Morphology and charge transport
in conjugated polymers

Dissertation

zur Erlangung des Grades

“Doktor der Naturwissenschaften”

am Fachbereich Physik

der Johannes Gutenberg-Universitdt Mainz

Victor Ruhle

geb. in Boblingen

Max-Planck-Institut fiir Polymerforschung
Mainz, Juni 2010



Vorsitzender:

1. Berichterstatter:
2. Berichterstatter:

Tag der miindlichen Priifung: 6. September 2010

i



Abstract

To assist rational compound design of organic semiconductors, two problems
need to be addressed. First, the material morphology has to be known at
an atomistic level. Second, with the morphology at hand, an appropriate
charge transport model needs to be developed in order to link charge carrier
mobility to structure.

The former can be addressed by generating atomistic morphologies using
molecular dynamics simulations. However, the accessible range of time- and
length-scales is limited. To overcome these limitations, systematic coarse-
graining methods can be used. In the first part of the thesis, the Versa-
tile Object-oriented Toolkit for Coarse-graining Applications is introduced,
which provides a platform for the implementation of coarse-graining meth-
ods. Tools to perform Boltzmann inversion, iterative Boltzmann inversion,
inverse Monte Carlo, and force-matching are available and have been tested
on a set of model systems (water, methanol, propane and a single hexane
chain). Advantages and problems of each specific method are discussed.

In partially disordered systems, the second issue is closely connected to con-
structing appropriate diabatic states between which charge transfer occurs.
In the second part of the thesis, the description initially used for small conju-
gated molecules is extended to conjugated polymers. Here, charge transport
is modeled by introducing conjugated segments on which charge carriers are
localized. Inter-chain transport is then treated within a high temperature
non-adiabatic Marcus theory while an adiabatic rate expression is used for
intra-chain transport. The charge dynamics is simulated using the kinetic
Monte Carlo method.

The entire framework is finally employed to establish a relation between
the morphology and the charge mobility of the neutral and doped states of
polypyrrole, a conjugated polymer. It is shown that for short oligomers,
charge carrier mobility is insensitive to the orientational molecular ordering
and is determined by the threshold transfer integral which connects percolat-
ing clusters of molecules that form interconnected networks. The value of this
transfer integral can be related to the radial distribution function. Hence,
charge mobility is mainly determined by the local molecular packing and is
independent of the global morphology, at least in such a non-crystalline state
of a polymer.
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Zusammenfassung

Bei der systematischen, Computer gestiitzten Entwicklung neuer organischer
Halbleiter miissen zwei Kernpunkte behandelt werden: Zunéchst muss deren
Morphologie auf atomarer Ebene bestimmt werden. Anschliefend wird ein
Modell benétigt, welches Ladungstragermobilitéiten fiir diese Strukturen be-
rechnen kann.

Ersteres kann durch Molekulardynamik Simulationen erfolgen, jedoch sind
die erreichbaren Langen- und Zeitskalen stark eingeschréankt. Hier bieten
systematische Vergroberungsmethoden einen Ausweg, welche im ersten Teil
dieser Arbeit vorgestellt werden. Im Rahmen dieser Arbeit wurde ein Software-
Paket (“Versatile Object-oriented Toolkit for Coarse-graining Applications”)
entwickelt, welches eine flexible Plattform fiir die einheitliche Implemen-
tierung von Vergroberungsmethoden bietet. Bisher wurden Anwendungen
fiir die Methoden Boltzmann Inversion, iterative Boltzmann Inversion, Monte
Carlo Inversion und Force-matching integriert und an vier Referenzsystemen
(Wasser, Methanol, Propan und ein einzelnes Hexanmolekiil) getestet. Die
Vor- und Nachteile der verschiedenen Ansétze werden diskutiert.

Die Modellierung der Ladungstragerdynamik ist in ungeordneten Systemen
eng mit der Konstruktion geeigneter diabatischer Zustande verbunden, zwi-
schen welchen Ladungstransport erfolgen kann. Im zweiten Teil dieser Ar-
beit wird ein Modell entwickelt, welches Ladungstransport in konjugierten
Poylmeren beschreibt. Hierbei wird der Transport durch Springen zwischen
konjugierten Segmenten (Bereiche im Polymer, auf welchen Ladungstriger
lokalisieren kénnen) beschrieben. Die Transportraten der Spriinge zwischen
Molekiilen wird mit der nicht-adiabatischen Marcus-Gleichung berechnet,
wohingegen eine adiabatische Ratengleichung fiir Transport innerhalb der
Polymerkette verwendet wird. Die Dynamik der Ladungstrager wird an-
schlieftend mit dem kinetischen Monte Carlo Algorithmus simuliert.

Im letzten Teil dieser Arbeit wird mit Hilfe des entwickelten Modells eine Re-
lation zwischen Morphologie und Ladungsmobilitat in neutralen und dotierten
Zustanden des konjugierten Polymers Polypyrrol etabliert. Es wird gezeigt,
dass bei kurzen Ketten die Mobilitéat der Ladungstrager kaum von der moleku-
laren Ordnung abhéngt. Zudem kann die Mobilitdt anhand des Schwellen-
werts des Transferintegrals abgeschitzt werden, welches Molekiile zu einem
einzelnen Cluster verbindet. Die Tatsache, dass das Transferintegral eng mit
der radialen Verteilungsfunktion verkniipft ist, deutet darauf hin, dass die
Ladungsmobilitéit, zumindest in solch einem nicht-kristallinen Zustand eines
Polymers, iiberwiegend durch die lokale molekulare Packung gegeben ist und
damit unabhéngig von der globalen Ordnung ist.
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Chapter 1

Organic electronics

Organic electronics promises the possibility of developing devices with elec-
tronic properties of inorganic materials and advantageous processing and me-
chanical properties of plastic materials. Appropriately designed compounds
can be processed from solution, and thus cost-efficient techniques such as
spin coating or ink-jet printing [1| can be employed. The use of plastic semi-
conducting materials allows for the design of flexible electronics. Typical
applications are e-paper [2|, bendable solar cells [3], rollable light sources
and displays [4].

At present, four distinct classes of organic conductive materials are being
scrutinized for organic electronics applications: (i) small organic molecules
assembled in crystals, normally by vapor deposition. Typical examples here
are polyacene or rubrene crystals |5, 6]; (ii) soluble small organic molecules
which self-assemble in supramolecular structures (molecular wires). Discotic
liquid crystals and some organic oligomers are typical representatives of such
materials |7, 8, 9]; (iii) soluble conjugated polymers, such as derivatives of
polythiophene, poly(p-phenylene vinylene) [10, 11]; (iv) finally, doped conju-
gated polymers such as polyacetylene and polypyrrole [12, 13, 14]. Some of
the typical compounds are depicted in figure 1.1.

Thin organic semiconducting layers are typically used in three device types:
organic light emitting diodes [15], field effect transistors [16] and solar cells [17].
These are depicted in figures 1.2 and 1.3. The properties of a semiconduct-
ing layer have to be adjusted for a specific application. The advantage of
organic materials is that synthesis can be used to tune molecular properties,
e.g. the band gap, light absorption spectra, etc. For the majority of ap-
plications two requirements are essential: high charge carrier mobilities and
stability of materials. Indeed, significant efforts have been invested in im-
proving charge mobilities and reported to be successful [18, 19]. It has been
concluded, however, that optimizing the electronic structure is not sufficient,
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Figure 1.1: Typical compounds used in organic electronics.

since the material morphology, which heavily depends on the processing tech-
nique and the chemical structure, can alter charge mobility by several orders
of magnitude |20, 21].

In addition, the global ordering of molecules is important for devices. For
example, amorphous materials are more suitable OLEDs since in this case
charge carriers sample more sites which increases the probability of electron-
hole recombination [15]. Furthermore, OLEDs operate at high charge carrier
densities and therefore require stable materials, which is easier to achieve
with small, non-soluble molecules. In contrast, well-structured materials, for
example crystals or molecules that self assemble in ordered monolayers, are
preferred for OFETs, where defect free conducting layers and high charge
carrier mobilities are required [16].

In the following section, the functionality of a bulk heterojunction solar cell
is discussed in detail. Based on this discussion, the requirements for the
molecular assembly on disparate length scales are outlined, emphasizing the
need for multiscale simulation techniques.

1.1 Organic solar cells

In solar cells, absorption of light creates excitons (Coulomb bound electron-
hole pairs), which subsequently dissociate into free charge carriers and can
then be transported to the contact electrodes. In inorganic semiconductors,
the binding energy of an exciton (the energy needed to separate hole and
electron) is much smaller than the thermal energy at room temperature.

2
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Figure 1.2: Two types of organic semiconductors devices. (a) Organic
light emitting diode (OLED). The diode is manufactured as a heterolayer
structure, with a hole transporting layer (HTL) and electron transporting
layer (ETL). Holes and electrons are transported to the interface and recom-
bine in the emission layer (EML). (b) Organic field-effect transistor (OFET).
Depending on an p- or n-type transistor, a hole or electron transporting
material is used, respectively. Adapted from ref. [22].

Therefore, charges can be separated due to thermal fluctuations and dissim-
ilar work functions of the electrodes. In contrast, the low dielectric constant
in organic solar cells results in strongly bound electron-hole pairs. The bind-
ing energy in organic semiconductors is of the order of several kgT" and an
additional mechanism is needed to drive charge separation [23].

An effective method to achieve this is via a donor-acceptor interface using
compounds with different highest occupied molecular orbital (HOMO) and
lowest unoccupied molecular orbital (LUMO) energies. The difference in
energy has to be at least the binding energy of the exciton. If an exciton
reaches the interface, the electron will be transferred to the acceptor and the
hole will reside in the donor. After separation, free charge carriers travel to
the electrodes and are injected into an external circuit.

Several factors influence the efficiency of an organic solar cell, such as light
absorption, exciton and charge carrier mobilities. While thick photoactive
layers are required to enhance absorption of light, excitons must still be able
to reach the interface within their lifetime. The typical diffusion length of
10 nm requires fine-grained structures with a large interface/bulk ratio. This
issue is addressed in bulk heterojunction solar cells [24] as depicted in fig-

3
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Figure 1.3: Organic photovoltaic cell (OPVC). Exciton binding energy is
high in organic semiconductors. Bulk heterojunctions are needed to separate
charges and produce a functioning device. Effective morphology control is
one of the key factors in producing effective OPVCs. Adapted from ref. [22].

ure 1.3 by, for example, intermixing two conjugated polymers with different
electron affinities or a conjugated polymer with a Cgy derivative. Phase sep-
aration of the two compounds leads to a large interface/bulk ratio compared
to a monolayer structure and excitons are formed near an interface [23]. At
the same time, donor and acceptor domains still need to be connected to the
electrodes in order to provide pathways for charges after they are separated.
Self-assembling materials, such as discotic liquid crystals that form columnar
phases [25] or block copolymers, can be used to improve morphology control
during device manufacturing.

To summarize, apart from the electronic structure, both local molecular pack-
ing as well as domain alignment shall be controlled in order to obtain an ef-
ficient solar cell. The local packing of molecules directly affects exciton and
charge carrier mobilities. Local packing is accessible via atomistic molecular
dynamics simulations, where the initial configuration can be prepared with
the help of experimental data, such as x-ray scattering or solid state NMR.
On the other hand, global morphology (phase separation, nucleation and
growth) cannot be addressed using atomistic simulations due to the limited
range of time- and length-scales. Coarse graining techniques, which are de-
scribed in sec. 2.2, can be used to overcome some of these limitations and to
allow for simulations of larger scale morphologies.



1.2. MOBILITY MEASUREMENTS

1.2 Mobility measurements

Several techniques have been developed to measure mobilities in organic semi-
conductors. They can be divided into groups based on how charge carriers
are created (see figure 1.4). When comparing measurements of different

Electric-field generated

FET

Injection-generated
SCLC

Mobility Transient Electroluminescence
Doping-generated measurement
CELIV
Conductivity

X

Photo-generated
Time-of-flight
Auston-Switch Photoconductivity

Figure 1.4: Methods to measure mobilities in organic semiconduc-
tors. Methods can be divided into groups based on how charge carriers are
created. Injection of charge carriers from electrodes (interface), photoexcita-
tion of charge carriers, free charge carriers due to doping of the sample e.g.
during synthesis and electric field generated. Taken from ref. [26].

techniques, an essential point to consider is that these operate at different
conditions. For example, conductivity measurements require the presence of
intrinsic charge carriers as it is the case in doped systems. Other methods
explicitly create free charge carriers and, depending on the type of creation
(e.g. injection, photo-excitation), interface effects might have to be taken
into account. In addition, the charge carrier density at which a measurement
takes place as well as the path of charge movement can significantly affect the
measured mobility. For example the time-of-flight (TOF) technique measures
bulk mobilities at low charge carrier densities, a local mobility is measured
in time resolved microwave conductivity experiments, and a surface mobility
at high charge carrier densities is measured using a FET setup.

To highlight the differences which are important when simulation data is
compared to experiments, two techniques, time of flight and field effect tran-
sistor measurements are discussed in the following sections.
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1.2.1 Time of flight

A time of flight (TOF) experiment is the most direct way to measure charge
carrier mobility. In this method, the mobility is determined by monitoring
the time a charge needs to traverse the sample. The experimental setup
is depicted in figure 1.5(a). The sample is embedded between two elec-
trodes, one of which is semi-transparent. An external field is generated by
applying a voltage to the electrodes. Charge carriers are created by a short
laser pulse with a high enough photon energy to create free charge carriers.
Subsequently, the charges propagate along the electric field and generate a
displacement current as depicted in figure 1.5(b). This displacement current
drops, as soon as the charges reach the second electrode. Knowing the dura-
tion t of time it takes for charges to cross the sample and sample thickness
d, a drift velocity v and charge carrier mobility can be calculated as

v d d?
_v_¢ _a 1.1
F=FE" WVt (1.1)

with the electric field denoted as E and the voltage applied to the electrodes
as V.
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Figure 1.5: Time of flight experiment (a) Schematic of a time of flight
experiment. (b) Mobilities are determined by monitoring the photocurrent
and determining the time the charges require to cross the sample.

An advantage of the TOF technique is its insensitivity to interface effects
at the contact electrodes. Charges are photo-generated within the sample,
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while the current is measured capacitively. Hole and electron mobilities can
be measured separately by changing the direction of the applied field.

To obtain a transient signal, which is comprised of a plateau followed by
a rapid decrease shown by the solid curve in figure 1.5(b), charge carriers
must not be dispersed. This allows the evaluation of a transient time at the
intersection of the tangents, depicted in red. However, in highly disordered
materials, transport may be dispersive and an ideal transient sharp cannot
be obtained (see dotted curve in figure 1.5b). In this case, a transient time
can still be determined from a double logarithmic plot of the photocurrent.
However, the obtained mobility is system size dependent due to insufficient
time for thermal equilibration of charge carriers [27, 28, 29, 30].

1.2.2 Field effect transistor measurements

Another method to determine mobilities is to use a field-effect transistor
setup (see figure 1.2). As it was pointed out by Horowitz [31], in transistors
the I-V (current-voltage) characteristics in the linear regime can be described
by

w
ISD = f,u (Vg—VT) VSDy (1.2)

and in the saturated regime by

0%
Isp = E“C (Ve — Vi), (1.3)

where Isp and Vsp denote the current and voltage bias between source and
drain, respectively, V; the gate voltage, and V7 the threshold voltage at which
the current starts to rise. The capacitance of the gate dielectric is described
by C', and the width and length of the conducting channel are given by W
and L, respectively [32]. The typical current-voltage characteristics of a FET
are depicted in figure 1.6.

FET measurements show two main differences to TOF measurements. In
TOF, mobilities perpendicular to the electrodes are measured, whereas mo-
bilities within the plane of the substrate are measured in FET. The transport
occurs in a narrow channel of a few tenth of nm and is affected by structural
defects within the organic layer at the interface as well the surface topology
and polarity of the dielectric. These effects are less pronounced for the case of
amorphous materials, but can play a significant role in crystals or columnar
phases in liquid crystalline systems.

Another difference concerns the charge carrier densities. Photoexcitation in
a TOF experiment only creates a small amount of charge carriers. Therefore,

7
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Figure 1.6: Current-voltage characteristics of a FET. V}, < V, < V3.
Changing the gate voltage V; alters the resistance of the conducting channel.
For drain voltages Vp much smaller than the gate voltage V, the drain cur-
rent Vp has ohmic behavior and is proportional to Vp. Increasing Vp creates
a significant asymmetrically-shaped charge distribution in the conducting
channel and the drain current saturates.

the respective measurements always occur in the limit of low charge carrier
density. In contrast, charge carrier densities in FET measurements are much
higher. Since mobility strongly depends on the charge carrier density, the
measured mobilities can be of several orders of magnitude higher than those
obtained during a TOF experiment [33] and should be extrapolated to the
limit of low charge carrier density when these techniques are compared [10].

1.3 Rational compound design

As has been discussed previously in this chapter, several aspects can affect
the performance of a device. Hence, the screening of new materials for use
in organic electronics can be a cumbersome task. In experiments the first
step is synthesis. Then, to evaluate the properties of the new compound,
its morphology is characterized, a set of measurements (e.g. conductivity,
mobility, absorption spectrum) is collected or it is directly analyzed in a
specific application by fabrication of a complete device. However, it can be
difficult in experiments to control specific properties (e.g. the morphology),
in order to systematically analyze their effect on the measurements (e.g. the
mobility). Both chemical structure and processing conditions can affect the

8
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material morphology. In this situation, the overall device performance is
determined by the electronic structure of a single molecule, as well as the
long- and short-range ordering of molecules.

Computer simulations offer an additional perspective on the processes that
occur during charge transport in these materials. For example, charge trans-
port parameters can be calculated for a subset of the system (e.g. a pair
of molecules) as well as global morphologies can be prepared and analyzed.
However, computer simulations are often limited to small system sizes, short
timescales and need experimental data as input. Therefore, a symbiosis of
theory and experiments is needed in order to understand and systematically
optimize charge transport in organic semiconductors.

In this context, the main focus of this thesis is to develop a model to in-
vestigate the effect of material morphology on charge carrier mobility using
computer simulations. Two problems shall be addressed: first, the material
morphology has to be known at an atomistic level. Second, with the morphol-
ogy at hand, an appropriate charge transport model needs to be developed
in order to link charge carrier mobility to structure.

The theoretical background of morphology simulations is described in chap-
ter 2. Here, molecular dynamics may be used, although the accessible range of
time- and length-scales of atomistic simulations is limited. However, system-
atic coarse-graining methods may be applied to overcome these limitations.
To link charge mobility to the obtained morphology, a description which was
originally developed to study disordered assemblies of small molecules has
been extended for treatment of conjugated polymers. The theory for this
framework is covered in chapter 3.

The coarse-graining methods and the model to calculate charge mobility are
implemented in a software package, whose design and features are outlined
in chapter 4. The coarse-graining functionality is illustrated for a set of
reference systems (SPC/E water, methanol, liquid propane, and a single
chain of hexane) in chapter 5, where advantages and problems of each specific
method are discussed. Finally, the entire model is employed in chapter 6 to
establish a relation between morphology and charge carrier mobility in the
neutral and doped states of polypyrrole.
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Chapter 2

Morphology simulations

In this thesis, a combination of methods from computational physics and
chemistry is applied to study the effect of morphology on charge transport
parameters in conjugated polymers. Here, an outline of the methods which
are essential for the understanding of the topics discussed is given. For an
overview of density functional theory (DFT) or molecular dynamics (MD),
the reader is referred to text books [34, 35|. Well-tested implementations of
these methods are provided in standard packages: Gaussian [36] was used
for quantum chemical calculations and GROMACS [37] for atomistic and
coarse-grained simulations.

First, methods to simulate large-scale material morphologies are outlined.
The description starts with introducing the concept of force-fields for atom-
istic simulations and the basic principles needed for force-field refinement as
performed in sec. 6.1 to obtain the atomistic model for polypyrrole. Then,
coarse-graining methods are described, which enable the accessible time- and
length-scales to be extended in particle-based simulations.

2.1 Force-field development

Practically all of the problems addressed in molecular modeling are too com-
plex to be treated in full detail, that is solving the Schrédinger equation for
electronic and nuclear degrees of freedom. A common simplification is the
Born-Oppenheimer approximation, which assumes that the dynamics of elec-
trons is much faster than the dynamics of the nuclei and, therefore, the dy-
namics of the entire system can be described by only the nuclear coordinates
while electrons are assumed to be in their respective ground state associated
with these coordinates. Quantum chemical calculations determine the forces
on nuclei as the derivatives of the total energy, i.e. the combined energy of

11
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electrons and nuclei with respect to the nuclear coordinates. However, this is
still a computationally expensive task. The next level of simplification is to
use empirical potentials to calculate forces on the nuclei instead of explicitly
treating electronic structure. The system is then propagated in time by in-
tegration of the classical equations of motion. The corresponding method is
called molecular mechanics, and the functional form of the potential energy
surface, together with its parameters, is referred to as a force-field.

A force-field consists of contributions from bonded and non-bonded inter-
actions. In this work the focus is on force-fields which describe bonded
intra-molecular interactions via bond stretching, angle bending, and torsion
potentials (see figure 2.1), and neglect cross-terms for their cross-coupling.
Typical examples are the Optimized Potential for Liquid Simulations - All
Atom (OPLS-AA) [38] or AMBER [39] force-fields. A force-field which has
cross terms is, for example, MM3 [40)].

oo A7 NN V/@ w

bond stretching angle bending torsion improper dihedral

non-bonded interactions

Figure 2.1: Interaction types in force-fields. Bond stretching, angle
bending, torsion and improper dihedrals represent bonded interactions. Tor-
sions are used to describe rotations around a bond while improper dihedrals
are used to keep atoms within a plane. Coulomb and van-der-Waals interac-
tions are normally used to describe non-bonded interactions.

All atomistic simulations in this work are based on the OPLS-AA force-
field [38], for which the functional form of the potential energy surface U ({7;})

12
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is given by

U{rih) =) 3 L (= ro)? Zkge 00)°

bonds angles

+ Z { [1+ cos(p)] + %[1 — cos(2¢p)]

+ %[1 + cos(3g0)]}

12 6
02] O-ij

3oy () ()
=1 j=i+1 Z] v

where bonds r and angles 6 are modeled by harmonic potentials and torsion
potentials are given by the first four terms of a Fourier series. The last part
is a sum over all pairs of particles to account for non-bonded interactions
which are calculated based on the separation r;; of the two particles.

To study conjugated molecules, it can be useful to add an additional term
to eq. 2.1 for improper dihedrals (see figure 2.1). The difference to proper
torsions is that the latter are used to describe rotations around a bond, while
improper dihedrals are constructed to keep atoms in a plane. However, the
evaluation as well as the implementation of the force calculation is identical
except for the functional form of the potential. While proper torsions are
usually described by periodic potentials, a harmonic potential is used for
improper dihedrals.

Non-bonded interactions are usually divided into two groups. Van-der-Waals
interactions combine London dispersion forces for attraction and steric re-
pulsion, both of which are short ranged and can be treated using a cut-off.
Electrostatic interactions between partially charged atoms are long ranged.
Thus, the direct evaluation of the Coulomb potential using a cut-off is compu-
tationally ineffective and can even lead to artifacts for periodic systems [41].
An alternative is to calculate the long-ranged contributions by projecting
charges onto a grid. In this case, the long-ranged contributions are calcu-
lated in Fourier space, using a technique similar to Ewald summation [41].
An important aspect of all force-fields is their transferability. The challenge
is to find a minimum set of parameters in eq. 2.1, which is transferable to
compounds which were not used in the initial parametrization procedure. It
turns out that a solely element-based definition of parameters is not sufficient.
Instead, it is necessary to define atom types that reflect both the specific el-
ement and its bonding situation. The parameters are then defined based on
these atom types and identical values of parameters can be used for similar
compounds. In particular, dihedral potentials often need reparametrization

Tij

+%} , (2.1)

13
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for their specific bonding situations. A common procedure to refine dihedral
potentials is to fit the energy profile obtained in quantum chemical calcula-
tions (e.g. density functional theory). However, this energy profile represents
the total energy of the system including contributions from other interactions,
such as bonds, angles, improper dihedrals, Coulomb and Lennard-Jones in-
teractions. Hence, the corresponding force-field based energy contributions
have to be subtracted before fitting in order to avoid double counting of en-
ergies. This is described in sec. 6.1, in which the atomistic force-field for
polypyrrole is developed. An additional point concerning transferability is
that force-fields are normally parametrized for a certain state point, and their
validity for different conditions is not guaranteed.

Although the concept of force-fields has been introduced based on interac-
tions between individual atoms, it is not restricted to atomistic simulations
but can in general be applied to all particle-based simulations. Examples are
the coarse-grained simulations as described in the next section. Forces are
evaluated in a similar way, however, tabulated potentials are used instead
of the exact functional form of eq. 2.1. The coarse-graining techniques can,
therefore, be seen as a systematic way to parametrize the force-field for a
coarse representation of the system.

2.2 Coarse-graining

Computational materials science deals with phenomena covering a wide range
of length- and time-scales, from Angstroms (typical bond lengths) and femto-
seconds (bond vibrations) to micrometers (crack propagation) and millisec-
onds or more (a single polymer chain relaxation). Depending on the char-
acteristic time- and length-scales involved, the description of the system can
vary from first principles and atomistic force-fields to coarse-grained models
and continuum mechanics. The role of bottom-up coarse-graining, in a broad
sense, is to provide a systematic link between these levels of description.
Here the focus is on coarse-graining techniques that link two particle-based
descriptions with a different number of degrees of freedom. The system
with the larger number of degrees of freedom is denoted as the reference
system. The system with the reduced number of the degrees of freedom is
referred to as the coarse-grained system (see figure 2.2). An example which
is treated in detail in this work is an all-atom (reference) and a single site
(coarse-grained) models of water. Other examples can be readily found in
the literature [42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53|.

The prime task of systematic coarse-graining is to derive a potential energy
function of the coarse-grained system, which reproduces the properties of
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2.2. COARSE-GRAINING

Figure 2.2: Coarse grained model for polypyrrole. Coarse-graining
combines groups of atoms into beads, here one bead per repeat unit. The
role of systematic coarse-graining is to find a set of potentials such that the
coarse-grained model reproduces selected properties of the reference system.

interest (e.g. distribution functions, pressure, free energy) of the reference
system. To do this, several coarse-graining approaches can be used. From the
point of view of implementation, these approaches can be divided in iterative
and non-iterative methods. Boltzmann inversion is a typical example of a
non-iterative method [42]. In this method, which is exact for independent
degrees of freedom, coarse-grained interaction potentials are calculated by
inverting the distribution functions of the coarse-grained system. Another
example of a non-iterative method is force matching, where the coarse-grained
potential is chosen in such a way that it reproduces the forces on the coarse-
grained beads [54, 46]. Configurational sampling [55]|, which matches the
potential of mean force, also belongs to this category. Boltzmann inversion
and force matching only require a trajectory for a reference system. Once
that is known, coarse-grained potentials can be calculated for any mapping
scheme. Note that Boltzmann inversion often uses a “special” trajectory
which is designed to decouple the degrees of freedom of interest, e.g. a single
polymer chain in vacuum with appropriate exclusions [42].

Iterative methods refine the coarse-grained potential by re-iterating coarse-
grained simulations and calculating corrections to the potential on the ba-
sis of the reference and coarse-grained observables (e. g. radial distribution
function or pressure). The simplest example is the iterative Boltzmann inver-
sion method [56], which is an iterative analogue of the Boltzmann inversion
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method. More sophisticated (in terms of the update function) is the inverse
Monte Carlo approach [57].

One can also classify systematic coarse-graining approaches by micro- and
macroscopic observables they use to derive the coarse-grained potential, such
as structure-based [57, 58, 42|, force-based |54, 59, 46|, potential-based [60],
and free energy based approaches [61], where the name identifies the observ-
able used for coarse-graining. Note that hybrids of these methods are also
possible [44, 53].

With a rich zoo of methods plus their combinations! available at hand, the
question arises whether there is an optimal method for a specific class of sys-
tems. On a more fundamental level one might wonder whether the different
methods provide the same coarse-grained potential and whether it is possible
to formulate a set of (even empirical) rules favoring one method over another.
It is obvious that this is a difficult task to treat analytically, especially for
realistic systems. To assess the quality of a particular coarse-graining tech-
nique one needs to apply all available methods to a certain number of sys-
tems and to compare and quantify the degree of discrepancy between the
coarse-grained and reference descriptions. This is, however, cumbersome in
particular due to the absence of a single package where all these methods are
implemented with the same accuracy and same level of technical detail.

In this thesis such a coarse-graining package is developed. First, the basic
ideas behind each method are described in this chapter, paying special atten-
tion to the technical issues one has to overcome when implementing them.
The design of the software package is described in chapter 4. In chapter 5, the
implemented methods are illustrated and compared by coarse-graining sys-
tems of different complexity: a three-site SPC/E water, methanol, propane,
and hexane.

2.2.1 General considerations

Here, the general concepts of distribution based coarse-graining are recapit-
ulated. This is mainly a brief summary of the paper by Noid et al. [62]. The
discussion starts with the definition of a high resolution (atomistic) and a
low resolution (coarse-grained) model for a given system. First, a link be-
tween these two models via the mapping operator is introduced, and second,
conditions for a consistent coarse-grained model are given.

The instantaneous configuration of an atomistic system is described by its

!Bonded- and non-bonded interactions can be treated separately using different meth-
ods, e.g. Boltzmann inversion for bonded and force-matching for non-bonded interactions.
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Cartesian coordinates 7" and momenta p"

r" = {ry,...,r}, (2.2)

p" = {p1,....Pn} (2.3)

of the n atoms in the system. At a coarse-grained level, the coordinates
and momenta are specified by the positions R and momenta P" of coarse-
grained sites

RY ={R,,..., Ry}, 2.4)
PY =P, ..., Py} (2.5)

Note that capitalized symbols are used for the coarse-grained sites while
lower-case letters describe the atomistic system.

The mapping operator establishes a link between the atomistic and coarse-
grained representations of the system. Here only the special case of linear
mapping schemes is discussed, where the mapping operator can be written
as a vector ey for each bead [

R, = chﬂ‘i, (2'6)
i=1

: . Cri
M[R[ = M] Z Crir; = M[ Z mipz (27)

i=1 =1

Py

for all I = 1,...,N. Note that the mapping operator reduces the number
of degrees of freedom and several atomistic configurations {r;} can lead to
identical coarse-grained coordinates R;. Due to translational invariance, that
is if an atomistic system is translated by a constant vector the corresponding
coarse-grained system is also translated by the same vector, the mapping
operator must fulfill the following conditions:

n

> en=1. (2.8)

=1

In some cases it is useful to define coarse-grained mapping in a way that
some atoms belong to several coarse-grained beads [63]. In this case, two
types of atoms for each of the N coarse-grained beads can be defined [62],
namely specific and involved atoms, as depicted in figure 2.3. For each site
I, a set of involved atoms Z; is defined as

Iy = {ilen # 0} (2.9)
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An atom 7 in the atomistic model is involved in a coarse-grained site I if this
atom provides a nonzero contribution to the sum in eq. 2.7. A set of specific
atoms is defined as:

Sy ={ilcri # 0 and ¢j; = 0 for all J # I}. (2.10)

In other words, atom i is specific to site [ if it is only involved in site I and
not in any other sites.

involved specific

Figure 2.3: Specific and involved atoms. Involved atoms are shared
by two or more coarse-grained beads while specific atoms only belong to a
single coarse grained bead. The mapping scheme for polystyrene is described
in ref. [63].

Further discussion is based on the Hamiltonian for the atomistic and coarse-
grained systems. In the atomistic case, the Hamiltonian can be written as

h(r',p") = 1 p; +u(r") (2.11)

i=1

The equilibrium probability density p,, of the atomistic system is given by

prp (", 0") = i (7") pp (P") (2.12)
pp (P") ox exp (— ' %) . (2.13)

The Hamiltonian H (R", R™) and distribution functions Pg (R), Pp (P) of
the coarse-grained system are identical, except that the lower-case variables
should be replaced with the capitalized ones.
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The criteria for the two models to be consistent is that the distribution
functions of the coarse grained model should match those of the mapped
atomistic model,

b (R") = pr (R") (2.14)
B, (P") = py (P") . (2.15)

Note that equations (2.14) and (2.15) specify the manybody distribution
function. Both equations can be rewritten by applying the mapping operator
to the atomistic distribution function. By integrating out atomistic degrees

of freedom, the conditions for consistency in the configuration space can be
obtained [62]

1. The mapping operator should be linear?

2. Each coarse-grained site shall have at least one atom which is specific
to this site?.

Naturally, additional requirements must be imposed on the coarse-grained
potential. They are discussed in sec. 2.2.5, where the force-matching method
is described. If the distribution of momenta, eq. 2.15, should match as well,
the following additional requirements arise

1. All beads have to be specific (coarse-grained beads do not share atoms).
2. The coarse grained masses must satisfy the following relation,
-1
M; = (Z Ci’) (2.16)
I — : mz . .
i€LT

This expression simplifies to the total mass if the center of mass is used
for the position of the coarse-grained bead, i.e.

Cr; = m,/MI s (217)
Mp=Y "m;. (2.18)
1€11

2The conclusions below are valid only for linear mapping operators. A non-linear
mapping scheme is, in principle, possible but is not considered here.

3This is required to perform the partial integration when averaging the atomistic de-
grees of freedom in the right-hand-side of eq. 2.14 [62].
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A model that does not fulfill these requirements will have a different distri-
bution of momenta compared to the mapped reference model. Note that the
momenta of atoms due to intra-bead contributions are averaged out and only
the effective contribution which acts on the mapping point remains. Special
attention is required if the coarse-grained center of a bead is not in the center
of mass. In this case, the mass of the coarse-grained bead is not the sum of
all atom masses, but is given by eq. 2.16.

If the criteria above are fulfilled, the coarse-grained model can match the
full manybody distribution function. However, in reality, the coarse-grained
force-field does not have manybody terms, and only the pair correlation func-
tions (e.g. radial distribution function) can be used to parametrize the coarse-
grained potentials and higher correlation functions are ignored. For example,
when coarse-graining water using iterative Boltzmann inversion (IBI), the ra-
dial distribution function matches perfectly but tetrahedral packing cannot
be reproduced [64]. In what follows, specific techniques to derive coarse-
grained potentials are outlined.

2.2.2 Boltzmann inversion

Boltzmann inversion is the simplest method one can use to obtain coarse-
grained potentials [42]. It is mostly used for bonded potentials, such as bonds,
angles, and torsions. Boltzmann inversion is structure-based and only re-
quires positions of atoms.

The idea of Boltzmann inversion stems from the fact that in a canonical
ensemble independent degrees of freedom ¢ obey the Boltzmann distribution,
i.e.

P(q) = Z " exp[-pU(q)] , (2.19)

where Z = [exp [—4U(q)] dg is a partition function, 5 = 1/kgT. Once P(q)
is known one can invert eq. 2.19 and obtain the coarse-grained potential,
which in this case is a potential of mean force

U(q) = —kgTIn P(q) . (2.20)

Note that the normalization factor Z is not important since it would only
enter the coarse-grained potential U(q) as an irrelevant additive constant.
In practice, P(q) is computed from the trajectory of the reference system
which is sampled either by Monte Carlo, molecular dynamics, stochastic
dynamics, or any other integrator that ensures a canonical distribution of
states.

Boltzmann inversion is simple to implement, however one has to be care-
ful with the rescaling of the probability P due to normalization as well as
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bond angle

©

Figure 2.4: Rescaling for bonds and angles. Before Boltzmann inverting
distribution functions for bonds and angles, they have to be normalized by the
area of a spherical surface and the circumference of a rotation, respectively.

computational issues. The probability normalization can be explained on a
particular example of coarse-graining of a single polymer chain by beads with
bond, angle and torsion potentials. In this case the coarse-grained potential
U depends on three variables, bond length r, angle 6 and torsion angle ¢.
Assuming, as before, a canonical distribution and independence of the coarse-
grained degrees of freedom, one can write

P(r,0,¢) = exp[-pU (r,0,¢)] , (2.21)
P(?‘,@,gp) = PT(T)P9(6)P¢((P> : (2'22)

If now the histograms for the bonds H,(r), angle Hy(#), and torsion angle
H,(¢) are computed, they must be rescaled in order to obtain the normalized
distribution functions (see figure 2.4).

_ Hy(0)

sin 6

P(r) = , Py (0) » Pe(ip) = Hy () - (2.23)

4A7rr?

The coarse-grained potential can then be calculated by Boltzmann inversion
of the distribution functions

U(r,0,¢) = U (r) + Ug(0) + Uy(¢) (2.24)
U,(q) = —kgTInP,(q), ¢ =1,0,¢ .

On the technical side, the implementation of the Boltzmann inversion method
requires smoothing of U(q) to provide a continuous force. Triangular or spline
smoothing can be used for this purpose. Poorly and unsampled regions, that
is regions with high U(q), must be extrapolated. Since the contribution of
these regions to the canonical density of states is small, the exact shape of
the extrapolation is less important.

Another crucial issue is the cross-correlation of the coarse-grained degrees of
freedom. Independence of the coarse-grained degrees of freedom is the main
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assumption that allows factorization of the probability distribution, eq. 2.22,
and the potential, eq. 2.24. Hence, one has to carefully check whether this
assumption holds in practice. This can be done by performing coarse-grained
simulations and comparing cross-correlations for all pairs of degrees of free-
dom in atomistic and coarse-grained resolution, e. g. using a two-dimensional
histogram, analogous to a Ramachandran plot. This concept is illustrated in
sec. 5.5 for a single molecule of hexane. Note that checking the linear corre-
lation coefficient does not guarantee statistical independence of variables, for
example c(z, z%) = 0 if  has a symmetric probability density P(z) = P(—z).
This case is often encountered in systems used for coarse-graining [65, 66].

2.2.3 Iterative Boltzmann inversion

[terative Boltzmann inversion (IBI) is a natural extension of the Boltzmann
inversion method. Since the goal of the coarse-grained model is to reproduce
the distribution functions of the reference system as accurately as possi-
ble, one can also iteratively refine the coarse-grained potentials using some
numerical scheme. Depending on the update function, this can be done ei-
ther by using iterative Boltzmann inversion |56 or the inverse Monte Carlo
method [57, 58|.

In iterative Boltzmann inversion, the coarse-grained potential is refined ac-
cording to the following scheme

gt — y® L AU™ | (2.25)
pn)
AU™ = kTl . wie — Ul -

One can easily see that convergence is reached as soon as the distribution
function P matches the reference distribution function P, or, in other
words, the potential of mean force, UI()K/)[F converges to the reference potential
of mean force. Note that eq. 2.25 is nothing else but a numerical scheme that
allows to match the coarse-grained and the reference distribution functions.
A possible choice for the initial guess of the iterative procedure is the potential
of mean force, eq. 2.20. In the case of non-bonded interactions, it reads

UD(r) = —kgTIng(r), (2.26)

where ¢g(r) is the radial distribution function. In fact, it can be seen as
a first-order correction to the interaction potential with respect to a gas
of non-interacting particles. In an ideal gas (non-interacting particles), the
probability of finding two particles at a distance r is P o 47r?, which
is equivalent to the statement that the radial distribution function of an

22



2.2. COARSE-GRAINING

ideal gas is one. Substituting P into eq. 2.25, the first iteration UM =
—kgT In(Pyet/47r?) is obtained, which is the potential of mean force, eq. 2.26.

IBI can be used to refine both bonded and non-bonded potentials. It is
primarily used for simple fluids with the aim of reproducing the radial dis-
tribution function of the reference system in order to obtain non-bonded
interactions [56]. It can have convergence problems for multicomponent sys-
tems, since it does not account for cross-correlation terms, that is the updates
for Paa, Pap, and Pgp are not coupled (the subscript enumerates a single
component in a multicomponent system). For such systems, the inverse
Monte Carlo method is said to work better. The scheme can be stabilized
by multiplying the update function, AU®™ by a factor n € [0..1].

On the implementation side, IBI has the same issues as the inverse Boltz-
mann method, i. e. smoothing and extrapolation of the potential must be
implemented.

It shall also be mentioned that, according to the Henderson theorem [67, 68|,
which is a classical analogue of the Hohenberg-Kohn theorem, the pairwise
coarse-grained potential U(r) is unique up to an additive constant and ex-
ists |69, 70|, which, in principle, states that all structure-based iterative meth-
ods must converge to the same coarse-grained potential, provided that their
aim is to exactly reproduce pair correlation functions of the reference system.
As will be seen later, this is often not the case in practice, since small changes
in the radial distribution function often lead to big changes in the pair po-
tential, i. e. it is difficult to control systematic errors during the calculation
of the potential update.

Another issue of coarse-graining is that coarse-grained models cannot repro-
duce all the statistical or thermodynamic properties of the reference system.
Pressure, compressibility, or viscosity [71]| are often very different from those
of the reference system. In some cases, however, one can correct for some of
these. For example, the viscosity can be adjusted by tuning the parameters
of the thermostat 72| and the pressure can be corrected iteratively by adding
a linear term to the non-bonded potential

AUPresure — A (1 — ) : (2.27)

Tcut

where A is either a constant, e. g. —0.1 kg7 [56], or can be estimated from
the virial expansion [64]. Compressibility and pressure, however, cannot be
corrected simultaneously.
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2.2.4 Inverse Monte Carlo

Inverse Monte Carlo (IMC) is another iterative procedure that refines the
coarse-grained potentials until the coarse-grained model reproduces a set of
reference distribution functions. It is very similar to IBI except that the
update of the potential, AU, is calculated using rigorous thermodynamic
arguments.

The name “inverse Monte Carlo” is somehow confusing and is due to the
fact that the original algorithm was combined with Monte Carlo sampling
of the phase space [57|. However, practically any sampling method can be
used (e.g. molecular dynamics or stochastic dynamics) as long as it provides
a canonical sampling of the phase space.

A detailed derivation of the IMC method can be found in ref. [57]. Here
the more compact version for non-bonded interactions, which is outlined in
ref. [68], is recapitulated, emphasizing technical problems encountered during
implementation and application of the method.

The idea of IMC is to expand the potential update AU in a thermodynami-
cally consistent way in terms of measurable statistical properties, e. g. radial
distribution function ¢(r). Considering a single-component system as an
example, the Hamiltonian of the system can be written as

H=> Ulry) , (2.28)

where U(r;;) is the pair potential and it is assumed that all interactions
depend only on the distance, r;;, between particles ¢ and j. Further it is
assumed that this potential is short-ranged, i.e. U(r;;) = 0 if r;; > reu.

The next step is to tabulate the potential U(r) on a grid of M points, r, =
aAr, where « = 0,1,..., M, and Ar = re, /M is the grid spacing. Then the
Hamiltonian, eq. 2.28, can be rewritten as

H=Y UsSa, (2.29)

where S, is the number of particle pairs with inter-particle distances 7;; €
(70, To + Ar] which correspond to the tabulated value of the potential U,,.
On one hand, the average value of S, is related to the radial distribution
function g(r)
N(N —1)4mr2 Ar

Sa) = - a) s 2.30

(5. = IS (2.30)
where N is the number of atoms in the system (1N (N —1) is then the number

2
of all pairs) and Ar is the grid spacing, re,./M, V is the total volume of the
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system. On the other hand, (S,) is a function of the potential U, and hence
can be expanded in a Taylor series with respect to small perturbations of U,,,
AU,

9 (Sa) 2
A(S,) = E A AU?) . 2.31
(Sa) 7 o, U, + O(AU?) (2.31)
The derivatives 0 (S,)/0U, can be obtained by using the chain rule
_ 9(Sa)
A = 1 (2.32)

9 [ dqSa(q)exp =53, UrSx(q)]
oU,  [dgexp[—3, UxSx(q)]
= ﬂ ((Sa> <Sv> - <Sasv>) :

Equations 2.30, 2.31, and 2.32 allow to calculate the correction for the po-
tential by solving a set of linear equations

(Sa) — 8™ = A, AU, , (2.33)

where S* is given by the target radial distribution function. The procedure
is then repeated until convergence is reached.

A clear advantage of the IMC compared to the IBI method is that the update
of the potential is rigorously derived using statistical mechanics and hence the
iterative procedure shall converge faster with the IMC update than with the
empirical IBI update. Another advantage is that, in the case of multicompo-
nent mixtures, IMC takes into account cross-correlations of the potentials?,
that is updates for Upa, Uap, and Upp are interdependent (A and B denote
different particle types). In the IBI method these updates are independent
which can lead to convergence problems for multicomponent systems.

The advantages come, of course, at a computational cost. As it is clear from
eq. 2.32, one has to calculate cross-correlations of S,. This requires much
longer runs to get statistics that is good enough to calculate the potential
update to a similar accuracy as IBI. The errors in the determination of the
update functions of IMC and IBI methods are compared in sec. 5.1 for the
case of a coarse-grained model of water.

Another issue of the IMC method is the stability of the scheme. Several fac-
tors can influence it: the first, and rather technical, point is that ¢*(r,) has
to be calculated using exactly the same convention for the grid as S, (e.g. the

4Changes in the potential of one interaction can affect the distribution functions of
the others. This point should not be confused with correlations of observables, such as
bond-angle correlations as described in sec. 5.5 for hexane.
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function value should be assigned to the middle of the interval), otherwise
the scheme becomes unstable. Second, inversion of A, requires that it shall
be well defined. This means that one has to remove the regions which are not
sampled, such as those at the beginning of the radial distribution function.
The convergence can be significantly improved if a smoothing of the potential
update AU is used. Note that it is better to do smoothing of the update
function, not the potential itself, since the latter has more features which can
be lost due to too aggressive smoothing. In addition, since the IMC update
assumes a linear expansion in AU, overshooting of the update might occur.
In this case, convergence can be improved by introducing a multiplicative
prefactor for the update function, similar to the stabilizing term in IBI.
Finally, it was also noticed that the systematic error in (S,95,) is always
higher in the vicinity of the cutoff, which leads to a shift in the tail of the
interaction potential and, as a result, to a large offset of pressure. The cross-
correlation term (S,.5,) is also very sensitive to the box size, and special care
must be taken in order to converge the results with respect to the system size.
Finite size effects are discussed in detail in sec. 5.3, where liquid methanol is
coarse-grained.

2.2.5 Force matching

Force matching (FM) is another approach to evaluate coarse-grained poten-
tials [54, 46, 73|. In contrast to the structure-based approaches, its aim is
not to reproduce distribution functions, but instead try to match forces on
coarse-grained beads as closely as possible. FM is a non-iterative method and
hence is less computationally demanding. The formal statistical mechanical
framework of force matching applied to a liquid state, or a multiscale coarse-
graining method, is given in ref. [62]

The method works as follows. The first assumption is that the coarse-grained
force-field (and hence the forces) depends on M parameters ¢y, ..., gps. These
parameters can be prefactors of analytical functions, tabulated values of the
interaction potentials, or coefficients of splines used to describe these poten-
tials.

In order to determine these parameters, the reference forces on coarse-grained
beads are calculated by properly re-weighting the forces on the atoms

ref Cif'
=M g 2.34
I I m ; ( )

. %
%

where M; = (3, 2/m;)"" is the mass of the bead I, index i numbers all
atoms belonging to this bead, f; is the force on the atom 4, m; is its mass,
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¢; are mapping coefficients used to obtain the position of the coarse-grained
bead, R; = ) . ¢;r;. If the center of mass is used in the mapping, eq. 2.34
reduces to the sum of the forces.

By calculating the reference forces for L snapshots and by imposing the
condition that coarse-grained forces should match the reference forces for
each snapshot, N x L equations can be written

Fie(gr,ng) = i, I=1,... N, il=1,.... L. (2.35)

Here fi¢fis the force on the bead I, fi¥ is the coarse-grained representation
of this force. Index [ enumerates snapshots picked for coarse-graining. By
running the simulations long enough one can always ensure that M < N x L.
In this case the set of equations 2.35 is overdetermined and can be solved in
a least-squares sense.

Though the underlying idea of FM is straight forward, implementation wise it
is the most complicated method. Going back to the set of equations 2.35 one
can see that f;% is, in principle, a non-linear function of its parameters {g;}.
It is, therefore, useful to represent the coarse-grained force-field in such a way
that equations 2.35 become linear functions of {g;}. This was originally done
using cubic splines to describe the functional form of the forces [46]. However,
this imposes additional constraints for spline smoothness conditions 74| on
the set of linear equations which then has to be solved in a constrained least-
squares sense. Step functions can be used instead but this requires a finer
grid.

An adequate sampling of the system requires a large number of snapshots L.
Hence, the applicability of the method is often constrained by the amount
of available memory. To remedy the situation, one can split the trajectory
into blocks, find the coarse-grained potential for each block and then perform
averaging over the blocks.

2.2.6 Coarse-graining and atomistic morphologies

Since a coarse-grained model only represents a simplified description of the
system, a question that might arise is how can such a model help to obtain
an equilibrated morphology at an atomistic level.

In fact, coarse-graining reduces the computational costs due to two reasons.
First, due to the reduced number of degrees of freedom it takes less computer
time for the integration of the equations of motion. Second, using the coarse-
grained model results in a speedup of the intrinsic timescales (e.g. the diffu-
sion constant) [42, 63]. Once the system is equilibrated on a coarse-grained
level, atomistic details can be reintroduced if the coarse-grained mapping rep-
resents the structure of the atomistic molecule and the coarse-grained model
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performs correct sampling of correlations. After reintroduction of atomistic
details, only a short simulation is required to locally equilibrate the sys-
tem and compensate for inaccuracies of the coarse-grained model [75]. In
total, a speedup of three orders of magnitudes is feasible. In this context,
coarse-graining should not be seen as a substitution for atomistic models,
but rather as an extension which, when used in combination, extends the
accessible range of time- and length-scales.

To summarize, the methods mentioned so far can be used to obtain large
scale morphologies at an atomistic level. The theoretical background to link
charge carrier mobility to these morphologies is described in the following
chapter, where all methods will finally be combined into a global scheme.
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Chapter 3

Mobility simulations in organic
semiconductors

Charge transport in organic semiconductors differs significantly from trans-
port in metals. In metals, electrons are delocalized and charge carrier mo-
bility is determined from their effective mass and the mean relaxation time
of the band states [32]. In organic semiconductors, electrons and holes are
localized at ambient conditions: in perfectly ordered crystals due to dynamic
disorder (fluctuations of the coupling element are of the same order of mag-
nitude as its value [76]), and in partially disordered systems due to static
disorder. In the latter case, charges localize on individual molecules or, gen-
erally speaking, on charge transporting units (conjugated segments in the
case of polymers, or a part of a molecule [77]). In the limit of strong local-
ization, transport can be described as hopping of charge carriers. In highly
ordered materials or crystals, the models for charge transport have to be
adjusted. For organic crystals at low temperatures, band transport theories
corrected for electron-phonon coupling can be applied [78, 79]. At ambient
conditions, semi-classical dynamics can be used [80].

In this chapter, an overview of hopping transport is given, including the the-
oretical background and practical considerations for computer simulations.
Special attention is paid to the link between molecular structure, material
morphology and charge mobility. It is assumed that charge transport occurs
on timescales much shorter than molecular dynamics which leads to changes
in morphology!. Therefore, atomistic morphology can be obtained using
molecular dynamics simulations and assumed to be frozen during simulation
of charge dynamics. For this morphology, a graph for hopping transport is

'Local vibrations of molecules, which occur on shorter timescales, are accounted for in
the derivation of the Marcus expression for charge transfer.
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created by (i) determining hopping sites, e.g. conjugated molecules or their
conjugated fragments (ii) calculating the electronic coupling between them,
and (iii) using Marcus theory to obtain rates. Then, charge dynamics is simu-
lated using the kinetic Monte Carlo method. This model was previously used
to correlate structure and charge mobility in hexabenzocoronene derivatives,
which are small conjugated molecules [81, 82, 83, 84, 85, 86, 25|.

First, the theory of electron transfer is described and Marcus theory is in-
troduced. Next, methods to estimate the parameters of the Marcus rate
equation are given, followed by an outline of the kinetic Monte Carlo al-
gorithm. In sec. 3.7, the aforementioned model is discussed in detail and
extended to conjugated polymers.

3.1 Electron transfer

The theory of electron transfer was first developed to study electron transfer
in chemical reactions, such as isotopic exchange reactions of iron in aqueous
solution [87]

Fe** + Fe*¥t — Fe’t 4 Fe*?t | (3.1)

where the asterisk denotes a radioactive isotope. Since hopping transport
invokes many transfer “reactions”, this formalism can be employed to describe
charge dynamics in organic semiconductors.

Electron transfer can be considered as a spontaneous charge redistribution
between an initially prepared reactant state, and a well defined product
state [88] or, specifically, the transition of a single electron from one localized
orbital to another. The two localized orbitals are referred to as the donor
(D) and acceptor states (A). The transfer reaction can then be written as

D A— DA™, (3.2)

where D~ denotes the electron being localized on the donor, and A~ the
electron being localized on the acceptor.

Since the interactions between molecules are weak in organic semiconduc-
tors, the donor |1) and acceptor |2) states can be approximated using (non-
interacting) molecular orbitals, or diabatic states. The electronic Hamilto-
nian of the charge transporting complex can then be written as

He = Ey [1) (1] + E2[2) (2] + J (1) (2] +[2) (1)) , (3-3)

with the energies Fy, Es of the individual states and the so called transfer
integral or electronic coupling element J for the two states. The limit of small
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Figure 3.1: Adiabatic and non-adiabatic limits for charge transfer
reactions. Non-adiabatic (weak coupling) and adiabatic (strong coupling)
transfer is depicted. Taken from ref. [89].

and strong coupling are referred to as non-adiabatic and adiabatic electron
transfer, respectively.

To describe the transfer reaction, which is coupled to the nuclear motion,
the reaction coordinate ¢, which connects the donor and acceptor states, is
introduced. It is related to the coordinates of the nuclei. With the help of
q, the two regimes of non-adiabatic and adiabatic transport are schemati-
cally represented in figure 3.1. Non-adiabatic transfer is a sudden tunneling
process, and follows the Frank-Condon principle [90]. For weakly interact-
ing systems, the diabatic representation provides a good zeroth-order basis
set [88]. However, the diabatic crossing becomes increasingly pronounced
for stronger coupling, and the transport process cannot be described by two
non-interacting states. Therefore, adiabatic transfer is usually described in
terms of chemical reaction kinetics using a double well potential [88] (see
figure 3.1(b)). The internal energy of the reaction is considered with respect
to the reaction coordinate ¢, and to overcome the barrier between initial and
final states, thermal activation is required.

3.2 Marcus theory of charge transfer

The rates for a charge transfer reaction in the non-adiabatic high temper-
ature limit can be calculated using Marcus theory [87]. It is assumed that
a transition is initiated by thermal fluctuations of the nuclei, and that the
Frank-Condon principle is fulfilled. The classical derivation provides a rate
equation which contains an empirical prefactor. A semi-classical derivation
was later given by Jortner et al. [90], which is based on Fermi’s golden rule.
What follows is a brief recapitulation of the key points of this derivation in
the classical limit, complementing the original formula with an expression for
the prefactor.
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Figure 3.2: Diabatic energy profiles as a function of the reaction co-
ordinate ¢ for the electron-transfer reaction. The difference in energy
of the initial and final state is given by AFE. After the electron transfer oc-
curred, the nuclei relax to the new equilibrium. The corresponding change
in energy, A, is called reorganization energy.

Two additional assumptions are needed to obtain the rate equation: first, the
transfer integral should not depend on the nuclear coordinates ¢ (vibrations
of the molecule). Second, it is assumed that the potential energy surfaces for
the initial and final states are harmonic with identical curvatures and nuclear
vibrations are treated classically. Within these assumptions, the transfer
process is depicted in figure 3.2 and can be formulated in terms of a polaron
model with diagonal electron-phonon coupling. The total Hamiltonian of
eq. 3.3 is then extended to

H=|1)1{E +1/2f (g—q)*}
+12) 2/ { B+ 1/2f (¢ — ¢2)*}
+ J (1) (2[ + 12) (1) (3.4)

The first and the second terms are the energies represented by the left and
right parabolas in figure 3.2. Vibrations are characterized by a single prop-
agating mode with force constant f and equilibrium displacements ¢; and
@2. Since the transfer integral is small in the non-adiabatic limit, it can be
treated as a perturbation to the non-interacting donor and acceptor states.
With the help of Fermi’s golden rule, the total rate within the high temper-
ature limit is given as an integral, i.e. the average over all initial vibrational
coordinates, with each term weighted by the Boltzmann probability of being
in that state

wi =7 [ daf(@) 5 Uh0) - Un(a)] (35)

(3.6)
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where
1
fla) = e VT, (37
Ui=(q)=E+1/2f(¢—q) ., i=1.2. (3.8)

The Marcus equation is obtained by solving the integral in eq. 3.5, and is
given by

Ty [w (AGy; — Ay)?
n\ AgkaT Dkl |

where kg is the Boltzmann’s constant, h is the Planck constant, A;; is the
reorganization energy, AG;; is the difference in free energies of the sites i
and j, and J;; is the corresponding transfer integral. The square root in
eq. 3.9 is the Franck-Condon factor in the classical limit and the energy in
the exponential is the height of the crossing barrier £*, depicted in figure 3.2.
In the following sections, methods to estimate these parameters are outlined.

wy = exp [— (3.9)

3.3 Computational methods for evaluating
transfer integrals

In the preceding section, the Marcus equation for calculating charge trans-
fer rates was introduced. An important parameter in this equation is the
electronic coupling element, or transfer integral .J. For equal site energies,
E = E, = Ej, the eigenvalues E, _ of the Hamiltonian H in eq. 3.3 read

E._=E=+|J|, (3.10)

i.e. J is half the orbital energy splitting, AFE,,;, of the charge transporting
complex [89]

1 1
T =5 (By = E-) = 5AEo. (3.11)

where E, and E_ denote the energies of the corresponding orbitals.

To calculate the orbital splitting, one quantum chemical calculation has to
be performed for each possible transfer process, that is one for each pair of
molecules. This can be computationally demanding for bigger systems. Also,
in the case of different site energies, which can arise due to different types of
molecules or polarization effects, additional correction terms are needed [91].
An alternative approach to calculate transfer integrals was proposed by J.
Kirkpatrick [92]. Within the frozen orbital approximation, the transporting
orbitals |1) and |2) are assumed to be the HOMOs (in the case of hole trans-
port) of each monomer unit, representing the diabatic states of the charge
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transporting complex. When the Fock matrix eq. 3.3 is constructed from
these monomer states, the transfer integral J is given by its off-diagonal
elements, i.e.

J=(1H|2) . (3.12)

In the practical implementation, the transporting orbitals are computed using

the semi-empirical INDO method with Zerner’s parametrization (ZINDO) [93].
Since this method allows to calculate the transfer integrals based on a weighted
overlap of molecular orbitals, it is also referred to as the molecular orbital

overlap (MOO) method. The advantage of the MOO method is that the ex-

plicit computation of the density matrix for a pair of molecules is not required

but can be constructed based on the relative geometry of the two molecules

and the transporting orbitals of the isolated molecules. Therefore, only a

single ZINDO calculation for each type of molecule is needed as input from

quantum chemistry. In addition, the overlap integrals for atomic orbitals

can be precalculated and stored in tables, which additionally improves the

performance of the method. The MOO method is used to calculate transfer

integrals throughout this work.

3.4 Reorganization energy

After sudden electron transfer occurs, the system undergoes a structural
change to relax its nuclear degrees of freedom to the new energetic min-
imum. This change in energy is referred to as the reorganization energy.
Mathematically, the reorganization energy is defined by

A= o - a) (3.13)

where f is the force constant of the harmonic oscillator in eq. 3.4 and ¢, ¢
the corresponding minima of the initial and final states.

The reorganization energy can be directly obtained using quantum chemical
methods (e.g. DF'T) by calculating the energy difference of the molecule upon
relaxation. The reorganization energy is given by the total change in energy
of the donor and the acceptor states

A= (E,—-E)+ (E! — EY) (3.14)

where the left (right) term is the contribution of the donor (acceptor) and
Ec, E", E and LY are single point energy calculations. £ is the energy of
a charged molecule with a structure optimized in the neutral state, E” the
energy of a uncharged molecule in charged conformation and E” (E¢) the
energy of a neutral (charged) molecule in neutral (charged) conformation.
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The reorganization energy which results from the reaction within the charge
transporting complex is referred to as the inner sphere reorganization energy.
For polarizable systems, or systems with a polarizable solvent, the outer
sphere reorganization energy, which accounts for rearrangement of solvent
molecules has to be considered as well [94].

3.5 Site energies

The site energy difference AG}; is the difference in energy between donor and
acceptor states. Several contributions to AGj; are conceivable. The two that
are considered in this thesis are due to (i) the energies of transporting orbitals
being different (HOMO/LUMO level for holes/electrons), (ii) an external
electric field.

The first one can arise if different molecule types are involved in the transfer
process. In the case of polymers, it can also be due to different lengths of
conjugated segments |77]. Practically, it can be obtained using quantum
chemical methods by forming the difference between the orbital energies of
the respective HOMO/LUMO level for holes/electrons. The second term
is needed, if the drift of charge carriers in an external electric field shall
be simulated and can be calculated by the projection of the vector which
connects the donor and acceptor onto the electric field vector.

Additional contributions, which are due to changes in the electrostatic sur-
rounding, are important if the studied system shows significant electrostatic
interactions, e.g. large dipole moments. For polarizable molecules, polariza-
tion due to the presence of charge carriers can be important.

3.6 Kinetic Monte Carlo

The Monte Carlo approach refers to a wide range of methods which solve
problems in a stochastic way. First applications were Monte Carlo integra-
tion, or the Metropolis Monte Carlo algorithm [95], which can be used for
canonical sampling of a system. In the 1960s, a new class of Monte Carlo al-
gorithms was developed which also allowed time-evolution of the system [96].
These led to the Kinetic Monte Carlo (KMC) algorithm, which provides a
stochastic solution of the master equation [97]. KMC was first applied in the
field of organic electronics by Baessler et al. [98] to study charge transport
in disordered organic semiconductors.

The KMC algorithm describes a Markovian process: a system is represented
by discrete states, and the transition from state i to state j is modeled by a

35



CHAPTER 3. MOBILITY SIMULATIONS IN ORGANIC
SEMICONDUCTORS

rate constant w;;. A direct implementation of the KMC algorithm, which is
often referred to as continuous-time KMC [99], is depicted in figure 3.3.

Generate a list of all possible states ] determine hopping sites and Marcus
in the system and calculate rates rates
N
Calculate the total rate 7 = >° 75

) J=1 all possible hops of all occupied sites
for all possible events that bring

the system out of the current state

v

Generate a uniform ran-
dom number v € (0,1]

v

Choose an event : by finding the ) |

i determine the occupied site and des-
biggest i for which 35 7; < w7 tination for a charge carrier

Jj=1

v

Carry out the event }

v

Choose a new uniform ran-
dom number ' € (0,1]

v

Evolve the time by ¢/ = ¢ + At
where At = —log (v/) /7

!}

Recalculate the rates 7; ) rates can change due do presence of
which might have changed. other charge carriers

move the charge carrier to the new
site

Figure 3.3: The kinetic Monte Carlo algorithm. The figure depicts the
workflow of the kinetic Monte Carlo algorithm and how it is applied in charge
transport simulations.

Hopping transport in organic semiconductors is an ideal process to be studied
using the KMC algorithm. The current state of the system is given by certain
sites which can be occupied by charge carriers. These sites are connected by
transfer processes, with a rate corresponding to the charge transfer rate.
Such a graph is depicted in figure 3.4. For the current occupation of sites,
the total rate for all possible hops of all charges is calculated. Then the
algorithm picks a charge and its next site based on a random number. The
time in the system is then evolved by At based on the total rate 7 and using
a second random number u’

At =—log (u') /7. (3.15)
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&
yQa\ /

Figure 3.4: Connectivity graph for the KMC algorithm. Charge car-
riers are represented by sites that can be occupied. Links represent charge
transfer processes which have certain rates w;.

The different occupation of sites also affects the rate constants of other
charges that did not move since sites cannot be doubly occupied: the newly
occupied site does not accept further charge carriers while the former site is
now unoccupied and offers a new destination for hops. In addition, if the
Coulomb interaction of charge carriers is taken into account, the changing
electrostatic environment and polarization effects might affect hopping rates.
For low charge carrier densities, this is avoided by simulating a single charge.
As mentioned before, KMC requires a graph consisting of connected sites as
an input. Each connection in this graph represents a hopping process, which
has a certain rate. In the next section, it is described how such a connectivity
graph can be created from atomistic morphologies and how mobilities are
calculated.

3.7 Charge transport in realistic morphologies

The Gaussian disorder model is probably the most successful and widely
used model to simulate charge transport in disordered organic semiconduc-
tors [100, 98, 101, 102]. The underlying assumptions are Miller-Abraham
rates for hopping between sites and a Gaussian distribution of site energies
¢;. Miller-Abraham rates are written as

vV = Vg exp (_Fi‘jﬁ) <exp (_’“B_T> for ¢, > Q) ; (3.16)
a

1 for € <e¢g

where I';; is the inter-site coupling, v the attempt-to-escape frequency, r;; the
distance between the sites, and a the average lattice distance. This model
has, however, significant drawbacks: (i) fitting parameters are involved in
order to match experimental data and (ii) regular grids are used, where each
node represents a hopping site.
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Figure 3.5: Framework to relate atomistic morphologies to charge
carrier mobilities.

A problem of Miller-Abraham rates is that they only depend on the distance
of two molecules but not on their local orientations. Here, Marcus rates
can be used where the transfer integral accounts for the local orientation of
molecules. Furthermore, the global arrangement of molecules is needed to
study the path a charge travels through the sample. This cannot be achieved
by regular grids, instead, hopping sites should be determined explicitly in
the morphology. The methodology followed in this work is based on previous
work on charge transport in discotic liquid crystals [81, 82, 83, 84, 85, 86,
25| and avoids the use of fitting parameters and predefined grids for charge
hopping. An outline of the method is provided in figure 3.5.

Morphologies are obtained in atomistic simulations. For novel organic com-
pounds, force field parameters are often not available. They can be para-
metrized starting from the force field for similar compounds and quantum
chemical calculations. Force-fields can be checked by comparing structures
obtained in simulations to x-ray scattering and solid-state NMR data, if
available. In some cases, time- and lengthscales of atomistic simulations are
insufficient, and additional coarse-grained simulations followed by a back-
mapping procedure to reintroduce atomistic details |[75] can be beneficial as
pointed out in chapter 2.

After atomistic simulations are completed, hopping sites which represent di-
abatic states are determined. For molecules with a well-defined conjugated
core, such as HBC (see figure 1.1), this is straight-forward. HBC is a disk-
like molecule with side chains that make it soluble in organic solvents. Since
the charge transporting orbitals are localized on the core, side chains can
be neglected and the entire molecule represents a hopping site. To rein-
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Figure 3.6: Substitution of an atomistic chain with a QM image.
Each repeat unit is considered to be rigid. In an intermediate step, they are
represented by their positions and orientations. The fragments of quantum
orbitals are then adjusted to match the positions and orientations of the
repeat units.

troduce quantum mechanical orbitals, the positions and orientations of the
conjugated cores are calculated and then substituted by rigid copies of struc-
tures optimized in quantum chemical calculations (bottom left of figure 3.5).
Atomic orbitals, needed to calculate transfer integrals, are provided together
with the optimized structures. This step can be seen as back-mapping to
quantum chemical details. The benefit of the rigid-copy substitution is that
bond length fluctuations are neglected which otherwise violate the diabatic
picture of charge transfer.

Transfer integrals are calculated using the previously mentioned MOO method
and the corresponding rate equations are then solved using the kinetic Monte
Carlo algorithm. One can either mimic a time of flight experiment or cal-
culate the mobility from the average drift velocity of charge carriers in an
external electric field (bottom right of figure 3.5). The drift velocity is cal-
culated by averaging the waiting time At multiplied by the distance of the
hop 7;; during the entire KMC run, using periodic boundary conditions.
The aforementioned approach cannot treat conjugated polymers. First, for
more complex molecules or polymers, a simple substitution of a whole molecule
is not always possible since soft degrees of freedom (e.g. torsions) can lead to
big differences in structure. Second, a single molecule (polymer chain) can
have several parts where charges can localize (conjugated segments). In this
work, the approach is generalized in order to include these two situations.
To compensate for big structural changes, a molecule is split into rigid frag-
ments, which are parts of the molecule, e.g. one repeat unit in a polypyrrole
chain. When copies from quantum chemical calculations are inserted, each
fragment is reoriented to match the conformation of the atomistic simula-
tions. This procedure is demonstrated in figure 3.6. Using atomic orbitals
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and assuming that this change in geometry does not affect the atomic orbital
coefficients, the MOO method can be used to calculate transfer integrals.
Details on the implementation of rigid fragments is given in sec. 4.4.

To take into account that charges can localize on parts of the molecule,
they are partitioned into conjugated segments and each segment is treated
as a hopping site. Charge transport is then described by hopping between
such conjugated segments, either within the molecule, or to a segment on
a different chain. An important difference for intra-chain transport is that
transfer integrals are big and an expression for adiabatic rates has to be used
instead of Marcus rates. This is discussed in detail in chapter 6, where the
model is used to study charge transport in polypyrrole oligomers.
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Chapter 4

The VOTCA package

The Versatile Object-oriented Toolkit for Coarse-graining Applications [103|
(VOTCA)! is a software package initially developed to simplify particle-based
systematic coarse-graining?. Currently, Boltzmann inversion, iterative Boltz-
mann inversion, inverse Monte Carlo, and force-matching are implemented
and tested. At a later stage, additional modules for charge transport calcula-
tions, as described in sec. 3.7, and interfaces to the Molecular Orbital Over-
lap [92] and KMC codes written at Imperial College, London, were added.
The development of such a package is only possible due to the extensive use of
modular software design, making VOTCA a flexible platform for the imple-
mentation of new methods. The consistent implementation of all methods
allows their direct comparison and simplifies the coarse-graining workflow.
The coarse-graining tools of the package have been released for public use
under an open source license®, with the status paper published in Journal of
Chemical Theory and Computation [103]. The charge transport code is used
internally, and its release is planned.

The package is written as a combination of modular C++ code and shell
scripts and is easy to extend for new methods and interfaces to other pro-
grams. In this chapter, the core design of the package and its main classes
are outlined. A brief description of the terminology used, namely the unified
modeling language (UML), is given in appendix A.1. The structure of the
package is outlined in appendix B.

thttp://www.votca.org

2The VOTCA package is a joint development. The focus of my work was the con-
cept and design of the package, the C++ core development and the implementation of
the inverse Monte Carlo method. The scripting framework was mainly developed by
Christoph Junghans. Alexander Lukyanov was responsible for the implementation of the
force-matching method.

3 Apache License, Version 2.0
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4.1 Coarse-graining engine

The non-iterative coarse-graining methods described in sec. 2.2 derive coarse-
grained potentials by analyzing the canonical ensemble of a reference (high
resolution) system. If an iterative procedure is used, additional canonical
sampling of the coarse-grained system is required. In both cases, sampling
can be done using either molecular dynamics (MD), stochastic dynamics
(SD), or Monte Carlo (MC) techniques which are implemented in standard
simulation packages. Rather than implementing its own MD/SD/MC mod-
ules, the toolkit allows swift and flexible integration of existing sampling
programs. The analysis needed for coarse-graining and workflow control in
the case of the iterative methods is done using the package tools.

The implementation of the analysis kernel follows the rules of modular soft-
ware design and is written in C++. Common software design patterns are
applied to offer the flexibility that is required for an expandable toolkit.
The analysis kernel provides structures for topology handling, mapping from
atomistic to coarse-grained level, as well as interfaces for reading and writing
data of external sampling programs. These structures are similar to those
of an MD code. However, since an integration of the equations of motion
is not needed, implementation of functional forms for potentials and forces,
thermostats, integrators, etc. can be avoided. Another benefit is that most
of the analyses are not computationally expensive compared to the sampling
of the system, and thus parallelization of the algorithms and data structures
is not needed?.

The coarse-graining procedure is controlled by several Extensible Markup
Language (XML) input files, which contain mapping definitions and other
options required for the workflow control. The current tools include functions
to calculate probability distributions of bonded and non-bonded interactions,
correlation and autocorrelation functions, as well as updates for the coarse-
grained pair potential. If needed, analysis tools of the package used for
sampling can also be integrated into the coarse-graining workflow.

4.2 Core design

An unified modeling language (UML) diagram® of the key classes of VOTCA
is depicted in figure 4.1. In what follows, classes are emphasized in bold.

4The only time-critical part in the analysis is the neighbor search when e.g. calculating
radial distribution functions. However, parallelization of the latter is trivial and can be
done on script level using time splitting.

5A quick introduction to UML diagrams can be found in appendix A.1
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Figure 4.1: VOTCA classes. The UML class diagram depicts the core
VOTCA classes for topology handling and reading data. The notation of
UML class diagrams is outlined in appendix A.1.

The Topology class is the central element and serves as a container for
information about all beads, molecules and interactions. In addition, it stores
properties of the system, e.g. box size or simulation time. The Bead class,
which can be an atom in the atomistic representation or a coarse-grained
bead, contains details on beads. The class contains name, type and position
of a bead and can optionally handle orientation, velocity and force, if they
are provided in the trajectory. Forces are required for the force-matching
method, orientations, which are calculated for non-spherical beads, are used
for mapping from atomistic to quantum representation as will be discussed
later in sec. 4.4.

The Interaction class provides the functionality for bonded interactions.
The explicit functional form of the potential is not essential; only the eval-
uation of the interaction variable, denoted as x, needs to be performed.
can be a bond length, angle or dihedral angle. In addition, force matching
requires the direction of the force which acts on bead ¢ due to interaction a.
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This is given by the gradient of x with respect to the coordinates of bead i:

F, = -VU,({rn}) = =ViUa (ka ({Tn}))

ou,
=~ Vika {rn}) - (4.1)

The derived classes IBond, IAngle and IDihedral inherit from the Inter-
action class and specialize the evaluation of k as well as the gradient. For the
evaluation of non-bonded interactions, IBI only needs the radial distribution
functions and, to perform IMC, the correlations. In case of force-matching,
the vector that connects two coarse-grained beads is required. Both can be
evaluated using neighborlists, which are either computed via a simple O(N?)
search or a grid search algorithm. The latter scales linearly with the number
of particles.

To allow for easy implementation of new file formats and/or different algo-
rithms, for example complex, nonlinear mapping schemes, the object factory
pattern [104] is applied in these cases. This guarantees a clean separation of
sampling engine dependent components and algorithms used for the coarse-
graining process. The implementation of the object factory is based on tem-
plates as proposed in ref. [105]. The idea of an object factory is explained in
appendix A.2.

The analysis and mapping process is steered by the class CGEngine (see
figure 4.2). It handles reading of the topology and trajectory, as well as map-
ping from the atomistic to the coarse-grained resolution, if needed. Here,
the mapping functionality is split into several layers. The highest layer is
the TopologyMap, which contains information on how to map the entire
reference topology to the coarse-grained level. It is composed of mapping
definitions for each molecule in MoleculeMap, which again contains map-
ping information for each bead in BeadMap. Currently two types of bead
maps for a linear mapping scheme as given by eq. 2.7 exist. The first one
is for spherical beads (Map Sphere) and the second for ellipsoidal beads
(Map Ellipsoid), which calculates the orientation of a bead based on the
tensor of gyration and positions of selected atoms. Orientations can be used
to calculate nematic order parameters and are needed for the mapping pro-
cess during the charge transport simulations as described in sec. 4.4.

The actual analysis is performed using classes derived from the class CGOb-
server. They are registered at the CGEngine and are called whenever
new data is available. This reduces the overhead when implementing new
functionality and provides a consistent interface for all coarse-graining tools.
Boltzmann inversion, evaluation of IMC parameters, and force matching are
all implemented as the corresponding observers.
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Figure 4.2: Class diagram for coarse-graining and mapping engine.
The CGEngine is the core class which encapsulates the whole process of
reading in data, mapping to coarse-grained level and calling analysis classes
derived from CGObserver.

4.3 Iterative workflow control

The workflow of the iterative procedures is implemented as a set of shell
scripts which can, in principle, be run on all available operating systems.
The iterative workflow control provides the flexibility to overload existing or
call external scripts and programs written in other programming languages.
An interface to read values from the steering XML files is provided in C++,
Perl and shell. A chart of the workflow is depicted in figure 4.3.

During the global initialization, the initial guess for the coarse-grained poten-
tial is calculated from the reference radial distribution function or converted
from a given potential guess to the internal format. The actual iterative step
starts with an iteration initialization. It searches for possible checkpoints
and copies and converts files from the previous step and the base directory
to the current step. Then, the simulation run is prepared by converting po-
tentials to the format required by the external sampling program and the
sampling run is started. Currently, an interface for GROMACS [37] is imple-
mented. An extension to other packages is straightforward. After sampling
the phasespace, the potential update AU is calculated. Often the update
requires post-processing, such as smoothing, interpolation, extrapolation or
fitting to an analytical form. For example a linear pressure correction term,
as described in ref. [56], can be seen as post-processing of AU, since it solely
adds a linear function to AU. Finally, the new potential is determined and
post-processed. The script either stops after a certain number of iterations or
if a convergence criteria is fulfilled. Otherwise, the iterative process continues
with the initialization of the next iterative step.
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Figure 4.3: Block-scheme of the workflow control for the iterative methods.
The most time-consuming parts are marked in red.
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4.4 Charge transport modules

The implementation of the methods used for the charge transport studies, as
described in chapter 3, is based on the framework of the analysis core. Codes
to evaluate transfer integrals using the molecular orbital overlap method and
running Kinetic Monte Carlo simulations already exist from previous imple-
mentations. However, the interface to connect molecular dynamics topolo-
gies with transfer integral calculations, create a set of rates, and finally run
a KMC simulation, was redesigned based on the existing VOTCA structures
of the coarse-graining engine.

The charge transport calculations require structures to organize atoms in
topologies and molecules, similar to those implemented in the coarse-graining
core: topology, molecules and atoms have to be defined. However, additional
functionality is needed to handle charge transport properties such as site en-
ergies, reorganization energies and atomic orbitals from quantum chemical
calculations. To avoid duplication of code, the classes QMTopology, QM-
Bead, and QMDMolecule are derived from the existing classes Topology,
Bead and Molecule, respectively, with additional properties for the charge
transport calculations and the interface to the MOO code for the evaluation
of transfer integrals. This allows the integration of VOTCA’s topology han-
dling, neighbor search algorithms, as well as algorithms for triclinic periodic
boundary conditions in the charge transport calculations. The UML diagram
of the basic structures is depicted in figure 4.4.

The classes CrgUnit, which represents a hopping site, and JCalculator, to
evaluate the corresponding transfer integrals, are provided in the MOO li-
brary and are embedded into existing structures. In the previous implementa-
tion, which was used to study charge transport in discotic liquid crystals [81],
a charge unit always represented a whole molecule. However, as discussed in
sec. 3.7, this approach is not suitable for polymers or molecules which consist
of several rigid fragments that have a certain flexibility with respect to each
other (see sec. 3.7). The current implementation uses the QMBead class to
represent the position and orientation of such a rigid fragment. A hopping
site can be constructed using several of these rigid fragments (see figure 4.5).
In addition, a molecule can have several hopping sites as it is the case for
polypyrrole (see chapter 6), where transport is modeled by hopping between
conjugated segments.

In order to establish a network for charge hopping, a neighbor list has to be
generated. If the shape of hopping sites differs significantly from that of a
sphere, e.g. in rod like molecules, using the center of mass of whole units can
be problematic: the cut-off threshold of the neighbor search has to be big
enough to take into account neighbors in the direction of the long axis of the
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Topology Molecule
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transfer integral 1 2 site energy i position —1 Bead

distance wvector reorganization energy orientation

Figure 4.4: UML class diagram of important MD2QM classes. A
CrgUnit represents a hopping site where charges can be localized on. A
charge unit is composed of several rigid fragments, each having a certain
position and orientation. Fragments are described by the class QMBead.
A QMDMolecule can contain several charge units or only a single hopping
site.

molecule. This eventually leads to counting of second nearest neighbors in
the direction of the short axis. A better approach is to analyze which parts of
the molecule are at a distance less than a specific cutoff. This is implemented
by creating a neighborlist of rigid fragments (QMBead): if two QMBeads
from different charge units are at a distance less than a certain cutoff, the
whole unit is added to the list of possible hops. A second benefit of this
procedure is that it allows the use of the same neighbor search algorithms
and classes which are implemented in the coarse-graining core.

All steps of the charge transport calculations (mapping from atomistic to
rigid copies, calculation of transfer integrals and rates, running kinetic Monte
Carlo) are implemented as separate applications. The first application in the
workflow maps from an atomistic topology to rigid copies, whose geometries
were optimized using a quantum chemical method. The mapping program
is implemented as a CGObserver and creates a QMTopology based on
the atomistic input. The QMTopology is then written to a file. It con-
tains QMBead, CrgUnit and the neighbor list information. Subsequently,
all further steps are then outlined by (i) reading in the state file, (ii) pro-
cessing the QMTopology data, and (iii), writing out a new state file. To
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QMBead 2

QMBead 1 QMBead 3

Figure 4.5: The concept of rigid fragments. The figure depicts the
concept of rigid fragments (QMBead) to calculate molecular orbital overlap
for the case of a whole mCP molecule considered as a charge unit. Since
the side units can rotate around the bond which attaches them to the core
of the molecule, the charge unit is constructed based on rigid subsets of
the molecule, namely the QMBeads, each of which carries a position and
orientation.

avoid duplication of code, the steps (i) and (iii) are encapsulated in the
class QM Application. Similar to the CGObserver, an application can
be inherited from this class and only the functions to perform calculations
(e.g. evaluate transfer integrals, calculate rates, run KMC) need to be imple-
mented.

The approach described above requires a separate program for each calcula-
tion to allow for customization in the workflow (e.g. use a different method
to calculate rates). This can be a cumbersome task, since many intermediate
steps are involved. For this purpose, the QM Calculator was designed which
defines an interface for classes which act on the QMTopology as depicted
in figure 4.6. The processing can then be divided into three categories: It can
act on the whole topology (e.g. electrostatic calculations), on pairs of charge
units (PairCalculator, e.g. transfer integrals, rate calculations), or on sin-
gle hopping sites (SiteCalculator). In combination with an object factory,
this concept allows to bundle several calculations into a single program while
still maintaining the flexibility needed to replace algorithms based on input
files.
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Figure 4.6: QMTopology processing. Classes that manipulate or analyze
the QMTopology are all implementations of the QMCalculator interface
which allows the uniform treatment of algorithms in an object factory.

4.5 Summary

A package for systematic coarse-graining was developed and released under
an open source license. The package provides a platform for the consis-
tent implementation of coarse-graining methods and thereby allow for their
direct comparison. Currently, Boltzmann inversion, IBI, IMC, and force-
matching are available, and an implementation of a simplex algorithm [106]
is in progress. Due to the use of modular software design patterns, the
package is easy to extend. For example the charge transport simulations
performed in chapter 6 are implemented on the basis of this framework.

In the next chapter, the package functionality will be demonstrated by coarse-
graining a set of reference systems, the different methods will be compared,
and problems that can occur are pointed out.
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Chapter 5

Comparison of coarse-graining
methods

Four different methods to derive coarse-grained potentials were described in
sec. 2.2: Boltzmann inversion, iterative Boltzmann inversion (IBI), inverse
Monte Carlo (IMC) and the force-matching (FM) method. To illustrate the
functionality of the VOTCA package and to point out strengths and weak-
nesses of each method, coarse-graining of four reference systems is performed:
SPC/E water, liquid methanol, liquid propane and a single hexane molecule.
The systems are chosen in such a way that the corresponding coarse-grained
potentials have already been obtained using one or more techniques, provid-
ing a good reference point for comparison. Finally, a coarse-grained model
of polypyrrole, a conjugated polymer, is developed in sec. 5.6, which can be
used to generate large scale morphologies for charge transport simulations.

5.1 SPC/E water

Water is one of the most studied liquids, both from the point of view of all-
atom representations as well as coarse-grained models [107, 108|. A detailed
comparative study on coarse-graining of different water models using IBI is
given in ref. [64]. Here, the focus is on one of the all-atom models of water, the
SPC/E water model [109, 110]. The corresponding parameters of this 3-site
model are given in the caption of figure 5.1. Note that this is a rigid model,
i. e. the distances between two hydrogens as well as oxygen and hydrogens
are constrained during the molecular dynamics runs. For the coarse-grained
representation a one-site representation with a pair potential U(R;;), where
R;; connects the centers of mass of water molecules ¢ and j, is applied.

The reference simulation was performed in an all-atom molecular dynamics
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Figure 5.1: SPC/E water model. Van der Waals excluded volume and
coarse-grained representations of a single SPC/E water molecule. Param-
eters: 0 = 3.166 A, ¢ = 0.650kJ mol™!, log = 1.0000A, gy = +0.4238¢,
go = —0.8476 ¢, Ogg = 109.47°. The coarse-grained model has one bead per

water molecule. The center of mass of the molecule is used as position of the
bead.

(MD) simulations consisting of 2180 water molecules. The system was first
equilibrated in the NPT ensemble at 300 K and 1bar for 100 ns using the
Berendsen thermostat and barostat [111]. The last 80 ns were used to deter-
mine the equilibrium box size of 4.031 nm, which was then fixed during the
45ns production run in the NVT ensemble using a stochastic dynamics algo-
rithm [112]. For all further analysis, only the last 40 ns were used. The radial
distribution function was calculated using a 0.01 nm grid spacing. Snapshots
were output every 0.4 ps.

Force matching potentials were calculated using blocks of 6 snapshots each. A
spline grid spacing of 0.02 nm was used in the interval from 0.24 to 1 nm. For
the iterative procedures, the potential of mean force was taken as an initial
guess for the interaction potential. The coarse-grained box had the same
system size as in the atomistic simulations. Simulations of the coarse-grained
liquid were done using a stochastic dynamics algorithm [112]. 300 iterations
of 100 ps each were performed when using IBI. For IMC 10 iterations of 500 ps
each were simulated. Additionally, two iterations of triangular smoothing
were applied to the IMC potential update, AU. The cut-off was chosen at
0.9nm with a grid spacing of 0.01 nm.

The reference radial distribution function, ¢**!(r), coarse-grained potentials
and corresponding radial distribution functions are shown in figure 5.2. 1BI
and IMC give practically the same interaction potential. Although the force-
matched potential has a very similar structure with two minima, the corre-
sponding radial distribution function is very different from the target one.
Possible reasons for these discrepancies are discussed in refs. |73, 113, 68] and
stem from the fact that FM aims at reproducing the many-body potential of
mean force, which does not necessarily guarantee perfect pairwise distribu-
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Figure 5.2: Coarse-graining of water. (a) Coarse-grained potentials for
SPC/E water obtained using different coarse-graining techniques. (b) Cor-
responding radial distribution functions. Curves for IBI and IMC are on top
of each other.

tion functions, considering the fact that the basis set in the coarse-grained
force-field is limited. This indicates, that using just a two-body interaction
for water might not be the best choice and can lead to complications [114].
The problem of a limited basis set when using force-matching is addressed
in sec. 5.5.

Note that all three methods lead to a different pressure of the coarse-grained
system: 8000 bar (IBI), 9300 bar (IMC), and 6500 bar (FM). The different
pressures for the iterative methods are due to different accuracy of the po-
tential update. Indeed, changes of pressure can significantly affect the poten-
tial, especially its long tail [56, 115]. However, they hardly change the radial
distribution function due to small compressibility of water. One can improve
the agreement between the iterative methods by using pressure correction
terms for the update [56, 64].

5.2 Performance of the iterative methods

The performance of the iterative methods depends on two factors: (i) the
average (over all bins) error of the potential update exy with respect to
simulation time and (ii) the number of iterations required for convergence.
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For the following analysis, the average error of the update is defined as

EAU = e(AU(ry)) , (5.1)

1=0

where N is the number of bins and ¢(AU(r;)) is the error of the update
function at a separation r;. €(AU(r;)) was calculated using a Jackknife anal-
ysis [116].

The average error of the potential update as a function of the run length
is shown in figure 5.3(a). One can see that, for both methods, the error
decreases as 1/ VL, where L is the number of snapshots used for averaging.
However, the prefactor for the IBI update error, which is based on the radial
distribution function, is at least ten times smaller than that for the IMC
update error, which makes use of cross-correlations of S,. This observation
implies that, in order to have the same accuracy of the update function, IMC
needs significantly longer sampling.

(a) (b)

10° ‘
— IBI — IBI
— IMC 107!
—  1/sqrt(L)
3
3
ol M v
w Q
- =
= (5]
e S e
b} [9)
>
=]
3
1072 F E
1 1 -3 1
10? 10° 10 10° 10! 10?
number of snapshots, L number of iterations, n

Figure 5.3: Performance of the iterative methods for water (a) Average
error of the potential update function versus number of snapshots used for
calculating the update function. (b) Root mean square deviation of the
reference and current radial distribution function versus iteration step. One
can see that IMC converges faster than IBI.

This disadvantage can be compensated by the efficiency of the update func-
tion, which is assessed by computing the root mean square deviation, Ag,,
of the current and target radial distribution functions

ag: = [ g - g )] ar 5:2)
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Ag, is plotted as a function of the number of iterations, n, in figure 5.3(b).
It is clear that IMC converges much faster than IBI, though the root mean
square deviation saturates after some number of iterations. The saturation
of IMC might be due to the smoothing of the potential update or due to
finite-size effects as pointed out in the next section.

For IBI, each iteration was long enough (800 frames) to provide a smooth
potential update that could be applied without any further refinement (ex-
cept for extrapolation). Contrary to this, although each iteration for IMC
was longer (4000 frames), statistics was still not good enough to provide a
smooth update function. Smoothing always had to be applied to the poten-
tial update. The smoothing was applied to the update and not the potential
itself, since the potential has stronger variations which might disappear after
too aggressive smoothing. The potential updates for IBI, IMC before and
after smoothing are shown in figure 5.4.
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Figure 5.4: Potential update for water. The figure depicts the potential
update for the first iteration step using IBI and IMC. Since IMC needs sig-
nificant longer runs to calculate the update, smoothing was always applied
to the potential update.

With the given parameters, the total computation time needed for the 20
IMC iterations is comparable to 300 IBI iterations. However, if smoothing
is applied to the IBI update as well, the length of the sampling runs can be
reduced significantly and the real computation time is below one hour (on a
single core of a Core2Duo desktop machine).

It is obvious that, for monocomponent liquids, IBI performs significantly
better than IMC. However, it is difficult to compare these methods for general
case, for example in multicomponent mixtures, where cross correlations are
important. Nevertheless, our experience shows that IMC is very sensitive to
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choice of the correct set of parameters and therefore needs significant tuning.
In the case of propane (see sec. 5.4), which was taken as an example for
a “multicomponent liquid” (different bead types at chain ends), no working
parameterset to run IMC without manual interaction was found. In contrast,
IBI did not show such problems.

5.3 Finite size effects in methanol

Liquid methanol is the second example of coarse-graining of non-bonded in-
teractions that is discussed here. In fact, FM has already been used to
coarse-grain this system [115] and, contrary to water, the liquid structure
(radial distribution function) is well reproduced by the FM coarse-grained
potential. In addition, the excluded volume of methanol is larger than that
of water and the undulations of the radial distribution function extend up
to 1.bnm. As will be shown, this leads to pronounced finite size effects for
IMC, since it has a non-local potential update. FM and IBI do not have
this problem, since the IBI potential energy update is local and FM is based
on pair forces. The range of the latter is much shorter than the correlation
length of structural properties (such as undulations of the radial distribution
function), which may propagate over the boundaries for small boxes.
Simulation parameters were taken from ref. [115] where the OPLS |38, 117|
all-atom force-field was used. Atomistic simulations were performed with
1000 methanol molecules in a cubic box (4.09nm box size) at 300 K using
the Nose-Hoover thermostat [118, 119]. The system was equilibrated for
2 ns followed by a production run of 18 ns. The reference radial distribution
function was calculated using snapshots every 0.5 ps and is shown in figure
5.5(b).

The FM potential was calculated using blocks of 6 frames each and a spline
grid of 0.02nm. With this potential, coarse-grained simulations were per-
formed using a stochastic dynamics integrator, 1000 beads and with the
same box size and the same temperature as in the atomistic simulations.
The system was equilibrated for 40 ps followed by a production run of 160 ps.
Snapshots were stored every 5 ps and used to calculate the radial distribution
function.

For the iterative procedures, the potential of mean force was taken as an
initial guess. The cutoff was chosen at 1.54 nm with a grid spacing of 0.01 nm.
For IBI, 300 iterations were performed using stochastic dynamics with the
same parameters as in the FM-based procedure. The IMC iterations were
performed with 8000 molecules and a box size of 8.18 nm. The total length
of the run was 1ns and snapshots were stored every 0.2 ps. Two smoothing
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Figure 5.5: Coarse-graining of methanol (a) Coarse-grained potentials.
(b) Corresponding radial distribution functions. Curves for IBI and IMC are
on top of each other.

steps were used at each iteration for the potential update, AU.

The coarse-grained potentials for all methods are shown in figure 5.5(a). In
spite of small differences between the coarse-grained potentials, the agree-
ment between the reference and coarse-grained radial distribution functions
is excellent, as can be seen from figure 5.5(a).

It is important to mention that the IMC method, which has a non-local
update, is prone to systematic errors due to finite size effects and hence
requires much larger simulation boxes in order to calculate the potential
update. This is due to artificial cross-correlations of S, at large distances,
which lead to a linearly shifted potential, and, as a consequence, to a much
higher pressure of the coarse-grained system. In contrast, IBI and FM work
well with system sizes of the order of two radial distribution function cutoff
lengths.

To illustrate this point, simulation boxes of three different sizes, with 1000,
2000 and 8000 methanol molecules (box size of 4.09nm, 5.15308 nm and
8.18 nm, simulation times of 3ns, 2ns and 1ns respectively), were prepared.
The IMC iterative procedure was repeated until the potentials converged,
and these are shown in figure 5.6(a). One can see that the potentials signif-
icantly differ from each other. These differences lead to small deviations in
the tail of the radial distribution function. However, the deviations vanish
in a systematic way for bigger boxes, as illustrated in figure 5.6(b), where
the integrated squared difference of the reference and current distribution
functions is plotted.
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Figure 5.6: Box size dependence in methanol (a) coarse-grained poten-
tials using 10 IMC iterations for simulation boxes with 1000, 2000 and 8000
methanol molecules (box size 4.09 nm, 5.15308 nm, and 8.18 nm) equilibrated
at the same density. (b) Root mean square deviation of the reference and
the current radial distribution function versus number of iterations. Similar
to liquid water, IMC converges faster than IBI. The convergence saturates
and the saturation error strongly depends on the system size.
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Figure 5.7: Dependence of the potential update on system size when
using IMC. (a) Update matrix of a system consisting of 1000 molecules (b)
Potential update for different number of molecules with and without cross-
correlations taken into account.
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5.4. LIQUID PROPANE: FROM AN ALL- TO AN UNITED-ATOM
DESCRIPTION

More detailed analysis has shown that, for small boxes, an additional linear
term in the potential update appears (see figure 5.7). To determine the
origin of this term, AU was calculated using the full matrix A,z as well as
only its diagonal elements. The potential after 50 IBI iterations was taken
as an initial guess. Without the off-diagonal elements, AU was small once
the reference and coarse-grained radial distribution functions were matching
each other. Inclusion of the off-diagonals elements always resulted in an
additional, practically linear, term in the potential update which became
smaller for large boxes. This observation leads to the conclusion that the
off-diagonal elements of the matrix A,z systematically change with the box
size. However, the physical reasons are not yet fully understood.

To summarize, IMC should be used with care for small systems. The poten-
tial update (or the coarse-grained potential) must be converged with respect
to the simulation box size. In the case of methanol coarse-graining, a box
of size three times the radial distribution function cut-off was not enough to
achieve the converged potential for IMC, even though this is sufficient for
the IBI and FM methods.

5.4 Liquid propane: from an all- to an united-
atom description

So far, coarse-graining of non-bonded degrees of freedom using liquid water
and methanol were demonstrated. In this section, it is shown how bonded
interactions can be coarse-grained by deriving a united atom model (i.e.
hydrogens embedded into heavier atoms) from an all-atom model of liquid
propane!. The mapping scheme, as well as the bonded coarse-grained vari-
ables (two bonds, b, and one angle, #) are shown in figure 5.10(a). This
coarse-graining scheme has two different bead types: an inner bead, of type
B, with two hydrogens, and two outer beads, of type A, with three hydro-
gens. As a result, three types of non-bonded interactions, Uxa, Ugg, and
Uap must be determined.

As before, atomistic simulations were performed using the OPLS all atom
force-field [38, 117]. A box of liquid propane was first equilibrated at 200 K

!The united atom model used here shall not be confused with the united atom mod-
els commonly used in the atomistic force-field community, for example OPLS-UA force-
field [38, 117]. The latter models map the potentials, which are analytical functions of
bonds, angles, dihedral angles and non-bonded interactions, onto thermodynamic proper-
ties of the corresponding substances. In our case coarse-grained potentials are tabulated
functions of coarse-grained variables and only the mapping (hydrogens embedded into
heavier atoms) is similar to that of the united atom force-fields.
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and 1bar in the NPT ensemble for 10ns using the Berendsen thermostat
and barostat [111]. The equilibrated box of the size 4.96337 x 5.13917 x
4.52386 nm*® was then simulated for 10ns in the NVT ensemble at 200K
using velocity rescaling with a stochastic term [120]. No bond constraints
were used during the simulations and hence the integration timestep was 1 fs.
Snapshots were written every 1ps.

In the case of iterative methods, the bonded potentials (bond and angle) were
calculated by Boltzmann-inverting the corresponding distribution functions
of a single molecule in vacuum, according to eq. 2.23. The propane molecule
in vacuum was simulated in an stochastic dynamics run [112] for 100 ns with
snapshots stored every 2 ps. Non-bonded potentials were iteratively refined
by using IBI with a grid spacing of 0.01 nm and a cutoff of 1.36 nm (1.38 nm)
for A-A, A-B (B-B) interaction types, respectively. The run length for each
iteration was 50 ps with snapshots written every 0.5ps. At every iteration
step only one interaction type was corrected. Coarse-graining using the IMC
method was not in an automatized way because of problems with finite size
effects (see methanol) as well as jumps in the potential update, which occur
at short particle separations due to bad sampling of these areas?. When using
the FM method, both bonded and non-bonded potentials were obtained at
the same time, since FM does not require the explicit separation of bonded
and non-bonded interactions.

The obtained potentials are shown in figure 5.8 and figure 5.9. FM and
Boltzmann inversion-derived bond and angle potentials (figure 5.9) perfectly
agree with each other. The non-bonded potentials, shown in figure 5.8(a),
are not identical, but have similar shapes and barrier heights. This results
in a good reproducibility of the propane liquid structure by the FM-based
coarse-grained potentials, as can bee seen from the radial distribution func-
tions shown in figure figure 5.8(b). Again, as expected, IBI reproduces the
reference radial distribution functions exactly.

To summarize, the united atom model of liquid propane is an ideal example
of coarse-graining where the structure- and force-based methods result in
similar bonded and non-bonded interaction potentials. As will be seen later,
this is due to (i) the completeness of the basis set used to construct the coarse-
grained force-field; and (ii) independence of bond and angular degrees of
freedom. The latter can be understood with the help of a histogram showing
the correlation of b and #, depicted in figure 5.10. The symmetric shape

2The non-bonded potential updates rapidly change signs at short particle separations.
This originates from bad sampling of these areas as well as from inverting the full IMC
matrix including all cross-correlations of different interactions. One could correct these
errors by hand. However, an automatic procedure, which is the focus of this work, is
cumbersome.
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DESCRIPTION
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Figure 5.8: Non-bonded interactions for propane. (a) Non-bonded in-
teraction potentials Upa, Ugg, and Upg obtained with IBI and FM methods.
For clarity, FM potentials are offset along the y axis. (b) Corresponding
radial distribution functions, plotted together with the atomistic radial dis-
tribution function.
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Figure 5.9: Bonded interactions for propane. (a) Bond potential ob-
tained for a single molecule in vacuum by Boltzmann-inverting the corre-
sponding distribution function, using FM for a single propane molecule in
vacuum and force matching for liquid propane. (b) Angular coarse-grained
potentials. FM-based distributions for a single molecule and the liquid are
on top of each other.
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Figure 5.10: Propane, model and correlations. (a) The all-atom and
coarse-grained representations of a propane molecule, bead types, and coarse-
grained bonded degrees of freedom (bond b and angle #) (b) The correlations
of b and 6.

of the distribution plotted clearly indicates, that b and 6 are uncorrelated.
In the next section, coarse-graining of a single molecule of hexane will be
discussed, for which this is not the case.

5.5 Angular potential of a hexane molecule

The last example discussed here is the angular potential of a hexane molecule
coarse-grained into a three-bead chain, with two carbon atoms per bead
(see figure 5.11(a)). Atomistic simulations of a single hexane molecule in
vacuum were performed using the all-atom OPLS force-field and a stochastic
dynamics integrator [112|. The run length was 1000 ns and snapshots were
stored every 2 ps.

The coarse-grained angular potential was again obtained by Boltzmann-
inverting the angular distribution function or by using the FM method (blocks
of 5-10* frames each and a spline grid of 0.05nm, sampling in the § €
[1.6,3.14] interval was used). Both coarse-grained potentials are shown in
figure 5.12. The corresponding distribution functions, together with the ref-
erence function obtained from the atomistic simulations, are shown in figure
5.11(b).

The distribution which corresponds to simple Boltzmann inversion is practi-
cally identical to the reference distribution, while the FM-based distribution
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Figure 5.11: Angular potential and distribution for hexane (a) Coarse-
grained angular potentials obtained using Boltzmann inversion (no itera-
tions) and FM for a single hexane molecule in vacuum. (b) Probability
density (probability distribution normalized by the interval) obtained from
the atomistic run as well as from the runs using coarse-grained angular po-
tentials.

Figure 5.12: Forces in hexane. Hexane molecule and its coarse-grained
representation. Arrows indicate the directions of the forces on three beads
for a specific snapshot. Force-matching fails since forces on beads have an
out of plane component which cannot be reproduced by the coarse-grained
model.
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Figure 5.13: Correlations in hexane. (a) Bond length b and angle 6 are
correlated in the mapped atomistic trajectory. (b) Since the coarse-grained
model cannot reproduce these correlations, sampling of the configurational
space is different. This will lead to complications when back-mapping to
atomistic details.

samples small angles more often. This is a direct consequence of a very deep
local minimum in the angular potential at these angles. It is easy to under-
stand why FM fails to predict the relative height of this minimum. On a
coarse-grained level the change of the angle from large to small values cor-
responds to the reorientation of the dihedral angles at the atomistic level.
This reorientation results in instantaneous forces, fi, fo, f3, on the beads
which have an out of plane component, where the plane is defined by the
centers of the beads (see figure 5.12). The coarse-grained potential, however,
has only an angular term, Uy, and hence can only capture forces which lie
in the plane in which the angle 6 is defined. Hence, only the projections of
the forces on this plane are used in FM, and this clearly leads to underesti-
mation of the position of the second minimum, since the work conducted by
the out-of-plane forces is completely ignored.

Additionally, this mapping scheme does not have independent variables, e. g.
bond and angle degrees of freedom are coupled, as can be seen from the two
dimensional histogram shown in figure 5.13. This means that, even though
Boltzmann inversion reproduces correct distributions, sampling of the con-
figurational space is incorrect because of the lack of cross-correlation terms
in the coarse-grained potential. For this simple model, the latter issue can
only be solved by an additional coupling term for the bond-angle potentials.

64



5.6. A COARSE-GRAINED MODEL FOR POLYPYRROLE

5.6 A coarse-grained model for polypyrrole

All examples discussed so far are small molecules. This section demonstrates
how coarse-graining of a polymer can be performed using a combination of
Boltzmann inversion and its iterative counterpart. Bonded interactions were
derived for a single chain in vacuum using Boltzmann inversion. The tra-
jectory was prepared by excluding non-bonded interactions of atoms, which
imposes decoupling of the bonded and non-bonded interactions in the coarse-
grained representation. The non-bonded potential was calculated indepen-
dently matching the radial distribution function for a melt of monomers using
IBI. The development of the atomistic model is described in detail in sec. 6.1.
A 1:1 mapping scheme, in which one chemical repeat unit is mapped onto one
bead was used, and the center of mass of a repeat unit is taken as position of
the coarse-grained bead. Beads are connected by bond, angle and dihedral
potentials.

excluded

Figure 5.14: Coarse grained model for polypyrrole. Each repeat unit
was mapped to one bead. Beads are connected by bond, angle and dihedral
potentials. To separate bonded and non-bonded interactions, all interactions
in the atomistic model which would contribute to the non-bonded interactions
in the coarse-grained model have to be excluded in the sampling run for
deriving the bonded interactions.

Bonded potentials of the coarse-grained model were derived using the Boltz-
mann inversion method [42]. Phase space was sampled by a stochastic dy-
namics simulation of an isolated atomistic chain in vacuum for 40 ns taking
snapshots every 2ps at 200 K, 300 K, and 400 K. To separate bonded and
non-bonded interactions, all interactions in the atomistic model which would
contribute to the non-bonded interaction in the coarse-grained model have
to be excluded. This was achieved by excluding all non-bonded interactions
in the atomistic model that correspond to 1-5 or further interactions in the
coarse-grained scheme (see figure 5.14). The rest of the non-bonded inter-
actions were accounted for since contribute to the bonded potentials in the
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coarse-grained model. The distributions and Boltzmann inverted potentials
of the dihedral angle are plotted for different temperatures in figure 5.15.
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Figure 5.15: Coarse-grained dihedral in polypyrrole. The probability
distribution (a) and potential (b) for the dihedral potential that connects the
beads in the coarse-grained model is plotted at 200K (black), 300K (blue)
and 400K (red). The potential was calculated by Boltzmann inverting the
probability distribution followed by a smoothing step to filter noise. With
increasing temperature, the probability distribution broadens but the corre-
sponding potentials do not change much. This fact is not compulsory since
entropic contributions can, in principle, change the potential and are tem-
perature dependent.

The distribution functions show that, in the coarse-grained model, bonds
are stiff. To a good approximation one can use constrained bonds of length
0.377nm. The angle potential was fitted with a harmonic potential (py =
140deg, k = 600kJ/mol/rad?) while a tabulated potential is used for the
coarse-grained dihedral potential. The bond and angle potentials only very
weakly depend on temperature, therefore, all values were derived at 300 K.

To calculate the non-bonded potentials, the IBI method [56, 58] was used
to match the radial distribution function (rdf) of liquid pyrrole. Radial dis-
tribution functions were calculated based on trajectories of atomistic MD
simulations. A box of 512 pyrrole monomers was first equilibrated in a NPT
run (Berendsen thermo- and barostat) at 1 bar and 200 K, 300 K and 400 K
for 1ns, followed by a production run in the NVT ensemble for 2ns saving
snapshots every 0.2 ps. Monomers were mapped to coarse-grained beads and
the rdfs were calculated. The rdfs, which are shown in figure 5.16, reflect
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Figure 5.16: Non-bonded potentials for coarse-grained pyrrole. (a)
Radial distribution functions of an atomistic melt of monomers mapped
onto coarse-grained beads for 200 K, 300 K and 400 K. Coarse-grained RDFs
match perfectly and are not shown. (b) Coarse-grained potentials obtained
using the IBI method.

the ellipsoid-like shape of the pyrrole monomers: at 400 K, the first peak
is slightly deformed. Due to different relative orientations of neighboring
monomers, this peak splits up into two smaller peaks with decreasing tem-
perature, which corresponds to the face to face and T-shaped arrangement
of neighboring molecules.

300 IBI iterations, 1 ns each, with snapshots saved every 1 ps, were performed
to obtain the non-bonded potentials. Box size and initial coordinates were
taken from the mapped atomistic configuration. For the systems at 200 K
and 300 K, the potential update was scaled by a factor 0.5 to stabilize the
scheme.

In principle, one has to study a set of oligomers to account for connectivity
effects (repeat units which are embedded in a chain are sampled differently
than free monomers). However, the rdf of an equilibrated melt would be
needed as a reference which cannot be equilibrated at ambient conditions,
since the polymer is in a glassy state.
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5.7 Conclusions

To summarize, four methods, namely Boltzmann inversion, iterative Boltz-
mann inversion, inverse Monte Carlo, and force matching, have been used
to coarse-grain a set of reference systems: liquid water, methanol, liquid
propane, and a single molecule of hexane.

All implemented methods have advantages as well as shortcomings. Inverse
Monte Carlo has an update function which is more efficient than that of
the iterative Boltzmann inversion method. However, inverse Monte Carlo is
very sensitive to the system size and statistical averaging. In general, more
attention has to be paid for the preparation of the iterative runs when using
inverse Monte Carlo, and IBI turns out to be a more robust method. Force
matching, which is a not an iterative method, has problems is the basis set
used to represent the coarse-grained potential energy surface is incomplete.
An incomplete basis set leads to potentials that might show a completely
non-physical behavior. It should always be kept in mind that the coarse-
grained systems are physically different to the reference systems, and that the
coarse-graining methods cannot be used as a black box and require thorough
cross-checking.

Due to the intrinsic approximations of coarse-graining, the generated mor-
phologies will describe correctly only the global morphology but not the local
packing. However, atomistic details can be reintroduced and only a short run
at atomistic level is then required for local equilibration and compensation
of inaccuracies of the coarse-grained model |75, 121].
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Chapter 6

Charge transport in Polypyrrole

In this chapter, a computational study of the relationship between the ar-
rangement of polymer chains and charge mobility is presented for neutral
and oxidized oligomers of polypyrrole (PPy) (see figure 6.1). Historically,
polypyrrole is probably the very first polymer reported to have good con-
ducting properties when oxidized [122|. It is easy to synthesize and handle;
conductivities up to 300S - ecm~! were reported in the oxidized state. The
structure and therefore the conductivity of polypyrrole heavily depends on
the processing. Similar to the other conjugated polymers, the extreme insolu-
bility of polypyrroles in organic solvents hinders detailed analysis. Therefore,
the physical properties and structural characteristics of PPy are not well un-
derstood. An experimental overview of the electrochemistry of conducting
polypyrrole films is given in ref. [123|. Here only the main and rather sparse
theoretical contributions to the field are mentioned.

H H

N

Figure 6.1: Chemical structure of polypyrrole. The figure depicts the
chemical structure of neutral polypyrrole. In the oxidized case, one electron
per 3 repeat units is removed (on average) and the chain is positively charged.

The effect of doping on the geometric and electronic structure has been stud-
ied in pioneering works of Brédas et. al. [124, 125]. It was shown that for high
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doping levels bipolaron bands are formed, confirming experimental observa-
tions of the spinless nature of charge carriers in the highly doped state. Sim-
ilar analysis was performed using density functional approaches [126, 127].
The hopping transport picture and underlying parameters were analyzed for
pyrrole oligomers by Hutchison et. al. [128]. The stability of oligomeric PPy
structures bonded through oo and 8 carbons was studied by Yutsever. It was
shown that PPy is able to form-branch like structures [129, 130].

At the atomistic level of description, OPLS-AA force field parameters were
derived for liquid pyrrole by Jorgensen et. al. [131]. Molecular dynamics
simulations of solvated reduced and oxidized polypyrrole were performed by
Cascales et. al. [132, 133]. In these simulations, the standard GROMOS
torsion potential connecting repeat units was used for the neutral as well
as the doped polymer. Apart from the fact that this potential contradicts
recent quantum-chemical calculations [134], it differs significantly for doped
and oxidized states as shown in sec. 6.1. Hence, the first important task
on the way of modeling PPy morphologies is the development of a reliable
atomistic force field, with appropriate parameters for the torsion potential
and correct partial charge distributions in reduced and oxidized states. This
is performed in sec. 6.1.

The aim of this study is to investigate the effect of global arrangement of
chains on charge carrier mobility, i.e. whether optimizing the alignment of
chains can help to improve conductive properties. The model used is based
on the framework described in sec. 3.7 and was previously used to correlate
structure and charge mobility in discotic liquid crystals [81, 82, 83, 84, 85,
86, 25, 135]. First, the morphology of an assembly of chains using molec-
ular dynamics (MD) is simulated. In order to tweak the morphology two
methods are used: the initial arrangement of polymer backbones for the MD
simulation is changed and the simulation is performed on oxidized polymer
chains in the presence of counterions. In particular three types of chain align-
ments are used: all the chains aligned in one direction, the chains lying in
one plane, and an isotropic arrangements of chains. The morphology is then
used to compute charge transfer rates and hence charge mobility. The main
change in the modeling of charge transport compared to the case of discotic
liquid crystals is that charge transfer units are defined in terms of subsets of
the polymer chain (conjugated segments), the use of different rate equations
for intra- and intermolecular transport, and the computation of the nearest
neighbor list for the three dimensional network of chains.

In discotic liquid crystals it was argued that the value of the charge mobility
is determined by the distribution of the intermolecular transfer integrals,
which is directly linked to the azimuthal register and separation between the
molecules [81]. The charge transport in these systems has one-dimensional
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character and is limited by the tail of small transfer integrals (defects) in the
system. This can be easily rationalized because in one dimension the smallest
transfer integrals are the bottlenecks for charge transfer. The assembly of
PPy chains is of course not one dimensional and therefore it is harder to
predict what the bottleneck of charge transport is. It will be shown that,
in this case, mobility is almost entirely determined by the magnitude of
the transfer integral which allows the whole simulation box to be connected
together. Most intriguingly, the size of this transfer integral is not strongly
affected by the changes in morphology. The main conclusion is therefore
that, for the case of such amorphous polymers, charge mobility is mostly
determined by local packing and is almost independent on the alignment of
chains.

6.1 Atomistic Model

The first step is to set up a reliable atomistic model of PPy. As a starting
point, the OPLS-AA force field parameters are taken, which were parame-
trized based on pyrrole monomers [131]. The parameters of the dihedral
and improper potentials connecting adjacent repeat units are of course not
available in the standard force field. For the charge transport studies in this
work, the dihedral potential of the torsion connecting two adjacent repeat
units is of special interest, since it influences the global conformation of the
chain the most. In addition, conjugated segments are determined based on
fluctuations of this torsion angle. The missing parameters were obtained by
fitting the potential energy surface to first principles calculations. In what
follows, the procedure for the dihedral potential is described. Bonds and
angles would need tuning if vibrational spectra should be studied, but their
exact force constants are less important for morphology. The same holds for
improper dihedrals, which are mainly used to keep conjugated rings planar.
For neutral polypyrrole, the torsion angle 6 of the N-C-C-N dihedral in 2,2’-
bipyrrole (see figure 6.2) was scanned and the torsion potential was evaluated
using B3LYP hybrid density functional and 6-311G(d,p), 6-311G+-+(d,p) and
6-311+-+G(3df,3pd) basis set. An additional MP2 calculation was performed
using the 6-31G(d) basis set. All calculations were performed using the
GAUSSIAN package [36]. At each scanning step, the dihedral angle 6 was
fixed at the value of interest while the rest of the structure was optimized.

The dependence of the potential on the torsion angle is depicted in figure
6.2. !

1One should always comment on the accuracy of DFT: Even though DFT does not
show perfect agreement with higher correlated quantum chemical methods when applied

71



CHAPTER 6. CHARGE TRANSPORT IN POLYPYRROLE

(a) (b)

T T T T
o—o B3LYP/6-311G(d,p)
10 o— B3LYP/6-311++G(d,p)
o—o B3LYP/6-311++G(3df,3pd)
o—o MP2/6-31g(d)

U (kJ/mol)

Il Il Il Il
0 20 40 60 80 100 120 140 160 180
torsion angle (deg)

Figure 6.2: Neutral polypyrrole force-field scans. The potential en-
ergy curve for a 2,2’-bipyrrole as a function of the dihedral angle 6 with
B3LYP/MP2 and different basis sets.

To obtain the parameters of the dihedral potential from the ab-initio po-
tential energy, the optimized geometries were further relaxed in MD, again
constraining the dihedral angle and with its parameters set to zero. The
force-field based potential energy of these relaxed contributions was then
subtracted from the potential energy curve provided by ab-initio B3LYP /6-
311++G(3df,3pd) calculation.

Note that direct fitting, without subtraction, is a common mistake which
leads to a double counting of those energy contributions which were already
taken care of in the existing atomistic model, such as bond, angle, improper
dihedral, Coulomb and Lennard-Jones interaction potentials. Another, more
subtle problem is that the minimum energy conformation in the atomistic
model has small deviations compared to the quantum chemically optimized
structures. Without relaxation of internal stresses in MD (mainly due to
improper dihedrals, angles and bonds which hardly contribute to the global
conformation), this would lead to different barriers. The relaxation in MD
leads to potential barriers of equal heights for torsions in the chain, both, in
quantum chemical and atomistic calculations.

to judging rotational barriers in conjugated materials [136], its accuracy is still sufficient
for the studies on polypyrrole in this work [134], given the other errors introduced in
atomistic simulations.
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Figure 6.3: Neutral polypyrrole force-field fitting. The potential en-
ergy curve for a 2,2’-bipyrrole as a function of the dihedral angle # and the
according calculation the fitted MD potential.

A Ryckaerd-Belleman type potential

5
Vip = Z C,, (cos)" . (6.1)
n=0

was used to fit the potential energy difference. The resulting potential is
depicted in figure 6.3. Atomic charges were calculated using B3LYP/6-
311G(d,p) and CHELPG [137] fitting procedure in a chain of 8 repeat units.
All force-field parameters are given appendix C.

To study the effect of doping on the force field parameters, the torsion angle
of a charged chain was studied. Experimentally, the best conductivities are
obtained for a doping rate of one charge per three repeat units [138]. Here,
a charged tetramer was used and the central dihedral was constrained to
the value of interest while the other degrees of freedom were free to relax
(similar to the dimer scan in the neutral case). A charged tetramer is a good
compromise, since it reproduces the total charge of experiments, as well as
allows for the computational treatment of the scan on a quantum chemical
level. In addition, the scan is carried out for the inner dihedral since this
configuration is symmetric and is representative for the bonding situation in
a polymer.

Figure 6.4(a) shows the potential energy of the neutral and the charged
tetramer. It is clear that the barrier is increased and the planar configuration
is favored when the polymer is doped. This high barrier cannot be reproduced
by the atomistic models for the neutral case, even if the charges are adjusted
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to the doped case. Moreover, for a doped polymer, partial charges of the
atoms do not increase homogeneously: the whole distribution along the chain
changes. Hence, both the dihedral potential and partial charges should be
adjusted in order to correctly describe doped chains. All parameters are
given in appendix C.

The chemical reason for the increase of planarity in PPy upon doping is the
quinoid structure of oxidized PPy, i. e. the double bond character of the
bond connecting successive monomers. When an oxidized oligomer is forced
to acquire a twisted conformation the molecule will find itself in a diradical
state which cannot be properly described by ground state theories such as
DFT. Having said this, it is also clear that small deviation from planarity
(where diradical formation can be assumed not to play an important role)
results in much larger potential energies in the oxidized than in the reduced
states. DFT cannot give correct quantitative estimates of the rotational bar-
rier in charged PPy but can certainly describe the general trends: a reduc-
tion in bond length of the bond which connects repeat units and a increase
in stiffness. To take this into account at the force-field level, changes in bond
lengths were ignored and only the dihedral potential and partial charges were
adjusted.

When fitting the atomistic potential, the unknown torsion potential occurs
at three positions in the molecule. To calculate energies in MD, the DFT op-
timized structures were taken and all three dihedrals were restrained to their
values while the remaining degrees of freedom were relaxed. The functional
form for the atomistic potential was determined by a multidimensional fit
to the Ryckaerd-Belleman parameters. Since a Ryckaerd-Belleman potential
linearly depends on its parameters, they can be obtained by solving a set of
linear equations.

In the doped state, the additional charge is delocalized along the chain. A
priori it is not clear, whether this leads to a coupling of neighboring dihedral
potentials. To test this, additional DFT scans, shown in figure 6.4(b), were
performed around one of the outer dihedral of the tetramer, while the middle
dihedral was fixed to 0, 10, 20 degrees. These calculations show, that the
shape of the potential does not change and only the position of the minimum
is affected, which is due to non-bonded interactions.

Furthermore, the potential derived from the tetramer was tested for a hex-
amer by comparing the potential barrier from MD and DFT, and no differ-
ence was found. These points indicate that the same torsional potential can
be used for all repeat-unit-linking dihedral angles of the polymer.
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Figure 6.4: Oxidized polypyrrole force-field. (a) the torsion barrier
of the neutral and the oxidized polymer. While in the neutral case the
equilibrium is approximately 30° and the height of the barrier only a few
kgT, the oxidized state has a high barrier and flat geometry. (b) The figure
shows the energies, when one dihedral angle is fixed at a certain value while
another one is rotated. The calculations shows no coupling between the
torsion potentials. The curvature does not change, and the small shift can
be explained due to non-bonded effects.

6.2 Morphologies

The main aim of this study is to investigate the effect of chain alignment
on charge carrier mobility. Therefore, three kinds of molecular morpholo-
gies were prepared with different types of molecular ordering, which will be
referred to as a fiber, slice and isotropic (figure 6.5).

In case of the fiber, polymer chains (originally set up on an ideal lattice with
experimental density for liquid pyrrole) were aligned along the x axis, and
shuffled randomly. The slice morphology was generated by randomly rotating
chains in the zz plane, as well as along the chain axis and again shuffled
randomly?. Finally, isotropic configuration was achieved by assigning random
orientations to all the chains and randomly translating them in space. Using
liquid crystalline terminology, fiber corresponds to a nematic mesophase with
the order parameter S = 1, slice with S = —1/2, and isotropic morphology
to the isotropic mesophase with S = 0. All systems consisted of oligomers of
length 10 repeat units, 512 (256 for the fiber) molecules in total.

?Note that Euler angles are not suitable for creating uniform random rotations, a
method as described in ref. [139] should be used.
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(a) (b) (c)

Figure 6.5: Polypyrrole morphologies. Representative snapshots of three
different molecular arrangements. (a) Fiber, with all molecules aligned along
the z axis. (b) Slice, with all molecules aligned in the xy plane. (c) Isotropic,
with randomly oriented molecules. To emphasize molecular alignment, sev-
eral randomly chosen molecules are shown using a different representation.

The morphologies can, in principle, be equilibrated using the coarse-grained
model developed in sec. 5.6. However, this would destroy the alignment
of chains which was imposed during preparation. Instead, atomistic MD
simulations were used to locally equilibrate the samples while conserving the
global order. Therefore, these are model systems which do not necessarily
correspond to experimental structures.

It is important to start the MD run with the approximate density of the
equilibrated sample. The chains are strongly attractive, starting with a low
density would immediately lead to clustering of chains and equilibration, even
with strongly heating up the sample, is hardly possible. However, starting
with the approximate density leads to overlap between chains in the initial
configuration. To remove this overlap, short runs were performed in which
non-bonded interactions were gradually switched on. To locally equilibrate
the systems, the conformations were then heated up to 500K for 5ns. Fi-
nally the systems were cooled down to 300 K during 1ns followed by a final
equilibration at room temperature for 2ns. All runs were performed using
the GROMACS package [37]. For the further charge transport calculations,
50 snapshots were saved every 2ps. Representative snapshots of all three
morphologies are shown in figure 6.5.

In the oxidized case, three charges per chain were assumed [138], while adding
Cl™ as counterions (see figure 6.6(a)). An equilibrated conformation from
the neutral case was taken as a starting point. Charges and the dihedral
parameter of the force field were changed to the oxidized ones and counterions
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(b)

Figure 6.6: Oxidized polypyrrole morphology. (a) Isotropic morphology
of oxidized polypyrrole using Cloride as counter ions. (b) The normal vector
n and vector p connecting the two carbon atoms involved in bonding are
used to characterize polypyrrole morphologies.

added at random positions. The non-bonded interactions of the counter ions
were slowly switched on during a stochastic dynamics run.

To characterize the generated morphologies, the radial distribution function
of the centers of mass of the repeat units was calculated. In order to confirm
that the three starting morphologies and the two different force-fields corre-
sponding to a flexible reduced polymer or a stiff oxidized one have indeed
resulted in assemblies with different degree of orientational ordering of chains,
three nematic order parameters were computed for each morphology. The
nematic order parameters are based on the vector m, normal to the pyrrole
repeat unit plane, vector p along atoms where adjacent units are attached
to, and the end-end vector of the chain. The physical meaning of vectors n,
p is shown in figure 6.6(b). The order parameter is defined as the largest
eigenvalue of the nematic order tensor

1
Saﬁ = 5 <3uauﬁ — 5ag> s (62)

where «, = x,y, z, u is a unit vector of interest, < --- > denotes time and
ensemble average. The nematic order parameters are referred to as Sy, Sp,
and Send—end‘

The results are summarized in table 6.1. The fiber has rather large nematic
order parameter Sepg.end, Which indicates good alignment of chains along
the = axis. The slice has a negative value of the order parameter, which
is in agreement with the (practically isotropic) molecular ordering in the zz
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plane. Finally, the isotropic morphology has a rather small value of the order
parameter, which is again in good agreement with the isotropic distribution
of molecular orientations in the box. The same trend can be observed for
the oxidized polypyrrole morphologies, where the stiffness of chains does not
really affect the orientational ordering of oligomers.

6.3 Charge transport parameters

The main issue in order to simulate charge dynamics is to determine the
charge transport unit. Many mechanism can lead to charge localization
on a polymer: polaron self trapping [140, 141], breaks in conjugation due
to chemical defects [142] or due to the torsion angle between neighboring
monomers [143] and finally rapidly changing intramolecular transfer integrals
leading to the dynamic disorder which is responsible for charge localization in
molecular crystals |76, 80]. Three limiting cases for charge localization were
considered: (i) a totally localized model where each repeat unit is a charge
transporting unit, (ii) a totally delocalized model where each oligomer is a
charge transporting unit, and (iii) a model where the polymer is partitioned
into conjugated segments. In the latter case, the places where the oligomer
is artificially cut are chosen according to the value of the torsion angle, that
is when the torsion angle between two repeat units is greater than 45° (see
figure 6.7). This approximation can only capture the static, conformational
mechanism for charge localization. Other effects should be integrated in
future extensions to the model.

When computing mobilities, the model (iii) in which a distribution in con-
jugation lengths is considered was applied. However, the totally localized
model (i) is used to investigate the effect of changing intramolecular rates
and the totally delocalized model (ii) was used in the percolation analysis
for intermolecular rates whilst entirely excluding intramolecular transfer in-

morphology neutral oxidized

Sn Sp Send—end S'n, Sp Send—end
fiber -0.38 | 0.70 0.85 |-0.38 | 0.64 0.84
slice 0.36 | -0.27 | -0.33 | 0.34 |-0.24 | -0.30
isotropic -0.14 | 0.13 0.16 0.10 | 0.10 0.14

Table 6.1: Nematic order parameters in polypyrrole morphologies.
Order parameters were calculated for n, p, and end-to-end vectors which
characterize average orientational ordering of repeat units in oligomers (Sy,,
Sp) and chains in a simulation box (Send-end)-
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’Cl]

Figure 6.7: Model for hopping on conjugated segments. A segment is
assumed to be conjugated if the torsion angle 0;; is less than 45°. The length
of the conjugated segment is denoted as [, the rates for intermolecular trans-
port is given by w;; (Marcus rates) while intrachain transport is described
via 7;; (adiabatic rate).

tegrals.

Having defined the charge transport units, it remains to chose an expression
for the charge hopping rates as well as to evaluate the necessary parameters.
Here one must distinguish between the cases of transport along chains and
between chains. As will be shown later, the typical internal reorganization
alone is approximately 0.4 eV (depending on conjugation length) and the peak
in intermolecular transfer integrals is at approximately 10 meV. Therefore it
is reasonable to treat intermolecular transport in the non-adiabatic regime
and use the Marcus expression to calculate hopping rates [90, 87|. On the
other hand, transfer integrals along the chain can be as large as Jy cos(m/4) ~
0.7eV. Such transfer integrals put transport firmly in the adiabatic regime,
possibly even in the delocalized regime, and therefore must be described by
a different formula.

To calculate the necessary parameters for conjugated segments of different
length, the ends of the conjugated segments were saturated with hydro-
gens. The chains were first optimized using the B3LYP functional and 6-
311+G(d,p) basis set. Since only transport of positive charge carriers are
considered, the site energy difference ALE;; is given by the difference of the
HOMO energies and a contribution due to the external electric field. The
HOMO values as a function of segment length are depicted in figure 6.9(a).
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The reorganization energy was calculated as \;; = %(/\Z +2;), where ); is the
reorganization energy of an oligomer of length i and can be computed using
the method described in sec. 3.4.

In principle it would also be possible to compute the contribution to site
energy differences from electrostatic energies. However, there is a significant
problem in doing this in the case when the dielectric constant is not only
due to electronic polarization, as it is in the case of the oxidized polymer. In
fact, for a heavily doped polyelectrolyte the optical dielectric constant can
be very large - up to 20 according to some measurements [144]. Under such
circumstances, decoupling the molecular dynamics from the charge dynamics
becomes rather contrived as rearrangement of ions would make the largest
contribution to the dielectric constant. Therefore, only the effect of conju-
gated segment length on site energy is considered here. In this sense, the
main difference between oxidized and neutral PPy is due to chain stiffening,
which will affect the morphology.

J

J

Figure 6.8: HOMO of a polypyrrole trimer.

Intermolecular transfer integrals J;; are computed using the molecular orbital
overlap method as described in sec. 3.3. The transporting orbital for positive
charge carriers is the HOMO, which is shown in figure 6.8 for a polypyrrole
segment. For the adiabatic intrachain transport a simple expression derived
from transition state theory [90, 94| is used instead of the Marcus equation

(AEi; — Aij)®
I kT

T;j = Vexp |— — Jocosbj| . (6.3)
In this equation v is a prefactor related to the frequency of the promot-
ing mode and the relevant Franck Condon factor [90]. Simulations where
charges are allowed to hop only between monomers have shown that a value
of 10% s7! is sufficient to stop the global mobility depending on the choice
of this parameter. By making sure that this rate is sufficiently fast it is
therefore ensured that the rate limiting step in charge transport simulations
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Figure 6.9: Length dependence of site energies and reorganization
energies. a) Dependence of the HOMO energy of the oligomer on its length.
HOMO orbital of a polypyrrole trimer is depicted in the inset. b) Dependence
of the reorganization energy \; on oligomer length 1.

is always an intermolecular process. The intramolecular transfer integral is
modeled by the following form: Jiyta = Jo cos 0,5, where 0;; is the torsional
angle between neighboring charge transport units ¢ and j, and Jj is chosen to
have a value of 1eV. All other symbols have the same meaning as in eq. 3.9.
First, the effect of segment length on interchain rates w;; is analyzed. As it
is shown in figure 6.9(a), the site energy eyonmo increases with the oligomer
length, which indicates that positive charges (holes) prefer to occupy larger
charge transport units. A slight complication to this is the fact that the
reorganization energy A also depends on the length of oligomer considered,
as shown in figure 6.9(b). With the exception of oligomers of length 1 repeat
unit (ru) the reorganization energy decreases with length of a conjugated
segment. The net effect on the rate therefore is that jumps from shorter to
longer segments are in general favored, but if the length difference is too large,
the rates become slow due to being in the inverted regime of Marcus theory?.
These observations are summarized in figure 6.10, which shows the hopping
rate between two oligomers as a function of their size. It is clear that the
rate prefactor (excluding the transfer integral) is, relatively speaking, rather
insensitive to oligomer length in a large region. Essentially, energetic disorder
becomes a minor effect if oligomer lengths become greater than 3 ru.

Most of the disorder introduced in the simulation is therefore a result of the

3The reason for the inverted regime is that an additional vibrational excitation is needed
to induce the electron transfer.
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Figure 6.10: Rates for hopping to conjugated segments of different
length. Dependence of the rate (assuming a transfer integral of 0.1eV, in
units of s71) on the length of the oligomer from which the charge is hopping
(z axis) and on the length of the oligomer to which it is hopping (y-axis).

distribution of transfer integrals, shown in figure 6.11(b). Showing the dis-
tribution of transfer integrals next to the radial distribution function, figure
6.11(a), reveals how closely these two quantities are related. Note that this
relation is evident only if the logarithm of the transfer integrals is compared
to the radial distribution function, since the transfer integral decreases ex-
ponentially with increasing distance. The radial distribution function shows
the density at a shell at a certain distance from the center of a monomer.
The first two sharp peaks (both labeled with a letter A) correspond to the
nearest intrachain neighbors (there are two peaks because the two possible
orientations of an intrachain neighbor result in slightly different distances).
The next peak (B) corresponds to the nearest interchain neighbor. This
structure is exactly repeated in the distribution of logarithm of the transfer
integrals.

One can also see, that even though the different morphologies have very
different order parameters and seem very different to the naked eye, the dis-
tributions of transfer integrals are in fact rather similar. This is because
transfer integrals are essentially a local property which depends only very
weakly on the global ordering. The only morphology which does display a
small difference in transfer integrals is the fiber morphology in the reduced
form for which the peak of the transfer integrals is slightly greater. Notice
that the height of the peaks in the distribution of transfer integrals is some-
what deceiving, since all distributions are normalized by the total number
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Figure 6.11: Relation of radial distribution function and transfer
integrals. Radial distribution function for monomers (a) and distribution
of logarithm of transfer integrals (b) for three different morphologies and two
oxidation states. The distribution of transfer integrals is normalized to the
total number of transfer integrals in the morphology. The peak A is due to
intramolecular charge transfer between neighboring repeat units, peak B is
due to the intermolecular transfer for the first shell of neighbors, peak C is
due to next nearest neighbors along the chain (and therefore is absent in
the distribution of the transfer intergals). Peak D corresponds to the second
shell of neighbors participating in the intermolecular charge transfer.

of neighbors. A higher first peak is likely to represent fewer second near-
est neighbors within the cutoff distance rather than more nearest neighbors.
This is why the oxidized geometries, with their longer average lengths, tend
to have a higher first peak.

Oxidation is believed to have two main effects on charge mobility: it makes
the polymer backbones significantly stiffer and it also changes the mediators
of charge transport from polarons to bipolarons [124, 145, 125, 146, 126,
127]. If one considers two charge transporting units that can support either
polarons or bipolarons, one can imagine two ways that charges move: either
two charges move at once or one moves at a time. It can be distinguished
which of these cases is more likely by considering the transfer integral related
to each case. Using Slater rules and within the frozen orbital approximation
it is deduced that in the latter case the transfer integral will correspond to
the exchange integral of those two orbitals, whereas in the former case the
transfer integral will correspond again to the expectation value of the Fock
matrix. Since the expectation value of the Fock matrix is always greater than
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the exchange integral it is much faster for a single charge to be exchanged
between molecules. The mobility that is computed in the case of oxidized
polypyrrole is the mobility of a single charge moving on a background of
overall charged oligomers. The charge of each oligomer is deduced from its
length; oligomers of length one to three will vary from having one charge to
having two charges, lengths four to six vary from having two charges to three
charges and longer oligomers vary from three to four charges. The transfer
integrals are computed using the relevant molecular orbitals.

6.4 Charge transport simulation

Once the position of atoms is determined from MD, the oligomers are seg-
mented into conjugated units based on the torsion angle between subsequent
monomers. If the absolute value of this torsion angle is greater than 45°,
the monomers belong to different conjugated segments. Then segments of
the MD run are substituted with structure optimized in quantum chemical
calculations (see sec. 3.7 for details). Each oligomer has its position and
orbitals adjusted to the position and orientation of the monomer to ensure
a close match to the atomistic morphology. This special substitution solves
two issues: first, deviations in bond stretching which occur due to errors in
the force field are compensated, and second, the structure for the further
evaluation corresponds to the QM optimized structure for which the orbitals
were calculated. Without this substitution, the diabatic picture of charge
transfer would be violated.

Transfer integrals, site energies and rates of charge transfer are then com-
puted, using the methodologies described chapter 3. The charge dynamics is
simulated using kinetic Monte Carlo algorithm [147]. The mean of the time-
average drift velocity of charges in an electric field over various MD snapshots
is calculated to ensure good statistics. All simulations were performed using
the VOTCA package [103].

Table 6.2 shows the mobility for the different morphologies averaged over 100
MD snapshots. Only mobilities greater than 107%cm?V~'s~! were taken
into account and 7.4% of all the simulations were neglected. This cutoff
must be chosen because if a KMC simulation is started with a charge on an
conjugated unit of length 1ru or 2ru it is very unlikely to escape. As argued
in the sec. 6.6, this is justified because torsional angles fluctuate on a time
scale significantly faster than that of the very slow hops. In other words,
the charge localized on a short transport unit is practically instantaneously
delocalized by vibrations of the backbone.

With the mobilities at hand, one can estimate the conductivities of PPy
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morphology | mobility = | mobility y | mobility z

fiber 23+16 | 1.8+£1.0 | 1.7£0.9
slice 1.3£04 | 0.7£03 | 1.2£04
iso 0.8£03 | 0.7£0.2 | 09+0.3

fiber ox 19£18 | 1.5£1.1 1.1£1.0
slice ox 26+21 | 24+£15 | 3.0£2.1
1s0 0x 3517 | 31£15 | 34+£1.5

Table 6.2: Charge mobilities. Mobilities in different directions for the
various morphologies, in 1072cm?V~'s~'. Mobility was computed from
100 frames, with an electric field of 10°Vm™!, considering a distribu-
tion of conjugated fragments and averaging only those values greater than

1076 em2 V-t 1L,

which have been measured. Assuming that the charge density is of three
electrons per oligomer of length 10, a charge carrier concentration of the order
of 2.5 x 10%! cm ™3 should be expected. Using this concentration the simulated
mobilities can be converted to a conductivity in the order of 128 cm™*, a

value which is in the range measured for this material [123].

6.5 Cluster analysis

In previous studies on one dimensional transport in discotic liquid crys-
tals [81, 85, 25], relating the transfer integral distribution to the mobility
was relatively easy: since the transport is one dimensional, the mobility is
essentially set by the tail of low transfer integrals. In three dimensions it
is much harder to state a priori what will be the rate limiting step when a
charge traverses such a box.

One way of doing this is to look at the point when transfer integrals “perco-
late” the box. Percolation is defined in the following way: one first partitions
the system on clusters of molecules which are connected by transfer integrals
of at least a certain value J,;,. Then the size of the largest cluster in the
box is plotted as a function of J,;,. Percolation occurs when J;, is large
enough for the biggest cluster to span the entire box. The percolation thresh-
old is obtained by looking at the relative size of the largest cluster which is
defined as a ratio of number of molecules in the largest cluster to the total
number of molecules in the simulation box. This calculation was carried out
for the transfer integral between oligomers of length 10. If a distribution of
conjugation lengths with different length would be considered, the interpre-
tation would be complicated by the fact that oligomers of different length
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Figure 6.12: Percolation analysis. (a) Simulation snapshot after perco-
lation (Jpim = 23meV). Different clusters are depicted by different colors.
The largest cluster spans the whole box. (b) Relative to the simulation box
size of the largest cluster given a certain value Jy;,. (¢) Simulation snapshot
before percolation (Juyi, = 14meV). Clusters are not well connected and are
small compared to the box size.

have different aspect ratios and hence different percolation thresholds. The
dependence of the relative cluster size on the transfer integral is shown in
figure 6.12.

From figure 6.12 it is clear that the value of the transfer integral when the
largest interconnected cluster starts spanning the whole box is approximately
18 meV for the slice and isotropic morphologies and slightly over 20 meV for
the fiber morphology. This value also corresponds to the first peak in the
distribution of intermolecular transfer integrals, peak B as shown in figure
6.11. In order to convert this limiting transfer integral to a rate for the slowest
step, the expression from Marcus theory in eq. 3.9 can be used. In the case
when AFE;; is small and due only to the electric field F', i. e. AE;; = Fid,
the rate equation for the forward, wzfj, and backward, w?j, rates takes the
following form

fb ? 1]
W = —= ex — 4+ 64

where d is the distance between neighboring sites (at the cluster boundary)
and all other symbols have the same meaning as in eq. 3.9. The mobility can
then calculated as

d(wf — WP J2d? i
= (& =) = T exp |——2=|. (6.5)
F nksT \ ksTh; 4ksT

In other words, one obtains an expression for mobility which is independent
of the electric field. Note also that it was assumed that there is no energetic
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disorder and that all hops are identical. Using d = 5 x 107%cm (the first
maximum of the radial distribution function), J;; = 0.018 eV (value which
corresponds to the percolation threshold), kg7 = 0.0259¢eV, \;; = 0.35¢V
(average value of the reorganization energy), and i = 6.57 x 1071%eV, an
estimate of the mobility of 3 x 1072 cm? V~'s~! is obtained. Comparing this
value to the mobilities simulated using the KMC method in table 6.2, it is
evident that this estimate of the mobility is indeed a good one.

In fact, all the morphologies have rather similar mobilities. In other words,
it seems that, even though the morphologies are very different on a global
scale, the mobilities are limited by Ju;, which is similar in all morphologies.

6.6 Validity of the model and outlook

An important shortcoming of this model is that it neglects the fact, that
charge transport units are not fixed in time due to fluctuations (dynam-
ics) of the torsion angle between repeat units. These fluctuations occur on
timescales of hundred femtoseconds, as can be seen from the distribution of
monomer lifetimes shown in figure 6.13(a).
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Figure 6.13: Conjugated segments distributions. All results were ob-
tained at 300K. (a) Probability distribution of the lifetime of conjugated
segments of length 1. The lifetime of conjugated segments is in the order of
couple tenths of picoseconds. (b) Distribution of lengths of conjugated seg-
ments. In the reduced case, dimers are the most frequently appearing con-
jugated segments. In the oxidized case, most of the chains are flat and most
frequent length of a conjugated segment is the total length of an oligomer
(10 ru).
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The lifetime analysis was performed by doing a short MD run of 40 ps and
saving snapshots at each MD step (2 fs) at 300K. The lifetime was determined
by book-keeping the creation/annihilation of charge units over time due to
the variation of torsion angles. The normalized histogram was calculated
using a 10fs grid spacing. In the reduced case, only 1.5% of monomers live
longer than 5ps. In the oxidized case, the lifetime of segments of all lengths
(except 10-mers) is shorter than 5 ps.

An important difference of the reduced and oxidized morphologies is the
distribution of conjugated segment lengths. As depicted in figure 6.13b, the
oxidized morphologies consist of mainly conjugated segments of 10 repeat
units while in the reduced case short segments are favored.

Because of the short lifetimes, special care has to be taken if charges are
trapped on a short living segment. Figure 6.10 shows that, if a charge resides
on an conjugated segment of length one and is surrounded by segments of
length greater than 3, the average hopping time will be much longer than the
persistence time of this conjugated segment. Therefore, it is important to
disregard those simulations where events occur on much slower timescales.
Furthermore, a residing charge would lead to chain flattening, similar to
chain stiffening upon oxidation. This will additionally shorten the lifetime
of a conjugated segment, helping the charge to escape.

6.7 Conclusions and outlook

To summarize, a combination of quantum and classical levels of description
is used to investigate the link between morphology and charge transport in
six different disordered polymer assemblies. The most important structural
parameter is shown to be the local density, as described by the radial dis-
tribution function. A method to analyze the three dimensional assembly
of polymers is discussed and the concept of a transfer integral threshold is
introduced.

The main observation is that for non-crystalline conjugated polymers charge
carrier mobility is rather insensitive to global orientational molecular order-
ing. In fact the key morphology parameter as far as mobility is concerned
is not the regularity of the arrangements of chains, but their local packing.
This is an important observation and rises doubts on an often held opinion
that good alignment and orientation of chains is important in order to im-
prove the mobility of a conjugated polymer, at least in the limit of relatively
high disorder, with no crystallization.

It is also important to emphasize that the proposed model (as any model)
makes several approximations. The main ones are: (i) the introduction of
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conjugated segments based uniquely on the cutoff of the dihedral angle and
(ii) static treatment of chains during charge transport. The latter point is
partially addressed by estimating an average lifetime of a conjugated segment
of length n.

Since a charge carrier residing on a conjugated segment, similar to oxidation,
flattens the chain, a possible extension to the model would be to couple
MD simulations to the charge carrier dynamics. However, since an explicit
treatment of the electronic structure is computationally expensive, one can
try to adjust the force-field parameters “on the fly”, while charge carriers
travel through the sample, and simultaneously propagate atoms using MD
and charge carriers using the kinetic Monte Carlo method.

The second shortcoming of the model it that structure optimization and
orbital coefficient calculations are needed for each possible length of a con-
jugated segment. This was possible for the oligomers (10 repeat units maxi-
mum) used in this study. In case of polymers with big conjugation lenghts,
this is computationally not feasible. In order to resolve this issue, the charge
patching method [148] can be used, where conjugated segments are con-
structed based on short building blocks, e.g. monomers.
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Conclusion and discussion

In this work, a model that combines quantum and classical methods (i.e. molec-
ular dynamics, coarse-graining, transfer integral calculation, Marcus theory
and the kinetic Monte Carlo algorithm) was developed and implemented in
a software package. In particular, its aim is to link charge carrier mobility to
realistic morphologies in conjugated polymers. To this end, morphologies at
an atomistic level have to be obtained first, and then charge dynamics can
be simulated using this morphology.

Atomistic morphologies can, in principle, be generated using atomistic molec-
ular dynamics simulations. However, the accessible range of time- and length-
scales is limited in this case. Systematic coarse-graining can be used to over-
come these limitations. Boltzmann inversion, iterative Boltzmann inversion,
the inverse Monte Carlo method and the force-matching method were imple-
mented in the Versatile Object-oriented Toolkit for Coarse-graining Appli-
cations (VOTCA). The package follows the rules of modular software design
and provides a flexible platform for the consistent implementation of coarse-
graining techniques to allow for their direct comparison. VOTCA is available
for public use under an open source software license (www.votca.org).

To illustrate the package functionality and to compare the different methods,
coarse-graining of a set of model systems, namely SPC/E water, methanol,
liquid propane and a single chain of hexane, was performed. It was shown
that all implemented methods have advantages as well as shortcomings. For
example, inverse Monte Carlo has an update function which is more efficient
than that of the iterative Boltzmann inversion method. However, the inverse
Monte Carlo update is very sensitive to the system size and statistical av-
eraging. Using force-matching, which is not an iterative method, can lead
to unphysical potentials if the basis set used to represent the coarse-grained
potential energy surface is incomplete.

In the context of future development of the VOTCA package, an imple-
mentation of the simplex algorithm which allows the parametrization of the
coarse-grained model for thermodynamic properties, for example free ener-
gies, is planned. In addition, an iterative method which combines the sta-
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bility of the local update of the iterative Boltzmann inversion method and
the efficiency of the inverse Monte Carlo update could be beneficial for the
development of coarse-grained models.

Another planned feature of the VOTCA package is back-mapping to atom-
istic details. A coarse-grained model only represents a simplified description
of the system. In order to generate equilibrated morphologies at an atom-
istic level, atomistic details have to be reintroduced after equilibration at a
coarse-grained level. Then only a short equilibration run at atomistic level
is required to locally equilibrate the sample.

In the second part of this thesis, the software package was used to develop a
model to simulate charge mobility in atomistic morphologies of conjugated
polymers. The link between morphology and charge mobility in six different
assemblies of doped and neutral states of polypyrrole, a conjugated poly-
mer, was investigated. Charge transport was modeled as hopping between
conjugated segments, where a segment represents a diabatic state for charge
transfer. Inter-chain transport was treated within the high temperature non-
adiabatic limit of Marcus theory while an adiabatic rate expression was used
for intra-chain transport. Charge dynamics was then simulated using the
kinetic Monte Carlo algorithm.

The main observation was that for non-crystalline conjugated polymers,
charge carrier mobility is insensitive to the global orientational molecular
ordering. In fact, the key morphology parameter, as far as mobility is con-
cerned, is not the regularity of the arrangements of chains, but the local
packing. The obtained mobilities, when converted to conductivities, are of
the order same of magnitude as the experimentally measured values.

A natural extension of this work will be to apply the developed framework
to study problems related to organic bulk heterojunction solar cells. In
the latter, a mixture of two different materials is used in order to create
a donor-acceptor interface which triggers charge separation. One of the chal-
lenges here is to properly describe the structure of the interface and the
non-equilibrium morphology as a function of processing conditions.
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Appendix A

Software design

A.1 UML class diagrams

The Unified Modeling Language (UML) is a graphic notation, that helps to
describe the design of a software package. Here, only a subset of the full
notation is used to sketch the functionality of the VOTCA package. The
diagrams in this work should be seen as an outline of the software design
rather than its accurate specification. This section outlines the notation
for class diagrams providing enough background to understand the graphs
described in chapter 4. A more detailed essay of UML can e.g. be found
in [149].

A UML class diagram describes the types of objects in the program as well
as the relationship among them. The basic notation for a class diagram
is outlined in figure A.1, where boxes represent classes in the system and
lines/arrows their relationship. Four different relationships are used here to
describe the package. The composition is a way to express that an object
is composed of different elements, which means that the object serves as
a container for the element. This can be seen in a similar way as a car
is composed of an engine and wheels. The second relationship depicted in
figure A.1 expresses an association with an object. The difference between
composition and association can be confusing, it has do do with ownership
and what happens if one object is destroyed. It can be best explained by the
following example: a topology is composed of several atoms. If the topology
is deleted, all atoms will be deleted as well. In this respect, a composition is
much stronger than an association. An example for association would be a
pair of atoms in the neighbor list. The pair references two atoms, but if the
pair will be destroyed, it will not influence the atoms.

The last two arrows denote inheritance. In C++, there is no clear differ-
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ence between the notations for nherits from and implements. The distinc-
tion should be seen in the following way: an interface definition contains
no logic but just provides the interface to access the functionality which is
implemented in the child classes (only abstract functions). On the opposite,
if inherits from is used, the parent class itself might provide functionality
which is then extended in the child classes.

) 1 is composed of *
container element

cass name

attributes in class

. is associated with -
object dependency methods in class

inherits from )
parent class Kl child class

. implaments interface . :
interface  gJ----------------momomoooooooo implementation

Figure A.1: Symbols in UML class diagrams. Boxes denote classes and
arrows their relationship. Numeric values and asterisks on arrows denote the
multiplicity, which is an indication of how many objects may fill the property.

A.2 The factory design pattern

Two of the main concepts to allow for abstraction and modularity in object-
oriented programs is inheritance and polymorphism: a child objects can im-
plement and extend the functionality of a parent object (inheritance). Using
virtual functions, the child class has the same signature (methods) as the par-
ent object. Hence, it can be accessed in an identical way, while the methods
provide specialized actions based on the type of object (polymorphism).

The aforementioned concepts allow to dynamically decide during runtime,
which object is created, and therefore, which functionality is used. A typical
example where, polymorphism can useful is a file reader object for e.g. reading
molecular dynamics (MD) trajectories. The interface to access the content is
defined first, e.g. to read coordinates of atoms. However, these are stored in
a different way, depending on the type of file to be read. Then, reading from
the file is implemented in a child class, where one class is derived for each
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specific format. Reading of MD data can then be performed for all formats
in a uniform way defined by the interface.

Depending on the file format to be read, a different reader object has to be
created. However, directly creating the object by specifying its class is a static
construction. Here, the factory pattern [104| can be used to encapsulate the
creation. In other words, a factory is an object to create other objects sharing
the same interface without explicitly specifying a class [105]. All objects
that can be created are stored in a pool and are referred to by identifiers,
e.g. keywords. For the specific example mentioned above, this would be the
file type.

Another advantage of the factory pattern is that plugins can be easily de-
veloped without recompiling a program. The implementation of the derived
object is done in a dynamically linked library. This allows for extending a
program by for example placing such a dynamically linked library in a folder
and it is then loaded during execution of the main program.
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Appendix B
Structure of the VOTCA code

The VOTCA project is divided into several modules, which are organized as
separate repositories of a version control system: tools, CSG, MOO, KMC
and MD2QM. Each module groups the functionality for a specific field of
application.

The repository for tools contains generic helper functions and classes which
are accessed from every module in the project. Tools is independent of other
VOTCA modules. The coarse-graining applications and topology handling
are implemented in CSG. MOO and KMC provide the functionality to evalu-
ate transfer integrals and run kinetic Monte Carlo simulations, respectively.
CSG, MOO and KMC are individual modules and they are independent. The
last module, MD2QM, combines tools, CSG, MOO and KMC to implement
the charge transport framework described in sec. 3.7.

Depending on the purpose, only a subset of modules is needed. The coarse-
graining applications, which are already available for public use, combine
tools and CSG. In the following, a brief outline of each module is given.
However, since the project is rapidly evolving, this description is only a
snapshot of the current status. For up to date and complete information,
the reader is referred to the project page (www.votca.org).

B.1 Tools

The module tools provides a library of helper functions and classes which
are used throughout the whole package. The implementation of the object
factory, which is described in sec. A.2, is also a part of the tools library.

The most frequently used classes are the vector (vec) and matrix (matrix)
classes, which implement vector and matrix operations in three dimensional
space. These classes overload the standard operators which allows for their
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simple usage and improves the readability of the implemented calculations.

Another important class is the Property object. It provides an interface for
storing, passing and accessing arbitrary options read from an xml-file. Using
this class, options which are not known a priori can be read and forwarded
to the corresponding sub-parts of an application.

The remaining components are generic helper functions. Examples are read-
ing, parsing and organization of data (such as tables) and calculating statis-
tics (such as histograms or correlations). Many classes are interface wrappers
for existing libraries. These wrappers allow to substitute libraries by alter-
native implementations without major rewriting of code.

B.2 CSG

The CSG repository contains the coarse-graining applications. Tools and
CSG have been released as the VOTCA coarse-graining package [103]. CSG
provides a library, in which topology handling, mapping and the analysis en-
gine are implemented. Its basic layout and most of the classes are described
in chapter 4. In general, C'SG should be seen as a library for trajectory anal-
ysis. The library is used to implement several coarse-graining applications:

program description

csg__map Map a trajectory from atomistic to coarse-grained level.

csg_boltzmann Analyze single chain trajectories, create histograms and
Boltzmann inverted potentials for bonded interactions.

csg_fmatch Application to run force-matching.

csg_stat Evaluate bonded- and non-bonded statistics, calculates
radial distribution functions and bonded probability dis-
tributions, evaluates cross-correlations for IMC. This ap-
plication is mainly used internally by the scripting frame-
work but can also be used manually.

csg__dump Debugging tool to check topology data which is read.

csg__gmxtopol  Convert an atomistic topology and mapping file to a Gro-
macs topology to help setting up input files for the coarse-
grained run.

csg_resample  Resample grid spacing of a table, e.g. tabulated potential.
Mainly used by the scripting framework.
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In addition, the scripting framework provides the following programs:

program description

csg_inverse Iterative framework to perform IBI and IMC.

csg_call Manually run an internal script of the scripting frame-
work.

Details on the usage of the applications can be found in the VOTCA manual
or on www.votca.org.

B.3 MOO and KMC

The modules MOO to calculate transfer integrals and KMC to run a kinetic
Monte Carlo simulation were developed at Imperial College, London. To
simplify access to the MOO library, an interface to create charge units and
calculate transfer integrals between them was added. Therefore, interfacing
is done in two classes, the JCalc which controls the creation of charge units
and the CrgUnit, which represents a hopping site. JCalc also wraps the
calculation of transfer integral between charge units.

In addition to the library in MOO, an application to calculate transfer in-
tegrals for a pair of molecules having a certain relative orientation is pro-
vided. For evaluation of whole topologies which consist of several molecules,
MD2QM was developed.

B.4 MD2QM

The charge transport simulations described in sec. 3.7 require all modules
mentioned: CSG for topology handling, MOO to evaluate transfer integrals
and KMC to simulate charge dynamics. As pointed out in sec. 4.4, MD2QM
inherits the topology handling classes of CSG and integrates MOO and KMC.
The design is described in chapter 4. However, a complete list of application
names is not yet available.

99



APPENDIX B. STRUCTURE OF THE VOTCA CODE

100



Appendix C

Force-field parameters for
polypyrrole

name (type)

H1 (HA)

Residue

Atom names and types

H2 (HA)

PPL

Bonds

bond rog k
CW-CW | 0.14423 | 428441.6

CS-CS | 0.14240 | 392459.2
CW-CS | 0.13670 | 456892.8
CS-HA | 0.10800 | 307105.6
CW-HA | 0.10800 | 307105.6

NA-H | 0.10100 | 363171.2
CW-NA | 0.13810 | 357313.6

& H3 (HA)

H4 (HA)

Angles

angle

o

k
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CS-CW-NA
CW-NA-CW
CW-CS-CS
CW-CS-HA
HA-CS-CS
CW-NA-H
NA-CW-CW
CS-CW-CW
NA-CW-HA
CS-CW-HA

106.500
109.800
107.300
125.700
127.500
125.100
121.900
131.600
121.600
132.100

585.760
585.760
285.760
292.880
292.880
292.880
527.000
527.000
292.880
292.880



APPENDIX C. FORCE-FIELD PARAMETERS FOR POLYPYRROLE

Atomic charges

PPY end group

Atom | neutral | oxidized Atom nelljtfr);{ oxidized

N -0.219 | -0.426 N 0.3 -0.501
HN 0.277 0.449 ON 0.3 0.383
C1 -0.165 0.022 C1 0.1 0.235
H1 0.157 0.185 2 -0.24 -0.185
C2 -0.172 -0.169 5D 0.14 0.159
H2 0.124 0.171 C3 20.24 -0.185
C3 -0.195 | -0.173 3 0.14 0.159
H3 0.127 0.173 4 0.1 0.235
C4 0.066 0.068

Ryckeard-Belleman-Dihedral NA-CW-CW-NA

CO C1 Cz CS C4 CS
neutral | 16.0392 | -2.48322 | -25.8586 | 3.30161 11.034 | -2.18395
oxidized | 243.6699 | -61.1535 | -147.8553 | 154.0901 | 75.7420 | -102.4387
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