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“Be a (gentle) blade of grass at the foot of mountain, and jasmine flower at home,
Be (strong) like a rock when fate pours (torrential) rains of difficulties on you,

Be sweet like sugar and jaggery to the poor and weak,
Be one among all, Mankuthimma.”

- D. V. Gundappa
(Kannada poet)
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Abstract

The invention of transistors and microchips has revolutionized information
storage. Technological progress has led to the miniaturization of microelec-
tronics, resulting in higher energy consumption and heat production, which
presents difficulties for microprocessor manufacturers. Therefore, there is a
need for new computing and information technology approaches. Spintronics,
which utilizes both electron spin and charge, shows great promise in overcom-
ing the limitations of semiconductor technology and enhancing data storage
capabilities. It offers increased functionality to devices and addresses current
data storage constraints. An encouraging prospect among these options is the
use of domain walls in racetrack memory device, enabling efficient and speedy
storage of data in a non-volatile manner. Nonetheless, they encounter chal-
lenges such as the pinning of domain walls at the edges and the need for a high
current density to relocate them.

Skyrmionics, a new protagonist in the field of spintronics, has recently
gained significant attention. Magnetic skyrmions, nanoscale windings of the
spin configuration in certain magnetic materials, exhibit nontrivial topology
and have the potential to replace domain walls in racetrack memories. Room-
temperature observations have fueled research into skyrmion-like quasiparti-
cles, showing lower current-driven motion (compared to domain walls) medi-
ated by both spin-transfer and spin-orbit torques. This offers potential for race-
track memory devices, where skyrmions encode the units of information. How-
ever, the topological nature of ferromagnetic skyrmions leads to the skyrmion
Hall effect, which pushes them towards the racetrack’s edge, thereby causing
data loss. Efficient skyrmion-based spintronic memories require the suppres-
sion of the skyrmion Hall effect and, in turn, to explore other topological spin
textures.

Recent studies have indicated the presence of skyrmion analogues known
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vi Abstract

as in-plane skyrmions or bimerons in chiral magnet thin films with in-plane
anisotropy. This thesis focuses on investigating these in-plane skyrmions in
thin-film in-plane magnets. A minimal in-plane micromagnetic model is con-
sidered to assess their stability, followed by analyzing the symmetries of the
Dzyaloshinskii-Moriya interaction and suggesting potential materials to host
in-plane skyrmions. Furthermore, we investigate the stability of in-plane skyrmions
in the monoclinic system with mirror symmetry. The thesis also explores two
methods for generating in-plane skyrmions: creating magnetic bubbles through
geometric constriction and releasing skyrmions from magnetic inhomogeneities.
Additionally, a proof-of-concept for a racetrack utilizing in-plane skyrmions is
presented. Lastly, the thesis examines the current-driven motion of in-plane
skyrmions, highlighting the advantages they offer compared to Néel skyrmions
through Thiele analysis and micromagnetic simulations.



Kurzzusammenfassung

Die Erfindung von Transistoren und Mikrochips hat die Informationsspeicherung
revolutioniert. Unser Leben ist mittlerweile mit der digitalenWelt verschmolzen.
Jedoch hat der technologische Fortschritt zur Miniaturisierung der Mikroelek-
tronik geführt, was einen höheren Energieverbrauch und eine höhere Wärmeentwicklung
zur Folge hat. Dies stellt die Hersteller von Mikroprozessoren vor Schwierigkeiten.
Daher ist man auf der Suche nach neuen Ansätzen in der Computer- und In-
formationstechnologie. Die Spintronik, bei der sowohl der Elektronenspin als
auch die elektrische Ladung genutzt werden, ist ein vielversprechender Ansatz,
um die Grenzen der Halbleitertechnologie zu überwinden und die Datenspe-
icherung zu verbessern. Sie bietet den Geräten eine höhere Funktionalität und
adressiert die derzeitigen Beschränkungen bei der Datenspeicherung.

Die Skyrmionik, ein Teilgebiet der Spintronik, hat in letzter Zeit große Aufmerk-
samkeit erlangt. Magnetische Skyrmionen, Windungen in der Spinkonfig-
uration bestimmter magnetischer Materialien im Nanometerbereich, weisen
eine nicht-triviale Topologie auf und haben das Potenzial, die kleinsten mag-
netischen Texturen zu sein. Experimente, durchgeführt bei Raumtemper-
atur, haben die Erforschung skyrmionartiger Quasiteilchen vorangetrieben und
gezeigt, dass sie sich im Vergleich zu Domänenwänden mit geringeren elek-
trischen Strömen bewegen, indem sie Spindreh- und Spinbahnmomente nutzen.
Dies bietet die Möglichkeit, Informationen in Form von Skyrmionen als ein-
sen und nullen zu kodieren. Die topologische Beschaffenheit der Skyrmionen
führt jedoch zum Skyrmion-Hall-Effekt, der sie an den Rand der Leiterbahn
drängt und zu Datenverlust führen kann. Ein effizienter spintronischer Spe-
icher auf Skyrmionenbasis erfordert die Unterdrückung von Skyrmion-Hall-
Effektes. Daher benötigt es die Erforschung alternativer topologischer Spin-
strukturen.

Jüngste Studien haben die Existenz von besonderen Skyrmion, die als in-plane-
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viii Kurzzusammenfassung

Skyrmionen (in der Ebene) oder Bimeronen bekannt sind, in chiralen Mag-

netdünnschichten mit in-plane-Anisotropie gezeigt. Diese Arbeit konzentriert

sich auf die Untersuchung dieser in-plane-Skyrmionen in Dünnschichtfilmen

von in-plane-Magneten. Ein minimales in-plane mikromagnetisches Modell

wird verwendet, um ihre Stabilität zu bewerten, gefolgt von einer Analyse der

Symmetrien der Dzyaloshinskii-Moriya-Wechselwirkung und Vorschlägen für

potentielle Materialien, die in-plane-Skyrmionen beherbergen können. Darüber

hinaus wird in der Studie die Stabilität von in-plane Skyrmionen im monokli-

nen System mit Spiegelsymmetrie untersucht. Des Weiteren werden in dieser

Arbeit zwei Methoden zur Erzeugung von in-plane-Skyrmionen untersucht: die

Erzeugung von magnetischen Blasen durch geometrische Einschnürung und die

Freisetzung von Skyrmionen aus magnetischen Inhomogenitäten. Zusätzlich

wird ein konzeptioneller Beweiß für eine Leiterbahn mit in-plane-Skyrmionen

vorgestellt. Schließlich wird in dieser Arbeit die stromgetriebene Bewegung

von Skyrmionen in der Ebene untersucht, wobei ihre Vorteile im Vergleich zu

Néel-Skyrmionen durch Thiele-Analyse und mikromagnetische Simulationen

hervorgehoben werden. 1

1DeepL was utilized to assist in translating the English version of the Abstract into
German. [1]
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Chapter 1
Introduction

Greek philosopher Socrates believed that written words forced a reader

to follow an argument rather than participate in one, and, hence

was a proponent of not recording his thoughts. He was unsettled by

the fact that an author’s words could be misconstrued and never be

argued out of position after his passing. Ironically, his philosophy

is known today only because his friend Plato took it upon himself to

write down his words on parchment scrolls for us to read today. [2]

Preserving information and passing it on to future generations has been a chal-

lenge since time immemorial. The evolution of the transfer of information and

knowledge from oral tradition and cave paintings to written form was one the

most significant turning point in human history. Since the invention of paper

in China around the 1st century, books were the main source of information

storage until the era of transistors. Only in the late 21st century, when the

world entered the digital age, did we achieve another milestone in the storage

of information which has paved the way for the creation and consumption of

a lot of data.

1.1 Tsunami of data

The invention of transistors and microchips has changed our capability to

store information to an unprecedented limit [3]. Today our lives are deeply en-

trenched in the digital universe. With the advent of the internet, social media,
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2 Introduction

robotics, virtual reality, online video streaming, and artificial intelligence, we

have been hit with a tsunami of data. In the last decade (2010-2020), we have

seen an exponential growth with a factor of six times in the amount of data

produced. It was estimated that the total amount of data generated at the

dawn of 2020 alone was ∼64 zettabytes, which will only keep growing to ∼180

zettabytes in the next half-decade [4, 5]. Fig. 1.1 illustrates the cumulative

data usage from 2010 to 2018, as well as the projected (marked by *) total

amount of data generated, captured, copied, and consumed worldwide until

2025.

Covid-19: Big data redefined

We cannot overlook the effects of the 2020-21 global pandemic on the digital

world. The sudden surge in the number of people working from home as a

result of the COVID-19 pandemic has resulted in a staggering consumption

of data in the form of video communications, downloaded and streamed video

Figure 1.1: The total estimate of the amount of data created, captured, copied, and
consumed globally from 2010-2020. This figure was taken from [5].
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services like Netflix, YouTube, Amazon, etc., social media, and online email

and message services. According to a recent update from International Data

Corporation [6], it is estimated that more data will be generated over the next

three years than in the last thirty years.

1.2 Charge-based memory technology

The shift in information storage from analog to digital media has changed the

way we perceive, store, and, most importantly, manipulate data. With the

ever-expanding demand for the Internet of Things (IoT) over the last decade,

data has become the new oil [7].

Most of these modern technologies are electronic, which means that when-

ever you turn on an electronic device like your smartphone, TV, car, or laptop,

the electrons start moving through the tiny transistors in the integrated cir-

cuits (IC) of your devices. The prominent types of memory microelectronic

devices in the market today are dynamic random access memory (DRAM),

static RAM (SRAM), and flash memory. These types of memory cells store

data in a charge state. As the technology evolved over the last few decades,

the semiconductor industry continued to follow Moore’s Law, which predicted

that the number of transistors on an IC would double about every two years.

Thus we were able to pack more and more transistors into IC systems, thereby

producing increasingly powerful microprocessors that respond to the demands

of the digital world. Quite recently, TSMC (Taiwan Semiconductor Manufac-

turing Company, Limited), the world’s leading manufacturer of semiconductor

chips, produced chips (M1 Max [8]) for Apple Inc containing 57 billion tran-

sistors using 5nm fabrication technology [9, 10].

The elephant in the room

The down-scaling of microelectronics has resulted in a very sharp increase

in energy consumption and heat generation, which has become an enormous

thorn for microprocessor manufacturers [11–13]. It was mentioned by Fortune

that when the music video “Despacito” hit the Internet, it earned a record by

having 5 billion views on YouTube in April 2018 [14]. In doing so, it burned

as much energy as 40,000 U.S. homes use in a year. By 2025, according to



4 Introduction

Swedish researcher Anders Andrae [15, 16], communications technology alone

could consume around one-fifth of global electricity. Fig. 1.1 illustrates the

share of global electricity consumption by Internet, communications technology

(ICT). This over-consumption of electricity is increasing the energy footprint

of the digital economy and thus thwarting any effort to meet climate change

goals.

Even though conventional electronics is based on the movement of elec-

trons and mainly use their property of electric charge; they bear yet another

intrinsic quantum-physical property called ”spin,” which can be used to store,

encode, and transmit information. Augmenting the role of charge with the

spin degree of freedom offers devices greater functionality and a further step

towards solving the current limits of data storage. Finding successors to to-

day’s semiconductor silicon microchips takes years of research and exploration

into solid-state physics and materials sciences.

1.3 Spintronics: Electronics of the future

Currently, the field of spintronics is one of the most promising candidates

for solving many of the future challenges and limitations of semiconductor

technology [17–20]. Spintronics, also known as spin-electronics, is the study

of spin property of electrons and their associated magnetic moment in solid-

state physics. Over the last two decades, there has been a tremendous amount

of interest in investigating potential applications in memory storage devices

that leverage spin properties rather than or in addition to charge degrees of

freedom.

The field of spintronics has emerged from discoveries and innovations of

the last century. F. Mott proposed the concept of spin dependent conduc-

tion in 1936 [21] which was later confirmed by P. Tedrow and R. Meservey

using tunneling experiments between ferromagnetic metals and superconduc-

tor [22, 23]. A breakthrough in spintronics occurred with the discovery of the

giant magneto-resistant effect (GMR) in 1988 by two physicists A. Fert and

P. A. Grünberg at the same time [24, 25], who were awarded the 2007 No-

bel Prize in Physics for this discovery [26–28]. The GMR effect refers to a

change in the resistance of two ferromagnetic layers (FM) separated by a non-
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magnetic spacer as their relative orientation of the magnetization changes.

Fert and Grünberg found that the resistance is lower in the case of the magne-

tization in the two FM layers being parallel than when they are antiparallel.

This increased resistance means that GMR can be used to make extremely

sensitive magnetic sensors. This new physics has had an enormous impact on

our technology since this led to miniaturizing hard disk drives (HDDs) with

smaller bits. As such, GMR soon caught the attention of researchers and

industry alike. Grünberg, who recognized the potential of this phenomenon,

said [28]:

At the time of the discovery of GMR, it was well known that

leading computer companies planned to develop Anisotropic

magnetoresistance (AMR) so it could be used for read heads in

hard disk drives (HDDs). The comparison between AMR and

the new effect (later, the term GMR was widely accepted)

encouraged us to file a patent for using GMR in HDD.

Nobel Lecture 2007, Peter A. Grünberg

A few years later, Stuart Parkin, a physicist at IBM, demonstrated that

the GMR effect could be achieved using much faster, cheaper methods that

paved the way for the commercialization of this physics phenomenon. Parkin

discovered the existence of GMR in multilayers of Fe/Cr, Co/Ru, and Co/Cr,

which were prepared using a simpler technique of sputtering deposition which

can be scaled for industrial purposes [29, 30]. By 1996, the technology of GMR

heads for the HDDs had become standard use across the electronics industry.

Another milestone in spintronics came with the advent of tunnel magne-

toresistance (TMR) experiments. TMR refers to a case of two FM layers

separated by an insulator, also known as a magnetic tunnel junction (MTJ).

Even though the TMR effect was first reported in 1975 by Jullière [31], it was

not until 1995 that it was verified by Moodera and Miyasaki’s groups [32, 33].

The TMR effect was discovered to be much larger than the previously discov-

ered GMR, thus improving the sensitivity of sensor heads and reducing the

power consumption in HDDs, which is used widely in today’s memory storage

devices [34]. The first commercial application of TMR heads was introduced
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by Seagate in 2004 [35, 36]. Thus, by being able to reap the fruits of spintron-

ics applications early on, it has given enormous potential to new directions of

electronics.

As HDD began to become the industry norm for non-volatile storage, a

novel idea for data storage was proposed by Stuart Parkin called Racetrack

memory [37]. It contains a series of magnetic domains, separated by domain

walls in a nanowire, and data is encoded in those tiny domains that can be read

by magnetic sensors [38, 39], (see Fig 1.2). This principle of moving magnetic

domain walls by means of current pulses was first proposed in 1978 by Berger

and demonstrated in the Permalloy wires by Parkin’s group. In contrast to

HDD, the racetrack memory device does not need a mechanical arm to read

and write information; instead, the bits of information are moved back and

forth along the nanowire like a shift register. Moreover, the writing speed

is of the order of nanoseconds as opposed to the millisecond on a traditional

hard disk, thus allowing for high-speed (by six orders of magnitude) read/write

access to massive amounts of information.

Figure 1.2: The domain wall racetrack memory proposed by Stuart Parkin (only
a part of the figure shown from Ref [39]). A) A U-shaped nanowire divided into
a sequence of magnetic domains. C) Reading function achieved by a TMR of a
MTJ attached to the racetrack device. D) The writing element to write new data
into the device, which can be accomplished by various schemes. E) Using the 3D
arrangement of racetracks on a memory chip to achieve high-density storage devices.
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1.4 Skyrmionics: A new protagonist

In recent years a subbranch of spintronics called skyrmionics has emerged and

attracted immense interest from researchers. A magnetic skyrmion is a local-

ized, chiral spin texture with the whirling of the magnetization, as depicted

in Fig 1.3(a). The magnetization varies smoothly along the radial direction,

with magnetization pointing in −ẑ direction at the center to +ẑ direction far

away from the skyrmion [40].

These magnetic skyrmions have topological stability, as in, how a doughnut

cannot be transformed into a solid sphere smoothly, and these textures cannot

be deformed smoothly into any of the other topologically trivial ground states

(ferromagnetic, helical, conical). Even though skyrmions were predicted three

decades ago [41, 42], they began receiving attention since their first observa-

tion at low temperatures in 2009 in bulk materials [40]. Recently they were

also observed at room temperatures [43–45] which gave a boost to research

into the field of skyrmion-like quasiparticles, viz. antiskyrmions [46–48], an-

tiferromagnetic skyrmions [49–51], biskyrmions [52, 53], skyrmion bags [54],

skyrmionium, merons [55, 56], and antiferromagnetic merons [57, 58].

Experimental investigations in the last decade have revealed that the size

of the skyrmions can range from 1 nm up to 100 nm [59, 60]. It was shown

that these magnetic skyrmions could be moved with much lower electric cur-

rents than domain walls [61] using spin transfer and spin-orbit torques. Later

theoretical and experimental studies demonstrated numerous ways for the

creation, manipulation, and annihilation of isolated skyrmions stabilized by

Dzyaloshinskii-Moriya interactions in perpendicularly magnetized thin mag-

netic films [44, 62–69]. Later, a skyrmion race track memory device was pro-

posed [70], where skyrmions are used to encode bits of information with the

presence or absence of a skyrmion representing 1 or 0, respectively. These bits

of information (skyrmions) can be moved along the racetrack by applying a

spin-polarized current on the nano strip [70–73](see Fig 1.3(c) ).

These exciting findings over the last decade have hinted at skyrmions over-

coming the drawbacks of domain walls and being a high potential for low-



8 Introduction

energy, nonvolatile, ultra-dense memory devices [72, 74–76]. In addition to

the stability, the topological property of skyrmions leads to interesting effects

with current-driven dynamics, i.e. Skyrmion Hall effect (SkHE)[73, 77]. When

driven by currents, in addition to motion along the direction of current, SkHE

induces an additional transverse deflection of skyrmions. As a result, when

skyrmions are driven across a race track using currents, they are also pushed

toward the edge of the racetrack leading to a loss of data. Hence, to be able to

efficiently use skyrmions for spintronic memory applications, finding ways to

suppress SkHE is essential, as is looking beyond the conventional skyrmions

to alternate topological spin textures and contrasting their current-driven be-

haviour with those of skyrmions.

Recent reports have suggested the existence of skyrmion analogues in chiral

magnet thin films with in-plane anisotropy [78–81]. In-plane skyrmions, also

known as bimerons, are composed of two merons which can be attained by

rotating the Néel skyrmion by π/2 along ŷ as depicted in Fig 1.3(b). Now,

in contrast to the Néel skyrmions, it is the in-plane component of the mag-

netization which is radially symmetric about its center, with magnetization

at the center being aligned along the in-plane anisotropy direction and along

opposite direction at the outer region of the in-plane skyrmion. The primary

focus of this thesis is on in-plane skyrmions and their nucleation, stability in

materials, current-driven dynamics, and excitations.

Figure 1.3: Schematic representation of magnetic skyrmions. a) A Néel skyrmion
b) In-plane skyrmion. c) Schematic of a skyrmion racetrack memory device. The
binary information is encoded on a ferromagnetic thin track in the form of presence
or absence of magnetic skyrmions.
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1.5 Outline of the thesis

The thesis comprises five primary chapters, a concluding chapter, and an ap-

pendix. Chapters 3, 4, and 5 present the key findings of the research work,

which have been published [82]. The manuscript is organized as follows:

Chapter 2: Fundamental theoretical models and numerical meth-

ods — The chapter starts with an introduction to micromagnetism, which

provides the framework for the rest of the work described in the thesis. A

brief primer on the different interactions contributing to the energy functional

(Sec. 2.1.1) is followed by an introduction to magnetization dynamics described

by the Landau-Lifshitz-Gilbert equation. The first part ends with a descrip-

tion of current-induced magnetization dynamics (Sec. 2.2). The second part of

the chapter focuses on introducing magnetic skyrmions, starting with a brief

theoretical description of skyrmions (Sec.2.3), followed by recent experimental

observations (2.3.2). The chapter concludes with the current-induced dynam-

ics of skyrmions.

Chapter 3: Stability of in-plane skyrmions — This chapter presents

the study of magnetic skyrmions in thin-film in-plane magnets. The numer-

ical results explaining the structure of in-plane skyrmions and the effect of

stray fields are shown (Sec. 3.3). A biaxial anisotropy model is used to analyt-

ically model the complex effect of stray fields in in-plane magnets (Sec. 3.3).

This is followed by the description of symmetries of the Dzyaloshinskii-Moriya

interaction and a proposal for potential material candidates to host in-plane

skyrmions (Sec. 3.6). Finally, the stability of the in-plane skyrmions in the

monoclinic system with mirror symmetry is analysed, and a phase diagram is

provided (Sec. 3.7).

Chapter 4: Production of in-plane skyrmions — This chapter de-

scribes two different mechanisms for the production of in-plane skyrmions,

viz. blowing magnetic bubbles through a geometric constriction (Sec. 4.2) and

shedding skyrmions from a magnetic inhomogeneity (Sec. 4.3). Recent experi-

mental studies about the production of Néel skyrmions by means of the first

method are discussed, and its implementation to produce in-plane skyrmions

in thin-film in-plane magnets is shown via micromagnetic simulations. The

second mechanism is discussed as well, and a proof of concept for the racetrack
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of in-plane skyrmions is presented (Sec. 4.3.2).

Chapter 5: Current-driven dynamics of in-plane skyrmions—This

chapter contains the study of the current-driven motion of in-plane skyrmions

in an ultra-thin Pt/Co/MgO film at room temperature. The experimental

results, including the observation of the current-driven skyrmion motion and

characterisation of the magnetic film properties, are first presented. These

results are then discussed and interpreted in the light of the collective variable

approach (Thiele equation) and micromagnetic simulations.

Summary and perspectives — In this final chapter the main findings

of this thesis, presented in the three previous chapters, are briefly summarised.

Future prospects of this work are also discussed.



Chapter 2
Fundamental theoretical models and

numerical methods

This chapter introduces relevant fundamental concepts required to understand

the work done in this thesis. We shall start by introducing the micromag-

netic framework and an overview of the different magnetic energy contributions

within this formalism. Different types of chiral magnetic ground states in the

ferromagnet will be described with a focus on the main objective of the the-

sis, magnetic skyrmions. Furthermore, we will describe the Landau-Lifshitz-

Gilbert equation (LLG), which represents the dynamics of the magnetization

at time scales of an order greater than a nanosecond. The LLG will then be

extended to include the effects of electrical currents and their driven dynamics

of magnetic textures.

11
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2.1 Micromagnetic framework

The phenomenon of magnetism can be studied at different length scales rang-

ing from the Angstrom scale, where the magnetic moments of electron spins

play a role, all the way to the formation of magnetic domains and hysteresis

phenomena on the macroscopic scale. It is important to choose the time and

length scale that is significant for the phenomenon under consideration. The

common paradigms for the theoretical description of magnetic skyrmions are

atomistic and micromagnetic models. The atomistic simulations cannot be ef-

ficiently scaled to systems larger than a few nanometers, and consequently, we

shall use the micromagnetic model throughout this thesis to study the in-plane

skyrmions and their dynamics. Micromagnetic theory describes phenomena in

the range of a few nanometers to micrometers length scale such that it is able to

explain phenomena between the range of discrete atomistic spins to magnetic

domains. It has been successful in explaining the formation and shape of do-

main walls (DW), magnetic skyrmions, and hopfions, which makes it suitable

for the present work.

The key assumption of micromagnetism is that the order parameter of

the magnetic material varies smoothly in space on length scales larger than

that of inter-atomic distances. In ferromagnets, magnetization being the order

parameter, it can be described by a smoothly varying vector field M(r, t),

which makes the theory a continuum theory of magnetization. At temperatures

well below the Curie point, the length of the magnetization vector is fixed and

is equal to the saturation magnetization Ms. Hence, we can introduce the

normalized magnetization field m(r, t), which indicates the local direction of

the magnetization,

M(r, t) = Ms m(r, t), |m| = 1. (2.1)

2.1.1 Micromagnetic energy functional

The different stable states of the magnetic system and their stability depend

on the different interactions contributing to the free energy of the system. The

magnetic free energy of a ferromagnet is a functional of the magnetization

m(r, t) and its spatial derivatives. The total energy E[m] is obtained by
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integrating the energy density E [m] over the magnetic system,

E[m] =

∫
V

E [m] d3r. (2.2)

The equilibrium configuration of the magnetic system depends on the na-

ture of different magnetic interactions contributing to the free energy. The

different ground states can be obtained by minimizing the energy functional

with respect to the magnetization. This can be done by imposing that the first

variation of the energy functional vanishes;

δE[m] = 0. (2.3)

It is important to note here that, the ground states are obtained by com-

paring the energies of different extremal solutions, which apriori could be min-

imum, maximum, or saddle points. Thus, it is important to look at these

different magnetic interactions in more detail to understand the nature of the

system and its different magnetization patterns.

Exchange interaction

The exchange interaction is a quantum mechanical effect resulting from the

Coulomb repulsion between different electrons and Pauli’s exclusion principle.

This interaction is responsible for ferromagnets as it favors parallel alignment

of spins and is isotropic, i.e., it is independent of the orientation of the magnetic

moments w.r.t crystal lattice. The simplest model for explaining the exchange

interaction is the Heisenberg exchange interaction, and its energy is given by,

Eex = −
∑
i,j

Jij Si · Sj, (2.4)

where Jij is the strength of the exchange interaction between two neighbouring

spins Si and Sj. One can see from Eq. (2.4) that a positive sign of Jij results

in a ferromagnetic ordering, and a negative Jij results in anti-ferromagnetic

ordering in the magnetic material. In the micromagnetic framework, the ex-
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change energy density for a ferromagnet can be written using continuum limit

approximation as

Eex = A (∇m)2 , (2.5)

where, A is the exchange stiffness constant and (∇m)2 stands for (∇mx)
2 +

(∇my)
2 + (∇mz)

2. It is more evident from Eq. (2.5) that whenever the spins

are not aligned, the free energy of the system increases for a ferromagnet.

Magnetic anisotropy

The exchange interaction is isotropic (see Eq. (2.5)), i.e., the direction of the

magnetization has no preferred spatial direction. However, often in magnetic

materials, the magnetization prefers certain directions (easy axes) or certain

planes (easy planes) perpendicular to certain axes along which it is aligned.

This preference arises as a result of coupling between the spin and orbital

motion of electrons in the crystal lattice, also known as spin-orbit coupling

(SOC). The anisotropic energy contribution to the magnetic energy depends

on the relative orientation of the magnetization with respect to crystallographic

axes. In this thesis, we will only focus on one type, namely, uniaxial anisotropy,

which is the simplest case with only one preferred direction in the crystal. The

energy density contribution of the uniaxial anisotropy is given by

Eanis = Ku

(
1− (m · u)2

)
, (2.6)

where u is the preferred axis, and Ku is the anisotropy constant. Note that the

anisotropy energy is minimal when the magnetization direction is out of plane

(fully up or down) and maximal when the magnetization lies in the plane.

The higher-order terms (O(m)4) are generally small and are neglected, and

only the second-order term is considered here. Note that when Ku > 0, the

anisotropy energy is minimized with the magnetization aligned parallel to the

anisotropy direction u, and when Ku < 0, the magnetization prefers to align

in the plane perpendicular to the anisotropy axis to minimize the energy, and

hence the name hard-axis or easy-plane.
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Dzyaloshinskii-Moriya interaction

The spin-orbit coupling describes the relativistic interaction between the spin

of an electron and its orbital angular momentum. In magnetic materials, the

SOC gives rise to a wide variety of emergent phenomena such as the perpen-

dicular magnetic anisotropy (PMA), the spin Hall effect, the Rashba-Edelstein

effect, and the Dzyaloshinskii-Moriya interaction (DMI) [83]. DMI was first

discovered in antiferromagnets (AFM) in 1958 by Dzyaloshinskii as the origin

of the phenomenon called “weak ferromagnetism” [84]. Based on phenomeno-

logical considerations and using symmetry arguments, he explained the canted

antiferromagnetism observed in hematite. Shortly after, in 1960, Moriya found

a microscopic mechanism and pointed out that the combination of spin-orbit

interaction and broken inversion symmetry could give rise to canting of mag-

netic moments, and a small non-zero magnetization is observed even in the

absence of external magnetic fields, thus losing the perfect antiferromagnetic

order in the material [85, 86].

In this section, we shall describe the DMI, an antisymmetric exchange inter-

action that occurs in systems lacking inversion symmetry (non-centrosymmetric

crystal structures) [40, 87, 88] and at interfaces between a magnetic film layer

and heavy-metal (HM) layer with strong SOC [89, 90]. DMI tends to rotate

the spins, which competes with isotropic exchange interaction and magnetic

anisotropy. This interplay of interactions gives way to the stabilization of a rich

variety of chiral magnetic textures, such as chiral domain walls, spin spirals,

and magnetic skyrmions. [40, 91–93].

Within the micromagnetic framework, the DMI can be expressed by inho-

mogeneous variants, that are linear w.r.t first spatial derivatives of the mag-

netization of type [94, 95]

Lk
ij = mi

∂mj

∂mk

−mj
∂mi

∂mk

, (2.7)

where i, j, k are spatial variables, and Lk
ij is a Lifshitz invariant. Such Lifshitz

invariants were first introduced in the theory of phase transitions [96]. The

form of the Lifshitz invariants depends on the crystallographic symmetry and

results in corresponding profiles of modulated magnetic textures. The general
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form of the Lifshitz invariants and their structure in different symmetry classes

will be discussed later in Sec 3.6.

Bulk DMI

In noncentrosymmetric crystal structures such as MnSi [40], FeGe [87], and

[97], the inversion symmetry is broken intrinsically and gives rise to bulk DMI.

In the continuum approximation, this bulk-DMI energy density is expressed

as

Ebulk = Dbulk m · (∇×m) , (2.8)

where Dbulk is the bulk-DMI strength with units of Jm−2. The spin spirals

and skyrmions resulting from this type of DMI are of Bloch type, where the

magnetization rotates such that there is a non-zero component orthogonal to

the spiral direction 2.1(a).

Néel DMI

DMI arises at interfaces when the inversion symmetry is naturally broken

when a FM layer is placed on a HM-layer with strong SOC, such as Fe/Ir [98],

CoFe/Pt, and CoFe/Ta [99], or multilayer systems where a FM layer is sand-

wiched between two HM layers like Pt/Co/Ru, Pt/Co/Ir [100] and Ir/Fe/-

Co/Pt [101]. The resulting DMI is hence referred to as interfacial DMI, and

this type of DMI stabilizes Néel spirals and skyrmions, where the magnetiza-

tion rotates in the plane of spiral direction and homogeneous magnetization

direction 2.1(b). The expression of the interfacially-DMI energy density is

given by

ENéel = DNéel

[
(m · ∇)mz −mz (∇ ·m)

]
, (2.9)

where DNéel is the interfacial-DMI strength with units of Jm−2. In the present

work, we shall investigate the modulated magnetic textures in in-plane magnets

and the relevant DMI in those systems. To avoid any confusion, we shall refer

to interfacial DMI as Néel-DMI from here on further.
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Zeeman energy

The magnetic moments interact with the externally applied magnetic field

via Zeeman interaction, which tends to align the magnetization in the same

direction as the applied magnetic field. The energy density is expressed as

Eext = −µ0Msm ·Hext, (2.10)

where, µ0 = 4π × 10−7 Tm/A is the vacuum permeability.

Demagnetization energy

The demagnetization field is created by the magnetic moments within the

magnetic body. From Maxwell equations the total magnetic field B can be

written as,

B = µ0 (Hd +M) , (2.11)

where, M is the total magnetization and Hd is the stray field. As the total

magnetic field B is conserved, according to Gauss law,

∇ ·B = 0, (2.12)

the stray field Hd can be obtained from the magnetic scalar potential Φ in the

form Hd = −∇Φ. This results in a Poisson equation for Φ,

∇2Φ = ∇ ·M . (2.13)

The general solution of this Poisson equation is given by

Φ =

∫
dV ′ ρ(r′)

4π|r − r′| +
∫

dS ′ σ(r′)

4π|r − r′| , (2.14)
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where ρ(r) = −∇ ·M (r) and σ(r) = M (r) ·n(r) are the volume and surface

charge densities, respectively. The stray field therefore reads

Hd(r) = −∇
[∫

dV ′ ρ(r′)

4π|r − r′| +
∫

dS ′ σ(r′)

4π|r − r′|

]
. (2.15)

Furthermore, the demagnetization energy density can be cast in the following

Zeeman-like form:

Edemag = −µ0

2
Msm ·Hd. (2.16)

In summary, the calculation of demagnetization fields involves the use of

Maxwell equations to solve for the magnetic field generated by the magne-

tization distribution, which becomes very demanding both analytically and

numerically. However, one can calculate explicitly the demagnetization energy

in some simple cases.

The demagnetization field of a uniformly magnetized body can be expressed

in terms of a demagnetization tensor [102]. For example, the demagnetization

field of an uniformly magnetized ellipsoid is linearly related to the magnetiza-

tion M by the demagnetization tensor N [103]

Hd = Ms (N ·m) . (2.17)

Assuming (a,b,c), the principal axes of the ellipsoid are pointing along x̂, ŷ, ẑ

axes of the 3D coordinate system, the demagnetization tensor assumes a di-

agonal form with (Nx,Ny,Nz) as the demagnetization factors. The sum of

three demagnetization factors is always equal to one, which means only two

of them are independent. For simple geometries, the demagnetization fac-

tors can be deduced by symmetry. In a sphere (ellipsoid with equal principal

axes, a = b = c) that is uniformly magnetized, symmetry dictates that the

demagnetization factors are all equal to 1/3 [104].

In cases of non-uniform geometries like cylindrical and rectangular magne-

tized bodies, the demagnetization fields are not uniform, even if the samples

are assumed to be uniformly magnetized. Thin film magnetic materials can
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be treated as flattened oblate ellipsoids where the thickness of the film is very

small relative to lateral dimensions [102]. For an infinite thin film with a mag-

netization direction normal to the plane, the demagnetization factor is (0, 0, 1),

and hence its demagnetization energy density takes the form [104]

Efilm
demag = −µ0

2
Msm ·Hd

= −µ0

2
M2

sm
2
z. (2.18)

which has a form similar to that of an uniaxial anisotropy [see Eq. (2.6)]. This

approximation can be used for magnetization distributions with cylindrically

symmetric skyrmions (having very thin domain wall widths) [42]. However,

when the magnetization varies along the x and y directions, this approximation

for demagnetization energy no longer holds, and a different scheme must be

implemented. This will be discussed in detail when dealing with in-plane

magnetized films and their relevant skyrmions in section 3.5.

Domain walls in films with PMA

Figure 2.1: Schematic representation of DW in a ferromagnetic thin film with
PMA. (a) Bloch wall and (b) Néel wall. The difference between the two DW
configurations is in the direction of rotation of the magnetization from one
domain to the other. See text for details.

In ferromagnetic thin films with PMA, if the film is uniformly magnetized

out-of-plane, magnetic charges appear at the opposite edges, thus increasing

the total demagnetizing energy. To minimize this energy, domains with oppo-

site magnetization directions are formed. The boundary between two domains

is called a domain wall (DW). Inside the DW, the magnetization gradually

rotates from pointing in the direction of one domain to the other. The DW
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width is determined by the competition between the exchange and anisotropy

energies on the one hand and the demagnetizing energy on the other hand.

Two different DW configurations are possible in a magnetic thin film with

PMA, viz, Bloch and Néel types, as shown in Fig. (2.1).

In a Bloch DW, the magnetization rotates gradually from up (−ẑ) to down

(+ẑ) in the DW plane (yz plane in Fig. (2.1), while it rotates within the per-

pendicular to the DW plane (xz plane in Fig. (2.1) in a Néel case. In both

cases, the magnetization component normal to the wall plane (along x̂ for

Bloch wall and along ŷ for Néel wall) remains zero.

In ferromagnetic thin films with PMA, Bloch DW minimizes the mag-

netostatic energy. The higher energetical stability of the Bloch wall, when

compared with the Néel wall, stems from the nature of the magnetic charges

from these walls. In the Néel wall, magnetization aligned normal to the wall

plane (x̂) creates magnetic charges on both sides of the DW, which generate a

demagnetizing field in the opposite (–x̂) direction. However, when the width

of the film reduces, the demagnetizing energy of the Bloch wall increases due

to surface charges in the ŷ-direction. Eventually, the Néel wall becomes more

stable. The transition between Bloch and Néel DWs has been observed in

nanostrips of Co/Ni multilayer thin films using spin-transfer toques [105, 106].

Let us now consider the presence of Néel DMI arises in thin films when

the inversion symmetry is naturally broken 2.1.1. In the presence of such

DMI, there is an energy gain that can outweigh the demagnetizing energy

contribution and stabilize a Néel DW [99, 107]. The DW energy with DMI is

given by [93, 108]:

σDW = 4
√
AK − πD. (2.19)

From Eq (2.19), we can see that the exchange interaction and the magnetic

anisotropy yield a positive contribution to the domain wall energy, whereas

the DMI yields a negative contribution. At a critical value of the DMI, Dc =

4
√
AK/π, the energy of the domain wall is exactly zero. For low DMI strengths

(D < Dc), the domain wall energy is positive, which leads to a chiral DW being
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a local minimum over the ferromagnetic state ground state. However, when

DMI is large (D > Dc), the energy of the domain wall is negative, and the

ground state is a series of many parallel domain walls called the spin spiral

state.

2.1.2 Magnetization dynamics

Based on the phenomenological approach, in 1935, Landau & Lifshitz pro-

posed a dynamical equation for magnetization [109]. Later in 1954, Gilbert

introduced an alternative form for including the damping interaction in the

system [110], and the combined form is known as the Landau-Lifshitz-Gilbert

equation (LLG). The LLG equation thus determines the spatial and temporal

evolution of the magnetization and reads

∂tm = −γ (m×Heff) + α (m× ∂tm) . (2.20)

The first term on the right-hand side of Eq. (2.20) represents the precessional

motion of the magnetization around the effective field. When the magneti-

zation is not aligned with the field Heff, it is subjected to a torque causing

a precessional motion with precession frequency f = γ |Heff| /2π. This pre-

cessional motion would continue forever if not for various energy dissipation

processes, leading to another term in the Eq. (2.20).

The second term in Eq. (2.20) captures the phenomenological damping de-

scribing the dissipation of energy, which results in aligning the magnetization

with the effective field. The dissipation torque m × ∂tm is perpendicular to

the precessional torque, pointing towards the effective field Heff. These two

torques are represented in Fig. 2.2. γ and α represent the gyromagnetic ratio

and dimensionless Gilbert damping factor, respectively. Typical values of the

damping factor are of the order of 10−2 - 10−3 [104].

2.1.3 Numerical micromagnetics

The LLG equation has had enormous success in static domain structures and

dynamics of magnetization switching. But, it is a nonlinear partial differential

equation and can be solved analytically only for a few cases. The natural way

to proceed is to use a numerical approach and perform micromagnetic simula-
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Figure 2.2: Magnetization dynamics described by the LLG equation. The
field-like torque, m×Heff (blue arrow), due to the effective field Heff (grey),
leads to a continuous precessional motion of the magnetizationm (green). The
damping-like torque m× ∂tm (red) slowly aligns the magnetization along the
direction of the effective field. This magnetization trajectory of the combined
torques is represented by the dotted black spiral in the figure.

tions to determine the static and dynamic behavior of the magnetization.

The numerical solution to the LLG is calculated by solving the differential

equation iteratively. To this end, we use well-developed scientific packages to

do the necessary simulations. Among the several open-source packages in the

micromagnetic community, MicroMagnum [111] and mumax3 [112] are used in

this thesis based on specific requirements and efficacies. The Mumax3 software

package developed by the DyNaMat group of the University of Ghent runs on

NVIDIA’s graphical processing units (GPUs), making them one of the fastest

codes and having very low computation time. However, the current-driven

dynamics in this package 1 do not account for the geometry, meaning there

is no Laplace equation solver to accurately calculate the current density in

1latest version of the open source code available
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different geometric shapes. This particular feature is developed in Micromag-

num, is easily extensible, and runs on both CPU and GPUs. Both of these are

finite-difference-based micromagnetic software packages and are chosen based

on the problem at hand.

Before we proceed further, it is worth discussing a few challenges to the

numerical approach due to the micromagnetic equations’ complexity and non-

linearity. Since the micromagnetic framework relies on the magnetization vary-

ing smoothly, the spatial discretization of the LLG equation should be smaller

than the exchange length, which is usually a few nanometers. This would

result in O(104 − 106) discretization cells for a system of (100 − 1000)nm in

2D alone. Second, as discussed before (see Sec.2.1.1), the stray field interac-

tion is a non-local, long-rage interaction. Thus the computation of stray field

energy should be calculated between all spatial cells, which makes the com-

putation very expensive. Micromagnetic numerical simulation packages like

Mumax3 [112], Micromagnum [111], and OOMMF [113] reduce this computa-

tional complexity by employing fast Fourier transform methods. Upon a finite

difference discretization, the computation of the stray field reduces to evalu-

ating a convolution of the magnetization with a demagnetizing kernel. Hence,

this discrete convolution in Fourier space is just a point-wise tensor-vector

multiplication that lowers the computation cost from O(N2) for a direct im-

plementation to O(N log(N)) when using the fast Fourier transform methods.

This can be further sped up efficiently by parallelizing the numerical com-

putation on CPU/GPUs. Finally, to determine the accurate time evolution

dynamics, usually in the order of a few femto to picoseconds, time integration

routines require a considerable amount of time steps creating another bottle-

neck to solving the LLG equation.

2.2 Current-induced spin torques

The ability to manipulate magnetic textures and understand their dynamic

behavior holds a key role in the success of spintronics. One can influence

the magnetic textures via spin torques induced by spin-polarized currents or

electric currents in the system [114]. Understanding the mechanism of how
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magnetization couples to current could reveal new pathways to develop new

spin-based technology applications. Depending on the nature of their origin,

there are different types of current-induced spin torques. In this section, we

are going to introduce two different types of current-induced spin torques: (i)

Spin-transfer toque (STT), (ii) Spin-orbit torque (SOT), whose effects are very

often investigated for magnetic skyrmions [115]. The detailed investigations of

these torques on magnetic skyrmions will be discussed in chapters ( 4 & 5).

2.2.1 Spin-transfer torque

In 1996, Berger [116] and Sloncwezski [117] independently predicted that when

a spin-polarized electric current flows through a magnetic material, there is an

exchange of angular momentum between the itinerant electrons and the local-

ized electrons (here responsible for magnetization in the material). This leads

to a torque applied on the local magnetization by the conduction electrons,

hence the name spin-transfer torque [118, 119]. STT has been observed in

MTJs [120, 121] and on magnetic domain walls [122, 123], and depending on

how the spin texture changes, STT can be adiabatic or non-adiabatic, whose

effects on the DW motion are discussed below.

Adiabatic spin-transfer torque

The adiabatic STT proposed earlier historically describes the case when the

conduction electrons flow through the DW adiabatically, as shown schemati-

cally in the Fig. 2.3. If the domain wall is wide enough, i.e., when the magnetic

moments within the domain wall rotate gradually from the direction of one do-

main to the other domain, spins of the conduction electrons can perfectly follow

the local magnetic moments inside the DW adiabatically, and the direction of

conduction electrons spin changes. However, the conservation of spin angu-

lar momentum dictates that this torque on the conduction electrons leads to

another torque on the magnetic moments inside the DW. This torque exerted

on the magnetic moments of the DW by the conduction electrons is known as

adiabatic STT and has the following form.

τ STT
ad = ζ

[
m× (j ·∇)m

]
(2.21)
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Figure 2.3: Schematic description of the adiabatic and non-adiabatic STT
for the DW motion. (a) In the case of adiabatic STT, the spin-polarized
conduction electrons (grey arrows) will orient in the direction of the local
magnetic moments (red arrows) in the DW adiabatically. This results in a
torque (shown in black arrows) exerted on the magnetic moments, which moves
the DW along the direction of electron flow (blue arrow). (b) When the DW
becomes narrower, there is a spatial mistracking of spins between conduction
electrons and the magnetic moments in the DW. In this case, non-adiabatic
STT (shown in black circles) is applied on the spins of the DW, which is
perpendicular to adiabatic STT.

Here, ζ = γPℏ/2eMs is the charge-to-spin conversion factor in the adiabatic

regime, P represents the electron spin polarization, ℏ is the reduced Planck

constant, and e is the electron charge. This results in a DW motion along the

direction of electron flow.

Non adiabatic spin-transfer torque

Non-adiabatic spin-transfer torque was introduced to explain the discrepancies

in the experimental results with that predicted by adiabatic STT. The veloc-

ities of the DWs measured were much smaller than the ones expected using

solely the adiabatic term [123–127]. When the DW is narrower, the adiabatic

approximation fails as the angle between adjacent spins in the DW is larger.

In such a case, the conduction electron spins cannot follow the local magne-
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tization perfectly, leading to spatial mistracking of spins between conduction

electrons and the magnetic moments in the DW. Thus, they are reflected at the

DW, resulting in momentum transfer, and by conservation of angular momen-

tum, the DW is pushed in the direction of electron flow. The non-adiabatic

STT is orthogonal to the adiabatic STT and has the following form [128]

τ STT
non−ad = −ζβm× (m× (j ·∇)m) . (2.22)

Here β parameterizes the strength of the non-adiabatic torque. Current-driven

DWs will be affected by both contributions (adiabatic and non-adiabatic STT).

However, depending on the thickness of the DW, one of these contributions can

overshadow the other: For very wide DWs, the adiabatic STT will dominate

the DW motion, and in the limit of very thin DWs the momentum transfer will

dominate. Thus the interaction between the spin-polarized currents and the

magnetic texture can be modelled by taking into account both the adiabatic

and non-adiabatic STT to the LLG equation (2.20) [128]

∂tm = −γ (m×Heff) + α (m× ∂tm) + ζm× (j ·∇)m︸ ︷︷ ︸
adiabatic STT

− ζβm× (m× (j ·∇)m)︸ ︷︷ ︸
non-adiabatic STT

. (2.23)

Here the first two terms represent the precession and damping terms as

described before (Sec. 2.1.2),

2.2.2 Spin-orbit torque

Recently, an alternative way to produce spin torques has been introduced using

spin-orbit coupling in inversion asymmetric heavy metals. This new field of

spin-orbitronics focuses on spin torques arising from spin-orbit interaction to

control magnetization dynamics [129–132].

We consider a bilayer consisting of a chiral magnet on top of a heavy-metal

layer, as shown in Fig 2.4. When the current flow in the heavy-metal (HM)

layer is along the +x̂ direction (green arrow in the figure), due to the Spin-Hall

effect a spin current with its polarisation σ (yellow arrow in the figure) along

the +ŷ direction would flow along the +ẑ direction. This spin current induces
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Figure 2.4: Geometry considered for spin-orbit torque. The bottom layer in
grey represents the heavy metal (HM) layer, and the top layer, shaded in green,
represents the ferromagnetic (FM) layer. The green arrow and yellow arrow
indicate the electric current je, and the polarization of the spin current σ with
its polarization in the HM. The orange arrow represents the magnetization
m, the two black arrows are the fields HFL, HDL corresponding to field and
damping like SOT torques.

field-like and damping-like torques on the magnetization (orange arrow in the

figure) in the ferromagnetic layer (FM). This SOT-driven dynamics of the

magnetization m can be described by the LLG equation taking into account

the adiabatic and non-adiabatic torque components [132–134],

∂tm = −γ (m×Heff)︸ ︷︷ ︸
precession

+ α (m× ∂tm)︸ ︷︷ ︸
damping

+ τFL (ẑ × j)×m︸ ︷︷ ︸
field-like SOT

+ τDL m× (ẑ × j)×m︸ ︷︷ ︸
damping-like SOT

, (2.24)

where again the first two terms represent the precession and damping terms,

and the third and fourth terms represent the fieldlike and damping-like SOTs

respectively. Here, the spin polarisation σ = (ẑ× j) is along the +ŷ direction.

τFL and τDL parametrize the field-like and damping-like strengths of the SOT,

respectively.

2.3 Magnetic skyrmions: An overview

In the previous section, we saw an overview of different interactions in magnetic

materials and their description within the micromagnetic framework. The

competition between these interactions leads to a variety of stable magnetic
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configurations. In this section, we will briefly review magnetic skyrmions and

certain key aspects regarding their stability, creation, current-driven dynamics,

and excitations.

Skyrmions are named after British nuclear physicist Tony H. R. Skyrme.

The theory of skyrmions originates from his pioneering works published in the

early 1960s [135, 136]. He proposed a non-linear field theory of pions whose

static, topologically stable particle-like solutions describe baryons (like protons

and neutrons). Today Skyrme’s theory has found applications beyond particle

physics, such as liquid crystals [137, 138], Bose-Einstein condensates [139–

141], quantum Hall ferromagnets [142, 143], and magnetic systems with broken

inversion symmetry [40, 45, 88, 98, 144].

As introduced in the previous chapter (1.4), magnetic skyrmions are chiral

textures with a whirlpool-like winding of magnetization. The presence of DMI

lowers the energy by canting the magnetization (see Sec. 2.1.1), which helps to

stabilize skyrmions. The 2D magnetization texture of a skyrmion in a chiral

thin film is represented in Fig. 1.3. The non-trivial topology of a magnetic

skyrmion can be characterized by topological charge (or winding number),

Q [145], defined by:

Q =
1

4π

∫∫
dxdy m ·

(
∂m

∂x
× ∂m

∂y

)
. (2.25)

The topological charge calculates the number of times the magnetization

wraps around the unit sphere. For the FM saturated state, ∂xm = ∂ym = 0

(since spins are all parallel) and hence Q = 0, making it a topologically trivial

state. Also, any magnetic texture that can be continuously deformed into the

FM state is topologically trivial as well. To calculate the topological charge of

a skyrmion in an uniformly magnetized background, it is convenient to param-

eterize two-dimensional plane in cylindrical coordinates r = (ρ cosϕ, ρ sinϕ),

and the magnetization can be written as,

m(r) =
(
cosΦ(ϕ) sinΘ(ρ), sinΦ(ϕ) sinΘ(ρ), cosΘ(ρ)

)
. (2.26)
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By substituting Eq. (2.26) into Eq. (2.26), the topological charge is com-

puted as follows:

QSk =
1

4π

∫ ∞

0

dρ

∫ 2π

0

dϕ

(
sinΘ(ρ)

dΘ(ρ)

dρ

dΦ(ϕ)

dϕ

)
=

1

4π
[− cosΘ(ρ)]ρ=∞

ρ=0 [Φ(ϕ)]ϕ=2π
ϕ=0 . (2.27)

Since there are several possibilities for the texture of a magnetic skyrmion,

we define the vorticity m and the helicity γ to characterize the skyrmion as

follows:

Φ(ϕ) = mϕ+ γ

m =
1

2π
(Φ(2π)− Φ(2π)) . (2.28)

Now, if m points in the −ẑ direction at the origin and along +ẑ at infinity,

then the boundary conditions on Θ(ρ) are,

Θ(0) = π, Θ(∞) = 0. (2.29)

Using Eq. (2.29) and (2.28), we get Q = −m. A magnetic skyrmion is de-

scribed by m = 1, and thus its topological charge is Q = −1. An antiskyrmion

corresponds to a spin configuration with m = −1 and its corresponding topo-

logical charge being Q = 1.

If m points in the ẑ direction at the origin and along −ẑ at infinity, then

boundary conditions on Θ(ρ) are modified to Θ(0) = 0, Θ(∞) = π. This

would yield Q = m, and a magnetic skyrmion (antiskyrmion) would have a

topological charge of 1(−1).

Depending on the nature of the DMI, magnetic skyrmions stabilized in the

system have well-defined vorticity m and helicity γ. In systems with Bulk DMI

the most stable state is a Bloch skyrmion with γ = ±π/2 and, the most stable

state in systems with interfacial (Néel) DMI are the Néel skyrmions which

have γ = 0, π. A classification of magnetic skyrmions corresponding to their

vorticity m = ±1 and helicity γ = 0,±π/2 are depicted in Fig. 2.5.
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Figure 2.5: Classification of magnetic skyrmions. This figure depicts the spin
configuration of skyrmion for m = 1 (left column a-d) and −1 (right column
e-h) and different values of γ.

2.3.1 Observations of magnetic skyrmions

Skyrmions in magnetic materials were first predicted to appear as stable struc-

tures in chiral magnets theoretically [41, 42]. The breakthrough came with the

first experimental observation of skyrmions in bulk non-centrosymmetric crys-

tals of MnSi [40, 146]. Since then, a lot of new materials have been reported to

host skyrmions of different types ranging from Bloch to Néel skyrmions [144].

We shall discuss the advent of magnetic skyrmions in both cases separately.
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Figure 2.6: Magnetic phase diagrams of (a) MnSi [40], (b) FeGe [88],
(c) Fe1−xCoxSi [87, 147, 148] and (d) Cu2OSeO3 [149].

Skyrmions in bulk systems with broken inversion symmetry

Magnetic skyrmions were observed in the form of skyrmion lattices in MnSi.

Since then, they have reported found in other materials like Fe1−xCoxSi [87,

147, 148], FeGe [88, 150], and Cu2OSeO3 [149, 151, 152]. The magnetic phase

diagram for the temperature versus external field in bulk chiral magnets shares

qualitative features as shown in Fig. (2.6). The ground state at zero applied

field is a helix, where the magnetization twists around helix pitch, denoted by

a wavevector q. The magnitude of the pitch of the helix is given by Q=D/J,

and the cubic anisotropy of the material determines its direction. The heli-

cal state transforms into the conical state as the applied field increases. In

the conical state, the wave vector is parallel to the applied field leading to a

non-zero magnetization pointing towards the applied field and rotation in the

plane perpendicular to the applied field, resembling a conical shape as shown

in Fig. 2.6(a). With a further increase in the applied magnetic field, the

conical state gets narrower and transforms into a ferromagnetic state. These

long-range magnetic orders exist only below the Curie temperature, and for

temperatures above the Curie temperature, the system is paramagnetic, with
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magnetization pointing in arbitrary directions and zero total magnetization.

The skyrmion lattice (SkL) appears in a narrow pocket in the phase diagram

close to Curie temperature. This phase was first observed using small-angle

neutron scattering experiments in MnSi. As the DMI in these materials is bulk

DMI, the magnetic textures in these materials are of Bloch type.

Skyrmions in thin films with interfacial DMI

Figure 2.7: Observations of magnetic skyrmions. (a) Nanometer scale
Skyrmions observed in an PdFe bilayer grown on Ir(111). The transition from
(i) stripe phase to (ii) skyrmions happen with increasing external fields [153].
Magnetic skyrmions in HM/FM/NM layers observed at room temperature
(b) Ta/Fe60Co20B20/TaOx using polar magneto-optical Kerr effect (MOKE)
microscopy [44], (c) in Pt/Co60Fe20B20/MgO by scanning transmission X-ray
microscopy STXM [45] and, (d) Pt/Co/MgO at zero external fields using
XMCD-PEEM method [154].

As introduced in Section 2.1.1, DMI arising at interfaces can stabilize chi-

ral structures in multilayer thin films. Skyrmions in thin-film systems were

first observed in monolayers of Fe [98] and bilayers of PdFe [153] epitaxially

grown on Ir(111) surface [153]. In these systems, DMI contribution comes

from the strong spin-orbit coupling of the heavy metal Ir. The skyrmion lat-
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tice stabilized in PdFe/Ir system had a square symmetry and a lattice period

of only 1 nm. It was demonstrated that different phases could be stabilized by

controlling the external magnetic fields (Fig. 2.7a). However, their stabiliza-

tion required large external magnetic fields as well as very low temperatures.

Quite recently, room temperature skyrmions were observed in HM/FM/NM

multilayers. Jiang et al [44] demonstrated the formation of skyrmion bub-

bles in Ta/Fe60Co20B20/TaOx trilayer at room temperatures using spatially

divergent current-induced SOTs (Fig. 2.7b). They further demonstrated that

the skyrmions varied in size between 700 nm and 2 µm depending on the

strength of the external magnetic field. Woo et al., [45] reported the presence

of Néel skyrmions lattices in ultrathin Pt/Co/Ta and Pt/CoFeB/MgO stacks

at zero applied field and room temperature (Fig. 2.7c). Boulle et al., [154]

demonstrated thermally stable Skyrmions in Pt/Co/MgO films at zero applied

magnetic fields and at room temperatures. The observed skyrmions were of

size 120 nm and were stable and reversible with respect to perturbations at

zero external magnetic fields (Fig. 2.7d).

2.3.2 Current-driven skyrmion dynamics

Skyrmion Hall effect

Spin structures, like DWs, can be moved using spin-polarized currents, as was

described in the previous section. A current-induced rotation of the skyrmion

lattice was discovered in MnSi early on following the experimental discovery

of skyrmions [61] and was described theoretically in the works below [155–

157]. An interesting result of a skyrmion’s topology manifests itself in its

current-driven dynamics. Here, the motion along the applied current’s direc-

tion coexists with transverse motion. This transverse motion is caused by the

gyrotropic forces. This effect is described as the Skyrmion Hall effect (SkHE).

Recently, magnetic multilayers were used to illustrate the SkHE [45, 158].

2.3.3 Conclusions

In this chapter, we saw the description of magnetism on nanometer to microm-

eter length scales using micromagnetic theory. The different contributions to

the energy functional were introduced to describe various magnetic configura-

tions such as domain walls, helices, and magnetic skyrmions. The theoretical
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description of magnetic skyrmions, their experimental discovery and later ob-

servation in different materials, and the Skyrmion Hall effect were then briefly

discussed. These concepts will be put into practice in the following chapter

when we investigate the stability of magnetic skyrmions in in-plane magnets

and address the key aspects of their symmetries.



Chapter 3
Stability of in-plane skyrmions

This chapter presents the study of magnetic skyrmions in thin film in-plane

magnets. We shall first introduce the micromagnetic model for in-plane mag-

netized thin films, followed by the description of in-planes skyrmions and their

spin structure. Then we shall present the numerical results showing the ef-

fect of DMI on the size of in-plane skyrmions and the effect of dipolar-dipolar

interactions on them. Later, the Biaxial anisotropy model is introduced to an-

alytically explain the complex effect of dipolar-dipolar interactions in in-plane

magnets. Then, a brief discussion on the symmetries of the Dzyaloshinskii-

Moriya interaction is presented, and potential material candidates to host in-

plane skyrmions are proposed. Finally, the stability of the in-plane skyrmions

in the monoclinic system with mirror symmetry is analysed a phase diagram

is provided.

35
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3.1 Introduction

In the previous chapter 1, we saw that a magnetic in-plane skyrmion could be

considered as a PMA skyrmion whose magnetic moments have been rotated

around an in-plane axis (in this case 90◦ y-axis) as shown in Fig. 3.1. In a

Néel skyrmion, the out-of-plane component of the magnetization is radially

symmetric about its center. In contrast, in an in-plane skyrmion, the in-plane

component of the magnetization is now radially symmetric about its center.

The magnetization at the center of an in-plane skyrmion is aligned with the

in-plane anisotropy direction and far away from the center along the opposite

direction. In theory, in-plane skyrmions have the topological characteristics of

Néel skyrmions.

In-plane skyrmions have been observed in epitaxial MnSi/Si(111) thin films [78,

79]. A two-dimensional square lattice of merons and antimerons was reported

in Co8Zn9Mn3 [159], and more recently, isolated pairs of meron–antimeron

have been stabilized in Permalloy film via magnetic imprinting [160]. In re-

cent years, in-plane skyrmions are gaining a lot of traction and have been

predicted theoretically to be a stable solution in ferromagnets [80, 82], anti-

ferromagnets [57, 161], and frustrated magnetic systems [162, 163]. In the next

section, we shall investigate the micromagnetic model and the interactions that

stabilise in-plane skyrmions in thin films.

3.2 In-plane micromagnetic model

In ferromagnetic thin films, the interaction between the various magnetic en-

ergy contributions—exchange, anisotropy, DMI, Zeeman, and dipolar-dipolar

interactions—leads to the stability of the magnetic skyrmions. In order to

understand this stability, we shall use the micromagnetic model introduced in

the last chapter 2. Let us begin by considering a chiral ferromagnetic thin film

deposited on a heavy metal layer uniformly magnetized along the z-axis. The
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micromagnetic energy functional is given by,

EPMA[m] =

∫
S
d2r

{
A

2
(∇m)2 +K

(
1−m2

z

)
+DNéelLNéel[m]−m · (H +Hd)

}
,

(3.1)

where m denotes the unit magnetization vector (normalized by the satura-

tion magnetization Ms, |m| = 1), A, DNéel, and K are the exchange stiffness,

Dzyaloshinskii, and on-site anisotropy constants of the system respectively.

H and Hd are the normalized (normalized by Ms) external and dipolar mag-

netic fields, respectively. LNéel[m] is a Lifshitz invariant that models the DMI

interaction in terms of the spatial variations of the magnetization,

LNéel[m] = mz∂xmx −mx∂xmz +mz∂ymy −my∂ymz. (3.2)

Now, the energy functional stabilising an in-plane skyrmion can be obtained

by applying a rotation in spin space of angle π/2 along the y-axis to Eq. (3.1),

which would yield

Ein-pl[m] =

∫
S
d2r⃗

{
A

2
(∇m)2 +K

(
1−m2

x

)
+DipLin-pl[m]−m · (H +Hd)

}
,

(3.3)

𝑥"

𝑧̂
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Figure 3.1: An in-plane skyrmion (green) can be obtained by rotating an
Néel skyrmion (blue) by 90◦ around an ŷ-axis. The magnetization at the
centre rotates from −z to -x direction, and similarly, the uniform background
smoothly deforms from out-of-plane (z) to in-plane (x) direction.
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Figure 3.2: Schematic representation of in-plane DW in a ferromagnetic thin
film. The magnetization rotates gradually from pointing right to left in the
plane of the thin film.

where the uni-axial anisotropy direction is along x-axis, and the stray field is

pointing outwards from the edges of the thin film. The exchange stiffness term

remains unchanged on account of being the gradient square of the magnetiza-

tion. However, the functional form of the Lifshitz invariant is transformed as

follows,

Lin-pl[m] = mz∂xmx −mx∂xmz +mx∂ymy −my∂ymx, (3.4)

Comparing Eqs. (3.2) and (3.4), we can see that the nature of rotation of

the magnetization has changed from a PMA film to an in-plane film. The

Lin-pl[m] causes rotations in z−x and x−y planes (see Fig. 3.2) in contrast to

LNéel[m], which causes rotations in z − x and z − y planes. The consequences

of this striking difference in skyrmions will be discussed in the next Sec. (3.3).

Figure 3.3: Schematic representation of the geometry of magnetic atoms (blue)
and the DMI vector (yellow) for different magnetization configurations [(a)
out-of-plane, (b),(c) in-plane]. The magnetization vector, the cross product
(mi × mj) and the DMI vector are denoted by grey, red and yellow arrow
respectively.
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It is important to note the key symmetry distinctions between the bulk,

Néel, and in-plane DMI here. In the previous chapter (2.1.1), we examined two

types of DMI, viz. Bulk DMI, which is present in crystals with broken inversion

symmetry like B20 crystallographic structures, and Néel DMI, which arises at

interfaces in thin-film multilayer systems. The symmetry of DMI determines

the type of structure formed. In thin films with PMA and broken inversion

symmetry at the interface, the DMI vector (yellow arrows in Fig. 3.3a) lies

in the plane perpendicular to the vector between two spins (black arrows in

Fig. 3.3a), resulting in a non-zero contribution to the energy. However, in

in-plane magnetized systems, the DMI vector lies in the same plane as the

magnetization with no net chiral energy contribution (Fig. 3.3b). Hence the

chiral structures stabilized by the DMI in an in-plane magnetized film are less

common. Realizing chiral spin textures in thin films with in-plane anisotropy

requires a form of DMI whose out-of-plane component is non-zero (Fig. 3.3c).

The in-plane DMI in Eq. (3.4) qualifies this criterion and stabilises both in-

plane and out-of-plane domain walls as shown in Fig. 3.2. Recently, out-of-

Figure 3.4: Classification of in-plane skyrmions. This figure depicts the spin
configuration of skyrmion for m = 1 (top row a,b) and −1 (bottom row c,d)
and values of γ = 0, π.
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plane chiral spin structures were reported in an in-plane magnetized ultrathin

film system consisting of Fe/Ni bilayers grown on a W(110) crystal [164]. Here

the chirality is introduced by the interplay of in-plane uniaxial anisotropy, a

perpendicular anisotropy, and interfacial DMI contributions. The symmetry of

the in-plane DMI will be further examined in the Sec. 3.6, along with potential

crystal classes that could support this type of DMI. Similar to Néel skyrmions

in PMA magnets,in-plane skyrmions can be stabilized with a well-defined vor-

ticity m and helicity γ that have the symmetries given by the in-plane DMI

mentioned in Eq. 3.4. A classification of in-plane skyrmions corresponding to

their vorticity m = ±1 and helicity γ = 0,±π/2 are depicted in Fig. 3.4.

3.3 Structure of in-plane skyrmions

In the previous section, we discussed the in-plane micromagnetic model and

the corresponding in-plane DMI that stabilizes in-plane skyrmions. Let us now

analyze the influence of the DMI strength on the stability and the size of both

Néel and in-plane skyrmions.

Micromagnetic simulations were performed to obtain the relaxed equilib-

rium configuration. The micromagnetic parameters for exchange, anisotropy,

saturation magnetization, and Gilbert damping are given in the Table 3.1.

The reduced DMI parameter g = πD/4
√
AK is varied between 0.7 and 1.0.

The simulation geometry was a square geometry with 128 nm lateral size and

thickness of 1 nm with the discretization of 1 cell per cubic nanometer and,

periodic boundary conditions were employed. The size of the simulation ge-

ometry was chosen such that the skyrmion size was always less than 50% of

the simulation edge.

A (J/m) K (J/m3) α Ms (A/m) g
1.5 · 10−11 5.0 · 105 0.15 5.8 · 105 0.7-0.99

Table 3.1: Values of the micromagnetic parameters utilized in the simulations
of skyrmion relaxation for the skyrmion radius plots in Fig.3.6.

For Néel skyrmions, the radius of the skyrmions is defined as the distance
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Figure 3.5: Schematic representation of the definition of radius for (a) Néel
skyrmions and (b) in-plane skyrmions respectively, with the radius as defined
by the Eq. (3.5).

between the center of the skyrmion to the circle where the z-component of

magnetization goes to zero (3.5a) (magnetization is in-plane). Similarly, for

the case of in-plane skyrmion, the radius is defined as the distance between the

center of the skyrmion to the circle where the x-component of magnetization

goes to zero (3.5b). The schematic representation of the skyrmion radius

definition is illustrated in Fig. 3.5.

mz(R) = 0, for Néel skyrmions (3.5a)

mx(R) = 0, for in-plane skyrmions (3.5b)

The radius of these skyrmions calculated as a function of DMI is shown

in Fig. 3.6a. First, we can see that in the absence of stray fields, the radius

of an in-plane and Néel skyrmion (blue and magenta curves) are precisely

the same. This stems from the fact that two energy functions are related

by a rotational mapping in the spin space (see Sec.3.2). The skyrmion ra-

dius increases monotonically with increasing DMI for both of these skyrmions.

When g tends toward 1 (D → Dc), the skyrmion radius diverges. This can

be understood from the contribution of A, K, and D to the energy of a chiral

DW (2.19). For large skyrmions, we can assume that the circular domain wall

of a Néel/in-plane has the same profile as an isolated relaxed domain wall [93].
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Figure 3.6: (a) Radius of Néel and in-plane skyrmions in the absence (blue and
magenta curves) and presence (cyan and red curves) of stray fields (demag).
The black solid curve denotes the associated g value. analytical dependence
on the reduced DMI parameter as proposed in [165]. (b) Radial magnetization
profile mx (red) and mz (cyan) in the presence of stray fields for Néel and
in-plane skyrmions, respectively. The blue curve corresponds to radius profile
in the absence of stray fields for in-plane skyrmions. The corresponding value
of g and radius are marked by □, △ and ⃝ respectively in (a). This figure
and caption are adapted from our work [82].

With such an approximation, we can see that larger A and K result in a higher

DW energy (2.19), favoring smaller DWs, and, therefore, smaller skyrmions.

As g increases, DW energy decreases, resulting in larger skyrmions. When

g tends toward 1 (D → Dc), the skyrmion energy approaches zero, and cor-

respondingly the skyrmion radius diverges, leading to the formation of spin

spirals. The analytical solution to the radius of the skyrmions as a function of

the DMI strength calculated in Ref [165] is given by RSk =
√
2|g|/

√
1− 2g2

(black curve in the Fig. 3.6).

3.4 Effect of dipolar interactions

In Sec. 2.1.1, we saw that the effect of magnetostatic interactions is non-trivial,

and the calculations of stray field energies are the most computationally inten-

sive due to their nonlocal nature. In this section, we will compare their impact

on in-plane skyrmions and Néel while qualitatively describing their influence.

We shall address the stray field effects in detail in Sec. 3.5 using an analyti-

cal model and micromagnetic simulations. Here, The effect of stray fields on
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the stability of skyrmions has been investigated by performing micromagnetic

simulations in Mumax3 and Micromagnum.

In Fig. 3.6a, we see that the radius of Néel skyrmions (cyan curve) in-

creases in the presence of stray fields. In a PMA magnet, in order to lower the

total energy, stray fields increase the width of the domain wall and thereby in-

creasing the radius of the Néel skyrmions. However, the radius of the in-plane

skyrmion (red curve) is decreased in the presence of stray fields. The magneti-

zation profile in each case is shown in Fig. 3.6b for the value of g = 0.95. It can

be seen that the size of the skyrmion core varies in each case. This contrast-
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Figure 3.7: (a) The dependence of the radius of in-plane skyrmions on the
azimuthal angle φ is examined in two scenarios: with the presence of stray
fields (depicted in blue) and without them (depicted in red). The dashed lines
represent the angular average or mean radius. To facilitate comparison, the
radii are normalized by the maximum observed radius, Rmax, for the skyrmion.
It should be noted that the numerical estimation of the radius is influenced
by finite size effects on the scale of the cell size (∼ 1 nm), hence the red
curve represents the average. Additionally, the inset shows the spectral density
corresponding to the angular dependence mentioned earlier in the case of the
stray-field scenario. (b) Schematic representation of the radius measured as a
function of azimuthal angle φ. For each value of φ. the radius (R) is defined
as the distance between the center of the skyrmion to the contour where the
x-component of magnetization goes to zero.
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ing behaviour originates from the different nature of stray fields in PMA and

in-plane polarised magnetic thin films. In a uniformly magnetized infinite thin

film with PMA, the demagnetization factor is (0, 0, 1), and the surface charges

accumulate on top and bottom surfaces. In an in-plane magnetized film, the

magnetic charges are now on the edges of the thin film while still having the

demagnetization factor (0, 0, 1) because of its infinite thin film shape.

Another significant effect of the stray fields is the deformation of in-plane

skyrmions. Fig. 3.7 shows the angular dependence of the size of the in-plane

skyrmion in the presence and absence of stray fields. For each value of the

azimuthal angle φ, the size of the skyrmion is defined as the distance between

the center of the skyrmion to the circle where the x-component of magnetiza-

tion goes to zero (see Fig. 3.7b). In the absence of stray fields, the fluctuations

of the radius of the skyrmion is less than 0.2%, which appears due to spatial

discretization in the simulations. In the presence of stray fields, the skyrmion

size varies from a maximum to a minimum in the range [0, π/2]. This can be

understood by looking at the magnetization profile along φ = 0 and φ = π/2

directions. The DW along φ = 0 is a Néel wall with magnetization rotating

in x− z plane, and the presence of stray fields increases the width of the DW.

However, along φ = π/2 direction, it is an in-plane DW with the rotation of

the magnetization along x− y plane, and the stray fields have the opposite ef-

fect and reduces the width of DW and thus the size of the skyrmion along this

direction. The spectral decomposition of the variation R(φ) reveals harmonic

terms of the second order being the dominant ones and smaller fourth order

contributions in the natural frequency ωφ = 1 as shown in the inset of Fig. 3.7a.

Thus, the stray fields acting on an in-plane skyrmion break the cylindrical

symmetry leading to different nature of magnetization profile along different

φ direction. This φ dependent DW profile stems from the very nature of in-

plane DMI. In the next section, we shall analyse the symmetries of the DMI

and their consequences on the structure of the in-plane skyrmions.
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3.5 Biaxial anisotropy

For an infinite thin film with uniform magnetization perpendicular to the

film, the magnetic dipolar energy can be recast as a effective anisotropy term.

As a result, the effective anisotropy constant of the magnet becomes Keff =

K − 0.5 µ0M
2
s , the second contribution being rooted in the presence of stray

fields [103]. This anisotropy-like approximation was shown to be valid also for

axial-symmetric modulated structures in thin films with uniform background

pointing normal to the film (like Néel skyrmions) [42]. However, this approach

fails in the case of an in-plane magnetized film, so that special care must be

taken when considering the effect of stray fields. In this section, we consider a

biaxial anisotropy model to account for the magnetic dipolar energy in in-plane

magnetized films. This idea is motivated by the fact that the demagnetization

tensor in ultra-thin films reduces to diag(0, 0, Nzz), where the z axis points

along the normal to the magnetic film.

3.5.1 The model

We consider an ultra-thin ferromagnetic film with an in-plane uniaxial anisotropy,

where chiral magnetic modulations are stabilized by an in-plane DMI. The

magnetic dipolar energy will be modeled by an additional out-of-plane uniaxial

anisotropy. The long-wavelength free-energy functional for the magnetization

m is given by

E [m] =

∫
S
d2r

{
A

2
(∇m)2 +DLin-pl[m]−m ·H (3.6)

+Kx[1− (mx)
2] +Kz[1− (mz)

2]

}
,

where Kx, Kz denote the in-plane and out-of-plane anisotropy constants, re-

spectively. Here, A, D and H are the exchange stiffness, the Dzyaloshinskii-

Moriya strength and the external magnetic field, respectively. In addition,

Lin-pl[m] is a Lifshitz invariant defined as

Lin-pl[m] = mz∂xmx −mx∂xmz +mx∂ymy −my∂ymx (3.7)
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Figure 3.8: Comparison of the magnetization results obtained between the
proposed biaxial model with Mumax3’s native calculation. The spatial distri-
bution of the error percentage of the thin film of dimensions (512×512×1)nm3

is calculated. The error percentage is measured with respect to Mumax3’s de-
magnetization kernel calculations.

This form of the Lifshitz invariant induces chiral spin spiral rotations in x− z

and x− y planes in the system.

3.5.2 Validity of the model

To verify our proposed effective model for the demagnetizing field, we com-

pare it to its direct evaluation by means of the demagnetization kernel cal-

culator of MuMax3: we consider a thin film with a square geometry of lat-

eral size 512 nm and thickness 1 nm, with cell size 1 × 1 × 1 nm3, which

is homogeneously magnetized along x-direction and we determine the ground

state magnetization by using both approaches. The relative error is defined as

δmijk =
(
mbi−axial

ijk −mMumax3
ijk

)
/mMumax3

ijk . The results are shown in Fig. 3.8.

We note that the relaxed magnetization state is in agreement with Mumax3’s

demagnetization field calculations within an error less than 0.01%. The simu-

lations were repeated for different dimensions, with the square length varying

from 128 nm to 2048 nm, and similar results were obtained.
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3.5.3 Effect of Biaxial anisotropy on in-plane skyrmions

In the previous section (Sec. 3.4), we saw that the in the presence of stray

fields, the cylindrical symmetry of the in-plane skyrmion is broken, leading to

an asymmetric radial profile. We performed Mumax3 simulations using the

effective biaxial model for different values of Kratio =
Kz

Kx
keeping Kx fixed, and

the resulting magnetization profiles are shown in Fig. 3.10(a).

Figure 3.9: Magnetization density plots for different values of Kratio for a fixed
value ofKx = 1×166 Jm−3. The in-plane skyrmions shown here were stabilized
within the biaxial model (Eq. (3.6)). It can be seen from the contours that the
cylindrical symmetry is broken for nonzero values of Kratio.

The comparison of the skyrmions stabilized with account of the biaxial

model and of the full demagnetization calculation in Mumax3 is shown in

Fig. 3.10(a). The size of the skyrmions decreases as Kz increases. Also, the

cylindrical symmetry is broken for all values of Kratio, such that the maximum

(minimum) size occurs along the parallel (perpendicular) direction to the in-

plane (x) easy axis. The radial profile from the biaxial model matches to the



48 Stability of in-plane skyrmions

Figure 3.10: Comparison between the biaxial model and the Mumax3 full de-
magnetization calculation. (a) Size of the in-plane skyrmion as a function of
the azimuthal angle φ for different values of Kratio. The skyrmions are sta-
bilised within the biaxial model (Eq. (3.6)). The size of the skyrmion obtained
with account of Mumax3’s full demagnetizing field calculation is shown in blue
(×). Note that the profiles from the two approaches match for Kratio = 0.25.
(b) The value of Kratio at which the biaxial model and Mumax3’s demagneti-
zation field calculation match is shown as a function of the in-plane anisotropy
Kx (blue curve). The red curve represents the value of Kratio obtained via the

expression 0.5 µ0M2
s

Kx
× 1

0.845
.

one obtained from MuMax3’s full demagnetization field calculation forKratio =

0.25, which is equal to 0.5 µ0M2
s

Kx
× 1

0.845
. We note that the numerical factor 0.845

arises from 1) the demagnetizing factor of the finite sized cuboid shape of the

thin film and 2) the nonuniform nature of the skyrmion magnetization field.

To check the consistency of these results, the value of Kratio that reproduces

the effect of the demagnetizing field was calculated as a function of in-plane

anisotropy (Kx), and the results are shown in Fig. 3.10(b).
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3.6 Symmetries of Dzyaloshinskii-Moriya in-

teraction

In ferromagnets (FMs), in the continuum limit, DMI is described by so-called

Lifshitz invariants, which are linear w.r.t first spatial derivatives of the mag-

netization (see Eq. (2.7)), which was briefly addressed in chapter 2. In this

section, the symmetries of the different types of DMI are addressed, and in

particular, the in-plane DMI responsible for stabilizing bimerons. Through

symmetry analysis, we demonstrate the necessary crystal symmetry to host

in-plane DMI in a ferromagnet even in the absence of interfacial effects and

also propose a few potential material candidates where we would observe the

same.

3.6.1 DMI tensor form

In the most general form, the DMI contribution to the free energy can be

written as

EDM [m] = Dijkmi∂jmk, (3.8)

where D̂ is a third-rank antisymmetric polar tensor.[166]. The EDM is linear

with respect to the first spatial derivatives of m, but is not necessarily ex-

pressed in terms of Lifshitz invariants. 1.

The question that we want to address is, ”What is the relationship between

the symmetry of the crystal structure and the physical effect on the crystal due

to a specific physical cause?” The answer lies in an old article by Neumann

from 1833. According to Neumann’s principle[167], if a crystal is invariant

with respect to certain symmetry operations, any of its physical properties

must also be invariant with respect to the same symmetry operations, i.e., D̂

tensor must be invariant under the action of all symmetry operations of the

point group of the crystal.

A third rank tensor has the form of a 9 × 3 matrix divided into three

1In ferromagnets, DMI can be described in the continuum limit by so-called Lifshitz

invariants[166], i.e., L(k)
ij [m] = mi∂kmj −mj∂kmi
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matrices of dimensions 3× 3,

Dxxx Dxyx Dxzx

Dxxy Dxyy Dxzy

Dxxz Dxyz Dxzz

Dyxx Dyyx Dyzx

Dyxy Dyyy Dyzy

Dyxz Dyyz Dyzz

Dzxx Dzyx Dzzx

Dzxy Dzyy Dzzy

Dzxz Dzyz Dzzz



. (3.9)

Under a symmetry operation R of a crystal point group, the components of

the DMI tensor transforms as,

Di′j′k′ = Ri′iRj′jRk′kDijk. (3.10)

Since, R ∈ G crystal’s point group, the tensor must be invariant under the

transformation
(
D

′

ijk = Dijk

)
. This helps us in determining vanishing and

non-vanishing elements of the tensor D̂

3.6.2 Symmetry analysis

Now let us discuss how the nature of crystal symmetry determines the struc-

ture of the DMI tensor, in particular Néel and in-plane DMIs.

Owing to the antisymmetric nature of the DMI tensor, see Eq. 2.7, we

obtain Diii = 0 (i = j = k) and Diji = 0 (i = k). With account of these

identities, the 3rd rank DMI tensor has the form
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

0 0 0

Dxxy Dxyy Dxzy

Dxxz Dxyz Dxzz

−Dxyy −Dxyy −Dxzy

0 0 0

Dyxz Dyyz Dyzz

−Dxxz −Dxyz −Dxzz

−Dyxz −Dyyz −Dyzz

0 0 0



. (3.11)

Mirror-plane symmetry

We shall now consider a specific example of crystal symmetry and determine

the non-vanishing elements of the DMI tensor corresponding to that symmetry

operation alone. Consider a mirror planemy, normal to the ŷ axis. The matrix

representing this symmetry transformation can be written as

Rmy =

1 0 0

0 −1 0

0 0 1

 . (3.12)

The DMI tensor must be invariant under this symmetry transformation.

Consideration of Eqs. (3.10) and (3.12) yields the following conclusions:

• Since Rmy is diagonal, Rip = Rjq = Rkr = 0 when i ̸= p , j ̸= q , k ̸= r.

Hence: Dijk vanishes when i ̸= p or j ̸= q or k ̸= r .

• RiiRjjRkk = −1, when y appears an odd number of times in the indices

(ijk), which implies Dijk = −Dijk, and therefore these coefficients must

vanish. Thus:

Dijk vanishes when y appears an odd number of times in the indices (ijk).

• Assuming a thin film with thickness less than the exchange length, we
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can assume uniform magnetization along the normal to the film (ẑ axis),

which implies ∂zmi = 0. Hence we have Dzzx = Dxzz = 0.

As a result, the only non-vanishing components of the DMI tensor are

Dxxz = −Dzxx, −Dzyy = Dyyz, Dxyy = −Dyyx.

Similar symmetry arguments can be made for the different symmetry op-

erations belonging to all the 32 crystallographic point groups. Table. 3.2 gives

the form of DMI tensor for all possible symmetries.

symmetry LI-type terms
C1 Lx

xy,Ly
xy,Lz

xy,Lx
zx,Ly

zx,Lz
zx,Lx

yz,Ly
yz,Lz

yz

C2 Lx
xy,Lz

xy,Ly
zx,Lx

yz,Lz
yz

CS Ly
xy,Lx

zx,Ly
yz,Lz

zx

D2 Lz
xy,Ly

zx,Lx
yz

C3, C4, C6 Lz
xy,Lx

zx,Ly
zx,Lx

yz,Ly
yz

S4 Lx
zx,Ly

zx,Lx
yz,Ly

yz

D4, D6 Lz
xy,Ly

zx,Lx
yz

C2v, C3v, C4v, C6v, D3 Lx
zx,Ly

yz

D2d Ly
zx,Lx

yz

T, O Ly
zx,Lz

xy,Lx
yz

Table 3.2: Lifshitz invariant terms allowed by the point group symmetries.
Here Lk

ij = mi
∂mj

∂mk
−mj

∂mi

∂mk
. For the point groups Ci, C2h, D2h, C4h, D4h, C3i,

D3d, C3h, C6h, D3h, D6h, Th, Td, Oh, all the elements of the DMI tensor vanish.
Hence its not possible to stabilize chiral textures in these systems by means of
DMI. The complete tensor forms for each of these point group symmetries is
given in Appendix. C

3.6.3 Monoclinic point group m

The point group m belonging to the monoclinic space group Cm contains a

mirror symmetrym whose plane is normal to the unique axis b (|a| = |c| ≠ |b|).
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The structure of the DMI tensor for this symmetry was determined in Sec.3.6.2,

0 0 0

0 Dxyy 0

Dxxz 0 Dxzz

0 −Dxyy 0

0 0 0

0 Dyyz 0

−Dxxz 0 −Dxzz

0 −Dyyz 0

0 0 0


, (3.13)

and the corresponding energy density can be written as

ECm
DMI = Dxyy (−my∂ymx +mx∂ymy) +Dzxx (mz∂xmx −mx∂xmz)

+Dyyz (−mz∂ymy +my∂ymz) +Dzzx (mz∂zmx −mx∂zmz) . (3.14)

If the thickness of the thin film, grown along the direction of the unique axis b,

is of the order of the exchange length, we can assume that the magnetization

is uniform along this direction. In what follows, we adjust the crystallographic

frame of reference so that the z direction points towards the unique axis.

Hence, the DMI energy density for this point group, Em
DMI , reads

Em
DMI = Dxyy (−my∂ymx +mx∂ymy) +Dzxx (mz∂xmx −mx∂xmz)

+Dyyz (−mz∂ymy +my∂ymz) (3.15)

= DxyyLy
xy +DzxxLx

zx +Dyyz.Ly
yz (3.16)

We note in passing that the expressions Eqs. (3.2) and (3.4) for the Néel and in-

plane DMI energy densities, respectively, can be rewritten in terms of Lifshitz

invariants as,

LNéel[m] = DzxxLx
zx +DyyzLy

yz

Lin-pl[m] = DzxxLx
zx +DxyyLy

xy. (3.17)
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Comparison of Eqs. (3.16) and (3.17) allow us to conclude that the monoclinic

point group m hosts both Néel and in-plane DMI in the system. In particular,

the first two and the last two terms in Eq. (3.16) stabilize in-plane skyrmions

and Néel skyrmions, respectively.

Based on ab initio calculations [168], the following materials are predicted

to exhibit the Cm space group symmetry.

• Fe(BRh2)3,Co(BRh2)3

• Al18Co5Ni3

• Rb6Fe2O5

• La4TaCo33

• Co25Cu11O48

• FeLa3S6

• Ta12Co3Pt3Se32

• Li4Fe3Ni3(TeO8)2

Among these, FeLa3S6 [169] and Rb6Fe2O5 [170] have been previously re-

ported to be synthesized in bulk systems and are the most promising platforms

for observing in-plane skyrmions. One could stabilize in-plane skyrmions in

the materials mentioned above. Therefore, it is crucial to 1) investigate the

stability of in-plane skyrmions in magnetic systems within the point group m

and 2) understand the effects of the competing DMI interactions that emerge

in these materials.
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3.7 The Cm Model

The symmetry analysis in Sec. (3.6) revealed that in-plane skyrmions could

be stabilized in a crystal with Cm symmetry. In this section, we now explore

the energetics and stability of the in-plane skyrmions in above said symmetry.

Rewriting the micromagnetic energy functional (Eq. (3.1)) for this system,

which accommodates both DMI interactions (DNéel, Din-plane) stabilizing an

in-plane skyrmion,

ECm[m] =

∫
S
d2r

{
A

2
(∇m)2 +K

(
1−m2

z

)
+DCm LCm[m]−m · (H +Hd)

}
,

(3.18)

where LNéel[m] and Lin-pl[m] are the Lifshitz invariants that models the Néel

and in-plane DMI interactions, respectively, and are defined in Eqs. (3.2) and

(3.4), respectively, in terms of the spatial variations of the magnetization.

The nonzero coefficients of the DMI tensor for Cm symmetry2 are Dxxz =

−Dzxx, Dyyz = −Dzyy, and Dyyx = −Dxyy. Hence, the DMI energy contribu-

tion in Eq. (3.4) can be cast in the form,

EDMI[m] =

{
Dxyy LNéel[m] + Dxyy Lin-pl[m] + D3(mz∂xmx −mx∂zmz)

}
,

(3.19)

where D3 = Dzxx − DxyyDzyy. To understand the physical consequences of

having two competing DMIs, let us consider the nature of the domain wall

in Néel and in-plane skyrmions. In a Néel skyrmion [Fig. (3.2b)], taking the

cross-section of magnetization along any radial direction r̂ indicates a domain

wall in which the magnetization rotates in the r̂− ẑ plane (Néel domain wall).

However, in an in-plane skyrmion the nature of the domain varies as we go

along the circumference of the skyrmion. The domain along the x̂ and ŷ-

directions have magnetization varying along x̂−ẑ and x̂−ŷ planes, respectively

(see Fig. 3.2), and along any radial direction in x̂− ŷ plane, the magnetization

is of Bloch nature (has rotation out of the plane of propagation). This already

2see Sec. (3.6) for details of this tensor evaluation.
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gives an initial picture as to how the symmetries are different in the two cases.

Now when we consider a Cm system having competing Néel and in-plane DM

interactions, the cylindrical symmetry of the skyrmion is broken. The degree

of asymmetry depends on the ratio of the strengths of the two DM interactions.

This gives rise to interesting new features in current-driven dynamics and also

magnonic excitations of in-plane skyrmions in Cm crystal. We shall describe

these in detail in the following sections.

3.7.1 Axial asymmetry in Cm model

𝐷!"#$% = 0.1 𝐷!"#$% = 0.7
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Figure 3.11: Axial asymmetry in Cm model. (a-c) Size of the in-plane
skyrmion as a function of the azimuthal angle φ for different values of Dratio.
The skyrmions are stabilised within the Cm model hosting two DMI interac-
tions. (Eq. (3.18)). The asymmetry in the skyrmion radius profile becomes
more pronounced as the strength of Néel DMI increases. (d) Magnetization
density plots for different values of Dratio for a fixed value of Din-pl. It can be
seen from the contours that the cylindrical symmetry is broken for nonzero
values of Dratio. The magnetization density profiles for each Dratio values in
(a-c) are presented in the Appendix.. A.
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Now that we have obtained a physical intuition for axial asymmetry in Cm

model, let us describe it quantitatively and also study the effect of asymmetry

on shape of skyrmions. The effective fields due to different DMI contributions

can be written as follows,

BCm = − 2

Ms

 (DNéel +Din-pl) (∂xmz)−Din-pl (∂ymy)

−DNéel (∂ymz)−Din-pl (∂ymx)

(DNéel +Din-pl) (∂xmx) +DNéel (∂ymy)

 . (3.20)

It is evident from the above expression for the DMI field that, the presence

of Néel DMI in the in-plane system adds additional rotation of the magnetiza-

tion in r̂− ẑ plane. This breaks the cylindrical symmetry in the plane leading

to the deformation of the skyrmion shape.

We observe this deformation by plotting the angular dependence of the radius

of the in-plane skyrmion as a function of DNéel (see Fig. 3.11), where the ra-

dius R(φ) being defined by the condition mx[R(φ), φ] = 0 (i.e., the position

at which mx vanishes) and φ denoting the azimuthal angle. In Fig. 3.11(a),

the variation in the radius for the case of Dratio = 0 is arising due to discreti-

sation of the lattice during simulations, and as such, we see that the variation

is less than 0.1%. As we increase the relative strength of the DM interac-

tion, Dratio (we define the relative strength as the ratio of the two DMIs, i,e.,

Dratio = DNéel/Din-pl), we observe oscillations in R when φ is swept within the

range [0, 2π]. The variation of radius of the in-plane skyrmion is such that it

goes from a maximum to a minimum value as φ zero to π/2. This is due to the

extra twisting we attain in the x̂ − ẑ plane, which we can see from the extra

term D3 in DM energy contribution[ Eq. (3.19)]. When the relative strength

Dratio goes beyond value 1, the terms with D3 in Eq. (3.19) are very domi-

nating, thereby leading to the elliptical deformation of in-plane skyrmions.(as

shown in Fig. 3.11(c,d))

3.7.2 In-plane skyrmions stability

The basic properties of isolated Néel skyrmions in PMA magnets have been in-

vestigated thoroughly in a number of earlier contributions [95, 165, 171, 172].

However, there are not many investigations into the properties of isolated
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in-plane skyrmions, which are fundamental to understanding their physics

and applications in potential spintronic devices. The symmetry analysis from

Sec. 3.6.2 revealed that the monoclinic system Cm is the only space group

compatible with the symmetries to host in-plane skyrmions (see Table. 3.2).

In this section, we will study different magnetic phases in Cm model parame-

terized by the two Dzyaloshinskii coupling constants Dy
xy and Dy

zy followed by

which we shall construct a mean-field phase diagram and study the stability of

in-plane skyrmions as meta-stable states over the ferromagnetic background.

First off, let us start by rewriting the Eq. (3.20) in a reduced unit system

by introducing a dimensionless variable ρ⃗ = r⃗/
√

A/K, which yields

ECm[m] = A

∫
S
d2ρ⃗

{
1

2
(∇⃗ρm)2 + [1− (mx)

2]

+
4g1
π

Lin-pl,ρ[m] +
4g2
π

LNéel,ρ[m]

}
, (3.21)

where g1 = πDxyy/4
√
AK and g2 = πDzyy/4

√
AK are the two dimension-

less reduced Dzyaloshinskii coupling constants, and the subscript ’ρ’ indicates

partial derivation with respect to ρ⃗. The advantage of working in the reduced

system of units is that now, we have only two dimensionless coupling constants

that parameterize the stability of chiral structures in the Cm model. The di-

mensionless variable ρ⃗ rescales the space by 1D domain wall width
√
A/K,

which results in the reduced coupling constants infront of two DMI terms. In

the case of a single DMI in the model (Eqs. 3.1, 3.3), this rescaling of units

could also be performed by the spin spiral length 2A/D giving us a single

reduced anisotropy constant 2AK/D in the reduced system.

Let us consider a spin frame of reference spanned by the basis vectors{
ê1, ê2, ê3

}
such that the normal to the plane of the helix is defined as,

ê3 ≡ n⃗ = (cosϕ sin θ, sinϕ sin θ, cos θ)⊤, (3.22)

and the pitch vector q⃗ ̸= 0⃗, as shown in Fig. 3.12. Now we can write the

generic helical ansatz in real space by casting the magnetization field in the
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XY plane

Figure 3.12: Figure illustrating the spin frame of reference spanned by the
basis vectors

{
ê1, ê2, ê3

}
. In this spin space geometry, the vector ê3 is aligned

parallel to the normal of the plane containing the generic helix.

above defined spin frame of reference adjusted to the normal to the plane, n⃗,

m(r⃗ ) = cos(q⃗ · r⃗)ê1 + sin(q⃗ · r⃗)ê2 +m0ê3, (3.23)

where m0 denotes the out-of-plane projection of the magnetization. This

projection distinguishes between pure helical phase and conical phases, which

shall be shown later. By plugging the ansatz Eq. (3.23) into Eq. (3.21), we

obtain the following expression for the total energy density:

ε
[
m(r⃗ )

]
=

1

2

q⃗ 2

1 +m2
0

+
4

π

g1
1 +m2

0

(qy cos θ + qx sin θ sinϕ)

+
4

π

g2
1 +m2

0

(qx sin θ sinϕ− qy sin θ cosϕ)

+
1
2
+m2

0

1 +m2
0

+
1
2
−m2

0

1 +m2
0

sin2 θ cos2 ϕ. (3.24)

The energy density is parameterised by variables {θ, ϕ, q⃗,m0}. The different

ground states can be obtained by extremalization of the energy density func-

tional (3.24) w.r.t these parameters. Extremalization of the energy density

functional (3.24) yields the equations for the pitch vector (q⃗) and the value
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(m0) for the out-of-plane magnetization.

qx = − 4

π
(g1 + g2) sin θ sinϕ, (3.25)

qy =
4

π
(g2 sin θ cosϕ− g1 cos θ) , (3.26)

m0 = 0. (3.27)

Extremalization of the energy density functional w.r.t the polar angle (θ) yields

the following conditions

θ = 0, π or (3.28)

δg1g2

[
2g1g2 −

16

π2
δ2
]
cos 2θ cot θ − δ3 cot θ

+ g21g
3
2(2g1 + g2) sin 2θ = 0, (3.29)

where δ ≡ g21 + 2g1g2 + π2/16.

In the case when θ = 0, π, using Eqs. (3.25 - 3.27) the resultant magnetic

texture can be written as,

m(r⃗ ) = ± (cos[4g1y/π],− sin[4g1y/π], 0)
⊤ , (3.30)

which represents purely a helical phase with pitch vector along y-axis in the

XY plane (see Fig. 3.12). The corresponding total energy density becomes,

ε =
1

2

[
1− 16g21

π2

]
. (3.31)

In the case of other extrema (Eq. (3.29)), the following condition for the az-

imuthal angle is obtained.,

cosϕ = −g21 + 2g1g2 + π2/16

g1g2
cot θ. (3.32)

The resulting magnetization field is now parameterized by the polar and az-

imuthal angles obtained from the solutions of Eqs. (3.29, & 3.32) from which

from which the corresponding total energy density can be calculated by means
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of Eq. (3.24). This solution represents a mixture of helical and conical phases.

Whether any of these solutions correspond to the ground state of the system

can be determined by comparing their energy density (3.24) to that of the

uniform magnetic state (ε
[
mu(r⃗ )

]
= 0).

The phase diagram of a thin monoclinic Cm system is constructed as a

function of the two reduced Dzyaloshinskii coupling constants g1 and g2, by

calculating the minimum energy solution in each case. The resultant phase

diagram is shown in Fig. 3.13. We observe that three notable phases, viz., a

ferromagnetic phase, a helical phase, and within the ferromagnetic phase, a

region where single in-plane skyrmions exist as metastable states. It should

be noted here that only the ferromagnetic phase and helical phases are the

minimum energy solutions, and isolated in-plane skyrmions always emerge as

low-energy excitations on the uniform magnetic background. The two phases

(helical and ferromagnetic) are separated by a linear boundary which has been

calculated analytically from the minimum energy solutions of the energy func-

tional. In obtaining the analytical solutions, the term proportional to D3 has

been disregarded in our analysis since it is only responsible for the ellipti-

cal shape deformation of the Cm skyrmions. The stability of the in-plane

skyrmions as metastable states depends on the interplay between Néel and

in-plane DM stabilizers.

The blue region shaded in the phase diagram (Fig. 3.13) was obtained by

Micromagnetic simulations performed in Mumax3[112] in a square geometry of

lateral size 256 nm and thickness 1 nm, with cell size 1×1×1 nm3 disregarding

dipolar interactions. The skyrmion phase was calculated by sweeping g1 and

g2 within the range 0 − 0.7 and checking whether an initial single in-plane

skyrmion configuration relaxed towards the uniform state or not. The limited

span of the skyrmion phase inside the ferromagnetic phase is a computational

limitation due to the fact that at low g1 values, the in-plane skyrmion size is

not more than a few discretisation cells, and the relaxation algorithm collapses

into a uniform state. The values for the micromagnetic parameters are given

in Table 3.3.
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Figure 3.13: Phase diagram of a monoclinic Cm magnet as a function of the in-
plane (g1) and interfacial (g2) reduced Dzyaloshinskii coupling constants. The
boundary between the ferromagnetic phase and the helical phase is indicated
by a red dashed line. Within the ferromagnetic phase, there exists a region
where metastable isolated in-plane skyrmions can be found, marked in light
blue. Insets corresponding to points A, B, and C in the phase diagram show-
case examples of skyrmion shapes. Additionally, it is observed that increasing
the strength of the interfacial Dzyaloshinskii coupling constant deforms the
skyrmion. [Figure and caption adapted from [82].]
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A (J/m) K (J/m3) α Ms (A/m) g1 g2
1.5 · 10−11 5.0 · 105 0.15 5.8 · 105 variable variable

Table 3.3: Values of the micromagnetic parameters utilized in the simulations
of skyrmion relaxation for the phase diagram.

3.7.3 Conclusion

In this chapter, we introduced the in-plane micromagnetic model to describe

the in-plane skyrmions and did a comparative study with Néel skyrmions.

Through micromagnetic simulations, we analyze the equivalence of in-plane

and Néel skyrmions in the absence of stray fields and their differences in the

presence of stray fields. Furthermore, we perform symmetry analysis, look

at the compatible crystallographic space groups to host in-plane DMI, and

propose material candidates for their observations. Following the results of

the symmetry analysis, we studied the stability of in-plane skyrmions in a

monoclinic system Cm in a wide range of the phase diagram parameterized by

the two DMI constants.
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Chapter 4
Production of in-plane skyrmions 1

Magnetic skyrmions have promising potential for future spintronic applications

as non-volatile information carriers in magnetic media at ultra-low currents.

As such, a method for efficient creation (writing) and destruction (deleting)

of skyrmions is required for any skyrmion-based applications. In this chap-

ter, we demonstrate that in-plane skyrmions can be created on a thin-film in-

plane magnet by using two different methods, namely blowing magnetic bubbles

method and shedding skyrmions via an inhomogeneity. These methods have al-

ready been established for conventional Néel skyrmions and work very well for

in-plane skyrmions as well. Blowing magnetic bubbles involves the production

of skyrmions by blowing a domain-wall pair through a geometric constriction

using an in-plane current. The second method involves a controlled shedding

of skyrmions from a spatially local magnetic inhomogeneity using spin-transfer

torques.

1Adapted from: R. Zarzuela, V. K. Bharadwaj, K-W. Kim , J. Sinova, and K. Everschor-
Sitte, Phys. Rev. B. 101 054405 (2020).
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4.1 Introduction

Skyrmion based devices require efficient and reliable methods for the creation

and destruction of skyrmions. For instance, information can be encoded in the

distance between skyrmions moving along a nanostrip in future magnetic data

storage devices [70]. Hence it is important to establish methods that can cre-

ate (destroy) skyrmions within an intended area for successful binary storage

applications. Over the last decade, a plethora of theoretical models and ex-

periments have been reported for the creation of skyrmions using several kinds

of external stimuli, viz. magnetic field [98, 173–175], spin-polarized electric

current [67, 71, 134, 176, 177], ultrafast laser pulses [178–180]. The current

status and challenges in writing, deleting, and reading magnetic skyrmions

research can be found in recent reviews [115, 181, 182]. In this work, we focus

on two methods to demonstrate the creation of in-plane skyrmions namely,

(blowing magnetic bubbles [44] and shedding skyrmions via an inhomogene-

ity [66]). The former method relies on the formation of skyrmions when a DW

pair exits a narrow constriction and while the latter uses spin polarized elec-

tric currents induced instability locally at an inhomogeneity for the creation

of in-plane skyrmions. These two methods have been previously demonstrated

for Néel skyrmion in thin films with perpendicular magnetic anisotropy.

4.2 Blowing in-plane skyrmions

The current induced motion of domain walls using spin-transfer torques or

spin–orbit torques has been studied extensively. Novel ideas that use spin-

polarized electric currents as a driving force for magnetization dynamics have

been proposed theoretically and realized experimentally for high-efficiency and

low-dissipation spintronic memory devices, such as magnetic racetrack mem-

ory [38, 39]. Conventionally, magnetic race track memory proposed by Parkin

et al., [39] relies on controlled DW movement using spin-polarized currents. It

is well understood that spin polarized currents can also move skyrmions. As

a consequence, skyrmion based race track memory devices can be realized as

an alternative [70, 75].

Zhou et al., [177] proposed a conversion mechanism to create skyrmions from
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DW pair at a constriction geometry [177]. Later in 2015, Jiang et al., [44] re-

ported observation of skyrmions in a magnetic trilayer (Ta/Co20Fe60B20/TaOx)

using inhomogeneous spin-orbit torques at the geometric constriction (Fig. 4.1).

The experiment shows (using MOKE) the formation of skyrmions upon moving

a stripe domain through a geometrical constriction. A spin-polarised electric

current was used to set the stripe domain into motion along the narrow con-

striction. This demonstration draws an intriguing analogy with the formation

of soap bubbles when a soap film pinched off upon blowing air through a straw

or a bubble wand [44]. The divergent current distribution at the geometrical

constriction generates inhomogeneous spin hall forces on the stripe domains

causing them to expand radially. Consequently, as the stripe domains exit the

constriction, surface tension in the DWs of stripe domains breaks the stripes

into skyrmion bubbles. It should be noted that the mechanism of skyrmion

formation in the experiment differs from Zhou et al., [177]. Following Jiang

et al., [44], Heinonen et al., [63] , Lin et al., [183], and Liu et al., [158] inde-

pendently investigated the mechanism of creation of skyrmion bubbles using

inhomogeneous spin hall torques. The results were shown to be consistent with

the experimental observations. Motivated by blowing skyrmion bubbles exper-

iments [44], in this section, we investigate the production of in-plane skyrmions

in a similar manner to that of Néel skyrmions.

4.2.1 Simulation setup

The constriction geometry used in micromagnetic simulations, as shown in

Fig. 4.2 consists of a thin magnetic film of dimensions 800×100×1 nm3 with a

narrow constriction of dimensions 128×32×1 nm3 at its center. The width of

the constriction, which affects the generation of skyrmions, will be discussed

later. Two gold strips of dimensions 4×32×1 nm3 located at the edges of the

thin film serve as metal contacts for applied voltage. The material parameters

used for the simulations: the saturation magnetization Ms = 5.8×105A/m, the

exchange constant A = 3.0×10−11J/m, the perpendicular anisotropy constant

K = 3.0 × 105J/m3 and the DMI constant D = 2.5 × 10−3J/m2. It should

be noted that the anisotropy is along the x̂-axis to favor in-plane orientation

of the magnetization. The geometry is discretized into (1 × 1 × 1)nm3 mesh.

The micromagnetic simulations have been performed using Micromagnum with
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Figure 4.1: Experimental generation of magnetic skyrmions. (A)
Sparse irregular domain structures are observed at both sides of the device
at a perpendicular magnetic field. (B) Upon passing a current of through
je = 5 × 105A/cm2 the device, the left side of the device develops predom-
inantly elongated stripe domains, whereas the right side converts into dense
skyrmion bubbles. The disordered stripe domains are forced to pass through
the constriction and are eventually converted into skyrmions at the right side
of the device

current-solver extensions to directly solve for the current flow, taking into ac-

count the geometry and magnetization in the sample [111].

4.2.2 In-plane skyrmions generation

The initial magnetization is set to a DW pair inside the constriction, which was

allowed to relax freely with Gilbert damping constant α = 0.3 (see Fig. 4.2).

We then apply a voltage U across the gold contacts, and the charge-current

density is calculated self-consistently based on an Anisotropic magnetoresis-

tance effect (AMR) module [184]. 2 3 The current density j[U,m] depends on

2The anisotropic magnetoresistance (AMR) effect is a the phenomenon in which the
electrical resistivity depends on the relative orientation between the magnetization direction
and the charge-current direction. This effect leads to different resistivities for currents that
are perpendicular (ρ⊥) or parallel ρ∥ to the magnetization. The AMR coefficient/efficiency

is defined as ∆ρ
ρ0

=
ρ∥ρ⊥
∆ρ0

where ρ0 is the resistivity at zero field.
3In the following simulations we assume the AMR to be zero and consider a constant

value for the conductivity (σ = 5× 106S/m).
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Figure 4.2: Sketch of the geometrical setup used in the micromagnetic simu-
lations for the skyrmion(green-white disk) generation from a DW pair (green-
purple rectangle inside the constriction) via ”Blowing magnetic Bubbles”
method.

the magnetization through the conductivity tensor σ[m] given by the relation

j[U,m] = −σ[U,m] ·E[U ] (4.1)

The applied voltage U generates a non-uniform electric field E near the con-

striction. The Poisson equation ∇2ϕ = 0 is solved at each time step with the

boundary conditions ϕ|left = −ϕ|right = U . The current density is obtained

from j = −σ̂∇ϕ. The spatial profile of the current density obtained for our

geometry is shown in Fig. 4.3. The magnetization dynamics in the presence of

STT are described by the Landau-Lifshitz-Gilbert (LLG) equation

∂tm = −γ (m×Heff) + α (m× ∂tm)

+ ζm× (⃗j · ∇⃗)m− ζβm×
(
m× (⃗j · ∇⃗)m

)
(4.2)

where Heff = − 1
Ms

δmEin-pl[m] is the effective magnetic field acting on the

magnetization m, α is the Gilbert damping constant, and γ denotes the gy-

romagnetic ratio. The interaction between spin-polarized currents and the

magnetic texture is modeled by the adiabatic (3rd term) and non-adiabatic

spin-transfer torques (4th term) [128]. Here, ζ = γPℏ/2eMs is the charge-

to-spin conversion factor in the adiabatic regime, P represents the electron

spin polarization, β parameterizes the strength of the non-adiabatic torque.

The effective magnetic field Heff acting on the local magnetization includes

the contribution from the exchange, DMI, PMA, stray fields, and the applied

magnetic fields (see Eq. 3.3).
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J/Jmax

Figure 4.3: The spatial profile of the current density obtained through a
self-consistent calculation with constant-voltage boundary conditions.The col-
orscale in the figure is normalized with respect to Jmax where, Jmax = 2ϕ|left/L
denotes the maximum current injected into the sample of length L.

Snapshots of the skyrmion generation process at different time intervals are

shown in Fig. 4.4 (left panel: mx, and right panel: topological charge density

ρsky). Applying voltage U across the contacts generates a spin-polarized cur-

rent which begins to move the DW pair in the constriction. As the DW pair

exits the constriction, the portion of the DW first exposed to the area out-

side the constriction begins to expand radially. Following this, as the second

DW is expelled from the constriction, it detaches completely and transforms

continuously into an in-plane skyrmion. The mechanism of in-plane skyrmion

generation can be clearly understood by tracking the temporal evolution of

the skyrmion charge Q calculated at every time step of the simulation by in-

tegrating the skyrmion charge density ρsky (see Fig. 4.5). We observe that the

topological charge Q remains zero for the DW pair until it reaches the end

of the channel (time td0). As the right DW begins to exit the channel, the

Q increases until time td1, which corresponds to the left DW detaching from

the constriction (see right panel of Fig. 4.4). As the left DW expands radi-

ally outside the constriction owing to the Magnus force, the skyrmion charge

decreases monotonically until td2. Once the texture formed outside the chan-

nel completely detaches at time tsky, it transforms smoothly into an in-plane

skyrmion which yields in a sharp increase of Q until it reaches value of Q ≈ 1.

The corresponding snapshots of the magnetization are shown in Fig. 4.4.
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Figure 4.4: Generation of in-plane skyrmions via the current-driven motion of
a DW pair through a narrow geometrical constriction. The left panel presents
sequential snapshots of x-component of the magnetization, mx, taken at five
sequential times. On the right panel, the corresponding time evolution of the
skyrmion charge density, ρsky, is shown for the magnetization texture depicted
in the left panel. The color code represents the mx component of the magne-
tization. [Figure and caption adapted from [82].]
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!d1!d2 !sky

Figure 4.5: Temporal evolution of the topological charge for the production
of in-plane skyrmions. In this simulation, corresponding to the geometry of
Fig. 4.4, the values of the times td1, td2 and tsky (see Sec.4.2.2 ) are 0.04 ns, 0.08
ns and 0.17 ns respectively. The snapshots correspond to the magnetization
at each of these times. [Figure and caption adapted from [82].]
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4.3 Shedding via an inhomogeneity

In-plane skyrmions can also be generated by exploiting the interplay between

homogeneous DC currents and magnetic impurities. Sitte et al., theoretically

predicted that DWs could be periodically produced in a magnetic nanowire

via a mechanism physically relying on the static loss of stability [185]. This

instability is induced by the interaction of spin-transfer torques and the pin-

ning center. Later Everschor-Sitte et al., [66] extended the mechanism to the

periodic production of skyrmions by means of spatially inhomogeneous mag-

netization and homogeneous DC current [66]. It was also shown that the

skyrmion-antiskyrmion pairs could be produced even in the absence of DMI.

However, the presence of DMI stabilizes skyrmion/antiskyrmion depending on

which is favored in the system. Using a similar mechanism, Büttner et al., ex-

perimentally demonstrated a controllable nucleation of skyrmions by exploiting

the defects on a magnetic racetrack using sub-nanosecond spin–orbit torque

pulses [186]. By exploiting the same mechanism, we show that the in-plane

skyrmions can be produced via an inhomogeneity akin to Néel case.

The simulation setup consists of a thin film with a pinning center creating a

magnetic inhomogeneity as illustrated in Fig. 4.6. The magnetic inhomogene-

ity can be achieved experimentally by locally engineering the magnetic field,

anisotropy, DMI, or other magnetic interactions. Here we create the pinning

center by locally altering the magnetocrystalline anisotropy in a small region

of the sample. Micromagnetic simulations were performed in MuMax3 [112]

and MicroMagnum [111]. In our work, the simulated geometry is of dimen-

sions 1024×1000×0.4 nm3 and with cells discretization 1×1000×0.4 nm3. The

inhomogeneity is a cylinder with a radius 50 nm. The material parameters

used for the simulations: the saturation magnetization Ms = 3× 105A/m, the

exchange constant A = 2.1×10−11J/m, the perpendicular anisotropy constant

K = 8.0×104J/m3 and the DMI constant D = 1.2×10−3J/m2. The anisotropy

at the pinning center is set along ẑ direction and thus aligning magnetization

inside the impurity along the z axis, and elsewhere, the anisotropy is along x̂,

modeling an in-plane magnet.
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Figure 4.6: Geometrical setup for production of in-plane skyrmions via an
inhomogeneity. The anisotropy in the thin film is along the x̂ direction and
the anisotropy in the pinning centre indicated by the small circular region is
tilted out-of-plane.

4.3.1 Skyrmion anti-skyrmion shedding

The initial magnetic configuration is set to a uniform state along the easy

x-axis, except at the pinning center where magnetization points along the z

axis. The DC charge current is slowly ramped up, and the current induces

tilting of the magnetization around the pinning center. As we increase the

current, the non-uniform texture begins to expand and move away from the

pinning center. Above a threshold current density jc, the magnetic texture

becomes unstable, and an in-plane skyrmion/antiskyrmion pair is shed off of

the impurity. As the pair moves away from the pinning center, its evolution is

influenced by the DMI. Since the system considered here optimally favors an

in-pane skyrmion, antiskyrmion decays, followed by the emission of spin waves.

Finally, the skyrmion is stabilized as it moves away from the impurity. A series

of snapshots depicting the shedding process is shown in Fig. 4.7(a). It is to be

noted here that the strength of critical current jc is affected by the material

parameters. Also, the value of the critical current for the shedding process is
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Figure 4.7: Shedding of in-plane skyrmions off of an inhomogeneity. (a) The
shedding process is visualized through six sequential snapshots, indicating dif-
ferent stages of the process. These stages include the initial magnetic configura-
tion, the onset of magnetic instability, its expansion across the sample, the for-
mation of a skyrmion/antiskyrmion pair, the annihilation of the antiskyrmion,
and the subsequent stabilization of the skyrmion. The full simulation size
is 1024×1000 nm2. (b) A racetrack configuration of in-plane skyrmions is
produced using the shedding method. The color coding represents the mx

component of the magnetization. The simulation is performed on a sample
size of 1526×1024 nm2. [Figure and caption adapted from [82].]

less or approximately jc ≲ 3.3 · 1012 A/m2 in our simulations 4. Furthermore,

in contrast to the Néel scenario studied in Everschor-Sitte et al., [66], the out-

of-plane anisotropy constant Kinh associated with the inhomogeneity domain

has to be as large as K. This guarantees the shedding of in-plane skyrmions

since stray fields favor large in-plane projections of the magnetization; this, in

turn, yields larger values of the critical current for shedding.

4.3.2 Train of in-plane skyrmion

In the previous section, we observed that once the critical current jc is reached,

an in-plane skyrmion/antiskyrmion pair is shed from the inhomogeneity (Sec. 4.3.1).

4It is difficult to determine critical current density jc since, the ramping up of the current
up to critical value has to be done very slowly over longer period of time to ensure that no
sudden torques due to DC currents is pumped into the system.
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This leads the magnetization around the pinning center to be restored to its

initial state and the shedding process is repeated. Consequently, it is possible

to produce a train of in-plane skyrmions (Fig. 4.7(b)). This enables realization

of the racetrack concept for in-plane skyrmions. Furthermore, the frequency

of the shedding process depends on the applied current (above critical value).

For the case of Néel skyrmions, it was shown in Everschor-Sitte et al., [66]

that the time period of the production of skyrmions near the critical current

has a dependence T ∝ (j − jc)
−1/2. In contrast, in our work, we found that

this dependence of frequency f on the critical current jc is highly sensitive

to the size of the impurity. The frequency dependence of in-plane skyrmion

production on the critical current is shown in Fig. 4.8

Figure 4.8: Frequency dependence of in-plane skyrmion production on the
critical current jc

4.4 Conclusion

In this chapter, we realised two different mechanisms to produce in-plane

skyrmions, viz. blowing magnetic bubbles method (Sec. 4.2) and shedding
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via an inhomogeneity (Sec. 4.3). Motivated by the recent experimental works

on the production of Néel skyrmions using blowing magnetic bubbles method,

we showed a similar implementation to produce in-plane skyrmions in thin-

film in-plane magnets using micromagnetic simulations. The second method

described the production of in-plane skyrmions via an inhomogeneity using the

interplay between homogeneous DC currents and magnetic impurities. Finally,

a proof of concept of a racetrack of in-plane skyrmions was shown (Sec. 4.3.2).
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Chapter 5
Current driven dynamics of in-plane

skyrmions

In this chapter, skyrmion dynamics triggered by spin-orbit torques (SOT) and

spin-transfer torques (STT) are investigated both analytically and numerically

through micromagnetic simulations. Using Thiele analysis, we derive analyti-

cal formulas for the skyrmion Hall angle and the speed of skyrmions. We show

that, under the influence of SOTs in-plane skyrmions move along the same

spatial direction regardless of the in-plane orientation of the charge current in

the thin film. This is in contrast to the behaviour of Néel skyrmions which

change their direction of motion as the direction of charge current varies. Ad-

ditionally, we demonstrate that the speed of the in-plane skyrmions along the

racetrack depends linearly on the component of the current along the anisotropy

axis. This gives us the possibility to tune the speed of in-plane skyrmions by

changing the in-plane orientation of the current. These findings point towards

the possibility of designing racetracks for in-plane skyrmions. Furthermore,

we investigate the effect of dipolar interactions on the SOT-driven dynam-

ics of skyrmions. Finally, we show that the dynamics of in-plane and Néel

skyrmions are similar when driven by STTs.1

1The findings from this chapter are published in [82]

83
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5.1 Introduction

On the road towards memory-based applications using skyrmions, a lot of the-

oretical and experimental works have been done recently on the current-driven

dynamics of skyrmions. One in particular that has attracted a larger interest

is skyrmion racetrack memory because of its potential application to future

magnetic-storage devices [70, 74, 75]. Hence it is important to understand the

mechanism of how skyrmions interact with currents. In this chapter, we are

going to explore two different mechanisms to drive the skyrmions along a race

track using spin torques induced by electric currents. (i) spin–orbit torques

and (ii) spin-transfer torques. After the discovery of magnetic skyrmions in

2009 [40], the first observation that they can be driven by the electric current

was shown in metallic B20 compounds, for example [61, 156, 187]. Since then,

more works have investigated the STT induced dynamics of skyrmions [71, 157,

188, 189]. A large number of experimental and theoretical investigations on

the SOT driven dynamics of Néel skyrmions have been done in recent years

[44, 45, 65, 73, 76, 77, 190]. Using spin-orbit torques it was demonstrated in

Pt/CoFeB/MgO multilayer that, individual skyrmions can be driven by short

current pulses along a racetrack with velocities > 100 ms−1 [45]. A room-

temperature skyrmion shift memory device was experimentally demonstrated

using Ta/CoFeB/TaOx multilayer films[76]. Here they were able to generate

individual skyrmions in a controllable fashion and also displace them using

SOTs. Recently, real-time dynamics measurements have been done to observe

the transverse motion of Néel skyrmions due to its topological charge, thus

verifying the skyrmion Hall effect[73, 77].

Although a lot of investigations on the SOT driven dynamics of Néel

skyrmions have been conducted over recent years, so far, the dynamics of

in-plane skyrmions are yet to be explored in detail. In this chapter, we will

investigate in detail the SOT and STT induced motion of skyrmions in in-

plane chiral magnets and explore its benefits over that of Néel skyrmions. We

will derive the Thiele equation for current-induced motion of skyrmions (both

Néel and in-plane) and deduce analytical expressions for the skyrmion Hall an-

gle and the velocities. Finally, these analytical results will be compared with

micromagnetic simulations.
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5.2 Spin-orbit torque dynamics

As already introduced in Sec.2.2.2, let us quickly recap the geometrical setup

for SOT. We consider a bilayer consisting of a chiral magnet on top of heavy-

metal layer, as depicted in Fig. 5.1(a). When the current flow in the heavy-

metal (HM) layer is along +x̂ direction (yellow arrow in the figure), due to

Spin-Hall effect, a spin current with its polarisation σ (green arrow in the

figure) along the +ŷ direction would flow along the +ẑ direction. This spin

current induces field-like and damping-like torques on the magnetization (or-

ange arrow in the figure ) in the ferromagnetic layer (FM). Rewriting the LLG

equation (2.24), describing the SOT driven dynamics of the magnetization m,

∂tm = −γ (m×Heff) + α (m× ∂tm)

+ (τFL + τDLm×)(ẑ × j)×m (5.1)

where we have the precession, damping, field-like, and damping-like com-

ponents of the SOT terms respectively.
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Figure 5.1: Geometries depicting current induced spin torques. (a) Spin-orbit
torque: The bottom layer in blue represents the Heavy metal (HM) layer and the
top layer shaded in green represents the ferromagnetic (FM) layer. The green color
represents the direction of uniform magnetization along x̂. Black and cyan arrows
indicate the direction of electric current je, and the polarisation of the spin cur-
rent σ with its polarisation in the HM. The yellow arrow represents the direction of
skyrmion motion and the corresponding skyrmion hall angle θSkH. (b)Spin-transfer
torque: In this case, there is only FM layer. The white arrow depicts the current in
FM layer and the direction of skyrmion motion is represented by the yellow arrow.
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5.2.1 Thiele analysis

The LLG equation (Eq.(5.1)) describing the SOT driven dynamics is a time-

dependent nonlinear equation. A. A. Thiele found a simplification to the equa-

tion by projecting the LLG equation onto the relevant translational modes [191].

By assuming skyrmions behave as rigid spin textures (particle-like), their dy-

namics can be described by obtaining an equation for the motion of its center-

of-mass. In this way, Thiele equation resembles Newton’s equation for a par-

ticle - a dynamical force equation which is obtained from a torque equation

(LLG).

To derive Thiele’s equation, we begin by describing the skyrmion by its

centre of mass coordinateR = (X, Y ) moving with a drift velocity v = (vx, vy).

Thus, due to its rigidity, we can write m(r, t) = m(r − R(t)) and ∂tmi =

−vj ∂mi/∂xj. Taking a cross product of m with LLG equation (Eq.(5.1))

from the left, and rewriting in the form:

−γHeff︸ ︷︷ ︸
i

+ α∂tm︸ ︷︷ ︸
ii

+ m× ∂tm︸ ︷︷ ︸
iii

− τFL [m× (σ ×m)]︸ ︷︷ ︸
iv

+ τDL (m× σ)︸ ︷︷ ︸
v

= 0 (5.2)

where we have the (i) precession term, the (ii) damping term, (iii) kinetic term,

the (iv) field-like SOT term, and the (v) damping-like SOT terms, respectively.

Now, multiplying the above equation (Eq (5.2)) by ∂mi/∂xj followed by inte-

grating over the volume yields the following Thiele equation 2:

G × ∂tR− αD∂tR− τFLFFL − τDLFDL = 0 (5.3)

where G is the gyrotropic tensor which produces the gyrotropic force perpendic-

ular to the current, D is the dissipative tensor which describes the generalized

drag force acting along the current, FFL and FDL are the effective forces arising

from the field-like and damping-like components of SOT respectively. These

forces are defined as follows

2For a detailed derivation of the Thiele equation please refer to Appendix-Thiele
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G = ẑ

∫
S
d2r m · (∂im× ∂jm) (5.4)

D =
1

2

∫
S
d2r ∂km · ∂km (5.5)

FFL,i =

∫
S
d2r (ẑ × j) · ∂im (5.6)

FDL,i =

∫
S
d2r m ·

[
(ẑ × j)× ∂im

]
(5.7)

For a skyrmion with cylindrical symmetry, it can be shown that G =

4πQẑ = Gẑ, where Q is the topological charge of the skyrmion (see Appendix-

B. Hence, the Lorentz like force on the skyrmion due to its topological nature

is responsible for the Skyrmion Hall effect (SHE) as described in Sec. 2.3.2.

So for topologically trivial objects like the skyrmionium (Q = 0) there is no

Hall-like motion [188, 192]. For a cylindrically-symmetric skyrmion, it can also

be shown that the dissipative tensor D is diagonal, i.e. Dxx = Dxx > 0 and

Dyx = Dxy = 0. This damping force arising from the Gilbert damping term is

opposite and proportional to the velocity of the skyrmion.

Upon solving the coupled Thiele equations for the skyrmion velocities, we

obtain

∂tX = vx =
GFy + αDFx

G2 + α2D2
(5.8)

∂tY = vy = −GFx − αDFy

G2 + α2D2
(5.9)

Let us consider the setup as shown in Fig.5.2 where the in-plane current j is

injected into the thin film at an angle η w.r.t the x axis, and v is the direction of

motion of the skyrmion (depicted by yellow arrow in the figure). The skyrmion

Hall Angle (θSkX)(Sec. 2.3.2), measured as the angle of the direction of motion

of the skyrmion with respect to the current direction, is given by

tan(θSkX + η) =
∂tY

∂tX
= −GFx − αDFy

αDFx +GFy

(5.10)

where Fx ≡ τFLFFL,x + τDLFDL,x, Fy ≡ τFLFFL,y + τDLFDL,y are the total forces
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Figure 5.2: Figure depicting Skyrmion Hall effect. When the electric current
j is injected at an angle η w.r.t the x-axis (cyan arrow), the skyrmion moves
along the direction v (yellow arrow). The skyrmion Hall angle θSkX represents
angle between the electric current (j) and the skyrmion velocity (v).

along x̂, ŷ- directions, respectively due to injected SOT current, and η is the

angle between the injected current and the x axis, as depicted in Fig. 5.2.

Before we look at the results from Thiele analysis for in-plane skyrmions, let

us briefly look into the dynamics of Néel skyrmions.

Skyrmion Hall angle for Néel skyrmions

The expression for the Skyrmion Hall angle (θSkX) obtained in Eq. (5.10) can

be simplified further by considering an ansatz to the skyrmion profile3. Consid-

ering a Néel skyrmion having a cylindrical symmetry, the magnetization varies

only along the radial (r) direction. Thus, parameterising the magnetization in

the polar coordinate system (r, ϕ),

m(r) = (sin θ(r) cosϕ, sin θ(r) sinϕ, cos θ(r))⊤ (5.11)

r = r(cosϕ, sinϕ) (5.12)

with θ(r = 0) = π and θ(r = ∞) = 0 and ⊤ denoting the transpose operator.

We now consider the rigid hard cutoff ansatz for Néel skyrmions, which is given

3The only assumption made for obtaining an expression for Skyrmion Hall angle in
Eq. (5.10) was assuming the skyrmion shape is unchanged during its motion and, hence
allowing us to express the dynamics in terms of its centre of mass.
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Figure 5.3: θ ansatz for skyrmion profile. Blue color represents the ansatz given
by Eq.(5.13), green curve is the ansatz proposed in the work of Kravchuk et
al [165] and the black vertical line representing the radius of the skyrmion (R).

by

θ(r) = π(1− r/R)Θ(R− r) (5.13)

where Θ(x) is the Heaviside theta function andR denotes the skyrmion radius.

The theta-profile for a Néel skyrmion is shown in Fig. 5.3. By plugging the

ansatz into Eqs. (B.9), (B.10), we obtain the following expression for the SOT

current induced forces;

Fx =
π2

2
jRτDL cos η

Fy =
π2

2
jRτDL sin η

(5.14)

From the above set of equations (Eq. (5.14)) it is clear that, the field-like

component of the SOT has no influence on the skyrmion motion. The zero net

force of the field-like component arises from the symmetry of field-like SOT

term which can be understood using the following simple picture. The field

from field-like SOT is along ẑ × ĵ (See Eq. (5.1)). For the sake of simplicity,

assuming the current ĵ is along x̂−direction, then the resultant field is along

ŷ−direction. Now for a Néel skyrmion, a field along ŷ would result only in
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tilting of the magnetization and no effect on its translational motion [193, 194].

However, this picture fails when the skyrmion shape is deformed and it looses

cylindrical symmetry. In such a case, there will be non-zero force from the

field-like SOT as well. This deformation can happen due to different reasons

like, thermal noise, impurities/disorder, and very strong field-like components.

The skyrmion Hall angle (θSkX) dependence due to skyrmion deformation was

investigated in the works of Litzuis et al [73]. However, in our work, we will

limit to rigid skyrmion texture. By plugging the Eq. (5.14) into Eq. (5.10),

the skyrmion Hall angle for the spin-orbit dynamics of Néel skyrmions reads

tan
(
θNéel
SkX + η

)
=

αD sin(η)−G cos(η)

αD cos(η) +G sin(η)
, (5.15)

where the θNéel
SkX explicitly depends on the in-plane orientation of the injected

current.[73, 74, 134]. This implies that, when the in-plane orientation of the

injected current (η) is changed, the skyrmion now begins to move in a different

direction than before. When the injected current is along the x-direction (η =

0), the skyrmion Hall angle θNéel
SkX reduces to arctan(−G/αD), implying the

skyrmion moves in the opposite direction of the applied current.

Skyrmion Hall angle for in-plane skyrmions

Similar to Néel skyrmions, the SOT driven behavior of in-plane skyrmions can

be understood as well from Thiele analysis. We can obtain an expression for

the skyrmion Hall angle θSkX by considering the same rigid cutoff ansatz to the

skyrmion θ-profile as defined in Eq. (5.13). The magnetization of an in-plane

skyrmion in the polar coordinate system can be parameterised as follows

m(r) = (− cos θ(r), sin θ(r) cosϕ, sin θ(r) sinϕ)⊤ (5.16)

r = r(cosϕ, sinϕ) (5.17)

By plugging the rigid-cutoff ansatz along with Eq. (5.17) into Eqs. (B.9),

(B.10), we obtain the following expression for the SOT current induced forces
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on an in-plane skyrmion

Fx =
π2

2
jRτDL cos η

Fy = 0

(5.18)

The following remarks can be made from Eq. (5.18). (i) Similar to Néel

Figure 5.4: Character of domains walls in in-plane skyrmions. (a) A schematic
illustration of an in-plane skyrmion is presented, showcasing three distinct
cross-sections that exhibit different characteristics of the domain wall. These
cross-sections, highlighted in pink, are further depicted in (b), (c), and (d) to

provide their corresponding profiles. Along a cross-section parallel to x̂((̂y)),
the magnetization rotates in the x̂− ẑ (x̂− ŷ) plane. In both of these profiles,
a Néel wall character is observed. However along an arbitrary direction r
within the x̂− ŷ plane, the domain wall profile exhibits a Bloch nature. This
distinction leads to intriguing consequences in the current-driven motion using
SOT.

skyrmions, the field-like component of SOT has no influence on the skyrmion

motion due to the symmetry of the SOT. (ii) In contrast to Néel skyrmions, the

cylindrical symmetry is lost for in-plane skyrmions in the presence of dipolar-

dipolar interactions. Hence there will be non-zero force from field-like com-

ponents of SOT for in-plane skyrmions. This effect was investigated in detail

using micromagnetic simulations which will be discussed in the next section

(Sec. 5.2.2). (iii) The symmetries of the in-plane skyrmion and SOT give

rise to interesting influence of SOT on in-plane skyrmions. First, only the

x̂-component of the injected current (jx) influences the SOT driven dynamics.

(iv) Second, the significant difference from that of Néel skyrmions is that the

damping-like field of SOT has a force component only along the x-direction.

These two peculiarities (iii, iv) can be intuitively explained intuitively as illus-



92 Current driven dynamics of in-plane skyrmions

trated in Fig. 5.4. A cross-section of an in-plane skyrmion along x̂ is an Néel

DW in the x̂ − ẑ plane (Fig. 5.4(a) left). Similarly, a cross-sections along ŷ

is a in-plane Néel DW in the x̂ − ŷ plane (Fig. 5.4(a) center). But along any

other radial direction, we have a Bloch type features in the DW (Fig. 5.4(a)

right). We know that the SOT does not move Bloch DW’s as explained before

(Sec. 2.2.2). Now, when the injected current is purely along ŷ-direction, i.e.,

η = 0, neither the x̂−ẑ DW nor the x̂−ŷ is influenced by the SOT, and hence it

does not move as shown in Fig. 5.4(b). Hence, a non-zero x-component of the

injected current is required to move the in-plane skyrmions. Since a Bloch DW

can’t be moved using SOT, the Bloch nature of the in-plane skyrmion remains

uninfluenced. In addition, there is a fixed contribution to the Lorentz-like force

which determines the direction of motion for in-plane skyrmions. This is evi-

dent by the fact that in-plane skyrmions exhibit an unidirectional SOT-driven

motion regardless of the in-plane orientation of the injected current, which is

also characterized by the following skyrmion Hall angle

θin-plSkX = −
[
tan−1 (G/αD) + η

]
(5.19)

From the above expression for Hall angle (Eq. ((5.19))) it is evident that, in

contrast to Néel skyrmions, the skyrmion Hall angle for in-plane skyrmions

θin-plSkX varies linearly with the in-plane orientation of the injected current η, as

shown in Fig.5.5(a) (▲ data points in the figure). In other words, θin-plSkX + η

is a constant, meaning that the in-plane skyrmions always move along the

same spatial direction regardless of the in-plane orientation (η) of the charge

current. Furthermore, the speed of in-plane skyrmions along the racetrack can

be determined by plugging Eq. (5.17) and (5.13) into Eq. (5.9)

v = |∂tR| = Fx√
(G2 + α2D2)

=
π2jRτDL

2
√

(G2 + α2D2)
cos η (5.20)

which depends only on the x-component of the applied current j. The speed

of the in-plane skyrmion will be maximum for currents parallel to the easy

x-axis, and zero for currents transverse to it as shown in Fig. 5.5(b)(▲ data

points in the figure). These findings point towards the possibility of designing
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Figure 5.5: Skyrmion Hall effect for the in-plane configuration. (a) Geometry
considered to define the skyrmion Hall angle θSkX . The electric current (j)
and the velocity (v) of the skyrmion are represented by yellow arrows, where
η denotes the angle between the former and the x axis. The direction of
magnetization at different points is indicated by red arrows. (b) Dependence
of the skyrmion Hall angle (blue) and terminal speeds (red) on the direction
of the applied charge current (defined by η). The skyrmion velocity has been
calculated in the presence (crosses) or absence (triangles) of stray fields, and
within the Thiele collective-coordinate approach disregarding stray fields as
well (red line). [Figure and caption adapted from [82]]

racetracks for in-plane skyrmions along the direction tan−1 (G/αD), and their

speed could be tuned by adjusting the in-plane orientation of the injected

current.

5.2.2 Micromagnetic simulations

We perform micromagnetic simulations to study the SOT driven dynamics of

skyrmions and corroborate with analytical results obtained from Thiele analy-

sis discussed in the previous section 5.2.1. All the simulations for the SOT dy-

namics are performed using the micromagnetic software package mumax3 [112].

We simulate a thin film chiral in-plane magnet of dimensions 256× 256× 1

nm3. Initially, we compute an equilibrium magnetization configuration of the

in-plane skyrmion by solving the LLG equation (with only damping term),

until the energy is converged to a local minimum4. We choose the finite-

difference mesh discretisation 1 × 1 × 1× nm3. The material parameters we

4For details on the micromagnetic framework please refer to Sec. (2.1.3)
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use for these simulations in the absence of stray fields are5: Saturation mag-

netization Ms = 580 kA m−1, Exchange energy constant A = 15 pJ m−1, Uni-

axial anisotropy constant K = 500 kJ m3, and Dzyaloshinskii-Moriya energy

constant D = 3.0 mJ m−2.

Once the relaxed equilibrium configuration is reached, we drive the in-

plane skyrmions using SOT. The SOT is generated by injecting an in-plane

charge current j = 1× 1012Am2 in the thin film at an angle η w.r.t anisotropy

axis. The strength of the damping-like SOT τDL has been derived from the

formula [77] τDL = γℏθSH/2eMst, with thickness of the film t = 1 nm and

spin Hall angle θSH = 0.15. The dynamics is simulated for 1 ns, and the

magnetization data is recorded at uniform time steps of ∆t = 1 ps. After

that, we analyse the recorded magnetization data m(r, t) to find the skyrmion

trajectory, thereby evaluating the skyrmion Hall angle θSkX and the skyrmion

velocity v. The tracking of skyrmion position during its motion is done in two

steps: (i) Evaluating the domain wall contour i.e., mx = 0 (mz = 0) contour for

in-plane (Néel) skyrmion at each time step, thereby (ii) calculating the centre

of the contour (which is also the centre of the skyrmion R(X, Y )). Finally,

we calculate the skyrmion Hall angle by θSkX = arctan(∂tY /∂tX)− η) and the

velocity by v = |∂R/∂t|. We perform these simulations for different values of

the in-plane orientation of the charge current η which is varied from 0 to π

and the skyrmion Hall angle is calculated in each case.

Micromagnetic simulations indicate that the in-plane skyrmions can be effi-

ciently manipulated by SOT. The results of the micromagnetic simulations

are displayed in Fig. 5.5. From the simulations, we again observe that the

skyrmion Hall angle θin-plSkX varies linearly with the orientation of the current

η, meaning that the in-plane skyrmions always move along the same spatial

direction regardless of the in-plane orientation (η) of the charge current as

shown in the Fig. 5.5(a) (− line in the figure). This agrees with the Eq. (5.19)

from Thiele analysis. Additionally, the speed of in-plane skyrmions measured

from simulations varies linearly with the x-component of the current (− line

in the Fig. 5.5(b)), which is in agreement with the analytical expression for v

5These parameters are typical values of a permalloy material. [134]
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(Eq. 5.20). Thus, the results from micromagnetic simulations corroborate our

analytical findings from Thiele analysis.

5.2.3 Effect of dipolar interactions

𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑆𝑘𝑦𝑟𝑚𝑖𝑜𝑛	𝐻𝑎𝑙𝑙	𝑎𝑛𝑔𝑙𝑒

Figure 5.6: Effect of dipolar interactions on the skyrmion motion under SOT

As discussed in Sec. 3.4, the presence of dipolar interactions leads to a

reduction of the size of in-plane skyrmions. Furthermore, it also breaks the

cylindrical symmetry of in-plane skyrmions (see Fig. 3.7). This results in dissi-

pative tensor D no more being diagonal, i.e., Dxy,Dyx > 0. The micromagnetic

simulations show that the presence of dipolar interactions leads to a reduction

of the speed for in-plane skyrmions, as illustrated from the ◦ curves in Fig. 5.6.

5.3 Spin-transfer torque dynamics

As shown in the previous chapter. 4, spin-transfer torques can be used in the

production of skyrmions and also in moving the skyrmions. In this section,

we shall investigate in detail the skyrmion motion using spin-transfer torques.

When a spin-polarised electric current is passed through a thin film of a chiral

magnet, spin angular momentum between the spin of the conduction electron

and the magnetization. Rewriting the LLG equation (Eq.(2.2.1)) describing
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the STT driven dynamics of the magnetization m,

∂tm = −γ (m×Heff) + α (m× ∂tm)

+ ζm× (⃗j · ∇⃗)m− ζβm×
(
m× (⃗j · ∇⃗)m

)
(5.21)

where the first terms correspond to the precession and damping terms re-

spectively. The interaction between spin-polarized currents and the magnetic

texture is modeled by the adiabatic (3rd term) and non-adiabatic spin-transfer-

torques (4th term) [128]. Here, ζ = γPℏ/2eMs is the charge-to-spin conversion

factor in the adiabatic regime, P represents the electron spin polarization, β

parameterizes the strength of the non-adiabatic torque.

By looking at the terms of the equation (5.21), we can make paint a simple

physical picture of the behavior of the local magnetization under the influence

of spin-polarized current. For the sake of simplicity let us consider that the

current density j is a spatially uniform field along x̂-direction and j is positive.

Then the term (j · ∇⃗)m reduces to jx∂xm. Now the effect of adiabatic torque

simplifies to adding velocity to m pushing it in the direction of m+ x̂. Hence

the magnetic texture (a skyrmion in this case) moves along the direction of the

applied current. We know that a skyrmion exhibits Skyrmion Hall effect mov-

ing also along a transverse direction to that of applied current (see Sec.2.3.2).

This can be accounted for by the non-adiabatic torque. Following the same

analogy as before, for the case of non-adiabatic torque, the local field is now

pointed along jx∂xm direction and the resulting torque exerts a velocity per-

pendicular to the direction of spin current j. It should be noted here that the

Gilbert damping term also contributes a velocity along a direction (m× ∂tm)

which is opposite to that of non-adiabatic torque 6. The competition of these

torques moves the skyrmion both along the direction of the applied current

and transverse to it.

6If α = β then the transverse forces are balanced and the skyrmion moves only along the
direction of applied current.
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5.3.1 Thiele analysis

Following the method described in Sec.5.2.1, assuming that the skyrmions

behave as rigid spin textures, the Thiele equation that captures the motion of

skyrmions under the influence of STT:

G∂tR− αD∂tR+ bjF1 j + βbjF2 j = 0 (5.22)

where G is the gyrotropic tensor, D is the dissipative tensor, F1 and F2 are

the effective forces arising from the adiabatic and non-adiabatic components

of STT respectively. These forces are defined as follows:

G =

∫
S
d2r m · (∂im× ∂jm) (5.23)

D =

∫
S
d2r ∂km · ∂km (5.24)

F1 =

∫
S
d2r m · (∂im× ∂jm) (5.25)

F2 =

∫
S
d2r ∂km · ∂km (5.26)

When the non-adiabatic component of STT has the same strength as the

Gilbert damping (β = α), there is a cancellation of the Magnus force and the

skyrmions move parallel to the direction of the spin polarised current.

Micromagnetic simulations

We perform micromagnetic simulations to study the STT driven dynamics of

skyrmions using the micromagnetic software package mumax3 [112]. We sim-

ulate a thin film chiral in-plane magnet of dimensions 256× 256× 1 nm3. We

choose the finite-difference mesh discretisation 1 × 1 × 1× nm3. We use the

same material parameters as that of SOT dynamics of skyrmions. We verify

that both Néel and in-plane skyrmions can be moved using STT’s and they

exhibit skyrmion Hall effect. Since STT couples to the spatial gradient of the

magnetization, the behaviour of Néel and in-plane skyrmions are similar
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5.4 Conclusion

In this chapter, we explored the current-driven dynamics of skyrmions induced

by spin-orbit torques and spin-transfer torques. Using Thiele analysis we de-

rived an analytical expression for the skyrmion Hall angle and the skyrmion

velocity. We found that the in-plane skyrmions and Néel skyrmions exhibit

similar dynamics driven by spin transfer torques. The Thiele analysis results

for in-plane skyrmions indicate that, under the influence of SOT the skyrmion

Hall angle varies linearly with the in-plane orientation of the injected charge

current indicating an uni-directional motion of the in-plane skyrmions in the

chiral magnet. We also found that the velocity of the in-plane skyrmions is

linear with x-component of the current which allows for control of the speed

of in-plane skyrmions by changing the direction of charge current in the plane.

These results indicate an advantage of in-plane skyrmions over Néel skyrmions

for race-rack applications. Furthermore, we examine the effects of dipolar

interactions on the drive of in-plane skyrmions. We also examine the dynam-

ics using micromagnetic simulations which corroborate our analytical findings

from Thiele analysis. Having studied the current driven dynamics, in the next

chapter, we will address another important aspect of skyrmions, viz., the ex-

citations of in-plane skyrmions.
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At the time we started this research, a few experiments reported the observa-

tion of in-plane skyrmions in MnSi thin films [78, 79]. They were theoretically

predicted to exist in thin films with in-plane anisotropy and stabilized by frus-

trated interactions [162]. Many questions were yet to be answered regarding

their shape, the corresponding stabilizing mechanisms emerging in in-plane

ferromagnets, the means of producing them, and their current-driven dynam-

ics, to name a few. In the course of the thesis, we studied the topological

properties of in-plane skyrmions and explored their potential to design race-

track memory devices.

In Chapter 3, we introduced a generic micromagnetic model to describe

in-plane skyrmions. Equivalence between in-plane and out-of-plane models

through a rotational transformation was discussed, and a comparative study

with Néel skyrmions was done. Through micromagnetic simulations, we an-

alyzed the similarities and differences between in-plane and Néel skyrmions

in the presence and absence of stray fields. This analysis revealed that stray

fields reduce the size of in-plane skyrmions in contrast to Néel skyrmions,

where the size of the skyrmions increases in their presence. Furthermore,

stray fields break the cylindrical symmetry of in-plane skyrmions. To explain

this striking behavior of in-plane skyrmions in the presence of stray fields, a

bi-axial anisotropy model was introduced. This model has been contrasted

against standard micromagnetic simulations carried out in MuMax3, in which

the complete stray fields are calculated. The properties of skyrmions as a

99
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function of the ratio of the two anisotropies were analyzed, which allowed us

to calculate the value of the stray field pointing out-of-plane. To understand

better the nature of in-plane DMI that stabilizes the in-plane skyrmions, we

performed symmetry analysis, looked at the compatible crystallographic space

groups, and proposed material candidates for their observations. Symmetry

analysis revealed that only the monoclinic point group m allows for in-plane

DMI since the DMI tensor compatible with its symmetries in the thin-film

limit contains contributions from both in-plane and Néel DMIs. Within the

scope of this thesis, we focused on in-plane magnets within the monoclinic sys-

tem Cm. In particular, we studied the stability of in-plane skyrmions across

the phase diagram parameterized by the two DMI constants. The presence

of both in-plane and Néel DMI breaks the cylindrical symmetry, leading to

elliptical deformations of the skyrmion shape. However, the presence of Néel

DMI enables the stabilization of in-plane skyrmions even at very low strengths

of in-plane DMI, since it favors the stabilization of out-of-plane domain walls.

In Chapter 4 two different mechanisms for the production of in-plane

skyrmions in thin films were discussed. The first one is based on blowing mag-

netic bubbles through a geometric constriction. This mechanism involves the

conversion of a domain-wall pair into an in-plane skyrmion at its end: the non-

uniform current distribution exerts an inhomogeneous spin-transfer torque on

the stripe domains as they exit the geometric constriction, resulting in their

radial expansion. These radial-shaped domain-wall pairs form skyrmion bub-

bles when detaching from the constriction. This mechanism drew an intriguing

analogy with the formation of soap bubbles when a soap film pinched off upon

blowing air through a straw or a bubble wand. The second method sheds

in-plane skyrmions from a magnetic inhomogeneity via the application of ho-

mogeneous DC current: when the magnetization of the impurity pinning center

is perpendicular to the uniform magnetic background, the DC charge current

induces tilting of the magnetization around the pinning center. With the in-

crease of the current density, the non-uniform texture expands and, above a

certain threshold current density jc, this magnetic texture becomes unstable

and an in-plane skyrmion/antiskyrmion pair is shed off of the impurity. Fi-

nally, the skyrmion is stabilized whereas the antiskyrmion collapses as it moves
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away from the impurity. Analysis of the strength of critical current jc and of

the shedding frequency showed a non-linear dependence on the critical current

affected by the size of the impurity. We also proposed the design of a race-

track for in-plane skyrmions based on this latter mechanism and showed its

feasibility via micromagnetic simulations.

In Chapter 5 we explored the current-driven dynamics of skyrmions in-

duced by spin-orbit and spin-transfer torques. By considering a collective vari-

able approach, we derived an analytical expression for the skyrmion Hall angle

and the velocity of the skyrmions. We found that in-plane and Néel skyrmions

exhibit similar dynamics driven by spin-transfer torques. However, under the

influence of spin-orbit torques, Thiele analysis for in-plane skyrmions indicates

that the skyrmion Hall angle varies linearly with the in-plane orientation of the

injected charge current, suggesting the uni-directional motion of the in-plane

skyrmions in the chiral magnet. We also found that the velocity of the in-plane

skyrmions is linear with x-component of the current, which allows for control

of the speed of in-plane skyrmions by changing the direction of charge current

within the plane. These results make in-plane skyrmions more advantageous

than Néel skyrmions for racetrack applications. Furthermore, we examined

the effects of stray fields on the current-driven motion of in-plane skyrmions.

In addition, we also checked these current-driven dynamics by means of mi-

cromagnetic simulations, which corroborated our analytical findings.

To conclude, thin film ferromagnetic platforms with in-plane anisotropy

and in-plane DMI can stabilize chiral textures compatible with domain walls

whose magnetization changes within the plane of the film. In this thesis, we

have extensively studied the properties and stability of in-plane skyrmions in

in-plane magnets. Furthermore, we demonstrated the production of in-plane

skyrmions mediated by spin currents. Finally, we discussed the current-driven

dynamics of in-plane skyrmions and their potential application for spin-based

memory devices.
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Appendix A
Axial asymmetry in Cm skyrmions
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Figure A.1: Magnetization density plots for different values of Dratio for a fixed
value of Din-pl. The in-plane skyrmions shown here were stabilized within the
Cm model (see Sec.3.7). It can be seen from the contours that the cylindrical
symmetry is broken for any nonzero value of DNéel.
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Appendix B
Thiele equation of motion

This appendix provides detailed steps involvled in calculating the various forces

of the Thiele equation. To begin, we will apply the Thiele procedure to the

LLG equation, resulting in the derivation of the general Thiele equation. Sub-

sequently, we will derive the specific expressions for each force involved.

Thiele Equation of motion for SOT dynamics

Rewriting the LLG equation (2.24), describing the SOT driven dynamics of

the magnetization m,

∂tm = −γ (m×Heff) + α (m× ∂tm)

+ (τFL + τDLm×)(ẑ × j)×m (B.1)

where the first two terms represent the precession and damping terms, and

the third and fourth terms represent the fieldlike and damping-like SOTs re-

spectively. Here, the spin polarisation σ = (ẑ × j) is along the +ŷ direction.

τFL and τDL parametrize the field-like and damping-like strengths of the SOT,

respectively.

Thiele’s key insight was that when a magnetization pattern undergoes a

rigid motion without any deformations, the entire state of the magnetization

can be effectively captured by the position of a single characteristic feature
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within the pattern. To derive Thiele’s equation for skyrmions, we begin by

describing the skyrmion by its centre of mass coordinate R = (X, Y ) moving

with a drift velocity v = (vx, vy). Thus, due to its rigidity, we can write

m(r, t) = m(r−R(t)). The time derivative can be transformed into a spatial

derivative as

∂m

∂t
= −

∑
i

ṙi
∂m

∂ri
= − (v ·∇)m (B.2)

To be concise, the spatial dependence of m will be omitted. Inserting the

spatial derivative form back into LLG yields,

− (v ·∇)m = −γ (m×Heff)

− α (m× (v ·∇)m)

+ (τFL + τDLm×)(ẑ × j)×m (B.3)

Now the projection of the LLG equation onto the relevant translation modes

is achieved in two steps. First, we take a cross product of m with LLG

equation (Eq. (B.1)),

0 = m× [(v ·∇)m]− γ m× (m×Heff)

− α m× [(m× (v ·∇)m)]

+ τFL [m× (σ ×m)] + τDL (m× σ) (B.4)

The next stop involves multiplying the above equation (Eq. B.4) by ∂mi/∂xj

followed by integrating over the volume.∫
S
d2r γ

∂mi

∂xj

Heff,i = −
∫
S
d2r m ·

(
∂m

∂xj

× ∂m

∂xi

)
ṙi

+

∫
S
d2r α

(
∂m

∂xi

· ∂m
∂xj

)
ṙi

+

∫
S
d2r τFL

∂mi

∂xj

σi

+

∫
S
d2r τDL

(
∂m

∂xj

×m

)
σi (B.5)

Rewriting the above equation in tensor form yields, the following expression
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for Thiele equation:

G × ∂tR− αD∂tR− τFLFFL − τDLFDL = 0 (B.6)

where G is the gyrotropic tensor which produces the gyrotropic force perpendic-

ular to the current, D is the dissipative tensor which describes the generalized

drag force acting along the current, FFL and FDL are the effective forces arising

from the field-like and damping-like components of SOT respectively. These

forces are defined as follows

G = ẑ

∫
S
d2r m · (∂im× ∂jm) (B.7)

D =

∫
S
d2r ∂im · ∂im (B.8)

FFL,i =

∫
S
d2r (ẑ × j) · ∂im (B.9)

FDL,i =

∫
S
d2r m ·

[
(ẑ × j)× ∂im

]
(B.10)
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Appendix C
DMI tensor for the crystallographic

point groups

In this appendix, the DMI tensors are presented for different space group sym-

metries, indicating which elements are zero and which elements are equivalent.

Ci, C2h, D2h, C4h, D4h, C3i, D3d,

C3h, C6h, D3h, D6h, Th, Td, Oh
C1 C2



0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0





0 0 0

Dxxy Dxyy Dxzy

Dxxz Dxyz Dxzz

−Dxyy −Dxyy −Dxzy

0 0 0

Dyxz Dyyz Dyzz

−Dxxz −Dxyz −Dxzz

−Dyxz −Dyyz −Dyzz

0 0 0





0 0 0

Dxxy 0 Dxzy

0 Dxyz 0

−Dxxy 0 −Dxzy

0 0 0

Dyxz 0 Dyzz

0 −Dxyz 0

−Dyxz 0 −Dyzz

0 0 0


Cs D2 C2v



0 0 0

0 Dxyy 0

Dxxz 0 Dxzz

0 −Dxyy 0

0 0 0

0 Dyyz 0

−Dxxz 0 −Dxzz

0 −Dyyz 0

0 0 0





0 0 0

0 0 Dxzy

0 Dxyz 0

0 0 −Dxzy

0 0 0

Dyxz 0 0

0 −Dxyz 0

−Dyxz 0 0

0 0 0





0 0 0

0 0 0

Dxxz 0 0

0 0 0

0 0 0

0 Dyyz 0

−Dxxz 0 0

0 −Dyyz 0

0 0 0


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C4, C3, C6 S4 D4, D6



0 0 0

0 0 Dxzy

Dxxz Dxyz 0

0 0 −Dxzy

0 0 0

−Dxyz Dxxz 0

−Dxxz −Dxyz 0

Dxyz −Dxxz 0

0 0 0





0 0 0

0 0 0

Dxxz Dxyz 0

0 0 0

0 0 0

Dxyz −Dxxz 0

−Dxxz −Dxyz 0

−Dxyz Dxxz 0

0 0 0





0 0 0

0 0 Dxzy

0 Dxyz 0

0 0 −Dxzy

0 0 0

−Dxyz 0 0

0 −Dxyz 0

Dxyz 0 0

0 0 0


C4v , D3, C3v , C6v D2d T,O



0 0 0

0 0 0

Dxxz 0 0

0 0 0

0 0 0

0 Dxxz 0

−Dxxz 0 0

0 −Dxxz 0

0 0 0





0 0 0

0 0 0

0 Dxyz 0

0 0 0

0 0 0

Dxyz 0 0

0 −Dxyz 0

−Dxyz 0 0

0 0 0





0 0 0

0 0 −Dxyz

0 Dxyz 0

0 0 Dxyz

0 0 0

−Dxyz 0 0

0 −Dxyz 0

Dxyz 0 0

0 0 0


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R. Georgii, B. Pedersen, P. Böni, A. Rosch, and C. Pfleiderer, “Skyrmion

lattice domains in Fe1–xCoxSi,” Journal of Physics: Conference Series,

vol. 200, p. 032001, 2010.

[149] S. Seki, X. Z. Yu, S. Ishiwata, and Y. Tokura, “Observation of skyrmions

in a multiferroic material,” Science, vol. 336, 2012.

[150] S. X. Huang and C. L. Chien, “Extended skyrmion phase in epitaxial

FeGe(111) thin films,” Physical Review Letters, vol. 108, 2012.

[151] Y. Okamura, F. Kagawa, S. Seki, and Y. Tokura, “Transition to and

from the skyrmion lattice phase by electric fields in a magnetoelectric

compound,” Nature Communications, vol. 7, 2016.

[152] S. L. Zhang, A. Bauer, D. M. Burn, P. Milde, E. Neuber, L. M. Eng,

H. Berger, C. Pfleiderer, G. V. D. Laan, and T. Hesjedal, “Multidomain

skyrmion lattice state in Cu2OSeO3,” Nano Letters, vol. 16, 2016.

[153] N. Romming, C. Hanneken, M. Menzel, J. E. Bickel, B. Wolter, K. von

Bergmann, A. Kubetzka, and R. Wiesendanger, “Writing and Deleting

Single Magnetic Skyrmions,” Science, vol. 341, no. 6146, pp. 636–639,

2013.

[154] O. Boulle, J. Vogel, H. Yang, S. Pizzini, D. de Souza Chaves, A. Locatelli,
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