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Abstract

Magmatic systems and volcanoes are found throughout the entire world, yet the pro-
cesses responsible for the ascent of magmatic melt, as well as the structure of these
systems, are still poorly constrained due to a lack of direct observations. All hypothe-
ses in this field are derived from indirect observations (geophysical surveys, fieldwork
and petrological studies on fossil exhumed systems or at the surface of currently active
volcanic systems) and robust physical and geochemical models need to be developed
to validate, quantify or refine these ideas. We address these challenges in this thesis
in two parts.

First, we study the melt depletion of a magmatic reservoir connected to the surface
by a weak conduit. Using a 2D model, we simplify the rheology and structure of
the system to a few parameters and determine how sensitive the velocities within
the conduit are to variations in these parameters. Several modes of transport are
identified and translated into analytical scaling laws. We then apply these scaling
laws to the 2021 eruption of the Cumbre Vieja volcano to constrain the structure of
the magmatic system located beneath La Palma in the Canary Islands.

Second, we develop tools to model magmatic systems in more detail and in a
self-consistent manner across the lithosphere. One of these tools is an extension of
the numerical continuum approach commonly used in geodynamics to model both
shear and tensile plastic failure. This enables us to include dykes, the main form
of melt transport in the elasto-plastic upper crust, in our models. The constitutive
equations presented include compressible visco-elasto-plasticity with viscoplastic reg-
ularization and non-linear rheologies. A new yield function, adapted to work reliably
in tensile conditions without introducing unphysical stress states into the model, is
also presented. Another tool described in this thesis is MAGEMin, a Gibbs energy
minimizer applied to igneous systems. MAGEMin is an efficient and highly scalable
minimization package that opens up new possibilities for petrological applications as
well as for use in conjunction with thermomechanical models. It uses a combination
of linear programming, extended Partitioning Gibbs Energy and gradient-based min-
imization. The implementation of the thermodynamic dataset (Holland et al., 2018)
was benchmarked against THERMOCALC.
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Kurzfassung

Magmatische Systeme und Vulkane sind auf der ganzen Welt zu finden, doch die
Prozesse, die für den Aufstieg magmatischer Schmelze verantwortlich sind, sowie die
Struktur dieser Systeme sind aufgrund mangelnder direkter Beobachtungen noch im-
mer nur unzureichend geklärt. Alle Hypothesen in diesem Bereich werden aus indi-
rekten Beobachtungen abgeleitet (geophysikalische Untersuchungen, Feldarbeit und
petrologische Studien an fossilen exhumierten Systemen oder an der Oberfläche der-
zeit aktiver Vulkansysteme), und es müssen robuste physikalische und geochemische
Modelle entwickelt werden, um diese Ideen zu validieren, zu quantifizieren oder zu
verfeinern. Wir gehen diese Herausforderungen in dieser Arbeit in zwei Teilen an.

Zunächst untersuchen wir die Schmelzeentleerung eines magmatischen Reservoirs,
das durch einen schwachen Schlot mit der Oberfläche verbunden ist. Mithilfe eines
2D-Modells vereinfachen wir die Rheologie und die Struktur des Systems auf einige
wenige Parameter und bestimmen, wie empfindlich die Geschwindigkeiten innerhalb
des Kanals auf Variationen dieser Parameter reagieren. Es werden mehrere Trans-
portmodi identifiziert und in analytische Skalierungsgesetze übersetzt. Anschließend
wenden wir diese Skalierungsgesetze auf den Ausbruch des Vulkans Cumbre Vieja im
Jahr 2021 an, um die Struktur des magmatischen Systems unter La Palma auf den
Kanarischen Inseln einzugrenzen.

Zweitens entwickeln wir Instrumente, um magmatische Systeme in der gesamten
Lithosphäre detaillierter und in sich konsistenter Weise zu modellieren. Eines die-
ser Werkzeuge ist eine Erweiterung des in der Geodynamik üblichen numerischen
Kontinuum-Ansatzes zur Modellierung von plastischem Scher- und Zugversagen. Dies
ermöglicht es uns, Dykes, die Hauptform des Schmelztransports in der elasto-plastischen
oberen Kruste, in unsere Modelle einzubeziehen. Die vorgestellten konstitutiven Glei-
chungen beinhalten kompressible Visko-Elasto-Plastizität mit viskoplastischer Regu-
larisierung und nichtlinearen Rheologien. Außerdem wird eine neue “yield functi-
on"vorgestellt, die so angepasst ist, dass sie unter Zugbedingungen zuverlässig funk-
tioniert, ohne unphysikalische Spannungszustände in das Modell einzubauen. Ein wei-
teres in dieser Arbeit beschriebenes Werkzeug ist MAGEMin, ein Gibbs-Energie-
Minimierer, der auf magmatische Systeme angewendet wird. MAGEMin ist ein ef-
fizientes und hoch skalierbares Minimierungspaket, das neue Möglichkeiten für petro-
logische Anwendungen sowie für den Einsatz in Verbindung mit thermomechanischen
Modellen eröffnet. Es verwendet eine Kombination aus linearer Programmierung, er-
weiterter Partitioning Gibbs Energy und gradientenbasierter Minimierung. Die Im-
plementierung des thermodynamischen Datensatzes (Holland u. a., 2018) wurde mit
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THERMOCALC verglichen und getestet.
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Chapter 1

Introduction

1.1 Motivation

The ascent of magma in the Earth’s crust is a fundamental geological process, respon-
sible for both the formation of new crust (Piccolo et al., 2019) and volcanism around
the globe. It is also a subject of study that involves many geological disciplines, in-
cluding field studies, petrology, geochemistry and geophysics, as well as analog and
numerical modeling. While the first methods can provide data support hypotheses
about how magmatic systems form and evolve, modeling can provide physical con-
straints to test these hypotheses and organize information from different fields into a
coherent model.

Generally accepted conceptual models of the structure of magmatic systems have
evolved greatly in recent years, from melt-dominated transcrustal volumes to large,
long-lived, highly crystallized magmatic reservoirs containing smaller volumes of mag-
matic melt for shorter intervals of time (see Bachmann and Bergantz, 2004; Hildreth,
2004; Bachmann and Huber, 2016). The modeling of such systems presents several
new challenges that the ERC project MAGMA aims to address. The objectives of
the project are: to create new computer models to simulate two-phase flow through
a deforming visco-elasto-plastic medium using both shear and tensile plasticity; to
perform systematic numerical simulations to better understand the physics of these
models and compare them with observations; to develop new approaches to calcu-
late thermodynamic equilibria in a faster and more reliable way; to perform inverse
geodynamic modeling of active magmatic systems.

As part of this project, this thesis focuses on three of these goals. The perfor-
mance of modern computers and access to supercomputer clusters allow us to run
several thousand 2D mechanical models in a very short time. This gives us the oppor-
tunity to explore the parameter space of a simple model setup and to gain a better
understanding of the physical processes governing the dynamics of our simplified sys-
tem before adding more complexity. Additionally, we work on the development and
testing of suitable numerical methods for both the mechanical aspect of modeling mag-
matic systems and the geochemical aspect of solving for thermodynamic equilibrium.
Since the author of this thesis was not the main contributor to the thermodynamic
part of the study, it has been included in the appendix.
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This work aims to improve our understanding of how magma moves from the
mantle to the crust. To achieve this goal, it seeks to introduce new elements into the
broader geodynamic framework that we consider essential for creating self-consistent
models that accurately describe the dynamics of magmatic systems.

1.2 Thesis structure

This thesis will be structured into two main chapters (chapters 2 and 3), followed by
a short summary and conclusion chapter (chapter 4), and an appendix.

Chapter 2:Chapter 2:Chapter 2: The dynamics of magma withdrawal in volcanic chambers

This chapter explores a new method for investigating the architecture of a tran-
scrustal magmatic plumbing system using the dynamics of a volcanic eruption. A
simplified volcanic system is modeled in 2D using a finite element code with struc-
tural and rheological parameters, allowing a systematic exploration of the parameter
space. The sensitivity of the melt flow in the volcanic conduit as a function of each
parameter is then presented in three scaling laws describing three different advection
regimes. Finally, an application of these scaling laws to the Cumbre Vieja volcano is
discussed.

Chapter 3:Chapter 3:Chapter 3: A numerical method to solve compressible visco-elasto-plastic systems in-
cluding shear and tensile plasticity

The coupling of dyke propagation models with ductile rheologies is a necessary
step for the study of transcrustal magmatic systems using numerical models. This
chapter presents the derivation and implementation of a tensile plastic rheology suit-
able for modeling dyking in a visco-elastic-plastic host rock, and an adapted composite
yield criterion. The derivations are presented in detail, followed by the numerical im-
plementation method and a demonstration of 0D and 2D cases. Finally, the outlook
for the applicability of this method is discussed. The rheology includes rock com-
pressibility, nonlinear viscous and plastic constitutive equations and the viscoplastic
regularization of the system.

Chapter 4:Chapter 4:Chapter 4: Conclusions

This chapter summarises the findings of chapters 2 and 3. Concluding remarks are
given, as well as a general outlook for the future of magmatic systems study, the next
necessary developments, and recontextualises the advances presented in this work.

AppendixAppendixAppendix MAGEMin, an Efficient Gibbs Energy Minimizer: Application to Igneous
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Systems

This chapter presents a new Mineral Assemblage Gibbs Energy Minimizer (MAGEMin),
which has been developed to predict stable mineral equilibria reliably and efficiently, in
view of coupling it with thermomechanical codes. A comprehensive review of currently
used methods and their respective shortcomings is given, followed by an explanation
of the Gibbs energy formulation and the new Gibbs energy minimization strategy.
A demonstration of the code and some applications are then presented. Finally, the
consistency of the method and a method for coupling MAGEMin to a geodynamic
model are discussed, together with some future prospects.

1.3 Derivation of the stiffness matrix

This thesis investigates the use of numerical modeling to study magmatic processes
along two main axes. One axis involves extracting knowledge from a simple mechanical
model of a magmatic system. Incompressible Stokes equations are solved in two
dimensions for a single time-step using a linear viscous rheology. The complexity of
the system’s configuration is summarised into a few geometrical parameters and the
constitutive equations for the rheology are condensed into a single viscosity value. This
model is detailed in chapter 2, along with the methodology used to derive analytical
scaling laws from simulation results.

In contrast, chapter 3 employs complex rheologies with multiple sources of non-
linearity to model the propagation of dykes. To gradually increase the complexity of
tested flow laws and steadily build the implementation, the initial development stages
tested various methods for deriving the stiffness matrix associated with the partial
differential equations. The following paragraphs present some of the tested methods
that did not feature in the implementation outlined in chapter 3.

1.3.1 Picard stiffness matrix

Picard iterations use a quasi-linear form of the residual equation fff(xxx) to evaluate the
solution xxx of the next iteration:

fff(xxx) = AAA(xxx)xxx− bbb = 0, (1.1)

xxxk+1 = AAA(xxxk)
−1bbb, (1.2)

where AAA(xxx) is the Picard matrix, bbb is the right-hand side of the residual function and
k is the iteration number. Although the convergence rate of Picard iterations tends
to be linear in the best cases (against quadratic for Newton-Raphson iterations), this
stiffness matrix is often much easier to compute than the Jacobian and can be useful
to test the implementation of new flow laws in the residual functions.



4 Chapter 1. Introduction

1.3.2 Using Automatic Differentiation tools to compute the global
Jacobian matrix

As mentioned above, Newton-Raphson iterations tend to converge way faster to the
solution to a partial differential equation. However, This method requires a Jacobian
matrix computed from the derivatives of the conservation equations over each primary
variable (velocity and pressure):

Jij =
∂fi
∂xj

. (1.3)

This Jacobian can be computed using numerical methods or analytically. The first
option requires some additional computational time and possibly a reduced accuracy,
while the second has to be re-derived and adapted for each modification of the con-
stitutive equations, sometimes by investing a significant amount of time.

During part of the development phase of the work presented in chapter 3, we
computed the Jacobian needed by the global solver using an automatic differentiation
method. This method takes advantage of the fact that our residual function, how-
ever complex, can be decomposed as a simple sequence of arithmetic operations and
elementary functions, as can the derivatives of that function. The main principle of
automatic differentiation is therefore to decompose the function and its derivatives
using the chain rule to automatically generate an analytical formula.

We use tools from the ForwardDiff.jl package developed by Revels et al. (2016).
This package implements in Julia a representation of multidimensional dual numbers.
Dual numbers are a complex number system similar to imaginary numbers (Khan and
Barton, 2015). They are expressions of the form:

z = x+ yϵ, (1.4)

where (x, y ∈ R) and ϵ2 = 0, and their behavior in scalar functions is defined as:

f(x+ yϵ) = f(x) + f ′(x) yϵ. (1.5)

They are very useful for computing scalar derivatives and can be extended to a mul-
tidimensional dual number to treat functions of vectors like the residual functions we
are concerned with. In ForwardDiff they are formulated as:

xxx =



x1
...
xi
...
xk


→ xxxϵ =



x1 + ϵ1
...

xi + ϵi
...

xk + ϵk


→ fff(xxxϵ) = fff(xxx) +

k∑
i=1

∂fff(xxx)

∂xi
ϵi. (1.6)

This method has the advantage of requiring much less evaluation of the residual
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function to compute a Jacobian matrix than other numerical methods while guaran-
teeing an accuracy equivalent to an analytical formulation. For a simple case, the
residual function would be called only a few times, but for larger or more complex
systems, the process can be broken into chunks and run on multiple threads. The
process can however have an important cost in memory and allocations and an an-
alytical formulation such as the one formulated in chapter 3 will be faster and more
memory efficient.
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1.5 Software

All of the modeling in this thesis has been performed in the Python and Julia language,
using the Visual Studio Code, Spyder and Jupyter Notebook editors. This manuscript
was written on ShareLaTeX/Overleaf using the "Master/Doctoral Thesis" template
from www.latextemplates.com. The results visualization was done in Paraview
or directly on the visualization packages from Python (matplotlib) and Julia (Plots
and Makie). Inkscape was used to create and edit figures. Other software used are
mentioned directly in the chapters.

www.latextemplates.com
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Chapter 2

The dynamics of magma
withdrawal in volcanic chambers

Abstract

Understanding magmatic plumbing systems across the lithosphere is still one of the
major challenges in geosciences. This is mainly due to the limited resolution of geo-
physical data at relevant depths and the rare instances of exposed sections of the deep
magmatic crust. We address this problem by investigating how efficiently a magma
reservoir can be depleted during an eruption and how geophysical and petrological
information can be integrated into a simple numerical model using analytical scaling
laws. We proceed here using a 2D finite element code written in Julia. The results
show that there are several modes of magma transport. Firstly, the pipe flow mode,
where the melt flows through the volcanic conduit can be described by a classical pipe
flow formula. Secondly, the plume-driven flow mode, where magma transport mimics
the rise of a plume in a viscous medium, and lastly the convection-dominated flow
mode, where most of the magma displacement is constrained in the magma chamber
rather than in the volcanic conduit. We use numerical simulations to determine how
magma ascent velocities are controlled by material and geometric properties such as
magma and mush viscosities, magma and mush chamber radius, or dike widths. To
improve our understanding of these relationships, and to apply our results to realis-
tic magma viscosities despite the inherent limitations of numerical modeling, we use
our numerical results to derive scaling laws characterizing melt advection regimes.
We then apply the scaling laws on a geological case study, the Cumbre Vieja 2021
eruption on La Palma.

2.1 Introduction

In recent years it has been recognized that volcanic edifices do not generally have
a unique magmatic chamber feeding them, but rather consist of lithospheric scale
plumbing systems of interconnected magma reservoirs (Cashman et al., 2017). Most of
the plumbing system will exist in a partially molten state ("mush"), with intermittent
fully molten sills interconnecting them. However, because direct observation is not
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possible, there are only few constraints on the rheology of these mushes, as well as the
precise geometry and connectivity of potential molten sills present in large volcanic
chambers (Lees, 2007; De Siena et al., 2014).

Using a combination of fieldwork, rock analysis and numerical modeling, previous
studies have constrained the size and injection rate of sills in several current or fossil
magmatic systems (Coleman et al., 2004; Annen et al., 2008; Michel et al., 2008;
Schmitt et al., 2023). The rheology of the mush and the mechanics behind magma
ascent to the surface are also being actively investigated (Mark Jellinek and DePaolo,
2003; Papale et al., 2017) as well as the effect of caldera collapse (Acocella et al.,
2004; Kennedy et al., 2008; Gregg et al., 2012) or the influence of regional faults on
magmatic systems (Novoa et al., 2022; Ruz-Ginouves et al., 2021). The importance
of buoyancy as a trigger or consistent driving force for melt displacement also remains
an open question (Gregg et al., 2015; Papale et al., 2017).

Which mechanism controls the dynamics of a magma chamber after the initial
trigger of an eruption? Can buoyancy sustain the eruptive system after most of the
gas has been removed from the system? In this paper, we investigate the importance
of magma rheology and the structure of the magma chamber on eruption rates, the
criteria under which eruptions stop, and the rate at which magma is transported to
the surface. We first perform simulations of a simplified volcanic setting, with a sill
of pure melt enclosed at the top of a magma chamber and connected to the surface
by a weak vertical conduit. After recovering conduit velocities from these models, we
identify the key mechanical processes acting on the system and characterize them in
three analytical scaling laws. In the following section, we discuss the application of
these scaling laws to the 2021 eruption of the Cumbre Vieja volcano of La Palma,
Spain.

2.2 Numerical model

We use the computational framework Gridap (Badia and Verdugo, 2020; Verdugo and
Badia, 2022) to solve the mass and momentum conservation equations in 2D using
the finite element method (FEM). This package is written in the Julia programming
language and provides tools enabling us to automatically discretize differential equa-
tions from their weak form and the model setup (grid, boundary conditions, phases
and material parameters). We used it to build a model solving the incompressible
Stokes equations:

∇ · uuu = 0, (2.1)

∇ · 2ηε̇̇ε̇ε(uuu)−∇p+ ρggg = 0, (2.2)

where uuu is the velocity vector, ggg is the gravity vector, p is the pressure, ρ is the density,
η is the viscosity and ε̇̇ε̇ε = 1

2((∇uuu)
T + ∇uuu) is the strain rate. We reformulate these
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two equations using an abstract framework into a weak form suitable for use with the
finite element method to find (uuu, p) ∈W such that:

a((uuu, p), (vvv, q)) = l((vvv, q)), (2.3)

for all (vvv, q) ∈W where

a((uuu, p), (vvv, q)) = 2η

∫
Ω
ε̇̇ε̇ε(uuu) : ε̇̇ε̇ε(vvv)dΩ−

∫
Ω
∇ · vvvpdΩ +

∫
Ω
∇ · uuuqdΩ, (2.4)

l((vvv, q)) =

∫
Ω
ρggg · vvvdΩ, (2.5)

the spaceW = V ×Q being a mixed function space such that (uuu,vvv) ∈ V and (p, q) ∈ Q.
The model setup as well as the unstructured rectangular mesh are set and gener-

ated using the Julia API Gmesh (Remacle et al., 2012). A circular magma chamber is
situated within a larger mushy region in the upper crust and is linked to the surface
through a weak conduit (our vent). This follows the conceptual models of Hildreth
and Wilson (2007), Sparks and Cashman (2017), and Cashman et al. (2017). Figure
2.1 shows the dimensions and geometrical features of the modeled space, as well as an
example of an unstructured grid.

In order to obtain an applicable set of scaling laws, we reduce the system’s com-
plexity (multiphase interactions, temperature dependence, phase transitions) into a
select few constant parameters as listed in table 2.1. We also assume that most
volatiles have been extruded early on in the eruption event and thus produce a neg-
ligible overpressure in the magma chamber once the eruption proceeds. Accordingly,
buoyancy is the main driving factor for displacements.

Table 2.1: Model parameters

Parameter Range and units Description
∆ρ 300-700 [kg m−3] Density contrast between the melt and the mush (ρmelt − ρmush)
ηmelt 1013 - 1019 [Pa s] Viscosity of the melt
ηmush 1018 - 1022 [Pa s] Viscosity of the mush
ηcrust 1022 [Pa s] Viscosity of the crust
L 1500 - 15000 [m] Length of the conduit
W 50 - 200 [m] Width of the conduit
Rmelt 1500 - 3500 [m] Radius of the melt pocket
Rmush 3500 - 15000 [m] Radius of the mush

2.3 Results and scaling laws determination

To determine the relationship between each parameter and the rate of material moving
through the conduit, we systematically performed simulations varying each parameter
and plotted the resulting vertical velocities in the conduit. Although the variation of
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Figure 2.1: 2-D model setup. Dirichlet no-slip boundaries are assigned to the right,
left and bottom of the model while the top is left as a free surface. A: The box is 60 km
wide and 40 km deep in total. The melt pocket is situated at the top of the mush system
and connected to the surface by a conduit. The mush chamber is surrounded by a rigid
host rock (the upper crust). the parameters listed in table 2.1 are also described on the
setup. Even though the mush chamber is elliptical, we maintain a constant aspect ratio
such that we can describe its size with a single parameter. B: The mesh is refined in the
area of the melt pocket and the channel. C: A configuration with several interconnected
melt pockets is also considered to observe the dynamics of such a system.

some parameters affects the whole system dynamics and not just the conduit velocity
(e.g. the vertical rise of the melt pocket inside the mush chamber), we limit our
observations to this metric as it gives us an insight into the magmatic material that
could eventually reach the surface. Figure 2.2 shows an example for different values
of mush viscosity while all other model parameters, including geometry, are fixed.
A profile of vertical velocity at the center of the model (Fig. 2.2A) shows that the
velocity in the conduit is inversely proportional to the mush viscosity. For a mush
viscosity of 1020 Pas, the magma batch within the mush chamber starts rising as a
convective sphere with a maximum vertical velocity that is larger than the conduit
velocity (Fig. 2.2B left). For the other two simulations, this is not the case and results
in slightly smaller conduit velocities. This is because a lower mush viscosity implies
that the mush can deform more easily and thus fill the space of the moving melt. If
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the mush viscosity increases, on the other hand, it hampers the motion of the magma
chamber and therefore reduces the conduit velocity.

Width [km]

D
e
p

th
 [k

m
]

B

C

A

Figure 2.2: Visualisation of three models with three different effective mush vis-
cosities: 1020, 1021 and 5 × 1021 Pa s while keeping the other parameters constant:
∆ρ = 500 [kg m−3], ηmelt = 1018 [Pa s], L = 2500 [m], W = 200 m, Rmelt = 2500 m
and Rmush = 10000 m. A: Vertical velocity profile from top to bottom of the model
at the center of the model (Width=0 km). Reducing the viscosity of the mush causes
movement in the melt pocket and increases the melt velocity into the channel as well.
B: 2D visualization of the vertical velocity. The mush chamber deforms and allows the
entire melt pocket to rise. C: General layout of the models: The host rock (the upper
crust) is green, the mush chamber blue, the melt pocket yellow and the conduit is red.

Whereas this is a simple example, most of the other model parameters also influ-
ence the conduit velocities. The conduit velocity itself is not constant, but maximum
at the bottom and decreasing towards the top, which is because we set the density
of the material within the conduit to be the density of the surrounding crust, to
eliminate an additional buoyancy source and obtain a lower bound for the conduit
velocity. This maximum conduit velocity, vz,max is thus potentially a function of all
model parameters:

vz,max = f(∆ρ, ηmelt, ηmush, L,W,Rmelt, Rmush). (2.6)

We therefore systematically varied each of the parameters to quantify the rela-
tive impact of each parameter on vz,max. If there is a relationship between the pa-
rameters, quantifying this relationship can be done by plotting log10(vz,max) versus
log10(parameter). The slope of a linear fit gives the power law exponent. For example,
figure 2.3A shows the effect of ∆ρ on vz,max, which is:

log10(vz,max) ∝ 1.0000000000000146 log10(∆ρ),

vz,max ∝ ∆ρ1.0000000000000146, (2.7)
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which is thus, as expected, linear. In other cases, these relationships are not quite as
straightforward and there are different analytical expressions depending on where in
the parameter space we are. Increasing the conduit width W , for example, increases
the conduit velocity until a maximum is reached and the velocity decreases again
(figure 2.3C). The dynamics of the magmatic fluid change at this point from a pipe flow
to something more akin to a rising plume, losing velocity as it does so. Similarly, ηmush

does not correlate with the conduit velocity at low values but begins to negatively
affect this velocity at a certain threshold (figure 2.3D). The melt velocity is thus
constrained by other parameters before this threshold, which shows another transition
between two melt dynamics regimes as a function of mush viscosity.

Each of these exercises can be repeated for all model parameters until a full scaling
law is derived. For cases in which we have two different regimes (such as in figure
2.3D), we need to repeat this within each of the distinct regimes (the "low viscosity"
and "high viscosity" regimes, respectively).

We performed this for all model parameters and could identify three main regimes
for magma conduit velocities, associated with three different scaling laws. These scal-
ing laws are summarized in table 2.2. The scaling law exponents of each parameter
have been kept as close as possible to the numerical data while maintaining a consis-
tency in unit. We have also added a constant coefficient to each scaling law to improve
the fit with the data.

A summary in which the predicted velocities are compared with the numerically
computed values shows that we have a general quite good agreement and velocities
are generally within 10 percent for the first and third scaling law and 25 percent for
the second (figure 2.4)).

The velocity in all regimes is proportional to ∆ρg, which is to be expected as
buoyancy is the main driving force in the system. In all cases, a larger radius of the
melt batch increases the conduit velocity as well, but in different ways. Yet, there
are also clear differences. It is interesting to determine the dominant flow mode at
different conditions. For this, we can determine boundaries between the different
flow regimes, which occur when the velocity of a regime is equal to that of another.
A summary of that is given in table 2.3 and showed on figure 2.5, which splits the
parameter space between the rheological parameters (the ratio between the melt and
the mush viscosity) and the geometrical parameters of the mush chamber, melt pocket
and melt conduit.

The first regime dominates for a high L
R ratio and a high ηmush

ηmelt
ratio. We call

this "pipe flow regime". Under these conditions, the velocity in the conduit increases
with the width of the conduit and decreases with its length, similar to the classical
pipe flow formula in fluid dynamics. A significant difference, however, is the equal
importance of the viscosity of the mush relative to the viscosity of the melt, since any
flow into the conduit must be extracted from the magma chamber and this change in
volume must be accommodated by the surrounding mush. The resulting formula is
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A

B

C

Figure 2.3: Maximum vertical velocity in the conduit as a function of several pa-
rameters on the logarithmic scale: A: The density contrast between the melt and the
surrounding rocks correlates directly with the velocity, B: The length of the conduit
correlates negatively with the velocity for this set of parameters, C: The relationship be-
tween the width of the conduit and the velocity shows two different trends, one positive
and one negative, indicating two different advection regimes, D: The viscosity of the melt
has no correlation with the velocity at a low value and a negative one at a higher value.
The three data points circled in red are the models shown in figure 2.2, at a transition
between two regimes.

vz,max = C1
WR1.5

melt∆ρg

L0.5η0.5meltη
0.5
mush

. (2.8)

The second regime dominates for a low L
R ratio and a high ηmush

ηmelt
ratio. We call this

"plume-driven regime". Under these conditions, the importance of the mush viscosity
becomes greater than the melt viscosity, similar to the tip of a rising plume. The
length of the conduit becomes irrelevant to the dynamics of the melt and the width
of the conduit is negatively correlated with the velocity in the conduit. The formula
of the plume-driven regime is
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Figure 2.4: Comparison between the modeled velocities and the ones computed using
the scaling laws, all data points are well aligned, confirming that the parameters chosen
are exhaustive enough to represent all the model complexity.

vz,max = C2
R2.5

melt∆ρg

W 0.5η0.3meltη
0.7
mush

. (2.9)

The third regime occurs at low ηmush
ηmelt

ratios. We call this "convection-driven
regime". In this case, the highest velocities in the model are concentrated in the
melt pocket rather than in the conduit. Most of the buoyancy in the system is thus
used in the internal mixing of the mush chamber and only a limited amount of ma-
terial makes it to the surface. Since the mush deforms to a similar viscosity to the
melt itself, the melt viscosity becomes the most important parameter to consider.
Since most of the fluxes now take place in the mush chamber, its geometry becomes
more important than the one of the magmatic conduit. We introduce then as a pa-
rameter the radius of the mush chamber and remove the length of the conduit. The
corresponding formula is:

vz,max = C3
WRmeltRmush∆ρg

Lηmelt
. (2.10)

Table 2.2: Numerically determined scaling laws

scaling law

Regime 1: pipe flow Vchannel = C1
WR1.5

melt∆ρg

L0.5η0.5meltη
0.5
mush

C1 = 1.7

Regime 2: plume-driven Vchannel = C2
R2.5

melt∆ρg

W 0.5η0.3meltη
0.7
mush

C2 = 15e− 2

Regime 3: convection-driven Vchannel = C3
WRmeltRmush∆ρg

Lηmelt
C3 = 18e− 4

2.4 Discussion

2.4.1 The last phase of an eruption

Next, we will look at potential applications of these scaling laws. Of particular interest
is understanding the conditions for an eruption to stop. The end of an eruption occurs
when the flow of magmatic material in a volcanic vent stops. This could happen if the
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Table 2.3: Regime boundaries

regime boundary expression

Regime 1-2 ηmush
ηmelt

=

( C2
C1

RmeltL
0.5

w1.5

)5

Regime 1-3 ηmush
ηmelt

=

( C1
C3

R0.5
meltL

0.5

Rmush

)2

Regime 2-3 ηmush
ηmelt

=

( C2
C3

R1.5
meltL

w1.5Rmush

) 10
7

magma inside the conduit solidifies faster than it rises. For this to happen, we need
the residence time of the magma in the conduit (tadv) to be of the same order as the
typical cooling time of the magma by heat diffusion (tcooling). tadv can be estimated
using the velocities calculated from our scaling laws, and tcooling time can be estimated
for a given volcano using various analytical or numerical methods, taking into account
the width of the conduit, the temperature difference between the magma and the host
rock, and the thermal conductivity of the surrounding host rock.

The simplest way to evaluate a value would be to use an analytical expression such
as the one presented by Carslaw and Jaeger (1959) Let’s represent the conduit as a
thermal anomaly using this expression:

T (x, t = 0) = ∆T exp

(
−
(x
σ

)2)
+ Thost, (2.11)

where T (0) is the temperature at the center of the dike, x is the distance from the
center of the conduit, t is the time since magma emplacement, ∆T is the temperature
difference between the magma at the time of the intrusion and the surrounding host
rock, σ = W/2 is half the thickness of the dyke, and Thost is the temperature of the
surrounding host rock. We can then estimate the temperature at the center of the
conduit for x = 0 using the following analytical formula:

T (0, t) =
∆T√
1 + 4tκ

σ2

+ Thost, (2.12)

where κ is the thermal diffusivity of the host rock. We then substitute in this equation
the temperature at which we consider the magma motionless T cool (typically the
temperature that correspond to 50 percent crystallization) and the associated cooling
time tcool:

Tcool =
∆T√

1 + 4tcoolκ
σ2

+ Thost. (2.13)
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Figure 2.5: Map of the melt dynamics in the volcanic conduit across the parameter
space. Each scaling law is dominant in the region where it’s velocity value is lower than
the other two. Both solids and dashed lines are built using the functions described in
table 2.3. The missing parameters are defined for the solid line as such: Rmush = 7Rmelt

and W = Rmelt/10. For the dashed line: Rmush = 3Rmelt and W = Rmelt/13. The
exact value of the parameters are of no importance as long as those ratios are preserved.
The red area indicates the subdomain of the parameter space relevant to the case of the
Cumbre Vieja (although the viscosity ratio possibilities extend way higher (potentially
up to log10(ηmush/ηmelt) = 19)

The typical cooling time can then be estimated by rearranging this equation as
follows:

tcool =

((
∆T

Tcool−Thost

)2
− 1

)
σ2

4κ
, (2.14)

where Tcool is the temperature at which the magma has a too large crystal fraction to
flow. This can also be simplified by simply using the classical conduction timescale
t0 =

σ2

2κ in certain cases, but this would mean neglecting the petrological one we often
have, which is the crystallisation temperature.

2.4.2 Application: The Cumbre Vieja

Let’s apply this method to the Cumbre Vieja volcano on the island of La Palma, Spain.
The dynamics of the 2021 eruption have been constrained by many studies, making



2.4. Discussion 17

it an interesting study case for our method. This eruption started on September 19
and lasted 85 days until December 13. During this time, several vents and a fissure
released more than 0.2 km3 of magma to the surface as tephra and flowing lavas,
making this the longest and most voluminous event in the island’s history (Civico et
al., 2022). Seismic data show two areas of weak seismic swarms concentrated at about
the Moho depth (7-14 km) and deeper into the mantle (D’Auria et al., 2022; Fresno
et al., 2023). Petrological data from Klügel et al. (2000) and Klügel et al. (2005) also
suggest magma differentiation in the mantle and further temporary storage at the
Moho. They also hint towards the presence of a crystal-rich mush system comprised
of cumulates rock from previous magma batches. D’Auria et al. (2022) identifies as
well based on his tomographic survey an area of 400 km3 characterized by a very large
V p and a very low V s, potentially a mush body situated under La Palma.

One interesting feature of this eruption is the exceptionally low viscosity of the
extruded basanite magma (Castro and Feisel, 2022), causing it to flow rapidly on
the slopes of the volcano and towards the sea during the eruption. According to our
scaling laws, this low viscosity of the melt should also increase its rising velocity in the
volcanic plumbing system and as such have an effect on the efficiency of the magma
chamber depletion.

Using petrological as well as geophysical insights, we can partly constrain most of
the parameters needed for the application of the scaling laws. We use a model where
we assume a 10 km deep melt pocket inside of a bigger mush system and test our
scaling laws on it. We constrain the mush size using the estimate of D’Auria et al.
(2022) mentioned above, the melt viscosity using the measures from Castro and Feisel
(2022) and we vary the remaining parameters to evaluate the uncertainty on the size
of the melt pocket and the mush viscosity (see table 2.4 for parameter estimates). We
then compute a traveling time tt =

vz,max

L for the melt in the conduit to compare with
the critical cooling time due to conduction tcool obtained from the equation 2.14.

Table 2.4: Values for La Palma

Parameters
∆ρ 300[kg m−3]
ηmelt 10[Pa s]
L 10[km]
Rmush 4.5[km]
W 10[m]
Thost 150[°C]
∆T 1150[°C]
Tcool 1100[°C]
κ 10−6[m2 s−1]

According to our scaling laws, and as shown in the figure 2.6, there is a strong cor-
relation between the viscosity of the magmatic mush and the volume of melt remaining
in the pocket at the end of the eruption. For a mush viscosity of ηmush = 1011[Pa s],
most of the melt is extracted and the remaining melt pocket contains only about
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Volume erupted

Figure 2.6: Comparison of the advection velocity of magma with its cooling by con-
duction as a function of ηmush and R. The other parameters are set according to the
table 2.4. The light grey area indicates the regime where advection is dominant and the
melt rises in the conduit, while the dark grey area indicates the regime where the melt
cools faster than it rises and the eruption stops. The dashed and dotted lines indicate
the alternative boundaries between the light and dark grey areas with different widths
of the magma conduit. The mapping of the system has been done using all derived
scaling laws vz,max = min(v1z,max, v

2
z,max, v

3
z,max) but the whole system is effectively in the

plume-driven regime. This matches the location of La Palma on the parameter space
as shown in figure 2.5, especially the high ηmush

ηmelt
. Both red arrows indicate the volume

depletion corresponding to the 0.2km3 of magmatic material erupted during the 2021
event compared to the remaining volume of melt present underground at the end of the
eruption for two scenarios: ηmush = 1011[Pa s] and ηmush = 1016[Pa s].

50000m3. However, for a higher melt viscosity of ηmush = 1016[Pa s], the extruded
volume of 0.2 km would represent only one-eighth of the total melt previously stored
at the base of the crust. This shows a huge variability in the efficiency of the melt de-
pletion from the magmatic pocket. If the mush viscosity increases by only a few more
orders of magnitude, so does the volume of magma necessary to sustain the eruption.
An eruption occurring in such a system would need a reservoir with a radius of several
kilometers to sustain the event through several days or weeks past the evacuation of
the gases responsible for the initial overpressure. In the case of La Palma, such a con-
centration of pure liquid melt would probably have been resolved by the many seismic
surveys aimed at the island (D’Auria et al. (2022) estimates a resolution sufficient for
anomalies bigger than 4[km]). For such reasons, The large mush area should be of
significantly lower viscosity than the surrounding crust (ηmush ≤ 1017[Pa s]).
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2.4.3 Interconnected chambers

We also used our numerical model on a setup with several interconnected sills filled
with melt (Figure 2.7). First outlooks indicate a strong influence of the viscosity ratio
(ηmush
ηmelt

) on the dominant advection mode in the mush chamber. With ηmush
ηmelt

= 109, the
highest velocities of the model are concentrated in the dykes linking the melt pockets.
With ηmush

ηmelt
= 106 (after lowering the mush viscosity), the highest velocities are still

concentrated in the channels, but the whole system is globally more dynamic. With
ηmush
ηmelt

= 103, the melt pockets start to rise in the mush chamber and create a general
convection current that prevails over the melt circulation in the dykes. The trend
is thus similar to the case of a single melt pocket with a convection-driven regime
appearing for a low viscosity ratio similar to figure 2.5.

Table 2.5: Connected sills parameters

Parameters
∆ρ 500[kg m−3]
ηmelt 10[Pa s]
L 10[km]
Rmelt x 12[km]
Rmelt z 2[km]
Rmush x 25[km]
Rmush z 18[km]
W 110[m]

An interesting parallel can be drawn here with the conceptual model of Sparks and
Cashman (2017), who suggests a direct causal effect of the rapid destabilization of a
trans-crustal magmatic mush system on eruptions via the merging of several melt-rich
reservoirs.

2.5 Conclusion

Magma ascent from the chamber to the volcanic edifice is strongly controlled by its
rheology and the geometry of the magmatic plumbing system. Using a 2D finite
element model, we identified the correlations between the rate at which melt rises in
a volcanic conduit and several parameters, including the radius of the mush reservoir,
the radius of the melt-filled sill, the width of the magmatic conduit, the viscosity of the
melt and the viscosity of the magmatic mush. We also characterized these correlations
by formulating three different advection regimes in the conduit, each expressed by an
analytical scaling law.

Furthermore, we presented an application of the scaling laws to the Cumbre Vieja
volcano of La Palma, using data collected around the 2021 eruption. The low magma
velocity estimated by Castro and Feisel (2022) and the intense seismic monitoring of
the island (D’Auria et al., 2022; Fresno et al., 2023), before and after the eruptions,
provided a very interesting case with a wealth of relevant data. Based on our modeling
results, we were able to formulate a first-order estimate of the maximum effective
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viscosity of the mush under the assumption that buoyancy drove the final phase of
the eruption. We hope that these scaling laws can be used as a supplementary tool
to interpret observations made at volcanic sites and to improve our understanding of
magmatic systems in general.
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Figure 2.7: Visualisation of three models of multiple sills in an upper-crustal magmatic
mush following the setup presented in figure 2.1C. The models are presented for three
different mush viscosities: 1019[Pa s] in A, 1016[Pa s] in B and 1013[Pa s] in C with the
same geometry (described in table 2.5) and a constant melt viscosity of 1010. The sills
are connected by dykes filled with melt.
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Chapter 3

A numerical method to solve
compressible visco-elasto-plastic
systems including shear and tensile
plasticity

Abstract

A unified theory for magmatic systems, capable of modeling both the ductile transport
of magma in the lower crust and the brittle propagation of dykes and shear zones in
the upper crust, is fundamental to understanding the mechanisms of melt transport
across the lithosphere. One way to achieve this goal is by extending the commonly
used numerical continuum approaches in geodynamics to include both mode-1 and
mode-2 plastic failure. This work builds towards this goal by presenting a new com-
pressible visco-elasto-viscoplastic formulation adapted to study both ductile and brit-
tle rheologies in a self-consistent manner with a focus on tensile crack initiation and
propagation. We introduce a new composite yield function combining Drucker-Prager
with a circular approximation to the Griffith criterion coupled with a Perzyna-type
regularization viscosity. While mathematically identical, there are several ways to
discretize the resulting governing equations numerically. We highlight the differences
between the numerical implementations and present local stress update algorithms,
and how to combine this into a global stiffness matrix. We implement the governing
equations in an implicit finite element framework and use that to demonstrate the
numerical efficiency of the numerical formulation. Finally, we present 0D and 2D
benchmarks and applications that exemplify tensile fracture in an extensive environ-
ment and a dyke propagating through an elasto-plastic host rock. This approach can
be implemented as part of a magmatic system model, but can also be used to simulate
fluid-induced brittle fracturing in other environments such as in geothermal reservoirs
or around salt caverns.
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3.1 Introduction

Dykes are the preferred mechanism for transporting magma to the Earth’s surface.
They are magma-filled tensile fractures that propagate in the crust in a plane generally
parallel to σ3 (Anderson, 1951; Rivalta et al., 2015). This is a mechanical process that
predominates in the upper part of the lithosphere, where the rock rheology is mostly
elastic and brittle. By connecting a magma chamber to the surface (Acocella and
Neri, 2009; Rubin, 1995), but also several magma chambers to each other (Menand,
2011; Sparks and Cashman, 2017), they form a central part of any volcanic plumbing
system. Consequently, the study of this process through numerical modeling has
been a major focus of the geodynamic community over the years. Currently, the
most successful models of dyke propagation use semi-analytical formulations that
describe fractures driven by the buoyancy or overpressure of the magma they transport
(Maccaferri et al., 2011; Rivalta et al., 2015). These models can accurately predict
the direction (Maccaferri et al., 2014; Mantiloni et al., 2023) and propagation of single
or multiple dykes and give great insights into the stress field at depth in a volcanic
province. Yet, they assume that the host rock deforms in a homogeneous elastic or
visco-elastic manner, and thus simplify the more complex nonlinear rheology of rocks.
They can also not simulate the broader scale evolving heterogenous nature of the
lithosphere or address the visco-elastic behavior of a highly crystallized ’mush’ magma
chamber as well as the ductile modes of fluid transport occurring at deeper levels in
the lithosphere. Within the lithosphere community, it has now become routine to
simulate large-deformations of visco-elasto-plastic heterogeneous lithosphere in 2D and
3D (Kaus et al., 2016; Gerya, 2019; Baumann et al., 2018; Pons et al., 2022; Candioti
et al., 2022; Andrić-Tomašević et al., 2023; Riel et al., 2023). Yet plastic deformation
in these simulations is usually limited to a mode-2 model (such as a Drucker-Prager
formulation) that does not include a tensile opening mode and can thus not simulate
diking. Moreover, the two-phase nature of magmatic systems consisting of melt and
solid rocks is typically not included.

Keller et al. (2013) demonstrated that it is in principle possible to extend a two-
phase numerical formulation to include visco-elasto-plastic rheologies, necessary to
simulate magma migration through the entire lithosphere. In their approach, the
mechanics of tensile plasticity played a central role in dyke nucleation and propagation
(partly following Rozhko et al. (2007)). However, the plasticity model of Keller et
al. (2013) doesn’t seem to always guarantee convergence to a unique solution with
physical stress values. Resolving this is important in order to avoid unrealistic negative
values of deviatoric stresses and to ensure the convergence of every time step of the
model to the solution.

Two additions can remedy this problem: a regularisation scheme capable of im-
posing a rate dependence on the inherently rate-independent plastic failure process,
and a continuous and differentiable yield function that guarantees an effective return
mapping for both the shear and tensile modes of plasticity. Duretz et al. (2019) and
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Duretz et al. (2020) and Jacquey and Cacace (2020a) have recently introduced the
concept of viscoplasticity to regularise models applied to lithospheric scale deforma-
tions, building up on approaches that have been used in engineering (Perzyna, 1966;
Wang et al., 1997; Heeres et al., 2002). The two main advantages of this type of
regularisation are the introduction of a reference time and length scale to the plastic
deformation and an improvement in global convergence.

There are also a number of recent studies that employed viscoplasticity in the
context of igneous processes. In particular, Kiss et al. (2023) use a Duvaut-Lions
viscoplasticity model (Duvaut and Lions, 1972) and a composite yield function that
links the Drucker-Prager yield function directly to the Griffith criterion (Murrell,
1964b; Murrell, 1964a; Fullsack, 1995) for tensile failure. However, their numerical
implementation is based on the finite-difference pseudo-transient method (Räss et al.,
2022), thus avoiding several intricacies relative to the implementation of this rheology
in a typical implicit formulation. Li et al. (2023) use the consistent viscoplasticity
model (Heeres et al., 2002) and a hyperbolic yield function converging to Drucker-
Prager for high deviatoric stresses for both plasticity modes (shear and tensile), but
assume a linear rheology outside the plasticity domain.

In the present study, we present the derivation and implementation of a new
compressible visco-elasto-viscoplastic framework with a mixed velocity-pressure finite
element formulation. We use Perzyna’s viscoplasticity model (Perzyna, 1966) for
spatial and temporal regularization and allow for nonlinear rheological models such as
dislocation creep and nonlinear plastic models. We also propose a circular cap function
to link the typical Drucker-Prager yield criterion to the tensile yield strength using
a simple continuous and differentiable formulation. The local iterations necessary to
update the stresses at the integration points are discussed along with the problem of
having two pressure fields resulting from volumetric plasticity. The implementation
of the necessary derivatives to solve the presented system of equations using Newton-
Raphson iterations for an implicit finite element scheme is presented in detail in the
appendix.

3.2 Physical model

3.2.1 Preliminaries

Before laying out the system of equations for this work, we need to introduce a few
definitions to the reader. In this work, the trace and deviatoric projection of a tensor
as well as the effective magnitude of the tensor (square root of the second invariant)
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are respectively defined as:

tr (aij) = akk, (3.1)

dev (aij) = aij −
1

3
akkδij , (3.2)

aII =

(
1

2
aijaij

) 1
2

, (3.3)

where δij is the Kronecker delta. We also define the strain rate tensor (ϵ̇ij) as well
as the deviatoric (ε̇ij) and volumetric (θ̇) strain rates and the spin tensor (ω̇ij) using
velocity vi as the primary variable:

ϵ̇ij =
1

2

(
∂vi
∂xj

+
∂vj
∂xi

)
, (3.4)

ε̇ij = dev (ϵ̇ij) , (3.5)

θ̇ = tr (ϵ̇ij) , (3.6)

ω̇ij =
1

2

(
∂vi
∂xj

− ∂vj
∂xi

)
. (3.7)

Finally, we define the Cauchy stress tensor (σij), the deviatoric stress (τij) and
the pressure (p), positive in compression according to the usual practice in geology:

σij = τij − p δij (3.8)

τij = dev (σij) (3.9)

p = −1

3
tr (σij) (3.10)

3.2.2 Conservation and constitutive equations

We solve a set of two equations to conserve mass and momentum:

∂τij
∂xj

− ∂p

∂xi
− αb

∂pfl
∂xi

+ ρgi = 0, (3.11)

θ̇ +
1

K

Dp

Dt
− λ̇ tr

(
∂Q

∂σij

)
= 0. (3.12)

The rheological model for shear deformation is based on the Maxwell serial cou-
pling of a diffusion creep, a dislocation creep, an elastic and a viscoplastic element,
using a Perzyna viscoplastic model to ensure regularization and convergence of the
plastic case. The rheological model for volumetric deformation consists of an elas-
tic element, that represents the pressure-volume equation of state in an incremental
form, in a Maxwell coupling with a similar viscoplastic element. The yield function
and the plastic potential are identical for shear and volumetric deformations (Figure
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3.1). The effect of fluid pressure (pfl) on the system is expressed in the momentum
equation and depends on the Biot-Willis constant (see Biot and Blot, 1941; Lade and
De Boer, 1997):

αb = 1− Cs

C
(3.13)

where Cs is the compressibility of solid grains and C is the compressibility of the
porous rock.

The deviatoric constitutive equation is:

ε̇ij =ε̇
vis,dif
ij + ε̇vis,disij + ε̇elij + ε̇vpij , (3.14)

where

ε̇vis,difij = AD τij , (3.15)

ε̇vis,disij = AN (τII)
n−1 τij , (3.16)

ε̇elij =

⋄
τ ij
2G

, (3.17)

ε̇vpij = λ̇ dev

(
∂Q

∂σij

)
. (3.18)

(3.19)

The creep pre-factors are:

AD = BD exp

[
− EL

RT

]
, (3.20)

AN = BN exp

[
− EN

RT

]
. (3.21)

BD, BN and ED, EN are respectively the creep parameters and activation en-
thalpy of the corresponding mechanism, R is the gas constant and n is the power law
exponent. The Jaumann objective stress rates are defined as:

⋄
τ ij =

∂τij
∂t

+ τikωkj − ωikτkj (3.22)

and the plastic multiplier following a Perzyna linear viscoplastic model:

λ̇ =
⟨F ⟩
ηvp

. (3.23)

where the yield function F is surrounded by Macaulay brackets meaning:

⟨F ⟩ =

F, F ≥ 0

0, otherwise
. (3.24)
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Figure 3.1: Schematic representation of the employed deviatoric and bulk rheologies.
The deviatoric strain rate is composed of a viscous, elastic and viscoplastic part following
a Perzyna scheme.

For the scope of this study, we consider a composite yield function (F ), using the
pressure-dependent Drucker-Prager function for the shear plastic domain (mode 2)
and a circular cap function for the tensile domain (mode 1). We also define a non-
associated flow function (Q) as illustrated in figure 3.2(b). The plastic parameters are
the friction angle (φ), the dilation angle (ψ), the Mohr-Coulomb cohesion (cMC) and
the tensile strength (pT).

The yield function is expressed as

F =


τII − k p− c, τII (py − pd) ≥ τd (py − p)

a
(
R̂y −Ry

)
, otherwise

, (3.25)

where
R̂y =

√
τ2II + (p− py)

2, (3.26)

and the flow potential is

Q =


τII − kq p− const, τII (pq − pd) ≥ τd (pq − p)

b
(
R̂q − const

)
, otherwise

, (3.27)

where

R̂q =

√
τ2II + (p− pq)

2. (3.28)

As explained in Jiang and Xie (2011), there are several possible variations of
the Drucker-Prager strength criteria. We selected here one that is widely used by the
community (Keller et al., 2013; Kaus et al., 2016; Duretz et al., 2021), the formulation
of which is simple and doesn’t systematically over-estimate the rocks’ strength:
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k = sinφ, (3.29)

kq = sinψ, (3.30)

c = cMC cosφ. (3.31)

In order to ensure a smooth transition between the two yield and flow functions
over the whole stress domain (see figure 3.3), we define scaling parameters:

a =
√
1 + k2, (3.32)

b =
√
1 + k2q. (3.33)

Using this, we compute the tensile yield surface center coordinate (Py) and radius
(Ry), the delimiter point coordinates between both yield functions (pd,τd) and the
tensile flow potential center coordinate (pq):

py =
pT + c

a

1− k
a

, (3.34)

Ry = py − pT, (3.35)

pd = py −Ry
k

a
, (3.36)

τd = k pd + c, (3.37)

pq = pd + kqτd. (3.38)

The smooth flow potential gradient can be expressed from those variables:

∂Q

∂σij
= Bττij +Bpδij , (3.39)

where:

(Bτ , Bp) =


(

1
2τII

,
kq
3

)
, τII (pq − pd) ≥ τd (pq − p)(

b
2R̂q

,− b(p−pq)

3R̂q

)
, otherwise

. (3.40)

3.2.3 Perzyna regularization scheme

As explained by Borst and Duretz (2020), strain localization in general, and plastic
strain localization in particular, poses a challenge to continuum mechanics modeling.
This is because it can concentrate most of a model’s deformation in an area of "zero
thickness" that can’t be resolved by the model’s mesh size. This causes the strain
and velocity field to be highly dependent on the model resolution as well as severe



30 Chapter 3. Tensile plasticity in a visco-elasto-plastic system

Figure 3.2: A: Meridional plot of a composite yield functions similar to the ones used
in Keller et al. (2013) or Kiss et al. (2023). The complete function is discontinuous and
special care must be applied to ensure the proper mapping of the stress back to the yield
at the corner of the yield functions The red diamonds indicate a theoretical visco-elastic
stress state outside of the yield limit, the blue ones point to the inviscid stress state
(or the stress state after plastic correction if there is no regularization) and the yellow
ones to the full visco-elasto-viscoplastic stress state. B: Meridional plot of the composite
yield function used in this work. This function is fully continuous and differentiable
and guarantees a smooth transition between both domains of the yield function without
additional effort. C: Representation of the original Mohr-Coulomb formula from which
both of those simplifications are derived, plotted over the normal stress σn = σ1+σ2

2 and
the shear stress τn = σ1−σ2

2

.

convergence problems (Spiegelman et al., 2016; Duretz et al., 2019). The solution we
have adopted to counteract this effect is to add a deformation-limiting viscosity to the
plastic strain rate as shown in the figure 3.1, hence the term "viscoplasticity". We use
the method of Perzyna (1966) as formulated in the works of Heeres et al. (2002) or
Jacquey and Cacace (2020a). Since our yield function F already fulfils the conditions
of being continuous and convex in [0,∞⟩, we are free to define the plastic multiplier
as we did in equation 3.24:

λ̇ =
⟨F ⟩
ηvp

. (3.41)

There are two important consequences of using this method. First, the addition
of a regularization viscosity ηvp provides a time scale and implicitly a length scale
to the plastic deformation for a large enough value of ηvp and a low enough strain
(see Duretz et al., 2023; Wang, 2019), simultaneously solving the convergence issues
and the mesh dependence of the results. Since this length scale depends on the value
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of ηvp chosen, it is important to choose a value appropriate for the specific process
one wishes to model. The second consequence of using this method is the so-called
"overstress" associated with it. Since the addition of ηvp is done in the calculation
of the plastic multiplier λ̇ and not directly in the formulation of the yield function F
(as in the consistency method used by Duretz et al. (2019) and Duretz et al. (2021)),
the model can converge with F > 0 and thus stresses converge over the yield function
(for example, the yellow diamonds in the figure 3.2), causing what we call overstress.
This isn’t normally a problem, but in the case of composite yield functions such as
the one we have here, it becomes particularly important that the elements of the yield
functions, as well as the non-associated flow potential, are continuous for F ≥ 0 (see
figure 3.3). We add scaling parameters to our formulation to ensure this continuity
(equations 3.32 and 3.33). The rate-independent plasticity is naturally recovered with
this formulation for ηvp = 0.

A B

C

F F

Q

Figure 3.3: A: Meridional plot of the composite yield function with the value of the
yield function F plotted in contour without the scaling parameter a. Even though the
function is continuous for F = 0, this is not the case for higher values of the yield
function F , as indicated by the discontinuity of the color fields. B: Meridional plot of the
composite yield function with the value of F plotted contour with the scaling parameters
a. In this case, the function is continuous on the domain F ≥ 0. C: Meridional plot of the
composite yield function with the value of the flow function Q plotted in contour with
the scaling parameters b. Q = 0 is plotted in green for reference. The gradient of the
flow function is continuous above the yield and guarantees a consistent return mapping.
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3.3 Numerical formulation

3.3.1 Time and space discretization

The momentum and continuity equations are discretized using the finite element
method in 2D and a seven-node triangular Crouzeix-Raviart element. All variables
are distributed on the element following the layout presented in figure 3.4. For sta-
bility reasons and following the demonstration of Crouzeix and Raviart (1973), the
pressure field is discontinuous between elements. The constitutive equations are com-
puted over six integration points. The triangular mesh is generated by the Triangle
software (Shewchuk, 1996) using the MeshPy Python API (Kloeckner et al., 2022) to
define the geometry of the models.

Figure 3.4: Seven-nodes triangular Crouzeix-Raviart element. The velocity is defined
on all seven nodes while the pressure is defined on each corner (and is not shared with
neighbouring elements since it is defined discontinuous). The element is subparametric
since the coordinates are defined only on the three corner node. All historical variables
are directly saved on the integration points.

The equations are also discretized over time, following a backward Euler implicit
scheme:

∆t = tn+1 − tn (3.42)

where the subscript n denotes the beginning of the current time step. All quantities
are presented by their unknown values in the end of the time step and assumed to be
constant during the time step. The end of the current time step subscript is omitted
in the following equations for clarity, i.e. p = pn+1.

3.3.2 Primary variables

3.3.2.1 True global pressure scheme

Global primary variables are the velocity (vi) and pressure (p∗). The star in the
superscript explicitly indicates that during the global iterations, the global pressure
(that is the value obtained from solving the coupled system of equations) may differ
from the pressure obtained by the local stress update (p), i.e. p∗ ̸= p. The difference
is caused by the dilatant plasticity that has a nonzero volumetric plastic strain rate
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component. The local stress update is formulated as a strain rate-driven problem,
hence the local pressure (p) should be discarded and the global residuals should be
evaluated using the globally discretized pressure variable (p∗), namely:

∂τij
∂xj

− ∂p∗

∂xi
− αb

∂pfl
∂xi

+ ρgi = 0 (3.43)

θ̇ +
1

K

Dp∗

Dt
− λ̇ tr

(
∂Q

∂σij

)
= 0 (3.44)

Here, it should be noted that the plastic strain rate is evaluated using the updated
stress obtained by the local iterations. Upon convergence of the global iterations, both
pressure variables become approximately the same, i.e. p∗ ≈ p. For the non-dilatant
plasticity case, the initial difference in pressure variables does not occur.

3.3.2.2 Trial global pressure scheme

The global pressure variable (p∗) can be alternatively interpreted as a trial pressure. In
this case the local (updated) pressure should be used in the momentum equation, and
the volumetric plastic strain rate should be discarded from the continuity equation:

∂τij
∂xj

− ∂p

∂xi
− αb

∂pfl
∂xi

+ ρgi = 0 (3.45)

θ̇ +
1

K

Dp∗

Dt
= 0 (3.46)

In this scheme, the difference between the global and local pressure variables need
not vanish on convergence, i.e. p∗ ̸= p. We call this approach a trial global pressure
scheme since the global pressure converges towards the trial pressure. As before, in
the case of non-dilatant plasticity pressure variables are equal.

3.3.3 Stress update: local iterations

3.3.3.1 True global pressure scheme

As several types of non-linearities occur in the constitutive equations (caused by both
dislocation creep and plastic corrections), we need to solve a local system of equations
on each grid point to retrieve the stress tensor. To this end, we can group the nonlinear
stress update equation into a residual vector (for derivations see Appendix 3.A):

r =


ε̇∗II −AL τII −AN (τII)

n − λ̇ Aτ

θ̇∗ +AK p− λ̇ Ap

⟨F ⟩ − λ̇ ηvp

 (3.47)

where:
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ε̇∗ij = ε̇ij +
τ∗ij

2G∆t
, (3.48)

θ̇∗ = θ̇ − pn
K∆t

, (3.49)

AL =
1

2G∆t
+AD, (3.50)

AK =
1

K∆t
, (3.51)

(Aτ , Ap) =


(
1
2 , kq

)
, τII (pq − pd) ≥ τd (pq − p)(

b τII
2R̂q

,− b(p−pq)

R̂q

)
, otherwise

. (3.52)

Here τ∗ij stands for the rotated stress from the previous time step (see the Appendix
for more details). Note that stress rotation terms are usually computed using the
alternative incrementally-objective scheme (Thielmann et al., 2015; Gerya, 2019). We
mention again that the local stress update iteration is formulated as a strain-driven
problem, which means that the local pressure (p) is a passive variable and may in
general differ from the globally discretized pressure (p∗) (see section 3.3.2.1).

We are solving the stress update set of equations for the second invariant of the
deviatoric stress (τII), the local pressure (p) and the plastic multiplier (λ̇) which can
be merged into a vector x:

x =


τII

p

λ̇

 (3.53)

using Newton-Raphson iterations:

∥rk∥ < tol (3.54)

xk+1 = xk − J−1
k rk (3.55)

with k being the iteration index and J being the local Jacobian matrix. This matrix
can be derived to be:

J =


−AL − n AN (τII)

n−1 − λ̇ ∂Aτ
∂τII

−λ̇ ∂Aτ
∂p −Aτ

−λ̇ ∂Ap

∂τII
AK − λ̇

∂Ap

∂p −Ap

∂F
∂τII

∂F
∂p −ηvp

 (3.56)

where the derivatives are:
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(
∂Aτ

∂τII
,
∂Aτ

∂p

)
=


(0, 0) , τII (pq − pd) ≥ τd (pq − p)(

b(R̂2
q−τ2II)
2R̂3

q
,− bτII(p−pq)

2R̂3
q

)
, otherwise

(3.57)

(
∂Ap

∂τII
,
∂Ap

∂p

)
=


(0, 0) , τII (pq − pd) ≥ τd (pq − p)(

bτII(p−pq)

R̂3
q

,− b(R̂2
q−(p−pq)2)

R̂3
q

)
, otherwise

(3.58)

(
∂F

∂τII
,
∂F

∂p

)
=


(1,−k) , τII (py − pd) ≥ τd (py − p)(
aτII
R̂y
,
a(p−py)

R̂y

)
, otherwise

(3.59)

Although this system of equation has been developed with a rate-dependent vis-
coplasticity in mind, no change is needed for the rate-independent case since this
one is naturally recovered when ηvp → 0. The λ̇ variable becomes then a Lagrange
multiplier necessary to enforce the yield surface constraint.

Before we start the general visco-elasto-plastic iteration, a nonlinear visco-elastic
trial deviatoric stress (τ∗II) must be computed. This is achieved by isolating the first
equation in the system (3.47) and assuming zero plastic multiplier λ̇ = 0:

ε̇∗II −AL τ
∗
II −AN (τ∗)n = 0. (3.60)

For the successful convergence of the Newton iterations it is necessary to select a
good initial guess. We found the following approximation to perform robustly:

(τ∗II)0 =

(
1

τL
+

1

τN

)−1

(3.61)

where:

τL =
ε̇∗II
AL

, τN =

(
ε̇∗II
AN

)1/n

. (3.62)

In other words, we start the local iterations with a quasi-harmonic average of the
deviatoric stresses resulting from the isolated linear and nonlinear creep mechanisms.

Subsequently, the yield function is evaluated using the trial stresses, and if found to
be violated i.e. F (τ∗II, p

∗) > 0, the general visco-elasto-plastic iterations are invoked.
Here we use the newly obtained trial deviatoric stress and the global pressure as initial
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guess:

x0 =


τ∗II

p∗

0

 (3.63)

We also rely on a back-tracking line-search algorithm using the Armijo’s condition
(Armijo, 1966) on the normed residual ∥rk∥ to control the correction rate at every
iteration and ensure convergence (figure 3.5). Until:

∥r(xk+1)∥ ≤ γ ∥r(xk)∥ , (3.64)

where γ ≤ 1 is a constant factor, repeat:

xk+1 = xk + α δxk (3.65)

δxk = −J−1
k r(xk) (3.66)

with α = 1, the full step length on the first try and α = α
2 for each subsequent try.

A B

Figure 3.5: Illustration of the importance of using line-search. A: updated stress state
of a point in 0D that is initially above the yield surface (green) during the first seven
local iterations without any limitation on the stress correction. Both pressure and τII
keep evolving without converging to the solution (even when using >5000 iterations). B:
updated stress state of a point in 0D with a limiter to the stress correction ensuring the
validity of the inequality 3.64. The stress state converges here after seven iterations.

After convergence of the local iteration, the deviatoric stress tensor is computed
as:

τij = τII
ε̇∗ij
ε̇∗II

(3.67)

Since the result of the local iterations is purely strain rate dependent,
(
∂ε̇vpII
∂p∗

)
= 0

despite p being a parameter for the yield and flow functions F and Q. This is because
p is ultimately a function of θ̇ and, by extension, a function of vi.
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3.3.3.2 Trial global pressure scheme

The difference at the local level is confined to the following modification of the dis-
cretized continuity equation:

r =


ε̇∗II −AL τII −AN (τII)

n − λ̇ Aτ

AK p−AK p
∗ − λ̇ Ap

⟨F ⟩ − λ̇ ηvp

 . (3.68)

The first and the third equations in the system remain unmodified. The volumetric
strain rate is replaced with an estimate computed from the discretized global (trial)
pressure. The remaining part of the local stress update procedure remains the same
as in true pressure scheme (for derivations see the appendix).

3.3.4 Strain softening

To simulate the loss of cohesion of a fractured rock compared to an intact rock, some
softening can be introduced as a function of accumulated plastic strain:

εplII =

∫
t
ε̇plII dt, (3.69)

cMC = cMC(ε
pl
II) = cMC0 + Sc ε

pl
II , (3.70)

φ = φ(εplII) = φ0 + Sφ ε
pl
II , (3.71)

where Sc and Sφ are negative softening moduli. This also facilitates strain localization
on shear zones and the observation of distinct fault orientations in crustal-scale models.
A minimal cohesion value (cmin

MC) should be set at the minimal value desired.

3.4 Benchmarking and applications

3.4.1 0D analytical tests of the local iterations

We first test the local iteration routine for the stress update on 0D setups. The effect
of a constant strain rate applied to a visco-elasto-plastic system present an interesting
case study.

For a purely volumetric extensional deformation, the pressure initially decreases
with time before reaching the yield, upon which both p and τII remain constant
(figure 3.6 A). This is the expected result since, being shaped as a circular cap, the
flow potential function must be perpendicular to the pressure axis for τII = 0. This
also ensures that the stress will not converge towards negative values because of the
plastic correction even for a low τII. Under a deviatoric shear deformation (figure 3.6
B), τII progressively increases until reaching the yield (in this case on the circular cap).
Because of the plastic dilation, the pressure then starts building up from the plastic
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A B

C D

Figure 3.6: a. Stress evolution of a point under A: volumetric extension, B: deviatoric
shear and C: mixed strain. The subplots A, B, and C present the evolution of the pressure
and deviatoric stress second invariant through time, the subplot D presents those same
stresses on the meridional plot of the yield function. The black line perpendicular to the
yield function on plot D indicates the transition from the cap function to Drucker-Prager.
The parameters used in this benchmark are described in the table 3.1

deformation and both p and τII follow the yield curve, transitioning from the cap
function to Drucker-Prager without discontinuity. In the mixed case with both modes
of deformation (figure 3.6 C), p decreases similarly to the first case and τII increases
similarly to the second case until reaching the yield. At that point and for those
parameters, the increase of pressure provoked by the plasticity in conjunction with the
shear deformation overwhelms the elastic volumetric component of the deformation
resulting in a pressure increase with time. In general, the pressure will increase or
decrease after yield as a function of the deformation, the derivative of the flow function
( ∂Q
∂σij

) and the ratio between the visco-elastic effective viscosity and the elastic bulk

modulus multiplied by the time-step ( ηve

K ∆t) (Kiss et al., 2023).

3.4.2 Elasto-plastic 2D plate extension

The model includes an elasto-plastic plate with a free surface that undergoes extension
and compression. In order to create some heterogeneities and promote the nucleation
of faults, an initial accumulated plastic strain field (εplII) is assigned to the model,
following a Gaussian distribution near the surface and, for the compressible case,
some randomly distributed weak zones. This then affects the cohesion of the rock
as described by the equation 3.70. In both cases, faults first appear at the surface
(see figure 3.7) where the pressure is lowest, and develop towards the deeper parts of
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Table 3.1: Material parameters and background strain rates employed in the different
benchmark cases

Variable Meaning Figure 3.6A/B/C Figure 3.8 & 3.7A/B Figure 3.9 & 3.11 Dimension
l × h Domain dimensions - 40× 7 40× 7 [km]× [km]
Sel Size element - 50 50 [m]
AD Diffusion creep pre-factor 5× 10−21 - - [Pa−1 s−1]
G Shear modulus 1010 4× 1010 4× 1010 [Pa]
K Bulk modulus 2× 1011 6.4× 1010 6.4× 1010 [Pa]
cMC Mohr-Coulomb cohesion 106 2× 107 2× 107 [Pa]
cmin
MC Minimal Mohr-Coulomb cohesion - 5× 106 5× 106 [Pa]
Sc Cohesion softening modulus - −108 −108 [Pa]
Pt Tensile strength −5× 105 −106 −106 [Pa]
φ Friction angle 30 30 30 [◦]
ψ Dilation angle 10 0 0 [◦]
ε̇II Deviatoric strain rate 2nd invariant 0/7× 10−14/7× 10−14 - - [s−1]
θ̇ Volumetric strain rate 7× 10−15/0/7× 10−15 - - [s−1]
ϵ̇bg Background horizontal strain rate - −1.584× 10−14/1.584× 10−14 −7.922× 10−15 [s−1]
∆t Time step 2 50/100 1 [yrs]
rtol Relative tolerance number - 10−5 10−5 []

the model at an angle to the horizontal, satisfying on a first order the basic model of
Arthur et al. (1978):

α =
π

4
± φ+ ψ

4
, (3.72)

where ± is an addition for extension and a subtraction for compression (deviations are
to be expected from the merging of faults, especially in the compressive setting where
several faults nucleate away from the surface at randomly distributed points of lower
cohesion). In the extensional setting, faults can propagate to the bottom of the model
(7 [km]) and we observe a progressive localization of the strain rate into fewer and
fewer fault zones. This localization is much slower in the compressive setting, where
similar strain rate magnitudes are reached after three times the time required in the
extensional setting. The inverse faults of the compressive setup also don’t propagate
as deeply into the model, because the pressure at depth is much higher than in the
extensive case. Under these conditions, the yield at depth is simply not reached.

An interesting feature of these models, which differs from those produced by codes
assuming incompressible plasticity (Popov and Sobolev, 2008; Kaus, 2010) but also
from codes using a compressible Drucker-Prager yield and flow function (Duretz et al.,
2021; Jacquey and Cacace, 2020b) without a specific Griffith yield criterion, are the
vertical cracks that form at the free surface. These form in the extensive case at the
very beginning of the localization of plasticity (figure 3.7A) and continue to accumulate
volumetric strain until most of the deformation becomes localized in a very small
number of normal faults due to the strain softening process. To further explore this,
we perform an additional simulation in which we use a dilation angle which suppresses
volumetric plastic deformation for shear plasticity (figure 3.8). As a consequence,
any plastic correction from the Drucker-Prager part of the yield function can only
produce deviatoric plastic strain and all volumetric plastic strain must result from the
activation of the tensile cap part of the yield and flow functions. By comparing the
accumulated deviatoric and volumetric plastic strains on a plot, we can then observe
the transition between the tensile faults produced by the tensile cap at the top of the
model and the normal shear faults produced by Drucker-Prager beneath.
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A

B

Figure 3.7: Elasto-plastic plate under extension (A) and compression (B). A: Temporal
evolution of the deviatoric strain rate, showing tensile cracks, normal faults and shear
localization. B: Deviatoric strain rate of the same setup under compression.
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A

B

C

Figure 3.8: A: Deviatoric strain rate of an elasto-plastic plate under extension at a late
stage, when most of the deformation is concentrated in a few faults. B: Accumulated
deviatoric (in grey) and volumetric (in orange) plastic strain for the same simulation.
The red dashed square indicates the zoomed area in C. C: Zoom on the transition between
tensile cracks and normal shear faults.

3.4.3 2D dyke propagation

Tensile fractures are to a large extent driven by fluid pressure. For reasons of simplic-
ity, we here focus on the plasticity formulation itself leaving out poro-elastic effects. In
general, however, a newly opened dike will result in a significantly increased effective
permeability compared to a porous background rock. As a result, fluid is expected to
rapidly propagate through the dyke and fluid pressures can be expected to be more
or less constant within the dike. This effect can be mimicked by starting a simulation
with a constant fluid pressure source at the base of the domain, which is explicitly
migrated through neighboring elements as a function of their average accumulated vol-
umetric plastic strain (θpl), similar to weakening of plastic parameters as a function
of deviatoric plastic strain (equation 3.69).

A constant fluid pressure (pfl) is set at the bottom of an elasto-plastic crust and
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maintained as a fluid pressure source throughout the simulation, while a slight ex-
tensional strain is applied to the setting. This causes a significant drop in effective
pressure (p = ptotal − pfl) into the tensile regime and the appearance of a fractured
zone (figures 3.9A, 3.9B). As the fracture progresses upwards, the fluid pressure mi-
grates accordingly and the dyke makes its way to the surface. During this phase, the
host rock ruptures on both sides of the dyke, with the maximum velocity occurring
at the top of the dyke (see figure 3.9C). While the velocities at the boundary follow
the imposed background strain rate (see table 3.1), they reach values that are orders
of magnitude higher near the tip of the dyke, suggesting that the dynamics of the
system are mainly driven by the brittle failure and the associated elastic rebound.

A B

C

Figure 3.9: 2D tensile crack propagating through an elasto-plastic crust in an exten-
sional environment. A: Accumulated volumetric plastic strain after 11.8125 years and 15
years. The drop in effective pressure (p = ptotal− pfl) causes tensile failure and the crack
forms. B: Effective pressure after 11.8125 years and 15 years. The fluid pressure diffuses
into the fractured rock, causing the crack to propagate upwards. C: Horizontal velocity
after 11.8125 years. Due to the extension and dike propagation, the model domain is split
in the middle, with each side forming a bloc moving in a different direction. Although
a small extensional strain is assigned at the side boundaries, most of the displacement
occurs close to the top of the dyke, reaching velocities well above the background strain
rate.

In this test, dyke propagation accelerates as the depth decreases. This correlates
with a continuous decrease in the effective pressure inside the dyke towards the sur-
face. The fluid pressure changes little with depth due to diffusion, and the range of
deviatoric stresses around the dyke remains approximately constant. However, the
lithostatic pressure decreases rapidly, so that the extreme effective pressures shown in
figures 3.9B and 3.11B are well beyond the tensile strength of the rock. As a result,
the velocities around the dyke tip increase, as does the rate of dyke propagation, and
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the dyke progresses more in the last 3.75 years of the simulation than in the first 11.25
years.

The low pressures found in the dyke are allowed by using rate-dependent viscoplas-
ticity rather than a rate-independent scheme. The Perzyna viscosity also controls the
velocities within the dyke, allowing the model domain to be split in two by the dyke
without causing a breakdown of convergence of the global solver.

3.4.4 Convergence of the 2D simulations

The convergence of our model is evaluated by comparing the normalized momentum
residual with a threshold parameter defined in the table 3.1 (rtol). All 2D simulations
presented in this paper were performed with an element size of 50 [m] over a domain
of 40[km] × 7[km] and each time step ended up converging within 10 iterations fol-
lowing a quadratic function as shown in figure 3.10. However, a decrease of the time
step is sometimes necessary to ensure this convergence pattern when sharp rheological
contrasts appear in the simulation, typically due to plastic strain localization. Con-
sequently, we bisect the time step and restart the overall iterations until we reach a
converging pattern again.

Figure 3.10: Global non-linear convergence for the 2D results presented above over five
time steps.

3.5 Discussion

3.5.1 The special case of the Pressure variable

As introduced in section 3.3.2, a consequence of dilatant plasticity is the appearance
of a local corrected pressure p that may differ from the global pressure p∗. A decision
must therefore be made between two schemes for the global pressure: we can either
converge it to the true pressure computed during the local iterations (p∗ ≈ p) or
converge it to a value corresponding to a test pressure corresponding to the pressure
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field of the system if the plastic yield were removed (p∗ ̸= p). The two methods differ
slightly, as shown throughout the 3.3 section.

If we converge the global pressure to the true pressure, we can’t use the global
pressure in the local iterations. As a result, these will be entirely strain driven and
all plastic deformation will be calculated from the velocity field. If we converge the
global pressure to a trial pressure, on the other hand, the global pressure becomes a
variable of the local pressure ( ∂p

∂p∗ ̸= 0) and the local iterations are a function of both
vi and p∗. These differences also have consequences for the global Jacobian matrix, as
shown in the appendix. In general, we have observed a better convergence using the
trial global pressure scheme and, accordingly, all 2D models presented in this chapter
have used this implementation.

3.5.2 The choice of a composite yield function with a circular cap

The choice to link the Drucker-Prager yield and flow functions to the tensile strength
of the rock with circular cap functions presents several advantages. Conserving the
general Drucker-Prager formulation for higher pressures authorizes the simplification
of the parameters to a von Mises yield function (with φ = 0) or an incompressible
type of plasticity (for ψ = 0) without implementing exceptions. In addition, other
criteria can be used to form the equations 3.29, 3.30 and 3.31 to capture for instance
either the outer-bound cone or the inner cone of the Mohr-Coulomb failure criterion
(Jiang and Xie, 2011). Finally, as indicated in figure 3.3, we can assure the connection
between both function to be continuous and differentiable on the domain F ≥ 0.

3.5.3 An incremental alternative to the Velocity-Pressure formula-
tion

In the applications presented in sections 3.4.2 and 3.4.3, the global iterations were
solved using an incremental scheme (displacement increment - pressure increment)
instead of the velocity-pressure formulation presented in this chapter (although the
local iterations were still performed exactly as described above). This resulted in
much better convergence rates than the original implementation we had tested. The
conversion of the strain rate values to strain is simply:

∆εij = ε̇ij ∆t (3.73)

but this adds a new control over the order of magnitudes of the numbers the solver
has to use and guarantees a solution for ∆t→ 0. In practice this allows us to restart a
time step where the global iterations fail to converge with a lower ∆t until the system
starts converging again. This proved to be crucial in modelling dyke propagation, as
the velocities varied by orders of magnitude near the tip.

The use of velocity as a primary variable is a logical choice for works studying
mainly viscous systems, such as global tectonic or mantle flow models, since the
deviatoric stress is correlated with the strain rate (equations 3.15 and 3.16). However,
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the upper crust is elasto-plastic and the deviatoric stress is directly correlated with
the strain (equations 3.17 and 3.22). Displacement increments are thus often used
to model other elasto-plastic materials such as concrete (Caggiano et al., 2012), clay
(Perić, 2006) or soil (Lade and Duncan, 1975). It has also been used for the upper
crust by Duretz et al. (2019) and Borst and Duretz (2020) in their work on viscoplastic
regularization.

3.6 Conclusions

We have derived, implemented and tested a new rheology with the notable addition
of a new yield function that allows for a self-consistent tensile fracture initiation and
propagation. The proposed implementation couples linear and non-linear viscosity
with volumetric and deviatoric elasticity and plasticity. We also include a viscoplastic
regularization for the plasticity, a strain softening parameterization and a backtrack-
ing line search algorithm for the global iterations. All derivations are presented as
thoroughly as possible to make it easy for the reader to implement any part of this
method in their own geodynamic code. We have shown that the addition of tensile
plasticity can affect the pattern of normal faults in an extensive setup, forming vertical
cracks at the surface where lithostatic pressure is lowest. We have also demonstrated
the ability of our implementation to produce vertical dikes with the addition of fluid
pressure. This opens the door to a range of exciting applications in the study of the
ductile-brittle transition in transcrustal magmatic systems, or within the context of
induced seismicity in a geothermal context.
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A

B

C

Figure 3.11: Snapshots of the same propagating dyke after 4 years, 7.5 years, 11.25
years and 15 years. A: Second invariant of the deviatoric stress. B: Effective pressure.
C: Horizontal velocity over the whole system. The color bar for the velocity is updated
at each step, as it increases significantly as the dyke progresses toward the surface. Since
the dyke is not formed yet, the velocities for t = 4[yrs] are simply elastic equilibration of
the domain towards the region of lower pressure (the magnitude is also much lower than
after the fracture creation).
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Supplementary

3.A Stress update derivation

3.A.1 True global pressure scheme

3.A.1.1 Deviatoric constitutive equation

We start by discretizing the stress rate:

⋄
τ ij =

τij − (τij)n
∆t

+ (τik)n ωkj − ωik (τkj)n . (3.74)

We then take the deviatoric part of plastic flow potential gradient as defined in
equation 3.39:

dev

(
∂Q

∂σij

)
= Bττij , (3.75)

and insert these two quantities into the deviatoric constitutive equation 3.14 to obtain:

ε̇ij −
1

2G

[
τij − (τij)n

∆t
+ (τik)n ωkj − ωik (τkj)n

]
−AD τij

−AN (τII)
n−1 τij − λ̇ Bττij = 0.

(3.76)

Rearranging the results yields:

ε̇∗ij −AL τij −AN (τII)
n−1 τij − λ̇ Bττij = 0, (3.77)

where the effective linear visco-elastic creep pre-factor is:

AL =
1

2G∆t
+AD (3.78)

and the effective deviatoric strain rate and rotated old stress are:

ε̇∗ij = ε̇ij +
τ∗ij

2G∆t
, (3.79)

τ∗ij = (τij)n +∆t
[
ωik (τkj)n − (τik)n ωkj

]
. (3.80)

From the above equation it becomes obvious that the updated deviatoric stress
and the effective strain rate are proportional to each other, hence all the terms can
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be replaced with their corresponding scalar norms, the result reads:

ε̇∗II −AL τII −AN (τII)
n − λ̇ Aτ = 0 (3.81)

where:

Aτ = BττII =


1
2 , τII (pq − pd) ≥ τd (pq − p)

b τII
2R̂q

, otherwise

. (3.82)

3.A.1.2 Continuity equation

For the bulk equation, following the same steps, we discretize the pressure time deriva-
tive:

Dp

Dt
=
p− pn
∆t

. (3.83)

We then take the spherical part of the plastic flow potential gradient:

tr

(
∂Q

∂σij

)
= 3Bp, (3.84)

and insert these two quantities into the mass conservation equation 3.12 gives:

θ̇ +
p− pn
K∆t

− 3λ̇Bp = 0, (3.85)

that can be rearranged to the following form, for consistency:

θ̇∗ +AK p− λ̇ Ap = 0 (3.86)

where

θ̇∗ = θ̇ − pn
K∆t

(3.87)

AK =
1

K∆t
(3.88)

Ap = 3Bp =


kq, τII (pq − pd) ≥ τd (pq − p)

− b(p−pq)

R̂q
, otherwise

. (3.89)

3.A.1.3 Viscoplastic constitutive equation

Finally, the viscoplastic consitutive equation 3.23 can be recast into residual form:
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λ̇ =
⟨F ⟩
ηvp

→ ⟨F ⟩ − λ̇ ηvp = 0. (3.90)

The resulting system of nonlinear stress update equations can be summarized as
follows:

ε̇∗II −AL τII −AN (τII)
n − λ̇ Aτ = 0 (3.91)

θ̇∗ +AK p− λ̇ Ap = 0 (3.92)

⟨F ⟩ − λ̇ ηvp = 0 (3.93)

3.A.2 Trial global pressure scheme

3.A.2.1 Continuity equation

Assuming zero plastic multiplier, the total volumetric strain rate can be expressed in
terms of the trial pressure as follows:

θ̇ = −p
∗ − pn
K∆t

(3.94)

substituting this expression into the continuity equitation and simplifying, gives:

AK p−AK p
∗ − λ̇ Ap = 0 (3.95)

here we assume that p∗ is delivered by the global solver and is directly interpreted
as a trial pressure.

3.B Jacobian derivation

3.B.1 Assumptions

Star superscripts indicating effective deviatoric (ε̇∗ij) and volumetric (θ̇∗) strain rates
are dropped in this Appendix for notation simplicity. Stress rotation terms are as-
sumed to be constant. Other material dependencies such as strain softening or elastic
moduli degradation are also treated explicitly between the time steps and are thus
omitted from the linearization given below without loss of generality.

3.B.2 Preliminaries

We first establish the basic derivatives of the unit tensors from the equations 3.5 and
3.6:

∂ε̇ij
∂ε̇kl

=
1

2
(δikδjl + δilδjk) = Iijkl, (3.96)
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∂θ̇

∂ϵ̇kl
= δkl, (3.97)

∂ε̇ij
∂ϵ̇kl

= Iijkl −
1

3
δijδkl = IDijkl. (3.98)

Since our constitutive equations are carried out using the second invariant of the
deviatoric stress and strain rate tensors, we compute the normalized deviatoric direc-
tion tensor and related derivatives:

nij =
ε̇ij
ε̇II
, (3.99)

∂ε̇II
∂ε̇kl

=
1

2
nkl, (3.100)

∂nij
∂ε̇kl

=
1

ε̇II

∂ε̇ij
∂ε̇kl

− ε̇ij
ε̇2II

∂ε̇II
∂ε̇kl

=
1

ε̇II

(
Iijkl −

1

2
nijnkl

)
. (3.101)

Meanwhile the bulk derivative is simply:

∂nij

∂θ̇
= 0. (3.102)

3.B.3 True global pressure scheme

3.B.3.1 Local stress update linearization

Directly differentiating the Newton update equations (3.55, 3.47) gives:

A =


∂τII
∂ε̇II

∂τII
∂θ̇

∂p
∂ε̇II

∂p

∂θ̇

∂λ̇
∂ε̇II

∂λ̇
∂θ̇

 = −J−1


1 0

0 1

0 0

 (3.103)

.
We compute here the inverse of J using numerical methods but since it is a three

by three matrix, it is possible to express it entirely analytically.
Now that we obtained the necessary elements using the stress invariants, we can

compute the strain rate derivative of the deviatoric stress
(
∂τij
∂ϵ̇kl

)
and the volumetric

strain rate residuals
(

∂θ̇r
∂ϵ̇ij

)
.
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3.B.3.2 Stress constitutive equation linearization

Let’s start with the deviatoric stress:

∂τij
∂ϵ̇kl

=
∂τij
∂ε̇kl

∂ε̇ij
∂ϵ̇kl

+
∂τij

∂θ̇

∂θ̇

∂ϵ̇kl
, (3.104)

∂τij
∂ε̇kl

=
∂τII
∂ε̇kl

nij + τII
∂nij
∂ε̇kl

(3.105)

∂τII
∂ε̇kl

=
∂τII
∂ε̇II

∂ε̇II
∂ε̇kl

, (3.106)

∂τij

∂θ̇
=
∂τII

∂θ̇
nij + τII

∂nij

∂θ̇
. (3.107)

This gives, once we substitute and simplify:

∂τij
∂ϵ̇kl

=
1

2
A11nijnkl +

τII
ε̇II

(
IDijkl −

1

2
nijnkl

)
+A12nijδkl, (3.108)

introducing the effective stiffness constants:

ηeff =
τII
2 ε̇II

, (3.109)

β1 =

(
1

2
A11 − ηeff

)
, (3.110)

β2 = A12, (3.111)

we can simplify it as:

∂τij
∂ϵ̇kl

= 2 ηeffI
D
ijkl + β1nijnkl + β2nijδkl. (3.112)

3.B.3.3 Continuity equation linearization

We can then derive the volumetric strain rate residual linearization, defined as:

θ̇r = θ̇ + θ̇e − θ̇p, (3.113)

θ̇e =
p− pn
K∆t

, (3.114)

θ̇p = λ̇Ap. (3.115)
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Since the elastic strain rate (θ̇e) depends only on pressure, we can omit it for the
derivations. The total (θ̇) and plastic (θ̇p) strain rates are the sole contributors:

∂θ̇r
∂ϵ̇ij

=
∂θ̇

∂ϵ̇ij
− ∂θ̇p
∂ε̇kl

∂ε̇kl
∂ϵ̇ij

− ∂θ̇p

∂θ̇

∂θ̇

∂ϵ̇ij
, (3.116)

with

∂θ̇p
∂ε̇kl

=
∂θ̇p
∂ε̇II

∂ε̇II
∂ε̇kl

, (3.117)

∂θ̇p
∂ε̇II

=
∂λ̇

∂ε̇II
Ap + λ̇

∂Ap

∂ε̇II
, (3.118)

∂θ̇p

∂θ̇
=
∂λ̇

∂θ̇
Ap + λ̇

∂Ap

∂θ̇
, (3.119)

∂Ap

∂ε̇II
=
∂Ap

∂τII

∂τII
∂ε̇II

+
∂Ap

∂p

∂p

∂ε̇II
, (3.120)

and

∂Ap

∂θ̇
=
∂Ap

∂τII

∂τII

∂θ̇
+
∂Ap

∂p

∂p

∂θ̇
. (3.121)

This gives, once we substitute and simplify:

∂θ̇r
∂ϵ̇ij

=

(
1− ∂θ̇p

∂θ̇

)
δij −

1

2

∂θ̇p
∂ε̇II

nij , (3.122)

∂θ̇p

∂θ̇
= A32Ap + λ̇

(
∂Ap

∂τII
A12 +

∂Ap

∂p
A22

)
, (3.123)

∂θ̇p
∂ε̇II

= A31Ap + λ̇

(
∂Ap

∂τII
A11 +

∂Ap

∂p
A21

)
, (3.124)

introducing the effective stiffness constants:

β3 =
∂θ̇p

∂θ̇
(3.125)

and

β4 =
∂θ̇p
∂ε̇II

(3.126)

we can simplify it as:

∂θ̇r
∂ϵ̇ij

= (1− β3) δij −
1

2
β4nij . (3.127)
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3.B.4 Trial global pressure scheme

3.B.4.1 Local stress update linearization

In this case, the constitutive equations must be derived by the deviatoric strain rate
and the trial pressure. Directly differentiating the Newton update equations (3.55,
3.68) gives:

A =


∂τII
∂ε̇II

∂τII
∂p∗

∂p
∂ε̇II

∂p
∂p∗

∂λ̇
∂ε̇II

∂λ̇
∂p∗

 = −J−1


1 0

0 −AK

0 0

 . (3.128)

3.B.4.2 Stress constitutive equation linearization

We can then compute the stress derivatives with respect to strain rate:

∂σij
∂ϵ̇kl

=
∂τij
∂ϵ̇kl

− δij
∂p

∂ϵ̇kl
, (3.129)

∂τij
∂ϵ̇kl

=
∂τij
∂ε̇kl

∂ε̇ij
∂ϵ̇kl

, (3.130)

∂τij
∂ε̇kl

=
∂τII
∂ε̇kl

nij + τII
∂nij
∂ε̇kl

, (3.131)

∂τII
∂ε̇kl

=
∂τII
∂ε̇II

∂ε̇II
∂ε̇kl

, (3.132)

∂p

∂ϵ̇kl
=

∂p

∂ε̇II

∂ε̇II
∂ε̇mn

∂ε̇mn

∂ϵ̇kl
. (3.133)

This gives, once we substitute and simplify:

∂σij
∂ϵ̇kl

= 2 ηeffI
D
ijkl + β1nijnkl + β2δijnkl, (3.134)

where the effective stiffness constants are:

ηeff =
τII
2 ε̇II

, (3.135)

β1 =

(
1

2
A11 − ηeff

)
, (3.136)

and
β2 = −1

2
A21. (3.137)

Finally, we compute the derivative with respect to global pressure:
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∂σij
∂p∗

=
∂τij
∂p∗

− δij
∂p

∂p∗
(3.138)

∂τij
∂p∗

=
∂τII
∂p∗

nij (3.139)

We substitute and rearrange to get:

∂σij
∂p∗

= β3nij + β4δij (3.140)

where the effective constants are:
β3 = A12 (3.141)

and
β4 = −A22. (3.142)

3.C Finite element formulation

3.C.1 Preliminaries

We first setup the strain rate and stress tensors according to the Voigt notation:

τ = [τxx, τyy, τzz, τxy, τxz, τyz]
T , (3.143)

ϵ̇ = [ϵ̇xx, ϵ̇yy, ϵ̇zz, γ̇xy, γ̇xz, γ̇yz]
T , (3.144)

with the shear strain rates defined as:

γ̇xy = 2 ϵ̇xy, . . . (3.145)

The deviatoric strain rate (ε̇) and the volumetric strain rate (θ̇) are accordingly:

ε̇ = ID ϵ̇ = [ε̇xx, ε̇yy, ε̇zz, ε̇xy, ε̇xz, ε̇yz]
T , (3.146)

θ̇ = mT ϵ̇, (3.147)

using the deviatoric projection matrix:

ID = I− 1

3
mmT , I =

1

2



2

2

2

1

1

1


, m =



1

1

1

0

0

0


. (3.148)



3.C. Finite element formulation 55

Next we define in this form the magnitude of deviatoric strain rate tensor and the
unit deviatoric tensor similarly to the index notation:

ε̇II =

√
1

2

(
ε̇2xx + ε̇2yy + ε̇2zz

)
+ ε̇2xy + ε̇2xz + ε̇2yz, (3.149)

n =
ε̇

ε̇II
. (3.150)

We can now define the components of our finite element discretization, starting
with the velocity and pressure shape function matrices:

Nv =

Nv1 0 0 . . .

0 Nv1 0 . . .

0 0 Nv1 . . .

 , (3.151)

Np =
[
Np1 . . .

]
, (3.152)

as well as the differential operator matrix:

B =



∂Nv1
∂x 0 0 . . .

0 ∂Nv1
∂y 0 . . .

0 0 ∂Nv1
∂z . . .

∂Nv1
∂y

∂Nv1
∂x 0 . . .

∂Nv1
∂z 0 ∂Nv1

∂x . . .

0 ∂Nv1
∂z

∂Nv1
∂y . . .



. (3.153)

Velocity, pressure and strain rates can then be interpolated at the integration
points from the element’s nodes :

v = Nv ve, (3.154)

p∗ = Np p
∗
e, (3.155)

ϵ̇ = B ve. (3.156)
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3.C.2 True global pressure scheme

The discretized momemtum and continuity equations are:

rv =

∫
V
BTτ dV −

∫
V
BTm p∗ dV −

∫
V
NT

v b dV −
∫
S
NT

v t dS = 0, (3.157)

rp = −
∫
V
NT

p θ̇r dV = 0, (3.158)

and the Newton - Raphson iterations scheme used the convergence towards the solu-
tion: (with k being the iteration index)

 v

p∗


k+1

=

 v

p∗


k

−

Kvv Kvp

Kpv Kpp

−1

k

rv
rp


k

. (3.159)

The four components of the global jacobian are in this case:

Kvv =

∫
V
BT DB dV, (3.160)

Kvp = −
∫
V
BT mNp dV, (3.161)

Kpv = −
∫
V
NT

p qT B dV, (3.162)

Kpp = −
∫
V
NT

p AKNp dV, (3.163)

with
D =

∂τ

∂ϵ̇
, (3.164)

qT =
∂θ̇r
∂ϵ̇

, (3.165)

being the two quantities derived in the previous appendix. In order to translate them
into tensor equations, we expand the linearization in nine-component format to make
sure we don’t introduce any simplification mistake:

τ = [τxx, τyy, τzz, τxy, τyx, τxz, τzx, τyz, τzy]
T , (3.166)

ϵ̇ = [ϵ̇xx, ϵ̇yy, ϵ̇zz, ϵ̇xy, ϵ̇yx, ϵ̇xz, ϵ̇zx, ϵ̇yz, ϵ̇zy]
T , (3.167)

with the corresponding deviatoric projection matrix and unit deviatoric tensor:



3.C. Finite element formulation 57

ID = I− 1

3
mmT , I =

1

2



2

2

2

1 1

1 1

1 1

1 1

1 1

1 1


, m =



1

1

1

0

0

0

0

0

0


(3.168)

ε̇ = ID ϵ̇ (3.169)

n =
ε̇

ε̇II
(3.170)

We can now proceed to the translation of the equations 3.112 and 3.127:

D = 2 ηeff ID + β1 n nT + β2 nmT (3.171)

qT = (1− β3)m
T − 1

2
β4 n

T (3.172)

We now verify if this corresponds to the 6-elements Voigt notation using a projec-
tion matrix:

PT =
1

2



2

2

2

1 1

1 1

1 1


, (3.173)

τ = PTτ , (3.174)

ϵ̇ = Pϵ̇, (3.175)

and by applying the chain rule:

D =
∂τ

∂τ

∂τ

∂ϵ̇

∂ϵ̇

∂ϵ̇
= PTDP, (3.176)

qT =
∂θ̇r
∂ϵ̇

∂ϵ̇

∂ϵ̇
= qTP. (3.177)

After substitution, we obtain as results:

D = 2 ηeff ID + β1 n nT + β2 nmT , (3.178)
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qT = (1− β3)m
T − 1

2
β4 n

T . (3.179)

Since plastic terms are included in θ̇r (see section 3.3.2.1), the volumetric plasticity
is felt in the continuity equation and thus in theKpv component of the global Jacobian.

3.C.3 Trial global pressure scheme

In this case, the discretized momemtum and continuity equations are:

rv =

∫
V
BTσ dV −

∫
V
NT

v b dV −
∫
S
NT

v t dS = 0 (3.180)

rp = −
∫
V
NT

p θ̇r dV = 0 (3.181)

and we recall that volumetric strain rate residual θ̇r in the above equation does not
include plastic term (see section 3.3.2.2).

As a result, we need different stiffness matrices for the Newton-Raphson iterations
defined as (the details of the derivation is similar to the True pressure case):

Kvv =

∫
V
BT DB dV, (3.182)

Kvp = −
∫
V
BT qNp dV, (3.183)

Kpv = −
∫
V
NT

p mT B dV, (3.184)

Kpp = −
∫
V
NT

p AKNp dV, (3.185)

with
D =

∂σ

∂ϵ̇
= 2 ηeff ID + β1 n nT + β2 mnT , (3.186)

and
q =

∂σ

∂p∗
= β3 n+ β4m. (3.187)

In this case, plastic terms are not included in the continuity equation and thus the
volumetric plasticity is felt in the Kvp component of the global Jacobian.
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Chapter 4

Summary & Conclusions

This thesis builds towards consistent numerical modeling of magmatic systems through
the lithosphere. This domain presents several challenges related to the poor resolution
of geophysical imaging techniques and the lack of direct observations of these under-
ground systems. Therefore, using physically consistent numerical models is essential
to test hypotheses and constrain geometries and rheological parameters. Two lines of
research are explored in this thesis: the use of simple models to extract qualitative
and semi-quantitative observations on a volcanic system in the chapter 2, and the im-
plementation of rheologies needed to model dyke propagation in a visco-elastic-plastic
host rock in the chapter 3. The next section gives a brief summary of these chapters’
main findings.

4.1 The dynamics of magma withdrawal in volcanic cham-
bers

Chapter 2 presents a set of scaling laws to evaluate the melt velocity within a volcanic
conduit as a function of the geometry of the magma chamber and mush system,
and the rheology of the magma and mush. The first step is to use a numerical
finite element code to solve the mass and momentum conservation equations in 2D.
The setup considered is a magmatic melt-rich sill at the top of a crystal-rich mush
system, connected to the surface by a weak conduit. The geometry of the model is
constrained by a few parameters and the rheology of the melt, crystal-rich mush and
host rock is approximated as linear viscous. No additional pressure is applied via
internal boundary conditions, so the system is buoyancy-driven. Each simulation is
run for a single time step and the maximum velocity of the melt rising in the weak
conduit is measured and retrieved along the parameters used for the simulation.

We use this model to explore the parameter space and obtain sensitivity coefficients
for each parameter. This reveals variations in these sensitivities over the parameter
space that can be explained by different advection regimes in the conduit. We then use
the obtained sensitivities to derive three scaling laws corresponding to all identified
advection modes: a pipe flow, a plume-driven flow, and a convection-driven flow. The
boundaries between these advection modes are also derived and presented as a function
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of the ratio between the viscosity of the melt and that of the crystal-rich mush, and
the ratio between the radius of the sill and the length of the volcanic conduit.

We then discuss the application of these scaling laws. One case proposed is to
compute a critical cooling time in the volcanic conduit at which conduction and heat
loss is predominant over the advection and the melt crystallizes rather than erupting.
We then compare this cooling time with the residence time estimated for a specific
volcanic system using the velocities obtained from the scaling laws. The 2021 eruption
of the Cumbre Vieja on La Palma is used as an example of a volcanic system that has
been the subject of both intensive seismic and petrological investigations. Estimations
of the melt rheology, the mush dimensions and emplacement can be obtained from the
literature as well as a minimum estimate of the erupted volume. We then compute a
first-order estimate of the maximum viscosity of the crystal-rich mush sitting below
La Palma. The potential application of our model to a connected network of melt
pocket in a transcrustal mush system is also mentioned.

4.2 A numerical method to solve compressible visco-elasto-
plastic systems including shear and tensile plasticity

Chapter 3 presents the derivation and implementation of a formulation for tensile
plasticity as part of a compressible visco-elasto-plastic rheology for a code solving the
mass and momentum conservation equations. We present our derivations in great
detail, starting with preliminary definitions and presenting intermediate derivations
in the supplementary material of the chapter. We first introduce a general framework
using both linear and nonlinear creep laws, deviatoric and compressible elastic mod-
uli, and a viscoplastic regularized plasticity model. We then define a yield function
suitable for both shear and tensile plasticity using a classical Drucker-Prager formu-
lation combined with a circular cap connecting the Drucker-Prager cone to the tensile
strength of the rock.

We then detail the local stress update implementation. Since we need to account
for nonlinearities in both the viscous and plastic rheologies, we need to solve a sys-
tem of three equations over the variables τII, p and λ̇. We propose to do this using
Newton-Raphson iterations and provide the necessary Jacobian matrix. We also dis-
cuss the best approach to ensure fast convergence of these local iterations by using an
appropriate initial guess, solving the visco-elastic system first to obtain a trial stress
τ∗II and p∗, and using a line-search algorithm. Since we obtain an updated pressure
from this system of equations each time plasticity is activated, a strategy must be em-
ployed to converge the global pressure variable. Here we discuss two different schemes
to solve this problem: a true global pressure scheme, where the local stress update
is purely strain-driven, and a trial global pressure scheme, where the global pressure
corresponds to the visco-elastic trial pressure and serves as a variable to compute the
true pressure. After testing both schemes, the latter appeared to be more robust and
was used in all subsequent applications.
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The local iterations are tested with 0D setups such as volumetric extension, pure
shear and mixed strain. We progressively apply stress in the visco-elastic domain until
we reach the plastic domain, testing both plasticity’s shear and tensile components.
We also present two 2D model setups in which we can observe tensile plasticity. One is
the extension of an elasto-plastic plate, where we observe the progressive localization
of the plastic strain along faults that eventually extend throughout the whole domain.
A more efficient localization of the normal faults is also observed for a smaller dilation
angle as well as, in all simulations, the presence of vertical cracks at the surface of the
domain. The second 2D setup is the nucleation and propagation of a vertical dyke in an
elasto-plastic medium. A constant fluid pressure at the bottom of the domain induces
a tensile failure. The cracks propagate vertically and we parameterize a pseudo-
diffusion scheme for the fluid pressure to follow the plastic failure as a function of
the accumulated volumetric plastic strain (θpl). Both the local and global solvers
converge at each time step, even when the dyke divides the domain into two distinct
blocks, since the Perzina viscoplasticity dictates the rheology in the fracture. Finally,
we discuss the treatment of the global pressure variable, the advantages of using a
circular cap on the yield function and the alternative use of an incremental formulation
at the global level.

4.3 Conclusions and perspectives

The study of magmatic systems using numerical models is an expanding field in the
geosciences as we gain access to better hardware and develop more adapted software.
In this thesis, we have presented an application of numerical modeling to better under-
stand how magma rheology and magma chamber structure influence the flow of melt
toward an erupting volcano. Although we have simplified the rheology of the material
and the geometry of the domain to only a few parameters, we have identified three
different advection modes for the melt in the conduit in this study. This illustrates
well how even a simplified conceptual model can contain more complexity than one
might expect, and how physically consistent models are important to unravel these
layers of complexity, from the simplest setups to more elaborate ones. If the extracted
scaling laws can make first-order estimates of the structure of the system using data
collected by geophysical or geological studies, other questions require the use of more
sophisticated models.

The use of volumetric plasticity is rare in geodynamic codes, which tend to focus
on solving large-scale tectonic models of converging plates. However, if rock dilation
isn’t a primary mechanism in this context, it becomes essential when it comes to
propagating a viscous melt through the upper crust. Coupling mode-1 plasticity to
a code capable of modeling nonlinear viscous fluid advection is thus an important
step towards a self-consistent model capable of handling both the vicious propagation
of a diapir in the lower crust and the brittle opening of a dyke in the upper crust.
We have also illustrated the effect of activating mode-1 plasticity on more classical



64 Chapter 4. Summary & Conclusions

geodynamic settings, with the opening of tensile vertical fractures connecting normal
faults to the surface of an elasto-plastic crust undergoing extension. The method is
described as completely and clearly as possible, using the notation conventions of the
geodynamic community, in the hope of providing a comprehensive reading without
requiring extensive prior knowledge of the subject.

Finally, the creation of MAGEMin and its efficiency opens many exciting prospects.
Coupling thermodynamic computations of complex datasets with a thermo-mechanical
model in a (semi)-automatic way would be a revolution in our field. Potential appli-
cations exist at all scales, from the chemical segregation of a magmatic chamber to
the advection of an ultramafic melt extracted from the mantle and its evolution going
through the crust. In general, the methods discussed in this thesis are applicable to
many studies, with an emphasis on the interaction of a viscous fluid with an elasto-
visco-plastic host rock.
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Appendix A

MAGEMin, an efficient Gibbs
energy minimizer: application to
igneous systems

This chapter has been published in:
Riel, N., Kaus, B. J. P., Green, E. C. R., & Berlie, N. (2022). MAGEMin, an efficient
Gibbs energy minimizer: Application to igneous systems. Geochemistry, Geophysics,
Geosystems,23, e2022GC010427. https://doi.org/10.1029/2022GC010427

Abstract

Prediction of stable mineral equilibria in the Earth’s lithosphere is critical to un-
ravel the tectonomagmatic history of exposed geological sections. While the recent
advances in geodynamic modelling allow us to explore the dynamics of magmatic
transfer in solid mediums, there is to date no available thermodynamic package that
can easily be linked and efficiently accounts for the computation of phase equilib-
rium in magmatic systems. Moreover, none of the existing tools fully exploit single
point calculation parallelization which strongly hinders their applicability for direct
geodynamic coupling or for thermodynamic database inversions. Here, we present a
new Mineral Assemblage Gibbs Energy Minimizer (magemin). The package is writ-
ten as a parallel C library, provides a direct Julia interface and is callable from any
petrological/geodynamic tool. For a given set of pressure, temperature and bulk-rock
composition magemin uses a combination of linear programming, extended Partition-
ing Gibbs Energy and gradient-based local minimization to compute the stable mineral
assemblage. We apply our new minimization package to the igneous thermodynamic
dataset of (Holland et al., 2018) and produce several phase diagrams at supra-solidus
conditions. The phase diagrams are then directly benchmarked against thermo-

calc and exhibit very good agreement. The high scalability of magemin on parallel
computing facilities opens new horizons e.g., for modelling reactive magma flow, for
thermodynamic dataset inversion and for petrological/geophysical applications.

https://doi.org/10.1029/2022GC010427
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Plain language summary

Prediction of stable mineral equilibria in the Earth’s lithosphere is critical to un-
ravel the tectonomagmatic history of exposed geological sections. While the recent
advances in geodynamic modelling allow us to explore the dynamics of magmatic
transfer in solid mediums, there is to date no available thermodynamic package that
can easily be linked and efficiently accounts for the computation of phase equilib-
rium in magmatic systems. Moreover, none of the existing tools fully exploit single
point calculation parallelization which strongly hinders their applicability for direct
geodynamic coupling or for thermodynamic database inversions. Here, we present a
new Mineral Assemblage Gibbs Energy Minimizer (magemin). The package is writ-
ten as a parallel C library, provides a direct Julia interface and is callable from any
petrological/geodynamic tool. For a given set of pressure, temperature and bulk-rock
composition magemin uses a combination of linear programming, extended Partition-
ing Gibbs Energy and gradient-based local minimization to compute the stable mineral
assemblage. We apply our new minimization package to the igneous thermodynamic
dataset of (Holland et al., 2018) and produce several phase diagrams at supra-solidus
conditions. The phase diagrams are then directly benchmarked against thermo-

calc and exhibit very good agreement. The high scalability of magemin on parallel
computing facilities opens new horizons e.g., for modelling reactive magma flow, for
thermodynamic dataset inversion and for petrological/geophysical applications.

A.1 Introduction

The thermodynamic modelling of equilibrium mineral assemblages is a crucial tool
for understanding the solid Earth. Mineral equilibrium modelling can be used in an
inverse sense, to make inferences about magmatic and tectonic processes based on
the rocks that they generated. Used in a forward-modelling sense, our capacity to
simulate Earth processes is greater if we can model the most stable mineral assem-
blage under given conditions, since the mineral assemblage controls or contributes to
the thermodynamic, chemical and rheological properties of the rock package. Such
modelling thus forms a key step in linking geophysical observations with petrological
constraints, and to assess the effect of mineral reactions on deformation of the litho-
sphere. Even when geological systems are not always at equilibrium, non-equilibrium
effects tends to move the system towards equilibrium (Lasaga, 1986), and as such it
remains crucial to be able to efficiently model the equilibrium state (e.g., Hou et al.,
2021).

In order to model mineral equilibria, an equation of state is needed for each mineral
or fluid phase that might potentially be stable under the conditions of interest. The
equation of state describes the calorimetric and volumetric properties of the phase as
a function of its pressure, temperature, composition and state of order. A phase may
be considered to have anything from one compositional components (a pure phase) up
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to the maximum number of components in which the rock system is to be modelled.
It may or may not contain dimensions of order-disorder. There are several different
thermodynamic datasets currently in use that comprise collections of such equations of
state, usually aimed at modelling a subset of terrestrial mineral equilibria; for example
those of White et al. (2014) (equilibria in metapelites), Green et al. (2016) (equilibria
in metabasites), and Stixrude and Lithgow-Bertelloni (2011), Stixrude and Lithgow-
Bertelloni (2021) (equilibria among mantle phases). Each collection is calibrated with
some degree of internal consistency. In this contribution we use a version of the
thermodynamic dataset of Holland et al. (2018), which incorporates the internally-
consistent dataset of end-member thermodynamic properties of Holland and Powell
(2011) and Tomlinson and Holland (2021). However, our method can also be applied
to any other thermodynamic datasets.

Mineral equilibrium calculations for geological applications commonly assume that
pressure and temperature are the independent variables in the problem, rather than
their conjugates, volume and entropy. Therefore, the equilibrium compositions and
states of order for the phases in a model equilibrium are found by minimizing the
Gibbs energy, G, of the assemblage. However, minimization of the Gibbs energy in
multicomponent and multiphase systems remains one of the most challenging global
optimization problems, not only in the fields of metamorphic petrology (e.g., La-
nari and Duesterhoeft, 2018), but also for chemical engineering (e.g., Fateen, 2016;
Lothenbach et al., 2019) and for the nuclear industry (e.g., Piro, 2011; Piro et al.,
2013a). Because the problem is intrinsically multidimensional, non-linear and non-
convex, minimization strategies are not guarantee to obtain the global minimum of
the Gibbs energy of the system. Consequently, numerous Gibbs energy minimization
strategies are used depending on the problem dimensionality (number of chemical
components) and complexity of the equations of state. This includes, but is not lim-
ited to, equality and non-equality contrained linear least squares (e.g., Ghiorso, 1983;
Ghiorso, 1985), linear programming and non-linear optimization methods (e.g., de
Capitani and Brown, 1987), discretization of the equations of state in composition–
order space combined with linear programming (e.g., Connolly, 1990; Connolly, 2005),
linear programming and Partitioning Gibbs Energy (e.g., Piro, 2011; Piro et al., 2013a;
Kruskopf and Visuri, 2017), metaheuristic optimization methods (e.g., Teh and Ran-
gaiah, 2002; Burgos-Solórzano et al., 2004; Çetin and Keçebaş, 2021) and Lagrangian
formulations (e.g., White et al., 1958; Piro and Simunovic, 2016).

In the geosciences, a number of petrological tools have been developed to pre-
dict phase equilibria, study phase relations and produce phase diagrams, e.g., Gibbs

(Spear, 1988), thermocalc (Powell and Holland, 1988), Perple_X (Connolly, 1990;
Connolly, 2005), Theriak-Domino (de Capitani and Brown, 1987; Capitani and Pe-
trakakis, 2010), MELTS and pMELTS (Ghiorso, 1983; Ghiorso, 1985; Ghiorso and
Sack, 1995; Asimow and Ghiorso, 1998), GeoPS (Xiang and Connolly, 2021). In gen-
eral, they fall into two categories (Connolly, 2017; Lanari and Duesterhoeft, 2018):
phase equilibrium calculators and Gibbs energy minimizers.



68 Appendix A. MAGEMin, an efficient Gibbs energy minimizer

The first category (e.g., thermocalc and Gibbs) equate the chemical potentials
of components in a specified set of phases, in order to calculate what compositions and
states of order the phases must have, to be in equilibrium with each other under the
specified conditions. The user may investigate any set of phases for which equations
of state are present within the thermodynamic dataset. Conditions to be specified
might include pressure, temperature, bulk system composition, or partial phase com-
positions. Univariant reactions or other phase field boundaries are calculated using
geometric constraints (Schreinemakers analysis or related rules) combined with expe-
rience and a priori knowledge of the petrological system. This approach allows a wide
range of phase diagrams to be calculated, and facilitates the user in exploring any
equilibrium of interest, whether stable or metastable. However, in many applications
in the geosciences, the only equilibrium of interest is that of the most stable equi-
librium at given bulk system composition – or, in geological terms, the most stable
equilibrated mineral assemblage in a given bulk rock composition. The phase equilib-
rium calculator approach is not optimal for this purpose, since it depends on the user
anticipating all of the phases that might appear in the stable equilibrium. In complex
systems, even an expert user may easily overlook the presence of a phase in a given
region of the diagram, and consequently mistake a metastable assemblage for the sta-
ble one. Programs in the second category (e.g., MELTS, pMELTS, Theriak-Domino,
Perple_X and GeoPS) are designed specifically to predict the most stable assemblage
in a given bulk rock composition. At each point on a pressure–temperature grid, these
programs explore all possible equilibria among subsets of the phases in a large pre-
specified list, potentially including all the phases represented in the thermodynamic
dataset. They return the subset of these phases that yield the lowest Gibbs energy
for the system, along with equilibrium phase compositions and states of order.

Three main Gibbs energy minimization approaches are commonly used in the geo-
sciences. MELTS and pMELTS (Ghiorso, 1983; Ghiorso, 1985; Ghiorso and Sack,
1995; Asimow and Ghiorso, 1998) use Taylor series expansion to express the Gibbs
energy of the system and minimize the resulting system of constrained linear equations
using least squares methods. However, the thermodynamic datasets hard-wired into
MELTS and pMELTS are relatively limited in their application, as they are not appro-
priate for handling subsolidus equilibria, nor equilibria involving amphibole or biotite.
Theriak-Domino uses a combination of linear programming and non-linear local op-
timization methods (de Capitani and Brown, 1987) to compute the phase equilibria.
Perple_X (Connolly, 2005) linearizes the problem by discretizing the equations of
state in composition–order space, and solves it using the simplex algorithm. A de-
tailed review of Perple_X and Theriak-Domino methods is presented in Connolly
(2017). While these two approaches have proven to be quite reliable and efficient
in systems involving a limited number of components, their performance and reli-
ability tends to decrease for higher dimensional systems. For Theriak-Domino the
main limitation can be attributed to the absence of constraints during the rotation of
the Gibbs-hyperplane between the linear programming and non-linear optimization
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stages. For Perple_X, discretization becomes increasingly expensive as the number
of compositional components in the equations of state becomes larger. GeoPS (Xiang
and Connolly, 2021) has recently been successful in combining these two approaches
to provide the community with an efficient petrological program to easily compute
phase diagrams. However, none of the above tools are MPI-parallelized for single
point calculations, they are not designed to fully exploit high performance facilities,
which constitutes a critical limitation for direct coupling with geodynamic modelling.
The recent breakthroughs in modelling coupled mechanical and fluid/magma flow sys-
tems (e.g., Keller et al., 2013; Taylor-West and Katz, 2015; Keller and Katz, 2016;
Keller et al., 2017; Turner et al., 2017; Keller and Suckale, 2019; Rummel et al., 2020;
Katz et al., 2022), and, the ongoing open-source movement in the community to sim-
plify and unify modelling tools (e.g., Bezanson et al., 2017, Julia) however, highlight
the need for an efficient, open-source and fully parallel mineral assemblage modelling
routine.

Here, we describe a new approach, magemin (Mineral Assemblage Gibbs Energy
Minimization) (https://github.com/ComputationalThermodynamics/magemin.git), which
was developed to provide a minimization routine that is easily callable and fulfils sev-
eral objectives. First, the package performs single point calculations at given pressure,
temperature and bulk-rock composition and finds the thermodynamically most stable
assemblage in an automated manner with no required a priori knowledge of the system
which is a requirement for integration with geodynamic software. Second, the pack-
age has been developed for stability, performance and scalability in complex chemical
systems.

Our Gibbs minimization approach combines discretization of the equations of state
in composition space (Connolly, 1990) with linear programming (de Capitani and
Brown, 1987), and extends the mass constrained Gibbs-hyperplane rotation (Piro et
al., 2013a) method to account for the mixing on crystallographic sites that takes place
in silicate mineral solid solutions. In this way, we overcome many of the drawbacks
of the above-mentioned software packages. Moreover, since the method is developed
around point-wise calculations, it is well-suited for parallelization on massively parallel
machines and can be combined with an adaptive mesh refinement strategy. We demon-
strate the effectiveness of our method by computing a series of phase diagrams using
a large thermodynamic dataset native to the thermocalc software, and comparing
the automatically calculated magemin results with those obtained using thermo-

calc. The definition of the general terminology used in this contribution is given in
Table A.1.1 and the definition of the symbols is provided in Table A.2.1.

A.2 Methodology

A.2.1 Gibbs energy formulation

At fixed pressure P and temperature T , the integral Gibbs energy [J] of a multi-
component multiphase system Gsys (e.g., Gibbs, 1878; Spear, 1993) can be expressed
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Table A.1.1: General terminology

Term Definition
System compo-
nent

Chemically independent constituent (see Pauken (2011)). The collection of
components define the number of chemical dimensions of the system. Here,
we use oxides as system components spanning up to 11 dimensions: Na2O–
CaO–K2O–FeO–MgO–Al2O3–SiO2–TiO2–Fe2O3–Cr2O3–H2O.

Pure phase (or stoichiometric phase), is a phase that has a fixed composition (or does
not vary measurably from its ideal composition) e.g., quartz (SiO2)

End-member (or species (Kruskopf and Visuri, 2017) or phase component (Berman, 1991),
or vertex of a polytope (Myhill and Connolly, 2021)) is an independent
instance of a solution phase (with defined cation occupancy/vacancy on
each site) that can be linearly combined with other end-members to span
the complete site-occupancy space of a solution

Solution phase A Solution phase is a mixture of end-members spanning a range of com-
positions for a single crystal structure (solid solution phase), a fluid or a
melt. For instance, in a chemical sub-system restricted to FeO–MgO–SiO2,
the compositional space of olivine is covered by the linear mixture of fay-
alite (Fe2SiO4) and forsterite (Mg2SiO4) end-members. The composition
of the end-members are expressed in oxide form (fayalite = 2FeO + SiO2

and forsterite = 2MgO + SiO2) but the substitution of Fe and Mg cations
occurs in elemental form on the olivine crystallographic site M1 ([Fe,Mg]M1

SiO2)
Pseudosection (or isochemical equilibrium phase diagram (de Capitani and Brown, 1987))

is a class of phase diagram in pressure-temperature space showing the fields
of most stable phase equilibrium for a single bulk-rock composition

Solution phase
model

(or equation of state (Powell, 1978)) aims to reproduce the energetic be-
haviour of naturally occurring mineral, melt, and fluid phases. Depending
on the complexity of the phase of interest, the related solution phase model
is usually formulated using an ideal and a non-ideal mixing term

Ideal mixing
term

The ideal mixing term include both the mechanical mixture contribution,
which is the linear combination of the standard Gibbs energy of the end-
members, and the configurational energy term which describes the change of
energy when the mixture reacts to form a single phase (see Ganguly (2001)
and Lanari and Duesterhoeft (2018) for more details)

Non-ideal mix-
ing term

(or excess term) expresses the non-ideal interaction between end-members
(see Ganguly (2001))
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by:

Gsys =
Λ∑

λ=1

αλ

Nλ∑
i=1

µi(λ)pi(λ) +
Ω∑

ω=1

αωµω, (A.1)

where Λ indicates the number of solution phases (mineral phases of variable compo-
sition), Nλ the number of end-members of solution phase λ, Ω the number of pure
phases (mineral phases of fixed composition, also described as pure phases), αλ and
αω are the mole fractions of solution phase λ and pure phase ω, respectively. pi(λ)

is the fraction of end-member i dissolved in solution phase λ and µi(λ), µω are the
chemical potential of end-member i in solution phase λ and pure phase ω, respec-
tively. An end-member is defined as an independent instance of a solution phase. In a
given chemical system, the linear combination of the end-members span the complete
crystallographic site-occupancy space of the solution phase.

The chemical potential of a phase is either a constant for a stoichiometric phase
(Spear, 1993):

µω = g0ω, (A.2)

or a function for a dissolved end-members within a solution phase (see Ganguly, 2001,
for a review)

µi(λ) = g0i(λ) +RT log(aidi(λ)) + gexi(λ), (A.3)

where R [Jmol−1K−1] is the ideal gas constant, T [K] is the absolute temperature,
aidi(λ) is the ideal mixing term, g0i(λ) the Gibbs energy of reference of the pure end-
member (Helgeson, 1978; Holland and Powell, 1998) and gexi(λ) is the excess energy
term (Powell and Holland, 1993; Holland and Powell, 2003). The ideal mixing term
aidi(λ) is generally defined as aidi(λ) = pi(λ) for molecular mixing, or else for mixing on
crystallographic sites as

aidi(λ) = ci
∏
s

(Xs
es,i)

νs (A.4)

where Xs
es,i is the site fraction of the element es,i that appears on site s in end-member

i of phase λ, νs is the number of atoms contained in mixing site s of λ, and ci is a
normalisation constant that ensures that aidi(λ) is unity for the pure end-member i.
The total Gibbs energy of solution phase λ is given by

Gλ =

Nλ∑
i=1

µi(λ)pi(λ). (A.5)

At equilibrium, all pure phases and dissolved end-members in a solution phase have
to satisfy the Gibbs-Duhem rule (e.g., Spear, 1988; Spear, 1993)

µi(λ),ω =

C∑
j=1

ai,ωjΓj , (A.6)

where Γj is the chemical potential of the pure component j. The Gibbs-Duhem rule
implies that, at equilibrium, the chemical potential of all end-members of a solution
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phase must lie on the Gibbs-hyperplane defined by Γj . At specified pressure and
temperature, the system must satisfy the Gibbs phase rule (e.g., Spear, 1988; Spear,
1993)

F = C − Φ ≥ 0, (A.7)

where F is the number of degrees of freedom, C is the number of components (or
oxides) and Φ is the total number of phases. Finally, the system must satisfy the
mass balance constraint, which implies that the ratio of chemical elements supplied
by the phases at their equilibrium compositions and proportions should be equal to
that in the specified bulk rock composition bj

Λ∑
λ=1

αλ

Nλ∑
i=1

aijpi(λ) +
Ω∑

ω=1

αωaωj − bj = 0, (A.8)

where aij and aωj are composition vectors for the end-member and system components
j and αλ,ω ≥ 0.

A.2.2 Gibbs energy minimization strategy

For any system of fixed bulk composition, pressure and temperature conditions, the
general equilibrium conditions are given by minimizing Eq. A.1 while satisfying the
Gibbs-Duhem rule (Eq. A.6) and mass constraint (Eq. A.7). This system of equations
yields an equality-constrained optimization problem that remains notoriously difficult
to solve as it involves a weighted sum of objective functions unevenly spanning the
dimensional space. To compute the thermodynamic equilibrium conditions we employ
a two-stage algorithm. First, we obtain an initial guess using discretized solution
phases (pseudocompounds) and linear programming methods (levelling, Fig. 1A,B)
and after which a local minimization of solution phases is coupled with the Partitioning
Gibbs Energy method (Piro et al., 2013a) among predicted stable phases (Fig. 1C).

A.2.2.1 Levelling stage

The concept of levelling is to temporarily neglect the thermodynamic contribution
from mixing in the solution phases (de Capitani and Brown, 1987; Piro et al., 2013a;
Kruskopf and Visuri, 2017). As a consequence, all end-members of solution phases
and stoichiometric phases in the system are initially treated as separate pure phases.
This allows us to estimate the chemical potential of system components (oxides) and
the proportions of the stable pure phases using linear programming methods.

Given this set of artificial “pure phases”, the first step of the levelling stage mini-
mizes

Glvl = min

 Φ∑
ϕ=1

αϕg
0
ϕ

 , (A.9)

where Φ is the number of active phases equal to the number of system components C,
αϕ is the fraction of phase ϕ and g0ϕ is the chemical potential of phase ϕ, and, subject
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Table A.2.1: Symbols definition

Symbol Unit Definition
R J mol−1 K−1 Ideal gas constant
T K Temperature
C - Total number of chemical components (oxides) in the system
F - Number of degrees of freedom (Gibbs-Duhem rule)
j - Oxide
bj - Bulk rock composition of oxide j
Φ - Total number of active phases
Λ - Total number of active solution phases
λ - Solution phase
Nλ - Number of end-members of solution phase λ
i(λ) - End-member i of solution phase λ
pi(λ) mol% Fraction of end-member i in phase λ
xi(λ) - Penalty formulation for PGE stage of end-member i in phase λ
xk(λ) - Compositional variable k of solution phase λ
Ω - Total number of active pure phases
ω - Pure phase
αλ mol% Fraction of solution phase λ
αω mol% Fraction of pure phase ω
aij mol Molar composition of oxide j in end-member i
aλj mol Molar composition of oxide j in solution phase λ
aωj mol Molar composition of oxide j in pure phase ω
f - Normalization factor
aj - Number of atom per oxide j
ei(λ) - Molar composition of end-member i in solution phase λ
νs - Number of atoms contained in mixing site s of λ
ci - Normalisation constant
Gλ J Gibbs energy of the solution phase λ
Glvl J Gibbs energy of system during the level stage
Gsys J Total Gibbs energy of the system
Γj J Chemical potential of pure oxide j, defining Gibbs-hyperplane
Γlvl J Set of oxide chemical potentials obtained during levelling stage
g0i(λ) J Gibbs energy of reference of end-member i in phase λ
aidi(λ) J Ideal mixing term
Xs

es,i - Site fraction of the element es,i on site s in end-member i of phase λ
gexi(λ) J Excess energy term of end-member i in phase λ
µi(λ) J Chemical potential of end-member i in phase λ
∆µi(λ) J Gibbs energy distance of end-member i in phase λ from Gibbs-hyperplane
µω J Gibbs energy of pure phase ω
ρ kg m−3 density
Kb Pa Adiabatic bulk modulus
Ks Pa Elastic shear modulus
vp km s−1 Compressional P-wave velocity
vs km s−1 Shear S-wave velocity
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Figure A.2.1: Simplified illustration of the minimization strategy, at pressure P=0
GPa and temperature T=1 K, with two solution phases λ1 and λ2 (modified after de
Capitani and Brown (1987)). Both solution phases include 2 end-members of identi-
cal composition C=[1 0; 0 1] (at coordinate X=0.0 and X=1.0). The Gibbs energy
of reference of the end-members are: G0λ1i1 = -1.0, G0λ1i2 = -8.0, G0λ2i1 = -6.0 and
G0λ2i2 = -9.0. The ideal mixing terms are formulated as RT log(x) with R = 8.134
J/mol/K and T = 1.0 K. The excess terms are calculated as Gλ1

ex = 35.0x21x2 and Gλ2
ex

= 35.0x1x
2
2+15.0x21x2. The total Gibbs energy of each phase is expressed as Gλ =∑Nλ

i=1 xiµi(λ) =
∑Nλ

i=1 xi (G0i +RT log(xi) +Gex). A) During the levelling stage the Gλ

function of each phase is discretized in composition space with a step of 0.25. Then, lin-
ear programming is used to find the combination of discrete points minimizing the Gibbs
energy of the system Gsys = Gλ1 + Gλ2 while satisfying the mass constraint br = [0.6
0.4], here resulting in points A (α=0.7) and B (α=0.3). The Gibbs-hyperplane passing
through discrete phases A and B is computed by solving Γj = A−1b, where A is the
stoichiometry matrix ([0.25 0.75; 0.75 0.25]) and b is the vector of Gibbs energy of dis-
crete points A and B ([-9.2846; -7.6753]). B) The whole system is rotated by recalculating
the Gibbs energy curves Gλ as ∆Gλ =

∑Nλ

i=1 xi

(
G0i −

∑C
j=1 Γjaij +RT log(xi) +Gex

)
,

where Γj = [-6.8706; -10.0893] and ai is the compositional vector of end-member i. This
step effectively levels the plane passing through points A and B to the horizontal i.e.,
∆GλA,B = 0.0. C) Starting from discrete points A and B (empty black and blue cir-
cles) a gradient-based method is used to find the minimum of phases λ1 and λ2 (X1 =
0.8242 and X2 = 0.1345). D) Using the minimized points the Gibbs plane is rotated
again (∆Γj = [-0.3631; -0.1806], Γj=Γj + ∆Γj) and for this simplified case-study, the
system is considered to have converged, as there are no phases left for which ∆G<0.
The phase fractions are retrieved as αλ1,2=A−1br (αλ1 = 0.3850 and αλ2 = 0.6151).
Note that in our formulation, unlike in de Capitani and Brown (1987), the update of the
Gibbs-hyperplane defined by ∆Γj is achieved using the PGE approach (Eqs. A.26, A.27
and A.28) modified for mixing on crystallographic sites.
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to the mass balance constraint

Φ∑
ϕ=1

αϕaϕj − bj = 0, (A.10)

where aϕj is the composition vector of the phase ϕ and αϕ ≥ 0. Equations A.9
and A.10 are solved using the linear programming method adapted from de Capitani
and Brown (1987) with a special case of the simplex method (Dantzig, 1963). Upon
convergence, the chemical potential of the system components defining the Gibbs-
hyperplane are retrieved such as

Γlvl = A−1Glvl, (A.11)

where A is the stoichiometry matrix of the predicted stable pure phases and Glvl is
the Gibbs energy vector of the same set of pure phases.

During the second step of the levelling stage, solution phases are discretized
(pseudocompound) and only the pseudocompounds located close or below the Gibbs-
hyperplane defined by Γlvl are further considered for a second round of linear pro-
gramming. The distance of a pseudocompound with respect to the Gibbs-hyperplane
is calculated as

∆Gλ =

C∑
j=1

aλjΓ
lvl
j −Gλ, (A.12)

where aλj is the composition and Gλ is the Gibbs energy of the pseudocompound.
Likewise, the distance from the Gibbs-hyperplane can be calculated for each end-

member dissolved in a solution phase from

∆µi(λ) = µi(λ) −
C∑

j=1

aλjΓj = g0i(λ) +RT log(aidi(λ)) + gexi(λ) −
C∑

j=1

aλjΓj . (A.13)

Cycling through the list of pseudocompounds is achieved until no remaining pseudo-
compound is left with a negative ∆Gλ ≤ −10−6. The levelling stage is then success-
fully terminated and the Partitioning Gibbs Energy (PGE) stage is initiated.

A.2.2.2 Partitioning Gibbs energy (PGE) stage

The Partitioning Gibbs Energy (PGE) approach (e.g., Piro et al., 2013a; Kruskopf
and Visuri, 2017) has the objective to partition the Gibbs energy of the system among
the system components (i.e., Γj) by expressing the end-member fraction of the mass
balance (Eq. A.8) as function of the chemical potential of the end-members (Eq. A.3).
The key advantage of this approach is that a change in Γj (which we attempt to find)
is directly coupled to the composition of the system, which helps the optimisation
process.

For an non-ideal solution model where the ideal mixing term only depends on the
end-member fraction (and not the site-fractions) Piro et al. (2013a) first expresses the
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chemical potential of the end-members as function of the Gibbs-Duhem relation by
substituting Eq. A.6 in Eq. A.3 yielding

C∑
j=1

ai(λ),jΓj = g0i(λ) +RT log(xi(λ)) + gexi(λ). (A.14)

Solving this for xi(λ) gives

xi(λ) = exp

(( C∑
j=1

aλjΓj − g0λ − gexλ

)
/(RT )

)
, (A.15)

which is a direct expression of the end-member fraction xi(λ) as function of its chemical
potential and the chemical potential of the pure components of the system Γj . This
expression is then substituted into the mass balance equation (Eq. A.8) yielding a set
of equations (one per component) in the PGE form:

Λ∑
λ=1

αλ

Nλ∑
i=1

aij exp

(( C∑
j=1

aλjΓj − g0λ − gexλ

)
/(RT )

)
+

Ω∑
ω=1

αωaωj − bj = 0, (A.16)

This formulation has proven to be very successful in large chemical systems involv-
ing as many as 118 components (Piro, 2011) and relatively simple ideal and non-ideal
solution models (Piro et al., 2013a; Kruskopf and Visuri, 2017), allowing to model
for the first time the temporal and spatial evolution of coupled thermochemical and
nuclear reactions of irradiated fuel (Piro et al., 2013b).

However, this formulation cannot be directly applied to more complex solid solu-
tions, in which mixing-on-sites must be considered, yielding an ideal entropy term that
must be written in terms of site fractions (Eq. A.4). To extend the PGE approach to
account for solution models involving site-fractions, we expand the ideal mixing term
as

RT log(aidi(λ)) = RT log(xi(λ)) +RT log

(
aidi(λ)

pi(λ)

)
, (A.17)

where xi(λ) = pi(λ), which gives using Eq. A.3 and the Gibbs-Duhem relation of Eq.
A.6

RT log(xi(λ)) =

C∑
j=1

ai(λ)jΓj − g0i(λ) −RT log

(
aidi(λ)

pi(λ)

)
− gexi(λ). (A.18)

Developing the log term of the right side of Eq. A.18 gives

RT log(xi(λ)) =

C∑
j=1

ai(λ)jΓj − g0i(λ) −RT log(aidi(λ))− gexi(λ) +RT log(pi(λ)), (A.19)
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which can be simplified using Eq. A.13 as

log(xi(λ)) = −
∆µi(λ)

RT
+ log(pi(λ)), (A.20)

and rearranged as

xi(λ) = exp
(
−

∆µi(λ)

RT

)
pi(λ), (A.21)

where xi(λ) is the expression for end-member fraction used in the subsequent PGE
formulation and pi(λ) is the end-member fraction as computed by the solution phase
model. After the levelling stage, and as long as the Gibbs-Duhem constraint is not
respected, ∆µi(λ) ̸= 0 and xi(λ) ̸= pi(λ). During the course of the PGE iterations,

the term exp
(
− ∆µi(λ)

RT

)
tends to 1.0 as ∆µi(λ) tends to 0.0, which enforces that at

convergence the chemical potential of all the endmembers of predicted stable solution
phases lie on the Gibbs-hyperplane (Gibbs-Duhem rule) and that xi(λ) = pi(λ). The
exponential dependency of xi(λ) on µi(λ) imposes the Gibbs-hyperplane computed
during levelling to be sufficiently close to solution to ensure convergence.
Eq. (A.21) is then substituted in Eq. (A.8) yielding

Λ∑
λ=1

αλ

Nλ∑
i=1

aijxi(λ) +
Ω∑

ω=1

αωaωj − bj = 0, (A.22)

which has the advantage that it effectively couples the mass balance constraint (Eq.
A.8) and the chemical potential of pure components (Eq. A.6) (Piro et al., 2013a;
Kruskopf and Visuri, 2017). Additionally, the sum of the end-member fractions of a
solution phase must equal unity at convergence i.e.

Nλ∑
i=1

xi(λ) − 1 = 0, (A.23)

and the stoichiometric phases must lie on the Gibbs-hyperplane i.e.

C∑
j=1

aωjΓj − g0ω = 0. (A.24)

This results in the following system of equations

fv =
Λ∑

λ=1

αλ

Nλ∑
i=1

aijxi(λ) +
Ω∑

ω=1

αωaωj − bj , (A.25)

hl =

Nλ∑
i=1

xi(λ) − 1, (A.26)

qk =
C∑

j=1

aωjΓj − g0ω. (A.27)
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Eqs. A.25, A.26 and A.27 are solved using a Newton-Raphson approach such as

J∆y = −F, (A.28)

where J is the Jacobian of the system of equations fv, hl and qk expressed as

J =


∂fv
∂Γj

∂fv
∂αλ

∂fv
∂αω

∂hl
∂Γj

∂hl
∂αλ

∂hl
∂αω

∂qk
∂Γj

∂qk
∂αλ

∂qk
∂αω

 =


∑Λ

λ=1 αλ
∑Nλ

i=1 xi(λ)aijaiv
∑Nλ

i=1 xi(λ)aij aωj∑Nλ
i=1 xi(λ)aij 0 0

aωj 0 0

 ,

(A.29)
F is the residual vector defined as

F = (f1, ..., fC , h1, ..., hΛ, q1, ..., qΩ), (A.30)

and ∆y is the set of variable we solve for

∆y = (∆Γ1, ...,∆ΓC ,∆α1, ...,∆αΛ,∆α1, ...,∆αΩ). (A.31)

At the beginning of a PGE iteration, all considered solution models are minimized
while taking inequality constraints into account. In magemin, we employ the opti-
mization library NLopt (Johnson, 2021) and the gradient-based CCSAQ algorithm
(Svanberg, 2002). This algorithm supports inequality constraints which is a require-
ment to minimize the solution models as the ideal mixing term is function of the
site-fractions which have to be ≥ 0. An example of a solution model derivation for a
gradient-based inequality constraint optimization is given in the Appendices.

Subsequently, Eq. A.28 is solved and the set of variables is updated as y1 =

y0 + τ∆y where τ is an under-relaxing factor defined as

τ = min


0.025

δ∥∥∥αmax
λ,ω

∥∥∥2
2

,

2.5

δ∥∥∥Γmax
j

∥∥∥2
2

, 1.0

 , (A.32)

where
δ = 192.0e

[
−8.0·

(
∥∆bj∥22

)0.26]
− 1.0, (A.33)

is an inner under-relaxing factor linked to the residual norm of the mass constraint.
Effectively, δ decreases the maximum allowed step size of ∆Γj and ∆αλ,ω when the
norm of the mass constraint decreases. δ has been optimized in a manual manner
across the pseudosections presented in this study to increase the performances and
stability of the computation. We choosed this option because the use of backtracking
line search methods has proven to be rather inefficient as, in order to converge, the
system has to be able to temporarily relax constraints. Although the current definition
of δ makes it a proud member of the family of "magic" number, we find that the
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minimization results remain quite consistent, as long as the relaxing factor is small
enough.

During the iterations, a phase is removed from the active assemblage when its
fraction is ≤ 0.0 and a phase is added when its driving force ∆Gλ is ≤ 0.0 i.e., the
phase has a lower energy than/or is lying on the Gibbs-hyperplane.

The system is considered to have converged when the norm of the mass balance
residual vector, the residual of the sum of the end-member fractions and the driving
force of the solution phases are lower than 10−5.

A.2.2.3 Solution phase solvi

Solvi are regions of unmixing within a solution. They can be detected when a stable
or metastable assemblage contains two distinct phases with the same structure but
different composition, such as co-existing augite and pigeonite for clinopyroxene (e.g.
(Gasparik, 2014)). Computationally, the two phases are represented by local min-
ima at two different compositions within a single isobaric-isothermal G-surface of an
equation of state. They are handled in several ways.

Firstly, after the levelling stage, if multiple discretized points on the G-surface
of the same solution phase are predicted in the stable mineral assemblage they are
initially all treated as potential solvi candidates. Subsequently, they are merged after
the local minimization step if they converge to the same local minimum (∥∆xk∥22 ≤
10−2).

Secondly, during the course of the PGE iterations a solution phase can be dupli-
cated and checked for solvi when its active set of compositional variables is too far
from its starting values i.e., ∥∥xtλ − x0λ

∥∥2
2
≥ xstep

√
Nx, (A.34)

where xtλ is the actual set of compositional variables, x0λ is the initial set of composi-
tional variables, Nx is the number of compositional variables of solution phase λ and
xstep is the discretization step of the solution phase λ.

Finally, when getting close to solution ∆bj ≤ 10−4 discretized points of solution
phases close to the Gibbs-hyperplane but compositionally away from the active so-
lution phase are locally minimized. In the event the driving force of a tested point
∆Gtested

λ ≤ 0.0, the point is added to the system. The latter strategy ensures that
solvi are not overlooked and that the system converges toward global minimum (no
phase lies below the Gibbs-hyperplane).

A.2.2.4 Failed minimization contingency plan

While local minimization using NLopt (Johnson, 2021) and CCSAQ algorithm (Svan-
berg, 2002) has proven to be quite efficient and reliable, in some cases the site-fraction
inequality constraints can be slightly violated which lead to wrong values of ∆Gλ and
∆µi(λ) and therefore to divergence of the overall algorithm.
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In order to avoid this, site-fractions are tested after every local minimization of
solution phases and in the event a site-fraction is violated, the set of compositional
variables is brought back to the feasible domain using the nullspace formulation de-
scribed in Feppon et al. (2020) such as

∆xk = −αc

(
GT (GGT )−1g

)
, (A.35)

where ∆xk is the compositional variable step toward the feasible domain, g is a vector
of violated site-fraction constraints, G is the Jacobian of the violated site-fractions
and αc = 0.1 is an under-relaxing factor. This approach proved to be robust and the
solution phase is generally brought back into the feasible domain within 4-5 iterations.

In the event convergence is not achieved using the default tolerance, the tolerance
can be relaxed by up to one order of magnitude (≤ 2×10−4). If convergence is still not
obtained, the minimization is considered to have failed. In all cases a code, magemin
sends back the status of the minimization (0, success; 1, relaxed tolerance; 2, failure).

A.2.3 Dataset implementation

In order to improve performance and benchmark the results with thermocalc, the
thermodynamic dataset used natively in thermocalc was translated directly into
C routines for magemin, and implemented without transformation of variables or
coordinate systems. This eliminates inconsistencies and minimizes the risk of intro-
ducing mistakes. Appendix A gives an overview of equation of state construction in
the thermodynamic dataset.

A.2.4 Normalization for mass balance

Like thermocalc, magemin accepts input bulk compositions expressed in terms of
normalised numbers of oxide units (SiO2, Al2O3, CaO, . . . ). However, the phases
present in the system at equilibrium will in general be written on a variety of formula
units (e.g. (Mg,Fe,Ca)(Mg,Fe)SiO4, (K,Na,Ca,Mg,Fe)(Mg,Fe,Al,Fe3+,Cr)(Si,Al)2O6,
. . . ). In order to be able to compare the amounts of phases present in a meaningful
way, magemin follows thermocalc in expressing the amounts of phases present on
a 1-atom basis. The Gibbs energies of phases must therefore be normalized.

The normalized Gibbs energy of a model solution phase is expressed as

fGλ = f

Nλ∑
i=1

µi(λ)pi(λ), (A.36)

where f is the normalization factor defined as

f =

∑C
j=1 bjaj∑Nλ

i=1 pi(λ)
∑C

j=1 ei(λ)jaj
, (A.37)
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where aj is the number of atom per oxide and ei is the molar composition of end-
member i of solution phase λ.

The first derivative of the objective function (Eq. A.5), necessary to conduct
gradient-based minimization, is computed using the chain rule as

∂fGλ

∂xk
=

(
µi(λ) −

∑C
j=1 ei(λ)jaj∑Nλ

l=1

∑C
j=1 el(λ)jaj

Gλ

)
f
∂pi(λ)

∂xk
, (A.38)

where xk are the compositional variables of solution phase λ.

A.2.5 Solution phase discretization

The set of pseudocompounds used during the first levelling stage (§2.2.1) and tested
when getting close to convergence, is pre-computed using a python Jupyter-Notebook
and implemented as C functions to improve performance. The discretization step for
each solution phase is chosen to be 0.05 ≤ ∆xstepk ≤ 0.33 such that the total number
of discrete points per solution phase ranges between 100 and 6000 depending of the
number of compositional variables (dimensionality). The currently used compositional
variables steps for the discretization of the solution phases are: spn, 0.199; bi, 0.124;
cd, 0.098; cpx, 0.249; ep, 0.049; g, 0.198; hb, 0.329; ilm, 0.049; liq, 0.198; mu, 0.198;
ol, 0.098; opx, 0.249; pl4T, 0.049; as fl is largely dominated by water we only use one
pseudocompound made of 100% of the pure water endmember.

A.3 Algorithm demonstration

To demonstrate how the extended PGE algorithm compares to a linear programming
(Theriak-Domino) approach, we present a simplified application in the Na2O–CaO–
K2O–Al2O3–SiO2 (NCKAS) chemical system. This application includes two pure
phases, sillimanite and quartz, and activity–composition (a–x) relations for feldspar
(pl4T)(Holland et al., 2021). The bulk-rock composition used in this example is
presented in Table A.4.1 as "demo" and the pressure and temperature conditions are
fixed at 600 °C and 0.3 GPa.

The results of the Gibbs energy minimization are shown in figure (A.3.1). At
equilibrium the Gibbs energy of the system is -1080.8358 J and the mineral assemblage
is characterized by quartz (8.123 mol%), sillimanite (9.614 mol%) and two feldspar
(41.084 and 41.179 mol%) (Fig. A.3.1). Although both the LP and the PGE methods
give very similar results and both exhibit super-linear convergence (Fig. A.3.1B),
important differences can be observed. First, the residual on the chemical potential of
the system components ∥Γj∥22 is, at convergence, one order of magnitude lower with
the PGE method (Fig. A.3.1B). Note that the absolute accuracy is controlled by the
tolerance of the non-linear optimizer. Here 10−10 was used with fmincon MATLAB
solver. Secondly, on a log10 basis, the PGE convergence profile is piece-wise linear
while the LP profile exhibits significant oscillations (Fig. A.3.1B). The LP oscillations
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Figure A.3.1: Comparison of Linear Programming (LP) versus the extended Partition-
ing Gibbs Energy (PGE) approach. A, ∆G energy of the ternary feldspar at equilibrium.
"Fd1" and "Fd2" are the two feldspar phases coexisting at equilibrium. The red dots
represent the starting set of discretized points of the feldspar solution model for both LP
and PGE approach. B, Comparison of the convergence profile between LP and extended
PGE approaches. C. Orthose-content of feldspar 1 as function of the minimization iter-
ation. D. Anorthite-content of feldspar 2 as function of the minimization iteration.
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are caused by under/overshooting during local minimization A.3.1C,D) which is not
observed for the PGE approach (Figs. A.3.1C,D).

This key difference in convergence behavior between the LP and the PGE methods
is related to how the Gibbs-hyperplane is rotated after the gradient-based minimiza-
tion stage. For the LP method, rotation is achieved by using the Gibbs energy of
the minimized points irrespective of the chemical potential of their constitutive end-
members (see Eq. A.9). Instead, for the extended PGE approach, the rotation is
conducted by solving the mass constraint equation where the endmember fractions
are penalized using the chemical potentials of the endmembers (see Eq. A.8). The
additional constraint drive the rotation of the Gibbs-hyperplane in a direction that
also decreases the Gibbs-Duhem residual of all species i.e., that the Gibbs-hyperplane
of each individual solution phase is rotated to be become parallel to the system Gibbs-
hyperplane. This efficiently removes under/overshooting during the non-linear stage
(Figs. A.3.1C,D).

This example has been performed with MATLAB using the optimization toolbox
and the script is available at https://github.com/ComputationalThermodynamics/sandbox.git

A.4 Application to igneous systems

Below we demonstrate our approach by presenting a variety of phase diagrams calcu-
lations, which we compare with the output from thermocalc. Pseudosections map
the most stable phase equilibrium to occur in a specified bulk-rock composition, as a
function of pressure and temperature. The bulk compositions used in our calculations
are shown in Table A.4.1, and are defined in the systems Na2O–CaO–K2O–FeO–MgO–
Al2O3–SiO2–TiO2–Fe2O3–Cr2O3 (NCKFMASTOCr; “dry”), or NCKFMASTOCr+H2O
(NCKFMASHTOCr; “wet”).

We used a thermodynamic dataset based on that of Holland et al. (2018), in-
cluding the minor published updates to the equations of state for solution phases
current as of 23 Jan 2022 (see http://hpxeosandthermocalc.org). The updates in-
clude a change in the feldspar equation of state to that of Holland et al. (2021). We
used version 6.34 of the internally-consistent dataset of end-member thermodynamic
properties (Tomlinson and Holland, 2021). The thermodynamic dataset as a whole
includes equations of state for the pure stoichiometric phases quartz (q), cristobalite
(crst), tridymite (trd), coesite (coe), stishovite (stv), kyanite (ky), sillimanite (sill),
andalusite (and), rutile (ru) and sphene (sph). It also represents the solution phases
spinel (spn), biotite (bi), cordierite (cd), clinopyroxene (cpx), orthopyroxene (opx),
epidote (ep), garnet (g), hornblende (hb), ilmenite (ilm), silicate melt (liq), muscovite
(mu), olivine (ol), ternary feldspar (pl4T), and aqueous fluid (fl). An outline of the
construction of the thermodynamic dataset is given in Appendix A. Full documenta-
tion and thermocalc input files for the thermodynamic dataset can be downloaded
from http://hpxeosandthermocalc.org, designated as an accompaniment to this paper.
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A.4.1 Example pseudosections

Pseudosections were computed using magemin and processed using an MATLAB
Graphical User Interface that employs adaptive mesh refinement similar to what is
done in Perple_X (Connolly, 2005)(Fig. 2). The MATLAB application sends a list
of pressure-temperature points to magemin for a specified bulk-rock composition and
receives back the stable phase mineral assemblage. magemin is parallelized using MPI
and can therefore take advantage of multicore processor architectures or be deployed
on local or larger remote computing servers.

In total, 6 pseudosections are presented: KLB-1 peridotite (e.g., Takahashi, 1986),
RE46 Icelandic basalt (Yang et al., 1996), water-oversaturated tonalite 101 (Piwinskii,
1968), wet basalt and two additional N-MOR basalt (Gale et al., 2013) and MIX1G
pyroxenite (Hirschmann et al., 2003). Among them, KLB-1, RE46, wet basalt and
Tonalite 101 are directly benchmarked against pseudosections produced with ther-

mocalc (Figs. 3 and 4).
The pseudosections for KLB-1 peridotite (Fig. 3A,B), RE46 Icelandic basalt (Fig.

3C,D), Tonalite 101 (Fig. 4A,B) and Wet basalt (Fig. 4C,D) were computed with
both thermocalc and magemin. The pseudosections for KLB-1 and RE46 were
computed in the KNCFMASTOCr system from 0 to 5 GPa and from 800 to 2000 °C,
and from 0 to 1.2 GPa and from 1000 to 1400 °C, respectively. The pseudosections
for T101 and Wet Basalt were computed in the KNCFMASHTOCr system from 0 to
0.25 GPa and from 650 to 925 °C, and from 0 to 2.4 GPa and from 800 to 1400 °C,
respectively. For magemin, the total number of minimized points per pseudosection
varies from 80,000 to 100,000. The resulting 4 pseudosections produced with magemin
show nearly identical results to the one produced with thermocalc (Figs 3 and 4).

The pseudosections for N-MOR basalt and MIX1G pyroxenite were computed only
with magemin in the KNCFMASTOCr chemical system (Fig. 4A,B) from 0 to 1.2
GPa and from 500 to 1400 °C, and from 0 to 2.0 GPa and from 600 to 1600 °C,
respectively.

A.4.2 Seismic velocities

Seismic velocities (see Fig. A.4.5) are computed following the approach described in
Connolly and Kerrick (2002) such as:

vp =

√
Kb +

4Ks
3

ρ
, (A.39)

and

vs =

√
Ks

ρ
, (A.40)

where vp is the P-wave velocity, vs the S-wave velocity, ρ the density, Kb the adiabatic
bulk modulus and Ks is the elastic shear modulus. The adiabatic bulk modulus is
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Table A.4.1: Bulk-rock compositions (mol%) used to produce the igneous phase dia-
grams. Note that for readability purpose the Tonalite 101 bulk-rock composition is not
displayed normalized to 100.

Name SiO2 Al2O3 CaO MgO FeO K2O Na2O TiO2 O Cr2O3 H2O
Demo 70.69 16.63 4.56 - - 4.45 3.67 - - - -
KLB1 peridotite 38.49 1.776 2.824 50.57 5.89 0.01 0.25 0.10 0.096 0.109 -
RE46 basalt 50.72 9.16 15.21 16.25 7.06 0.01 1.47 0.39 0.35 0.01 -
Tonalite 101 66.01 11.98 7.06 4.16 5.30 1.57 4.12 0.66 0.97 0.01 50.0
Water-bearing basalt 50.08 8.69 11.67 12.14 7.78 0.22 2.49 1.00 0.47 0.01 5.44
MIX1G pyroxenite 45.25 8.89 12.22 24.68 6.45 0.03 1.39 0.67 0.11 0.012 -
N-MORB basalt 53.21 9.41 12.2 1 12.21 8.65 0.09 2.90 1.21 0.69 0.02 -

Figure A.4.1: Illustration of the adaptive mesh refinement strategy used for pseudosec-
tion computation. Adaptive mesh refinement is illustrated for a sub-section of MIX1G
phase diagram displaying complex phase relations (see Fig. 5B). In total 8 levels of
refinements are processed with an initial pressure-temperature step of 0.1 GPa and 40
°C. A grid cell is refined by splitting in 4 smaller cells, when at least one of the four
corners exhibits a different mineral assemblage. This allows us to progressively increase
the resolution along reaction lines and properly resolve them as the levels of refinement
increase (see level 8). Moreover, this strategy allows us to significantly reduce the total
number of minimization compared to a uniform refinement reaching the same resolution,
which would have required 245,760 points for this example.



86 Appendix A. MAGEMin, an efficient Gibbs energy minimizer

Figure A.4.2: Comparison of dry pseudosections produced by thermocalc and
magemin. A, B, KLB-1 peridotite. C,D, RE46 Islandic basalt. For comparison, ther-
mocalc reaction lines are shown as dashed lines in the magemin pseudosection. Shading
represents the variance of the system.
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Figure A.4.3: Comparison of wet pseudosections produced by thermocalc and
magemin. A, B, T101 tonalite. C,D, Wet basalt.
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calculated from the thermodynamic data as

Kb = −∂Gsys

∂P

[
∂2Gsys

∂P 2
+

(
∂

∂P

∂Gsys

∂T

)2/∂2Gsys

∂T 2

]−1

. (A.41)

Shear modulii cannot be computed from thermodynamic data, and are therefore cal-
culated using an empirical relation (Connolly and Kerrick, 2002):

Ks = K0
s + T

∂Ks

∂T
+ P

∂Ks

∂P
. (A.42)

The shear modulii of the appropriate phases used in this study are taken from the
database provided in Perple_X (Connolly, 2005). The database is a collection of shear
modulii data mainly from Helffrich (1996), and from Karki et al. (2001), Sinogeikin et
al. (2000), Bailey and Holloway (2000) and Bass et al. (1995). The bulk-rock seismic
velocities are calculated without anelasticity correction, using a Voight–Reuss–Hill
averaging of the velocities of the constituent phases, weighted by volume fraction
(Connolly and Kerrick, 2002).

A.5 Discussion

A.5.1 Minimization approach

Here, we present a new Gibbs energy minimization approach applied to multiphase
multicomponent systems. While some of the key ideas of our approach are based on
the method of Partitioning Gibbs Energy (PGE) (e.g., Piro et al., 2013a; Kruskopf
and Visuri, 2017) we extended it to account for modelling of mineral solid solutions
involving mixing-on-sites (Eq. A.17 to A.21). In Piro et al. (2013a) the fraction of
the end-members are updated using Eq. A.15, whereas in our formulation the PGE
stage is used to decrease the residual between xi(λ) and pi(λ). Essentially, the expres-

sion exp
(
−∆µi(λ)

RT

)
of Eq. A.21 forces the system to progressively satisfy the Gibbs

Duhem rule by penalizing the fraction of end-members (hence, the mass constraint)
computed during local minimization. However, to avoid divergence, the PGE stage
requires a good initial guess, proper set of under-relaxing factors and more critically,
a highly consistent local minimization step. Although NLopt (Johnson, 2021) imple-
ments several gradient-based minimizers with inequality constraints (SLSQP, MMA,
CCSAQ), we find that the CCSAQ algorithm (Svanberg, 2002) yields by far the best
consistency and precision compared to SLSQP and linear MMA.

A.5.2 Consistency

The application of magemin to the igneous thermodynamic dataset of Holland et al.
(2018) shows very good agreement with pseudosections produced with thermocalc

(Figs 3 and 4). However, minor differences can be observed in some regions. For
instance the tonalite 101 pseudosection produced with magemin (Fig. 4B) has an
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irregular reaction line at ca. 750 °C and 0.1 GPa (Fig. 3B). This is caused by
oscillations when getting close to convergence, where a relaxed solution tolerance was
accepted (tol ≤ 10−4 instead of the default value of 10−5). Similar irregular reactions
lines related to slightly relaxed tolerances can be observed in N-MOR basalt at ca.
750 °C and 0.88 GPa (Fig. 5A) and in MIX1G pyroxenite at ca. 1250 °C and 1.4 GPa
(Fig. 5B).

A.5.3 Computational efficiency

Pseudosections presented in this work have been run in parallel on 6 logical processors
on an Intel(R) Core(TM) i5-11400H. Single point calculation time has been averaged
for each pseudosection which yielded 96 ms for KLB-1, 122 ms for RE46, 186 ms for
Tonalite 101 and 162 ms for Wet Basalt. The large increase of calculation time for
water-bearing compositions (Tonalite 101 and Wet Basalt) stems from having a larger
number of discrete points during levelling (+ 40 ms) and a larger number of global
iterations to reach convergence (+40 to 60 iterations on average).

In order to roughly compare our results with Perple_X (Connolly, 2005), we
recomputed the KLB-1 pseudosection at similar resolution (±9000 grid points, Fig.
6). Although Perple_X did not include the last version of the dataset "hp634ver.dat"
at the time we generated the diagram (Fig. 6A), we obtain a similar pseudosection
nearly 20 times faster (Fig. 6B). Note that with default option the pseudosection
was computed with Perple_X in 36 minutes, but the overall quality of the grid was
quite degraded and we therefore choose to increase the grid resolution (exploratory
and autorefine set to 60 and 200, respectively). In terms of single core performance,
we still find that magemin is nearly 3 times faster and yields cleaner diagrams with
less visible artefacts (Fig. 6). Moreover, since the current version of Perple_X is
not parallelized, the computational differences are more significant in practice. In the
other comparable G-minimization software, Theriak and pMELTS, the Holland et al.
(2018) thermodynamic dataset is not or cannot be implemented.

A.5.4 Coupling with geodynamic codes

In order to facilitate coupling with geodynamic codes we provide a Julia wrapper to
magemin. The Julia wrapper (called MAGEMin_C) allows the user to directly call
the C functions of magemin without writing data to disk first (which is slow). The
results of the minimization are saved into a structure that is also accessed through
the Julia interface. Here we provide a simple example.

Assuming Julia is installed, to install MAGEMin_C, first open a Julia terminal
and type:

julia> ] # opens the package manager

pkg> add MAGEMin_C # MAGEMin_C
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To compute a phase equilibrium, first leave the package manager (using backspace)
and enter the following commands:

julia> using MAGEMin_C # load MAGEMin_C package

julia> gv, DB = init_MAGEMin(); # initializes MAGEMin

julia> P_kbar,T_C = 8.0, 800.0;

julia> bulk_rock = get_bulk_rock(gv, 0);# bulk-rock composition for test 0 (KLB-1 peridotite)

julia> gv.verbose = -1; # switch off run-time verbose

julia> out = point_wise_minimization(P_kbar,T_C, bulk_rock, gv, DB);

julia> print_info(out); # full display of the minimized point

A complete guide of the Julia interface is provided on the magemin webpage.

A.5.5 Current limitations and known problems

Currently, only the thermodynamic dataset for igneous systems (Holland et al., 2018)
has been implemented in magemin. Yet, our approach is generally applicable and
should thus in principle work with any thermodynamic dataset. In order to account
for other petrological systems, additional datasets could be implemented for example
relevant to metapelitic (White et al., 2014) or metabasitic systems (Green et al., 2016).
We expect the performance of those cases to be at least as good, as the equations of
state for solution phases are somewhat simpler.

To be successful, our implementation of the Partitioning Gibbs Energy method
heavily relies on having a good initial guesses, here provided by the levelling stage.
At present, our approach tends to have difficulties to converge in some cases, mainly
at sub-solidus conditions and for water-bearing bulk-rock compositions (< 650 °C).
When divergence is observed, it usually occurs very fast and several methods are being
tested to remedy that issue. One potential cause of divergence can be attributed to
the current discretization approach employed during the levelling stage. Indeed, for
complex solution phases, such as amphibole, the large discretization step used to keep
the number of pseudocompounds relatively low (< 6000) can be a source of uneven
sampling of the solution phase space, which may lead to minimization failure (likely
because the minimization gets stuck in an unfeasible local minimum). A possible
workaround would be to add the complete list of end-members bounding the space
of valid site-occupancies, following the procedure described in Myhill and Connolly
(2021). A complementary option could be to pre-compute over a given P-T range the
local minima of each solution phase and add them to the pseudocompound list.

Finally, magemin does not presently account for bulk-rock compositions that are in
a different system from the set of solution phase models (equations of state) provided in
Holland et al. (2018). While TiO2, Fe2O3, Cr2O3 and H2O can somewhat be set to 0.0,
other system components cannot be ignored without reformulating some of solution
phase model. However, being able to obtain stable phase equilibria in restricted
chemical system is crucial to model magmatic differentiation. As a consequence we are
actively working on producing a generalized set of solution phase models accounting
for reduced chemical systems.
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A.6 Conclusions

We present a new parallel Gibbs energy minimizer that allows us to compute stable
equilibria in complex multicomponent multiphase systems. We successfully extended
the Partitioning Gibbs Energy approach to Gibbs energy functions that model mixing-
on-sites, and applied it to the most recent thermodynamic igneous dataset. Pseudo-
section computation shows very consistent results with thermocalc and improved
performance with respect to other software such as the current Perple_X version. The
parallel design of magemin makes it highly scalable on multicore machines. While
in this contribution we computed pseudosections using a MATLAB-based interface,
magemin has been developed with the objective to provide the community with a
minimization package easily callable from any geodynamic codes. Such tool can also
potentially provide a robust framework for thermodynamic database inversions.

A.7 Software availability

A complete guide on how to download, install and run magemin is given in the git
repository https://github.com/ComputationalThermodynamics/magemin.git. The
version of the code is also made available on Zenodo, doi:10.5281/zenodo.6347567
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Figure A.4.4: Pseudosections for N-MOR basalt and MIX1G pyroxenite.
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Figure A.4.5: Example of seismic velocity computation for KLB-1 peridotite. A, P-
wave velocity. B, S-wave velocity.
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Figure A.5.1: Comparison of KLB-1 pseudosections produced by Perple_X and
magemin. For the Perple_X pseudosection, we used version 6.9.1, the database file
hp633ver.dat and the solution models Sp(HGP), Gt(HGP), Cpx(HGP), melt(HGP),
O(HGP), Opx(HGP), feldspar and excluding "enL" and "fo8L". In order to have a
better resolution of the reaction lines, we increased the exploratory and autorefine pa-
rameters to 60 and 200, respectively. For magemin, we employed four levels of grid
refinement in order to reach a similar number of minimization points as displayed in the
Perple_X log.
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Supplementary

A.A Equations of state in the example thermodynamic
dataset

Here we summarize how the equations of state are formulated in our example thermo-
dynamic dataset, that of Holland et al. (2018). We detail the information passed as
input to both thermocalc and magemin, using the Holland et al. (2018) equation
of state for the olivine solid solution as an example. In Appendix B, we show how
magemin sets up the minimization step for the model olivine solid solution.

In Holland et al. (2018), and related thermodynamic datasets such as White et al.
(2014) and Green et al. (2016), the equation of state of a mineral is assembled from up
to four components (for a pure phase, consisting of a single end-member, only aspects
2 or 3 apply):

1. A choice about what composition space the model solution phase should encom-
pass, which discrete mixing sites should be distinguished, and which ions should
be considered to mix on each site; e.g. Table A.A.1. These choices determine
which end-members will be required.

2. The G(P, T ) relations for those model end-members that are found in the ap-
propriate version of the Holland and Powell (2011) internally-consistent dataset
of thermodynamic properties of end-members (IDE).

3. G(P, T ) relations for those model end-members that are not in the IDE. For non-
IDE end-member i, this is constructed from the G(P, T ) curves of a subset of Λ
IDE end-members, as Gi(P, T ) = ΣΛ

λ=1νλGλ(P, T )+a+bT +cP , where a, b and
c are constants, and the net composition of the combination of end-members Λ

yields the composition of i. The IDE end-members Λ do not necessarily appear
anywhere else in the thermodynamic dataset.

4. Activity–composition (a–x) relations, which describe the thermodynamic con-
tributions of mixing among the end-members. In general these follow the asym-
metric formalism of Holland and Powell (2003). In the asymmetric formalism,
the configurational entropy is formulated in terms of mixing on sites, potentially
with a non-unity scaling factor applied to each site as described below. The non-
ideal mixing contribution from each end-member is defined in terms of a single
interaction energy (Margules parameter, W ) between each pair of end-members
(equation A.62), which may be asymmetric, and may be linearly dependent on P
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and/or T (thereby potentially contributing excess volume and/or entropy terms
in addition to excess enthalpy).

In the Holland et al. (2018) model for the olivine solution, the end-members and
mixing site occupancies are as shown in Table A.A.1. The end-members forsterite,
fayalite and monticellite are taken directly from the IDE. End-member cfm represents
full ordering of Mg and Fe on the M1 and M2 sites; it is not in the IDE, but the
Gcfm(P, T ) curve is formed from

Gcfm(P, T ) = 1/2(Gfo(P, T ) +Gfa(P, T )) + ∆God
cfm (A.43)

where ∆God
cfm is the Gibbs energy of ordering in the cfm composition, and has the

form a+ bT + cP .
Compositional and order variability within the solid solution are defined in terms

of site fractions:

x = (xFeM1 + xFeM2)/(xFeM1 + xFeM2 + xMgM1 + xMgM2) (A.44)

c = xCaM2 (A.45)

Q = x− xFeM1/(xFeM1 + xMgM1) (A.46)

where, for example, xFeM1 is the fraction of Fe on the M1 site. Compositional and
order variables are subject to bounds, which for x, c and Q, as in most cases, are [0.0
1.0]. The variables are chosen so as to ensure that the fraction of mixing ions on each
site are normalised to a constant total, and, if relevant, that charge balance is obeyed
within the mineral.

Written in these variables, the site fractions are expressed as

xMgM1 = 1 +Q− x, (A.47)

xFeM1 = −Q+ x, (A.48)

xMgM2 = 1− c−Q− x+ cx, (A.49)

xFeM2 = Q+ x+ (−c)x, (A.50)

xCaM2 = c, (A.51)

The site fraction expressions are required to express the ideal activity, and hence
the configurational entropy, of the model end-members in the solution. For some
minerals, though not in olivine, the entropic contribution of a particular site is reduced
by a scaling factor (see e.g. Holland et al., 2021), to simulate the effects of short-
range order in the crystal structure. Thus, the ideal activity of end-member i can be
expressed as

aidi(λ) = ci
∏
s

(Xs
es,i)

νsfs (A.52)
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where Xs
es,i is the site fraction of the element es,i that appears on site s, νs is the

number of atoms mixing on s, ci the normalisation constant to give aidi(λ) = 1 for pure
i, and f the scaling factor for the site. For olivine (f = 1 for all sites), the ideal
activities are

aidmont = xMgM1 · xCaM2, (A.53)

aidfa = xFeM1 · xFeM2, (A.54)

aidfo = xMgM1 · xMgM2, (A.55)

aidcfm = xMgM1 · xFeM2. (A.56)

The proportions of the end-members present at a given composition and state of
order can be expressed as:

pmont = c, (A.57)

pfa = −Q+ x, (A.58)

pfo = 1− c−Q− x+ cx, (A.59)

pcfm = 2Q+ (−c)x. (A.60)

The equation of state is conveniently assembled in terms of the µi(P, T,x,Q),
where µi is the chemical potential of end-member i, and µi = ∂Gi

∂pi
. µi can be written

as
µi = µ0i +RT log(aidi ) + µexi , (A.61)

where µ0i is the chemical potential of pure i, with µ0i (P, T ) = Gi(P, T ), as described
above. In the asymmetric formalism, µexi is given by

µexi = −
Nol−1∑
m=1

Nol∑
n>m

(ϕ′m − ϕm)(ϕ′n − ϕn)Wm,n

(
2vi

vm + vn

)
. (A.62)

Here, ϕi is the proportion of end-member i weighted by the asymmetry parameters,
as ϕi = (pivi)/(

∑Nol
m=1 pmvm), with vi the asymmetry parameter for end-member i.

ϕ′m is the value of ϕm in end-member i, such that ϕ′m = 1 where m = i and ϕ′m = 0

where m ̸= i. Wm,n is the interaction energy between end-members m and n in the
solution. The values of model parameters in the olivine solid solution are given in
Table A.A.2.

A.B Implementation in MAGEMin

magemin uses the input outlined in Appendix A to assemble the Gibbs energy of
olivine at pressure P and temperature T :

Gol(x,Q)|P,T =

Nol∑
i=1

(
µi(ol)(x,Q) · pi(ol)(x,Q)

)
|P,T , (A.63)
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Table A.A.1: End-members and mixing site occupancies of olivine in the Holland et al.
(2018) thermodynamic dataset.

End-member Abbreviation Formula Mixing sites
M1 M2
Mg Fe Mg Fe Ca

forsterite fo Mg2SiO4 1 0 1 0 0
fayalite fa Fe2SiO4 0 1 0 1 0
ordered intermediate cfm MgFeSiO4 1 0 0 1 0
monticellite mont CaMgSiO4 1 0 0 0 1

Table A.A.2: Values of parameters in the model olivine solid solution of Holland et al.
(2018)

Wm,n binary value
W (mont,fa) 24 kJ
W (mont,fo) 38 kJ
W (mont,cfm) 24 kJ
W (fa,fo) 9 kJ
W (fa,cfm) 4.5 kJ
W (fo,cfm) 4.5 kJ
vfo 1
vfa 1
vcfm 1
vmont 1
∆God,a

cfm 0 kJ
∆God,b

cfm 0 kJ/K
∆God,c

cfm 0 kJ/kbar
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where µi(ol) is obtained as in equation A.62. Equation A.63 constitutes the objec-
tive function for the minimization step. The gradient of the objective function is
the derivative of the Gibbs from energy of olivine with respect to the compositional
variables:

∂Gol

∂xk
=

Nol∑
i=1

µi(ol)
∂pi(ol)

∂xk
, (A.64)

where ∂pi(ol)
∂xk

is given in Table A.B.1. During the minimization, the value of all site
fractions is required to be ≥ 0 via a set of non-linear inequality constraints (derived
from Eqs. A.47 to A.51) that is passed to the local minimizer. The gradients of the
site-fractions with respect to the compositional and order variables are given in Table
A.B.2.

The above expressions are passed to NLopt (Johnson, 2021) together with an
initial guess for the compositional variables. Subsequently, the objective function is
minimized using the CCSAQ algorithm (Svanberg, 2002).



100 Appendix A. MAGEMin, an efficient Gibbs energy minimizer

Table A.B.1: Partial derivatives of end-member proportions as function of composi-
tional variables

∂pi
∂x

∂pi
∂c

∂pi
∂Q

∂pfo
∂xk

c-1 x-1 -1
∂pfa
∂xk

1 0 -1
∂pcfm
∂xk

-c -x 2
∂pmont

∂xk
0 1 0

Table A.B.2: Partial derivatives of site-fractions as function of compositional variables

∂sfi
∂x

∂sfi
∂c

∂sfi
∂Q

∂xMgM1
∂xk

-1 0 1
∂xFeM1

∂xk
1 0 -1

∂xMgM2
∂xk

c-1 x-1 -1
∂xFeM2

∂xk
1− c x 1

∂xCaM2
∂xk

0 1 0
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