameters in the x- and y-direction are given by

tx = − ℏ2

2ma21+ i
ℏαR
2a σy

ty = − ℏ2

2ma21− i
ℏαR
2a σx.

(8.11)

Here we see, that the spin-orbit coupling manifests as an additional term to the hopping
parameter. From these terms, we finally obtain the desired Hamiltonian written in terms
of the creation operators c†

i = (c†
i↑, c

†
i↓) that create an electron a site i with spin ↑ or ↓.

Rescaling these equations gives us

V ∗
i,j = −µ∗1+ h∗

i,j · σ
t∗x = −1+ iα∗

Rσy

t∗y = −1− iα∗
Rσx,

(8.12)

where µ∗ := µ
t , h∗

i,j := 1
thi,j , and α∗

R := αRma
ℏ with m being the electron mass. Putting

everything together results in the Hamiltonian

H = − t
∑
⟨i,j⟩

c†
icj − µ

∑
i

c†
ici −

∑
i

c†
i (hi · σ)ci

+ iαR
∑
⟨i,j⟩

c†
i ẑ · (d̂ij × σ)cj +

∑
i

(∆ic
†
i↑c

†
i↓ + h.c.) .

(8.13)

At site i of the square lattice, on the x-y plane and with lattice constant a, itiner-
ant electrons with spin α are generated (annihilated) by the operator c†

iα(ciα), and
ci = (ci↑, ci↓)T . The symbol ⟨i, j⟩ indicates a summation over nearest-neighbour lat-
tice sites. Here, t is the hopping parameter, µ is the chemical potential, and hi is the
exchange field resulting from the magnetic texture in the proximity-coupled ferromag-
net. Rashba spin-orbit coupling enters through the fourth term, where αR is the coupling
strength, d̂ij is the unit vector oriented along the nearest-neighbour link from j to i, σ is
the vector of Pauli matrices, and i is the imaginary unit coefficient. The complex-valued
and spatially dependent superconducting order parameter is ∆i.
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8.3. Numerical Implementation

8.3.1. Self-Consistency Condition of the Pairing Potential

Having derived the Hamiltonian in equation (8.1) using mean-field theory, we need to
take the self-consistency condition into account, as shown in (6.4). Upon inserting the
Bogoliubov transformation (6.6) into the definition of the pairing potential, we observe
its dependence on the eigenvalues and eigenvectors of the Hamiltonian:

∆(r) = V

2 ⟨c↑(r)c↓(r)⟩ − ⟨c↓(r)c↑(r)⟩

= V

2
∑
n

(v∗
n↑(r)un↓(r) − v∗

n↓(r)un↑(r))2nF (ϵn) + (un↑(r)v∗
n↓(r) − un↓(r)v∗

n↑(r)).

(8.14)

Here we used that ⟨γ†
nγn⟩ = 1 − ⟨γnγ†

n⟩ = nF (ϵn), where nF (ϵn) is the Fermi-Dirac
distribution and ϵn is an eigenvalue of the system. Therefore, we have to solve the
Hamiltonian and the Pairing potential within an iterative procedure. A flow chart of
this procedure is shown in Figure 8.2. Here, we start by guessing a pairing potential.
Subsequently, we proceed to compute the eigenvalues and eigenvectors of the resulting
Hamiltonian. Utilizing these solutions, we can then evaluate the updated pairing po-
tential using Equation (8.14). The newly obtained pairing potential is inserted into the
Hamiltonian matrix. This process loops until the accumulated absolute value of the old
and new ∆i,j differs by less than a value of ξ = 10−4. The calculation of the eigenvectors
and eigenvalues is done on a graphic card. While we implemented the same functions
also for the CPU, the GPU speeds up our calculations by a factor of three. Additionally,
we implemented a monitoring function, allowing us to carefully track the convergence of
the iterative procedure and troubleshoot any potential issues that may arise during the
relaxation process.

8.3.2. Relaxation of Superconducting Vortices

In the following, we will show the relaxation of superconducting vortices using the al-
gorithm above. For a superconducting Vortex centred at the origin we evaluate the
following continuous ansatz

∆Vortex
i = ∆0(ri)eimθi+θ0 , (8.15)

at the lattice sites i with spatial coordinates characterized by radius ri and azimuthal
angle θi. Here, the angle θ0 (chirality), as well as m = ±1 (vorticity), define the type
of the Vortex, e.g. θ0 = 0 and m = 1 yields a standard outward pointing Vortex. We
choose the magnet to be a ferromagnet. To facilitate the distinction between different
chiralities, we devised a color wheel, as depicted in Figure 8.3. To identify and represent
the various types of vortices, we compute the curl and divergence of the superconducting
order parameter and map them to specific colors according to the color wheel.

This results in an inward pointing Vortex having a red colour in the centre, an outward
pointing Vortex having a blue colour, an anticlockwise Vortex having a purple colour and
a clockwise Vortex having a green colour in the centre as shown in Figure 8.4 a). If we
choose the vorticity to be negative we can also introduce an Antivortex in the system as
shown in Figure 8.4 b). In our numerical simulations, we introduce multiple vortices by
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Initial guess of the 
order parameter

Calculate Eigenvalues
and Eigenvectors
(diagonalizing Eq. (3))

Calculate order 
parameter 
      (Eq. (4)) 

No

Yes

Finished

Figure 8.2.: Flow chart illustrating the calculation algorithm for the pairing potential
using a diagonalization method. A convergence threshold ξ = 10−4 is chosen in the
simulation [117].

Figure 8.3.: We show the colour wheel used in the following chapters to assign different
colours to the chiralities of the vortices. The white arrows sketch what the Vortex of the
corresponding colour looks like. To distinguish the chiralities we calculate the curl and
the divergence of the superconducting order parameter.

convolving equation (8.15) with a Gaussian function, effectively localizing each vortex.
By adding two vortices with opposite chirality (as shown in Figure 8.4 c), we observe
the presence of two vortices in the sample, with the superconducting order parameter
connecting them. However, when two vortices of the same chirality are added (as shown
in Figure 8.4 d), an antivortex forms in the middle to compensate for the discontinuity
in the superconducting phase between the vortices.
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8.3. Numerical Implementation

a)

b)

c) d)

Figure 8.4.: Here we show a depiction of the superconducting order parameter with arrows
and the corresponding pictures from the simulation. In panel a) we show vortices of dif-
ferent chiralities σ0 = 0, π/2, π, 3π/2 (from left to right), in panel b) we show antivortices
of different chiralities σ0 = 0, π/2, π, 3π/2 (from left to right), in panel c) there are two
vortices having the same chirality and in panel d) two vortices having different chiralities.
Note that for panel d) there forms an additional Antivortex between the two vortices.
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Domain Wall Vortex Interaction

In this chapter, we want to explore how magnetic domain walls and vortices inter-
act and how these interactions can be used. In nature, there are many examples of
how interactions of different media can lead to ordered media. For example, the RNA
polymerase glides along a DNA strand during the transcription process [118, 119]. In
superconductor-ferromagnet heterostructure, one employs different order parameters to
achieve ordering [120, 27, 121]. By using a thin insulating spacer between the supercon-
ducting and the magnetic layers to avoid the mutual suppression of superconductivity
and magnetism, magnetic domain walls have been shown to interact with superconduct-
ing vortices via stray fields [122, 123]. In our approach, we use spin-orbit coupling to
achieve the coexistence of superconductivity and ferromagnetism [124, 125] and is known
to enhance proximity-induced superconductivity [126, 127]. To combine the different or-
der parameters we will drive the superconductor-ferromagnet heterostructure in a phase
where domain walls are present in the magnet and vortices are present in the supercon-
ductor as shown in Figure 9.1. The interactions between the two order parameters then

Figure 9.1.: Superconducting vortices manipulated by magnetic domain walls in
superconductor-ferromagnet heterostructures. Due to the magnetoelectric effect induced
by spin-orbit coupling, a magnetic domain wall in a ferromagnetic thin film (FM) that
is close to a superconducting layer (SC) interacts with superconducting vortices (blue
tubes). The domain wall can push –as seen above–, pull, or trap vortices depending on
the helicity of the domain wall and the vorticity of the Vortex.

show their nature when moving the domain wall towards the vortices. In the figure,
we depicted that the domain wall pushes the vortices. Depending on the domain wall
helicity and the Vortex vorticity the vortices can also be pulled by the domain wall or
even glide along the domain wall. The rich interplay between magnetic domain walls and
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superconducting vortices in proximity-coupled superconductor-ferromagnet heterostruc-
tures induced by Rashba spin-orbit coupling is highlighted in the following.

9.1. Magnetic Domain Wall - Superconducting Vortex
Interactions

To study the interaction between a superconducting Vortex and a magnetic domain
wall we have to embed their profiles in the Hamiltonian shown in Equation (8.13) we
described before. The exchange field induced by the magnetic domain wall, aligned
parallel to the y-axis and centred at x = 0, is given by

h(dw) = h0[sinΘ(x)(cos γ x̂ + sin γ ŷ) + cosΘ(x)ẑ], (9.1)

where h0 is the exchange field strength and γ is the domain wall helicity. We choose
cosΘ(x) = − tanh(x/d), which satisfies Θ(0) = π/2, Θ(−∞) → 0, and Θ(+∞) → π,
i.e., with the magnetic moments pointing asymptotically upward (downward) to the left
(right) of the domain wall. Here, d characterizes the domain wall width and we use
d = 3a in our numerical calculations. An example of a Néel domain wall is shown in
Figure 9.2. The superconducting Vortex is defined as in Equation (8.15) and we use
qv = 1 in the following.

Figure 9.2.: Depiction of a Néel domain wall.

The numerical calculation is done by the following procedure. We place a single super-
conducting Vortex sufficiently far to the right of the domain wall (at a distance of 19
lattice sites) where the magnetic texture is effectively field polarized. We choose the
profile of this initial Vortex such that it is close to an actual Vortex profile. Then we
calculate the superconducting order parameter, with this initial Vortex as a seed, self-
consistently according to the algorithm shown in Figure 8.2. The vorticity of the Vortex
core, characterized by the winding number of θs, along with the chirality of the back-
ground exchange field, plays a crucial role in determining the resulting Vortex profile at
its location and the strength of the Rashba spin-orbit coupling αR. We then move the
location of the domain wall one lattice site to the right and repeat the self-consistent
calculation with the Vortex configuration from the previous step as the seed. We simu-
late four distinct helicity cases: Néel domain walls with γ = 0, π and Bloch domain walls
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9. Domain Wall Vortex Interaction

with γ = π/2, 3π/2. Implementing a rightward domain wall motion yields strikingly
different superconducting Vortex responses.

a)

b)

Figure 9.3.: Repulsive and attractive interaction between a Néel magnetic domain wall and
a superconducting Vortex. The blue arrows show the superconducting current, the red line
corresponds to the centre of the domain wall with the red arrow showing the chirality.
The orange lines depict the domain wall width with the magnetisation direction. The
initial Vortex-domain wall separation amounts to 15a. a) Néel domain wall with γ = π
and b) Néel domain wall with γ = 0.

A Néel domain wall with γ = π, when sufficiently close, constantly pushes the supercon-
ducting Vortex to the right as shown in Figure 9.3 a). However, if the Néel domain wall
has helicity γ = 0, the behaviour is almost the opposite. Initially, the superconducting
Vortex is attracted towards the domain wall until it crosses to the left side of the do-
main wall where it finds a sweet spot and it follows the motion of the domain wall at a
constant distance. This looks like the superconducting Vortex is being dragged by the
domain wall (Figure 9.3 c)).

For a Bloch domain wall, the superconducting Vortex is attracted to the domain wall
for both chiralities. When the Vortex comes closer to the domain wall it gets deflected
depending on the chirality and glides along the domain wall. For γ = 3π/2 as shown in
Figure 9.4 a) it glides along the +ŷ-direction and for γ = π/2 it glides in the −ŷ-direction
(Figure 9.4 c)).

The numerical results described above can be understood using the well-established
Ginzburg-Landau theory of superconductors, for which Kjetil Hals performed the ana-
lytical calculations. The spatially asymmetric Rashba spin-orbit coupling (SOC) intro-
duces magnetoelectric coupling mechanisms between the superconducting condensate
and the spin system. These interactions are incorporated into the Ginzburg-Landau
phenomenology through the following magnetoelectric free energy functional

Fme [ψ∗, ψ,A,h] =
∫

dr
[
F (1)

me + F (2)
me

]
, (9.2)
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a)

b)

Figure 9.4.: Attractive interaction and gliding motion of a superconducting Vortex along a
Bloch magnetic domain wall. The initial Vortex-domain wall separation amounts to 15a
a) Néel domain wall with γ = 3π/2 and b) Néel domain wall with γ = π/2.

where the two free energy densities F (1)
me and F (2)

me are SOC-induced Lifshitz invariants
given by

F (1)
me = κ(1)(ẑ × h) · P , (9.3)

F (2)
me = κ(2)(ẑ × ∇hz) · P . (9.4)

Here, h is the exchange field induced in the superconductor by the adjacent ferromagnetic
layer via the exchange proximity effect, P = Re [ψ∗(−iℏ∇ − 2eA/c)ψ] is the momentum
density of the superconducting condensate, ψ(r) = |ψ(r)| exp(iϕ(r)) is the complex
order parameter field of the superconductor, 2e is the charge of a Cooper pair, c is
the speed of light, and A is the magnetic vector potential, which is connected to the
magnetic induction B via the relationship B = ∇ × A. In the subsequent discussion,
we concentrate on the case of a thin film type-II superconductor where the penetration
depth is significantly larger than the typical length scales that characterize the spatial
variations of magnetic domain walls and superconducting vortices. In this case, we
can disregard the magnetic vector potential in Equation (9.2). The constant κ(1) (κ(2))
parametrizes the magnetoelectric coupling and is first (second) order in the SOC.

From the magnetoelectric free energy functional one can now calculate the emergence of
an anomalous supercurrent density jas which builds next to the conventional supercur-
rent density jcs the net supercurrent density js = jcs + jas. The specific form of these
supercurrents is calculated in Appendix B.2,A and results . From these supercurrents,
one can build a simple physical understanding:

When a heterostructure consisting of a superconductor and a ferromagnet contains both
a domain wall and a Vortex, the superconductor aims to minimize its free energy by
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9. Domain Wall Vortex Interaction

displacing the Vortex to reduce the overall supercurrent density js = jcs + jas to a mini-
mum. Consequently, the Vortex experiences a magnetoelectric force fme that influences
its equilibrium position and dynamics. In the case of a Néel domain wall, it is anticipated
that the Vortex will settle at an equilibrium position approximately |Rx| ∼ ξ away from
the centre of the wall. This arrangement ensures that the region with the highest current
intensity around the Vortex core partially counteracts the significant anomalous super-
current density generated by the magnetoelectric interactions F (1)

me and F (2)
me along the

wall. Conversely, for Bloch domain walls, the effects of F (1)
me and F (2)

me differ. The influ-
ence of F (2)

me is not dependent on n̂(dw) and consequently results in the same equilibrium
position for the Vortex as observed in the case of a Néel domain wall. Conversely, the
F (1)

me term is expected to pin the Vortex to one of the edges of the Bloch wall (depending
on the helicity of the spin texture) in order to counteract the supercurrent induced by
the κ(1)-term in the interior of the sample.

Figure 9.5.: Numerical calculations of the effective free energy Feff in Equation (9.5) under
the following conditions: a. Feff in systems containing a Néel wall, where κ(2) = 0 and
γ = 0. b. Feff in systems containing a Bloch wall, where κ(2) = 0 and γ = π/2. c. Feff
when κ(1) = 0. In this case, the magnetoelectric free energy is independent of the domain
wall structure. In all figures, the length scales are measured in units of ξ, and we have used
that λ/ξ = 0.4. The sample size considered is [−∞,+∞] × [−Ly, Ly], where Ly/ξ = 10.
The free energy in cases a and b (case c) is measured in units of F (1)

0 = πℏλκ(1)h0ψ
2
0

(F (2)
0 = 2ℏκ(2)h0ψ

2
0).
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9.1. Magnetic Domain Wall - Superconducting Vortex Interactions

The magnetoelectric force fme is determined by the effective free energy Feff(R), given
by

Feff(R) = Fme[ψ(v)∗, ψ(v),h(dw)], (9.5)

This free energy is obtained by substituting the exchange field h(dw) and Vortex profile
ψ(v)(r) = ψ0 tanh

(
|r−R|
ξ

)
exp(iϕ(r)) into Equation (9.2), and then integrating over the

spatial coordinate r. The expression Feff depends solely on the collective coordinate R
of the Vortex and determines how the free energy of the superconductor changes as the
Vortex’s position varies relative to a domain wall centred at x = 0.

Using Equation (9.5), we can derive the force acting on the Vortex as

fme = −∂Feff
∂R , (9.6)

This force drives the Vortex towards the energy minimum of the effective free energy
described in Equation (9.5). Figure 9.5(a) (Figure 9.5(b)) illustrates a numerical compu-
tation of the effective free energy Feff in the vicinity of a Néel wall (Bloch wall). In order
to highlight the influence of the domain wall profile, we have set κ(2) = 0 in Figures 9.5(a)
and 9.5(b), focusing solely on the impact of the F (1)

me term. Figure 9.5(c) presents the
helicity-independent component generated by F (2)

me . As expected, for Néel walls, the
helicity-dependent part of Feff displays a global minimum at a distance |Rx| ∼ ξ from
the centre of the wall (Figure 1(a)). In contrast, Bloch walls exhibit a minimum at one
of the edges of the wall at the boundary of the sample (Figure 1(b)).

In Appendix B.2,B we derive functional form of the effective magnetoelectric free en-
ergy (9.5) for vortices located near Néel and Bloch walls, which are consistent with the
numerical investigations shown in Figure 9.5:

F
(nw)
eff = (ϵF (1)

0 − F
(2)
0 )

[
c2R̃

3
x − c1R̃x + c3R̃xR̃

2
y

]
(9.7)

F
(bw)
eff = −ϵc4F

(1)
0 R̃y − F

(2)
0

[
c2R̃

3
x − c1R̃x + c3R̃xR̃

2
y

]
.

In the case of Néel walls, the series expansions of the terms F (1)
0 and F (2)

0 are equivalent,
resulting in an energy minimum at R0 = sign(ϵF (1)

0 − F
(2)
0 )[ξ

√
c1/3c2, 0, 0]. In contrast,

for heterostructures containing Bloch walls, the term F
(1)
0 exhibits an energy minimum

at Ry = sign(ϵF (1)
0 )Ly. It is important to note that this phenomenon is solely influenced

by finite-size effects originating from the c4 term in F eff(bw), which diminishes as Ly/ξ
approaches infinity. On the other hand, the term F

(2)
0 still possesses a minimum at

R0 = −sign(F (2)
0 )[ξ

√
c1/3c2, 0, 0].

The magnetoelectric force fme associated with the free energies in Equation (9.7) can be
obtained from Equation (9.6). This force can be incorporated into a description of the
Vortex’s collective motion using the equation of motion (see Appendix B.2,C):

mvR̈ = Ṙ × G + fme − αṘ. (9.8)

In this equation, mv represents the effective mass of the Vortex, α parameterizes the
friction, and G = 2πnsqvẑ determines the Magnus force arising from the Vortex’s topo-
logically nontrivial structure. Here, ns corresponds to the density of Cooper pairs, while
qv denotes the vorticity, which, in our specific case, is equal to 1.
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9. Domain Wall Vortex Interaction

The dynamics of the Vortex are governed by the interplay between the Magnus force
and the magnetoelectric force described in Equation (9.8). Our numerical simulations
confirm the presence of the force originating from the F

(1)
0 term in Equation (9.7),

assuming that F (1)
0 is negative. In the case of a Néel wall with γ = 0, the F (1)

0 term
in Equation (9.7) exhibits a minimum at R = [−ξ

√
c1/3c2, 0, 0]. This explains why the

Vortex crosses into the left domain and lags behind the moving wall. Conversely, for a
Néel wall with γ = π, the Vortex reaches an equilibrium position at R = [ξ

√
c1/3c2, 0, 0]

and is pushed in front of the domain wall as it moves to the right.

In the case of Bloch walls, the F (1)
0 term has a minimum at the edge of the wall, specif-

ically at Ry = Ly (Ry = −Ly) for γ = 3π/2 (γ = π/2). This energy landscape induces
a motion of the Vortex along the y-direction, explaining its gliding movement along the
wall. Regardless of the specific structure of the domain wall, the Magnus force introduces
a slight deflection in the motion of the Vortex.

To evaluate the relevance of the κ(2) term (i.e., F (2)
0 in Equation (9.7)), we conducted

a numerical analysis comparing the magnitudes of j(dw)
as,x and j

(dw)
as,y in Equation (A-12)

for a system featuring a Bloch wall (without a Vortex). In this scenario, the κ(1) term
generates a current along the x-axis, while the κ(2) term produces a current parallel to
the y-axis. Consequently, the ratio j(dw)

as,y /j
(dw)
as,x serves as a direct indicator of κ(2)/κ(1).

Our numerical investigation reveals that the value of j(dw)
as,y /j

(dw)
as,x is significantly lower

than the machine precision, suggesting that the contribution from κ(2) is negligible.

9.2. Manipulating Superconducting Vortices with Magnetic
Domain Walls

By taking advantage of the propulsion experienced by superconducting vortices due to
the γ = π Néel magnetic domain wall, enhanced functionality can be gained. For exam-
ple, as shown in Figure 9.6, a single domain wall can be used to push away and thereby
remove superconducting vortices from a specific spot in the sample. Alternatively, the
same procedure can be used to enhance the density of vortices in another sample area
or to fill an otherwise empty region with vortices. Furthermore, this method shows that
magnetic domain walls have the ability to prevent or induce superconducting vortex
avalanches [128, 129, 130].

In Figure 9.7, two domain walls are used to assemble a chain of superconducting vortices,
illustrating another potential application. Vortex chains have previously been described
in anisotropic [131, 132, 133] and nanopatterned superconductors [134]. Because of their
mobility, magnetic domain walls are an appealing non-invasive way to build reconfig-
urable superconducting Vortex channels.

Apart from manipulating superconducting vortices with magnetic domain walls, they can
also be manipulated with different magnetic textures. In the next chapter, we discuss the
interaction between magnetic Skyrmions and superconducting vortices. In comparison
to the interaction with domain walls, the superconducting Vortex is not pushed by the
domain wall but they stick to the Skyrmion enabling a more controlled movement of
the superconducting Vortex. For example, a braiding motion of the superconducting
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9.2. Manipulating Superconducting Vortices with Magnetic Domain Walls

a)

b)

Figure 9.6.: Wiping the slate clean of superconducting vortices. Sequential simulation
snapshots of a rightward-moving Néel magnetic domain wall with helicity γ = π that
pushes vortices away from the sample area, effectively acting as a Vortex “eraser” or
“rake”. The initial Vortex-domain wall separation amounts to 12a.

a)

b)

Figure 9.7.: Assembling a superconducting Vortex chain using two magnetic domain walls.
Sequential simulation snapshots of superconducting vortices confined between two Néel
magnetic domain wall with helicity γ = π. As the separation between the domain walls
decreases the superconducting vortices rearrange and form a chain parallel to the domain
walls. The initial Vortex-domain wall separation amounts to 7a to the left and right
domain walls.

vortices can be implemented which opens the path to topological quantum computation
with superconducting vortices.
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10
Skyrmion-Vortex Pair Braiding

Until now there are only a few experiments that reported features alluding to the finding
of Majorana zero modes and similar quasiparticles [135, 136, 137], but the “smoking gun”
experiment, i.e. the braiding of two Majorana zero modes revealing their non-Abelian
statistics, is still missing.

Figure 10.1.: Sketch of the braiding of two Skyrmion-Vortex pairs in a superconductor-
ferromagnet heterostructure. The white arrows represent the superconducting order pa-
rameter and the magnetic structure is depicted by the cones underneath. Upward (down-
wards) pointing magnetic moments are plotted in red (blue). The red tubes indicate the
world lines that emerge when braiding Majorana modes. Picture published in [117].

We show, that Majorana modes can be braided in a two-dimensional system consisting
of a ferromagnet with Skyrmions proximity coupled to an s-wave superconductor with
vortices [31, 115]. We consider a superconductor-ferromagnet heterostructure modelling
a 2d s-wave superconductor by the two-dimensional tight binding Hamiltonian in the
Bogoliubov-de Gennes formalism [113, 138]. We adiabatically braid the hybrid topolog-
ical structures and explicitly confirm the non-Abelian statistics of the Majorana zero
modes they carry. For that, we numerically solve for the superconducting order parame-
ter self consistently. Together with a proper structuring of these materials, we propose a
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10.1. Skyrmions and Vortices in a Superconductor-Magnet Heterostructure

scalable topological quantum computing platform [117, 30]. Additionally, this platform
provides that the Majorana zero modes can be initialized, manipulated, and read out.
A sketch of the braiding of two Skyrmion-Vortex pairs (SVPs) in a superconductor-
ferromagnetic heterostructure is shown in Figure 10.1. Furthermore, we show that our
system also provides techniques to fuse and create Majorana modes. In the end, we give
an outlook on how to define a qubit out of the Majorana modes and initialize this qubit
to a certain state.

10.1. Skyrmions and Vortices in a Superconductor-Magnet
Heterostructure

a)

b) c)

Figure 10.2.: Supercurrent of a) Vortex and Antivortex, b) Néel Skyrmions (ϕ = 0, π)
and c) Bloch Skyrmions (ϕ = π/2, 3π/2). The colour depicts if the supercurrent is
anticlockwise (blue) or clockwise (red)

In the following model, we study the properties of Skyrmion-Vortex pairs in super-
conductor-ferromagnetic heterostructures [113, 115]. To incorporate the Skyrmion in
the Hamiltonian shown in (8.13) we describe it by an external magnetic field hi. The
magnetic field for a Skyrmion centred at the origin will be represented by

h(r, ϕ) = h0 · (cosΦ sin f(r), sinΦ sin f(r), cos f(r)), (10.1)

with
Φ = Φ(ϕ) = Wsk ϕ+ φ (10.2)

at the corresponding lattice site i with spatial coordinates characterized by radius ri and
azimuthal angle ϕi. Here, h0 is the strength of the magnetization, Wsk is the Skyrmion
winding number, and φ is the helicity of the Skyrmion. For the approximated profile
function of the Skyrmion we choose one that is valid in thin films [139] and can be
written as

f(r) = 4 arctan
(
exp(−r/η)

)
, (10.3)

where η is a parameter describing uniform compression or expansions of the profile. The
superconducting Vortex is defined as in Equation (8.15).
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10. Skyrmion-Vortex Pair Braiding

Since the magnetic field hi couples to the electrons in the superconductor, it induces a
supercurrent. Depending on the supercurrent that is induced by the Skyrmion it can
couple to a Vortex or Antivortex. When the supercurrent induced by the Skyrmion
opposes the supercurrent of the Vortex or Antivortex, an attractive interaction occurs.
This is because the supercurrent is minimized, leading to a reduction in the interaction
term in the Hamiltonian. In Figure 10.2, we have plotted the supercurrent of a Vortex, an
Antivortex, and various types of Skyrmions. Our findings reveal that the Néel Skyrmion
with ϕ = 0 exhibits an attractive interaction with the Vortex, while all other types of
Skyrmions show an attractive interaction with the Antivortex. This is in agreement with
the results found in [113].

In our study of Skyrmion-Vortex pairs, we focus on Néel Skyrmions, where φ = 0, as
they exhibit an attractive interaction with superconducting vortices. Our main interest
lies in investigating the Majorana zero modes hosted by these Skyrmion-Vortex pairs,
which we will explore in the upcoming section.

10.2. Majorana Zero Modes at Skyrmion-Vortex Pairs

By calculating the energy spectrum of the system we reveal the regions where Ma-
jorana modes are present. Using the Bogoliubov de Gennes formalism we compute
the eigenvalues εn and the eigenvectors of the excitations un,β, vn,α of the Hamiltonian
Equation (8.13) while self-consistently calculating the superconducting order parame-
ter [138, 113]

∆(vn,α, un,β) = i
V

2
∑
n>0

0<εn<ℏωD

(σy)αβv∗
n,αun,β [2nF (εn) − 1] . (10.4)

Under the influence of spin-orbit coupling and magnetic field V characterizes the effective
attractive interaction strength between the Cooper pairs and nF (εn) = (exp

(
εn
kBT

)
+1)−1

is the Fermi-Dirac distribution. The superconducting state including the relaxed Vortex
structures are encoded in ∆(vn,α, un,β). The energy summation is only carried out in
a small shell around the Fermi energy, i.e. 0 < εn < ℏωD, where ωD is the Debye
frequency.

Figure 10.3 shows the 20 lowest modes of the energy spectrum and the corresponding
wavefunctions of the red-marked modes for a) one, b) two, c) three, d) four and e) six
Skyrmion-Vortex pairs as a function of applied magnetic field strengths h0. These red-
marked modes experience a gap closing at hgap

0 ≈ 0.55 which is invariant of the number
of Skyrmion-Vortex pairs. Since these modes are separated in energy from the other
modes for field values closely above hgap

0 , it is an indication that we are in a topological
regime and these modes are Majorana modes. Furthermore, they are localized at the
Skyrmion-Vortex pairs as shown in Figure 10.3. For an even number of Skyrmion-Vortex
pairs, we find that the Majorana zero modes are localized at the Skyrmion-Vortex pairs,
whereas for an odd number of Skyrmion-Vortex pairs the Majoranas localizes at the
Skyrmion-Vortex pair and the other one extends over the boundary of the sample. We
listed all system parameters that are not varying in Table 10.1 which were inspired by
Refs. [113] and [138].
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10.2. Majorana Zero Modes at Skyrmion-Vortex Pairs

a)

b)

c)

d)

e)

Figure 10.3.: Low energy spectrum and the corresponding wavefunctions of the red marked
modes of a superconductor-ferromagnet heterostructure with a) one, b) two, c) three,
d) four and e) six Skyrmion-Vortex Pairs as a function of magnetic field strength h0.
The lowest modes which could be Majorana modes after the gap closing are shown in
red for better visibility. The horizontal line at h0 = 0.55 is intended to clarify where
the gap closing takes place. We show a zoom of the gap closing as well a Plot of the
superconducting order parameter and a Plot of the Majorana modes (from left to right).
The sample has dimensions of a) L=25a b) L=27a c) Lx=45a Ly=31a d) Lx=53a Ly=33a
e)Lx=63a Ly=31a. To increase the visibility of the edge modes in a) and b) we used a
scaling factor of a) 10, b) 20.

The topological region of the model of two Skyrmion-Vortex pairs can be seen in Fig-
ure 10.4a). We calculated the difference between the lowest energy mode E1, shown
in Figure 10.4b), and the next higher energy mode E2, Figure 10.4c). To obtain Ma-
jorana zero mode the lowest energy mode has to be close to zero and there should be
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10. Skyrmion-Vortex Pair Braiding

(b) (c)(a)

no superconductor

Majorana 
zero modes

no zero modes

Figure 10.4.: In a) we show the energy difference of the two lowest energy modes. The
colour determines how far the two energies are separated where red means they are sepa-
rated and form a gap and blue means they are not separated. We cut out the part, where
the lowest energy mode is not close to zero. For reference we plotted the lowest energy
mode E1 in b) and the second lowest energy mode E2 in c). The conditions for energy
modes to be Majorana modes are E1 → 0 and to be in a well-defined topological region
with a finite superconducting gap E1 −E0 > 0. The yellow dot in a) marks such a region
for a chemical potential of µ = −4 and a field value of about h0 = 0.7. These parameters
we will use in further numerical calculations.

a gap to the next higher energy mode. Therefore we excluded the part of the plot in
Figure 10.4a), where the lowest energy mode is far away from zero and the difference
between the modes is then given by the colour code. With that, we find Majorana zero
modes in the red regions of the Plot. We marked the optimal spot in the phase diagram
with a yellow dot which corresponds to a chemical potential of µ = −4 and a field value
of about h0 = 0.7. These parameters will be used in the following numerical calculations.

Parameters Symbol Value
Hopping parameter t 1
Chemical potential µ −4

Spin-Orbit-Coupling αR 0.75
Thermal energy kBT 0.001
Debye frequency ωD 100

Effective attractive interaction V 5

Table 10.1.: Chosen system parameters.

10.3. Braiding of Skyrmion-Vortex Pairs

Having a system with Majorana modes we will braid them and see if they obey the
braiding statistics predicted by theory. To reach a motion of the Majorana modes we
have to move the superconducting Vortex to which the Majorana mode is bound. With
a Skyrmion present in the system, we have two mutually supportive mechanisms with
which we can move the superconducting Vortex with the help of the Skyrmion. The first
mechanism is based on magnetic stray fields. Superconducting vortices, being holes in
the superconductor, enable the penetration of magnetic fields at their positions. In a
superconductor-magnet heterostructure, the field lines of the Skyrmions in the magnet
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10.3. Braiding of Skyrmion-Vortex Pairs

must encircle the magnet once, due to the distinct polarity of the Skyrmion core com-
pared to the rest of the magnet. This interaction is most effective when the field lines
can penetrate the superconductor. For this reason, it is energetically more favourable
for Skyrmions and superconducting vortices to lie on top of each other. The second
mechanism is based on the proximity coupling we discussed in this thesis. A Skyrmion
induces a supercurrent in the superconductor [113], which in the case of a Néel induces
a supercurrent which is opposite to the supercurrent of a superconducting Vortex. Since
the system wants to minimise its supercurrent a Néel Skyrmion has an attractive inter-
action with a superconducting Vortex. The same is true for a Bloch Skyrmion and an
Antivortex.

(d)

x x x x x

y y y y y

(c)

(a)

(b)

Figure 10.5.: Braiding of two Skyrmion-Vortex pairs. (a) Evolution of the superconducting
order parameter revealing the braiding of the vortices. The colour code visualises the type
of Vortex characterised by its divergence and curl as shown in Figure 8.3. (b) Spatial
probability density of the wave functions corresponding to the Majorana zero modes
during braiding (L=27a). With the angle ζ, shown in the second panel, we parameterise
the braiding. (c) Braiding of two Skyrmion-Vortex pairs in a four Skyrmion-Vortex pair
set-up. Here, the two Skyrmion-Vortex pairs in the middle are braided, leaving the outer
ones unchanged. Colour codes are as in (a). (d) Spatial probability density of the wave
functions corresponding to the Majorana zero modes (Lx=53a Ly=33a).

In the numerical calculation, we implement this motion by adiabatically changing the
position of the Néel Skyrmions and numerically relaxing the system in each step ac-
cording to Equations (8.13) and (10.4). By doing this the Vortex follows the motion
as expected since it is energetically more favourable for the Vortex to be close to the
Skyrmion. During this braiding motion, the vortices change their chirality. An inward
(outward)-pointing Vortex (red and cyan) transforms to a right (left)-handed Vortex
(green and purple) and then to an outward (inward)-pointing Vortex as shown in Fig-
ure 10.5 a) for two SVPs and c) for four SVPs. The braiding of the SVPs also results in
the adiabatic motion of the Majorana zero mode bound to the SVPs whose evolution is
shown in Figure 10.5 b) for two SVPs and in d) for four SVPs. While we exchange the
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10. Skyrmion-Vortex Pair Braiding

Majorana modes in this way they stay well localised at the superconducting vortices.
To represent an infinitely large system in our numeric calculations, we fixed the phase
of the superconducting order parameter at the sample boundary.

When we calculate the Braiding statistics with the concepts described in Section 7.4,
where in this case we use ζ instead of ϕ we get

M12 =
(

0 1
−1 0

)
, M23 =

(
0 1

−1 0

)
, (10.5)

for two and four Skyrmion-Vortex pairs respectively by using our self-consistent cal-
culation. As discussed in Section 7.5 this directly reveals the non-abelian statistics of
the Majorana zero modes. We also tried to do this analysis for Skyrmion-Antivortex
pairs; the results can be seen in Section B.3. However, further research is necessary to
investigate the conditions under which Skyrmion-Antivortex pairs can host Majorana
modes.

10.4. Creation and Fusing of Majoranas

In the realm of topological quantum computation, measurements can be performed by
fusing two Anyons [91]. To achieve the fusion of Anyons bound to the Skyrmion-Vortex
pairs, a possible approach is to pin one of the Skyrmions and move the other one into it.
However, due to the typically lower coupling of the Skyrmions to the vortices compared
to the repulsion between the vortices, this can lead to challenges, as the vortex may
detach from the skyrmion before the Anyons fuse. To overcome this issue, an alternative
strategy involves driving the Skyrmion-Vortex pair out of the sample, thereby localizing
one Anyon on the edge of the sample. Subsequently, the second Skyrmion-Vortex pair
can be driven out of the sample, leading to the fusion of the Anyons. This fusion
process grants access to the logical information stored in the state of the system. In
this context, we explore the creation and fusion of the Majorana zero modes, which are
further discussed with the aid of the results presented in Figure 10.6.

In Figure 10.6, the upper panel displays the process of moving a Majorana mode out
of the sample for the Skyrmion-Vortex pairs (a) and the wavefunctions of the Majorana
zero modes (b). This involves moving the right Skyrmion out of the sample, along with
the Vortex and the associated Majorana zero mode. As the Majorana mode approaches
the edge, its localization weakens until it completely localizes on the edge. To enhance
the visibility of the edge-localized mode, we increased the amplitude of its wavefunction.
Subsequently, by moving the left Skyrmion to the left, the Majorana mode also shifts to
the left, as depicted in the lower panel of Figure 10.6 (a) and (b). In this scenario, the
Majorana mode located at the edge redistributes the probability of the electrons toward
the left side, where the distance to the other Majorana is smaller. As the localized
Majorana approaches the other, they prepare to fuse with each other. Ultimately, in
the last image, the Majorana modes fuse, and the wavefunction of the lowest energy
mode becomes delocalized, leading to a uniform value of the wavefunction throughout
the entire sample.

By introducing an additional Skyrmion-Vortex pair (SVP), a new pair of Majorana zero
modes emerges, as illustrated by reversing the time of the lower panel in Figure 10.6 b).
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10.4. Creation and Fusing of Majoranas

a)

b) 1 5 10 22

30 38 48 68

Figure 10.6.: Here, we show how fusing of two Majorana zero modes can be done by
manipulating the superconducting vortices with Skyrmion-Vortex pairs. In a) we show the
motion of the vortices during the fusing and in b) we show the corresponding wavefunction
of the Majorana modes. First, we move the right Vortex out of the sample and after that,
we move the left Vortex out of the sample. When the right Vortex is moved out it
distributes over the edge of the sample. When the left Vortex is moved out the two
Majoranas fuse on the edge leading to a completely extended state over the sample. For
better visibility, we increased the amplitude of the wavefunction on the edge by a factor
of 10.

When a new SVP is added, one of the Majorana modes localizes at the new SVP, while
its companion extends over the edge of the sample. This indicates that the creation of a
Skyrmion-Vortex pair from the edge can separate one Majorana from its counterpart.

To be sure, that the Majorana modes are really fused after this procedure we plotted
the energies of the modes of the system in Figure 10.7. In the first part of the plot, the
energies are really near zero. After one Majorana localises on the edge there is a jump
in the higher energy modes but the low energy modes stay near zero. By moving the
second Majorana to the edge the gap extends until it completely opens up when the two
Majoranas fuse. After that, we do not have any Majorana in the system anymore.
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Figure 10.7.: In this figure the energy evolution of the modes shown in Figure 10.6 are
shown. The Majorana zero modes are marked in green. While the Skyrmion-Vortex pairs,
and therefore also the Majorana zero modes are pushed out of the sample, the energies
change. After both Majorana zero modes are pushed out of the sample an energy gap
forms.

10.5. Advancing Scalability in Topological Quantum
Computing

In this section, we demonstrate the scalability of our platform. As previously shown, we
can create multiple Majorana zero modes by increasing the number of Skyrmion-Vortex
pairs (SVPs) in the sample, and we have also demonstrated the braiding of multiple
Majorana zero modes using the SVPs. However, to achieve a scalable platform, we
need a method for performing braiding of SVPs in a controlled and efficient manner.
To address this, we propose a device structure, as depicted in Figure 10.8, consisting
of a superconductor (grey), a magnet (blue), an insulating layer (white), and electric
contacts. The magnet is patterned in a grid structure to create paths for the Skyrmions,
allowing specific pairs of SVPs to be braided while leaving others unaffected. We present
two architectures for this grid structure: one with a square pattern, which is simpler to
fabricate, and another with a triangular pattern, allowing for a denser configuration of
SVPs due to its diagonal paths.

The electric contacts are used to generate a controlled current flow, moving the Skyrmions
along the magnetic paths. To perform the braiding, two electrodes are activated, se-
quentially moving one SVP to its target position and then the other SVP, leading to
the desired movement of the two SVPs. To protect the Majorana modes in the super-
conductor from the current flow, we propose the addition of an insulating layer between
the magnet and the superconductor. The thickness of this insulating layer should be
chosen to ensure that the current flow in the superconductor is negligible, while still
maintaining a significant exchange field coupling between Skyrmions and vortices. This
is achievable because the exchange field and the current scale differently as a function of
layer thickness d (exchange field ∼ d2 and current ∼ d4), allowing us to effectively isolate
the Majorana modes while retaining the desired coupling between SVPs and vortices.
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Electric Contacts

Magnet

Superconductor

Skyrmion-Vortex pair/

Majorana Fermion

+
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-

-

Figure 10.8.: Scalable topological quantum computing platforms based on Skyrmion-
Vortex pairs. Left: top view of a square grid architecture. Middle: top view of a
triangular grid architecture. Right: 3d heterostructure comprising a thin film super-
conductor (grey) and a square-grid-patterned magnet (blue), separated by an insulating
layer (white), where electric contacts (yellow) are used to manipulate and braid SVPs
(red). Adapted from Ref. [30].

10.6. Initialisation of a Qubit State and Quantum Gates

As discussed for the Ising Anyons in Section 5.3.2 we need at least three Anyons to
define a qubit. To discuss the quantum gates for Skyrmion-Vortex pairs we will consider
two qubits and therefore six Majorana zero modes denoted by σ. This leaves us with a
computational basis of [96]

|00⟩ = |σσ; 1⟩ |σσ; 1⟩ |σσ; 1⟩ ,
|10⟩ = |σσ;ψ⟩ |σσ;ψ⟩ |σσ; 1⟩ ,
|01⟩ = |σσ; 1⟩ |σσ;ψ⟩ |σσ;ψ⟩ ,
|11⟩ = |σσ;ψ⟩ |σσ; 1⟩ |σσ;ψ⟩ ,

(10.6)

Manipulations of the Majoranas by braiding shown before will perform quantum opera-
tions on this state [140].

These manipulations are called quantum gates and it is important to note here, that
every quantum gate can be split up into some single-qubit gates and one two-qubit gate.
The realisation of common quantum gates is shown in Figure 10.9. The Clifford gates
can therefore be implemented for example by the Hadamard, the phase gate, and the
CNOT gate. The Hadamard gate is represented by the following exchange sequence

R12R23R12 = R23R12R23 = eiπ/4H. (10.7)

The phase gate can be easily implemented by

R12 = S. (10.8)

The CNOT gate can be implemented by six Majorana zero modes [141]

CNOT = R−1
34 R45R34R12R56R45R

−1
34 =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 . (10.9)

Together with the π
8 -gate this would form a universal set of quantum gates. However a

π
8 gate can not be implemented with Majorana zero modes, which is a basic limitation
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10. Skyrmion-Vortex Pair Braiding

Figure 10.9.: Clifford quantum gates consisting out of the Hadamard gate H, the phase gate
S and the CNOT gate. The lines correspond to the worldlines that the Majorana follows.
An exchange is represented by two crossing lines, which can move counterclockwise or
clockwise. We illustrate this with one line being solid whereas the other line is interrupted.

of Majorana zero modes. In Section 5.3.2 we already discussed how to overcome this
shortcoming by using non-topological gates, where we bring two Majorana zero modes
close to each other. There are even more ideas for universal sets of quantum gates
discussed in [141] that circumvents measuring the qubits as suggested by [140]. Also,
some of the gates stated in [141] have been carried out in [142] with a system consisting
of a superconductor-semiconductor heterostructure providing superconducting vortices
with Majorana-zero modes. Here the braiding is done by manipulating the position of
the vortices with STM tips. This also makes our proposal experimental plausible.

10.7. Advancements in Quantum Computing Using
Skyrmion-Vortex Pairs

In this chapter, we proposed a system which could be used as a quantum computing
platform for Majorana zero modes. Since these topological qubits are less susceptible
to fluctuations from the environment and then also less susceptible to errors this opens
up the next step in quantum computing by reducing the amount of quantum error
correction. Because of this logical qubits are made of fewer physical qubits and therefore
making quantum computers less hardware-consuming. This simplifies the path to a
robust quantum computer that is able to exceed the computation space of classical
computers.

We discussed the details of the platform by presenting the model that we use consisting
of a superconductor-ferromagnet heterostructure where we introduce Skyrmions in the
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magnet and vortices in the superconductor. Next, we analysed this model with respect
to the existence of Majorana zero modes, where we found that such modes are present in
systems with Skyrmion-Vortex Pairs. We also show a phase diagram for which parame-
ters these modes are present. As a next step, we looked into the mechanism of braiding
these Majorana modes by moving the Skyrmion and dragging the superconducting Vor-
tex along. We also showed the Majorana modes have the statistics, which was proposed
by Ivanov [29]. Furthermore, we discussed the possibility of creating and fusing Ma-
jorana modes in our quantum computing platform. Here, the Majorana modes can be
created from the edge and also fused by successively driving the Majorana modes one
after the other to the edge. A very important topic is the scalability of such a system.
Here we proposed a specific setup which tackles this problem and makes it possible to
control the movement of the Majorana zero modes by patterning the magnetic material
in a grid to predefine paths that the Majorana modes can use and by using electrodes
from the edge of the sample. Finally, we also discuss how a complete set of quantum
gates could be realised in our system and how the qubit states could be initialised.

This last part is only a sketch of how the initialisation of the qubits can be carried
out. It is not clear, that adding Skyrmion-Vortex pairs always gives us Majorana zero
modes in the right state. One could use the leads at the edge of the sample and makes
a conductive measurement on the Majorana modes. This projects the Majorana mode
into the empty fermionic states resulting also in a projection of the qubit state. In order
to verify that it is indeed possible to set a well-defined initial state with this technique
one has to add a term for the electric contacts to the Hamiltonian. This will then give
rise to new insights into how electric currents will influence the proposed system. To
extend our model away from the adiabatic regime we will have to solve the Schrödinger
equation and study how fast the braiding can be done without destroying the coherence
of the system.
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Conclusion

In conclusion, this thesis explores the fascinating realms of Skyrmion excitations, topo-
logical superconductors, and superconductor-magnet heterostructures.

During our exploration of Skyrmion excitation, we discovered that the eigenmodes of
Skyrmions can be utilized for low-energy frequency multiplication. Through micromag-
netic simulations, we demonstrate the exciting possibility of exciting the breathing mode
and elliptical mode of Skyrmions at fractions of their eigenfrequencies. This opens up
new avenues for developing low-energy frequency multipliers, which can have significant
implications for various technological applications. Additionally, the tunability of these
frequencies through temperature changes and external magnetic or electric fields en-
hances their versatility. Importantly, we develop a theory that extends beyond specific
microscopic features, providing a robust framework for future exploration and utilisation
of topological excitations in magnets.

In the realm of quantum computation with topological superconductors, we delve into
the principles of braiding in a Kitaev chain. Furthermore, we present a novel technique
for eliminating numerical phases in zero energy eigenvalues, providing a pathway for
precise analysis of the braiding in more complex systems. Furthermore, we outline the
implementation of braiding in a T-junction by controlling the topological and trivial
phases of the superconductor through the chemical potential. By employing numeri-
cal simulations, we validate the obtained braiding statistics, as initially proposed by
Ivanov [29].

In the investigation of superconductor-magnet heterostructures towards quantum com-
putation, we establish a fundamental connection between these heterostructures and
the Kitaev chain, uncovering shared physics that facilitates the utilisation of the het-
erostructures for quantum computing applications. We introduced a Hamiltonian that
accurately represents the superconductor-magnet heterostructure. We develop a power-
ful numerical framework capable of computing the system’s eigensystem and solving the
self-consistency condition of the BCS theory, enabling in-depth investigations. Within
this framework, we uncover significant insights, including the manipulation and ordering
of superconducting vortices through interactions with magnetic domain walls. Addition-
ally, we discover the localisation of Majorana modes at Skyrmion-Vortex pairs, providing
a promising avenue for braiding Majoranas. Furthermore, we demonstrate the creation,
fusion, and scalability of Majoranas using Skyrmion-Vortex pairs. Moreover, we outline
how the utilisation of Skyrmion-Vortex pairs enables the performance of Clifford gates,
paving the way for quantum computation.

Collectively, this thesis presents a comprehensive exploration of Skyrmion excitations,
topological superconductors, and superconductor-magnet heterostructures. The findings
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and methodologies presented here contribute to the development of low-energy frequency
multipliers, robust braiding techniques, and the realization of quantum computing archi-
tectures. By harnessing the unique properties of the superconductor-heterostructures,
we can advance the field of quantum computation and pave the way for technologies.
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A
Program Code for Frequency Multiplication

of Skyrmion Modes

A.1. Relaxation and Excitation of a Skyrmion

The simulations are carried out with mumax3 [42]. In the following, we show a sample
script which was used to relax a material hosting a Skyrmion to its energy minimum.
Therefore we employ a finite difference discretization of space as defined in Equation (2.7)
used in chapter 2.

1 // Define sample dimensions
2 lx := 600e-9
3 ly := 600e-9
4 lz := 1e-9
5 nx := 600
6 ny := 600
7 nz := 1
8 dx := lx / nx
9 dy := ly / ny

10 dz := lz / nz
11

12 // Define material parameters
13 satmag := 1.1e6 // A/m
14 jex := 1.6e-11 // J/m
15 dm := 2.5e-3 // J/m^2
16 ani := 0.51e6 // J/m^3
17 dampinga := 1.0e-3
18

19 // Set geometry
20 SetGridSize(nx, ny, nz)
21 SetCellSize(dx, dy, dz)
22

23 SetPBC(3, 3, 0) // Periodic boundary conditions
24 EnableDemag = False // turn off stray field
25

26

27 // Set material parameters
28 Msat = satmag
29 Aex = jex
30 AnisU = vector(0, 0, 1)
31 Ku1 = ani
32 Dind = dm
33 alpha = dampinga
34

35 //Relax Skyrmion
36 m = NeelSkyrmion(1,-1)
37 relax()
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38 save(m) // relaxed state

After we have relaxed the material to its energy minimum we can load the relaxed state
into a new script shown below. In this script we excite the Skyrmion within the material
by applying a magnetic field pulse. In order to excite all modes of the Skyrmion we
chose magnetic field pulses with different frequency ranges. After that we let the system
relax for 20 ns so that non-eigenmodes decay and we are left with the eigenmodes of the
Skyrmion. We collected data about the eigenmodes for another 10 ns.

1 lx := 600e-9
2 ly := 600e-9
3 lz := 1e-9
4 nx := 600
5 ny := 600
6 nz := 1
7 dx := lx / nx
8 dy := ly / ny
9 dz := lz / nz

10

11 // Define material parameters
12 satmag := 1.1e6 // A/m
13 jex := 1.6e-11 // J/m
14 dm := 2.5e-3 // J/m^2
15 ani := 0.51e6 // J/m^3
16 dampinga := 1.0e-3
17

18 t0 := 0.1e-9 // The centre of the sinc pulse
19 f1 := 25e9
20 f2 := 50e9
21 f3 := 100e9
22 f4 := 200e9
23 f5 := 500e9
24 h_max := 0.05
25

26 totaltime :=10e-9 //total time of simulation
27 deltatime :=1e-11 //interval of time to print off
28

29 // Set geometry
30 SetGridSize(nx, ny, nz)
31 SetCellSize(dx, dy, dz)
32

33 SetPBC(3, 3, 0) // Periodic boundary conditions
34 EnableDemag = False // turn off stray field
35

36 // Set material parameters
37 Msat = satmag
38 Aex = jex
39 AnisU = vector(0, 0, 1)
40 Ku1 = ani
41 Dind = dm
42 alpha = dampinga
43

44 //Initialize Skyrmion
45 m.LoadFile("Relax.out/m000000.ovf")
46

47 //Run Pulse
48 B_ext = vector(h_max * sin(2 * pi * f1 * (t - t0)) / (2 * pi * f1 * (t -

t0)), 0, 0)
49 run(2*t0)
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50 B_ext = vector(h_max * sin(2 * pi * f2 * (t - 3*t0)) / (2 * pi * f2 * (t -
3*t0)), 0, 0)

51 run(2*t0)
52 B_ext = vector(h_max * sin(2 * pi * f3 * (t - 5*t0)) / (2 * pi * f3 * (t -

5*t0)), 0, 0)
53 run(2*t0)
54 B_ext = vector(h_max * sin(2 * pi * f4 * (t - 7*t0)) / (2 * pi * f4 * (t -

7*t0)), 0, 0)
55 run(2*t0)
56 B_ext = vector(h_max * sin(2 * pi * f5 * (t - 9*t0)) / (2 * pi * f5 * (t -

9*t0)), 0, 0)
57 run(2*t0)
58

59 B_ext = vector(0, 0, 0)
60 run(20e-9) // Let it run for 20 ns to suppress non eigenmodes
61

62 autosave(m, deltatime)
63 run(totaltime)

A.2. Excitation of Skyrmion Eigenmodes

We address separately the eigenmodes of the Skyrmion with the following script. Here
we apply a magnetic field with the corresponding frequency, let it run for 40 ns so that
the eigenmode adjusts to the excitation, and collect data for 30 ns.

1 lx := 600e-9
2 ly := 600e-9
3 lz := 1e-9
4 nx := 600
5 ny := 600
6 nz := 1
7 dx := lx / nx
8 dy := ly / ny
9 dz := lz / nz

10

11 //Kappa parameter
12 kappa:= 1.3 //initial kappa parameter
13

14 //Reduced current
15 u:= 0.0 //inital reduced current
16

17

18 satmag := 1.1e6 // A/m
19 jex := 1.6e-11 // J/m
20 dm := 2.8e-3 // J/m^2
21 ani := 0.51e6 // J/m^3
22 dampinga := 1.0e-3
23

24 frequency:= 3.59564344e+09 // frequency of the applied in-plane field
25 h0 := 0.10263157894736842 // amplitude of the applied in-plane field
26

27 totaltime :=30e-9 //total time of simulation
28 deltatime :=0.01e-9 //interval of time to print off
29

30 // Set geometry
31 SetGridSize(nx, ny, nz)
32 SetCellSize(dx, dy, dz)
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33

34 SetPBC(3, 3, 0) // Periodic boundary conditions
35 EnableDemag = False // turn off stray field
36

37

38 // Set material parameters
39 Msat = satmag
40 Aex = jex
41 AnisU = vector(0, 0, 1)
42 Ku1 = ani
43 Dind = dm
44 alpha = dampinga
45

46 //Initialize Skyrmion
47 m.LoadFile("Relax.out/m000000.ovf")
48 //SaveAs(m,sprintf("skyrmion_relaxed_j=%.3f_k=%.3f_d=%.3f.ovf",jex,ani,dm)

)
49

50

51 //Run Excitation
52 MaxErr=1e-6
53 B_ext = vector(h0*Sin(2*Pi*frequency*t), 0, 0)
54 autosave(m, deltatime)
55 run(40e-9)
56 run(totaltime)

A.3. Scripts to Analyze the Skyrmion Excitation

With the following script, we are able to calculate the power spectral density (PSD)
as defined in Equation (4.2). For that, we have to read the simulation time and the
spatial dimension of the material from our mumax3 simulations defined in the functions
getTime and getSpatialDimensions. In the function Psd we read in the relaxed
state of the Skyrmion and the Skyrmion states during the excitation. We then subtract
the relaxed Skyrmion state from the Skyrmion states during the excitation and then
calculate the PSD according to Equation (4.2).

1 import numpy as np
2 import sys
3 import discretisedfield as df
4 import os
5 import time
6 import cupy as cp
7

8 def getTime(file):
9 with open(file, "rb") as ovffile:

10 f = ovffile.read()
11 lines = f.split(b"\n")
12

13 mdatalines = filter(lambda s: s.startswith(bytes("#", "utf-8")),
lines)

14 for line in mdatalines:
15 if b"Total simulation time" in line:
16 return float(line.split()[5])
17

18

19 def getSpatialDimensions(file):
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20 with open(file, "rb") as ovffile:
21 f = ovffile.read()
22 lines = f.split(b"\n")
23

24 xNodes = 0
25 yNodes = 0
26 zNodes = 0
27

28 mdatalines = filter(lambda s: s.startswith(bytes("#", "utf-8")),
lines)

29 for line in mdatalines:
30 if b"xnodes" in line:
31 xNodes = int(line.split()[2])
32 elif b"ynodes" in line:
33 yNodes = int(line.split()[2])
34 elif b"znodes" in line:
35 zNodes = int(line.split()[2])
36

37 if xNodes != 0 and yNodes != 0 and zNodes != 0:
38 return xNodes, yNodes, zNodes
39

40

41 def Psd(directory, relaxedStateFile):
42

43 """ Spatially-resolved power spectral density as a function of
frequency f """

44

45 relaxedStateArray = df.Field.fromfile(relaxedStateFile).array
46

47 xNodes, yNodes, zNodes = getSpatialDimensions(relaxedStateFile)
48

49 relaxedStateArray = relaxedStateArray[int(xNodes/2)-50:int(xNodes/2)
+50,int(yNodes/2)-50:int(yNodes/2)+50,:,:]

50

51 dimx = relaxedStateArray.shape[0]
52 dimy = relaxedStateArray.shape[1]
53

54 N = dimx * dimy * zNodes
55

56 filesToScan = []
57 for file in os.listdir(directory):
58 if file.endswith(".ovf") and file.startswith("m"):
59 filesToScan.append(directory + file)
60

61 filesToScan = sorted(filesToScan)
62

63 allFiles = np.zeros((len(filesToScan), len(relaxedStateArray), len(
relaxedStateArray[0]), len(relaxedStateArray[0][0]), len(
relaxedStateArray[0][0][0])))

64 timesArray = np.zeros(len(filesToScan))
65

66 start = time.time()
67

68 for i, file in enumerate(filesToScan):
69 print("Loading file", i+1, "of", len(filesToScan))
70 allFiles[i] = df.Field.fromfile(file).array[int(xNodes/2)-50:int(

xNodes/2)+50,int(yNodes/2)-50:int(yNodes/2)+50,:,:]
71 timesArray[i] = getTime(file)
72

73 diffArray = allFiles - relaxedStateArray
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74

75 diffArray = diffArray.reshape((len(allFiles), dimx * dimy * zNodes, 3)
)

76

77 middle = time.time()
78

79 Psd=np.array([np.fft.rfftfreq(diffArray.shape[0],d=(timesArray[1]-
timesArray[0]))/1e9,np.sum(1/N*np.sum(np.abs(np.fft.rfft(diffArray
,axis=0))**2,axis=1),axis=1)])

80

81 end = time.time()
82

83 print(’loading time:’)
84 print(middle-start)
85 print(’fft time:’)
86 print(end - middle)
87

88 return Psd
89

90 directory = "Sinc_Pulse.out/"
91 initialFile = "Relax.out/m000000.ovf"
92 Psd = Psd(directory, initialFile)
93 np.save("Psd", Psd)

To analyze a single mode of a Skyrmion we read in the z component of the simulation
data where we excited the Skyrmion with one of its eigenfrequency. We then extract
the boundary of the Skyrmion by taking the elementwise absolute of the gathered data.
By employing this procedure, the boundary of the Skyrmion looks like a white donut
as shown in figure 4.4 a). We then use the skimage tool [72] to extract the contours,
which gives us an inner and an outer contour. Next, we calculate the centroid of these
contours so that we can get the radius at every point of the contour. After that, we cut
the contour into different sections where we measure the radius so that we have a skeleton
of the Skyrmion which we follow during its excitation. The lists of radii we then export
for the corresponding Plot later. A sample picture of the contour extracted Skyrmion
can best be seen in figure 4.4 a).The subsequent code demonstrates the implementation
of this procedure.

1 import numpy as np
2 import matplotlib.pyplot as plt
3 from glob import glob
4 from os import getcwd, chdir
5 from skimage import measure
6 import discretisedfield as df
7 import sys
8

9 folder = str(sys.argv[1])
10

11 saved=getcwd()
12 chdir(folder)
13 n= sorted(glob(’*.ovf’))
14 chdir(saved)
15

16 radiusnumber=1000+1
17 radiuslist = np.zeros(shape=(len(n),radiusnumber))
18 radiuslist2 = np.zeros(shape=(len(n),radiusnumber))
19

20
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21 i=0
22

23 for number in n:
24 print(i)
25 #Import Skyrmion data
26 read_field = df.Field.fromfile(folder+number)
27

28 vecztmp = read_field.array[:,:,0,2]
29

30 vecz=abs(vecztmp)
31

32 contours = measure.find_contours(vecz, 0.8)
33

34 centroid_x = np.median(contours[0][:,1])
35 centroid_y = np.median(contours[0][:,0])
36

37 x=contours[0][:,1]-centroid_x
38 y=contours[0][:,0]-centroid_y
39

40 r=np.sqrt(x**2 + y**2)
41 a=np.arctan2(y, x)
42

43 angle = np.linspace(-np.pi,np.pi,radiusnumber)
44

45 radius = np.interp(angle,a,r,period=360)
46

47 radiuslist[i]=radius
48

49 centroid_x2 = np.median(contours[1][:,1])
50 centroid_y2 = np.median(contours[1][:,0])
51

52 x2=contours[1][:,1]-centroid_x2
53 y2=contours[1][:,0]-centroid_y2
54

55 r2=np.sqrt(x2**2 + y2**2)
56 a2=np.arctan2(y2, x2)
57

58 angle2 = np.linspace(-np.pi,np.pi,radiusnumber)
59

60 radius2 = np.interp(angle2,a2,r2,period=360)
61

62 radiuslist2[i]=radius2
63

64 fig = plt.figure(frameon=False)
65 fig.set_size_inches(vecz.shape[0]*0.01,vecz.shape[1]*0.01)
66 ax = plt.Axes(fig, [0., 0., 1., 1.])
67 ax.set_axis_off()
68 fig.add_axes(ax)
69 plt.imshow(-vecz, cmap=plt.cm.gray)
70 plt.plot(contours[0][:,1],contours[0][:,0],’r’)
71 plt.plot(contours[1][:,1],contours[1][:,0],’g’)
72 plt.gca().set_aspect("equal")
73 plt.savefig(folder+number.replace(’.ovf’, ’.png’))
74 plt.close(fig)
75 plt.gcf().clear()
76

77 print(’’)
78 i=i+1
79

80 np.save(’Plot_’+folder.replace(’.out’,’’)+"data",[radiuslist,radiuslist2])
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A.4. Scripts for the Frequency Multiplication of Skyrmion
Modes

The following code loads the data of our script that calculates the Psr. Here we use
the scipy.signal package [143] to find the peaks in our spectrum. We then save the
corresponding frequencies of the peaks for further processing. A sample plot of the Psr
can be seen in the right panel of figure 4.3.

1 import numpy as np
2 import matplotlib.pyplot as plt
3 from scipy.signal import find_peaks
4

5 data = np.load("Psr.npy")
6

7 frequencies=data[0]
8 Psr= data[1]
9

10 peaks, _ = find_peaks(Psr, prominence=1e-3)
11

12 plt.plot(frequencies[2:-1] , Psr[2:-1])
13 plt.xlim(0,30)
14 plt.xlabel("Frequency (GHz)")
15 plt.ylabel(r"$P_{\mathrm{sr}}$ (A.U.)")
16 plt.plot(frequencies[peaks], Psr[peaks], "r.")
17 plt.semilogy()
18 plt.savefig("Psr.png")
19

20 print(frequencies[peaks])
21 print(Psr[peaks])
22 np.save(’Psr_freq’,frequencies[peaks])

We plot the different frequencies with respect to the rescaled DMI as a scatter plot and
assign the different modes with different colours. The corresponding plot can be seen in
the left panel of figure 4.3.

1 import matplotlib.pyplot as plt
2 import matplotlib
3 import numpy as np
4 import scipy
5 from numpy import genfromtxt
6

7 data = genfromtxt(’FrequencyvsDMI2.csv’, delimiter=’;’,names=True,dtype=
None,encoding=’utf-8-sig’)

8

9 print(data.dtype.names)
10

11 font = {’size’ : 15}
12

13 matplotlib.rc(’font’, **font)
14

15 plt.scatter(data[’DMI’],data[’Breathing_frequency’],20,color=’red’,
linestyle=’-’,marker=’o’,alpha=0.5,label=r"$\omega_0$, breathing")

16 plt.scatter(data[’DMI’],data[’Extra_peak_3_frequency’],20,color=’tomato’,
linestyle=’-’,marker=’o’,alpha=0.5,label=r"$2 \omega_0$")

17 plt.scatter(data[’DMI’],data[’Gyrotropic_frequency’],20,color=’royalblue’,
linestyle=’-’,marker=’o’,alpha=0.5,label=r"$\omega_1$, gyrotropic")

18 plt.scatter(data[’DMI’],data[’Elliptic_frequency’],20,color=’forestgreen’,
linestyle=’-’,marker=’o’,alpha=0.5, label=r"$\omega_2$, elliptical")
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19 plt.scatter(data[’DMI’],data[’Triangular_frequency’],20,color=’gold’,
linestyle=’-’,marker=’o’,alpha=0.5,label=r"$\omega_3$, triangular")

20 plt.axhline(y=25, color=’k’, linestyle=’-’,linewidth=’1’)
21 plt.fill_between(data[’DMI’], 25, 30,color="lightgray")
22 plt.xlim(min(data[’DMI’]),max(data[’DMI’]))
23 plt.ylim(0,30)
24 plt.xlabel(r"$D/D_c$")
25 plt.ylabel("Frequency (GHz)")
26 plt.annotate(’Magnon Continuum’,(2.95,27),style=’italic’)
27 plt.legend(loc=(0.02,0.35), prop={’size’: 12})
28 plt.tight_layout()
29 plt.savefig(’Frequency vs rescaled DMI_v2.pdf’)
30 plt.gcf().clear()

From the analysis of the excitation of a single eigenmode of the Skyrmion, we can
plot the radius with respect to time and the corresponding frequency by applying a
Fourier transformation to the radius data. Considering that we have two contours for
the Skyrmion, resulting in two radii, we calculate the average of the two values. This
results in a Skyrmion radius defined as the distance from the centre to the boundary
where the z component is zero. A sample picture of the radius against the time can be
seen in figure 4.4 b), where one can also see, that the eigenmode starts in a transient
phase until it adjusts to the applied frequency. In figure 4.4 c) we show a sample picture
of the Fourier transformation of the radius data.

1 import matplotlib.pyplot as plt
2 import numpy as np
3 from scipy.signal import find_peaks
4 from skimage import measure
5 import discretisedfield as df
6 import copy
7 import sys
8

9 def getTimeLength(file):
10 with open(file, "rb") as ovffile:
11 f = ovffile.read()
12 lines = f.split(b"\n")
13 time=length=0
14

15 mdatalines = filter(lambda s: s.startswith(bytes("#", "utf-8")),
lines)

16 for line in mdatalines:
17 if b"Total simulation time" in line:
18 time=float(line.split()[5])
19 elif b"zmax" in line:
20 length=float(line.split()[2])
21 return [time,length]
22

23 def fourier_transform(dt,fkt):
24

25 Fkt = np.fft.rfft(fkt)/len(fkt)*2
26

27 return Fkt
28

29 folder = str(sys.argv[1])
30

31 datatmp = np.load(folder+’data.npy’)
32
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33 dt=getTimeLength(folder.replace(’Plot_’,’’).replace(’/’,’’)+".out/m000001.
ovf")[0]-getTimeLength(folder.replace(’Plot_’,’’).replace(’/’,’’)+".
out/m000000.ovf")[0]

34 ds=getTimeLength(folder.replace(’Plot_’,’’).replace(’/’,’’)+".out/m000000.
ovf")[1]

35 t = np.linspace(dt,dt*datatmp[0].shape[0],datatmp[0].shape[0])
36 n = t.size
37 f=np.linspace(0, 1/(2*dt), int(n/2+2))[:-1]
38

39 #read in relaxed radii
40 read_field = df.Field.fromfile("Relax.out/m000000.ovf")
41

42 vecztmp = read_field.array[:,:,0,2]
43

44 vecz=abs(vecztmp)
45

46 contours = measure.find_contours(vecz, 0.8)
47

48 centroid_x0 = np.median(contours[0][:,1])
49 centroid_y0 = np.median(contours[0][:,0])
50

51 x0=contours[0][:,1]-centroid_x0
52 y0=contours[0][:,0]-centroid_y0
53

54 r0=np.sqrt(x0**2 + y0**2)
55 a0=np.arctan2(y0, x0)
56

57 angle0 = np.linspace(-np.pi,np.pi,datatmp[0].shape[0])
58

59 radius0 = np.interp(angle0,a0,r0,period=360)
60

61 centroid_x1 = np.median(contours[1][:,1])
62 centroid_y1 = np.median(contours[1][:,0])
63

64 x1=contours[1][:,1]-centroid_x1
65 y1=contours[1][:,0]-centroid_y1
66

67 r1=np.sqrt(x1**2 + y1**2)
68 a1=np.arctan2(y1, x1)
69

70 angle1 = np.linspace(-np.pi,np.pi,datatmp[0].shape[0])
71

72 radius1 = np.interp(angle1,a1,r1,period=360)
73

74 meanradius0=np.sum(radius0)/len(radius0)
75 meanradius1=np.sum(radius1)/len(radius1)
76

77 meandws=abs(meanradius0-meanradius1) #dws is domainwallsize
78

79 print("Mean Radius of relaxed state in nm:",(meanradius0*ds)/1e-9)
80 print("Mean Domain wall size of relaxed state in nm:",(meandws*ds)/1e-9)
81 print("")
82

83 #fourier transform all modes
84 data=copy.deepcopy(datatmp[0])
85

86 meanall = 0
87 fftall=0
88

89 for i in range(data.shape[1]):
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90 meanall+= data[:,i]
91 data[:,i]= data[:,i]-radius0
92

93 for i in range(data.shape[1]):
94 fftall+= abs(fourier_transform(dt,data[:,i]))
95

96 meanall=meanall/data.shape[1]
97 fftall=fftall/data.shape[1]
98

99

100 plt.plot(t/1e-9,(meanall*ds)/1e-9)
101 plt.xlabel("Time (ns)")
102 plt.ylabel("Radius (nm)")
103 plt.xlim(0,max(t/1e-9))
104 plt.savefig(folder+’Analyseradius.svg’)
105 plt.gcf().clear()
106

107 plt.plot(t/1e-9,(meanall*ds)/1e-9)
108 plt.xlabel("Time (ns)")
109 plt.ylabel("Radius (nm)")
110 plt.xlim(68,max(t/1e-9))
111 plt.savefig(folder+’Analyseradius2.svg’)
112 plt.gcf().clear()
113

114 peaks, _ = find_peaks(abs(fftall),prominence=1)
115

116 plt.plot(f[2:-1]/1e9,abs(fftall[2:-1]))
117 plt.xlim(0,30)
118 plt.xlabel("Frequency (GHz)")
119 plt.ylabel("Amplitude (A.u.)")
120 plt.savefig(folder+’Analysefftradius.svg’)
121 plt.gcf().clear()
122

123 print(f[peaks])
124 np.save(folder+’Contourdata’,[f/1e9,abs(fftall)])
125 np.save(folder+’/Frequencies_Contour’,f[peaks])
126 np.save(folder+’/data_Relaxed’,[(meanradius0*ds)/1e-9,(meandws*ds)/1e-9])
127 np.save(folder+’/data_min-max-Amp’,[(min(meanall)*ds)/1e-9,(max(meanall)*

ds)/1e-9])

We show the code which plots the radius of the Skyrmion with respect to the applied
frequency. Within this code, we have to read the amplitude and the frequency that we
calculated before. Then we have to select the frequency we want to observe where we
choose a certain range in which we expect the peak. We then plot the amplitude of
the peak with respect to the applied frequency. We showed two plots using this code
in the main text. First, we analyzed the breathing mode in figure 4.5 and then we also
analyzed the elliptical mode in figure 4.8.

1 import matplotlib.pyplot as plt
2 import matplotlib
3 import numpy as np
4 import os
5

6 font = {’size’ : 15}
7

8 matplotlib.rc(’font’, **font)
9

10 AmplitudeList=[]
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11 frequency=[7.19128688]
12 frequencylist=np.linspace(0,1.033333333333333,102)[1:-1]*frequency
13

14 for f in frequencylist:
15

16 data = np.load(’Plot_Excitation_inplane_’+str(round(f,2))+’/Contourdata.
npy’)

17 [relaxed_radius, relaxed_dw] = np.load(’Plot_Excitation_inplane_’+str(
round(f,2))+’/data_Relaxed.npy’)

18 f = np.load(’Plot_Excitation_inplane_’+str(round(f,2))+’/
Frequencies_Contour.npy’)

19 newf=f[np.argmin(abs(f-7.10981627e+09), axis=None)]*1e-9
20 if (7.1 < newf < 7.2):
21 Amplitude=data[1][np.unravel_index(np.argmin(abs(data[0]-newf), axis=

None),data[0].shape)]
22 else:
23 Amplitude=data[1][np.unravel_index(np.argmin(abs(data[0]-7.10981627),

axis=None),data[0].shape)]
24 AmplitudeList.append(Amplitude/(relaxed_radius))
25

26 plt.plot(frequencylist,AmplitudeList,color=’red’,marker=’o’)
27 plt.axvline(7.19128688,color=’k’,label=’f’)
28 plt.axvline(1/2*7.19128688,color=’k’,linestyle=’dashed’,label=’f/2’)
29 plt.axvline(1/3*7.19128688,color=’k’,linestyle=’dotted’,label=’f/3’)
30 plt.axvline(1/4*7.19128688,color=’k’,linestyle=’dashdot’,label=’f/4’)
31 plt.xlabel("Frequency (GHz)")
32 plt.ylabel("Amplitude/relaxed Radius")
33 plt.xlim(min(frequencylist),max(frequencylist))
34 plt.legend(loc=2, prop={’size’: 10})
35 plt.tight_layout()
36 plt.savefig(’Analysefftradius_Amplitudes.pdf’)
37 plt.gcf().clear()
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B
Numerical and Analytical Methods for

Topological Superconductors

This chapter provides a comprehensive elucidation of the analytical and numerical method-
ologies employed throughout this thesis. In the following, we will show a derivation of
the braiding operator in a tight binding model, the free energy calculation to describe
the domain wall interaction with a superconducting Vortex, the Python module to model
a superconductor-magnet heterostructure and the scripts that were used to study the
superconductor-magnet heterostructure.

B.1. Derivation of the Braiding Operator in a Tight Binding
Model

Apart from being topological zero-energy bound states, the Majorana zero modes in the
Kitaev chain are fascinating because they exhibit non-Abelian braiding. This means that
the system’s state can change when a Majorana is braided around another. Consider a
system that combines four of these Majorana zero modes on some tracks and enables
the interchange of two nearby Majoranas in the manner shown below to demonstrate
this idea:

a) b)

c) d)

Figure B.1.: Braiding of Majorana zero modes in a T-Junction.

The following calculation was done by Tobias Meng and we show this derivation in this
thesis. While the particle number in a Majorana system is not conserved, the fermionic
parity is (even or odd numbers of Fermions in the system correspond to parity eigenvalues
+1 and -1, respectively). However, proper fermionic states are required to define parity.
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The properties of the fermionic modes c = (γ1 + iγ2)/2 and d = (γ3 + iγ4)/2 are given
by

Pc = 2c†c− 1 = iγ1γ2 and Pd = 2d†d− 1 = iγ3γ4. (A-1)
The total parity is given by Ptot = PdPe, and hence by

Ptot = −γ1γ2γ3γ4. (A-2)

The exchange of Majoranas 2 and 3 (see Figure B.1) can be understood as an adiabatic
evolution of the system as some microscopic parameters are changed and are thus rep-
resented by a unitary matrix U23. Only the Majorana Fermion operators γ2 and γ3 can
be involved in the evolution operator U23 because only these Majoranas are impacted by
the braiding, taking into account that different Majoranas do not interact. Due to the
fact that γiγi = 1, the most general operator involving only γ2 and γ3 can be written
as

U23 = a+ bγ2 + cγ3 + dγ2γ3 (A-3)
with complex numbers a, b, c, d. Since the parity is not affected by the evolution, we have
[Ptot, U23] = 0. This commutator implies b = 0 = c. Unitary finally means U †

23U23 = 1,
and hence |a|2 + |d|2 + (a∗d − ad∗)γ2γ3 = 1. Writing a = |a|eiφ and d = |d|eiθ, we find
φ = θ and |a|2 + |d|2 = 1. The most general form of U23 is thus

U23 = eiφ(sin x+ cosx γ2γ3) (A-4)

Using this form to execute the exchange we find

U23γ2U
†
23 = − cos 2x γ2 − sin 2x γ3 (A-5)

U23γ3U
†
23 = − cos 2x γ3 + sin 2x γ2. (A-6)

Since the two Majoranas have switched places, the evolution should result in γ2 → γ3
(up to a phase) and γ3 → γ2 (up to a phase). This translates to 2x = (n+ 1/2)π. The
two x values that result in different operators U23 can then be chosen as x = ±π/4. The
±-sign represents the braiding’s rotation sense: one can braid as shown in the image or
do the reverse process in which γ3 is moved down in the first step. Inserting x into the
equation before then yields the result we expect from [29]

U23γ2U
†
23 = −γ3 (A-7)

U23γ3U
†
23 = γ2. (A-8)

B.2. Domain Wall Interaction with a Superconducting Vortex

A. Ginzburg-Landau Theory of Noncentrosymmetric Superconductors

For noncentrosymmetric superconductors, the Ginzburg-Landau free energy takes the
form of

F [ψ∗, ψ,A,h] =
∫

dr
[
F0 + F (1)

me + F (2)
me

]
, (A-9)

where F (1)
me and F (1)

me are defined below Equation (9.2) and F0 is given by

F0 = 1
4m(Πψ)∗ · Πψ + a|ψ|2 + b

2 |ψ|4 + |B|2

8π . (A-10)
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Here, Π = −iℏ∇ − 2eA/c, and a and b determine the absolute value of the order
parameter field ψ. Varying the free-energy functional in Equation (A-9) with respect to
A and using that js = (c/4π)(∇ × B) lead to the supercurrent density js = jcs + jas.
The anomalous supercurrent density jas is then given by the equation

jas = 2e|ψ|2
[
κ(1)(ẑ × h) + κ(2)(ẑ × ∇hz)

]
. (A-11)

Besides the conventional contribution of jcs = eP/m generated by phase gradients in ψ
(2m is the mass of a Cooper pair), Equation (A-11) produces an additional contribution
to the supercurrent, resulting in a net supercurrent density of js = jcs + jas. According
to Equation (A-11), magnetic textures, such as ferromagnetic domain walls, produce
anomalous supercurrents in proximity-coupled superconductor-ferromagnet heterostruc-
tures. By incorporating the exchange field h(dw) defined in Equation 9.1, we find the
following supercurrent density associated with a domain wall of general helicity

j(dw)
as (x) = g(1)(x) ẑ × n̂(dw) − g(2)(x) ŷ, (A-12)

where g(1) = κ(1)2eh0|ψ|2 sech (x/λ) (g(2) = κ(2)2eh0|ψ|2 sech2 (x/λ) /λ) represents the
current originating from F (1)

me (F (2)
me), and n̂(dw) = [cos(γ), sin(γ), 0] is determined by the

helicity of the domain wall. Specifically, for the κ(1)-term, Néel domain walls give rise
to supercurrents along the wall, while Bloch domain walls generate currents across the
wall. Furthermore, the direction of the current switches sign under n̂(dw) 7→ −n̂(dw).The
current density generated by the κ(2)-term is independent of the domain wall’s helicity
and always flows along the wall.

By examining the interplay between j(dw)
as and the supercurrent around a Vortex, we

can obtain a simple physical picture of the interaction mechanism between domain walls
and superconducting vortices. A superconducting Vortex, situated at the position R =
[Rx, Ry, 0], can be characterized by an order parameter field of the form

ψ(v)(r) = ψ0 tanh
( |r − R|

ξ

)
exp(iϕ(r)). (A-13)

In this equation, ϕ represents the phase of ψ(v), which varies by 2π in making a complete
circuit counterclockwise about the centre R of the Vortex, ψ0 denotes the absolute value
of the order parameter far from the Vortex core, and ξ represents the coherence length.
ψ(v) yields the following (conventional) supercurrent density

j(v)
cs = ℏeψ2

0
m

tanh2(|r − R|/ξ)
|r − R|2

ẑ × (r − R). (A-14)

Note that j(v)
cs is strongest when |r−R| ∼ ξ and approaches zero in the limits |r−R| → 0

and |r − R| → ∞.

B. Expressions for Feff and fme

To derive approximate analytical expressions for Feff and fme, we consider a sample that
extends infinitely along the x-axis and has a width of 2Ly along the y-axis. A domain
wall is positioned at x = 0. We assume that the Vortex is located near the domain
wall and the origin of the sample, satisfying |R| ≪ 1. Additionally, we examine narrow
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domain walls where λ → 0. By performing a series expansion of Equation (9.5) in terms
of R and considering the scenarios where the heterostructure hosts Néel and Bloch walls,
we obtain the following expressions for the effective free energies:

F
(nw)
eff = (ϵF (1)

0 − F
(2)
0 )

[
c2R̃

3
x − c1R̃x + c3R̃xR̃

2
y

]
(A-15)

F
(bw)
eff = −ϵc4F

(1)
0 R̃y − F

(2)
0

[
c2R̃

3
x − c1R̃x + c3R̃xR̃

2
y

]

Here, R̃ = R/ξ, F (1)
0 = πℏλκ(1)h0ψ

2
0, F (2)

0 = 2ℏκ(2)h0ψ
2
0. F (nw)

eff = Feff |γ=π/2−ϵπ/2 and
F

(bw)
eff = Feff |γ=ϵπ/2 represent the free energies for systems containing Néel and Bloch

walls, respectively, where ϵ ∈ {1,−1} depending on the helicity of the domain wall. In
deriving the above expressions, we have utilized the approximations (1/πλ) sech(x/λ) ≈
δ(x) and (1/2λ) sech2(x/λ) ≈ δ(x) in the limit λ → 0 (where δ(x) is the Dirac delta
function). To capture the main features of the numerically computed free energies in
Figure 9.5, we have expanded F

(nw)
eff to third order in R and F

(bw)
eff to second order.

Notably, the second-order contributions vanish in both cases. The expressions for the
coefficients c1, c2, c3, and c4 in the series expansions in Equation (A-15) are given as

c1 =
∫ L̃y

−L̃y

g1dỹ,

c2 =
∫ L̃y

−L̃y

g2dỹ,

c3 =
∫ L̃y

−L̃y

g3dỹ = 2
L̃3
y

[
1 − sech2

(
L̃y
) (

1 + L̃y tanh
(
L̃y
))]

,

c4 =
∫ L̃y

−L̃y

[g1 − ỹg4]dỹ = 2 tanh2(L̃y)
L̃y

.

Here, ỹ = y/ξ, L̃y = Ly/ξ, and the dimensionless functions g1, g2, g3, and g4 are given
by the expressions

g1 = tanh2(ỹ)
ỹ2 ,

g2 = −tanh2(ỹ)[ỹ csch(ỹ) sech(ỹ) − 1]
ỹ4 ,

g3 = −sech4(ỹ)[3 sinh2(2ỹ) − 8ỹ sinh(2ỹ) − 4ỹ2(cosh(2ỹ) − 2)]
4ỹ4 ,

g4 = 2 tanh(ỹ)[tanh(ỹ) − ỹ sech2(ỹ)]
ỹ3 .

Exact analytic expressions for c1 and c2 are not obtainable, but the parameters approach
the values c1 ≈ 3.41 and c2 ≈ 1.32 as L̃y tends to infinity. Importantly, all the coefficients
are positive, depend on the system size Ly, and approach the values c1 ≈ 3.41, c2 ≈ 1.32,
c3 = 2ξ3/L3

y, and c4 = 2ξ/Ly when Ly/ξ ≫ 1. Thus, the terms proportional to c3 and
c4 account for finite-size effects, as these coefficients vanish in the limit Ly/ξ → ∞.
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C. Collective Coordinate Description

The dynamics of a Vortex is described by the following effective action S and dissipation
functional G

S[R, Ṙ] =
∫

dt
[1

2mvṘ2 + A(R) · R
]
, (A-16)

G[R, Ṙ] =
∫

dt1
2αṘ2, (A-17)

where ∇R × A = G = 2πnsqvẑ. The equation of motion of the Vortex is determined by
the variational equation

δS
δR = δG

δṘ
. (A-18)

Equation (A-18) yields the equation in Equation (9.8).

B.3. Skyrmion-Antivortex Pairs

Here we applied the same analysis as in Section 10.2 but for Skyrmion-Antivortex Pairs.
Therefore we used a Néel Skyrmion with ϕ = π which binds to antivortices and plotted
its energy spectrum in Figure B.2. Here we see, that the energy spectrum is mirrored
compared with the one for the Skyrmion-Vortex Pairs shown in Figure 10.3. This comes
from the negative vorticity of antivortices which introduces an overall minus sign in
the proximity coupling term (8.4). In the energy spectrum, we do not have a gap
closing and we therefore cannot observe Majorana modes. Furthermore, the lowest
energy wavefunction is not well localized which additionally supports that we have not
found Majorana zero modes in this system. In order to obey Majorana zero modes in
this system more research has to be done and the parameters have to be optimized. One
reason why the simple replacement of a Vortex through an Antivortex does not preserve
the Majorana modes is that an Antivortex has a completely different symmetry in the
order parameter.

Figure B.2.: Low energy spectrum and the corresponding wavefunctions of the red marked
modes of a superconductor-ferromagnet heterostructure with two Skyrmion-Antivortex
Pairs as a function of magnetic field strength h0. The lowest mode which could be
Majorana mode is shown in red for better visibility. The horizontal line at h0 = −0.55
is intended to clarify where we would have expected the gap closing to take place. We
show a zoom as well as a Plot of the superconducting order parameter and a Plot of the
Majorana modes (from left to right). The sample has dimensions L=27a. It is a similar
analysis as shown in Figure 10.3.
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B.4. Python Module to Model a Superconductor-Magnet
Heterostructure

In Figure B.3 we show an overview of the self-written python module used to model a
superconductor-magnet heterostructure. This module is based on a Matlab implemen-
tation by Kjetil Hals [113].

MakeMatrices
MakeConstantMatrices(self)

MakeDeltaMatrix(self)

MakeVortices(self)

MakeFerroBlock(self)

MakeDomainWall(self, fieldstrength=None)

MakeSkyrmTextures(self,eta=1)

MakeHMatrix(self)

MakeTJunctionHMatrix(self,mu1,mu2,mu3)

MakeEnergyMatrix(self)

CalculateFreeEnergy(self)

PairingPotential(self)

MajoranaDensities(self)

SortEigVecVal(self)

MakeDensityMatrix(self)

CalculateCurrent(self)

MakeMatrices_toymodel
MakeConstantMatrices(self)

MakeDeltaMatrix(self)

MakeHMatrix(self)

MakeKitaevChain(self)

MakeEnergyMatrix(self)

MajoranaDensities(self)

SortEigVecVal(self)

MakeDensityMatrix(self)

RelaxCPURelaxGPU
RelaxPlot(Matrix,p,j)

Relax(Matrix)

RelaxPlotNP(Matrix,p,vortex)

RelaxPlot(Matrix)

RelaxNP(Matrix)

Relax(Matrix)

CalculateEigenValues(Matrix)

Plot

MapFromVectorToMatrix(v, Nx, Ny)

MidpointNormalize(Normalize)

load(self,filename)

ClearFolder(self)

CalculateDeltaDivergence(self)

CalculateDeltaRotation(self)

AdiabaticTimeEvolution

peak_volume(self,vector,nx,ny,index)

max_index(self,vector)

lin_comb_diff(self,eta,vp,vm,max_index)

lin_comb_min(self,eta,vp,vm,max_index,factor=1)

majorana1(self,beta,vp,vm,max_index

majorana2(self,beta,vp,vm,max_index)

calculate_electronic_eigenvectors(self)

calculate_majorana_eigenvectors(self)

calculate_berryphases(self)

calculate_overlap(self)

PhaseVectorDelta(self,initial)

VectorPlotCurrent(self,filename)

VectorPlotDeltaLive(self,i,vortex=0,Rnorm=0.9)

VectorPlotDeltaLiveinPlots(self,i,
vortex_parameters=0,vortex=0,
Rnorm=1.2,domain_wall=False,
ferro_vortex=False,current=False)

VectorPlotDelta(self,initial,filename)

DensityPlotMajoranas(self,eigenModenr,
Majorananr,filename)

DensityPlotAllMajoranasCombined(self,
majorana_pairs,filename,colorbar=None,
ratioMode=None,ratio=0.5,scale=1,scaleall=1)

plot_electronic(self,filename)

plot_majoranas(self,filename)

MakeTJunctionHMatrix(self,mu1,mu2,mu3)

Figure B.3.: Overview of the numerical code. Here the boxes represent the different classes
and within the boxes, the most important functions listed can be called from these classes.

The module is structured into different classes, that represent different steps of the
numerical calculations. In the MakeMatrices_toymodel class we build a Hamilto-
nian without a magnet on top. In the MakeMatrices class a Hamiltonian is being
put together which represents the superconductor-magnet heterostructure with different
structures within the magnet and the superconductor. When we have the Hamiltonian
defined we can then either call it within the Plot class where we can visualize different
parts of the Hamiltonian, or we can call it within the RelaxGPU or RelaxCPU class to
find the energy minimum. It is important to note here that only the superconductor is
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treated within this energy minimization and the magnet is assumed to be static. Using
the class Plot, we can visually observe the dynamics during the relaxation process as
well as examine the outcome after relaxation. But we can also treat the result further
in the AdiabaticTimeEvolution class, where we can load different Matrices and
compare them. In the following, we will show the most important functions within the
classes MakeMatrices_toymodel, MakeMatrices and RelaxGPU to explain the im-
plementation in more detail. For the other classes, the reader is referred to the github
page of the code [144].

A. Defining Hamiltonian without Spin

Here we discuss functions from the class MakeMatrices_toymodel. To build the
matrix we will first define the constants that we will use in the other functions. This is
done by the function MakeConstantMatrices.

1 def MakeConstantMatrices(self):
2 """ Define the constants that appear in the discretized
3 version of the (scaled) Rashba Hamiltonian. It sets the following

matrices:\n
4 ‘self.V0‘: The matrix carrying all the one particle information\n
5 ‘self.tx‘: The matrix describing hopping in x-direction\n
6 ‘self.ty‘: The matrix describing hopping in y-direction
7 :param self.alpha: Dimensionless Rashba parameter
8 :type self.alpha: float
9 :param self.mu: Dimensionless chemical potential

10 :type self.mu: float
11 :param self.a: Lattice spacing
12 :type self.a: float
13 """
14

15 #Write matrices:
16 self.V0= (4*0 - self.mu)
17 self.tx= -1
18 self.ty= -1

The Hamiltonian consists of a part that incorporates the single particle terms (
↔
h) and

a part that consists of the interaction between two particles (
↔
∆) as defined in Equa-

tion (6.11). In the following, we will define functions for both of these parts. We start
with the interaction between two particles defined in the function MakeDeltaMatrix.

1 def MakeDeltaMatrix(self,eps=0):
2

3 #Initiate H matrix:
4 N= self.Nx*self.Ny
5 DeltaMatrix= np.zeros(shape=(N, N),dtype=complex)
6

7 deltax = self.deltax+eps
8 deltay = self.deltay+eps
9 deltaxd = -self.deltax-eps

10 deltayd = -self.deltay-eps
11

12 #Write Hmatrix:
13 for i in range(self.Nx):
14 for j in range(self.Ny):
15 #Define indices:
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16 n= i + j*self.Nx
17 ip= i+1
18 im= i-1
19 jp= j+1
20 jm= j-1
21 nip= ip + j*self.Nx
22 nim= im + j*self.Nx
23 njp= i + jp*self.Nx
24 njm= i + jm*self.Nx
25 #Write off-diagonal elements:
26 if (i>0 and i<self.Nx-1 and j>0 and j<self.Ny-1): #

internal lattice points
27 DeltaMatrix[n,nip]= deltax[n]
28 DeltaMatrix[n,nim]= deltaxd[n]
29 DeltaMatrix[n,njp]= deltay[n]
30 DeltaMatrix[n,njm]= deltayd[n]
31 elif (i==0 and j==0): #corner points
32 if(i<self.Nx-1):
33 DeltaMatrix[n,nip]= deltax[n]
34 if(j<self.Ny-1):
35 DeltaMatrix[n,njp]= deltay[n]
36 elif (i==0 and j==self.Ny-1):
37 if(i<self.Nx-1):
38 DeltaMatrix[n,nip]= deltax[n]
39 DeltaMatrix[n,njm]= deltayd[n]
40 elif (j==0 and i==self.Nx-1):
41 DeltaMatrix[n,nim]= deltaxd[n]
42 if(j<self.Ny-1):
43 DeltaMatrix[n,njp]= deltay[n]
44 elif (i==self.Nx-1 and j==self.Ny-1):
45 DeltaMatrix[n,nim]= deltaxd[n]
46 DeltaMatrix[n,njm]= deltayd[n]
47 elif (i==0 and j>0 and j<self.Ny-1): #boundary points
48 if(i<self.Nx-1):
49 DeltaMatrix[n,nip]= deltax[n]
50 DeltaMatrix[n,njp]= deltay[n]
51 DeltaMatrix[n,njm]= deltayd[n]
52 elif (i==self.Nx-1 and j>0 and j<self.Ny-1):
53 DeltaMatrix[n,nim]= deltaxd[n]
54 DeltaMatrix[n,njp]= deltay[n]
55 DeltaMatrix[n,njm]= deltayd[n]
56 elif (j==0 and i>0 and i<self.Nx-1):
57 DeltaMatrix[n,nip]= deltax[n]
58 DeltaMatrix[n,nim]= deltaxd[n]
59 if(j<self.Ny-1):
60 DeltaMatrix[n,njp]= deltay[n]
61 elif (j==self.Ny-1 and i>0 and i<self.Nx-1):
62 DeltaMatrix[n,nip]= deltax[n]
63 DeltaMatrix[n,nim]= deltaxd[n]
64 DeltaMatrix[n,njm]= deltayd[n]
65

66 self.DeltaMatrix= DeltaMatrix

Next, we look at the single particle part in the function MakeHMatrix consisting of the
onsite potential V 0, which also contains the chemical potential mu, and the hopping
parameters tx and ty.

1 def MakeHMatrix(self):
2 """
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3 Purpose:
4 The function returns the discretized version of the Rashba

Hamiltonian with a position-dependent exchange field.
5

6 Definitions:
7 V0: on-site potential proportional to the 2 times 2 identity

matrix (contains chemical potential).
8 tx,ty: 2 times 2 hopping matrices (contains Rashba SOC).
9 Nx, Ny: Number of lattice points along the x and y directions.

10 bx=0 if open boundary condition along x-boundary, bx=1 if periodic
boundary condition.

11 """
12

13 #Initiate H matrix:
14 N= self.Nx*self.Ny
15 Hmatrix= np.zeros(shape=(N, N),dtype=complex)
16

17 #Define daggered matrices:
18 txd= np.conj(np.transpose(self.tx))
19 tyd= np.conj(np.transpose(self.ty))
20

21 #Write Hmatrix:
22 for i in range(self.Nx):
23 for j in range(self.Ny):
24 #Define indices:
25 n= i + j*self.Nx
26 ip= i+1
27 im= i-1
28 jp= j+1
29 jm= j-1
30 nip= ip + j*self.Nx
31 nim= im + j*self.Nx
32 njp= i + jp*self.Nx
33 njm= i + jm*self.Nx
34 #Write diagonal elements:
35 V= self.V0
36 Hmatrix[n,n]= V
37 #Write off-diagonal elements:
38 if (i>0 and i<self.Nx-1 and j>0 and j<self.Ny-1): #

internal lattice points
39 Hmatrix[n,nip]= self.tx
40 Hmatrix[n,nim]= txd
41 Hmatrix[n,njp]= self.ty
42 Hmatrix[n,njm]= tyd
43 elif (i==0 and j==0): #corner points
44 if(i<self.Nx-1):
45 Hmatrix[n,nip]= self.tx
46 if(j<self.Ny-1):
47 Hmatrix[n,njp]= self.ty
48 elif (i==0 and j==self.Ny-1):
49 if(i<self.Nx-1):
50 Hmatrix[n,nip]= self.tx
51 Hmatrix[n,njm]= tyd
52 elif (j==0 and i==self.Nx-1):
53 Hmatrix[n,nim]= txd
54 if(j<self.Ny-1):
55 Hmatrix[n,njp]= self.ty
56 elif (i==self.Nx-1 and j==self.Ny-1):
57 Hmatrix[n,nim]= txd
58 Hmatrix[n,njm]= tyd
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59 elif (i==0 and j>0 and j<self.Ny-1): #boundary points
60 if(i<self.Nx-1):
61 Hmatrix[n,nip]= self.tx
62 Hmatrix[n,njp]= self.ty
63 Hmatrix[n,njm]= tyd
64 elif (i==self.Nx-1 and j>0 and j<self.Ny-1):
65 Hmatrix[n,nim]= txd
66 Hmatrix[n,njp]= self.ty
67 Hmatrix[n,njm]= tyd
68 elif (j==0 and i>0 and i<self.Nx-1):
69 Hmatrix[n,nip]= self.tx
70 Hmatrix[n,nim]= txd
71 if(j<self.Ny-1):
72 Hmatrix[n,njp]= self.ty
73 elif (j==self.Ny-1 and i>0 and i<self.Nx-1):
74 Hmatrix[n,nip]= self.tx
75 Hmatrix[n,nim]= txd
76 Hmatrix[n,njm]= tyd
77

78 self.Hmatrix= Hmatrix

By manipulating the chemical potential µ at different sites, we have the ability to
determine whether the corresponding sample is topological or trivial locally. Conse-
quently, we can incorporate a T-Junction structure into our sample using the function
MakeTJunctionHMatrix. This class plays a crucial role in the results showcased in
Section 7.5.

1 def MakeTJunctionHMatrix(self,mu1,mu2,mu3):
2 #Initiate H matrix:
3 N= self.Nx*self.Ny
4 Hmatrix= np.zeros(shape=(N, N),dtype=complex)
5

6 #Define daggered matrices:
7 txd= np.conj(np.transpose(self.tx))
8 tyd= np.conj(np.transpose(self.ty))
9

10 #Write Hmatrix:
11 for i in range(self.Nx):
12 for j in range(self.Ny):
13 #Define indices:
14 n= i + j*self.Nx
15 ip= i+1
16 im= i-1
17 jp= j+1
18 jm= j-1
19 nip= ip + j*self.Nx
20 nim= im + j*self.Nx
21 njp= i + jp*self.Nx
22 njm= i + jm*self.Nx
23 #Write diagonal elements:
24 if (i<int(self.Nx/2) and i>0 and j==1):
25 Hmatrix[n,n]= -mu1[i-1]
26 elif (i>int(self.Nx/2) and i<self.Nx-1 and j==1):
27 Hmatrix[n,n]= -mu2[i-int(self.Nx/2)-1]
28 elif (i==int(self.Nx/2) and j>0 and j<self.Ny-1):
29 Hmatrix[n,n]= -mu3[j-1]
30 else:
31 Hmatrix[n,n]=-self.mu
32 #Write off-diagonal elements:
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33 if (i>0 and i<self.Nx-1 and j>0 and j<self.Ny-1): #
internal lattice points

34 Hmatrix[n,nip]= self.tx
35 Hmatrix[n,nim]= txd
36 Hmatrix[n,njp]= self.ty
37 Hmatrix[n,njm]= tyd
38 elif (i==0 and j==0): #corner points
39 if(i<self.Nx-1):
40 Hmatrix[n,nip]= self.tx
41 if(j<self.Ny-1):
42 Hmatrix[n,njp]= self.ty
43 elif (i==0 and j==self.Ny-1):
44 if(i<self.Nx-1):
45 Hmatrix[n,nip]= self.tx
46 Hmatrix[n,njm]= tyd
47 elif (j==0 and i==self.Nx-1):
48 Hmatrix[n,nim]= txd
49 if(j<self.Ny-1):
50 Hmatrix[n,njp]= self.ty
51 elif (i==self.Nx-1 and j==self.Ny-1):
52 Hmatrix[n,nim]= txd
53 Hmatrix[n,njm]= tyd
54 elif (i==0 and j>0 and j<self.Ny-1): #boundary points
55 if(i<self.Nx-1):
56 Hmatrix[n,nip]= self.tx
57 Hmatrix[n,njp]= self.ty
58 Hmatrix[n,njm]= tyd
59 elif (i==self.Nx-1 and j>0 and j<self.Ny-1):
60 Hmatrix[n,nim]= txd
61 Hmatrix[n,njp]= self.ty
62 Hmatrix[n,njm]= tyd
63 elif (j==0 and i>0 and i<self.Nx-1):
64 Hmatrix[n,nip]= self.tx
65 Hmatrix[n,nim]= txd
66 if(j<self.Ny-1):
67 Hmatrix[n,njp]= self.ty
68 elif (j==self.Ny-1 and i>0 and i<self.Nx-1):
69 Hmatrix[n,nip]= self.tx
70 Hmatrix[n,nim]= txd
71 Hmatrix[n,njm]= tyd
72

73 self.Hmatrix= Hmatrix

We implement the Kitaev chain toy model with the function MakeKitaevChain. This
class is an essential part of the results we show in Section 7.2 and in Section 7.4.

1 def MakeKitaevChain(self,mu1):
2 #Initiate H matrix:
3 N= self.Nx*self.Ny
4 Hmatrix= np.zeros(shape=(N, N),dtype=complex)
5

6 #Define daggered matrices:
7 txd= np.conj(np.transpose(self.tx))
8

9 #Write Hmatrix:
10 for i in range(self.Nx):
11 #Define indices:
12 ip= i+1
13 im= i-1
14 #Write diagonal elements:
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15 if (i<self.Nx and i>=0):
16 Hmatrix[i,i]= -mu1[i-1]
17 else:
18 Hmatrix[i,i]=self.mu
19 #Write off-diagonal elements:
20 if (i>0 and i<self.Nx-1): #internal lattice points
21 Hmatrix[i,ip]= self.tx
22 Hmatrix[i,im]= txd
23 elif (i==0): #corner points
24 if(i<self.Nx-1):
25 Hmatrix[i,ip]= self.tx
26 elif (i==self.Nx-1):
27 Hmatrix[i,im]= txd
28

29 self.Hmatrix= Hmatrix

We merge the Hmatrix and DeltaMatrix which we do in the function MakeEnergyMatrix.
1 def MakeEnergyMatrix(self,eps=0):
2 """
3 Combine the whole matrix
4 """
5 N = len(self.Hmatrix[0,:])
6 EnergyMatrix = np.zeros(shape=(2*N,2*N),dtype= complex)
7 EnergyMatrix[0:N,0:N] = self.Hmatrix
8 EnergyMatrix[0:N,N:2*N] = self.DeltaMatrix
9 EnergyMatrix[N:2*N,0:N] = -np.conjugate(self.DeltaMatrix)

10 EnergyMatrix[N:2*N,N:2*N] = -np.conjugate(self.Hmatrix)
11

12 self.EnergyMatrix= EnergyMatrix

B. Defining Hamiltonian with Spin

Here we discuss functions from the function MakeMatrices. We start with the parts
of the Hamiltonian that stay mostly constant and incorporate the hopping as well as the
spin-orbit coupling and the chemical potential.

1 def MakeConstantMatrices(self):
2 """ Make the :math:‘2 \\times 2‘ constant (dimensionless) matrices

that appear in the discretized
3 version of the (scaled) Rashba Hamiltonian. It sets the following

matrices:\n
4 ‘self.V0‘: The matrix carrying all the one particle information\n
5 ‘self.tx‘: The matrix describing hopping in x-direction\n
6 ‘self.ty‘: The matrix describing hopping in y-direction
7 :param self.alpha: Dimensionless Rashba parameter
8 :type self.alpha: float
9 :param self.mu: Dimensionless chemical potential

10 :type self.mu: float
11 :param self.a: Lattice spacing
12 :type self.a: float
13 """
14

15 #Write matrices:
16 self.V0= (4*0 - self.mu)*self.s0
17 self.tx= -1*self.s0 + 1j*self.alphaR*self.s2
18 self.ty= -1*self.s0 - 1j*self.alphaR*self.s1
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In this part of the Hamiltonian one is also able to introduce structures in the supercon-
ducting order parameter. At first, we show a class that defines a superconductor with a
uniform phase in the whole sample with the function MakeDeltaMatrix.

1 def MakeDeltaMatrix(self):
2 """ The function makes the discretized version of the pairing

potential
3 :param self.delta: Vector containing the on-site pairing potential

(:math:‘Nx \cdot Ny‘ elements)
4 :type self.delta: numpy array
5 :param self.Nx: Number of lattice points along the x direction
6 :type self.Nx: integer
7 :param self.Ny: Number of lattice points along y direction
8 :type self.Ny: integer
9 """

10

11 N= 2*self.Nx*self.Ny
12 DeltaMatrix= np.zeros(shape=(N, N),dtype=complex)
13

14 for i in range(self.Nx):
15 for j in range(self.Ny):
16 n= 2*i + 2*j*self.Nx
17 nd= i + j*self.Nx
18 DeltaMatrix[n:n+2,n:n+2]= self.delta[nd]*self.p
19

20 self.DeltaMatrix=DeltaMatrix

We show how a single Vortex and multiple vortices are defined. Here the two pa-
rameters self.Vrx and alternate of the function MakeVortices are crucial. By
examining the list of x-values in self.Vrx, we can determine the number of vortices
to be inserted into the superconductor. Additionally, the parameter alternate allows
us to regulate whether neighboring vortices possess opposite chirality. The function
f(x,y,x0,y0,sig is a Gaussian function that we convolved with the Vortex profile
to make it localized so that we can add different Vortex profiles. This class is used
extensively in Section 8.3.2, Chapter 9 and Chapter 10.

1 def MakeVortices(self,alternate=True):
2 def f(x,y,x0,y0,sig):
3 return np.exp(-((x-x0)**2/sig**2+(y-y0)**2/sig**2))
4

5 for i in range(self.Nx):
6 for j in range(self.Ny):
7 phase=0
8 for k in range(len(self.Vrx)):
9 n= i + j*self.Nx

10 vx= np.double(i-self.Vrx[k])
11 vy= np.double(j-self.Vry[k])
12 v= [vx, vy]
13 if alternate:
14 if(k%2==0):
15 phase= phase+(f(i,j,self.Vrx[k],self.Vry[k],5)

*np.exp(1j*self.Vq*(np.angle(complex(v[0],
v[1]))+self.thetaVortex)))

16 else:
17 phase= phase+(f(i,j,self.Vrx[k],self.Vry[k],5)

*np.exp(1j*self.Vq*(np.angle(complex(v[0],
v[1]))+self.thetaVortex+np.pi)))

18 else:
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19 phase=phase+(f(i,j,self.Vrx[k],self.Vry[k],5)*np.
exp(1j*self.Vq*(np.angle(complex(v[0],v[1]))+
self.thetaVortex)))

20 self.delta[n]= phase

In the single-particle sector of the Hamiltonian, the control over whether our sample
resides in the topological or trivial regime remains the same as before. However, instead
of manipulating the chemical potential, we introduce a proximity coupling between the
superconductor and a magnet through the parameter h, representing the magnet’s ex-
change field. As discussed in Section 8.2, we can regulate the topological nature of
the sample by adjusting the parameter h. This characteristic is utilized in the subse-
quent classes, starting with the presentation of a class that defines a ferromagnet in the
MakeHMatrix function.

1 def MakeHMatrix(self):
2 """
3 Purpose:
4 The function returns the discretized version of the Rashba

Hamiltonian with a position-dependent exchange field.
5 Definitions:
6 V0: on-site potential proportional to the 2 times 2 identity

matrix (contains chemical potential).
7 tx,ty: 2 times 2 hopping matrices (contains Rashba SOC).
8 h: exchange field (3*Nx*Ny elements).
9 Nx, Ny: Number of lattice points along the x and y directions.

10 bx=0 if open boundary condition along x-boundary, bx=1 if periodic
boundary condition.

11 """
12

13 #Initiate H matrix:
14 N= 2*self.Nx*self.Ny
15 Hmatrix= np.zeros(shape=(N, N),dtype=complex)
16

17 #Define daggered matrices:
18 txd= np.conj(np.transpose(self.tx))
19 tyd= np.conj(np.transpose(self.ty))
20

21 #Write Hmatrix:
22 for i in range(self.Nx):
23 for j in range(self.Ny):
24 #Define indices:
25 n= 2*i + 2*j*self.Nx
26 ip= i+1
27 im= i-1
28 jp= j+1
29 jm= j-1
30 nip= 2*ip + 2*j*self.Nx
31 nim= 2*im + 2*j*self.Nx
32 njp= 2*i + 2*jp*self.Nx
33 njm= 2*i + 2*jm*self.Nx
34 nh= 3*i + 3*j*self.Nx
35 #Write diagonal elements:
36 htemp= self.h[nh:nh+3]
37 V= self.V0 + htemp[0]*self.s1 + htemp[1]*self.s2 + htemp

[2]*self.s3
38 Hmatrix[n:n+2,n:n+2]= V
39 #Write off-diagonal elements:
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40 if (i>0 and i<self.Nx-1 and j>0 and j<self.Ny-1): #
internal lattice points

41 Hmatrix[n:n+2,nip:nip+2]= self.tx
42 Hmatrix[n:n+2,nim:nim+2]= txd
43 Hmatrix[n:n+2,njp:njp+2]= self.ty
44 Hmatrix[n:n+2,njm:njm+2]= tyd
45 elif (i==0 and j==0): #corner points
46 if(i<self.Nx-1):
47 Hmatrix[n:n+2,nip:nip+2]= self.tx
48 if(j<self.Ny-1):
49 Hmatrix[n:n+2,njp:njp+2]= self.ty
50 elif (i==0 and j==self.Ny-1):
51 if(i<self.Nx-1):
52 Hmatrix[n:n+2,nip:nip+2]= self.tx
53 Hmatrix[n:n+2,njm:njm+2]= tyd
54 elif (j==0 and i==self.Nx-1):
55 Hmatrix[n:n+2,nim:nim+2]= txd
56 if(j<self.Ny-1):
57 Hmatrix[n:n+2,njp:njp+2]= self.ty
58 elif (i==self.Nx-1 and j==self.Ny-1):
59 Hmatrix[n:n+2,nim:nim+2]= txd
60 Hmatrix[n:n+2,njm:njm+2]= tyd
61 elif (i==0 and j>0 and j<self.Ny-1): #boundary points
62 if(i<self.Nx-1):
63 Hmatrix[n:n+2,nip:nip+2]= self.tx
64 Hmatrix[n:n+2,njp:njp+2]= self.ty
65 Hmatrix[n:n+2,njm:njm+2]= tyd
66 elif (i==self.Nx-1 and j>0 and j<self.Ny-1):
67 Hmatrix[n:n+2,nim:nim+2]= txd
68 Hmatrix[n:n+2,njp:njp+2]= self.ty
69 Hmatrix[n:n+2,njm:njm+2]= tyd
70 elif (j==0 and i>0 and i<self.Nx-1):
71 Hmatrix[n:n+2,nip:nip+2]= self.tx
72 Hmatrix[n:n+2,nim:nim+2]= txd
73 if(j<self.Ny-1):
74 Hmatrix[n:n+2,njp:njp+2]= self.ty
75 elif (j==self.Ny-1 and i>0 and i<self.Nx-1):
76 Hmatrix[n:n+2,nip:nip+2]= self.tx
77 Hmatrix[n:n+2,nim:nim+2]= txd
78 Hmatrix[n:n+2,njm:njm+2]= tyd
79

80 self.Hmatrix= Hmatrix

In the function MakeDomainWall we introduce one and two domain walls in the magnet.
More than two domain walls are not implemented yet. This class is mostly used in
chapter 9.

1 def MakeDomainWall(self, fieldstrength=None):
2 """
3 Purpose: Makes a domain wall (aligned along the y-axis) in the

ferromagnet. Which is one part of the H-Matrix
4 Psi: one of the angles of rotating magnetisation (Psi=+-pi/2 is a

NÃ©el wall; Psi=0 or Psi=pi is a Bloch wall)
5 Delta0_wall: "thickness" of wall
6 x_wall_offset: offset to a domain wall positioned exactly in the

middle
7 r: direction in which wall "rolls"
8 author: Lucas Goerzen, Jonas Nothhelfer
9 """
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10 h= np.zeros(3*self.Nx*self.Ny,dtype=complex)
11 x1= self.randPointsX
12 x2= self.Nx - self.randPointsX
13 y1= self.randPointsY
14 y2= self.Ny - self.randPointsY
15

16 VX= np.zeros(shape=(self.Nx,self.Ny),dtype=complex)
17 VY= np.zeros(shape=(self.Nx,self.Ny),dtype=complex)
18 VZ= np.zeros(shape=(self.Nx,self.Ny),dtype=complex)
19

20 x_wall_current_location = 0.5*self.Nx + np.array(self.x_wall_location)
21

22 if fieldstrength==None:
23 fieldstrength=self.h0
24

25 if len(self.x_wall_location)==1:
26 def Theta_func(x):
27 return 2*self.r[0]*np.arctan(np.exp(x[0]/self.Delta0_wall[0]))
28 elif len(self.x_wall_location)==2:
29 def Theta_func(x):
30 return abs(2*(self.r[0]*np.arctan(np.exp(x[0]/self.Delta0_wall

[0]))+self.r[1]*np.arctan(np.exp(x[1]/self.Delta0_wall[1])
)))

31 else:
32 print("Not implemented!")
33 exit()
34

35 for i in range(x1, x2):
36 for j in range(y1, y2):
37 nh = 3*i + 3*j*self.Nx
38 x_distance = i - x_wall_current_location
39 h[nh] = fieldstrength*np.sin(Theta_func(x_distance))*np.cos(

self.Psi)
40 h[nh+1] = fieldstrength*np.sin(Theta_func(x_distance))*np.sin(

self.Psi)
41 h[nh+2] = fieldstrength*np.cos(Theta_func(x_distance))
42 VX[i,j]= h[nh]
43 VY[i,j]= h[nh+1]
44 VZ[i,j]= h[nh+2]
45

46 self.h= h
47 self.VX=VX
48 self.VY=VY
49 self.VZ=VZ
50 self.x_wall_current_location=x_wall_current_location

In the function MakeSkyrmTextures we introduce single and multiple Skyrmions to
the magnet by adding their profiles. As for the vortices we extract from the spatial
positions of the Skyrmions labelled by x in the parameter self.Srx the number of
Skyrmions.

1 def MakeSkyrmTextures(self,eta=1):
2 """
3 Purpose: Make a Skyrmion texture. Which is a part of the H matrix
4 If thetaSkyrm=0, the function returns Neel Skyrmion, if thetaSkyrm

=pi/2 the function return a Bloch Skyrmion.
5 """
6

7 x1= self.randPointsX
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8 x2= self.Nx - self.randPointsX
9 y1= self.randPointsY

10 y2= self.Ny - self.randPointsY
11

12 #size1= x2 - x1
13 #size2= y2 - y1
14

15 #l1= A #A*np.double(min([size1, size2]))
16

17 h= np.zeros(3*self.Nx*self.Ny)
18

19 VX= np.zeros(shape=(self.Nx,self.Ny),dtype=complex)
20 VY= np.zeros(shape=(self.Nx,self.Ny),dtype=complex)
21 VZ= np.zeros(shape=(self.Nx,self.Ny),dtype=complex)
22

23

24 for i in range(x1,x2):
25 for j in range(y1,y2):
26 nh= 3*i + 3*j*self.Nx
27 xlist=[]
28 ylist=[]
29 distancelist=[]
30 for k in range(len(self.Srx)):
31 xlist.append(np.double(i-self.Srx[k]))
32 ylist.append(np.double(j-self.Sry[k]))
33 distancelist.append(np.sqrt((i-self.Srx[k])**2+(j-self

.Sry[k])**2))
34 x = xlist[np.argmin(distancelist)]
35 y = ylist[np.argmin(distancelist)]
36 r= np.sqrt(x**2 + y**2)
37 mxy= np.sin(self.Sp*4*np.arctan(np.exp(r/eta)))
38 mz= -self.Sq*np.cos(self.Sp*4*np.arctan(np.exp(r/eta)))
39 h[nh]= h[nh]+ np.sin(self.Sw*np.arctan2(x,y)+self.

thetaSkyrm+np.pi)*mxy
40 h[nh+1]= h[nh+1]+ np.cos(self.Sw*np.arctan2(x,y)+self.

thetaSkyrm+np.pi)*mxy
41 h[nh+2]= h[nh+2]+ mz
42 VX[i,j]= h[nh]
43 VY[i,j]= h[nh+1]
44 VZ[i,j]= h[nh+2]
45

46 self.h= self.h0*h#/len(self.Srx)
47 self.VX=VX#/len(self.Srx)
48 self.VY=VY#/len(self.Srx)
49 self.VZ=VZ#/len(self.Srx)

The function MakeEnergyMatrix merges the three Hamiltonian parts.
1 def MakeEnergyMatrix(self):
2 """
3 Combine the whole matrix
4 """
5

6 N = len(self.Hmatrix[0,:])
7 EnergyMatrix = np.zeros(shape=(2*N,2*N),dtype= complex)
8 EnergyMatrix[0:N,0:N] = self.Hmatrix
9 EnergyMatrix[0:N,N:2*N] = self.DeltaMatrix

10 EnergyMatrix[N:2*N,0:N] = -np.conj(self.DeltaMatrix)
11 EnergyMatrix[N:2*N,N:2*N] = -np.conj(self.Hmatrix)
12

111



B. Numerical and Analytical Methods for Topological Superconductors

13 self.EnergyMatrix= EnergyMatrix

C. Calculating the Pairing Potential

The self-consistency condition defined in Equation (8.14) is implemented in class PairingPotential.
1 def PairingPotential(self):
2 """
3 Purpose:
4 The function calculates the pairing potential.
5 Definitions:
6 EigenVectors/values: contains all the eigenvectors and (positive)

eigenvalues of the BdG equation.
7 g: attractive on-site e-e coupling strength (g > 0).
8 thermE: thermal energy.
9 epsilonD: cut-off energy ~ Debye energy.

10 """
11

12 delta= np.zeros(self.Nx*self.Ny,dtype=complex)
13 Ne= len(self.EigenValuesP)
14

15 for k in range(Ne):
16 etemp= self.EigenValuesP[k]
17 if (etemp > self.epsilonD):
18 break
19 if (np.real(etemp) < 1e-13):
20 etemp = 1.j*np.imag(etemp)
21 if (np.imag(etemp) < 1e-13):
22 etemp = np.real(etemp)
23 etemp= etemp/self.thermE
24

25 fermi= 1/(np.exp(np.real(etemp)) + 1)
26 fermi= 2*fermi - 1
27 for i in range(self.Nx):
28 for j in range(self.Ny):
29 n= 2*i + 2*j*self.Nx
30 nd= i + j*self.Nx
31 prod= self.EigenVectorsU[n+1,k]*np.conj(self.

EigenVectorsV[n,k]) - self.EigenVectorsU[n,k]*np.
conj(self.EigenVectorsV[n+1,k])

32 delta[nd]= delta[nd] + 0.5*self.g*prod*fermi
33

34 self.deltan= delta

D. Calculate Eigenvalues

The function CalculateEigenValues calculates the eigensystem of a Matrix on a
graphic card using the python module cupy. This function speeded up the calculations
by a factor of 4 compared to calculating it on a cpu because of its high parallelization.

1 def CalculateEigenValues(Matrix):
2

3 Matrix.MakeEnergyMatrix()
4 a_gpu = cp.asarray(Matrix.EnergyMatrix)
5 [w_gpu, v_gpu] = cp.linalg.eigh(a_gpu)
6 Matrix.EigenValues = cp.asnumpy(w_gpu)
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7 Matrix.EigenVectors = cp.asnumpy(v_gpu)
8 Matrix.SortEigVecVal()

B.5. Sample Scripts using the Modules

In this section, we show sample scripts that were used to obtain the results of this
thesis.

A. The Kitaev Chain

This sample script is mostly used in Section 7.2 and in Section 7.4. Here we define the
Matrix which incorporates a Kitaev chain and then we recalculate the eigensystem while
rotating the superconducting phase by 180 degrees.

1 # -*- coding: utf-8 -*-
2 """
3 @author: Jonas Nothhelfer
4 """
5 import numpy as np
6

7 from SCF_BDG import MakeMatrices_toymodel, Plot, RelaxGPU
8

9 Matrix=MakeMatrices_toymodel.MakeMatrix()
10 p = Plot.Plot()
11 p.Matrix = Matrix
12 p.ClearFolder()
13

14 # ======================================================================
15 #Initialize Matrix
16

17 #Set max iterations and error (in pairing potential):
18 Matrix.Nmax=30
19 Matrix.Maxerror= 0.00001
20

21 #System size parameters:
22 Matrix.Nx=20
23 Matrix.Ny=1
24

25 #System parameters (dimensionless):
26 Matrix.mu=-10 #setting chemical potential outside of Kitaev chain
27 mu = 1.5*np.ones(int(Matrix.Nx),dtype=complex) #setting chemical porential

of Kitaev chain
28 Matrix.thermE= 0.001 #thermal energy, kB*T
29 Matrix.epsilonD= 2 #Debye frequency
30

31 #Initialize pairing potential:
32 Matrix.g= 5.0 #attractive coupling strength
33 Matrix.deltax = -np.ones(Matrix.Nx*Matrix.Ny,dtype=complex) #Homogenous

order-parameter field
34 Matrix.deltay = 0*np.ones(Matrix.Nx*Matrix.Ny,dtype=complex)
35

36 #Make constant matrices:
37 Matrix.MakeConstantMatrices()
38 Matrix.MakeKitaevChain(mu)
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39 Matrix.MakeDeltaMatrix()
40 Matrix.MakeEnergyMatrix()
41

42 # =======================================================================
43 # Relax and save result
44

45 RelaxGPU.CalculateEigenValues(Matrix)
46

47 #Print the lowest energy states
48 N_2=int(len(Matrix.EigenValues)/2)
49 print(’\n’)
50 print(’lowest energy values:\n’)
51 print(np.real(Matrix.EigenValues[N_2-5:N_2+5]))
52 print(’\n’)
53

54 vmOld= Matrix.EigenVectors[:,N_2-1]#this is f^dagger (the hole
wavefunction).

55 vpOld= Matrix.EigenVectors[:,N_2]#this is f (the particle wavefunction).
56

57 #Save data:
58 p.DensityPlotMajoranasCombined(0,0.5,’MajoranaCombined_0.png’)
59 Matrix.Save("Matrix0")
60

61 #turning the superconducting phase by 180 degree
62 for i in range(361):
63 print(i)
64 Matrix.deltax=np.exp(1.j*i/360*np.pi)*np.ones(Matrix.Nx*Matrix.Ny,

dtype=complex)
65 Matrix.MakeDeltaMatrix()
66 RelaxGPU.CalculateEigenValues(Matrix)
67 p.DensityPlotMajoranasCombined(0,0.5,’MajoranaCombined_%d.png’%(i))
68 p.VectorPlotDeltaPWave(’Phase_%d.png’%(i))
69 Matrix.Save("Matrix%d"%(i))

B. T-Junction

This sample script is mostly used in section 7.5. Here we define the matrix which
incorporates a T-junction and then we move the Majorana modes inside this T-junction
by modifying the chemical potential at different sites of the T-junction.

1 # -*- coding: utf-8 -*-
2 """
3 @author: Jonas Nothhelfer
4 """
5 import numpy as np
6

7 from SCF_BDG import MakeMatrices_toymodel, Plot, RelaxGPU
8

9 Matrix=MakeMatrices_toymodel.MakeMatrix()
10 p = Plot.Plot()
11 p.Matrix = Matrix
12 p.ClearFolder()
13

14 # =======================================================================
15 #Initialize Matrix
16

17 #Set max iterations and error (in pairing potential):
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18 Matrix.Nmax=30
19 Matrix.Maxerror= 0.00001
20

21 #System size parameters:
22 Matrix.Nx=19
23 Matrix.Ny=11
24

25 #System parameters (dimensionless):
26 Matrix.mu=-10 #setting chemical potential outside of T-junction
27 mu1 = -0.7*np.ones(int(Matrix.Nx/2)-1,dtype=complex)
28 mu2 = -0.7*np.ones(int(Matrix.Nx/2)-1,dtype=complex)
29 mu3 = -10*np.ones(int(Matrix.Ny)-2,dtype=complex)
30 mu3[0]= -0.7 #crosspoint of T-junction
31 Matrix.thermE= 0.001 #thermal energy, kB*T
32 Matrix.epsilonD= 2 #Debye frequency
33

34 #Initialize pairing potential:
35 Matrix.g= 5.0 #attractive coupling strength
36 Matrix.deltax = 1*np.ones(Matrix.Nx*Matrix.Ny,dtype=complex) #Homogenous

order-parameter field
37 Matrix.deltay = 1j*np.ones(Matrix.Nx*Matrix.Ny,dtype=complex)
38

39 #Make constant matrices:
40 Matrix.MakeConstantMatrices()
41

42 Matrix.MakeTJunctionHMatrix(mu1,mu2,mu3)
43 Matrix.MakeDeltaMatrix()
44 Matrix.MakeEnergyMatrix(eps=1)
45

46 # ========================================================================
47 # Relax and save result
48

49 RelaxGPU.CalculateEigenValues(Matrix)
50

51 #Print the lowest energy states
52 N_2=int(len(Matrix.EigenValues)/2)
53 print(’\n’)
54 print(’lowest energy values:\n’)
55 print(np.real(Matrix.EigenValues[N_2-5:N_2+5]))
56 print(’\n’)
57

58 #Save data:
59 p.VectorPlotDeltaPWave(’VectorDelta.pdf’)
60 p.DensityPlotMajoranasCombined(0,0.5,’MajoranaCombined_0.png’)
61 Matrix.Save("Matrix0")
62 p.VectorPlotDeltaPWave(’InitialPWave.png’)
63

64 #Movement of the Majorana modes
65 for i in range(77):
66 print(i)
67 if (i>0-1 and i<8):
68 mu1[i]=-10
69 Matrix.MakeTJunctionHMatrix(mu1,mu2,mu3)
70 RelaxGPU.CalculateEigenValues(Matrix)
71 p.DensityPlotMajoranasCombined(0,0.5,’MajoranaCombined_%d.png’%(i

+1))
72 Matrix.Save("Matrix%d"%(i+1))
73 if (i>8-1 and i<15):
74 mu3[i-7]=-0.7 # begin with i-7=1 because the connection point is

already topological
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75 Matrix.MakeTJunctionHMatrix(mu1,mu2,mu3)
76 RelaxGPU.CalculateEigenValues(Matrix)
77 p.DensityPlotMajoranasCombined(0,0.5,’MajoranaCombined_%d.png’%(i

+1))
78 Matrix.Save("Matrix%d"%(i+1))
79 if (i>15-1 and i<23):
80 mu2[22-i]=-10
81 Matrix.MakeTJunctionHMatrix(mu1,mu2,mu3)
82 RelaxGPU.CalculateEigenValues(Matrix)
83 p.DensityPlotMajoranasCombined(0,0.5,’MajoranaCombined_%d.png’%(i

+1))
84 Matrix.Save("Matrix%d"%(i+1))
85 if (i>23-1 and i<39):
86 Matrix.deltay=1j*np.exp(1.j*(i-23)/15*np.pi)*np.ones(Matrix.Nx*

Matrix.Ny,dtype=complex)
87 Matrix.MakeDeltaMatrix()
88 RelaxGPU.CalculateEigenValues(Matrix)
89 p.VectorPlotDeltaPWave(’MajoranaCombined_%d.png’%(i+1))
90 Matrix.Save("Matrix%d"%(i+1))
91 if (i>39-1 and i<47):
92 mu1[46-i]=-0.7
93 Matrix.MakeTJunctionHMatrix(mu1,mu2,mu3)
94 RelaxGPU.CalculateEigenValues(Matrix)
95 p.DensityPlotMajoranasCombined(0,0.5,’MajoranaCombined_%d.png’%(i

+1))
96 Matrix.Save("Matrix%d"%(i+1))
97 if (i>47-1 and i<54):
98 mu3[54-i]=-10 # last entry 54-i=1 since the connection point

should stay topological
99 Matrix.MakeTJunctionHMatrix(mu1,mu2,mu3)

100 RelaxGPU.CalculateEigenValues(Matrix)
101 p.DensityPlotMajoranasCombined(0,0.5,’MajoranaCombined_%d.png’%(i

+1))
102 Matrix.Save("Matrix%d"%(i+1))
103 if (i>54-1 and i<62):
104 mu2[i-54]=-0.7
105 Matrix.MakeTJunctionHMatrix(mu1,mu2,mu3)
106 RelaxGPU.CalculateEigenValues(Matrix)
107 p.DensityPlotMajoranasCombined(0,0.5,’MajoranaCombined_%d.png’%(i

+1))
108 Matrix.Save("Matrix%d"%(i+1))
109 if (i>62-1 and i<76):
110 Matrix.deltay=-1j*np.exp(1.j*(62-i)/15*np.pi)*np.ones(Matrix.Nx*

Matrix.Ny,dtype=complex)
111 Matrix.MakeDeltaMatrix()
112 RelaxGPU.CalculateEigenValues(Matrix)
113 p.VectorPlotDeltaPWave(’MajoranaCombined_%d.png’%(i+1))
114 Matrix.Save("Matrix%d"%(i+1))

C. Interaction of Domain Walls and Superconducting Vortices

This sample script is used mostly in Chapter 9. Here we define the matrix such that
it incorporates a domain wall in the magnet with a separation from a Vortex in the
superconductor. We move the domain wall towards the Vortex and relax the system.

1 # -*- coding: utf-8 -*-
2 """
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3 @author: Jonas Nothhelfer
4 """
5 import numpy as np
6 import cupy as cp
7

8 from SCF_BDG import MakeMatrices, Plot, RelaxGPU
9

10 cp.cuda.Device(0).use()
11

12 Matrix=MakeMatrices.MakeMatrix()
13 p = Plot.Plot()
14 p.ClearFolder()
15 p.Matrix=Matrix
16

17 # ========================================================================
18 #Initialize Matrix
19

20 #Set max iterations and error (in pairing potential):
21 Matrix.Nmax=200
22 Matrix.Maxerror= 0.0001
23

24 #System size parameters:
25 Matrix.Nx=53 #should be an odd (prime) number
26 Matrix.Ny=33 #should be an odd (prime) number
27

28 #System parameters (dimensionless):
29 Matrix.alphaR= 0.75 # Rashba SOC
30 Matrix.mu= -4 # Chemical potential
31 Matrix.h0= 0.6 # strength of exchange field
32 Matrix.thermE= 0.001 #thermal energy, kB*T
33 Matrix.epsilonD= 100 #Debye frequency
34

35 #Make magnetic Skyrmion texture:
36 Matrix.Sq=1
37 Matrix.Sw=1
38 Matrix.Sp=1
39 NxMid= int((Matrix.Nx-1)/2)
40 NyMid= int((Matrix.Ny-1)/2)
41 Matrix.Srx= [NxMid+5,NxMid-5]#[NxMid-2,NxMid+2]# center of Skyrmion
42 Matrix.Sry= [NyMid,NyMid]#[NyMid-2,NyMid+2]
43 Matrix.randPointsX= 0#distance from boundary of sample to ferromagnetic

block
44 Matrix.randPointsY= 0
45 Matrix.thetaSkyrm= 0*np.pi/2 # thetaSkyrm= 0 (Neel Skyrmion); thetaSkyrm=

pi/2 (Bloch Skyrmion)
46 Matrix.x_wall_location=[-19]
47 Matrix.Psi=0
48 Matrix.r=[1]
49 Matrix.Delta0_wall=[3]
50 Matrix.MakeDomainWall(fieldstrength=0.7*Matrix.h0)
51

52 p.ExportMagnetisationProfileVTK()
53

54 #Initialize pairing potential:
55 Matrix.g= 5.0 #attractive coupling strength
56 Matrix.delta= 1*np.ones(Matrix.Nx*Matrix.Ny,dtype=complex) #Homogenous

order-parameter field
57 Matrix.Vq=1.0 #vorticity
58 Matrix.thetaVortex= 0*np.pi/2 # thetaVortex= 0 ("Neel" Vortex);

thetaVortex= pi/2 ("Bloch" Vortex)
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59 Matrix.Vrx= [NxMid] #Position of Vortex
60 Matrix.Vry= [NyMid]
61 Matrix.MakeVortices() #Insert a Vortex in the pair potential
62 Matrix.MakeDeltaMatrix()
63

64 #Make constant matrices:
65 Matrix.MakeConstantMatrices()
66 Matrix.MakeHMatrix()
67

68 # ========================================================================
69 # Relax and save result
70

71 maxit = RelaxGPU.RelaxPlot(Matrix,p,0,vortex=1,Rnorm=0.75)
72 Matrix.Save("Matrix"+str(0))
73 p.VectorPlotDeltaLiveinPlots(i=0, vortex=1, domain_wall=True)
74

75 #Move domain wall towards Vortex
76 for i in range(1,38):
77 Matrix.x_wall_location=[-19+i]
78 Matrix.MakeDomainWall(fieldstrength=0.7*Matrix.h0)
79 Matrix.MakeHMatrix()
80 maxit=RelaxGPU.RelaxPlot(Matrix,p,maxit,vortex=1,Rnorm=0.75)
81 Matrix.Save("Matrix"+str(i))
82 p.VectorPlotDeltaLiveinPlots(i=i, vortex=1, domain_wall=True, current=

True)

D. Skyrmion Vortex-Pairs

This sample script is mostly used in Chapter 10. Here we define the Hamiltonian such
that it incorporates Néel Skyrmions which are on the same position as the superconduct-
ing vortices. We move the Skyrmions in a circle until the positions of the two Skyrmions
have been exchanged. This path we divide in 360 steps and after moving the Skyrmion
each step we let the system relax so that the Vortex can follow this motion.

1 # -*- coding: utf-8 -*-
2 """
3 @author: Jonas Nothhelfer
4 """
5 import numpy as np
6 import cupy as cp
7

8 from SCF_BDG import MakeMatrices, Plot, RelaxGPU
9

10 cp.cuda.Device(0).use()
11

12 Matrix=MakeMatrices.MakeMatrix()
13 p = Plot.Plot()
14 p.ClearFolder()
15 p.Matrix=Matrix
16

17 # =======================================================================
18 #Initialize Matrix
19

20 #Set max iterations and error (in pairing potential):
21 Matrix.Nmax=200
22 Matrix.Maxerror= 0.0001
23
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24 #System size parameters:
25 Matrix.Nx=27 #should be an odd (prime) number
26 Matrix.Ny=27 #should be an odd (prime) number
27

28 #System parameters (dimensionless):
29 Matrix.alphaR= 0.75 # Rashba SOC
30 Matrix.mu= -4# Chemical potential
31 Matrix.h0= 0.7 # strength of exchange field
32 Matrix.thermE= 0.001 #thermal energy, kB*T
33 Matrix.epsilonD= 100 #Debye frequency
34

35 #Make magnetic Skyrmion texture:
36 Matrix.Sq=1
37 Matrix.Sw=1
38 Matrix.Sp=1
39 NxMid= int((Matrix.Nx-1)/2)
40 NyMid= int((Matrix.Ny-1)/2)
41 Matrix.Srx= [NxMid+5,NxMid-5]# center of Skyrmion
42 Matrix.Sry= [NyMid,NyMid]
43 Matrix.randPointsX= 0 #distance from boundary of sample to ferromagnetic

block
44 Matrix.randPointsY= 0
45 Matrix.thetaSkyrm= 0*np.pi/2 # thetaSkyrm= 0 (Neel Skyrmion); thetaSkyrm=

pi/2 (Bloch Skyrmion)
46 Matrix.MakeSkyrmTextures() # for homogeneous magnetization Matrix.

MakeFerroBlock()
47

48 #Initialize pairing potential:
49 Matrix.g= 5.0 #attractive coupling strength
50 Matrix.delta= 1*np.ones(Matrix.Nx*Matrix.Ny,dtype=complex) #Homogenous

order-parameter field
51 Matrix.Vq=1.0 #vorticity
52 Matrix.thetaVortex= 0*np.pi/2 # thetaVortex= 0 ("Neel" Vortex);

thetaVortex= pi/2 ("Bloch" Vortex)
53 Matrix.Vrx= [NxMid+5,NxMid-5]#,NxMid+3] #Position of Vortex
54 Matrix.Vry= [NyMid,NyMid]#,NyMid+3]
55 Matrix.MakeVortices() #Insert a Vortex in the pair potential
56

57 #Make constant matrices:
58 Matrix.MakeConstantMatrices()
59 Matrix.MakeHMatrix()
60

61 # =======================================================================
62 # Relax and save result
63

64 maxit = RelaxGPU.RelaxPlot(Matrix,p,0,vortex=1,Rnorm=0.9)
65 Matrix.Save("Matrix"+str(0))
66 p.DensityPlotMajoranasCombined(0,’MajoranaCombined_%d.svg’%(0+1))
67

68 Matrix.Nmax=30
69

70 #Braiding of Skyrmions
71 for i in range(1,361):
72 Matrix.Srx[0] = NxMid+5*np.cos(i/360*np.pi)
73 Matrix.Sry[0] = NyMid+5*np.sin(i/360*np.pi)
74 Matrix.Srx[1] = NxMid+5*np.cos(i/360*np.pi+np.pi)
75 Matrix.Sry[1] = NyMid+5*np.sin(i/360*np.pi+np.pi)
76 Matrix.MakeSkyrmTextures()
77 Matrix.MakeHMatrix()
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78 maxit = RelaxGPU.RelaxPlotFixSwave(Matrix,p,maxit,vortex=1,Rnorm=0.9,n
=[1,1,1,1])

79 Matrix.Save("Matrix"+str(i))
80 p.DensityPlotMajoranasCombined(0,’MajoranaCombined_%d.svg’%(i+1))
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