
Accelerating bioinformatics applications on
CUDA-enabled multi-GPU systems

Dissertation
for the attainment of the degree
“Doctor of Natural Sciences”

at the Department of Physics, Mathematics, and Computer Science
of Johannes Gutenberg University

in Mainz

Robin Kobus

born in Wiesbaden-Dotzheim, Germany.
Mainz, January 23, 2023

1. Reviewer Prof. Dr. Bertil Schmidt

2. Reviewer Prof. Dr. Andreas Hildebrandt

Date of oral examination October 16, 2023

D77

Abstract

A wide range of bioinformatics applications have to deal with a continuously growing
amount of data generated by high-throughput sequencing techniques. Exclusively
CPU-based workstations fail to keep up with the task. Instead of employing dozens
of CPU cluster nodes to increase the computational power, massively parallel accel-
erators like modern CUDA-enabled GPUs can be used to achieve higher throughput
and reduce execution times. However, memory capacity of such devices is often
limited. Efficient parallelization and data distribution are essential to accelerate
performance critical components of bionformatics pipelines like read classification
and read mapping.

In this thesis we analyze and optimize tasks common to many GPU-based applica-
tions in the context of bioinformatics. We study sequence processing, construction
and querying of k-mer-based hash tables, segmented sort as well as multi-GPU
communication. With these methods we accelerate suffix array construction and
metagenomic read classification on CUDA-enabled GPUs by overcoming the afore-
mentioned challenges. By leveraging multiple GPUs, we extend the limited memory
available from a single GPU to allow for the construction of larger indices. Our
communication library, called Gossip, introduces optimized scatter, gather and all-
to-all patterns for multi-GPU systems. Gossip’s all-to-all communication pattern is
successfully applied to suffix array construction, accelerating it to run in 3.44 s for a
full-length human genome on an 8-GPU server, which is faster than previously re-
ported 4.8 seconds achieved by employing 1600 cores on 100 nodes on a CPU-based
HPC cluster.

Furthermore, we introduce MetaCache-GPU – an ultra-fast metagenomic short read
classifier specifically tailored to fit the characteristics of CUDA-enabled accelerators.
Our approach employs a novel hash table variant featuring efficient minhash fin-
gerprinting of reads for locality-sensitive hashing and their rapid insertion using
warp-aggregated operations. Our performance evaluation shows that MetaCache-
GPU is able to build large reference databases in a matter of seconds, enabling
instantaneous operability, while popular CPU-based tools such as Kraken2 require
over an hour for index construction on the same data. In the light of an ever-growing
number of reference genomes, MetaCache-GPU is the first metagenomic classifier

iii

that makes analysis pipelines with on-demand composition of large-scale reference
genome sets practical.

Although many sub-problems in this thesis are optimized in a specific application
context, they also apply to other bioinformatics problems like k-mer counting,
sequence alignment and assembly, which would benefit from GPU acceleration. In
addition to the insights from this work, we make our source code publicly available
to allow for easier adaptation of our methods to related problems.

iv

v

Contents

1. Introduction 1
1.1. Motivation and Problem Statement 1

1.2. Publications . 3

1.3. Thesis Structure . 3

2. Related Work 5

3. Background 11
3.1. CUDA Programming Model . 12

3.2. GPU Memory . 13

3.3. Multi-GPU Systems . 14

I. Multi-GPU Communication 17

4. Gossip Communication Library 19
4.1. Introduction . 20

4.2. Related Work . 21

4.3. Background . 22

4.4. Ring-based Collectives . 25

4.5. Flow Problem Formulation . 28

4.6. Implementation Details . 32

4.7. Evaluation . 33

4.8. Conclusions . 41

5. Suffix Array Construction 43
5.1. Background . 43

5.2. SA Construction: Prefix Doubling . 44

5.3. Multi-GPU Prefix Doubling . 45

5.4. Analysis . 48

5.5. Performance Evaluation . 49

5.6. Conclusion . 52

vii

II. Metagenomic Classification 53

6. MetaCache Overview 55
6.1. Introduction . 56
6.2. Background . 58
6.3. Related Work . 59
6.4. MetaCache Pipeline . 60

7. MetaCache in All-Food-Sequencing 67
7.1. Background . 67
7.2. Evaluation . 69
7.3. Discussion . 79
7.4. Conclusion . 80

8. MetaCache Methods 81
8.1. Genomic Sequence Processing . 81
8.2. MetaCache GPU Pipeline . 89
8.3. Minhashing and Querying . 94
8.4. Multi-Value Hash Tables . 99
8.5. Segmented Sort . 112
8.6. Top Candidate Generation . 118

9. MetaCache-GPU Performance Evaluation 121
9.1. Build Performance . 122
9.2. Query Performance . 123
9.3. Performance Breakdown . 126
9.4. On-The-Fly Mode . 128
9.5. Query Accuracy . 129

10.MetaCache Conclusion 131

III. Future Work and Conclusion 133

Bibliography 143

Acronyms 155

List of Figures 157

List of Tables 159

viii

Introduction 1
1.1 Motivation and Problem Statement

Due to the inexorable progress of next generation sequencing (NGS) technologies,
the volume of data generated in the life sciences has been steadily increasing and
genomics has been considered Big Data for years [104]. Critical to this success was
the dramatic cost reduction of high-throughput sequencing technologies. Nowadays,
a single (human) genome can be sequenced for low cost1, which enables large-scale
sequencing projects like sequencing of the whole population of Iceland [31], the
Earth BioGenome Project [60], metagenomics microbiome sequencing studies [55],
and world-wide SARS-CoV-2 sequencing efforts [6].

A wide range of bioinformatics applications rely on data produced by high-throughput
sequencers. These machines are able to generate massive amounts of short DNA
strings (called reads) in a single run, which can be used in de-novo sequencing,
re-sequencing, metagenomics, transcriptomics, and epigenetics pipelines. However,
the analysis of these large datasets remains computationally challenging. The initial
stages of many NGS pipelines often consist of read classification and read mapping
which makes these tasks performance critical to those applications.

Read classification is the task of finding the original organism of each read in a
dataset and assigning the corresponding taxonomic label (species, genus, . . .),
usually by investigating a set of reference genomes and determining the best match.
Read mapping additionally requires to find the best mapping location(s) inside
one or multiple genomes for each read. Both problems boil down to finding the
occurrences of pattern strings from a read in a large body of text consisting of a
collection of reference genomes. Although each read may originate from an organism
whose genome is included in the reference set, sequencing errors can occur, leading
to missing, surplus and/or substituted bases in the read. Additionally, organisms
mutate changing their genome, hence we might be interested in finding the most
closely related genome in the reference set instead of exactly matching each base of
the reads.

1Currently around US$1,000 per human genome (http://www.genome.gov/sequencingcosts).

1

http://www.genome.gov/sequencingcosts

Read datasets may contain many millions of reads which need to be queried against
the reference database. For efficient processing it is beneficial to construct an index
data structure to accelerate the database queries. Two popular index structures
covered in this thesis are suffix arrays and k-mer based hash tables, where k-mers
are k-length sub-strings used for the lookup. A suffix array [75] is a list of indices
denoting the starting positions of all suffixes of a text, obtained by sorting the
suffixes lexicographically. Suffix arrays have been studied intensively in the context
of bioinformatics [102] and find their application in a wide range of tasks such
as pairwise sequence alignment [47, 113, 120], read mapping [108], read error
correction [39, 99], genome assembly [29, 34], k-mer counting [56] and sequence
clustering [33]. Alternatively, the reference genomes can be stored and indexed
as sets of k-mers [77]. K-mer based hash tables are applied in the contexts of
error correction [43], k-mer counting [78, 76] and read classification [81, 117, 116,
87], among others. Distributed k-mer hash tables have also been studied on CPU
clusters for long-read to long-read alignment [18], k-mer counting [88] and de-novo
assembly [27].

Although continuous progress has been made, runtimes on exclusively CPU-based
workstations remain high, while distributed algorithms may require dozens of cluster
nodes to reduce the execution time to reasonable levels. Efficient parallelization is
key but imposes additional challenges due to variable sequence lengths and query
result sizes, as well as the need for large concurrent and distributed data struc-
tures [94]. Graphics Processing Units (GPUs) and Field-Programmable Gate Arrays
(FPGAs) can sometimes mitigate these obstacles with greater compute capabilities
and memory throughput, but speedups on these accelerators are often limited [38,
37]. Algorithmic design and implementations of bioinformatics applications remain
challenging tasks and struggle to keep up with the continuously growing amount of
data generated by high-throughput sequencing techniques.

In this thesis we analyse and optimize tasks common to many GPU-based applications
in the context of bioinformatics. We study sequence processing, construction and
querying of k-mer-based hash tables, segmented sort and multi-GPU communication.
With these methods we accelerate suffix array construction and metagenomic read
classification on CUDA-enabled GPUs by overcoming the aforementioned challenges.
By leveraging multiple GPUs we extend the limited memory available from a single
GPU to allow for the construction of larger indices. Furthermore, we show that
fast index construction permits on-the-fly querying of databases, enabling novel
pipelines that are orders of magnitudes faster than established CPU-based applica-
tions. Although these sub-problems are optimized in the context of k-mer-based
metagenomic read classification, they also apply to other bioinformatics problems

2 Chapter 1 Introduction

like k-mer counting, sequence alignment and assembly, which would benefit from
GPU acceleration. Adapting the insights from this work to other problems is left as
future work.

1.2 Publications

Our peer-reviewed multi-GPU communication library Gossip [50] addresses the
efficient scattering and gathering of data across multiple GPUs as well as all-to-all
communication. The library is publicly available at https://github.com/Funatiq/
gossip. Gossip’s communication patterns are used in suffix array construction [9]
to great success.

In A big data approach to metagenomics for all-food-sequencing [48] we showed how
AFS-MetaCache, an enhanced version of of the metagenomic read classifier Meta-
Cache [81], can be used for whole genome shotgun sequencing-based biosurveillance
applications such as food testing. Our GPU-accelerated version of (AFS-)MetaCache
was published as MetaCache-GPU [51] and is now included within MetaCache since
version 2.0.0. It is inter-operable with the CPU version of MetaCache and allows to
query GPU-built databases on the CPU and vice versa. MetaCache and MetaCache-
GPU are publicly available at https://github.com/muellan/metacache.

1.3 Thesis Structure

After giving an overview of related similarity search problems in bioinformatics in
Chapter 2 and general background information on GPU computing in Chapter 3, the
thesis is organized in three parts.

Part I introduces our Gossip library for multi-GPU communication. In Chapter 4
we explain Gossip’s design and implementation and evaluate its performance in
various experiments. Gossip’s application in suffix array construction is showcased
in Chapter 5.

Part II revolves around GPU-accelerated metagenomic classification. First, we give
an overview of MetaCache and its CPU pipeline in Chapter 6. Chapter 7 shows
how MetaCache is applied in All-Food-Sequencing. Then Chapter 8 examines in
detail the methods used in our GPU implementation. In Chapter 9 we evaluate

1.2 Publications 3

https://github.com/Funatiq/gossip
https://github.com/Funatiq/gossip
https://github.com/muellan/metacache

the performance of the entire GPU-accelerated MetaCache pipeline. Chapter 10
concludes this part.

Finally, Part III takes a look at future work building on our contributions and
concludes the thesis.

4 Chapter 1 Introduction

Related Work 2
A large number of applications in bioinformatics are tasked with finding similarities
between sequences in huge collections of NGS reads and/or reference genomes. For
example researchers are interested in pairwise read alignments for error correction
and de-novo genome assembly, mapping reads to a specific genome or finding the
best matching genome for each read in a sample. Due to genomic variation and
sequencing errors exact matches of a complete read to a reference sub-sequence is
unlikely. Thus, partial and inexact matches must be considered. However, the corre-
sponding measures can be compute-heavy; e.g., calculating the optimal semi-global
alignment score with commonly used dynamic programming algorithms between
two sequences exhibits a time complexity proportional to the product of the se-
quences’ lengths. Multiplied by the number of all combinations of sequence pairings,
runtimes become prohibitively long. Instead of such a brute-force approach, recent
methods try finding shorter sub-string matches via various specialized index struc-
tures to identify promising candidates for longer matches. To be able to effectively
handle the massive amounts of data in a timely manner, efficient parallelization
is essential and concurrent and distributed data structures play an important role.
Table 2.1 provides an overview of example applications for various bioinformatics
problems which we examine in more detail in the following.

In the NGS context, sub-strings of a fixed length k are usually called k-mers. Ac-
cordingly, from a (genomic) sequence of length n we can create a list of n− k + 1
k-mers, each beginning at a distinct position of the sequence. k-mer counting is
often performed as a first step to gain insights on a data set of sequences and is
used to filter out erroneous or abundant k-mers in order to improve subsequent
processing. Generating a histogram of k-mers relies on index data structures like
hash tables for fast insertion and lookup. Earlier approaches construct suffix arrays
(like Tallymere [56]) or are sorting based (e.g. Meryl, the k-mer counter included in
the Celera assembler [80]) which both are computationally expensive and require
huge amounts of memory. More recent programs like Jellyfish [76] employ a multi-
threaded, lock-free hash table to efficiently utilize modern multi-core CPUs. Others
combine the k-mer index with a Bloom filter [78] or even distribute their hash tables
on a CPU cluster [88] to increase performance.

5

Tab. 2.1.: Example NGS read processing applications.

NGS Problem Application Technique1 Data Structure2

k-mer
counting

Tallymere [56] indexing enhanced SA
Meryl [80] sorting, MT HT
Jellyfish [76] MT, lock-free HT
BFCounter [78] unique k-mers BF + HT
Pan et al. [88] distributed, MT, SIMD HT

error
correction

HiTEC [39] single thread SA
SHREC [99] MT SA
Musket [73] k-mer spectrum, MT BF + HT

clustering KABOOM [33] k-mer similarity SA

pairwise
sequence
alignment

LAST [47] seed+extend SA
RAPsearch [120] seed+extend SA
RAPsearch2 [123] seed+extend, MT HT
BELLA[32] seed+extend, MT HT
diBELLA [18] distributed BELLA HT

de-novo
genome
assembly

Readjoiner [29] single thread SA
Edena [34] MT SA
MetaHipMer [27] distributed, MT HT
SGA [103] distributed, MT FM-index

read
mapping

Bowtie2 [58] seed+extend, MT, SIMD FM-index
HPG Aligner [108] seed+extend, MT, SIMD SA + index

metagenomic
classification

CLARK [87] unique k-mers, MT HT
Kraken [117] LCA, MT HT
Kraken 2 [116] minimizers, LCA, MT HT
MetaCache [81] minhashing, LCA, MT HT

1 MT = multi-threaded, SIMD = using vectorization, LCA = lowest common ancestor
2 SA = suffix array, HT = hash table, BF = Bloom filter

Because genomic reads may contain sequencing errors, error correction is another
important pre-processing step. Here again, suffix arrays can be applied [39, 99]
to find similar sequences. Alternatively, reads can be corrected using the k-mer
spectrum, which is obtained from the the k-mer counts by filtering potentially
erroneous k-mers with low occurrence. Musket [73] for example uses this approach.
It is optimized for fast multi-threaded execution by combining a Bloom filter and a
hash table.

Suffix arrays are also employed for similarity searches among all reads in sequence
clustering [33] and pairwise sequence alignment [47], but are often limited to single
thread execution. RAPsearch [120] also uses a suffix arrays to find similar reads, but
for RAPsearch2 [123] the authors switched to a hash table to reduce the memory

6 Chapter 2 Related Work

footprint and to increase performance. Additionally, this allowed them to utilize
multiple threads for even greater speedup. For long-read to long-read alignment
BELLA [32] makes use of multi-threaded hash tables, and diBELLA [18] extends
this approach to distributed memory systems and achieves good scalabilty by taking
efficient parallelism, communication and memory usage into account.

In de-novo genome assembly the goal is to construct the genome of an organism
from scratch using only the sequencing reads from a data set. Here, suffix arrays [29,
34] and distributed k-mer hash tables [27] are popular as well to find similar reads
which are then combined to form larger sequences. Apart from that, many other
tools like SGA (String Graph Assembler) [103] are based on the FM-index derived
from the compressed Burrows-Wheeler transform. SGA implements distributed
FM-index construction and is optimized for low-end computing cluster due to its
low memory requirements and low communication overhead.

In contrast to read-to-read matching, similarity searches between reads and reference
genomes are required to generate read mappings or alignments, where the task is
to find the region in a genome most similar to each read in a data set. Because
these genomes can be millions to billions of base pairs in length, most programs
rely on a seed-and-extend approach: first find a short, exactly or inexactly matching
sub-sequence between read and genome using an index structure, which is then
verified comparing the whole read to a section of the genome. Fortunately, individual
read alignments are independent of each other, so the problem can be processed by
trivially parallelizing different read alignments of the read data set. Read aligners
such as Bowtie2 [58] and HPG Aligner [108] exploit this fact by employing multiple
threads and SIMD instructions to accelerate alignments. Bowtie2 utilized an FM-
index and a dynamic programming approach, while HPG Aligner relies on an 18-mer
index structure for faster lookup into a suffix array, making it especially suitable for
longer reads.

In metagenomic read classification one is trying to assign each read to the best
matching genome in a large collection of reference genomes. Such a reference
database may for example include tens of thousands of bacterial genomes of roughly
one million base pairs each. Hence, instead of using full text indices, sophisticated
sampling techniques are common in this field. CLARK [87] for example stores only
unique k-mers in a lookup table, i.e., such k-mers that occur only in a single species
(or other taxonomical level) in the reference set, while Kraken [117] stores the
lowest common ancestor for each k-mer instead of mapping k-mers to a specific
genome. Kraken 2 [116] combines this approach with using minimizers [96], which
are the lexicographically smallest k-mers in a longer sequence. Similar sequences

7

are likely sharing the same minimizer, hence, using minimizers for lookup instead
of all k-mers is an efficient sampling technique which reduces the size of the index
structure. Another popular technique is called minhashing [7], which uses multiple
hash functions to select k-mers from a sequence to form a sketch. MetaCache
[81] combines minhashing with a windowing approach which divides the reference
genomes into windows of roughly the same lengths of the reads, in order to perform
sketch comparisons using the Jaccard index. In contrast to CLARK and Kraken(2),
this also enables MetaCache to map reads to window positions in the genomes
instead of only deciding on which genome matches best. All of these classification
methods require to build the index structure before being able to classify the reads,
which takes significantly more time than classification and is often not parallalized
or does not scale well with multiple threads. Fortunately, the index structure, once
constructed, can be reused for additional classification runs, however, it needs to be
rebuild each time the set of reference genomes changes or a different reference set
is desired. Classification on the other hand is trivially parallelizable because reads
can be processed independently.

To achieve high throughput and scalability the aforementioned bioinformatics appli-
cations require the use of parallel algorithms to exploit the hardware resources of
modern architectures [97]. The applied approaches can be classified in fine-grained
and coarse-grained parallelization. The simplest way to achieve parallelization is
to identify independent tasks and distribute them to different threads which can
each execute a sequential algorithm and run in parallel on multiple CPU cores. To
harness even more compute power, it is possible to scale out to multiple compute
nodes in a cluster, however, additional considerations like data distribution and
network communication are needed to be taken into account. Corresponding High
Performance Computing (HPC) implementations often utilize the Message Passing
Interface (MPI) + X paradigm [93], where distributed memory parallelization be-
tween nodes using MPI is combined with intra-node shared-memory parallelization.
Other approaches rely on partitioned global address space (PGAS) extensions like
UPC++ [124] or OpenSHMEM [14] which allow for one-sided communication in
contrast to the traditional two-sided MPI where matching send and receive calls are
required.

Typically, the degree of parallelism achieved by such coarse-grained methods is
limited, however, exploiting the capabilities of modern hardware with fine-grained
implementations is much harder. This often requires novel algorithm designs with
parallelization in mind, instead of running existing sequential code in parallel on
multiple execution units. For instance, many tools utilize SIMD vectorization or
even bit-parallel algorithms to accelerate sequence alignments. These techniques

8 Chapter 2 Related Work

are for example employed to calculate the shifted hamming distance [118] to filter
identified seed as well as the edit distance [15] which optimizes the bit-parallel
Myers algorithms [82].

In addition to one or multiple CPUs, workstations and cluster nodes may feature
accelerator devices like FPGAs and GPUs, which offer vast compute capabilities
although their memory resources are often limited. GPUs especially are a popular
choice as they are programmable for general purpose applications (GPGPU) using
high level programming languages like CUDA [83] or OpenCL [105] and programs
stay compatible across many GPU generations. To some extent source code compati-
bility is even possible across different vendors, but may require (automatic) code
translation and recompilation. Due to the high core count of modern GPUs which
allows for massive fine-grained parallelism, they are able to achieve around one
order of magnitude higher peak performance than multi-core CPUs. However, extra
care has to be taken when designing and implementing algorithms on the GPU. Deep
knowledge of the underlying GPU architecture is required to implement optimized
algorithms and to unlock their full potential.

NGS algorithms in particular are data intensive, making efficient memory access
and concurrent data structures a necessity. Additionally, compute operations in NGS
are integer-based most of the time, while the majority of GPU applications focus
on floating-point arithmetic, e.g. in graphics pipelines or physics simulations. For
these reasons, GPU adoption in sequence-based bioinformatics lags behind other
application areas, where algorithms can be converted more naturally.

Nevertheless, some NGS tasks have been successfully translated to the GPU (see Table
2.2). Simple tasks like k-mer histogram generation are well suited to take advantage
of the fast GPU memory. For example, k-mer index structures are employed for
k-mer counting on one [62, 10] or multiple GPUs [19], and DecGPU [72] even
utilizes a distributed k-mer spectrum for error correction implemented with MPI and
CUDA.

Other problems like read mapping and metagenomic classification require more
complex k-mer indices like multi-value hash tables or suffix arrays which need
to be adjusted for efficient GPU usage. Therefore, most other work focuses on
GPU acceleration of queries to CPU-built data structures, being far easier than
parallel construction on the GPU. Most GPU-based short read aligners are based
on accelerating the lookups for popular algorithms such as BWA-MEM or Bowtie2
adopting the FM-index and Burrow-Wheeler-Transform (BWT) [69, 12]. The read
mapper Arioc [115] even stores its hash tables in CPU main memory to circumvent
the limited amount of GPU memory. For metagenomic read classification cuCLARK

9

Tab. 2.2.: Example GPU-accelerated NGS read processing applications.

NGS Problem Application Technique1 Data Structure2

k-mer
counting

GPU KMC2 [62] single GPU, MT HT
Cadenelli et al. [10] single GPU, MT BF
Gerbil [19] multiple GPUs, MT HT

error
correction

DecGPU [72] distributed GPUs, MT BF
CARE [43] GPU build+query, MT HT

genome
assembly

Megahit [61] GPU BWT build, MT SdBG

read
mapping

CUSHAW2-GPU [69] single GPU, MT FM-index
Chacón et al. [12] single GPU FM-index
Arioc [115] single GPU, MT (host) HT

metagenomic
classification

cuCLARK [49] GPU query, MT HT

1 MT = multi-threaded on CPU in addition to GPU
2 HT = hash table, BF = Bloom filter, SdBG = succinct de Bruijn graphs [107]

[49] accelerates queries to the k-mer index of CLARK, which needs to be constructed
on the CPU beforehand under high time and memory requirements.

There are some exceptions, tackling the task of GPU index construction. Examples
include Megahit [61] which adapts the BWT-construction algorithm CX1 [67] for
genome assembly, and CARE [43] which builds and queries multi-value hash tables
on the GPU to accelerate error correction. Still, parallel construction of concur-
rent index structures remains a challenging problem. Especially in a multi-GPU
distributed memory scenario, often required to increase the amount of available
memory, communication and synchronization play an important role and demand
additional considerations.

10 Chapter 2 Related Work

Background 3

In contrast to multi-core CPUs, which employ less than a hundred cores, modern
GPUs feature thousands of cores allowing for massively parallel execution. Further-
more, high-end GPUs rely on High Bandwidth Memory with transfer rates of up to
2 TB per second. Compared to CPUs the memory capacity per GPU is limited but
access speed is much higher. Often multiple GPUs are incorporated into a single
workstation or server which increases the total amount of memory available. Due
to their vast compute capabilities and highly competitive compute-to-energy ratio
GPUs have been widely adopted for a plethora of use cases. This thesis focuses on
CUDA-enabled GPUs [83] produced by NVIDIA, but the presented techniques and
algorithms can also be applied to other GPGPU (General-Purpose Computing on
Graphics Processing Units) platforms such as AMD GPUs using OpenCL [105] or HIP
[@3].

Tab. 3.1.: Comparison between example CPUs and GPUs.

CPUs GPUs

Vendor AMD AMD NVIDIA NVIDIA
Name 2990WX 5995WX GV100 A100
Architecture Zen+ Zen3 Volta Ampere
Core count 32 64 5120 6912
Peak Performance1 ∼1.5 TFLOPS ∼5.5 TFLOPS 14.8 TFLOPS 19.5 TFLOPS
Memory size up to 2 TB up to 2 TB 32 GB 80 GB
Memory bandwidth 94 GB/s 205 GB/s 870 GB/s 1,935 GB/s
TDP 250 W 280 W 250 W 300 W
Launch date 08/2018 03/2022 03/2018 06/2021
Data Sheets [@1] [@2] [@13] [@10]
1 TFLOPS = Trillion single precision floating point operations per second.

Table 3.1 compares high-end CPUs from 2018 and 2022 to high performance GPUs
of similar age. Recent CPUs and GPUs increase in core counts but GPUs are still
more than two orders of magnitude ahead. The memory bandwidth of GPUs is also
about one order of magnitude higher.

11

3.1 CUDA Programming Model

GPUs, being accelerator devices, cannot execute complete programs on their own
but act as co-processors instructed by the host CPU. They consist of execution units
and multiple levels of device memory physically separate from the CPU and are
able to run thousands of threads simultaneously. The typical workflow consists of
copying data from host to device, executing a GPU kernel which manipulates the
data in a data-parallel fashion and finally retrieve the results on the host.

In the Compute Unified Device Architecture (CUDA) programming model the pro-
grammer has to define kernel launches in host code and supply the number of thread
blocks and the number of threads per block which should execute the same kernel
function. Thread blocks are scheduled onto the GPU’s multithreaded streaming
multiprocessors (SMs). Each SM consists of multiple CUDA cores (typically 64 or
128), a certain number of 32-bit registers and has a unified data cache which can
be used as L1 cache or manually addressed scratchpad memory (also called shared
memory). Blocks are divided into sets of 32 consecutive threads forming a warp
which is scheduled and executed by the SM. The SM is able to hold the execution
context of multiple warps on-chip which enables switching between active warps
without overhead. This hardware multithreading allows to overlap the program
execution of different warps to better utilize the SM’s hardware resources.

Since NVIDIA’s Volta GPU generation each thread in a warp has its own program
counter and call stack, enabling threads to branch and execute independently.
However, to reach full efficiency all 32 threads of a warp have to agree on their
execution path and perform the same instruction, which can then be executed at the
same time. Otherwise, the warp is split into groups of threads which are executed
separately. Different warps on the other hand are free to execute divergent code
branches independently without penalizing performance. This execution model is
often called SIMT (single instruction multiple threads) in reference to SIMD (single
instruction multiple data), where in SIMD a single instruction is executed for all of
its vector lanes and lanes cannot be programmed individually.

The number of blocks and warps that can reside on a SM at a time depends on the
required resources per thread and thread block as well as the available hardware
resources per SM. Therefore, it can be beneficial to reduce the amount of registers
used per thread or the amount of shared memory used per block to achieve higher SM
occupancy and greater performance. Note, that the resources per SM and limitations
on the number of resident warps and blocks differ between GPU generations. Table
3.2 shows some of the limits for the Quadro GV100 with compute capability 7.0. For

12 Chapter 3 Background

Tab. 3.2.: GV100 specifications.

Property Quantity

Streaming Multiprocessors 80
Max Shared Memory 96 KB/SM, 48 KB/Block
Maximum Active Blocks 32/SM
Maximum Active Warps 64/SM
Maximum Active Threads 2048/SM, 1024/Block
Available 32-bit Registers 65536/SM, 65536/Block

a complete overview of the technical specifications per compute capability see the
official CUDA programming guide [@11] Chapter K, Table 15.

Kernels launched from the host execute asynchronously on the GPU, meaning the
CPU thread which launched the kernel does not have to wait until kernel execution
is finished and can continue doing other work. Kernels as well as asynchronous
memory copy operations can be inserted into CUDA streams, which execute queued
operations sequentially. Different streams can be processed concurrently on the same
GPU, allowing to overlap memory operations and kernel execution or to execute
multiple kernels at the same time if enough hardware resources are available.
Additionally, it is possible to insert synchronization points (so-called events) into
the streams to model dependencies between operations in different streams, even
across multiple GPUs. These events can also be used to synchronize streams from
the host CPU to ensure certain work has finished or to wait for results to arrive in
host memory. This enables complex pipelines orchestrated by the host and executed
asynchronously on one or multiple GPU(s).

3.2 GPU Memory

Memory management is another important topic regarding GPU computing. Allo-
cating device memory by the host is a synchronizing call to the CUDA runtime. All
kernel and copy operations have to finish before memory can be allocated. Therefore,
it is best to allocate the memory needed for all steps of an algorithm at the beginning
of a program, but also to reuse allocated memory as much as possible to avoid
reallocation or wasting space for short lived data structures.

Although bandwidth of global GPU memory is quite high compared to main memory
of the CPU (∼2 TB/s vs. ∼200 GB/s, respectively, compare Table 3.1), high through-
put can only be achieved with proper access patterns from threads of a GPU kernel.

3.2 GPU Memory 13

Device memory is accessed by 32-, 64-, or 128-byte memory transactions at naturally
aligned memory addresses, thus misaligned requests will be padded to achieve
aligned access, reducing the throughput. Global memory accesses from threads of
a warp can be coalesced into the aforementioned types of memory transactions if
the threads access a common memory region. For example, if all 32 threads request
consecutive 4-byte words starting at an address aligned to 128 bytes, this can be
handled by a single 128-byte memory transaction. However, if the threads access
random memory locations in global memory, this can generate up to 32 different
32-byte transactions, massively decreasing the throughput.

Compared to global memory the access to on-chip shared memory is much faster.
This memory can be used by thread blocks to store intermediate results instead of
writing them to global memory. After synchronizing with the whole block the shared
results can then be accessed by all threads of the same block. The registers available
to each thread of a block are even faster and can also be used to store results which
do not need to be shared within the entire block. However, it is possible to exchange
register data with threads of the same warp by using warp shuffle instructions.
This enables a warp to solve small problems like a local reduction or prefix scan
cooperatively without using auxiliary memory. Even larger problems can benefit
from this hierarchy by applying a divide and conquer approach by first calculating
local solutions in independent warps, then merging with the whole block and finally
combining the partial results in global memory.

In order to accelerate an application on the GPU one might try to handle each
individual part with a different kernel (separation of concerns). However, each
kernel has to store its results in global memory which can then be reloaded in the
next kernel if needed. Due to the latency differences of global memory, shared
memory and register access, it is often much more efficient to fuse kernels together
(if possible) and store data in shared memory or registers instead to avoid global
memory accesses altogether.

3.3 Multi-GPU Systems

In data-parallel tasks it is oftentimes feasible to add additional GPUs to increase the
amount of compute available to an application. Independent tasks can be distributed
among multiple GPUs instead of processing them one after another on a single
one. However, modern data science applications often require a lot of memory
and the scarce amount of memory attached to a single GPU becomes a limiting

14 Chapter 3 Background

factor. Storing data structures on the host and staging transfers through slow PCIe
might be an option in some cases but often hinders performance. To expand the
amount of memory available to an application, multiple GPUs have to be combined
in an intelligent way. Modern multi-GPU systems feature fast interconnects between
GPUs which allow for direct memory access from one GPU to another. Nevertheless,
extra care has to be taken on where data should be placed and how to distribute
large data structures across multiple GPUs; remote accesses induce higher latencies
and don’t achieve the same bandwidth as local memory accesses. Hence, efficient
communication becomes key to enable fast data movement and keep the GPUs from
starving.

To address these issues we examine two different strategies in the following parts.
In Part I we focus on multi-GPU communication patterns which are then applied in
an iterative algorithm to exchange data between GPUs in each step. In Part II on
the other hand we distribute a database across GPUs and use a pipeline approach
where partial results are sent from one GPU to the next. Here, we aim to minimize
the amount of data which needs to be communicated between GPUs to avoid the
communication bottleneck.

3.3 Multi-GPU Systems 15

Part I

Multi-GPU Communication

Gossip Communication
Library

4
This chapter is based on the following peer-reviewed paper:

Gossip: Efficient Communication Primitives for Multi-GPU Systems.
Robin Kobus, Daniel Jünger, Christian Hundt, Bertil Schmidt.
Proceedings of the 48th International Conference on Parallel Processing (ICPP 2019).
https://doi.org/10.1145/3337821.3337889

Abstract – Nowadays, a growing number of servers and workstations feature an
increasing number of GPUs. However, slow communication among GPUs can lead
to poor application performance. Thus, there is a latent demand for efficient
multi-GPU communication primitives on such systems. This work focuses on the
gather, scatter and all-to-all collectives, which are important operations for various
algorithms including parallel sorting and distributed hashing. We present two
distinct communication strategies (ring-based and flow-oriented) to generate transfer
plans for their topology-aware implementation on NVLink-connected multi-GPU
systems. We achieve a throughput of up to 526 GB/s for all-to-all and 148 GB/s for
scatter/gather on a DGX-1 server with only a small memory overhead. Furthermore,
we propose a cost-neutral alternative to the DGX-1 Volta topology that provides
an expected higher throughput for the all-to-all collective while preserving the
throughput in case of scatter/gather. Our Gossip library is freely available at https:
//github.com/Funatiq/gossip.

19

https://doi.org/10.1145/3337821.3337889
https://github.com/Funatiq/gossip
https://github.com/Funatiq/gossip

4.1 Introduction

Massively parallel accelerators have been widely adopted for number crunching due
to their vast compute capability and highly competitive compute-to-energy ratio.
The scarce amount of memory attached to a single GPU is often too small to hold
the entire data set due to the ever increasing memory requirements of modern
data science applications. While streamed workflows can be processed sequentially
in batches, traditional data structures such as hash maps and data indexes need
to reside in the GPU’s memory to avoid expensive data movements from the host
to the device. To expand the amount of available memory, a workstation can be
equipped with multiple GPUs. However, not every problem can be split into multiple
independent parts to allow for data parallelism. Hence, efficient communication
primitives are needed to enable fast data movement between compute devices.

Modern CUDA-enabled GPUs such as the P100 and V100 accelerators feature a
high-bandwidth interconnect, called NVLink, for fast inter-device communication.
The number of physical connections per device is limited. Therefore, there exist
NVLink-based multi-GPU topologies where pairs of GPUs are connected by a varying
number of links, sometimes even none at all. If a programmer schedules a direct
transfer between two devices without an NVLink connection the transfer will be
routed via slower PCIe. Usually, multiple GPUs share a PCIe switch and often
transfers occur across GPUs connected to different NUMA nodes, which reduces the
global bandwidth even further in case of several parallel transfers.

Parallel to the release of the NVLink interconnect, NVIDIA published the NVIDIA Col-
lective Communications Library (NCCL) [@6], which implements a set of common
collective operations specifically optimized for multi-GPU topologies. NCCL focuses
on implementing NVLink-aware collectives that are commonly used for distributed
deep learning models and thus currently supports all-reduce, all-gather, reduce-
scatter, reduce and broadcast. However, other widely used collective operations can
also benefit from these topologies. To the best of our knowledge, they have not
been implemented nor optimized, yet. This work focuses on the gather, scatter and
all-to-all collectives. While these communication primitives can be implemented
using a ring-based approach similar to collectives included in NCCL, we also show
how they can be formulated as flow problems. Those can be fed to a solver for
integer linear programming (ILP) problems to obtain optimal transfer schedules
which saturate the bandwidth bottlenecks of common topologies.

All-to-all communication is crucial in case data has to be reorganized in GPU mem-
ory to avoid expensive host-sided data movement during the partitioning phase.

20 Chapter 4 Gossip Communication Library

Single-GPU multisplit approaches as proposed by Ashkiani et al. [4] can naturally
be extended to multi-GPU environments by virtue of a subsequent all-to-all commu-
nication. The resulting distributed multi-split primitives can for example be used for
the efficient querying and construction of multi-GPU hash maps [41]. Furthermore,
incremental sorting and merging during GPU-based suffix array construction [114]
and multi-dimensional FFTs [17] could be further scaled to multiple GPUs using
all-to-all communication. In general, distributed variants of approximate and exact
data indices such as bloom filters, quotient filters and histograms are promising
candidates for straightforward distribution across multiple GPUs. The 526 GB/s
throughput of our proposed all-to-all primitive allows for the efficient interleaving
of NVLink-based inter-GPU data partitioning and subsequent memory utilization of
participating GPUs. This ranges in the same order-of-magnitude as pure memory
access, e.g., 900 GB/s memory bandwidth in case of V100 HBM2 modules.

In this work, we also investigate asymmetric subtopologies and propose alternative
NVLink topologies where traditional ring-based schedules can be outperformed. As
an example, a minor cost-neutral modification to the DGX-1 Volta topology yields an
estimated 33% improvement of all-to-all performance while preserving the triple
ring structure used by NCCL.

4.2 Related Work

Common NVLink topologies are composed of distinct rings. NCCL’s communication
collectives exploit the fact that bandwidth-efficient algorithms for these topologies
exist. Patarasuk et al. showed that all-gather [22] (also called all-to-all broadcast)
as well as all-reduce [90] can be implemented bandwidth optimally on rings found
in topologies of workstation clusters. They further proposed a pipelined broadcast
scheme [89] using a contention-free linear tree similar to a ring, which is effective
for large message sizes. The same approach is used by NCCL for the broadcast
collective.

The all-to-all collective has been extensively studied, but research focuses on specific
topologies common to clusters of compute nodes such as meshes [109], hypercubes
[100], or tori [112, 35]. Some even assume fully connected networks [8]. None
of these are directly applicable to our case. Fraigniaud and Lazard [25] give
an overview of several communication methods for various common topologies
including the (single) ring. Among other collectives they analyze scatter and all-to-
all (here called multiscattering) and give upper and lower bounds. Their ring-based

4.2 Related Work 21

scatter is similar to ours, while their all-to-all scheme relies on a different ordering
of the transfers along the ring. To reduce the start-up overhead they aggregate data
chunks in every step which we do not pursue in our approach. A survey of Chan
et al. [13] explores lower bounds and algorithms for communication collectives,
excluding all-to-all, on common topologies and use the results to improve on MPI-
based communication. They use a simple model which assumes that nodes can
directly address each other and transfers are routed automatically, which is not
possible when relying exclusively on NVLink edges.

To increase the performance of communication between nodes in a cluster, efforts
have been taken to optimize MPI collectives using knowledge about the network
topology. Zahavi et al. [121] try to discover the underlying topology to provide
an optimized transfer sequence for all-to-all using tree structures. Kandalla et al.
[44] design topology-aware scatter and gather for large-scale clusters exploiting
their hierarchical structure. Karonis et al. [45] follow a similar approach and
demonstrate its benefits for a multi-level broadcast. Gong et al. [28] develop
network-performance-aware collectives for dynamic cloud environments. While
these hierarchical topologies differ from the considered single-node multi-GPU
networks, they might be of interest for future research regarding interconnected
multi-GPU nodes.

4.3 Background

4.3.1 Topologies

Currently there exist two GPU architectures of interest for NVLink-based single-node
multi-GPU interconnection networks.

Pascal-based: P100 GPUs support four first generation NVLink connections with
40GB/s bidirectional bandwidth each.

Volta-based: V100 devices support six connections of second generation NVLink
with 50GB/s bidirectional bandwidth.

Interconnection networks based on Pascal devices can be connected via two rings
spanning all GPUs. In graph theory the rings can be described as disjoint Hamiltonian
cycles, i.e., cycles connecting all nodes via disjoint sets of edges. A ring can be
characterized by a permutation of the indices of the devices. Take four devices

22 Chapter 4 Gossip Communication Library

indexed from 0 to 3 for example, one ring could be in ascending order 0-1-2-
3, another ring could be 0-2-1-3. Here, two GPUs of successive indices in the
permutation as well as the first and the last one are connected through NVLink.
Figure 4.1a illustrates this example topology consisting of two rings. Because of
NVLink being bidirectional each ring can be traversed in forward or reverse order.
Each NVLink connection of a GPU has its own memory controller which allows all
links to be used independently at the same time. The two additional connections for
Volta-based devices can be used to establish one more ring, for a total of three rings.
Current DGX-1 systems feature eight V100 GPUs connected via the rings 0-3-2-1-5-6-
7-4 (times two) and 0-1-3-7-5-4-6-2 (see Figure 4.2). Although the topology can be
viewed as separate rings, communication does not have to be restricted to rings. In
fact, different links between GPUs can be used independently of each other, while
multiple connections between two GPUs effectively multiply the bandwidth. Thus,
the DXG-1 topology can also be interpreted as a hypercube with additional edges,
but in general does not match any common topology for which optimal algorithms
are known.

4.3.2 Communication Collectives

In this work we investigate the following three collective communication primi-
tives.

Scatter is a communication collective with a one-to-many relation. One node starts
off with all the data in its memory which then has to be distributed equally
among all nodes including itself, see Figure 4.3a for a graphical depiction.

Gather is the reverse operation to scatter. Here one node has to collect equal
amounts of data from all nodes including itself (see Figure 4.3b).

All-to-all is a many-to-many communication primitive. It can be seen as simulta-
neous scatter (or gather) operations originating from every node at the same
time: Every node sends a data package to every other node including itself.
This communication can be interpreted as each node swapping an amount of
data with every other node like Figure 4.3c illustrates.

A canonical way to implement the scatter primitive would be to schedule all transfers
from the source node in parallel. However, this is only possible if these direct
connections exist and even then it might not be the optimal solution because the
connections may have different bandwidths. Note, that data which has to reach a
certain node can be split into several chunks which can be transferred along different

4.3 Background 23

GPU 0 GPU 1

GPU 2 GPU 3

(a)

GPU 0 GPU 1

GPU 2 GPU 3

(b)

Fig. 4.1.: Two example topologies for four GPUs with four NVLink connections each. The
connections can be partitioned in two distinct rings (black and green arrows).

GPU 7

GPU 6GPU 5

GPU 4GPU 0

GPU 1 GPU 2

GPU 3

Fig. 4.2.: DGX-1 topology featuring eight V100 GPUs connected via three distinct rings
(black, green and red arrows).

GPU 1

GPU 2 GPU 3

GPU 0

(a) Scatter

GPU 1

GPU 2 GPU 3

GPU 0

(b) Gather

GPU 1

GPU 2 GPU 3

GPU 0

(c) All-to-all

Fig. 4.3.: Communication collectives.

24 Chapter 4 Gossip Communication Library

paths in the topology. If a transfer schedule for the scatter collective is known it can
be played back in reverse order with opposite transfer directions to obtain a valid
schedule for gather.

Note, that it is not sufficient to use multiple scatter collectives in parallel in order
to implement an efficient all-to-all primitive as they may use the same connections
of the network topology at the same time leading to edge contention. Thus, all
communication operations need to be considered together to find an optimal transfer
schedule.

4.4 Ring-based Collectives

A simple approach when creating transfer schedules for NVLink topologies is to
look at each ring separately. For some collectives like reduce-scatter, all-gather, and
all-reduce, rings can be used for a bandwidth-optimal implementation. Data is split
into a number of chunks according to the number of rings, so that all rings can
transfer parts of the data independently and in parallel.

4.4.1 Scatter/Gather

A ring-based approach for scatter works as follows. Assume a unidirectional ring
of length n with nodes indexed 0, . . . , n − 1 in ascending order. Without loss of
generality let Node 0 be the source node. Let di,j be the data originating from Node
i targeted at Node j. Transfers are scheduled in descending order of their travel
distance which corresponds to their respective index. d0,n−1 which has to transit
from Node 0 to Node n− 1 will be scheduled first. In each step one chunk of data
will be moved to the next node in the ring. d0,n−1 will be transferred from Node
0 to Node 1 in the first step, from Node 1 to Node 2 in the second step and so on.
d0,n−2 follows with a delay of one step, it will be transferred from Node 0 to 1 in the
second step. This continues until in the (n− 1)-th step where all data reach their
target destination simultaneously. Figure 4.4 illustrates this scheme for four GPUs.
Note, that the rings are actually bidirectional. Thus, we can send another round of
data in opposite direction at the same time. This means that for r bidirectional rings
the original data is split into 2r chunks which will be transferred in parallel.

Another approach is to consider both directions of a bidirectional ring at once in
order to send each data chunk on its shortest path to its target node. This effectively
cuts the ring in half. Using the same notation and indexing as above, half of the

4.4 Ring-based Collectives 25

GPU 2 GPU 2 GPU 2

Step 1

GPU 3 GPU 3 GPU 3

GPU 1 GPU 1 GPU 1

GPU 0 GPU 0 GPU 0

GPU 2

GPU 3

GPU 1

GPU 0

Step 2 Step 3

Fig. 4.4.: Ring-based scatter for four GPUs.

data will be sent to the nodes 1, . . . , bn2 c in forward, the other half to the nodes
n− 1, . . . , dn2 e in reverse direction. Note, that for an even number of nodes half of
the data targeted at Node n

2 can be sent in each direction. This approach has some
advantages compared to the unidirectional-ring-based one. First, the transfer paths
for the data chunks are shorter which leads to less transfer instructions and reduces
the necessary synchronization between transfers. Second, the data does not have to
be split into a chunk for each direction (apart from d0,n2). Therefore, the number
of transfers is reduced further while the transfer sizes increase which decreases the
overhead that is produced per transfer. However, regarding the theoretical transfer
time excluding any overhead, both approaches are equivalent. The unidirectional
scheme needs n− 1 transfer steps of half size, while the bidirectional one uses bn−1

2 c
full size transfer steps (equal to bn−2

2 c full size plus another half size step in case of
an even number of nodes).

As mentioned before, the gather collective can be implemented as a reverse scatter.
This naturally applies to the ring-based schemes.

4.4.2 All-To-All

The idea for our ring-based all-to-all communication scheme is comparable to the
bidirectional scatter approach whereby every node acts as a source node at the

26 Chapter 4 Gossip Communication Library

GPU 2 GPU 2

Step 1

GPU 3 GPU 3

GPU 1 GPU 1

GPU 0 GPU 0

GPU 2

GPU 3

GPU 1

GPU 0

Step 2 Step 3

GPU 2

GPU 3

GPU 1

GPU 0

Fig. 4.5.: Ring-based all-to-all for four GPUs.

same time. For each direction, instead of interleaving the transfers of different data
chunks of the same origin, these need to be handled one after the other. This allows
all nodes to handle transfers in both directions in parallel at each step.

Consider again the bidirectional ring 0, . . . , n− 1. First each Node i sends data di,i+1

to Node i+ 1 (wrapping around), which already occupies all communication paths
in forward direction. At the same time Node i sends data di,i−1 in reverse direction
and the ring is fully utilized. Subsequently, each node continues with the same
scheme for data di,i+2 and di,i−2 which have to be rotated along the ring for 2 steps
in their respective direction, followed by di,i+3 and di,i−3 for 3 rotation steps and
so on. The last chunks have to be transferred for n−1

2 steps if n is odd. For even
numbers of n data di,i+n

2
can be split to send half of it in each direction of the ring

in n
2 half size steps. This leads to a total of

n−1
2∑
i=1

i = n2 − 1
8 and

1
2 ·

n

2 +
n−2

2∑
i=1

i = n2

8

full size steps for odd n and even n, respectively, where all of the ring’s connections
are used in parallel. Fig. 4.5 illustrates this scheme for four GPUs. Here, each GPU
exchanges data di,i+1 and di,i−1 with its neighbors in Step 1. Step 2 and 3 are used
to transfer half of data di,i+2 in each direction across two GPUs.

4.4 Ring-based Collectives 27

4.5 Flow Problem Formulation

Transfer schedules in communication networks like a cluster of compute nodes can
be modelled as multi-commodity flow problems. The same applies to interconnected
GPUs on a single compute node or workstation. A commodity resembles a chunk
of data residing at an initial source node or GPU which should be transferred to
a specific target node or GPU, respectively. A single communication primitive can
consist of many of these commodity transfers which should overlap in time to finish
all transfers as fast as possible. The all-to-all primitive for example needs to transfer
one chunk of data from each of n nodes to all n other nodes simultaneously, a total
of n2 transfers. Because we want to find a solution which minimizes the amount
of time needed to finish all transfers, we use a time-expanded graph to solve our
flow problem. This problem is called quickest multi-commodity flow in the literature
[23].

Consider an NVLink topology consisting of n nodes. We build a directed graph
G = (V,E) of nodes V and edges E. For every discrete point in time τ ∈ {0, . . . , T}
there exists a node vi,τ ∈ V for each GPU i in the topology. Let V0 and VT be the
set of all nodes at start time τ = 0 and end time τ = T , respectively. If two GPUs
i and j are connected by one or multiple bidirectional NVLink connections, we
insert two edges (vi,τ , vj,τ+t) and (vj,τ , vi,τ+t) with unit capacity into the graph for
every time point τ . The considered number of time steps t depends on the number
of connections between the GPUs. Multiple NVLink edges between two devices
effectively multiply the bandwidth between them and can be viewed as a single,
faster link. If we consider a topology restricted to single and double connections, for
example, we would use one time step (t = 1) for the duration of a transfer along
a double connection and two time steps (t = 2) for a single connection, because it
would take twice as long. Additionally, we insert edges (vi,τ , vi,τ+1) for every GPU
i and time τ , which pass on commodities to the next time step that could not be
transferred in step τ due to transfer edges already being used to capacity. Figure 4.6
partially depicts the time-expanded graph for four GPUs connected by the topology
from Figure 4.1a.

In our scenario, it is beneficial to keep the number of transfers as low as possible,
because every transfer between two devices creates a small overhead. Therefore, we
want each commodity flow l which starts at source node sl ∈ V0 and ends at target
node tl ∈ VT to be transferred on a single path without being split at intermediate
nodes. This also reduces the synchronization needed which ensures that a transfer
in one time step has finished and the contained data can be transferred further in

28 Chapter 4 Gossip Communication Library

v2,τ v2,τ+1 v2,τ+2

Time τ Time τ + 2Time τ + 1

v3,τ v3,τ+1 v3,τ+2

v1,τ v1,τ+1 v1,τ+2

v0,τ v0,τ+1 v0,τ+2

v2,τ+3

Time τ + 3

v3,τ+3

v1,τ+3

v0,τ+3GPU 0

GPU 1

GPU 2

GPU 3

Fig. 4.6.: Partial time-expanded graph for the topology from Fig. 4.1a. Shown are outgoing
edges of GPU 0 for three time steps. Transfers along dotted edges need one time
step while transfers along dashed edges need two steps. Continuous edges pass
on remaining commodities to the next step.

the next time step. Depending on the topology, it can be impossible to saturate
the bandwidth at the bottleneck if we limit ourselves to transferring each distinct
commodity from source to target as a whole. For this reason we split each commodity
into k equally sized chunks, but still guarantee that each chunk will be transferred
along a single path. Note, that for the considered primitives this means that all
chunks of all commodities have exactly the same size, however, it would be easy
to accommodate arbitrary commodity sizes as multiples of a predefined chunk size.
Therefore, this model for finding an optimal transfer plan can also be used for the
primitives gather-v, scatter-v and all-to-all-v if the sizes are known in advance.

This problem, where multiple commodity flows are each split into exactly k non-zero
flows of identical size along paths from source to target, is a special case of the
uniform exactly-k-splittable multi-commodity flow [5]. The general case allows
flows of different commodities to be of different sizes. We limit every flow to be
either one or zero, so that every edge can transport exactly one commodity chunk at
a time.

Different from flow problems for a single commodity with potentially multiple
sources and/or targets, multiple commodities have to be considered. Let M be the
set of distinct commodities. For a commodity m ∈ M let S+

m ⊆ V0 be the set of
source nodes and S−m ⊆ VT the set of target nodes, let Sm = S+

m ∪ S−m. Each source

4.5 Flow Problem Formulation 29

node v ∈ S+
m starts with an integral number of chunks Dv,m ∈ Z+ and each target

node v ∈ S−m has an integral demand Dv,m ∈ Z−, such that
∑
v∈Sm Dv,m = 0. For

every edge e ∈ E and commodity m ∈ M we want to find a binary flow value
xe,i ∈ {0, 1}, which satisfies the flow conservation constraint at transit nodes

∑
e∈δ+(v)

xe,m −
∑

e∈δ−(v)
xe,m = 0 for all v ∈ V \ Sm and m ∈M (4.1)

as well as source and target nodes

∑
e∈δ+(v)

xe,m −
∑

e∈δ−(v)
xe,m = −Dv,m for all v ∈ Sm and m ∈M (4.2)

where δ+(v) and δ−(v) denote the sets of arriving and leaving transfers, respectively.
While the conservation constraints apply for each commodity separately, the edge
capacities needs to be respected by all commodities at once. Because transfers can
take multiple time steps but the connections should be used exclusively at every
time, we need to avoid overlaps of transfers using the same link. Let Ei,j,τ be the set
of all edges between GPUs i and j which cover the time step [τ, τ + 1], i.e.,

Ei,j,τ = {(vi,τ−u, vj,τ+t−u) ∈ E : t ∈ {1, 2}, u ∈ [0, t)}.

If the capacity constraint

∑
m∈M
e∈Ei,j,τ

xe,m ≤ 1 for all 0 < i, j < n, τ ∈ [0, T) (4.3)

holds, the flow is called feasible.

4.5.1 Scatter/Gather Flow Problem

The scatter primitive can be modelled as a multi-commodity flow where one source
node starts off with n different commodities, each of which needs to be sent to a
different node in the topology. The gather primitive describes the same problem
but in reverse. Each node has its own commodity which needs to be transferred
to the same target node. Note, that one commodity already resides on the source
or target node and does not need to be communicated over the network. For both
primitives we identified the bottleneck to be the number of links to the main node
where all data originates or converges. If these connections are saturated at all times
by outgoing (or incoming) transfers of unique data chunks there cannot be a more

30 Chapter 4 Gossip Communication Library

efficient transfer schedule. To make this possible the total number of transfers has
to be a multiple of the number of connections. For this reason we determine the
greatest common divisor of the number of commodities which need to be transferred
(n− 1) and the number of links L to the main node to calculate the smallest factor k
by which all commodities have to be split such that k × (n− 1) is divisible by L.

k = L

gcd(n− 1, L) (4.4)

We call the uniform exactly-k-splittable multi-commodity flow which solves the
scatter or gather problem optimal if it respects the constraints (4.1), (4.2), (4.3) and
saturates the connections of the main node with transfers of unique data chunks at
all times. The corresponding transfer schedule is called optimal, too.

4.5.2 All-To-All Flow Problem

As mentioned before, the all-to-all primitive requires each node to send a commodity
to every other node. To model this problem, we use one distinct commodity per
target, so that each node starts with n different commodities like in the scatter case.
At the end, each node must have collected all parts of the commodity belonging
to itself. For this collective we have determined that the bisection bandwidth is
the limiting factor. If we look at an arbitrary bisection of n nodes, we observe
that each node partition has to send n

2 commodities to each node in the other
partition. Therefore, (n2)2 commodities have to cross through the links between the
two partitions in each direction. The bisection bandwidth denotes the minimum
bandwidth between the two partitions of all possible bisections and is hence the
bottleneck of the communication. To saturate the bisection bandwidth it is necessary
to split the commodities such that the number of commodity chunks is divisible by
the number of links W belonging to the bisection bandwidth. Analogously we use
the greatest common divisor of the number of commodities (n2)2 and the number of
links W to calculate the splitting factor k.

k = W

gcd((n2)2,W) (4.5)

We call the uniform exactly-k-splittable multi-commodity flow which solves the all-
to-all problem optimal if it respects the constraints (4.1), (4.2), (4.3) and saturates
the connections of the bisection bandwidth with transfers of unique data chunks at
all times. The corresponding transfer schedule is called optimal, too.

4.5 Flow Problem Formulation 31

4.5.3 Double-Buffered All-To-All

To minimize the memory consumption, we also consider an all-to-all variant using
only a double buffer per GPU which holds the input data at the beginning and the
results at the end of the communication. In each step the schedule should transfer
data from one buffer to the other, then we need to synchronize before the next step
can continue. One of these meta steps can include multiple time steps where data
is transferred through the same link more than once. For this to work we need to
adapt the flow problem in the following way.

Instead of nodes for each point in time we now have nodes for each synchronization
point; instead of edges of different lengths we insert edges of different cost between
two synchronization points. In the case of single and double connections, we would
use unit cost for double edges and twice the cost for single edges. Additionally,
we replicate the edges with linear increasing cost to allow for multiple usage in
the same step. The same double connection would be inserted as edges of cost
1, 2, 3, . . . , b, where b is the buffer size in number of data chunks, single edges with
cost 2, 4, 6 . . . , 2b, accordingly. When minimizing the cost of the flow this enables
the ILP solver to prioritize the cheap edges before using expensive ones while the
cost of the most expensive edge in use indicates the total time required for the
whole step. Furthermore, we add another constraint to the problem to model the
storage limitations of the buffers. Let Ei,σ be the set of all edges exiting GPU i at
synchronization point σ ∈ [0,Σ). The storage constraint

∑
m∈M
e∈Ei,σ

xe,m ≤ b for all 0 < i < n, σ ∈ [0,Σ) (4.6)

enforces the amount of exiting flow to be limited by the storage size. Because of
the conservation constraints 4.1 and 4.2 the same limit implicitly applies for flow
entering each node.

4.6 Implementation Details

4.6.1 Transfer Schedule Generation

The NVLink topology of a system can be queried by the command line utility nvidia-
smi. We use this information to create the flow problems as formulated in Section
4.5. Alternatively, an adjacency matrix providing the number of links between all

32 Chapter 4 Gossip Communication Library

GPUs can be used. To solve the ILP problems we use the CBC solver from Google’s
OR-Tools suite [@8]. We can calculate the minimum number of time steps needed
to get a feasible solution by dividing the total number of data chunks which have to
pass through the bottleneck by the number of links at the bottleneck. If no solution
can be found we increment the number of time steps of the problems and run the
solver again. Because the ring-based schedules (Section 4.4) are a possible solution
for the flow problems and we know how many steps are needed for their execution,
we always know an upper bound for the number of time steps needed.

After the solver outputs a solution for the flow problem we have to trace the paths
of all commodity chunks from the beginning to the end. Subsequently, we generate
a complete schedule that determines which data chunks have to be transferred
between specific pairs of GPUs in each step. Finally the transfer schedule is saved to
disk in human-readable JSON format for later usage.

4.6.2 Mapping Transfer Schedules to Streams

When executing a transfer schedule we have to take care of transfer concurrency
and synchronization. Transfers in the same step of the schedule should be carried
out in parallel, while consecutive transfers of a transfer path have to wait for their
predecessor to finish. To enforce this we use CUDA streams and events. A stream is a
pipeline for CUDA memory operations and kernel calls which are executed one after
another. Each stream is associated with exactly one GPU while multiple streams can
run asynchronously on a single GPU. To synchronize between streams (even between
streams of different devices) we can insert events into the pipeline which other
streams are able to synchronize with before continuing. This enables us to avoid
global synchronization of one or all devices, because only streams which depend
on each other have to be synchronized accordingly. Thus, we schedule all transfers
originating from the same device in different streams, one for each of its NVLink
connections. In further steps the streams which perform followup transfers have to
wait for the events in the streams being responsible for the preceding transfers.

4.7 Evaluation

4.7.1 Experimental Setup

Experiments have been conducted on the following systems:

4.7 Evaluation 33

S1: Dual-socket Intel Xeon E5-2680 CPU with 256 GB DDR4 RAM and 4 NVIDIA
Tesla P100 GPUs (with NVLink connections as shown in Fig. 4.1a) each with
16 GB HBM2, running CentOS 7, CUDA 9.1, GCC 6.3.0.

S2 (DGX-1): Dual-socket Intel Xeon E5-2698 CPU with 512 GB DDR4 RAM and 8
NVIDIA Tesla V100 GPUs (with NVLink connections as shown in Fig. 4.2) each
with 32 GB HBM2, running Ubuntu 18.04, CUDA 10.0, GCC 7.3.0.

S3 (DGX-1 Quad): The same as S2, but using only one half of the topology, i.e.
GPUs {0, 1, 2, 3}. We denote this sub-topology as a quad where all four GPUs
are connected to the same CPU socket via PCI-e.

For each system we have evaluated the following transfer schedules for scatter1 and
all-to-all communication:

V1 - Direct: Direct transfers from sources to targets all scheduled immediately,
ignoring potentially missing edges in the NVLink topology using PCI-e as
fallback.

V2 - Rings NVLink: The bidirectional schemes from Section 4.4 executed in paral-
lel for each ring in the topology.

V3 - Optimized unsplit NVLink: The transfer schedule given by the solution of the
flow problems without splitting the commodities.

V4 - Optimized k-split NVLink: The transfer schedule given by the solution of the
flow problems when splitting the commodities according to Equations (4.4) or
(4.5).

V5 - Double-buffered NVLink: The transfer schedule for all-to-all given by the
solution of the flow problem presented in Section 4.5.3.

All setups were tested on uniformly randomly distributed data as inputs over varying
input sizes in terms of the overall accumulated amount of input data of all par-
ticipating GPUs. The memory architecture of CUDA-accelerators is optimized for
high-throughput data movement of large amounts of data but lacks performance
in high-latency scenarios when moving small sizes of data. Thus, we limit our
experiments to a minimum input size of 32 KB and 8 KB per GPU for all-to-all and
scatter/gather, respectively. We report overall throughput performance which is de-
fined as the total amount of input data of all GPUs over the collective’s runtime. This
includes those portions of the data that already reside on their respective target GPU

1The results for gather are similar to those of scatter because the transfers are the same but in reverse
order.

34 Chapter 4 Gossip Communication Library

Tab. 4.1.: A flow-based transfer schedule for the scatter collective generated by our library.
Each row corresponds to a transfer path expressed by a sequence of device
identifiers that describe on which route a chunk of data is transferred. Each
column of the paths belongs to the same point in time.

Data Part Transfer Path

d0,0 0 0→ 0→ 0→ 0→ 0→ 0→ 0
d0,0 1 0→ 0→ 0→ 0→ 0→ 0→ 0
d0,0 2 0→ 0→ 0→ 0→ 0→ 0→ 0
d0,0 3 0→ 0→ 0→ 0→ 0→ 0→ 0
d0,1 0 0→ 0→ 0→ 0→ 0→ 1→ 1
d0,1 1 0→ 0→ 0→ 1→ 1→ 1→ 1
d0,1 2 0→ 0→ 3→ 3→ 3→ 1→ 1
d0,1 3 0→ 1→ 1→ 1→ 1→ 1→ 1
d0,2 0 0→ 0→ 0→ 0→ 0→ 2→ 2
d0,2 1 0→ 0→ 0→ 2→ 2→ 2→ 2
d0,2 2 0→ 2→ 2→ 2→ 2→ 2→ 2
d0,2 3 0→ 3→ 3→ 3→ 2→ 2→ 2
d0,3 0 0→ 0→ 0→ 0→ 0→ 0→ 3
d0,3 1 0→ 0→ 0→ 0→ 0→ 3→ 3
d0,3 2 0→ 0→ 0→ 0→ 3→ 3→ 3
d0,3 3 0→ 0→ 0→ 3→ 3→ 3→ 3

and are thus not communicated over the NVLink interconnect but being potentially
moved in global memory using fast intra-GPU memcopies.

4.7.2 Experimental Results

Table 4.1 shows a flow-based transfer schedule for the scatter collective generated
by our library for S1. Data targeted at a distinct GPU is split into four parts with
its own transfer path consisting of a sequence of GPU identifiers. Every time step
of the flow problem corresponds to one step in a path. If consecutive IDs remain
constant no action has to be taken and the data chunk stays on the corresponding
device. Different IDs denote a corresponding transfer that has to be executed in this
step. Note, that the faster connection between GPUs 0 and 3 enables us to send one
part of data d0,1 and d0,2 through GPU 3 instead of using the direct links in a naïve
fashion.

Figures 4.7 and 4.8 show the total throughput for different input sizes for the scatter
and all-to-all collectives executed on S1. As the GPUs are fully connected via the
system’s topology the schedules generated by the unsplittable flow problem (V3)
coincide with the direct transfers between GPUs (V1) and thus are omitted. For

4.7 Evaluation 35

216 218 220 222 224 226 228 230

Input Size [Bytes]

0

20

40

60

80
Th

ro
ug

hp
ut

 [G
B/

s]
V1 Direct
V2 Rings
V4 Opt. 1-split

Fig. 4.7.: Scatter/gather throughput on S1.

218 220 222 224 226 228 230 232

Input Size [Bytes]

0

50

100

150

200

250

Th
ro

ug
hp

ut
 [G

B/
s]

V1 Direct
V2 Rings
V4 Opt. 1-split

Fig. 4.8.: All-to-all throughput on S1.

all-to-all even the k-split version is the same because the splitting factor equals to 1.
The fully-connected topology also renders the double-buffer approach unnecessary
since the data can be moved directly to the final locations on the target devices.

In case of scatter the ring-based schedule and the optimized k-split schedule perform
equally well on this system. Both versions split data into four parts which fit the
number of outgoing edges. Therefore, they are able to saturate the bandwidth
bottleneck for large input sizes and reach a total throughput of 88 GB/s. For smaller
input sizes the overhead per transfer decreases performance. The schedule using
direct transfers performs better than the other methods in these cases although it
does not meet the criteria of a (bandwidth-)optimal transfer schedule. It consists of
fewer but bigger data transfers which reduces the overhead. Nevertheless it is not
able to take advantage of the double NVLink connections between nodes (0, 3) and
(1, 2) which limits the maximum throughput. For large input sizes the difference in
throughput resembles the proportion of 3

4 incorporated edges at the source node.

In the all-to-all case the k-split version is able to outperform the ring-based approach.
The flow problem is aware of the direct connections and the number of commodities
fits the number of links of the bisection bandwidth. Therefore, each data chunk
di,j does not have to be split and can be transferred on the shortest path to its
corresponding target. On the other hand, when using rings, data is partitioned and
some chunks of it will take a detour to reach their targets through a ring. Thus
a higher number of transfers and synchronization is required which causes more
overhead. This leads to less performance especially for smaller input sizes.

On the DGX system all transfer schedules differ from each other due to the more
complex topology. Some GPU pairs are not connected via NVLink edges and data
transfers between the GPUs have to be rerouted to reach good performance. Fig-
ures 4.9 and 4.10 present the results for the scatter and all-to-all communication

36 Chapter 4 Gossip Communication Library

217 220 223 226 229 232

Input Size [Bytes]

0

20

40

60

80

100

120

140

Th
ro

ug
hp

ut
 [G

B/
s]

V1 Direct
V2 Rings
V3 Opt. unsplit
V4 Opt. 6-split

Fig. 4.9.: Scatter/gather throughput on S2
(DGX-1, 8 GPUs).

220 223 226 229 232 235

Input Size [Bytes]

0

100

200

300

400

500

Th
ro

ug
hp

ut
 [G

B/
s]

V1 Direct
V2 Rings
V3 Opt. unsplit
V4 Opt. 3-split
V5 Double-buffered

Fig. 4.10.: All-to-all throughput on S2
(DGX-1, 8 GPUs).

benchmarks on S2. The missing NVLink connections cause some transfers of the
direct schedule to be routed via slow PCI-e which for both collectives translates
to a significantly smaller maximum throughput compared to the other strategies.
However, for very small input sizes where transfer speed plays a less important role
the direct transfers can compete with other unsplit approaches.

Regarding the scatter primitive running on S2, the ring-based and optimized k-split
schedules behave similarly to S1. Here, data is split into six chunks according to the
number of rings and connections, respectively. The maximum throughput of 148
GB/s is only limited by the bandwidth bottleneck. The unsplit version is again able
to perform better for smaller input sizes, but throughput is limited. The source GPU
has to send seven distinct data packages, one to every other GPU, which does not
match the six outgoing edges. Still, the solution of the flow problem unveils that
double edges can be used frequently to reach 7

9 of the maximum throughput of the
k-split schedule, which matches our experimental results.

For all-to-all the difference between the ring-based and k-split version is analogous
to S1. The two approaches achieve the highest throughput of 523 GB/s and 526
GB/s for large input sizes. The k-split version performs better in all cases, especially
for medium sizes. The unsplit schedule is closer to the k-split schedule than in
the scatter case because the splitting factor is smaller. Because of this it is able to
outperform V2 and V4 in more cases than before.

In case of using the DGX-1 Volta topology it is reasonable to use the double-buffered
schedule, too. The reduced memory consumption comes at the price of decreased
throughput. Here, only a single global synchronization step is needed for this
approach, but this already leads to a 10-20% lower performance compared to the
asynchronous 3-split version.

4.7 Evaluation 37

216 218 220 222 224 226 228 230

Input Size [Bytes]

0

20

40

60

80

100

120

140
Th

ro
ug

hp
ut

 [G
B/

s]
V1 Direct
V2 Rings
V4 Opt. 4-split
V4 Opt. 5-split

Fig. 4.11.: Scatter/gather throughput on
S3 (DGX-1 quad, 4 GPUs).

218 220 222 224 226 228 230 232

Input Size [Bytes]

0

100

200

300

400

Th
ro

ug
hp

ut
 [G

B/
s]

V1 Direct
V2 Rings
V4 Opt. 1-split
V4 Opt. 5-split

Fig. 4.12.: All-to-all throughput on S3
(DGX-1 quad, 4 GPUs).

To test the different transfer schedules on an asymmetric topology we have used
one half of the DGX-1 system. The four GPUs 0,1,3 and 4 are connected with the
same topology as S1 plus an additional NVLink edge between GPUs 2 and 3 which
cannot be associated with one of the rings. This enables us to use the schedules
originally developed for the four GPU system and to generate a specialized version
by incorporating the extra edge in the flow problems. Figure 4.11 shows the benefits
of this approach for the scatter collective with source GPU 3. For large data sizes the
optimized 5-split schedule improves by up to 25% over the original 4-split version
since it can make use of five instead of four outgoing NVLink connections. The
all-to-all communication can benefit from the additional edge, too, because of the
increased bisection bandwidth. To fit the number of connections the splitting factor
rises from 1 to 5 which has a negative effect for small input sizes. However, the
maximum throughput grows from 344 to 427 GB/s as illustrated in Figure 4.12.

Table 4.2 shows the throughput at the bottlenecks identified in Sections 4.5.1
and 4.5.2 for all three evaluated systems. The theoretically available bandwidth
corresponds to the number of links involved at the bottleneck. In S1 those are four
connections of 20 GB/s unidirectional (or 40 GB/s bidirectional) bandwidth, while
six and five edges of 25 GB/s (50 GB/s bidirectional) bandwidth are concerned in S2
and S3, respectively. The amount of data which has to pass through the bottleneck
depends on the number of GPUs. S1 and S3 contain four GPUs and thus 3

4 of the
total input has to leave the source node when executing the scatter collective. In the
case of eight GPUs on S2 it amounts to 7

8 of the input. For all-to-all communication
exactly half of the input will be sent through the bottleneck, 1

4 in each direction.
For large input sizes we achieve 82-88% of the total available maximum bandwidth
across all configurations.

38 Chapter 4 Gossip Communication Library

Tab. 4.2.: Maximum achieved bottleneck bandwidth when running scatter and all-to-all on
the tested systems.

Scatter/Gather All-To-All
Achieved Available Achieved Available

S1 66 GB/s 80 GB/s 131 GB/s 160 GB/s
S2 130 GB/s 150 GB/s 263 GB/s 300 GB/s
S3 108 GB/s 125 GB/s 214 GB/s 250 GB/s

Fig. 4.13.: Weak scalability of our Warpdrive application over 2, 4, and 8 Tesla V100 with
2 GB of input data per GPU.

4.7.3 Case Study: Hash Table Construction

We have analyzed the impact of Gossip on our WarpDrive [41] application for
constructing distributed hash tables on multi-GPU systems which uses a two step
data distribution scheme: (1) a multisplit partitioning of the input data on each GPU
to determine the amount of data to be sent to each other GPU, (2) a subsequent
all-to-all communication among all GPUs. Finally, each GPU inserts its received
partition into a local hash table. Figure 4.13 shows a weak scalability analysis with
runtime breakdowns for the before-mentioned phases. We compare a naive all-to-all
communication scheme (V1) to our proposed optimal solution (V4).

4.7 Evaluation 39

GPU 7

GPU 6 GPU 5

GPU 4 GPU 0

GPU 1 GPU 2

GPU 3

Fig. 4.14.: Alternative DGX topology for eight Volta-based devices connected via three rings
(black, green, red arrows).

4.7.4 Alternative DGX topology

Besides the DGX-1 topology being physically available to conduct benchmarks of
different approaches, we have investigated alternative NVLink topologies for eight
V100 devices. Figure 4.14 depicts a topology which is identical to the DGX-1 with
the exception of two connections: Instead of connecting the GPUs (2, 3) and (6, 7)
with two links, the ports are used to connect (2, 6) and (3, 7) with an additional
link. With this minor modification the degree and total number of edges remains the
same, but it allows to increase the bisection bandwidth by 33% while still preserving
the availability of three dedicated rings. Therefore the performance of the ring-based
all-to-all would be unchanged compared to the results in Section 4.7.2. Yet it would
no longer be optimal because some data chunks had to cross the links between
the two partitions {0, 1, 2, 3} and {4, 5, 6, 7} twice which violates the requirement
of uniqueness for optimality. Take for example the transfer path 0-4-6-2 for data
d0,2 on the black ring, where the links 0-4 and 6-2 pass the data between partitions.
The transfer schedule resulting from the flow problem however is able to saturate
the bisection bandwidth which would lead to a 33% better performance than the
ring-based approach. An additional benefit is that commodities do not have to be
split here because the splitting factor k from Eq. (4.5) equals 1 in this case.

40 Chapter 4 Gossip Communication Library

4.8 Conclusions

Irregular interconnect topologies of current NVLink-based multi-GPU servers impose
major challenges for the determination of optimal transfer plans used in common
communication collectives such as scatter/gather and all-to-all. Hence, state-of-
the-art solutions relying on theoretically proven optimal schedules executed on
symmetric subtopologies such as hypercubes or rings cannot saturate the full band-
width of the whole interconnect in the general case. Asymmetric topologies occurring
in case of partial usage of the available accelerator cards render the computation of
optimal transfer plans even more complex. In this work, we have investigated the
applicability of ring-based and flow-oriented transfer approaches. Our flow-oriented
schedules are harvested by means of integer linear programming and have been
proven to include solutions equivalent to ring-based ones in case of optimality but
may come up with superior solutions in case of irregular topologies.

We achieve a throughput of up to 526 GB/s for all-to-all and 148 GB/s for scatter/-
gather on a DGX-1 Volta server with only a small memory overhead which, in both
cases, corresponds to 88% of the theoretically achievable bottleneck bandwidth of
the underlying NVLink topology. We have further shown that an efficient all-to-all is
key for the scalability of distributed hashing on a DGX-1 system.

Moreover, we propose a cost-neutral modification of the DGX-1 Volta topology
which is degree-preserving and sustains its triple ring decomposition while provid-
ing 33% expected all-to-all bandwidth improvement and identical scatter/gather
performance.

The proposed schedules for scatter/gather and all-to-all primitives are optimized for
data structure construction algorithms using comparably big chunk sizes. Accord-
ingly, we achieve maximum throughput for increasing data package sizes. However,
small data scenarios with low latency demands could also be treated in the context
of multi-commodity flow optimization by adding mandatory self-loops in the time-
expanded graph with suitably chosen bandwidth constraints. Another direction of
future research could be the dynamic adjustment of static transfer plans in case of
non-stationary data distributions. This could be achieved by tracking the estimated
partition sizes over time based on moving average statistics combined with occa-
sional recomputation of optimal solutions. Determining an optimal solution of the
flow problem can be achieved in a few seconds due to the relatively small amount of
variables of the integer linear program. We plan to include latency-aware dynamic
communication primitives in the future to handle highly unbalanced data distribu-
tions into Gossip. Gossip is available at https://github.com/Funatiq/gossip.

4.8 Conclusions 41

https://github.com/Funatiq/gossip

Suffix Array Construction 5
This chapter shows how Gossip’s all-to-all communication pattern is applied in
the multi-GPU suffix array construction approach of the following peer-reviewed
paper:

Suffix Array Construction on Multi-GPU Systems.
Florian Büren, Daniel Jünger, Robin Kobus, Christian Hundt, Bertil Schmidt.
Proceedings of the 28th International Symposium on High-Performance Parallel and
Distributed Computing (HPDC 2019)
https://doi.org/10.1145/3307681.3325961

Some text fragments, examples and results are directly taken from said paper.

5.1 Background

A suffix array (SA) contains the starting positions to all suffixes of a string, ordered
by lexicographically sorting the suffixes. Let s = x0x1 . . . xn−1 be a string consisting
of n ≥ 1 letters xi ∈ Σ∗, 0 ≤ i < n, where Σ is a finite, totally ordered alphabet. For
each i ∈ {0, . . . , n− 1} we define the i-th suffix of s as si = xixi+1 . . . xn−1. Because
each suffix can be uniquely identified by its index i it is sufficient to store the indices
in the SA instead of complete sub-strings si. Additionally, we define the inverse suffix
array (ISA) which maps each suffix si to its unique rank j = rank(i) in SA. The
lexicographic order of the suffixes can be expressed by each side of the following
equivalence

SA[j] = i⇔ ISA[i] = j, for j = rank(i)

Commonly, a special character $ = xn is appended to the string s to denote its end.
$ lexicographically precedes every other string, therefore including this character in
the SA will always result in SA[0] = n. Table 5.1 shows the SA and ISA for the input
string “banana$”.

43

https://doi.org/10.1145/3307681.3325961

Tab. 5.1.: Suffix array (SA) and rank/ISA for the input string “banana$”.

i Suffix i rank(i) = ISA[i] Sorted suffix SA[i]

0 banana$ 4 $ 6
1 anana$ 3 a$ 5
2 nana$ 6 ana$ 3
3 ana$ 2 anana$ 1
4 na$ 5 banana$ 0
5 a$ 1 na$ 4
6 $ 0 nana$ 2

5.2 SA Construction: Prefix Doubling

As we are interested in generating the lexicographical order of all suffixes, a naïve
approach would be to sort all the suffixes of the input string with a common string
sorting algorithm. However, suffixes are obviously not independent strings; their
relations can be exploited to develop better algorithms. There exist several different
approaches [91] to SA construction which have been studied extensively. Here we
focus on prefix doubling which was employed as the main algorithm for our multi-
GPU SA construction. Figure 5.1 depicts an overview of the complete workflow.

GPU 1

GPU 0

GPU 2

GPU 3

GPU 1

GPU 0

GPU 2

GPU 3

Prefix
Doubling Merge

Sample Suffixes

Non-sample Suffixes

GPU 1

GPU 0

GPU 2

GPU 3

Suffix
Array Suffix

15
5
0
4
8
9
11
...

$
AGGCCGCGGT$
ATTGCAGGCCGCGGT$
CAGGCCGCGGT$
CCGCGGT$
CGCGGT$
CGGT$
...

ATTGCAGGCCGCGCGGT$

Fig. 5.1.: Overview of the employed suffix array construction algorithm.

Assume that all suffixes are already sorted lexicographically by only considering
their prefixes of length h. This so called h-order can be used to infer a 2h-order of
the suffixes because for each suffix si we can use the h-order of suffix si+h which
contains the next h letters of si. We define rankh(i) to denote the (non-unique)
rank of each suffix si according to the h-order. Sorting all suffixes into h-order yields
segments of the same h-rank if suffixes share a common prefix of length ≥ h. The
suffixes in each segment can then be sorted independently using rankh(i + h) to
obtain the 2h-order. This may split each segment into several smaller segments of
different 2h-ranks. Note, that suffixes from different segments will never interfere
because their order has already been established in a previous step, their order will
only get more accurate with each doubling step. This prefix doubling process is
repeated until all suffixes have been assigned a unique rank, leaving no segment of
size greater than one, resulting in the SA.

44 Chapter 5 Suffix Array Construction

The following example shows how to infer the 2h-order of the two suffixes s1 and s6

from the h-order of s5 and s10. Prefixes considered so far are underlined.

Let s = yabbadabbadoo$, h = 4.

s5 = dabbadoo$
s10 = doo$

}
⇒ rankh(5) < rankh(10)

s1 = abbadabbadoo$
s6 = abbadoo$

}
⇒ rankh(1) = rankh(6)

rankh(1) = rankh(6)
rankh(1 + 4) < rankh(6 + 4)

}
⇒ rank2h(1) < rank2h(6)

⇒ abbadabbadoo$ < abbadoo$

5.3 Multi-GPU Prefix Doubling

In our multi-GPU prefix doubling implementation, we distribute input and working
arrays among all GPUs of a system to take advantage of additional memory capacity
and increased compute resources. Our approach to prefix doubling is illustrated in
Figure 5.2 and consists of five main steps:

STEP 0: k-mer sort and initial bucketing
STEP 1: Write ISA
STEP 2: Fetch ISA
STEP 3: Re-bucket
STEP 4: Compact

5.3.1 k-mer sort and initial bucketing

Initially, the input string s is evenly scattered over p GPUs (see s[] in Fig. 5.2) with
an overlap of k− 1 characters. Each GPU proceeds to generate all k-mers of its share
of the input string, i.e., all prefixes of length k of every suffix. For each k-mer, its
(global) starting index is written to a separate array, leading to index-k-mer-tuples.

The tuples are sorted locally on each GPU by means of a fast 64-bit-key-value radix
sort with k-mers as keys and indices as values. Subsequently, a custom distributed

5.3 Multi-GPU Prefix Doubling 45

Index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

s[] A T T G C A G G C C G C G G T $

Sorted k-mers $ A A C C C C G G G G G G T T T

SAh=1[] 15 0 5 4 8 9 11 3 6 7 10 12 13 1 2 14

Ranksh=1[] 0 1 1 3 3 3 3 7 7 7 7 7 7 13 13 13

ISAh=1[] 1 13 13 7 3 1 7 7 3 3 7 3 7 7 13 0

ISA[SAh=1[] + h] - 13 7 1 3 7 7 3 7 3 3 7 13 13 7 0

SAh=2[] 15 5 0 4 8 9 11 3 7 10 6 12 13 14 2 1

Ranksh=2[] 0 1 2 3 4 5 5 7 7 7 10 10 12 13 14 15

GPU 0 GPU 1 GPU 2 GPU 3

STEP 0: k-mer sort and initial bucketing

STEP 1: Write ISA

STEP 2: Fetch ISA

STEP 3: Re-bucket using segmented sort

STEP 4: Compact singleton buckets

ITERATE: If not all buckets are singleton goto STEP 1 using h = 2*h

Fig. 5.2.: Illustration of the main steps of multi-GPU prefix doubling using the input string
s = ATTGCAGGCCGCGGT$, 4 GPUs, and k = 1 for k-mer sort and initial bucketing.
All-to-all is performed three times per iteration: once in Step 1 and twice in Step
2.

46 Chapter 5 Suffix Array Construction

merge algorithm is applied to (re-)merge the locally sorted portions of the array to a
distributed globally sorted array (SAh=1[] in Fig. 5.2).

Afterwards, initial ranking and bucketing takes place. Every bucket is identified by
the global index of its starting position. The indices of bucket starts are propagated
across all other suffixes in the respective buckets by using local inclusive prefix scans
and inter-GPU communication. This yields a globally correct ranking for prefixes
up to h0 := k. The initial ranking after this step is shown as Ranksh=1[] in Figure
5.2.

5.3.2 Write ISA

For prefix doubling, the ranks of suffix si+h (in string order) needs to be available
globally, while operating on partially sorted local arrays. Consequently, an distributed
ISA is maintained which contains the ranks of suffixes according to the current
h-order as shown in ISAh=1[] in Fig. 5.2. The original index (in string order) of any
given suffix in partially sorted order might refer to any GPU. Hence, writing the ranks
indicating to which bucket each suffix belongs requires all-to-all communication.
Consider all pairs (i, r) with i being the original starting index of the suffix and
r being the rank assigned to it. Each GPU first executes a multisplit operation,
permuting both arrays in such a way that elements with the same destination GPU
are contiguous. After this step the contiguous ranges are communicated to their
specific target GPUs, where the corresponding ranks can be written to the ISA
array.

5.3.3 Fetch ISA

For subsequent re-bucketing the new sorting keys ISA[i+ h] for every si need to be
fetched; i.e., given the working SA in partially sorted order, the element SA[j] + h is
needed for every index j from the current ISA yielding ISA[SAh=1[]+h] in Fig. 5.2.
Since the index SA[j] + h may refer to any GPU, a key-value multisplit is executed
on (j, SA[j] + h) according to GPU(SA[j] + h). Using all-to-all communication,
every GPU sends its query index (SA[j] + h) to the GPU where the relevant part
of the ISA resides. GPUs look up ISA[i] for every i received and return the ranks
queried to the same index in the original array by means of a second call to the
all-to-all primitive.

5.3 Multi-GPU Prefix Doubling 47

5.3.4 Re-bucket

With the appropriate information (original string indices SAh, sorting keys ISA[SAh[]+
h], segment heads, bucket ranks Ranksh) in place, segmented sort can now be ex-
ecuted. Segments (buckets) spanning more than one GPU are treated as ordinary
local segments during segmented sort, but need to be merged after each GPU has
completed local sorting. This results in an updated suffix array as shown in SAh=2[]
in Fig. 5.2. Subsequently, new ranks (Ranksh=2[] in Fig. 5.2) are assigned reflecting
the new buckets formed with respect to the doubled prefix length (2h).

5.3.5 Compact and iterate

Buckets containing a single suffix do not need to be sorted further and can therefore
be safely removed from the working arrays. For each SA/Rank pair (ij , rj) it is
checked whether rj−1 < rj < rj+1 applies. If it does, si is the only inhabitant of
bucket rj and the responsible GPU compacts ij and rj out of its working arrays. The
algorithm terminates if all suffixes have been removed from the working list of each
GPU. Otherwise, h is doubled and the algorithm continues with Step 1.

5.4 Analysis

In the original paper we have examined the time-consuming steps for fetching and
updating the ISA in detail. Both involve accessing the ISA which is ordered in a
completely different fashion (i.e., in string order) than the working arrays (partially
sorted order). This not only necessitates an all-to-all communication with other GPUs
but also leads to irregular memory access patterns through indirect addressing. For
the first three prefix doubling iterations, we observed that all-to-all communication
takes less time than accessing the memory. For subsequent iterations, the runtime is
dominated by the cost for the all-to-all communication.

Throughout the multi-GPU prefix doubling algorithm all-to-all communication occurs
three times in every iteration and takes a significant part in the overall runtime,
which underlines the importance of an efficient all-to-all primitive.

48 Chapter 5 Suffix Array Construction

5.5 Performance Evaluation

Here we show some results from the paper for the complete SA construction. Experi-
ments were performed on the following system:

DGX-1 Volta: Dual-socket Xeon E5-2698 v4 CPU (2x20 cores at 2.20 GHz) with
512 GB DDR4 RAM and 8 Tesla V100 GPUs, each with 16 GB HBM2 memory,
CUDA 10.0, GCC 5.4.0.

Similar to Wang et al. [114], we used a collection of datasets selected from the
Manzini, Silesia, Large Canterbury and Protein corpora [@9] to evaluate our im-
plementation. Additionally, we investigated the performance for larger real-world
datasets like the source code of the Linux kernel version 4.9.99 (697 MB) and the
Gutenberg corpus containing a selection of English literature (1211 MB), as well as
several mammalian genomes:

• GRCh38 (human reference genome, 3104 MB),
• GCA_000003625.1_OryCun2.0 (rabbit, 2644 MB),
• GCF_000151905.2_gorGor4 (gorilla, 2962 MB),
• GCF_000772875.2_Mmul_8.0.1 (rhesus monkey, 3159 MB),
• GCF_002099425.1_phaCin_unsw_v4.1 (koala, 3083 MB),
• and GCF_002863925.1_EquCab3.0 (horse, 2421 MB).

We compare the performance to two CPU and two GPU implementations: libdivsufsort
[@9], currently the fastest sequential CPU implementation serves as baseline for
the speedup measurements, parallel divsufsort [57], a cilk-based shared memory
parallelization of libdivsufsort, and two single-GPU CUDA implementation from
CUDPP [114] and NVBIO [@5]. Note, that the NVBIO implementation produced
incorrect results for six of the test datasets since some of the buckets were not
completely sorted.

To reflect the workflow of executing SA construction on the GPU in batches as part of
a larger framework, benchmarks exclude the time needed for disk I/O and memory
allocation, but include the time for data transfers between CPU and GPU.

Figure 5.3 shows the speedups of our implementation and parallel divsufsort over
the baseline libdivsufsort, which is the fastest sequential implementation currently
available. Although the parallel divsufsort was executed with 80 CPU threads, it was
only able to achieve a maximum speedup of 5.7. In contrast, we achieved speedups
between 133 and 354 using 8 GPUs, which is more than two orders-of-magnitudes
faster than libdivsufsort and still 30× and 68× faster than parallel divsufsort.

5.5 Performance Evaluation 49

Fig. 5.3.: SA construction speedups over libdivsufsort on a DGX-1 using 8 GPUs for large-
scale datasets. The speedups of parallel divsufsort over sequential libdivsufsort
using 80 CPU threads are also reported (Par. ldss 80 threads). [9]

For the human genome dataset the state-of-the-art MPI implementation by Flick et
al. [24] reported a runtime of 4.8s using 100 nodes with 1600 cores, which we were
not able to reproduce. In comparison, we achieved a runtime of 3.44 s on a single
DGX-1 server, resulting in a speedup of 1.4.

For the comparison of GPU implementations, we included the first 236 MB of the
Gutenberg corpus as an additional dataset, which was the largest input size that
could be processed by CUDPP’s implementation on a single GPU with 16 GB of
memory.

Figures 5.4 and 5.5 show the speedups of our multi-GPU implementation over
CUDPP and NVBIO, respectively. On a single GPU, our algorithm is at least 1.9×
faster than CUDPP and at least 1.4× faster than NVBIO. With two GPUs it reached
2.6− 5.8 and 2.5− 3.5 speedup compared to CUDPP and NVBIO, respectively. Using
4 or 8 GPUs, we achieved even greater speedup, but the optimal number of GPUs
depended on the dataset. Generally speaking, higher numbers of GPUs required
larger datasets to unleash their full potential. Note, that dividing smaller datasets in
even smaller parts on each GPU does not efficiently use the compute resources of
each GPU, while communication overhead increases with the number of GPUs.

50 Chapter 5 Suffix Array Construction

Fig. 5.4.: SA construction speedup over CUDPP’s skew implementation (small and medium
datasets) on a DGX-1. [9]

Fig. 5.5.: SA construction speedup over NVBIO’s prefix doubling implementation (small and
medium datasets) on a DGX-1. Note that NVBIO’s results for the following datasets
are incorrect: chr22dna_34M, etext99_105M, jdk13c_69M, linux-2.4.5_116M,
rfc_116M, w3c2_104M. [9]

5.5 Performance Evaluation 51

For datasets between 20 and 100 MB, using 4 GPUs was the fastest configuration,
while larger datasets (except for etext99) were processed the fastest on 8 GPUs. The
highest speedups were achieved for the largest dataset: 11.7× faster than CUDPP
and 6.5× faster than NVBIO. Larger datasets could result in even greater speedup
using 8 GPUs.

5.6 Conclusion

Our SA construction algorithm shows great performance in comparison to state-
of-the-art CPU and previous single-GPU solutions. We were able to outperform
all tested competitors on datasets larger than a 7M characters. Additionally, by
utilizing multiple GPUs the implementation enables larger input sizes than previously
possible. Using 8 GPUs the SA construction for a full-length human genome finished
in 3.44 s, which is faster than previously reported 4.8 seconds achieved by employing
1600 cores on 100 nodes on a CPU-based HPC cluster.

Because the SA construction algorithm was implemented before Gossip’s (Chapter
4) completion, the paper used a handcrafted version of Gossip’s optimized unsplit
all-to-all primitive for the DGX-1 system. It would have been beneficial for the project
to rely on Gossip’s library functions, which would allow it to be adapted to different
systems by using Gossip’s automatic transfer plan generation. Furthermore it would
be interesting to see if Gossip’s split all-to-all primitive could provide additional
speedup. However, these topics are left as future work.

52 Chapter 5 Suffix Array Construction

Part II

Metagenomic Classification

MetaCache Overview 6
Chapters 6-10 are based on and extent the following peer-reviewed papers:

A big data approach to metagenomics for all-food-sequencing.
Robin Kobus, José M. Abuín, André Müller, Sören Lukas Hellmann, Juan C. Pichel,
Tomás F. Pena, Andreas Hildebrandt, Thomas Hankeln, Bertil Schmidt.
BMC Bioinformatics 21, 102 (2020).
https://doi.org/10.1186/s12859-020-3429-6

MetaCache-GPU: Ultra-Fast Metagenomic Classification.
Robin Kobus, André Müller, Daniel Jünger, Christian Hundt, Bertil Schmidt.
Proceedings of the 50th International Conference on Parallel Processing (ICPP 2021).
https://doi.org/10.1145/3472456.3472460

Abstract – The cost of DNA sequencing has dropped exponentially over the past
decade, making genomic data accessible to a growing number of scientists. In
bioinformatics, localization of short DNA sequences (reads) within large genomic
sequences is commonly facilitated by constructing index data structures which allow
for efficient querying of substrings. Recent metagenomic classification pipelines
annotate reads with taxonomic labels by analyzing their k-mer histograms with
respect to a reference genome database. CPU-based index construction is often
performed in a preprocessing phase due to the relatively high cost of building
irregular data structures such as hash maps. However, the rapidly growing amount
of available reference genomes establishes the need for index construction and
querying at interactive speeds. In this paper, we introduce MetaCache-GPU – an ultra-
fast metagenomic short read classifier specifically tailored to fit the characteristics
of CUDA-enabled accelerators. Our approach employs a novel hash table variant
featuring efficient minhash fingerprinting of reads for locality-sensitive hashing and
their rapid insertion using warp-aggregated operations. Our performance evaluation
shows that MetaCache-GPU is able to build large reference databases in a matter
of seconds, enabling instantaneous operability, while popular CPU-based tools such
as Kraken2 require over an hour for index construction on the same data. In the
context of an ever-growing number of reference genomes, MetaCache-GPU is the first
metagenomic classifier that makes analysis pipelines with on-demand composition
of large-scale reference genome sets practical.

55

https://doi.org/10.1186/s12859-020-3429-6
https://doi.org/10.1145/3472456.3472460

6.1 Introduction

Recent years have seen a tremendous increase in the volume of data generated in the
life sciences, especially propelled by the rapid progress of next generation sequenc-
ing (NGS) technologies [104]. High-throughput sequencers can produce massive
amounts of short DNA strings (called reads) in a single run. This leads to large-scale
datasets being processed in a wide range of bioinformatics applications. Furthermore,
the cost of these technologies has been decreasing dramatically. The low sequencing
cost per genome1 enables widespread usage and renders population-scale projects
feasible. Examples include the Earth BioGenome Project [60], metagenomics mi-
crobiome sequencing studies [55], and world-wide SARS-CoV-2 sequencing efforts
[6].

However, the analysis of large sequencing datasets poses hard computational chal-
lenges. In particular, read mapping and read classification are performance-critical
tasks, being initial stages required for manifold types of NGS analysis pipelines. The
objective of read mapping is to determine the best mapping location(s) of each read
in a given (set of) reference genome(s). A common paradigm to address this issue is
to store and index reference genome sequences as sets of k-length substrings (called
k-mers) [77]. The constructed index is queried for the k-mers in each read to find
exact matches, which are further processed using a seed-and-extend approach.

Nevertheless, associated runtimes on common workstations remain high when
processing reads at scale. Parallelization can be employed to reduce execution times
but imposes additional challenges due to variable sizes of k-mer matches, large
storage requirements of index data structures, and their associated irregular memory
access patterns [94]. As a consequence, corresponding speedups on accelerators
such as GPUs and FPGAs are often limited [38, 37]. Aforementioned difficulties
are amplified in metagenomic read classification where a large number of reference
genomes is considered; e.g., the recent NCBI RefSeq Release 202 contains 51,326
genomic sequences from 15,461 different species. Metagenomic read classification
thus requires both the rapid construction and high throughput querying of large
index data structures, since reference genome collections are subject to frequent
change and continuous growth.

In summary, algorithmic design and implementations of bioinformatics applications
struggle to keep pace with recent high-throughput sequencing techniques and their
ever increasing data acquisition rates. In this work, we present MetaCache-GPU – a
metagenomic read classification algorithm optimized for CUDA-enabled accelerators.

1Currently around US$1,000 per genome: see http://www.genome.gov/sequencingcosts

56 Chapter 6 MetaCache Overview

http://www.genome.gov/sequencingcosts

We demonstrate how to efficiently construct and query a k-mer index for large
genome collections employing a novel massively parallel multi-bucket hash table.
Furthermore, we leverage multiple GPUs to overcome storage limitations of the
scarce video memory of a single GPU. The combination of both approaches leads
to up to 69 and 72 times faster database builds and up to 153 and 6 times faster
queries compared to the established CPU-based applications MetaCache [81] and
Kraken2 [116], respectively. Furthermore, MetaCache-GPU’s on-the-fly mode avoids
saving and reloading the database, enabling nearly instantaneous operability. Thus,
it allows for querying the database directly after construction and is up to 410 and
450 times faster than MetaCache and Kraken2, respectively.

The main contributions of this work are as follows.

• MetaCache’s extension from the taxonomic labeling of bacterial reads to the
detection and quantification of ingredients in food samples.

• Fast sequence processing from FASTA/FASTQ files to feed the MetaCache
pipeline.

• A novel multi-value hash table that enables rapid and memory-frugal construc-
tion and querying of k-mer indices on GPUs.

• The corresponding GPU-based minhashing scheme and top candidate genera-
tion for data-parallel read classification.

• In-memory index construction that allows for on-the-fly classification pipelines
avoiding intermediate disk I/O.

• Index distribution across multiple GPUs to support reference genome k-mer
indices exceeding single GPU memory.

The rest of Part II is organized as follows. Section 6.2 provides necessary background
on the topic of metagenomic classification. Related work is discussed in Section 6.3.
The general MetaCache pipeline is described in Section 6.4. Chapter 7 shows how
MetaCache can be applied in the detection and quantification of food ingredients
(All-Food-Sequencing). Chapter 8 explores in detail various methods which we
analyzed and optimized for fast execution. Initial sequence processing is examined
in Section 8.1. The design of our proposed GPU-based MetaCache pipeline is detailed
in Section 8.2. Its components, namely our GPU implementations of min-hashing,
the multi-value hash table for k-mer indexing, segmented sort and top candidate
generation are further examined in Sections 8.3, 8.4, 8.5 and 8.6, respectively.
Chapter 9 evaluates performance of the complete MetaCache-GPU pipeline and
Chapter 10 concludes.

6.1 Introduction 57

6.2 Background

The analysis of the taxonomic composition of a sequenced environmental sample
is a fundamental building block in metagenomic pipelines. The corresponding
classification problem aims at assigning a suitable taxonomic label (e.g., a species or
a genus) to a given NGS read. A traditional approach addressing this problem aligns
each read to an annotated database of reference genome sequences.

More concretely, consider a collection of reference (genome) sequences G =
{G1, . . . , Gn} and a collection of short reads R = {R1, . . . , Rm} with sequence
lengths |Gi| � |Rj |, ∀i ∈ {1, . . . , n}, ∀j ∈ {1, . . . ,m}. The objective of metagenomic
classification is to identify the most likely genome in G that each read in R may
originate from. Note that exact matches of a complete read to a reference substring
is unlikely due to genomic variation and sequencing errors. Thus, partial and inexact
matches must be considered. However, the corresponding measures can be compute-
heavy; e.g., calculating the optimal semi-global alignment score with commonly used
dynamic programming algorithms between a read Rj and a reference Gi exhibits a
time complexity proportional to the product of sequence lengths; i.e., O(|Gi| · |Rj |).
Since n ·m such alignments must be computed, corresponding runtimes would be
prohibitively long.

More recent alignment-free tools can reduce the high complexity based on exact
k-mer matching. In this approach, a k-mer index data structure (or database) is
constructed in a preprocessing step. The index is usually based on a hash table
that contains all distinct substrings of length k of each reference in G as keys and
their corresponding locations as values. A read Rj is then classified by a look-up
procedure, which extracts the set of all k-mers in Rj and subsequently queries it
against the precomputed index. If the look-up returns matches, counters for the
corresponding reference genomes are incremented. At the end of this procedure Rj
can be classified based on high-scoring counters. Kraken [117] is a highly popular
metagenomic classification tool following this approach.

However, the number of sequenced genomes is rapidly increasing. Thus, the index
data structure storing the k-mers of each reference sequence can become exceedingly
large. MetaCache [81] addresses this problem by applying a distinct subsampling
technique called minhashing [7]. A minhashing filter with sketch size s selects those
k-mers within a sequence G for a sketch S(G) whose hash values are among the s
smallest. A simple example using k = 4 and s = 2 looks as follows:

sequence: ACTGACTG
4-mers: ACTG hash(ACTG) = 14

58 Chapter 6 MetaCache Overview

CTGA hash(CTGA) = 8 <- select
TGAC hash(TGAC) = 7 <- select
GACT hash(GACT) = 11
ACTG hash(ACTG) = 14

When comparing two sequences which differ significantly in their length, as it is
the case when comparing short reads to reference genomes, it is advantageous
to construct a locality sensitive sketch representation which is constrained to a
certain region (window) of the reference. Note that the Jaccard index of two
sketches approximates the true Jaccard index of the whole sets of k-mers of the
corresponding windows and hence can be used as proxy.

6.3 Related Work

Wood and Salzberg [117] were among the first to demonstrate that a k-mer-based
exact matching approach can achieve high metagenomic classification accuracy by
developing Kraken while being around three orders-of-magnitude faster than the
alignment tool MegaBLAST [86]. Recent benchmark studies [66, 101] demonstrated
that k-mer based tools such as Kraken [117], Kraken2 [116], CLARK [87], and
MetaCache [81] can produce superior read assignment accuracy for selected bacterial
metagenomic datasets. While being accurate, the major drawback of the k-mer based
approach is high main memory consumption and long database construction times.
For medium-sized bacterial reference genome sets the databases used by Kraken
and CLARK already consume several hundreds of gigabytes in size. MetaCache
and Kraken2 reduce the k-mer index memory consumption by around one order-
of-magnitude by using different k-mer subsampling techniques (minhashing resp.
minimizers). Nevertheless, the rapidly increasing amount of available bacterial
reference genomes and the significantly higher complexities of eukaryotic reference
genomes relevant for applications such as the monitoring of food ingredients (see
Chapter 7) demand scalable solutions that can build and query k-mer indices at
higher speed than current approaches. In this work, we investigate how modern
multi-GPU systems can be used to accelerate MetaCache. Note that the GPU-based
k-mer index structure introduced in this work can be easily applied to related
bioinformatics tasks such as read mapping [94] or long-read-to-long-read alignment
[18].

There has been a limited amount of prior work on using GPUs for metagenomic
read classification. cuCLARK [49] accelerates CLARK using CUDA but only achieves

6.3 Related Work 59

speedups between 3.2 and 6.6 while keeping the high memory consumption of
CLARK. MetaBinG2 [92] applies a hidden Markov model to estimate the distance of
a read to organisms but is over an order-of-magnitude slower compared to CLARK.
Usage of k-mer indices on GPUs has also been investigated for the related problem
of aligning (or mapping) reads to a single genome. However, most approaches are
based on accelerating popular short read aligners such as BWA-MEM or Bowtie2
adopting the FM-index and Burrow-Wheeler-Transform (BWT) [69, 12]. While this
data structure can be memory efficient, k-mer querying requires iterative lookups
with irregular memory accesses. Thus, reported speedups are relatively low; e.g.
[38] only reports a speedup of 2 on a GPU compared to CPU-based BWA-MEM.
None of these papers consider the acceleration of k-mer index construction. k-mer
histogram generation is another task that relies on such k-mer index data structures
and has been studied for GPUs [62, 10, 19]. However, counting k-mer occurrences
is a far simpler task compared to the construction of a reference index, i.e. a
multi-value key-value store, which is needed for metagenomic classification. For
MetaCache-GPU, we introduce a novel multi-value hash table variant optimized for
memory-efficient k-mer index construction and querying on multiple GPUs. See
Section 8.4 for a detailed discussion.

6.4 MetaCache Pipeline

The workflow of MetaCache can be separated into two distinct phases: build and
query. First, a reference database must be build. Then, reads from metagenomic
samples are classified after querying the database. Typical for index based methods,
the default MetaCache pipeline is split into separate program calls for build and
query, where the database has to be saved to and loaded from disk. Here, querying
can be executed in different modes, either a single run processing all supplied input
files or an interactive session, which holds the database in memory and allows for
performing an arbitrary number of queries in succession. Additionally, we extended
MetaCache with a novel on-the-fly mode where queries can be executed directly
after building the database before writing it to the file system. To the best of our
knowledge, lightweight in-memory queries are unprecedented in the literature since
index construction times have been prohibitively long for competing, non-GPU-based
solutions. Figure 6.1 shows an overview of the build and query phases which are
further described in detail in the following.

60 Chapter 6 MetaCache Overview

determine contiguous window range with most hits

8
7

12
w2 w3 w4 w5 w6 w7 w8 w9w1g1 :

for each genome

(1) Build

(2) Query

• • •

read mate 1

optional: read mate 2

accumulate and sort query hits

HASH MAP PARTITION 1
locations feature

g1 w2

g1 w2

g1 w2

g1 w2

g1 w2

g1 w2

g1 w2

g1 w5

g1 w8

g2 w3

g2 w4

g3 w5

g3 w5

g3 w6

g3 w9

g3 w5

g2 w6

g2 w3

g2 w3

g7 w8

g7 w9

• • •

g1 g8w1, w2
4, w3

2, w5
2, w6

3, w8, w9

g2 w2, w3
3, w4

3, w6
2, w11

g3 w5
3, w6

3, w9
2, w10

3

• • •

MAPPING

• • • • • •

range hitsg
CANDIDATES

g1 12[w1,w6]

g3 11[w5,w10]

g2 9[w2,w6]

g8 2[w3,w4]

w1 w2

w3

• • • • • •

• • •
• • •

• • •

genome g 3

genome g 2

genome g 1

insert into hash map(s)

here: s = 7

query hash map(s)

features:
hashed k-mers

read sketch(es)

genome sketch:
s smallest features

 PART 1 candidates

g1 12[w1,w6]

g3 11[w5,w10]
• • •

 PART 2 candidates

2[w3,w4]

1[w2,w2]

PART. 2

g12

g13

...

...

...

...

...

...

...

...

...

...

...

...

g8

g13

Fig. 6.1.: Workflow: (1) Database construction: Each reference genome gi is partitioned
into slightly overlapping windows wj . The s smallest k-mer hashes of each
window are inserted into the database. (2) Classification: a database is queried
with the s smallest k-mer hashes of a read (or read pair). Subsequent counting of
hits within each window results in a list of mapping candidates. In the case of
several database partitions, the candidates from distinct partition are merged in
order to assign a read to the most likely taxon of origin.

6.4 MetaCache Pipeline 61

6.4.1 Build Phase

Building a reference database starts by generating a taxonomic tree containing the
relations of the considered reference genomes. The nodes and structure of the tree
are extracted from files provided by NCBI [98]. Next, a hash table is constructed
that maps k-mers (keys) to genome locations (values). Here, MetaCache employs
a producer-consumer strategy to fill a concurrent queue with batches of reference
sequences. Multiple producer threads parse the genome files to split the data into
header and sequence strings which are then pushed into the queue. A consumer
thread dequeues a batch of sequences and processes one sequence after another.
First it obtains the genomic identifier from the header to create a reference target
which is then connected to the taxonomic tree structure. Next, it proceeds to process
the corresponding sequence data by dividing it into windows of size w overlapping
by k− 1 base-pairs for a k-mer length of k. For each window all w− k+ 1 canonical
k-mers are generated and a hash function h1 is applied to each. The s smallest hash
values are selected as features and form the minhashing sketch, which is used to
represent the window in the database. Sketches are collected in batches and inserted
into a different concurrent queue which is consumed by another thread. This thread
is responsible for inserting the features of each sketch together with its location
information (target and window) into the hash table.

In the CPU version the hash table uses open addressing where each slot maps a
feature to a bucket of reference locations. To counteract the biased distribution of
sketch values a second hash function h2 is applied in order to determine the key
slot in the hash table. If the computed key slot is empty a new bucket is created
for the feature and the value is inserted. If the feature is already present in the
slot the value is appended to the corresponding bucket. If the slot is occupied by
a different feature a quadratic probing scheme is used to find the next slot where
inserting is tried again. Since the distribution of locations per k-mer is usually highly
skewed (a large fraction of k-mers occur only once while few occur many times) the
buckets can grow dynamically using a geometric growth scheme. Additionally, the
maximum number of locations stored per k-mer is limited to a pre-defined value
(254 per default).

Although multiple threads are used in this pipeline, MetaCache’s default hash table
does not support concurrent insertion. It uses a dynamic allocation strategy which
allows it to grow if the load factor exceeds a user defined limit. In this case a new
hash table of larger size is allocated into which all feature-bucket mappings are
re-inserted while the buckets holding the values are preserved. Therefore, the CPU
version of MetaCache is limited to a single thread operating the hash table in the

62 Chapter 6 MetaCache Overview

build phase. However, the benefit is, that the locations in each bucket remain sorted
throughout the whole process due to the ascending target and window IDs assigned
by the sketching thread. This allows linear-time merging of multiple location lists
into one sorted list, as is required in the query phase.

After database construction has finished, the taxonomic meta information as well as
the hash table are written to the file system.

6.4.2 Database Partitioning

Due to the ever increasing size of reference genome collections, the memory of a
single workstation might not be sufficient for MetaCache to create a database for
all reference sequences at once. Therefore, it is possible to partition the references
genomes into separate databases which allows to save memory either while building
or while querying or during both phases.

Partitioning of the reference genomes can be done as a preprocessing step followed
by successive distinct builds thus minimizing memory usage. Alternatively, if the
workstation used for building has enough resources, MetaCache can also build
database partitions in parallel.

Partitioned databases can be queried sequentially using independent query runs
followed by a merge step to obtain the final classification result. Alternatively, all
or a subset of partitions can be loaded at the same time and be queried in parallel.
Furthermore, partitioned databases generated by the CPU version of MetaCache can
be loaded by the GPU version and vice versa as long as no database part exceeds the
memory of a single GPU.

6.4.3 Query Phase

If MetaCache is not executed in on-the-fly query mode following the build phase, the
database has to be read from disk before reads can be queried. Here a condensed
form of the hash table is used where all buckets of target locations are loaded into
one large contiguous array which can be accessed by pointers. The on-the-fly mode
uses the hash table from the build phase as is. In addition, an acceleration structure
is generated from the taxonomic tree that contains the taxonomic lineage of each
target in the database thus allowing to compute the lowest common ancestor of two
taxa in constant time during classification.

6.4 MetaCache Pipeline 63

Similar to the build phase, a concurrent queue is used to distribute work among
multiple threads. One thread is responsible for reading sequences from input files
and separating header from sequence data. Batches of sequences are inserted into
the queue. Multiple threads consume the batches from the queue and process all
contained reads. To classify a read, its sequence is first split into windows of the
same length as used in the database. From each window all canonical k-mers are
generated and minhashing is applied to produce a sketch. All elements of the sketch
are then queried against the hash table. The resulting location lists are merged and
identical locations are accumulated. This yields a (sparse) histogram of hit counts
per window in the reference genomes (window count statistic) which indicate the
similarity of this region with the read.

To account for single-end or paired-end reads spanning multiple windows the
window count statistic is scanned with a sliding window approach to find target
regions with the highest aggregated hit counts in a contiguous window range. The
top m counts (top hits) are then used to classify the read. Usually 2 ≤ m ≤ 4 top hits
are enough to achieve a reliable classification. If the difference of the highest and
second highest count is above a threshold, the read is labeled as belonging to the
taxon of the genome corresponding to the maximum count. Otherwise, all targets
with counts close to the maximum are considered, the lowest common ancestor of
the corresponding taxa is calculated and used to label the read.

6.4.4 Coverage Filter

False positive read assignments can be caused by shared regions of DNA among
multiple reference genomes [16]. MetaCache is able to use coverage information to
detect some of these cases as follows.

Before assigning reads to classification targets we can filter the list of candidate
genomes identified during the read assignment phase by checking the coverage per
genome as follows. We analyze which windows of a target genome are covered
by reads from the dataset. If the percentage of covered windows of a genome is
much lower compared to other genomes, it is likely to be a false positive and will be
deleted from the list of possible target genomes. In fact we delete a quantile (e.g.
10%) of the target genomes with the lowest coverage. The reads are then classified
with respect to the remaining genomes.

Note that this strategy is only applicable if the number of reads is large enough
to cover significant parts of the genomes. In our experience it proofed especially

64 Chapter 6 MetaCache Overview

efficient in case of bacterial genomes which are orders of magnitudes smaller than
animal or plant genomes.

6.4.5 Quantification

In addition to the per-read classification we are able to estimate the abundances
of organisms contained in a dataset at a specific taxonomical rank. For each taxon
which occurs in the dataset we count the number of reads assigned to it. We then
build a taxonomic tree containing all found taxa.

Taxa on lower levels than the requested taxonomic rank are pruned and their read
counts are added to their respective parents, while reads from taxa on higher levels
are distributed among their children in proportion to the weights of the sub-trees
rooted at each child. After the redistribution the estimated number of reads and
abundance percentages are returned as outputs.

6.4 MetaCache Pipeline 65

MetaCache in
All-Food-Sequencing

7

Abstract – All-Food-Sequencing (AFS) is an untargeted metagenomic sequencing
method that allows for the detection and quantification of food ingredients including
animals, plants, and microbiota. While this approach avoids some of the shortcom-
ings of targeted PCR-based methods, it requires the comparison of sequence reads to
large collections of reference genomes. The steadily increasing amount of available
reference genomes establishes the need for efficient big data approaches.

We show how MetaCache’s alignment-free method can be applied for detection and
quantification of species composition in food and other complex biological matters.
It is orders-of-magnitude faster than the previous alignment-based AFS pipeline. In
comparison to the established tools CLARK, Kraken2, and Kraken2+Bracken it is
superior in terms of false-positive rate and quantification accuracy. Furthermore, the
usage of an efficient database partitioning scheme allows for the processing of mas-
sive collections of eukaryotic and bacterial reference genomes with reduced memory
requirements. In summary, MetaCache is a suitable tool for broad-scale metagenomic
screening applications. Information on how to adjust MetaCache’s settings for the
AFS context is available at https://muellan.github.io/metacache/afs.html.

7.1 Background

Monitoring of food ingredients is becoming an increasingly important task. Relevant
issues include correct labeling, fraud detection, and assessment of health risks [20].
This motivates the need for analytical methods that allow for accurate determination
and quantification of food ingredients ideally spanning all kingdoms of life including
animals, plants, bacteria, fungi, and possibly even viruses.

Quantitative real-time polymerase chain reaction (qPCR) [53] and droplet digital
PCR (ddPCR) [52] are DNA-based technologies for food control that are widely used
in practice. Unfortunately, these methods are limited by the number of target species
within a single assay and thus are not suitable for broad-scale species screening.

67

https://muellan.github.io/metacache/afs.html

Similar restrictions apply to approaches based on sequencing of species-specific DNA
bar codes [110].

High-throughput sequencing of total metagenomic DNA from biological samples
provides the possibility to screen for a wide range of species as it does not require
any prior definition of possible target species. However, subsequent bioinformatic
analysis of large amounts of sequence-reads is required to identify and quantify
actual food components. The All-Food-Seq (AFS) pipeline [95, 70] maps each
sequenced read to a number of reference genomes and then determines species
composition and relative quantities based on a read counting procedure. Evaluation
based on simulated as well as real data has demonstrated that AFS can detect
anticipated species in food products and achieve quantification accuracy comparable
to qPCR. However, the AFS pipeline relies on applying a read alignment tool (such
as BWA [65, 64, 63], Bowtie2 [58], or CUSHAW [71]) for each considered reference
genome. Thus, runtime scales linearly with the number of considered genomes. For
example, the quantification of a typical short read dataset consisting of a few million
reads using ten mammalian and avian reference genomes with the BWA-based AFS
pipeline already requires several hours on a standard workstation (not including
the time for index construction). For broader scale screening of many species a
much larger amount of reference genomes would be required, making this approach
unfeasible.

Recent benchmark studies [66, 101] demonstrated that k-mer based tools such as
Kraken [117], Kraken2+Bracken [74], CLARK [87], and MetaCache [81] can pro-
duce superior read assignment accuracy compared to several other tools including
MetaPhlAn [111], mOTU [106], QIIME [11], and Kaiju [79] for selected bacterial
metagenomic datasets. While being accurate, the major drawback of the k-mer
based approach is high main memory consumption and long database construction
times. For typical bacterial reference genome sets the databases used by Kraken
and CLARK already consume several hundreds of gigabytes in size. The signifi-
cantly higher complexities of eukaryotic reference genomes relevant for monitoring
food ingredients therefore make an extension of this method to food-monitoring
challenging.

Here, we apply MetaCache for broad-scale detection and quantification of species
composition in food and other complex biological matters. MetaCache proves to
be a superior substitute for the alignment tools previously employed in the AFS
pipeline. Our experimental results using a number of sequenced calibrator sausages
of known species composition show that MetaCache runs orders-of-magnitude faster
than the alignment-based AFS pipeline while yielding similar results. Furthermore,

68 Chapter 7 MetaCache in All-Food-Sequencing

MetaCache yields lower false-positive rates and higher quantification accuracy com-
pared to Kraken2, Kraken2+Bracken, and CLARK. It also provides faster database
construction times and competitive query speeds. Our database partitioning scheme
allows the reduction of peak main memory consumption on a single workstation
or a cluster node significantly and therefore enables scalability to growing genome
collections.

7.2 Evaluation

7.2.1 Datasets

In order to measure performance and accuracy of our approach in comparison to
other metagenomic tools, we have created databases of varying size containing
different organisms. Food-related genomes (selection of main ingredients) used for
database construction are listed in Table 7.2 while the considered bacteria, viruses,
and archaea from NCBI RefSeq (Release 90) are summarized in Table 7.1. The
created databases with their included reference genomes are described in Table
7.3.

We use ten short read datasets sequenced from calibrator sausage samples contain-
ing admixtures of a set of food relevant ingredients (chicken, turkey, pork, beef,
horse, sheep) on an Illumina HiSeq machine (downloaded from ENA project ID
PRJNA271645 (Kal_D and KAL_D) and PRJEB34001 (all other data)). Table 7.4
shows the read datasets together with the corresponding percentage of meat com-
ponents used during preparation. The samples comprise meat proportions ranging
from 0.5% to 80% and can be subdivided into two categories: Kal A-E consist only
of mammalian meat, while KLyo A-D represent Lyoner-like sausages containing
poultry in addition to mammals [54, 21]. The dataset KAL_D is identical to Kal_D
but sequenced with higher coverage.

Tab. 7.1.: Reference genomes from NCBI RefSeq (Release 90) used for database construc-
tion.

Organism Number of references Size on disk

bacteria 10838 41.0 GB
viral 7857 269 MB
archaea 269 656 MB

Total 18964 41.9GB

7.2 Evaluation 69

Tab. 7.2.: Food-related reference genomes used for database construction.

Item Name ID File size

1 Sus scrofa (pig) GCF_000003025.6 2.4GB
2 Equus caballus (horse) GCF_002863925.1 2.4GB
3 Meleagris gallopavo (turkey) GCF_000146605.2 1.2GB
4 Mus musculus (house mouse) GCF_000001635.26 2.7GB
5 Gallus gallus (chicken) GCF_000002315.5 1.1GB
6 Ovis aries (sheep) GCF_000298735.2 2.5GB
7 Rattus norvegicus (Norway rat) GCF_000001895.5 2.8GB
8 Bos taurus (cattle) GCF_002263795.1 2.6GB
9 Bubalus bubalis (water buffalo) GCF_003121395.1 2.6GB

10 Cervus elaphus hippelaphus (red deer) GCA_002197005.1 3.3GB
11 Capreolus capreolus (Western roe deer) GCA_000751575.1 3.0GB
12 Struthio camelus australis (African ostrich) GCA_000698965.1 1.2GB
13 Anas platyrhynchos (mallard) GCF_003850225.1 1.1GB
14 Capra hircus (goat) GCF_001704415.1 2.8GB
15 Oryctolagus cuniculus (rabbit) GCF_000003625.3 2.6GB
16 Cavia aperea (Brazilian guinea pig) GCA_000688575.1 2.6GB
17 Camelus ferus (Wild Bactrian camel) GCF_000311805.1 1.9GB
18 Canis lupus familiaris (dog) GCF_000002285.3 2.3GB
19 Felis catus (domestic cat) GCF_000181335.3 2.4GB
20 Homo sapiens (human) GCF_000001405.38 3.1GB
21 Equus asinus (ass) GCA_001305755.1 2.3GB
22 Rangifer tarandus (reindeer) GCA_004026565.1 2.9GB
23 Phasianus colchicus (Ring-necked pheasant) GCA_004143745.1 987MB
24 Glycine max (soybean) GCF_000004515.5 946MB
25 Zea mays (maize) GCF_000005005.2 2.1GB
26 Triticum aestivum (bread wheat) GCA_900519105.1 14.0GB
27 Secale cereale (rye) GCA_900079665.1 1.8GB
28 Hordeum vulgare (barley) GCA_004114815.1 3.8GB
29 Oryza sativa Japonica Group (Japanese rice) GCF_001433935.1 362MB
30 Arachis hypogaea (peanut) GCF_003086295.1 2.4GB
31 Saccharomyces cerevisiae S288C (baker’s yeast) GCA_000146045.2 12MB

Total 74GB

Tab. 7.3.: Data sets used for database construction.

Name Number of species Size on disk

AFS10 Food genomes 1 to 10 22.3GB
AFS20 Food genomes 1 to 20 45.8GB
AFS20RS90 Food genomes 1 to 20 plus NCBI RefSeq (Release 90) 87.5GB
AFS31 Food genomes 1 to 31 76.8GB
AFS31RS90 Food genomes 1 to 31 plus NCBI RefSeq (Release 90) 118.5GB

70 Chapter 7 MetaCache in All-Food-Sequencing

Tab. 7.4.: Calibrator sausage datasets and their meat composition.

Name
#Reads

(paired-end)
Cattle Sheep Pig Horse Chicken Turkey

KLyo_A 401K 14.0% 0.0% 80.0% 0.0% 0.5% 5.5%
KLyo_B 302K 36.0% 0.0% 58.0% 0.0% 2.0% 4.0%
KLyo_C 507K 58.0% 0.0% 36.0% 0.0% 4.0% 2.0%
KLyo_D 417K 80.0% 0.0% 14.0% 0.0% 5.5% 0.5%
Kal_A 830K 1.0% 9.0% 35.0% 55.0% 0.0% 0.0%
Kal_B 977K 9.0% 1.0% 55.0% 35.0% 0.0% 0.0%
Kal_C 404K 25.0% 25.0% 25.0% 25.0% 0.0% 0.0%
Kal_D 403K 35.0% 55.0% 9.0% 1.0% 0.0% 0.0%
Kal_E 289K 55.0% 35.0% 1.0% 9.0% 0.0% 0.0%
KAL_D 26,114K 35.0% 55.0% 9.0% 1.0% 0.0% 0.0%

7.2.2 Quantification Accuracy

Tables 7.5 and 7.6 show the quantification results returned by the tested tools
(MetaCache (v.0.5.3), CLARK (v.1.2.6), Kraken2 (v.2.0.7-beta), and Kraken2 with
subsequent abundance estimation by Bracken v.2.0.0) using AFS20 as reference
database. Besides showing the quantification for each included meat component, we
also show the (false positive) results for water buffalo (closely related to cattle) and
goat (closely related to sheep). In addition, we provide the sum of all false positive
(Σ FP) read classifications over all of the detected reference genomes that were
not included in the sample. In addition, the sum of the deviations of the measured
proportions to the real sausage composition (Σ Dev) as well as the averages over all
tested datasets are shown.

In terms of sensitivity, all methods are able to detect the included meat components.
In addition, several tools detect false positive signals; e.g., Kraken2+Bracken detects
over 1% of water buffalo in KLyo_C and KLyo_D and over 3% of goat in Kal_C, Kal_D,
and Kal_E. False positive quantities in these cases correlate with the amount of beef
and the amount of sheep present in the respective sample. Overall, MetaCache
achieves the lowest FP-rates for each tested dataset with an average FP-sum per
sample of only 0.67% for the Klyo samples and 1.12% for the Kal samples. This is
much lower compared to CLARK (1.34% for Klyo, 3.59% for Kal), Kraken2 (1.86%
for Klyo, 3.87% for Kal), and Kraken2+Bracken (2.14% for Klyo, 4.41% for Kal).
The relative differences become even more significant when looking at some of
the individual FP signals. In the Klyo samples (Table 7.5) MetaCache only detects
negligible amounts of goat (0.05% on average) and water buffalo (0.14%), while
the amounts detected by CLARK, Kraken2, and Kraken2+Bracken are higher by

7.2 Evaluation 71

Tab. 7.5.: Quantification results for the Klyo samples using the reference dataset AFS20 and
the average result for AFS31RS90. MC: MetaCache, K2+Brack: Kraken2 with
subsequent Bracken, W.Buf: Water Buffalo, Σ FP: Sum of all false positive read
classifications, Σ Dev: Sum of absolute deviations to the given meat composition
(best results for each dataset in bold).

Dataset Classifier Cattle Pig W.Buf. Goat Chicken Turkey Σ FP Σ Dev

KLyo_A

Expected 14.0% 80.0% 0.00% 0.00% 0.50% 5.50%
MC 16.6% 71.5% 0.04% 0.02% 0.60% 4.64% 0.28% 12.39%
CLARK 16.4% 70.4% 0.20% 0.09% 0.62% 4.61% 0.51% 13.55%
Kraken2 15.9% 70.0% 0.27% 0.11% 0.65% 4.59% 0.87% 13.82%
K2+Brack 17.6% 70.3% 0.30% 0.14% 0.66% 4.63% 0.97% 15.33%

KLyo_B

Expected 36.0% 58.0% 0.00% 0.00% 2.00% 4.00%
MC 37.6% 51.0% 0.12% 0.04% 2.05% 2.99% 0.50% 10.16%
CLARK 35.9% 50.4% 0.47% 0.19% 2.10% 3.01% 1.03% 9.84%
Kraken2 34.5% 49.9% 0.68% 0.24% 2.12% 2.99% 1.57% 12.11%
K2+Brack 39.1% 50.2% 0.32% 0.78% 2.15% 3.02% 1.84% 13.93%

KLyo_C

Expected 58.0% 36.0% 0.00% 0.00% 4.00% 2.00%
MC 57.7% 27.1% 0.16% 0.06% 3.56% 1.16% 0.95% 11.47%
CLARK 54.1% 25.9% 0.69% 0.29% 3.58% 1.16% 1.88% 17.11%
Kraken2 52.2% 25.7% 0.95% 0.36% 3.57% 1.17% 2.58% 19.94%
K2+Brack 58.6% 25.8% 1.07% 0.46% 3.60% 1.18% 2.89% 14.90%

KLyo_D

Expected 80.0% 14.0% 0.00% 0.00% 5.50% 0.50%
MC 74.7% 10.9% 0.23% 0.08% 4.66% 0.33% 0.93% 10.27%
CLARK 70.8% 10.8% 0.94% 0.39% 4.73% 0.35% 1.94% 15.27%
Kraken2 68.0% 10.7% 1.26% 0.48% 4.70% 0.36% 2.42% 18.62%
K2+Brack 77.6% 10.8% 1.45% 0.62% 4.76% 0.36% 2.87% 9.35%

Average

MC 0.14% 0.05% 0.67% 11.07%
CLARK 0.58% 0.24% 1.34% 13.94%
Kraken2 0.79% 0.30% 1.86% 16.12%
K2+Brack 0.71% 0.50% 2.14% 13.38%

AFS31RS90
Average

MC 0.58% 13.97%

factors of 4.2 and 4.8, 5.6 and 6.0, and 5.1 and 10.0, respectively. Similar results
can be observed for the Kal samples (Table 7.6): MetaCache only detects 0.07%
of water buffalo meat on average and 0.80% of goat meat on average, while the
amounts detected by CLARK, Kraken2, and Kraken2+Bracken are higher by factors
of 7.3 and 3.3, 8.3 and 3.5, and 9.4 and 4.0, respectively.

In terms of deviation from the expected foodstuff ingredients, MetaCache shows the
lowest average of the sums of absolute differences for both Klyo (11.07%) samples
and Kal samples (10.56%). Kraken2+Bracken (13.38% and 12.74%) has smaller
deviations on average than Kraken2 alone (16.12% and 16.77%), showing that
quantification after read assignment is beneficial.

When scanning the calibrator sausage read datasets with MetaCache using the
bigger AFS31 and AFS31RS90 databases, we can make the following observations:

72 Chapter 7 MetaCache in All-Food-Sequencing

Tab. 7.6.: Quantification results for the Kal samples using the reference dataset AFS20 and
the average result for AFS31RS90. MC: MetaCache, K2+Brack: Kraken2 with
subsequent Bracken, W.Buf: Water Buffalo, Σ FP: Sum of all false positive read
classifications, Σ Dev: Sum of absolute deviations to the given meat composition
(best results for each dataset in bold).

Dataset Classifier Cattle Sheep Pig Horse W.Buf. Goat Σ FP Σ Dev

Kal_A

Expected 1.00% 9.0% 35.0% 55.0% 0.00% 0.00%
MC 1.25% 11.0% 30.5% 54.1% 0.01% 0.29% 0.42% 8.13%
CLARK 1.29% 9.1% 31.1% 54.0% 0.09% 0.89% 1.15% 6.43%
Kraken2 1.23% 8.7% 30.9% 53.9% 0.08% 0.96% 1.31% 6.99%
K2+Brack 1.43% 10.3% 31.0% 54.0% 0.10% 1.12% 1.53% 8.24%

Kal_B

Expected 9.0% 1.00% 55.0% 35.0% 0.00% 0.00%
MC 10.5% 1.42% 49.3% 35.6% 0.03% 0.06% 0.27% 8.43%
CLARK 10.3% 1.26% 50.0% 35.8% 0.17% 0.18% 0.56% 7.85%
Kraken2 10.0% 1.21% 49.6% 35.7% 0.20% 0.20% 1.03% 8.40%
K2+Brack 11.0% 1.40% 35.8% 49.7% 0.22% 0.23% 1.09% 9.60%

Kal_C

Expected 25.0% 25.0% 25.0% 25.0% 0.00% 0.00%
MC 23.3% 29.6% 19.2% 23.0% 0.06% 0.73% 1.08% 15.28%
CLARK 23.4% 25.6% 19.4% 23.2% 0.45% 2.56% 3.38% 12.98%
Kraken2 22.7% 24.7% 19.4% 23.1% 0.49% 2.69% 3.48% 13.65%
K2+Brack 24.8% 27.8% 19.4% 23.2% 0.54% 3.02% 3.89% 14.35%

Kal_D

Expected 35.0% 55.0% 9.00% 1.00% 0.00% 0.00%
MC 32.9% 51.5% 7.14% 1.14% 0.09% 1.50% 2.07% 9.62%
CLARK 32.8% 43.1% 7.31% 1.16% 0.72% 4.40% 5.69% 21.61%
Kraken2 31.6% 41.3% 7.26% 1.16% 0.79% 4.62% 5.77% 24.75%
K2+Brack 35.8% 48.4% 7.28% 1.16% 0.89% 5.40% 6.70% 15.96%

Kal_E

Expected 55.0% 35.0% 1.00% 9.00% 0.00% 0.00%
MC 50.4% 33.7% 0.99% 7.80% 0.12% 0.96% 1.52% 8.55%
CLARK 50.7% 28.7% 1.02% 7.81% 0.84% 3.07% 4.43% 16.26%
Kraken2 49.2% 27.6% 1.00% 7.80% 0.99% 3.28% 4.58% 18.96%
K2+Brack 54.1% 31.4% 1.00% 7.81% 1.10% 3.71% 5.15% 10.86%

KAL_D

Expected 35.0% 55.0% 9.00% 1.00% 0.00% 0.00%
MC 30.3% 49.6% 7.27% 1.16% 0.08% 1.25% 1.38% 13.36%
CLARK 30.8% 43.3% 7.51% 1.20% 0.86% 4.57% 6.30% 23.85%
Kraken2 29.6% 41.3% 7.47% 1.19% 0.95% 4.98% 7.03% 27.86%
K2+Brack 33.5% 48.7% 7.58% 1.19% 1.08% 5.84% 8.07% 17.44%

Average

MC 0.07% 0.80% 1.12% 10.56%
CLARK 0.51% 2.61% 3.59% 14.83%
Kraken2 0.58% 2.79% 3.87% 16.77%
K2+Brack 0.66% 3.22% 4.41% 12.74%

AFS31RS90
Average

MC 1.84% 13.38%

7.2 Evaluation 73

(1) More k-mers are removed from the hash table due to overflowing target lists.
Therefore, the number of classified reads is reduced and total deviation increases
slightly. (2) Additional false positive targets are introduced, but the total number of
false positives is reduced for the Klyo datasets (excluding bacteria).

A benefit of screening for microbiota and eukaryotic foodstuff species at the same
time is a lower false positive rate. Usually reads of a dataset are queried against
either one or the other and only the remaining unclassified reads are investigated
further. This can lead to false assumptions about the data. In our experiments some
reads are falsely classified as Triticum aestivum (bread wheat) when using the AFS31
database. With the AFS31RS90 database, however, those reads are identified as
bacterial or unspecific (classified as the lowest common ancestor of bread wheat and
bacteria).

7.2.3 Runtime and Memory Consumption

Non-Partitioned Databases

Runtime and memory consumption where the whole database can fit into the
available main memory are measured on a system with a dual Xeon E5-2630v4 (2.2
GHz, 2× 10 cores) CPU with 512 GB of DDR4 RAM. We have compared the speed
and the peak memory consumption during database construction and classification
of the default versions of MetaCache (v.0.5.3), CLARK (v.1.2.6), Kraken2 (v2.0.7-
beta), and Kraken2 with subsequent abundance estimation by Bracken v.2.0.0
(Kraken2+Bracken) using 40 threads. Table 7.7 shows the results for the reference
genome datasets listed in Table 7.3 and the KAL_D read dataset (26 million paired-
end reads of length 101 bp) for classification. Note, that the time to load the
databases is excluded when measuring query speed for all programs to make the
results independent of dataset size.

MetaCache is fastest for database construction for all tested data sets. Furthermore,
it requires least memory for constructing the database for AFS20 and AFS31, but
requires slightly more memory than Kraken2 for AFS20RS90 and AFS31RS90.

Kraken2 is fastest in terms of query (classification) speed. If Kraken2 is executed
with subsequent quantification by Bracken, corresponding runtimes increase. Even
though query speeds of MetaCache-AFS are slowest, corresponding execution times
are still competitive (only around three minutes for the largest data set (KAL_D)).

74 Chapter 7 MetaCache in All-Food-Sequencing

Tab. 7.7.: Runtimes and peak memory consumption for non-partitioned database construc-
tion (build) and querying for different data sets on a workstation with 512 GB
RAM. Query speeds are measured for the KAL_D dataset in terms of million reads
per minute (MR/m). For the cases with "-" the corresponding program exceeds
the main memory capacity of 512 GB. Fastest runtimes and lowest memory
consumption for each dataset are indicated in bold.

Data set MetaCache CLARK Kraken2 Kraken2+Bracken

AFS20

Build time 1h 11m 15h 37m 1h 27m 5h 32m
Build memory 64 GB 428 GB 69 GB 147 GB
Query time 136 s 93 s 37 s 111 s
Query speed 11.5 MR/m 16.9 MR/m 43.2 MR/m 14.2 MR/m
Query memory 50 GB 152 GB 54 GB 54 GB

AFS31

Build time 1h 47m - 3h 19min 11h 41min
Build memory 91 GB - 107 GB 296 GB
Query time 175 s - 44 s 58 s
Query speed 8.9 MR/m - 35.9 MR/m 27.0 MR/m
Query memory 78 GB - 72 GB 72 GB

AFS20RS90

Build time 1h 42m - 2h 58m 8h 53m
Build memory 110 GB - 94 GB 168 GB
Query time 180 s - 43 s 117 s
Query speed 8.7 MR/m - 37.0 MR/m 13.5 MR/m
Query memory 94 GB - 79 GB 79 GB

AFS31RS90

Build time 3h 10m - 5h 55min 17h 44min
Build memory 135 GB - 134 GB 329 GB
Query time 217 s - 49 s 61 s
Query speed 7.2 MR/m - 32.1 MR/m 25.7 MR/m
Query memory 117 GB - 97 GB 97 GB

For common data set sizes in food control applications runtimes for database con-
struction (a few hours) are typically much higher than for the classification stage (a
few minutes). Since the amount of relevant reference genomes is increasing rapidly
corresponding databases have to be constructed or extended frequently. Thus, fast
built times are of high importance. Besides having the fastest database construction
time, MetaCache is also the only tool that supports the functionality of extending an
existing database.

Partitioned Databases

In this subsection we evaluate the ability of MetaCache to reduce the consumed
main memory by partitioning the database into smaller chunks. MetaCache is again
evaluated on a workstation with a dual Xeon E5-2630v4 CPU and 512 GB of DDR4
RAM.

Table 7.8 shows the speed and memory consumption of MetaCache for partitioned
database construction and querying using the AFS31RS90 reference genome dataset

7.2 Evaluation 75

Tab. 7.8.: Partitioned build time and query speed for AFS31RS90 database. Query speed
measured for dataset KAL_D in million reads per minute (MR/m).

Tool Build time Max. RAM Query Speed Max. RAM

MetaCache (1 part.) 3h 10min 135 GB 7.2 MR/m 117 GB
MetaCache (2 part.) 3h 04min 82 GB 3.1 MR/m 70 GB
MetaCache (4 part.) 3h 45min 52 GB 2.5 MR/m 39 GB

Tab. 7.9.: Runtimes and peak memory consumption for database construction (build) and
querying for AFS10. Query speeds are measured for the KAL_D dataset in terms
of million reads per minute (MR/m).

Data set MetaCache AFS-previous

AFS10

Build time 47m 7h 0m
Build memory 35 GB 5GB
Query speed 17.1 MR/m 0.04 MR/m
Query memory 30 GB 6GB

and the KAL_D dataset. Using four partitions, MetaCache can reduce the main
memory consumption from 135 GB to only 52 GB while the construction time only
slightly increases from 3h 10m to 3h 45m. In addition, memory consumption for
classification is reduced from 117 GB to 39 GB. However, the corresponding query
speed decreases from 7.2 MR/m to 2.5 MR/m since the partitions have to be queried
by all reads in succession and the individual results need to be merged.

7.2.4 Comparison to Previous AFS Pipeline

To compare MetaCache to the previous alignment-based AFS pipeline the same
dual-socket workstation as before is used. Runtimes and memory consumption of
both approaches are shown in Table 7.9. For the small genome dataset AFS10 the
previous AFS pipeline already takes several hours to construct the index. Querying of
the KAL_D dataset takes even more than 10 hours. For bigger numbers of reference
genomes this approach becomes unfeasible because the runtime scales linearly with
the number reference genomes. On the other hand, MetaCache takes less than an
hour for database construction of AFS10 while the query speed improves by more
than two orders of magnitude. As shown before even larger databases like AFS31
can be built by MetaCache in just a few hours and query speed drops by less than a
factor of two.

The average quantification results for the Klyo and Kal samples produced by Meta-
Cache and the previous AFS pipeline are shown in Table 7.10. The k-mer based

76 Chapter 7 MetaCache in All-Food-Sequencing

Tab. 7.10.: Average quantification results for the Klyo and Kal samples using the reference
dataset AFS10. AFS-prev: previous AFS pipeline, Σ FP: Sum of all false positive
read classifications, Σ Dev: Sum of absolute deviations to the given meat
composition.

Dataset Classifier Σ FP Σ Dev

KLyo Average
MetaCache 0.37% 10.71%
AFS-prev 0.37% 10.80%

Kal & KAL_D Average
MetaCache 0.19% 8.43%
AFS-prev 0.33% 6.65%

Tab. 7.11.: Detected bacteria in dataset KLyo_C using reference dataset AFS31RS90. Gen-
era with less 500 than hits (< 0.1% of the dataset) are omitted.

Genus MetaCache Kraken2 Kraken2+Bracken

Brochothrix 1.94% 1.94% 1.98%
Pseudomonas 1.23% 1.73% 1.92%
Psychrobacter 0.59% 1.43% 1.45%

MetaCache is able to match quantification accuracy of the previous alignment-based
pipeline for the KLyo datasets. The average deviation to the meat components is
even lower for MetaCache. For the Kal datasets MetaCache reduces the false positive
rate while the average deviation increases slightly. However, it is still possible to
identify the correct components with the benefit of less false positives.

7.2.5 Detection of Microbiota

A major strength of next generation sequencing when applied to foodstuffs, is its
theoretically infinite range of species that can be detected. We therefore analyzed the
microbiota detected by MetaCache in more detail. A visualization of the MetaCache
results using Krona [85] for the dataset KLyo_C using the AFS31RS90 reference
data set is shown in Figure 7.1. The results of Kraken2 and Bracken agree on the
most prominent bacteria as shown in Table 7.11. The detected bacterial genera
Brochothrix, Pseudomonas, and Psychrobacter are well known representatives in
foodstuffs. In some sausages a very high amount of the species Brochothrix thermo-
sphacta and even the corresponding Brochothrix phage BL3 could be found, possibly
indicating meat spoilage. Furthermore, in several cases a significant amount of
Actinoalloteichus was initially detected which has no known relation to foodstuff.
However, after application of the coverage filter these matches could be detected as
false positives and were removed.

7.2 Evaluation 77

Fig. 7.1.: Visualization of the AFS-MetaCache results using Krona [85] for the dataset
KLyo_C using the AFS31RS90 reference data set.

0 10000 20000 30000 40000 50000 60000
Window

0

20000

40000

Hi
ts

sequence:NZ_CP025990.1

Fig. 7.2.: Genome coverage of Actinoalloteichus for the dataset KLyo_C. The sparse coverage
is an indicator for false positives.

0 5000 10000 15000 20000
Window

0

250

500

Hi
ts

sequence:NZ_CP023483.1

Fig. 7.3.: Genome coverage of Brochothrix thermosphacta for the dataset KLyo_C. The even
coverage is an indicator for true positives.

78 Chapter 7 MetaCache in All-Food-Sequencing

Figures 7.2 and 7.3 show the corresponding genome coverage diagrams for Actinoal-
loteichus and Brochothrix thermosphacta for the KLyo_C read dataset. The highly
uneven genome coverage of Actinoalloteichus is taken as an indicator by MetaCache
for a false-positive species identification. The Brochothrix genome is evenly covered
by reads and is thus classified as a true positive.

7.3 Discussion

The determination and quantification of food ingredients is an important issue in of-
ficial food control [20]. Furthermore, microbiological contamination or the presence
of non-declared allergenic food components establishes the need for a broad-scale
screening method that allows for precise determination and quantification of ingre-
dients ideally spanning all kingdoms of life including plants, animals, fungi, and
bacteria. DNA-based methods like quantitative real-time PCR are established tech-
nologies for analyzing foodstuff. However, they have the drawback of being limited
to a set of target species within a single assay that need to be defined beforehand.
The usage of next-generation sequencing of total genomic DNA from biological
samples followed by bioinformatics analyses based on comparisons to available
reference genomes can overcome this limitation. The previous alignment-based
AFS-pipeline was found suitable to screen for species in processed food samples [95,
70]. However, the utilized algorithms put limitations on the number species to be
screened and on the computational throughput.

Here, we have presented how MetaCache can be employed for the efficient detection
and quantification of species composition in food samples from sequencing reads.
With MetaCache being based on an alignment-free exact k-mer matching approach,
we gain significant speed compared to the previous alignment-based AFS method at
the expense of a higher memory consumption for constructing and querying refer-
ence genome databases. We apply an intelligent subsampling technique based on
minhashing within local windows to reduce the database size. Further reductions of
peak memory consumption can be achieved by the introduced partitioning schemes
at the expense of query speed. Applications of the previous alignment-based AFS
pipeline have been limited to around ten complex genomes. With MetaCache we are
able to significantly extend this limit, which is of high importance since the amount
of available reference genomes continues to grow rapidly [104, 97]. Thus, our
results are particularly encouraging since MetaCache is fastest in terms of database
construction times. Corresponding peak memory consumption is competitive and
can be even further reduced by the partitioned version of MetaCache.

7.3 Discussion 79

Within this study we have applied our approach on a broad set of reference samples,
containing admixtures of a set of food relevant ingredients (chicken, turkey, pork,
beef, horse, sheep). The results demonstrate that our approach is able to reliably
detect the components even at the 0.5% level. The comparison to the established
metagenomics tools Kraken2, CLARK, and Kraken2+Bracken shows that MetaCache
is superior in terms of false positive (FP) rates. In particular for pairs of closely
related genomes MetaCache can achieve almost an order-of-magnitude lower FP-
rates. These results demonstrate that our classification approach based on counting
k-mer matches within small windows is effective compared to simply counting k-mer
matches over an entire genome (as used by CLARK and Kraken) and to an alignment-
based approach (as used by the our previous AFS pipeline). Our results also show
that MetaCache achieves the lowest sum of absolute deviations to the included
food ingredients. As different types of tissue can contain different concentrations of
DNA (matrix effect), deviations could possibly be further reduced by a subsequent
normalization procedure that takes tissue ratios into account.

7.4 Conclusion

We have presented a fast screening and quantification method together with a corre-
sponding publicly available implementation for whole genome shotgun sequencing-
based biosurveillance applications such as food testing. By relying on a big data
approach, MetaCache can scale efficiently towards large-scale collections of com-
plex eukaryotic and bacterial reference genomes making it suitable for broad-scale
metagenomic screening applications.

80 Chapter 7 MetaCache in All-Food-Sequencing

MetaCache Methods 8
This chapter explores in detail various methods in the MetaCache (GPU-)pipeline. We
analyze the corresponding problems and showcase our design and implementation
choices. Our optimized implementations are evaluated on their own before we
assess the performance of the complete pipeline in Chapter 9.

8.1 Genomic Sequence Processing

To achieve high throughput multi-threaded CPU programs and especially many-
threaded GPU programs need fast input methods which provide them with data. The
fastest algorithm implementations are of no use if they are bottlenecked by slow file
I/O. Therefore it is important to optimize the input and output of a program to unlock
its full potential. Here we want to analyze input methods for genomic sequence data
by comparing MetaCache v1 to MetaCache v2 and its main competitor Kraken 2
[116].

8.1.1 Background

Many problems in bioinformatics like read alignment or read classification involve
processing of sequencing data which ultimately boils down to text processing. The
four nucleotide bases found in DNA are encoded into letters: C for cytosine, G
for guanine, A for adenine and T for thymine. The same goes for RNA with the
exception of T which is replaced by U for uracil. Additionally, it is common practice
to use the letter N to encode ambiguous or unknown bases.

Strings of sequencing data are usually stored in the FASTA or the FASTQ file formats.
Figure 8.1 shows example files with two sequences each.

FASTA files contain single header lines starting with the character ‘>’ and holding
the identification and description of a sequence, followed by one or multiple lines
for the sequence string. Typically, a line of the sequence string is limited to 70-80
base characters.

81

>A_hydrophila_HiSeq.922
AGGCCCACTGGAAGTTGTAGCCACCGAGCCAGCCGGTCACGTCCACCACCTCGCCGATGAAGTAGAGACCGGCTA
CCTTGCGCGCCTCCATGGTCTTGGAG
>A_hydrophila_HiSeq.1263
TGACTTGACGTCATCCCCACCTTCCTCCGGTTTATCACCGGCAGTCTCCCTTGAGTTCCCACCATTACGTGCTGG
CAACAAAGGACAGGGGTTGCGCTCGT

@HWI-ST558:60:C00B3ACXX:2:1101:1560:1991_1:N:0:GGCTACA
TCAGGAACAATTTCTGTGATTAGAAATTATCATCATAGTTTATATAGGGGGCTGGCTTGAGTCGACCACCAGCCACCTGATGCATGAGTG
+
@CCFFFFDHHHHHGIJEHHGJIIGAGIEAHIGGJHJBHEGHEIJJIGHJJGGIJJIAG/.B7=E=BE<ACCD(55(9,,5(:@:>>AC4>
@HWI-ST558:60:C00B3ACXX:2:1101:1934:1970_1:N:0:GGCTACA
NTGTCAGAAGCTTTCCCTATCCCTTTTCTTAGTTTAATAAAACTTTATTACACAAAAGCTCTGAGCGATCAAGCCTCATCTCTGGCCCCA
+
#1=DDDFFHHHHHJJJJJIJJJJJJJJIJJIJIJIJGIJJJJJIJJJJIJJJIJAGHIIJJJIEIIJJJJJEJHG?EFFFDFFCECEDDD

Fig. 8.1.: Examples of FASTA (top) and FASTQ (bottom) file formats with two sequences
each.

FASTQ files consist of exactly four lines per sequence:

• The first line is initiated with character ‘@’ and holds the identifier and de-
scription.

• The second line contains the complete sequence string.
• The third line begins with character ‘+’ and may include additional comments.
• The last line provides quality scores for each base of the sequence. The quality

is encoded in ASCII characters with hexadecimal values between 0x21 and
0x7e. This also includes the characters ‘+’ (0x2b) and ‘@’ (0x40), which may
complicate parsing.

These sequencing files may incorporate millions to billions of sequencing reads gen-
erated from high-throughput sequencers. Aside from large amounts of independent
reads (called single read or single-end), sequencing machines can produce paired-
end reads which are two reads originating from the same fragment of DNA/RNA,
providing more information than two separate reads. Both strings of paired-end
reads (also called mates) are stored either in direct succession in a single FASTA or
FASTQ file, or the mates of all pairs are separated and stored in two files, where
each file contains all strings from one mate position in the same read order.

8.1.2 Sequence File Processing

Reading and parsing these kinds of genomic sequence files is a required step to be
able to perform any kind of analysis on the data. Ideally, this has to be performed
fast enough to not stall the sequence processing in multiple CPU threads or on the
GPU. Because of the nature of the file formats shown above, reading a file has to

82 Chapter 8 MetaCache Methods

happen sequentially to ensure that we read complete sequences with their header
and comment lines as there does not exist an indexing structure listing the start and
end points of sequences.

Parsing and processing of the data can happen in parallel once the sequence data has
been read. However, parsing read files in parallel becomes challenging because of
inconsistencies in the paired-end file formats. Two reads of the same read pair may
have differently formatted headers or different sequence lengths. A thread starting
to read data from an arbitrary starting point in a file or a pair of files may not be
able to find the corresponding paired reads without causing significant overhead.
Additionally, it may be required to enumerate all reads for post-processing or evalua-
tion of classification results. MetaCache’s merge mode for example necessitates a
consistent enumeration to merge results from multiple classifications resulting from
different database queries.

To overcome these challenges MetaCache employs a producer-consumer scheme,
where only one thread parses the input files as fast as possible and stores batches of
reads in a concurrent queue. The single reader thread keeps track of the read IDs
and matches consecutive paired-end reads or read pairs from two files. This linear
access is also beneficial when accessing files from hard disks, where opening multiple
file handles and jumping between file positions can cause additional overhead.

Concurrent to the reader thread multiple threads can be used to process the sequence
data independently in parallel. Each CPU consumer thread dequeues batches of
reads and either processes the sequences on or copies the sequence data to the GPU
for massively parallel processing. After finishing a batch the allocated memory for
the batch is preserved by inserting it into another concurrent queue. The reader
thread recycles the memory by dequeing batches from this storage and filling it
with newly read sequences. By preallocating a number of batches which are used
throughout the lifetime of the program we avoid costly memory allocation for each
new sequencing read.

8.1.3 Related Work

MetaCache’s original sequence reader was based on Kraken’s [117] and featured two
different C++ classes to handle FASTA and FASTQ files separately. MetaCache v1
already incorporated improvements over Kraken like reusing allocated memory and
reducing the amount of temporary buffers and intermediate data copies.

8.1 Genomic Sequence Processing 83

MetaCache v2’s sequence reader and parser is inspired by kseq taken from klib1,
a popular standalone and lightweight C library. kseq features a single parser for
handling FASTA and FASTQ files. We reimplemented kseq in C++ and applied addi-
tional performance tuning. Like kseq we use a custom character string and buffered
input stream which also supports compressed sequencing files by incorporating
zlib2.

Compared to MetaCache Kraken 2 uses a different approach in its multi-threaded
classification. Here each thread reads a batch of sequences from the input file(s) into
a buffer and then continues to process the whole batch itself. Reading is guarded by
a critical section where only one thread at a time is permitted. Parsing the data, i.e.
separating the characters into sequence header, data, comment and quality scores, is
done outside the critical section.

Kraken 2 chooses one of two strategies for reading a batch depending on whether
the input consists of single-end or paired-end sequences. For single-end data they
read a block of three megabyte of characters from the input files without parsing the
data (block strategy). Then they check the following data and search for the start of
a new sequence. Data belonging to the last sequence of the block is appended to
the buffer to ensure that blocks always contain complete sequences. This strategy
postpones parsing a large number of characters by storing them into the buffer and
keeping the critical section small, but it cannot determine the number of sequences
in the batch until later in the pipeline. Therefore it cannot be used to create a
continuous enumeration of the reads.

The second strategy is used when reading paired-end input data. Here Kraken 2
creates batches of 10000 paired sequences by reading the input files line by line to
count the number of sequences (batch strategy). All read lines are stored into the
buffer. After the critical section this buffer has to be separated into lines again and
parsed to process the sequences.

8.1.4 Performance Evaluation

In this section we compare the sequence readers from Kraken 2 (v2.1.2), Meta-
Cache v1 (v1.1.1), MetaCache v2 (v2.1.1) and klib. To evaluate the performance
of the sequence file readers we utilized three metagenomic read datasets. HiSeq
and MiSeq use the FASTA file format which only contains header and sequence lines,
while the third dataset Kal_D consists of paired-end reads separated into two FASTQ

1https://github.com/attractivechaos/klib
2https://www.zlib.net/

84 Chapter 8 MetaCache Methods

https://github.com/attractivechaos/klib
https://www.zlib.net/

Tab. 8.1.: Metagenomic read datasets with variable minimum, maximum and average
sequence lengths.

Dataset Format Sequences Min Max Average File Size

HiSeq FASTA single 10,000,000 19 101 92.3 1.3 GB
MiSeq FASTA single 10,000,000 19 251 156.8 1.9 GB
KAL_D* FASTQ paired 10,000,000 101 101 101 2x 2.5 GB

files, which also include comment lines and quality scores. Each file holds 10 million
reads. Table 8.1 shows the exact number of sequences as well as the minimum,
maximum and average sequence lengths for each datasets. More details on the
composition of the datasets can be found in Section 9.

Experiments were conducted on the following system:

System 1 AMD Ryzen Threadripper 3990X (64 cores at 2.9 GHz) with 256 GB
DDR4 RAM, Ubuntu 20.04, GCC 9.3.0.

Initially, a dry run is performed to read the input files into RAM in order to circumvent
performance penalties induced by slow hard disk access. Thereafter, each sequence
reader was executed in a single thread five times for each benchmark. We report the
average runtime of the five runs. Kraken 2’s reader was run one time only creating
batches of sequence data, and one additional time with subsequent parsing of the
batch buffer. Parsing is needed for processing the sequences but normally happens
outside Kraken 2’s critical section. MetaCache and kseq already parse the sequences
while reading the data from files.

Single-end Benchmark

For the single-end benchmark we evaluated each sequence reader on the HiSeq,
MiSeq datasets and one file from Kal_D. Although Kraken 2 normally uses the block
strategy for single-end data, we also tested how the batch strategy performs in this
case.

Figure 8.2 reveals the results for this benchmark. Kraken 2’s block strategy achieves
highest speed for all three datasets. Reading chunks of raw data is as fast as it
gets. After reading such a chunk Kraken 2 only needs to find the next beginning
of a sequence to create a valid block of sequence data, which can be found fast if
sequences are short. For longer sequences in MiSeq we can see that the speed drops
by 30%, and another 27% for Kal_D in FASTQ format, because more lines need to
be checked to find the next sequence. As we can also see from Kraken 2’s batch

8.1 Genomic Sequence Processing 85

Fig. 8.2.: Single-end Sequence File Processing Benchmark.

strategy, it is not as efficient when reading the input line by line. Is is slower than
kseq and both MetaCache versions even without parsing the data.

When looking at Kraken 2’s runtimes including the parsing we see that it is quite
inefficient. Even when combined with the fast block strategy, Kraken 2’s parser is
slower than the other sequence readers, except for the Kal_D dataset where it is
slightly faster than kseq and MetaCache v1.

The default kseq is faster than Kraken 2 with parsing and MetaCache v1 for the
FASTA datasets, but slower for the FASTQ file. This may be caused by kseq being the
only tool that parses the comment line from FASTQ, all other tools skip the comment
lines when parsing.

MetaCache v2’s sequence reader outperforms all others when reading and parsing
the sequence files. It is more than twice as fast as the best contender in each case.
Kraken 2 has the only sequence reader able to achieve a higher performance but
only when reading the data without parsing.

86 Chapter 8 MetaCache Methods

Fig. 8.3.: Paired-end Sequence File Processing Benchmark.

Paired-end Benchmark

For the paired-end benchmark we tested each sequence reader in paired-end mode
with two separate files per dataset. For HiSeq and MiSeq we created a copy of each
file to emulate a dataset of 10 million read pairs, for Kal_D we used both original
files. In the case of paired-end data Kraken 2 is not able to use the block strategy
and thus always uses the slower batch strategy.

Figure 8.3 shows the results for this benchmark. The results are very similar to the
single-end benchmark, but here we read twice the amount of sequences – two per
read. We can see that most of the time the sequence readers perform a little better
than in the single-end benchmark. Nevertheless, MetaCache v2’s performance stays
more than two times higher than all other readers.

8.1.5 Conclusion

File I/O is a non-negligible part of genomic data processing pipelines. Fast sequence
readers for the FASTA or FASTQ formats are needed to achieve high throughput.
MetaCache v2’s sequence reader and parser is able to achieve twice the performance
of competing tools, while providing a consistent enumeration of processed reads,
which is required for post-processing methods like MetaCache’s own merge mode.

8.1 Genomic Sequence Processing 87

While Kraken 2’s own parser is not able to achieve the same level of performance,
Kraken 2’s block strategy combined with a kseq-style parser like in MetaCache v2
has the potential to be a viable alternative for single-end datasets in cases where the
enumeration is not needed. The implementation of such an approach remains as
future work.

88 Chapter 8 MetaCache Methods

8.2 MetaCache GPU Pipeline

The overall structure of MetaCache is the same for the CPU and GPU versions.
However, many data structures and sub-routines of the program had to be adapted
to run efficiently on the GPU. We employ a novel, specialized hash table on the
GPU to accelerate database building, querying, and classification. To overcome
the memory limitations of a single GPU we extend MetaCache to work with hash
tables distributed across multiple GPUs. Figure 8.4 shows an overview of the GPU
workflow.

top hits

DEVICE 2
DEVICE 1

LAST
DEVICE

Query

hashed
k-mers

 minhashing features
insert

windows

target windows

query

 send sketches to other devices

Build Write Load

HOST

FILE
SYSTEM

Producer
Thread Thread

Producer

Consumer
Thread

• • •
reference target/genome

reference target/genome

reference target/genome 1

2

3

Queue

• •
 •target 2

target 3

target 1

• • •

target 81

target 82

target 80

• • •

Queue

• •
 •read 2

read 3

read 1

• • •

read 902

read 902

read 900

• • •

• • •
read sequence

read sequence

read sequence 1

2

3

• • •
mappings

mappings

mappings 1

2

3

Time
• • •

database.cache1 (partition 2)

database.cache0 (partition 1)

database.meta (metadata)

HASH MAP

Partition 1
feature location

sketch

Consumer
Thread

compact

locations

sort

map

top hits top hits

merge
with local merge

with local

read windows

Fig. 8.4.: GPU Workflow: (1) Build: producer threads enqueue genomic sequences. Con-
sumer threads split them into windows and copy these to the GPUs. GPUs
generate minhashing sketches and insert them into their local hash maps. (2)
Query: batches of read windows are copied to the first GPU for sketch generation.
Each GPU queries its local hash map and sends the sketches to the next GPU.
Resulting location lists are compacted and sorted. Top locations are selected and
sent to the next GPU for merging. The last GPU obtains the final top list and sends
it to the host for read mapping and output.

8.2.1 Build Phase

Looking at the build pipeline, the first stage of the producer-consumer scheme
remains the same as in the CPU version. Here we use multiple producer threads to
read the reference genome files in order to keep the faster consumers busy. Unlike the
CPU pipeline, a consumer thread does not process the sequence data itself anymore.

8.2 MetaCache GPU Pipeline 89

Fig. 8.5.: GPU Build Phase: Using two alternating buffers on host and device, fill, copy
and insert can be executed in parallel for different batches. Dashed arrows show
implicit synchronization, solid arrows show explicit synchronization using CUDA
events. Operation lengths and gaps are not to scale.

Instead it collects the sequence strings of one or more reference genomes in a linear
array of fixed size which is sent to the GPU together with the corresponding genome
location information. The GPU is now responsible for extracting k-mers, generating
minhashing sketches and insertion into the hash table.

In a multi-GPU environment we spawn as many consumer threads as there are
GPUs, each thread scheduling work on a distinct GPU. All calls to the GPU are
executed asynchronously which means that the host threads do not have to wait
until copies to device memory and insertion of a batch are completed on the GPU. It
can already continue to collect the next batch in a second buffer. Figure 8.5 depicts
this double buffer strategy. We employ two CUDA streams and CUDA events to
synchronize between fill, copy and insert operations to ensure that buffers can be
safely reused when the previous operation has finished. Host work, copying and
insert kernel execution can all happen at the same time for different batches. In
this parallel pipeline the insert kernel takes the most time and keeps the GPUs busy
throughout the whole build phase while the time for filling and copying batches can
be completely hidden (except for the first batch).

If a hash table exceeds the chosen maximum load factor, the GPU will still finish
inserting batches scheduled by the corresponding host thread. However, the thread
will stop filling the buffer array and return unprocessed sequences to the queue,
leaving the remaining work to other consumer threads. Note, that a single reference
sequence will never be distributed across multiple GPUs. However, the same k-
mer might be present in multiple hash tables because it can appear in several
genomes. This partitioning is deliberate and helps to reduce data communication in
the classification phase.

After database construction finishes, the hash tables are retrieved one-by-one in
batches of keys and associated values. We run a segmented sort on the whole

90 Chapter 8 MetaCache Methods

batch to sort the list of locations for each k-mer in order to stay consistent with the
ordering of the CPU version. Each hash table is stored in a separate file and can be
used for querying by both versions of MetaCache.

8.2.2 Query Phase

The query phase can either start directly after the database build has finished (on-
the-fly mode) using the hash tables that are already in GPU memory or alternatively
it can be performed in a separate run.

In case the query is performed using an already existing database, MetaCache has
to first load the data from files into the GPUs. Similar to the CPU version, we use
a condensed layout where all buckets are stored in one contiguous array in GPU
memory. To associate keys and buckets we employ a single-value hash table to map
the keys to pointers into the array. Note that if the query phase is started directly
after a build, the hash table is used as-is and will not be compacted. Additionally, we
copy the acceleration structure containing the taxonomic lineages to each GPU.

After preparing the hash tables on all GPUs, we begin to process the input files using
the same produce-consumer scheme as in the CPU version. However, consumer
threads do not process the sequence data themselves. Instead they split reads into
windows and send batches of these sequence windows to the first GPU. Because the
database may be distributed across multiple GPUs, each device has to be queried
and results are combined until they are finally copied to the host, which will output
the classification results.

In order to enable multiple host threads to provide work while limiting memory
occupancy on the devices, we use a pipeline approach, allocating memory for all
steps needed for processing a single batch of sequences on each GPU beforehand.
This also avoids expensive memory allocations while executing the queries, which
would stall the entire pipeline. CUDA events are used to orchestrate the pipeline,
signaling when a stream has to wait for data or can continue work using the same
memory resources as the previous batch. This allows to overlap memory copies
and kernel executions of different batches and across devices. See Figure 8.6 for an
overview of the query pipeline.

The query pipeline on the GPU consists of the following steps:

1. Encode all sequence characters of a window into 3-bit representations of the
nucleotide bases (A,C,G,T,N).

8.2 MetaCache GPU Pipeline 91

Fig. 8.6.: GPU Query Phase: Batch data moves from host through all GPUs. Results are
aggregated and final result is copied back to host. Dashed arrows show implicit
synchronization, solid arrows show explicit synchronization using CUDA events.
Operation lengths and gaps are not to scale.

2. Generate all valid k-mers and hash them using hash function h1.

3. Sort the hashes to get the minhashing sketch.

4. The sketch is queried against the hash table and resulting locations are written
to memory.

5. Compact the location lists of all processed windows.

6. Execute a segmented sort to sort the locations for each read.

7. Obtain the window count statistic by accumulating identical locations.

8. Find the top hits using a sliding windows scan.

After generating sketches on the first GPU, they are send to the other GPUs which
allows them to skip the first three steps. Each GPU generates its own top hits for
each query, which are then send to the next GPU and merged with its local top hits.
We finally obtain the top hits of the whole database on the last GPU. This result is
copied back to the host, which assigns the final classification for each read.

Our GPU kernels combine multiple steps of the pipeline and have been optimized for
efficient work sharing between many CUDA threads. We employ groups of 32 threads
(so-called warps) to tackle the same problem. We enforce additional constraints on
MetaCache’s sub-sampling parameters to improve data layout and memory access
patterns. Especially, we require the offset between window beginnings (window
stride) to be a multiple of 4 to enable aligned access to 4 characters per thread.
Kernel implementation details are presented in the following. Section 8.3 goes into

92 Chapter 8 MetaCache Methods

detail of steps (1)–(4) in the GPU pipeline, which are executed by the first kernel.
Section 8.5 examines steps (5) and (6). Steps (7) (8) are combined in the last kernel
and discussed in Section 8.6.

8.2 MetaCache GPU Pipeline 93

8.3 Minhashing and Querying

In MetaCache(-GPU) we employ a subsampling technique called minhashing to
reduce the amount of sequence data that has to be stored in the database. Sequences
are first split into windows of fixed size. Then for each window a sketch is generated
to represent the window sequence in the database. The first kernel in the GPU
pipeline combines these steps with hash table operations to insert or query the
generated sketches.

8.3.1 k-merization and Minhashing

Because of the small alphabet of the sequence strings, it is beneficial to encode the
letters into fewer bits instead of storing each letter as a separate character (usually
the size of one byte). Using two bits to encode the four bases (or three bits if one
needs to include ambiguous N bases) and storing multiple bases per byte significantly
reduces the amount of memory needed and enables to use fast bit arithmetic and
hash functions on integer types.

On the CPU a thread encodes one character of a sequence window after another
into two bits and stores multiple characters into a 32-bit or 64-bit integer, allowing
for k-mers of size up to 16 or 32 base pairs, respectively. In each step the integer is
shifted by two bits to make room for the next base. When the number of bases in
the integer reaches the desired k the complete k-mer is extracted before continuing
to add the next base.

Due to the unknown orientation (strandedness) of the sequences, for each extracted k-
mer its canonical k-mer is calculated, which is the lexicographically smaller sequence
of the k-mer and its reverse complement. The reverse complement represents the
string of base pairs opposite the original string in the double stranded DNA molecule.
The canonical k-mers are then hashed using a hash function h1 and inserted into
a sorted array of maximum length s, which holds the minhashing sketch. After
processing all k-mers of a window the sketch is finished and can be queried against
the database.

8.3.2 Naive GPU Kernel

On the GPU we apply more fine grained parallelism where one warp of 32 threads
is responsible for each window. In a naive approach we divide the window among

94 Chapter 8 MetaCache Methods

the threads of the warp and let each thread generate a number of canonical k-mers
and their hashes. We first load all characters of the window from global into faster
shared memory, 32 characters (one character per thread) at a time. For a maximum
window size of 128 bases each thread has to generate up to four k-mers in order to
process the whole window. Each thread i starts with an offset of four characters to
its predecessor (i.e. at position 4i) in the window, reading characters one by one
from shared memory to generate k-mers using code similar to the CPU version.

To produce the minhashing sketch we have to find the s smallest hash values in
the warp. After all threads calculated their canonical k-mers and the corresponding
hashes, we sort all hash values of the window using a thread block based sort
primitive from the CUB library [@14], which also requires some shared memory.
Next we remove duplicates and store the s smallest unique values in memory.

8.3.3 Improved GPU Kernel

The improved kernel avoids using shared memory by storing all sequence information
in registers and using fast shuffle instruction to communicate data between threads
of a warp.

Similar to the naive kernel each warp processes the sequence characters of a single
window of maximum size 128 at a time. However, here each thread in the warp loads
4 consecutive characters from global memory into register using a single 4-byte load
operation. Next, it encodes the characters using a 2-bit representation of the regular
nucleotide bases A,C,G,T and combines them in a single 32-bit integer. Ambiguous
base characters N are noted as single bits in an auxiliary integer. 4 adjacent threads
form a sub-warp and combine their integers using XOR shuffle operations so that
every thread holds the information of 4 · 4 = 16 consecutive characters. Then each

Fig. 8.7.: Example of k-mer generation using a warp of size 12: (1) Load 4 characters per
thread (yellow). (2) Get characters of sub-warp (orange). (3) Get characters from
subsequent sub-warp (green). (4) Generate four 16-mers from framed characters.

8.3 Minhashing and Querying 95

sub-warp gets the information from the subsequent sub-warp by means of another
shuffle operation. Now each thread contains the data of 32 characters, overlapping
by 16 characters with the next sub-warp. From these characters thread i is able to
generate four k-mers starting at positions 4i, . . . , 4i + 3 of the window, which are
then hashed using hash function h1. The data sharing between threads of a warp
is visualized in Figure 8.7. Note, that the last few threads (number depends on
window and k-mer length) do not generate any k-mers because they would exceed
the window boundary.

Instead of using CUB to sort the hash values, we reorder them using a bitonic sort
implementation similar to our approach in Section 8.5 which operates only on
registers with the help of warp shuffles. Again the first unique s hashes from the
sorted result form the minhashing sketch.

8.3.4 Hash table operations

It would be perfectly fine to store the minhashing sketches in global memory and
execute the hash table operations in a separate kernel or library call. However, this
would incur expensive accesses to global memory to store data in one kernel and
read the same data in another kernel. Fortunately, WarpCore provides device-sided
hash table operations which can be called from inside the same kernel. It uses a
cooperative probing scheme which means that multiple threads work together as a
group to insert or find a key. Therefore we split the warp which generated a sketch
from a window into thread groups to query the values of its sketch. The queries
retrieve the bucket pointers to the locations associated with the queried keys. After
replacing the sketch with these pointers in shared memory, all threads in the warp
work in unison again to retrieve the target locations from each bucket. The locations
are then stored in global memory.

In MetaCache-GPU the number of employed warps for the minhashing kernel
matches the batch size in the GPU pipeline, so that each warp processes a sin-
gle window from a batch. Therefore, the memory requirements scale linearly with
the number of warps. For each window we require the input sequence in global
memory and have to reserve enough memory to accommodate the hash table results
for the whole sketch. By design the number of results retrieved by each hash table
query is limited, so the memory can be allocated for the worst case beforehand.
However, the batch size and number of warps should be kept small to reduce the
memory requirements per batch and leave more space for the hash table itself.

96 Chapter 8 MetaCache Methods

8.3.5 Performance Evaluation

In order to evaluate the performance of the GPU approaches, we measured the time
the kernels took to generate sketches for 220 windows of 127 random characters
using MetaCache’s default parameters. The default parameters include a k-mer
length of k = 16 characters, a sketch size of s = 16, a window length of w = 127
characters and a window overlap of k − 1 which results in a window stride of
127− 16 + 1 = 112. Note that the improved kernel requires that the beginning of
each window is aligned to 4 bytes to allow for aligned access to 4 characters per
thread. Benchmarks were conducted on an NVIDIA Quadro GV100 which employs
80 streaming multiprocessors.

To investigate the performance impact of the character processing as well as the
different sort implementations we benchmarked four different kernel versions. The
first kernel uses the naive approach described in Section 8.3.2 (shared chars + cub
sort), the second kernel combines the improved character processing with CUB’s
sort (shuffle chars + cub sort), the third kernel uses the naive character processing
with bitonic sort (shared chars + bitonic sort), the last kernel features the improved
implementation from Section 8.3.3 (shuffle chars + bitonic sort). Figure 8.8 shows
the results for all four kernels on a GV100 GPU using different numbers of thread
blocks. Each thread block contained one warp of 32 threads and processed one
window at a time, looping until all 220 windows have been processed.

A small number of 256 blocks is not enough to efficiently utilize the 80 SMs of the
GV100 GPU. Because of the low occupancy it is not possible to hide the latency of
memory accesses, hence the improved access pattern of the shuffle chars kernels has
more impact on the runtime here. For larger numbers of blocks the improvement is
less pronounced because the SMs can switch between more resident warps which
are waiting for data. In general a certain number of blocks is needed to achieve a
high occupancy with results in higher throughput. With 4096 blocks we can see that
both improvements, character processing and sorting, each reduce the runtime by
about 25% while combining them yields 63% total improvement. For larger block
numbers all kernels still see improved runtimes but to a smaller and smaller degree.
The shuffle chars + bitonic sort kernel achieves the highest speedup compared to the
naive kernel even higher than the individual improvements would suggest. Using
the superior memory access scheme and the faster sort implementation results in a
more efficient execution.

8.3 Minhashing and Querying 97

Fig. 8.8.: Kernel benchmarks for k-merization and minhashing of 220 windows of length
127 on a GV100 GPU.

8.3.6 Conclusion

We designed and implemented an efficient CUDA kernel for k-merization and min-
hashing by improving the memory access pattern and choosing an optimized sort
algorithm which both avoids unnecessary shared memory usage. Our improved
kernel yields a significant speedup compared to a more naive implementation. Our
benchmark showed that the number of blocks is an important parameter which can
have a large impact on the runtime. Modern GPUs feature a large number of SMs
which need to be fed with a sufficient number of threads to achieve high occupancy
which is needed for efficient resource utilization. Therefore MetaCache-GPU uses a
batch size of 8192 windows for the minhashing kernel to enable high throughput
while limiting the amount of required memory for the pipeline to a tolerable level.

98 Chapter 8 MetaCache Methods

8.4 Multi-Value Hash Tables

MetaCache-GPU stores reference genome information in a hash table which maps
hashed k-mers resulting from minhashing to genome locations. Because the same
k-mer can occur several times in different genomes or even at different locations in
the same genome, the database may map each k-mer to a list of associated locations.
Corresponding hash tables that implement this one-to-many mapping are called
multi-value hash tables (or multi-value hash maps). When building a database
with GPUs, MetaCache-GPU allocates the hash tables in GPU memory, while meta
information like the taxonomic tree remain in host memory.

Database (also called k-mer index) construction performance is predominantly
governed by the throughput of the underlying hash table implementation. To
alleviate this bottleneck, we leverage the fast memory interface of modern CUDA
accelerators. Our aim is to build and query the hash table completely in GPU
memory to achieve high processing speed. Using a static allocation strategy avoids
costly resizing of the data structure and subsequent rehashing which would stall
the parallelized insertion process. To be able to fit as much genome data on the
GPU as possible memory overhead has to be kept small. Therefore, we employ a
batching strategy which leaves most of the GPU memory available for the database.
Furthermore, the hash table should be able to manage various key-value distributions
efficiently. Depending on the user-supplied genomes the database may consist of
either many different k-mers (keys) with a small number of location (values) or
fewer keys with higher value multiplicity. For MetaCache-GPU we introduce a
novel multi-value hash table variant optimized for memory-efficient k-mer index
construction and querying on multiple GPUs.

8.4.1 Related Work

High-throughput GPU hash tables have been studied extensively [59]. However,
most existing implementation show limitations which make them unsuitable for
our use case. Among the first implementations, Alcantara et al. proposed two
cuckoo hashing variants [2, 1] which were both incorporated in the cuDPP library.
However, cuDPP does not support dynamic table builds, i.e., building the table in
multiple batches in case the input data exceeds the available GPU memory space.
Additionally, both versions only support 32-bit wide key types which would limit
the minhash subsampling approach to 16-mers when using 2-bit encoding for base
pairs. CoherentHash [26] employs a Robin Hood hashing scheme which promises a

8.4 Multi-Value Hash Tables 99

lower on-average probing length but requires additional memory in the form of a
4-bit age indicator per table slot, thereby reducing the overall memory utilization.
StadiumHash [46] introduces an open addressing hash table where the table itself
may either reside in the global memory space of the GPU or out-of-core, i.e., inside
host memory. An auxiliary ticket-board, which persists in video memory is used
to track slot occupation within the table. In the case that the hash table has to
be stored out-of-core due to the limited amount of available video memory, the
performance drops drastically due to the imposed PCIe bottleneck. SlabHash [3]
proposes a dynamic GPU hash table based on separate chaining. The table consists
of an array of linked lists, each of which represents a chain of equally sized memory
units, so-called slabs, that store colliding keys during insertion. HashGraph [30]
uses a table construction method that is highly similar to a compressed sparse row
matrix layout. HashGraph only supports static table builds, which again implies
a lack of support for batched workflows. Furthermore, their approach has high
memory overhead since it requires 3n temporary memory during table construction
with n input key-value pairs.

In particular none of the implementations feature out-of-the-box multi-GPU support
which is key for metagenomic classification since many real world databases exceed
the memory space of a single GPU. As a more recent publication, WarpCore [42],
successor of WarpDrive [40], proposes a framework that allows for the design of
purpose-built GPU hash tables that can be tailored towards optimal performance for a
given use case and can outperform previous approaches such as cuDPP and SlabHash.
Their cooperative probing scheme uses sub-warp tiles, i.e., CUDA cooperative groups,
over a hybrid two-stage probing scheme, where an outer double hashing strategy
is used to suppress table clustering effects, while an inner group-parallel linear
probing scheme ensures coalesced memory access. Additionally, the authors propose
a multi-GPU extension based on an efficient all-to-all communication pattern over
dense NVLink topologies [50]. In this work we extend the aforementioned WarpCore
framework by a novel hash table layout which better suits typical k-mer distributions
in terms of performance as well as storage density.

8.4.2 Background

WarpCore’s Multi Value Hash Table is based on open-addressing scheme, where arrays
for keys and values reside in contiguous GPU memory, either in Array of Structures
(AoS) or Structure of Arrays (SoA) layout. Multiple values belonging to the same
key are stored as separate key-value pairs, thus there exist the same number of key
and value slots in the data structure. In AoS keys-value pairs are packed together

100 Chapter 8 MetaCache Methods

as composites and stored in a single array, while SoA uses two separate arrays for
keys and corresponding values. The capacity denotes the maximum number of
available key and value slots in those arrays. To initialize the hash table the arrays
are allocated in GPU memory and each key slot is filled with empty-indicator ke in
order to identify free slots during the probing.

WarpCore employs a hybrid probing scheme called COPS (Cooperative Probing
Scheme) which combines double hashing with linear probing. The outer probing
scheme uses double hashing to provide starting indices for the inner linear scheme,
which is executed cooperatively by a group of CUDA threads. This yields improved
data locality and memory access for threads of the same group while avoiding
primary clustering effects common to linear probing.

For an example group size of 4 threads the generated probing sequence looks like
{
(
h(k, b i4c) + 0

)
mod c, . . . ,

(
h(k, b i4c) + 3

)
mod c}, where h is the outer probing

scheme acting on a key k. Figure 8.9 shows the insertion of a key-value pair (k, v)
into a hash table in seven steps:

(1) The starting index for the whole group of threads is determined by the outer
probing scheme h.

(2) The group loads consecutive keys from the hash table according to the group
size.

(3) Each thread checks if its assigned slot is free, then all threads use a group
voting function to communicate the results to the whole group.

(4) Select the thread associated with the lowest candidate slot index as leader.

(5) If the group found no free slot at the current indices (left column in Figure 8.9),
the outer probing scheme determines the next index where steps 1 to 4 are
repeated.

(6) The selected thread tries to insert the key using an atomic CAS. If the slot was
occupied by another key in the meantime, the CAS fails and steps 4 and 6 are
repeated as long as the group has remaining candidate slots. Otherwise the
probing continues from step 5.

(7) In case of a successful key insertion, the associated value can be stored with
an relaxed write operation.

In order to retrieve values from the hash table the same probing scheme is applied.
In WarpCore’s Multi Value Hash Table a key may occur in multiple slots and we do
not know the exact number of occurrences for each key. Therefore, the retrieval is
executed in two phases. The first phase counts the number of values per queried key

8.4 Multi-Value Hash Tables 101

kkeys

values

cooperative group

h(k,[0-3]) mod c h(k,[4-7]) mod c

hit

coalesced
load

0 0 0 0

group
voting

0 0 0 0

determine
leader

0 0 1 1

0 0 1 0

0 0 1 1

0 0 0 1

atomicCAS k atomicCAS k
fail fail

success!no hit!

hit

1

2

5

7

6

store v

3

4

success!

store v

Fig. 8.9.: Insertion of a key-value pair (k, v) into a hash table with capacity c using COPS
with an outer probing scheme h, an inner probing window size of 4 and a
cooperative group size of 4. [42]

to determine the amount of memory required and calculate the output positions for
the values, while the second phase actually retrieves them. In each phase the threads
of a group compare the probed slots to a queried key to find all corresponding slots
and either increase the value counter or copy the value to the output array. As soon
as an empty slot is found in the probing sequence the retrieval phase can be stopped,
because the insert process fills the slots in the same order and never skips empty
slots.

8.4.3 Multi Bucket Hash Table

Due to the structure of WarpCore’s Multi Value Hash Table key-value pairs with
an identical key each occupy a separate slot in the hash table. This causes a
memory overhead because the same key is stored repeatedly. Other multi-value, like
WarpCores’s Bucket List Hash Table, don’t insert identical keys multiple times but
instead map each key to a dynamically sized (linked) list, where all associated values
are stored. However, this approach lacks the flexibility to accommodate various
key-value distributions. When allocating memory for this kind of hash table the
user has to decide on fixed capacities for keys and values separately which requires
prior knowledge about the key-value distribution for optimal memory efficiency.
Allotting less memory for keys would allow to store more values in case of high

102 Chapter 8 MetaCache Methods

value multiplicity, but would also preclude storing many different keys when average
value multiplicity is small.

Locations-mers

......

Fig. 8.10.: Multi Bucket Hash Table Layout. Each slot maps a k-mer to a fixed number of
locations (4 in this example).

In order to overcome these limitations we utilized WarpCore’s modular design to
create a novel multi-value hash table variant. Our Multi Bucket Hash Table, instead of
storing a single key-value pair per slot, stores a key and fixed number (bucket size) of
associated values in each slot. This layout is illustrated in Figure 8.10. We extended
WarpCore’s probing scheme to respect the new layout as following. In addition to
initializing each key slot with ke, all value slots are filled with an empty-indicator ve.
When inserting key-values pairs into the hash table, a thread group first checks for
existing keys matching the to be inserted key and subsequently check the associated
bucket of values slots for ve. Figure 8.11 shows the extended insertion process of a
key-value pair (k, v) by a cooperative group of 4 threads. The steps are explained in
the following:

(1) The starting index for the whole group of threads is determined by the outer
probing scheme h.

(2) The group loads consecutive keys from the hash table according to the group
size.

(3a) Each thread checks if its assigned slot is equal to k, then all threads use a
group voting function to communicate the results to the whole group.

(4a) Select the highest candidate index for insertion. If the key wasn’t found
continue with step 3b.

(5a) The group loads associated values from the hash table according to the group
size.

8.4 Multi-Value Hash Tables 103

Fig. 8.11.: Insertion of a key-value pair (k, v) into our Multi Bucket Hash Table using 4
values per key slot.

(6a) Each thread checks if its assigned value slot is free, then all threads use a
group voting function to communicate the results to the whole group.

(7a) Select the thread associated with the lowest candidate slot index as leader.

(8a) The selected thread tries to insert the value using an atomic CAS. If the slot
was occupied by another value in the meantime, the CAS fails and steps 7a and
8a are repeated as long as the group has remaining candidate slots. Otherwise
the probing continues in step 3b.

(3b) Each thread checks if its assigned key slot is free, then all threads use a group
voting function to communicate the results to the whole group.

(4b) Select the thread associated with the lowest candidate slot index as leader. If
the group found no free slot at the current indices the outer probing scheme
determines the next index where the process repeats from step 1.

(5b) The selected thread tries to insert the key using an atomic CAS. If the slot was
occupied by another key in the meantime, the CAS fails and steps 4b and 5b
are repeated as long as the group has remaining candidate slots. Otherwise
the probing continues from step 1.

(6b) In case of a successful key insertion, the associated value can be stored with
an relaxed write operation in the first value slot.

104 Chapter 8 MetaCache Methods

Tab. 8.2.: Reference genome set used as database.

Database Genomes Size on disk

RefSeq 202 Bacteria 1/6 (RS202 B1/6) 3,286 12.6 GB

Tab. 8.3.: Properties of used metagenomic read datasets.

Dataset Sequences Min length Max length Average length

HiSeq 10,000,000 19 101 92.3
MiSeq 10,000,000 19 251 156.8

8.4.4 Performance Evaluation

We compared the memory requirements as well as build and query speeds of different
Multi Bucket Hash Table configurations using either AoS or SoA layout and bucket
sizes of 1, 2, 4 or 8 values per key slot. A bucket size of one is equivalent to
WarpCore’s Multi Value Hash Table. For a fair comparison of the Multi Bucket Hash
Table configurations in the MetaCache context we chose a subset of the NCBI RefSeq
Release 202 which was small enough to fit entirely into each resulting hash table
on a single GV 100 GPU with 32 GB of memory. The subset consists of one sixth of
the bacterial genomes and accumulates to about 12.6 GB (see Table 8.2). Based on
MetaCache v2.2.2 we compiled a binary for each hash table variant. We executed
MetaCache-GPU’s on-the-fly mode to build a database from the set of reference
genomes and run the query immediately afterwards. For querying we used the
metagenomic datasets HiSeq and MiSeq, each containing 10 million single-end
reads, with an average length of 92 and 156 base pairs, respectively. See Table 8.3
and Section 9 for more details on the datasets. We chose to suppress the per-read
output in the query phase to reduce the impact of disk I/O on our experiments. After
an initial warm-up run to load all data into RAM, runtimes measurements for build
and query phase were performed five times and we report the average throughput
of each phase. All experiments were performed on the following System:

System 2 2x Intel Xeon Gold 6238 (22 cores @ 2.1-3.7 GHz) with 192 GB DDR4
RAM, 2x NVIDIA Quadro GV100, each with 32 GB HBM2 memory, Ubuntu
20.04, GCC 9.3.0, CUDA 11.5.

8.4 Multi-Value Hash Tables 105

Tab. 8.4.: Key-Value Distribution of RS202 B1/6. Max, Mean, Stddev and Skewness refer
to values per key. Stddev = standard deviation.

Database Unique keys Total values Max Mean Stddev Skewness

RS202 B1/6 246,329,568 1,843,224,995 254 7.48 19.94 7.564

Fig. 8.12.: Histogram showing the key-value distribution of RS202 B1/6.

Memory Efficiency

Our hash tables are statically allocated at the beginning of MetaCache-GPU’s build
process in order to avoid costly reallocation and rehashing in case the current size
was not sufficient. Hence, we allocate most of the GPU’s memory for the hash table
(about 29.4 of the 32 GB of a GV100) and leave 2.6 GB for buffers required in the
build and query phases.

Performing MetaCache’s minhashing algorithm on the RS202 B1/6 genomes resulted
in 246,329,568 unique features and a total of 1,843,224,995 locations that have
to be stored in the database. Figure 8.12 and Table 8.4 show the distribution of
locations (values) per feature (key) for this dataset. In the histogram we can see
an exponential distribution where a large number of features only appear at a few
locations, in fact more than 80 million keys map to a single value. On the opposite
end of the spectrum several thousand keys map to lists of 200 values or more. Note,
that MetaCache limits the number of locations per features to 254, thus all keys
which would map to more than that are collected in the last bin of the histogram.

106 Chapter 8 MetaCache Methods

Tab. 8.5.: Multi Bucket Hash Table occupancies for different layouts and bucket sizes.
Number of slots in millions.

Layout
Bucket Total slots Occupancy

size Key Value Key Value Memory

SoA 1 2’630 2’630 70% 70% 70%
SoA 2 1’578 3’157 63% 58% 59%
SoA 4 877 3’507 67% 53% 54%
SoA 8 465 3’717 84% 50% 52%

AoS 1 1’974 1’974 93% 93% 93%
AoS 2 1’316 2’632 76% 70% 72%
AoS 4 790 3’159 74% 58% 61%
AoS 8 439 3’515 89% 52% 56%

For 32-bit features and 64-bit locations (32-bit genome id, 32-bit window id) the
total memory requirement accumulates to 14.7 GB of data. Due to the structure
of our Multi Bucket Hash Table many keys are stored multiple times in the hash
table, resulting in higher memory requirements. The actual number of times a key
needs to be stored depends on the bucket size: the bigger the buckets are the more
values can be stored per key slot and therefore less duplicate keys need to be stored.
Compared to SoA the AoS layout entails an additional overhead because keys are
also padded to 64-bit, doubling the memory consumption of the key slots.

Table 8.5 reveals the total number of created slots for keys and values when using
different layouts and bucket sizes as well as the occupancy of key slots, values slots
and memory. We can see that the number of key slots reduces dramatically if we
increase the bucket size, while the number of available value slots increases. Ideally,
this would allow us to store less duplicate keys while being able to store more
total values. Looking at the memory occupancy we see that this strategy works as
intended, with greater bucket sizes the amount of memory required to store all keys
and values is reduced.

Figures 8.13 and 8.14 visualize the number of free and occupied slots for keys and
values, respectively, using different hash table layouts and bucket sizes. The sum of
free and occupied slots equals the total number of available slots. While the number
of occupied key slots drops with increasing bucket size, the percentage of occupied
slots rises again for a bucket size greater than two. For a bucket size of eight we
reach key occupancies of 84% and 89% for SoA and AoS, respectively. WarpCore’s
performance results showed that high occupancy may lead to diminished insertion
and deletion speeds. We verify these results in the following sections. While the

8.4 Multi-Value Hash Tables 107

Fig. 8.13.: Multi Bucket Hash Table key occupancies for SoA and AoS layouts and bucket
sizes 1, 2, 4 and 8. Number of slots in millions.

Fig. 8.14.: Multi Bucket Hash Table value occupancies for SoA and AoS layouts and bucket
sizes 1, 2, 4 and 8. Number of slots in millions.

108 Chapter 8 MetaCache Methods

number of inserted values stays constant we find that bigger buckets allow for more
values to be stored and thus the value occupancy decreases accordingly.

The AoS layout requires twice as much memory for keys as the SoA layout. Hence,
the number of key and value slots is greatly decreased when keeping the total hash
table size fixed. From a memory standpoint the AoS layout is not suitable if we want
to store as many key-values pairs as possible.

Build Performance

Depending on the chosen layout and bucket size MetaCache-GPU’s build phase took
9.5 to 17.2 seconds to process the reference genomes and construct the database on
the GPU. The throughput in gigabytes of input data per second is shown in Figure
8.15 for SoA and AoS layout using different bucket sizes. For the same bucket
size the hash table performs better with SoA in all cases compared to AoS layout.
However, the difference for buckets of size one is most pronounced which can be
linked to the big difference in key occupancy for this bucket size. A lower occupancy
enables faster probing because candidate slots can be found more frequently. For
the same reason the throughput increases for larger bucket sizes. The best build
performance is achieved using buckets of size eight and SoA layout which is 40%
faster than using buckets of size one which resembles WarpCore’s Multi Value Hash
Table. While for buckets of size four we still reach 96% of the maximum throughput,
the highest throughput achieved for the AoS layout reaches 91% of the maximum
also using a bucket size of four.

Query Performance

As we can see in Figure 8.16 the hash table configuration has a huge impact on query
performance. For both SoA and AoS layout we achieve twice the throughput with a
bucket size of four compared to buckets of size one. Here again the SoA layout leads
to higher performance than AoS. The best performance is achieved in SoA layout
for bucket sizes four and eight which show similar performance independent of the
queried dataset.

Compared to HiSeq the longer reads in MiSeq result in two minhashing windows
per read and thus twice the amount of hash table queries. This leads to more
retrieved reference locations which need to be analyzed and therefore reduces the
number of reads processed per minute. Apart from the lower throughput numbers

8.4 Multi-Value Hash Tables 109

Fig. 8.15.: Multi Bucket Hash Table build performance for SoA and AoS layouts and bucket
sizes 1, 2, 4 and 8.

Fig. 8.16.: Multi Bucket Hash Table query performance for SoA and AoS layouts and bucket
sizes 1, 2, 4 and 8. Throughput in million reads per minute.

110 Chapter 8 MetaCache Methods

MetaCache-GPU’s query performance for MiSeq similarly depends on the hash table
layout and bucket size.

8.4.5 Conclusion

Using WarpCore we designed and implemented a new open addressing hash table
variant, where each slot consists of a key mapped to a small, fixed number (a bucket)
of values. Analogous to WarpCore’s Multi Value Hash Table a key can occur in
multiple slots which allows it to be associated to an arbitrary number of values.
Compared to WarpCore’s hash table variants this new variant is a better fit to the
various key-value distributions that we encountered in our experiments. Our Multi
Bucket Hash Table consumes less memory, which conversely allows for more data to
be stored per GPU. For a fixed set of reference genomes we achieve reduced hash
table occupancy which leads to quicker probing, resulting in up to 40% faster builds
and twice the query performance.

In our experiments the SoA layout showed superior to AoS, therefore we set the
former as our default layout in MetaCache-GPU. Peak throughput was achieved for
bucket sizes of four or eight values with only a negligible difference between the
two. Due to the lower key occupancy when using four values per bucket instead of
eight we decided on this size as our default value, allowing to insert additional keys
if necessary.

8.4 Multi-Value Hash Tables 111

8.5 Segmented Sort

Sorting the lists of target locations resulting from database queries is a time-
consuming step in our GPU pipeline (Section 8.2.2 Step 6). For each batch of
queries a segmented sort algorithm is employed on the GPUs to efficiently sort
multiple location lists in parallel.

Segmented sort is the problem of sorting multiple independent lists (segments) of
keys or key-value-pairs of arbitrary sizes. In a sequential approach a single thread
could simply sort one segment after the other. However, in a parallel implementa-
tion load-balancing problems may emerge from the varying number of elements
per segment when distributing work among multiple threads. There exist several
different approaches to solve these problems on GPUs.

8.5.1 Related Work

One simple solution for segmented sort is to transform the problem into a global
sort of a single list. In order to achieve this, the input data has to be augmented by
adding segment IDs to each element, and then a global sort primitive can be called
which respects the IDs as well as the original keys [@7, 24]. This not only adds
memory overhead but also increases computational complexity. A similar approach
is used by other GPU programs [68, 122] which reformulate their problems to be
able to call global sort from support libraries.

Another strategy, employed by ModernGPU [@4], is to use a merge sort algorithm
which respects the segment boundaries. They first assign a fixed number of elements
to each thread which are rearranged using a sorting network without crossing
segments. Subsequently, neighboring blocks of elements are merged as long as they
contain elements from a common segment. The merge steps continue until even the
largest segments are completely sorted.

The CUB library [@14] which is included in the CUDA toolkit uses a radix sort
algorithm for their global and segmented sort primitives. For the segmented sort they
spawn as many thread blocks as there are segments. Each block is responsible for
sorting a designated segment regardless of segment size. This may waste resources
on small segments while larger segments could benefit from the use of more parallel
processing power than a single block can provide. CUB’s documentation states that

112 Chapter 8 MetaCache Methods

this strategy was suited for larger segment sizes (“tens of thousands of items and
more”3).

Since version 1.15 CUB provides an alternative segmented sort algorithm which
improves runtimes for smaller or imbalanced segment sizes. They partition the seg-
ments according to their size into different groups which are processed by different
sorting strategies. Large segments are still sorted using radix sort while smaller
segments are sorted in a separate kernel using a merge sort implementation.

Hou et al. [36] also try to take advantage of the data distribution by treating
segments of different size separately. Their segmented sort consists of multiple
kernels, each tailored to a specific range of segment sizes. In each CUDA kernel,
threads operate conjointly sorting the elements of a segment using bitonic sort.
The corresponding sorting networks can be implemented efficiently exploiting fast
register accesses and warp shuffles. For larger segments with more than 2048
elements they first sort chunks of elements with bitonic sort and subsequently
merge the partial results until the whole segments are sorted. Their implementation
has been shown to outperform other libraries like CUB (radix sort version) and
ModernGPU , however, they only provide primitives for key-value sort and require
additional memory allocations.

8.5.2 Improvements

We adapted the approach by Hou et al. to allow for key-only sorting by refactoring
all involved sorting kernels. Furthermore, we rewrote the interface to accept begin
and end offsets for all segments instead of expecting that all segments are stored
consecutively in memory. In addition, our implementation allows to pre-allocate
temporary memory for the algorithm which avoids synchronization overhead caused
by intermediate memory allocations and allows to reuse the memory for following
invocations. Finally, we bundle the sorting kernels in a CUDA graph which speeds
up the scheduling and removes gaps between kernel executions.

3https://nvlabs.github.io/cub/struct_device_segmented_sort.html

8.5 Segmented Sort 113

https://nvlabs.github.io/cub/struct_device_segmented_sort.html

8.5.3 Performance Evaluation

To evaluate the different segmented sort approaches, we extracted batches of seg-
ment sizes from MetaCache’s query pipeline to generate benchmark cases represent-
ing real-world classification runs. Experiments were conducted on the following
system:

System 2 2x Intel Xeon Gold 6238 (22 cores @ 2.1-3.7 GHz) with 192 GB DDR4
RAM, 2x NVIDIA Quadro GV100, each with 32 GB HBM2 memory, Ubuntu
20.04, GCC 9.3.0, CUDA 11.5.

We used all complete bacterial genomes from NCBI RefSeq [84] Release 202 for
database building. Due to the GPU memory limitations on this system, we split
the set of genomes into two equally sized parts (see Table 8.6) and constructed a
database for each using both GV100 GPUs. We ran MetaCache’s query mode for the
metagenomic datasets HiSeq and MiSeq containing 10 million reads each, with an
average length of 92 and 156 base pairs, respectively. See Table 8.7 and Section 9
for more details on the datasets.

Tab. 8.6.: Reference genome sets used for databases.

Database Genomes Size on disk

RefSeq 202 Bacteria 1 (RS202 B1) 9,442 37 GB
RefSeq 202 Bacteria 2 (RS202 B2) 9,391 37 GB

Tab. 8.7.: Properties of used metagenomic read datasets.

Dataset Sequences Min length Max length Average length

HiSeq 10,000,000 19 101 92.3
MiSeq 10,000,000 19 251 156.8

For MetaCache’s default batch size of 8192 and window size of 127 base pairs this
resulted in 2442 and 4798 batches of windows, respectively, which are queried
against the databases and involve a segmented sort of candidate locations. We
extracted the segment sizes for all batches and stored them on disk in order to
enable benchmarks decoupled from the complete MetaCache pipeline. Table 8.8
shows some statistical properties of the distribution of segments sizes generated by
querying HiSeq and MiSeq against the two databases from Table 8.6. In total all
batches of HiSeq encompassed more than 11 billion items, while all batches of MiSeq
add up more than 27 billion items due to the longer read lengths. We can see that
some segments are empty because for some sequence windows none of the selected

114 Chapter 8 MetaCache Methods

Tab. 8.8.: Statistical properties of the segment sizes generated by different dataset queries.
Stddev = standard deviation.

Dataset Database Min Max Mean Stddev Skewness Total items

HiSeq RS202 B1 0 4064 591.5 588.3 -1.739 11.829 bn
HiSeq RS202 B2 0 4064 576.5 568.5 -1.584 11,529 bn
MiSeq RS202 B1 0 9846 1411.5 1133.7 -4.812 28.230 bn
MiSeq RS202 B2 0 9866 1386.1 1110.9 -4.788 27.721 bn

k-mers were found in the databases, while other segments reach the maximum size
possible. For HiSeq, where each read fits into a single window, MetaCache generates
a minhashing sketch of size 16 which results in at most 16 · 254 = 4064 candidate
locations for a maximum location list size of 254 for each k-mer in the database.
Using the default window stride of 112 base pairs the longest reads in MiSeq are
split into three windows where the last window covers only a few bases resulting in
less than three times the maximum segment size of HiSeq.

The following results show the throughput achieved by the different segmented
sort approaches when performing the segmented sort operation for all batches of a
dataset executed in a row.

Initially, MetaCache-GPU included a compaction step prior to the segmented sort
step because the location lists resulting from the hash table query were stored
at separate memory locations. This allowed using the original interface of the
implementation by Hou et al. as well as ModernGPU’s segmented sort, which
expect that all segments are stored in consecutive memory locations. In contrast
CUB and our improved implementation are able to handle separated segments by
accepting lists of begin and end offsets. This eliminates the need for the compaction
step reducing code complexity and execution time. Nevertheless, we investigated
both the compacted case (dense segments) as well as the un-compacted case (sparse
segments) in our benchmarks to be able to include ModernGPU and to study potential
performance differences. Figures 8.17 and 8.18 show the results for the dense and
sparse benchmark, respectively.

Comparing the results of the two databases RS202 B1 and B2 we find only negligible
differences in throughput of less than 2% resulting from the differences in segment
sizes. Our segmented sort sort gets slightly faster when processing more smaller
segments while the other methods show slightly worse result. We see the same
effect but much more pronounced comparing the results for HiSeq to MiSeq using
a common database. Due to the larger segments produced by MiSeq, CUB’s radix
sort achieves almost twice the throughput compared to sorting segments for HiSeq.

8.5 Segmented Sort 115

Fig. 8.17.: Throughput for dense segmented sort.

Fig. 8.18.: Throughput for sparse segmented sort.

116 Chapter 8 MetaCache Methods

However, CUB’s segmented radix sort remains the slowest approach. ModernGPU
and and CUB’s new method are also benefiting slightly from larger segment sizes,
increasing throughput by 15% and 10%, respectively.

In contrast, our approach uses specialized kernels for smaller segment sizes which
results in 15-17% higher throughput for HiSeq than for MiSeq. This approach
is very well suited for this use case. Our implementation outperforms all other
tested methods by a significant amount resulting in speedups of 3.5-7.2, 2.5-3.4 and
1.7-2.2 compared to CUB’s radix sort, ModernGPU and CUB’s new segmented sort,
respectively.

Looking at the sparse benchmark in comparison we only see small differences in
performance. The largest variation is found for HiSeq, where our approach is faster
by another 4%, which may result from improved memory access because individual
segments are aligned to 128 byte memory addresses here. As mentioned before
ModernGPU is not able to handle segments with gaps in between, so it was excluded
from this benchmark.

8.5.4 Conclusion

Segmented sort is an important step in our GPU query pipeline. Although popular
CUDA libraries like ModernGPU and CUB provide segmented sort primitives out of
the box they are not necessarily the fastest solution. We showed that our modified
implementation of the approach by Hou et al. is able to outperform CUB and Mod-
ernGPU by a large amount using bitonic sorting kernels optimized for small segment
sizes. Our implementation allows to pre-allocate temporary memory avoiding syn-
chronization overheads. Furthermore, its interface accepts begin and end offsets for
segments instead of expecting that all segments are stored consecutively in memory,
enabling us to skip the costly compaction step in the GPU pipeline.

8.5 Segmented Sort 117

8.6 Top Candidate Generation

The final kernel in MetaCache’s GPU query pipeline combines steps (7) and (8)
of Section 8.2.2 to generate the top candidates from the sorted lists of reference
locations. Locations consist of a target ID gi and a window ID wj , denoting the
j-th window in the i-th reference genome. Each warp of 32 threads running the
kernel is used to find the best matching reference region for one read at a time by
employing a sliding window approach. The sliding window size sws is determined
by the length of the respective read and defines the maximum number of contiguous
locations that can be accumulated to form a top candidate. The goal is to find the
candidate(s) with the highest score, i.e., the highest number of matched locations in
its sliding window range.

First, threads load the sorted locations and perform a segmented reduction to
accumulate identical values (same target and window ID). This is repeated until at
least 32 + sws− 1 unique locations are collected in shared memory, so that every
thread is able to calculate its own sliding window. Next, each thread has to inspect
up to sws locations to determine if they belong to the same region by comparing
their target and window IDs. Starting with its first locations each thread either
accumulates the scores of consecutive locations or discards all following locations
if their IDs are out of range. The resulting location ranges and their scores are
potential top candidates.

Fig. 8.19.: Top Candidates Generation Kernel for an example warp size of 8 threads and an
sliding window size of 3. The top 2 per thread already contain candidates from
a previous iteration. gi and wj denote target and window IDs, respectively.

118 Chapter 8 MetaCache Methods

Because the number m of top candidates required to classify a read is small, each
thread is able to maintain its own list of m ranges with highest hit count in registers.
After each iteration of the candidate generation the local top lists are updated
individually. Finally, after all locations for a read have been processed the whole
warp generates the combined top hits list by using warp shuffles to find the highest
scores. Figure 8.19 shows an example workflow for the kernel.

In the multi-GPU scenario different reference sequences are stored in hash tables
of different GPUs. Consequently, all locations of the same reference are contained
on the same GPU and top candidates can be determined independently on each
GPU. This reduces the required communication to a minimum because only the top
candidates from different GPUs need to be merged instead of globally gathering
all locations from all GPUs. In our GPU pipeline the top m candidates from the
preceding GPU are merged with the local results, and the combined top m candidates
are sent to the subsequent GPU. The last GPU in the pipeline obtains the top m

candidates of the whole database and copies the result back to the host. This
concludes the query pipeline for a batch of reads on the GPU.

8.6 Top Candidate Generation 119

MetaCache-GPU
Performance Evaluation

9
In order to evaluate the performance of the complete MetaCache-GPU pipeline we
investigated the build and query phases for two different databases of reference
genomes. The first set consists of genomes from NCBI RefSeq [84]. We included all
complete archaeal, bacterial, fungal and viral genomes from RefSeq Release 202.
For the second set we combined the RefSeq set with 31 food-related genomes from
the All-Food-Sequencing (AFS) pipeline [48]. In contrast to the first set these animal
and plant genomes consist of much longer sequences. Furthermore, some of the
genomes are only available at scaffold level which results in hundreds of thousands
of different target sequences per genome. Table 9.1 shows the number of included
species for each database as well as their total sizes.

For the query phase we chose to test three metagenomic datasets with at least 10
million reads each. HiSeq and MiSeq contain single-end reads in FASTA format and
were introduced by Wood and Salzberg [117], KAL_D is taken from AFS [48] and
contains paired-end reads in the FASTQ fromat. Table 9.2 shows the total number
of reads per dataset together with their minimum, maximum and average lengths.
The datasets HiSeq and MiSeq represent bacterial mock communities consisting of
reads from ten different species each, produced by Illumina sequencers of the same
names. Finally, KAL_D is a real world dataset obtained by sequencing material from
a sausage made from beef, mutton, pork and horsemeat.

Experiments were conducted on the following system:

DGX-1 Volta: Dual-socket Xeon E5-2698 v4 CPU (2x20 cores at 2.20 GHz) with
512 GB DDR4 RAM and 8 Tesla V100 GPUs, each with 32 GB HBM2 memory,
CUDA 11.0, GCC 9.3.0.

Reference genomes, taxonomy files and datasets were loaded into a virtual RAM
drive before executing a build or query to minimize the influence of slow I/O from
the file system. Kraken2 [116] and MetaCache (CPU version) were executed using
a maximum of 80 threads incorporating simultaneous multithreading on the 40
cores of the system. MetaCache-GPU was evaluated using a 4 GPU and an 8 GPU
configuration. Additionally, we compare querying of the original paper version

121

Tab. 9.1.: Reference genome sets used for databases.

Database Species Size on disk

RefSeq 202 15,461 74 GB
All-Food-Seq 31 31 77 GB

AFS 31 + RefSeq 202 15,492 151 GB

Tab. 9.2.: Metagenomic read datasets.

Dataset Format Sequences Min Max Average

HiSeq FASTA single 10,000,000 19 101 92.3
MiSeq FASTA single 10,000,000 19 251 156.8
KAL_D FASTQ paired 26,114,376 101 101 101

(MetaCache v2.0) with an updated version (MetaCache v2.3) which among other
improvements utilizes the sparse segmented sort from Section 8.5 to eliminate the
compaction step in the query pipeline.

In the 4 GPU configuration our Multi Bucket Hash Table introduced in Section 8.4
needed 10% and 11% less memory than WarpCore’s Multi Value and Bucket List
Hash Table, respectively. It was the only hash table that could fit RefSeq202 on
4 GPUs without further restricting the number of locations per k-mer. The larger
AFS31+RefSeq202 database did not fit in the memory of 4 V100 GPUs and therefore
always uses 8 GPUs.

9.1 Build Performance

Table 9.3 presents the build performance of Kraken2 and MetaCache’s CPU and
GPU versions. As mentioned in Section 6.4.1 the CPU version of MetaCache is
based on a two stage producer-consumer scheme which uses only three threads in
total. Nevertheless, it is faster than Kraken2 which uses 80 threads. While CPU-
based MetaCache and Kraken2 take more than an hour for building the RefSeq202
database and more than 3 or more than 4 hours for AFS31+RefSeq202, respectively,
MetaCache-GPU is able to create the index structures in seconds to minutes. The
speedup when using 8 GPUs is 64x and 61x for building and storing RefSeq202
compared to Kraken2 and MetaCache-CPU, respectively. For AFS31+RefSeq202
the speedups are 72x and 51x, respectively. Looking at the build time without
writing the databases to the file system, the GPU version is 414 times and 272 times
faster than the CPU version of MetaCache for RefSeq202 and AFS31+RefSeq202,

122 Chapter 9 MetaCache-GPU Performance Evaluation

Tab. 9.3.: Build performance for different databases. Total time includes build time and
time for writing DBs to files.

Method Build time Total time DB size RAM

RefSeq 202 database:

Kraken2 - 72 min 40 GB 46 GB
MC CPU 67 min 69 min 51 GB 71 GB
MC 4 GPUs 10.4 s 59.6 s 88 GB 1 GB
MC 8 GPUs 9.7 s 67.0 s 97 GB 1 GB

AFS 31 + RefSeq 202 database:

Kraken2 - 256 min 110 GB 160 GB
MC CPU 194 min 201 min 127 GB 194 GB
MC 8 GPUs 42.7 s 3 min 31 s 176 GB 30 GB

respectively. Building the RefSeq202 database using 4 GPUs is a little slower than
when using 8 GPUs because of less parallelization. But the overall database size is
smaller and less data needs to be written to files, resulting in a slightly faster total
runtime compared to the 8 GPU version. The speedups are 72x and 69x compared
to Kraken2 and MetaCache-CPU, respectively.

9.2 Query Performance

Figures 9.1 and 9.2 reveal the query performance of Kraken2 and MetaCache for
the databases RefSeq202 and AFS31+RefSeq202, respectively. MetaCache’s speed
depends on the number of reference locations found per read, which need to be
merged and analyzed to get the final classification results. While the HiSeq dataset
only contains reads which are smaller than MetaCache’s window size, longer reads
from MiSeq are split into two windows, resulting in more database queries and likely
more retrieved locations. The KAL_D dataset on the other hand contains mostly
reads from meat components and does not register many hits against the RefSeq202
database, resulting in the fastest queries for MetaCache. Kraken2 reaches higher
speeds than MetaCache’s CPU version when querying RefSeq202 with MiSeq and
HiSeq, but needs more time for KAL_D. Since Kraken2 relies on mapping minimizers
directly to taxa and does not need to process locations lists for hits in the database
the speed in not affected much by the database size, Kraken2 is even able to increase
the speed for the bigger AFS31+RefSeq202 database, while MetaCache’s query
speed takes a hit and is 6 to 14 times lower.

9.2 Query Performance 123

Fig. 9.1.: Query performance for querying different datasets against RefSeq202 database.
Query speed in million reads per minute.

Fig. 9.2.: Query performance for querying different datasets against AFS31+RefSeq202
database. Query speed in million reads per minute.

124 Chapter 9 MetaCache-GPU Performance Evaluation

Tab. 9.4.: MetaCache-GPU query performance comparison. Query speed in million reads
per minute.

Dataset Method Output RefSeq 202 AFS31+RefSeq202
4 GPUs 8 GPUs 4 GPUs 8 GPUs

HiSeq

MC 2.0 per Read 292 305 –1 298
MC 2.3 per Read 331 341 –1 331
MC 2.0 Summary 362 405 –1 405
MC 2.3 Summary 405 460 –1 436

MiSeq

MC 2.0 per Read 165 215 –1 199
MC 2.3 per Read 177 232 –1 215
MC 2.0 Summary 166 228 –1 209
MC 2.3 Summary 177 245 –1 225

KAL_D

MC 2.0 per Read 454 435 –1 249
MC 2.3 per Read 457 432 –1 268
MC 2.0 Summary 463 437 –1 249
MC 2.3 Summary 461 437 –1 268

1 4 V100 GPUs do not provide enough memory for AFS31+RefSeq202.

Note that Kraken2 can only map reads to candidate taxa while MetaCache is able to
map reads to the most likely locations of origin within reference sequences and thus
produce candidate regions for further downstream analysis like, e.g., alignments.

MetaCache’s GPU version however is not so much affected by the database size
and achieves high speeds for both RefSeq202 and AFS31+RefSeq202. It is able
to outperform Kraken2 and MetaCache’s CPU version on all datasets. MetaCache
version 2.3 is even able to improve the performance by up to an additional 14%.
Compared to Kraken2 MetaCache-GPU (version 2.3) is 2.0-6.2 times faster for
RefSeq202 and 2.1-3.3 times faster for AFS31+RefSeq202, compared to MetaCache-
CPU it is 2.9-12.1 and 20.3-165 times faster, respectively.

Table 9.4 compares the query performance of MetaCache 2.0 and 2.3 for different
numbers of GPUs and different output options. For HiSeq we can see that suppressing
the per-read output has a big impact on the performance, while MiSeq and KAL_D
stay mostly unaffected. HiSeq contains single-end reads which are small enough
to fit into a single window in MetaCaches algorithm, while most reads from MiSeq
will be processed in two windows. Both reads in a read pair from KAL_D are also
processed as two separate windows. More windows result in more minhash sketches
which have to be queried which in term results in greater processing time. However,
processing and output of different batches are overlapped. For MiSeq and KAL_D
the processing time is large enough to hide the result output completely, while many

9.2 Query Performance 125

batches from HiSeq are processed too fast for the output to keep pace. Nevertheless,
we see runtime improvements for version 2.3 with and without per-read output.

Comparing MetaCache 2.0 and 2.3 we see no significant difference in performance
for KAL_D when querying the RefSeq202 database because this dataset mainly
consists of reads from animal genomes which are not included in this database.
Therefore, only few results need to be processed and the improvements in version
2.3 are less relevant. For HiSeq and MiSeq, however, version 2.3 achieves 7-14%
increased performance querying RefSeq202. For queries against AFS31+RefSeq202
we observe improvements of 8-11% for all datasets.

9.3 Performance Breakdown

Figures 9.3 and 9.4 illustrate the average runtimes of the components of the query
pipeline explained in Section 8.2 when querying a batch of reads from different
datasets against the RefSeq202 and AFS31+RefSeq202 database, respectively. In
MetaCache version 2.0 creating the minhashing sketch from the reads and querying
the database takes 19-27% of the time while the rest is spent on processing the
retrieved location lists. In contrast, in version 2.3 this first kernel takes 25-33% of
the total time because its absolute runtime is increased and the compaction step is
missing from the total. The increased runtime derives from atomically summing
the location list sizes, which was done in the compaction step in version 2.0, and
from code changes to allow for longer reads which resulted in increased number of
registers required per thread leading to lower GPU occupancy. In a future version
the code path for long reads should ideally execute a separate kernel to avoid
performance penalties for short reads. Nevertheless, the time needed until the
segmented sort can begin is reduced by 8-27%. Segmented sort takes the biggest
share of the pipeline and is responsible for about halve of the total runtime. The top
candidate generation takes 16-20% in version 2.0 and 17-21% in version 2.3.

For HiSeq and MiSeq the execution time on the GPU is smaller when using 8 GPUs
with the AFS31+RefSeq202 database compared to 4 GPUs with the RefSeq202
database because the relevant bacterial genomes are distributed among all GPUs
which means less results to be process per GPU. The additional 31 food-related
genomes only cause a small overhead for these datasets. For KAL_D on the other
hand we see the opposite effect. Due to the small number of hits in the RefSeq202
database the query processing is much faster compared to the AFS31+RefSeq202

126 Chapter 9 MetaCache-GPU Performance Evaluation

Fig. 9.3.: Performance breakdown for queries against RefSeq202 database using 4 GPUs.

Fig. 9.4.: Performance breakdown for queries against AFS31+RefSeq202 database using 8
GPUs.

9.3 Performance Breakdown 127

Fig. 9.5.: Runtime comparison of our on-the-fly (OTF) mode to separate build and query
execution (W+L) for different databases, querying KAL_D dataset.

database. Most of the reads in KAL_D belong to meat components whose genomes
are only contained in the larger database.

9.4 On-The-Fly Mode

Figure 9.5 compares the runtimes of separate build and query to the on-the-fly mode
mentioned in Section 6.4 using multiple GPUs. Because of the high GPU build speed,
most of the time in the build phase is actually spent writing the database to the file
system. Loading the database takes almost the same time as building it from scratch.
When using the on-the-fly mode the database can be queried without having to
write and reload the database. Table 9.5 shows that the time needed until a query
can be executed is greatly reduced when using MetaCache-GPU in on-the-fly mode.
MetaCache’s GPU databases are ready for use in under a minute which translates to
a speedup of 360-450 compared to Kraken2. Note, that the query speed of the GPU
hash table used for building is lower than that of the one used in separate query
execution resulting in about 20% less performance. Nevertheless, the on-the-fly
query mode can be beneficial in situations where a database is not queried more
than once and does not need to persist on disk.

128 Chapter 9 MetaCache-GPU Performance Evaluation

Tab. 9.5.: Comparison of time needed until a query can be executed when using Meta-
Cache’s on-the-fly (OTF) mode. TTQ is Time-to-Query.

Method Build Load TTQ Speedup

RefSeq 202 database:

Kraken2 72 min 23 s 73 min 1.0
MC CPU OTF 67 min - 67 min 1.1
MC 4 GPUs OTF 10.4 s - 10.4 s 420
MC 8 GPUs OTF 9.7 s - 9.7 s 450

AFS 31 + RefSeq 202 database:

Kraken2 256 min 63 s 257 min 1.0
MC CPU OTF 201 min - 201 min 1.3
MC 8 GPUs OTF 42.7 s - 42.7 s 360

9.5 Query Accuracy

To analyze the query accuracy we compared classification results for HiSeq and
MiSeq from MetaCache’s versions and Kraken2 to the ground truth. Table 9.6 reveals
the precision and accuracy using the RefSeq202 database with different methods.
On the genus level Kraken2 offers greater sensitivity for the HiSeq datasets and
similar sensitivity for MiSeq. The genus-level precision over 99% is comparable
for Kraken2 and MetaCache with a small advantage for Kraken2 regarding MiSeq
and MetaCache for the other two datasets. MetaCache is able to surpass Kraken2’s
accuracy on the species level for HiSeq and MiSeq, yielding 5% and 12% more
sensitivity, respectively. MetaCache’s precision is also higher for HiSeq, but lower for
MiSeq.

Compared to MetaCache’s CPU version the GPU variants are able to improve the
accuracy. The reason for this is that using multiple database parts allows to store
more locations for each k-mer, which are lost in the CPU version due to the enforced
bucket limit. The additional location information leads to a better sensitivity and
precision in most cases, only species-level results for HiSeq are slightly worse. This
effect increases when using more GPUs.

Note, that we only tested Kraken2 and MetaCache with default parameters. Both
algorithms allow the user to choose a different hit threshold which defines how
many database hits are necessary to classify a read. Lowering the threshold typically
trades precision for sensitivity while an increased threshold may improve precision
at the cost of sensitivity.

9.5 Query Accuracy 129

Tab. 9.6.: Classification accuracy using RefSeq 202 database.

Dataset Method Species Genus
Prec. Sens. Prec. Sens.

HiSeq

Kraken2 82.52% 58.39% 99.09% 88.46%
MC CPU 89.41% 63.68% 99.20% 81.36%

MC 4 GPUs 88.70% 62.61% 99.36% 82.32%
MC 8 GPUs 88.81% 62.63% 99.36% 82.40%

MiSeq

Kraken2 77.91% 48.53% 99.38% 93.25%
MC CPU 72.28% 60.67% 99.21% 93.23%

MC 4 GPUs 73.07% 61.55% 99.37% 93.82%
MC 8 GPUs 73.53% 61.99% 99.37% 93.92%

For the KAL_D dataset there is no true per-read mapping available, only the
ratio of meat components is known. To examine this dataset we queried the
AFS31+RefSeq202 database which includes the corresponding genomes. Using
MetaCache’s abundance estimation functionality achieved quantification results
close to the true ratios with a accumulated deviation of 6.5% and 2.5% false pos-
itives for the GPU version and a deviation of 16.0% and 2.0% false positives for
the CPU version. In contrast, comparing the species results from Kraken2’s sample
report to the truth yielded a deviation of 21.4% and 7.5% false positives.

130 Chapter 9 MetaCache-GPU Performance Evaluation

MetaCache Conclusion 10
The steadily increasing amount of available reference genomes and NGS data estab-
lishes the need for efficient and highly optimized processing approaches. In this work
we have presented MetaCache-GPU – an alignment-free method for metagenomic
read classification on CUDA-enabled GPUs based on massively parallel construction
and querying of a novel hash table structure for k-mers. MetaCache-GPU’s on-the-fly
mode enables classification pipelines that can be rapidly updated to make use of the
latest reference genomes or use custom reference genome sets on demand achieving
over two orders-of-magnitude speedup compared to Kraken2 and the CPU version
of MetaCache while still being memory-efficient. This is particular important for
the analysis of complex biological matters such as food stuff which often requires
custom reference databases where the size of individual genomes can exceed several
gigabytes (e.g., plant genomes).

As part of MetaCache-GPU we investigated several components of the pipeline
like sequence I/O, hash tables for k-mer index construction and querying as well
as segmented sort. All these are common concept in bioinformatics. Thus, the
introduced methods could easily be adapted to related NGS tasks such as read
mapping or long-read-to-long-read alignment.

MetaCache-GPU is publicly available at https://github.com/muellan/metacache.

131

https://github.com/muellan/metacache

Part III

Future Work and Conclusion

Future Work 11
Although GPU programs written in CUDA stay compatible to future NVIDIA GPU
architectures, the CUDA ecosystem keeps steadily evolving. It is to be expected that
new and coming GPUs will further increase the number of compute cores and the
amount of available memory. Additionally, recent NVLink-based multi-GPU servers
rely on NVSwitch technology which fully connects all GPUs within the same node
and can even be extended across nodes to create a high-bandwidth, multi-node GPU
cluster.

Our GPU Communication library Gossip focuses on direct connections between
pairs of GPUs in a single node environment, but could be extended to incorporate
switches between GPUs as well as hierarchical topologies with multiple levels of
interconnects. To tackle these problems the multi-commodity flow formulation
would have to be augmented with additional nodes to accommodate switches and
would have to include transfer edges between GPUs and those switches. In a similar
manner, the time-expanded graph could be enhanced to model transfer latencies in
order to create optimal transfer plans for small data scenarios, while Gossip currently
achieves maximum throughput only for larger data package sizes. Furthermore, it
would be interesting to see if Gossip’s static transfer plans could be dynamically
adjusted over the runtime of a program, in case the data distribution and transfer
sizes changed over time. This could be achieved by tracking the estimated partition
sizes based on moving average statistics combined with occasional recomputation of
optimal solutions.

As we showed in Sections 5.3 and 9.3 (segmented) sort plays an important role
in the context of suffix array construction as well as our metagenomic classifier
MetaCache. We see potential to improve the employed segmented sorting primitives
by adapting individual kernels to different data types and exploiting increased
shared memory sizes of recent GPUs. The number of registers usable by each
streaming multiprocessor of the GPU is limited and register usage depends on the
data types of keys (and values) when sorting. To achieve high GPU occupancy
and throughput, sorting kernels should be optimized according to the utilized data
types. Furthermore, larger shared memory sizes enable local sorting of larger sized
segments inside of thread blocks before reverting to global memory. The recent

135

Hopper H100 GPU features 227 KB of shared memory per thread block instead of the
96 KB available on Volta GPUs like the V100, enabling local sorting of segments more
than twice as large. Additionally, the Hopper generation implements yet another
layer in the thread hierarchy, which allows thread blocks to be grouped in clusters
and grants access to shared memory of blocks in the same cluster (distributed shared
memory). Thus, multiple thread blocks in a clusters could work together to sort
large segments without storing intermediate results in global memory.

In order to minimize the influence of slow I/O from the file system we performed
benchmarks for MetaCache-GPU using a virtual RAM drive. However, our imple-
mentation is sometimes still hindered by slow input and output operations of the
host system. Here, we see two promising paths for advancements. The first ap-
proach follows the performance improvements achieved by recent quality control
tool RabbitQCPlus [119]. The authors implement parallel compressed file I/O and
also reduce memory copies by employing a pointer-based data structure instead of
splitting sequence data into separate character arrays. Both techniques could be
applied in MetaCache as well. The second approach would be to move file I/O to
the GPU by means of GPUDirect Storage [@12]. This would remove the CPU as a
bottleneck when performing input and output operations, however, specialized code
would have to be developed to implement the required operations on the GPU. Both
approaches are orthogonal and could potentially be combined.

Furthermore, some procedures like the coverage filter and quantification, exerted in
the AFS pipeline, are currently executed on the CPU and could be accelerated on
the GPU. Our current implementation takes advantage of multiple GPUs within the
same node to process large-scale metagenomic databases in memory. It would be
interesting to investigate an extension of our method to use even more GPUs within
cluster systems. This would allow to include an even greater variety of reference
genomes for broad-scale screening of metagenomic samples.

Another path to processing larger reference databases would involve a hierarchical
approach, akin to the taxonomic tree. First, coarse-grained classification could be
achieved by utilizing a database consisting of a limited number of genomes from
the reference set, e.g., one genome per genus. Then, for the genera that have
been identified to likely be included within the sample, genomes from all related
organisms can be selected and a new database is created to allow a more fine-grained
classification on species or even strain level. Due to the fast on-the-fly database
construction of MetaCache-GPU, such an online approach becomes feasible without
incurring large runtimes. Such a hierarchy could also be expanded to not only
consist of two but multiple levels, so that each level includes a different sub-set of

136 Chapter 11 Future Work

the taxonomic tree and classifications become more precise at each level. In addition
to confining the sets of reference genomes, it would also be possible to increase
the minhashing sub-sampling factor for the coarser databases and rely on a smaller
sub-sampling factor only for the finer-grained classifications, which would further
reduce memory requirements.

In contrast to other metagenomic classifiers, MetaCache is able to map reads to the
most likely locations of origin within reference sequences instead of only identifying
those sequences. This location information could be used for further downstream
analysis like, e.g., alignments, variant calling and methylation detection.

Furthermore, the introduced methods could be adapted to related NGS such as long-
read-to-long-read alignment. Long reads generated by third-generation sequencing
instruments can offer enormous advantages for biological analysis and insight,
however, they usually have high error rates and therefore often require different
algorithmic approaches from processing short Illumina reads. Thus, overlapping
and aligning long reads is a crucial step for subsequent error correction or de-novo
assembly. Based on MetaCache, long reads could be partitioned into windows and
sketches of the k-mers of each window can be computed using minhashing. These
sketches are then inserted into a hash table and can later be used for querying in
order to find reads with significant similarity. Candidate read pairings then need to
be verified by computing their semi-global alignments in order to identify significant
overlaps. The time-consuming alignment computation can also be accelerated using
the identified matching k-mers as seeds.

137

Conclusion 12
As the cost for sequencing technologies continues to decrease, the amount of gener-
ated data will certainly grow further in the foreseeable future. To meet the increasing
storage and processing demands, NGS pipelines will have to scale accordingly. Effi-
cient parallel and distributed algorithms help to tackle unreasonably large runtimes,
but solely CPU-based programs have a hard time keeping up to the task. GPUs
provide greater compute capabilities and memory throughput, however, the limited
amount of main memory available on a single GPU has posed a challenge to the
GPU acceleration of many NGS applications. In order to achieve satisfactory results
important algorithms such as metagenomic read classification, error correction and
sequence alignment require large index structures which do not fit on a single GPU.
In this work we presented methods to overcome memory restrictions and enable
GPU acceleration of suffix array construction and metagenomic classification.

In order to alleviate single-GPU memory restrictions we have developed Gossip
– a library of highly efficient communication primitives between multiple GPUs
within the same node. By formulating an integer linear program, we are able to
automatically generate transfer plans adjusted to the underlying NVLink topology
for high throughput scatter, gather and all-to-all communication. We showed that
with the usage of Gossip we are able to build and query distributed index data
structures across several GPUs within modern DGX servers. This in turn allows for
the usage of significantly larger index data structures through the combined main
memory of multiple GPUs. We also showed that this allows for extremely fast suffix
array construction; e.g., the suffix array of a full human reference genome can be
constructed in only 3.4 seconds on a single DGX-1 server.

Furthermore, we introduced MetaCache-GPU – an ultra-fast metagenomic short read
classifier specifically tailored to fit the characteristics of CUDA-enabled accelerators.
In this context we optimized several methods to harness the vast compute capabilities
of modern GPUs. In order to overcome the memory limitations of a single GPU we
extend MetaCache to work with hash tables distributed across multiple GPUs.

File I/O is a non-negligible part of many genomic data processing pipelines and has
to keep up with the immense (GPU) data processing speed. We showed that the
improved sequence reader and parser we integrated into MetaCache(-GPU) is able

139

to achieve twice the performance of competing tools, while providing a consistent
enumeration of processed reads, which is required for post-processing steps like
MetaCache’s own merge mode.

Hash tables are key data structures in the GPU implementation of MetaCache
dictating the performance of k-mer index construction and querying as well as the
memory consumption. Off-the-shelf solutions represented a bottleneck in large-scale
sequence analysis applications. To alleviate this bottleneck, we implemented a novel
multi-value hash table variant featuring efficient minhash fingerprinting of reads for
locality-sensitive hashing and their rapid insertion using warp-aggregated operations.
This new variant is a better fit for the various key-value distributions encountered
in genomic data sets and consumes less memory than previous implementations.
The improved memory efficiency allows for more data to be stored per GPU or
alternatively accelerates build and query times for a fixed amount of data. We
suspect that many other applications relying on k-mer index structures could also
benefit from our proposed hash table format.

Another time-consuming step in our GPU pipeline is sorting the lists of target
locations resulting from database queries. For each batch of queries a segmented
sort algorithm is employed on the GPUs to efficiently sort multiple location lists
in parallel. We showed that our modification of the implementation by Hou et
al. is able to outperform popular CUDA libraries like ModernGPU and CUB by a
large amount using bitonic sorting kernels optimized for different segment sizes. Of
course the performance of segmented sort algorithms is data dependent; the number
of segments and their sizes are important factors and different algorithms might
optimize for different use cases. However, we see potential for further improvement,
demanding further investigation. For a generalized approach it would be useful
to develop heuristics which choose the optimal sorting strategy based on the data
distribution.

Our performance evaluation of MetaCache-GPU shows that the program is able
to build large reference databases in a matter of seconds, enabling instantaneous
operability, while popular CPU-based tools such as Kraken2 require over an hour for
index construction on the same data. In the context of an ever-growing number of
reference genomes, MetaCache-GPU is the first metagenomic classifier that makes
analysis pipelines with on-demand composition of large-scale reference genome
sets practical. While CPU-based MetaCache and Kraken2 take more than an hour
for building the RefSeq202 database and more than 3 or more than 4 hours for
AFS31+RefSeq202, respectively, MetaCache-GPU is able to create the index struc-
tures in seconds to minutes. Looking at the build time without writing the databases

140 Chapter 12 Conclusion

to the file system, the GPU version is 414 times and 272 times faster than the CPU
version of MetaCache for RefSeq202 and AFS31+RefSeq202, respectively.

Our results clearly demonstrate the enormous potential of using GPUs for accel-
erating data-intensive NGS pipelines. Thus, we expect that, using our GPU-based
approaches as enabling technologies, significantly faster methods can be designed
for related problems in the field of bioinformatics. Although our implementations
exhibit high processing throughput and outperform competitors, we still see possibil-
ities for improvement by incorporating recent advancements in the CUDA hardware
and software platform. Extending our solutions from single multi-GPU servers to dis-
tributed clusters while maintaining scalability will be one of the interesting research
challenges in this area.

141

Bibliography

[1]D.A.F. Alcantara. “Efficient Hash Tables on the GPU”. PhD thesis. Davis, CA, USA:
University of California at Davis, 2011 (cit. on p. 99).

[2]DA Alcantara, A Sharf, F Abbasinejad, et al. “Real-time Parallel Hashing on the GPU”.
In: ACM SIGGRAPH Asia 2009. Yokohama, Japan: ACM, 2009, 154:1–154:9 (cit. on
p. 99).

[3]S Ashkiani, M Farach-Colton, and JD Owens. “A Dynamic Hash Table for the GPU”.
In: IPDPS 2018. IEEE. 2018, pp. 419–429 (cit. on p. 100).

[4]Saman Ashkiani, Andrew Davidson, Ulrich Meyer, and John D. Owens. “GPU Multi-
split”. In: Proc. of the 21st ACM SIGPLAN Symp. on Principles and Practice of Parallel
Programming. PPoPP ’16. Barcelona, Spain: ACM, 2016, 12:1–12:13 (cit. on p. 21).

[5]Georg Baier, Ekkehard Köhler, and Martin Skutella. “The k-Splittable Flow Problem”.
In: Algorithmica 42.3-4 (July 2005), pp. 231–248 (cit. on p. 29).

[6]DC Bauer, AP Tay, L Wilson, et al. “Supporting pandemic response using genomics
and bioinformatics: a case study on the emergent SARS-CoV-2 outbreak”. In: Trans-
boundary and Emerging Diseases (2020) (cit. on pp. 1, 56).

[7]AZ Broder. “Identifying and Filtering Near-Duplicate Documents”. In: Proc. 11th
Annual Symposium on Combinatorial Pattern Matching. COM ’00. 2000, pp. 1–10
(cit. on pp. 8, 58).

[8]J. Bruck, Ching-Tien Ho, S. Kipnis, E. Upfal, and D. Weathersby. “Efficient algorithms
for all-to-all communications in multiport message-passing systems”. In: IEEE Trans-
actions on Parallel and Distributed Systems 8.11 (Nov. 1997), pp. 1143–1156 (cit. on
p. 21).

[9]Florian Büren, Daniel Jünger, Robin Kobus, Christian Hundt, and Bertil Schmidt.
“Suffix Array Construction on Multi-GPU Systems”. In: Proceedings of the 28th Inter-
national Symposium on High-Performance Parallel and Distributed Computing. HPDC
’19. Phoenix, AZ, USA: Association for Computing Machinery, 2019, pp. 183–194
(cit. on pp. 3, 50, 51).

[10]N Cadenelli, J Polo, and D Carrera. “Accelerating K-mer frequency counting with
GPU and non-volatile memory”. In: IEEE HPCC 2017; IEEE SmartCity 2017; IEEE DSS
2017. IEEE. 2017, pp. 434–441 (cit. on pp. 9, 10, 60).

[11]J Gregory Caporaso, Justin Kuczynski, Jesse Stombaugh, Kyle Bittinger, et al. “QIIME
allows analysis of high-throughput community sequencing data”. In: Nature methods
7.5 (2010), pp. 335–336 (cit. on p. 68).

143

[12]A Chacón, S Marco-Sola, A Espinosa, P Ribeca, and JC Moure. “Boosting the FM-index
on the GPU: Effective techniques to mitigate random memory access”. In: IEEE/ACM
Trans. on Computational Biology and Bioinformatics 12.5 (2014), pp. 1048–1059
(cit. on pp. 9, 10, 60).

[13]Ernie Chan, Marcel Heimlich, Avi Purkayastha, and Robert van de Geijn. “Collective
communication: theory, practice, and experience”. In: Concurrency and Computation:
Practice and Experience 19.13 (2007), pp. 1749–1783 (cit. on p. 22).

[14]Barbara Chapman, Tony Curtis, Swaroop Pophale, et al. “Introducing OpenSHMEM:
SHMEM for the PGAS community”. In: Proceedings of the Fourth Conference on
Partitioned Global Address Space Programming Model. 2010, pp. 1–3 (cit. on p. 8).

[15]Haoyu Cheng, Huaipan Jiang, Jiaoyun Yang, Yun Xu, and Yi Shang. “BitMapper: an
efficient all-mapper based on bit-vector computing”. In: BMC bioinformatics 16.1
(2015), pp. 1–16 (cit. on p. 9).

[16]Temesgen Hailemariam Dadi, Bernhard Y Renard, Lothar H Wieler, Torsten Semmler,
and Knut Reinert. “SLIMM: species level identification of microorganisms from
metagenomes”. In: PeerJ 5 (2017), e3138 (cit. on p. 64).

[17]Jun Doi and Yasushi Negishi. “Overlapping methods of all-to-all communication and
FFT algorithms for torus-connected massively parallel supercomputers”. In: SC’10:
Proceedings of the 2010 ACM/IEEE International Conference for High Performance
Computing, Networking, Storage and Analysis. IEEE. 2010, pp. 1–9 (cit. on p. 21).

[18]M Ellis, G Guidi, A Buluç, L Oliker, and K Yelick. “diBELLA: Distributed Long Read
to Long Read Alignment”. In: Proc. of the 48th Int. Conference on Parallel Processing.
2019, pp. 1–11 (cit. on pp. 2, 6, 7, 59).

[19]M Erbert, S Rechner, and M Müller-Hannemann. “Gerbil: a fast and memory-efficient
k-mer counter with GPU-support”. In: Algorithms for Molecular Biology 12.1 (2017),
pp. 1–12 (cit. on pp. 9, 10, 60).

[20]M Esteki, J Regueiro, and J Simal-Gándara. “Tackling Fraudsters with Global Strate-
gies to Expose Fraud in the Food Chain”. In: Comprehensive Reviews in Food Science
and Food Safety 18.2 (2019), pp. 425–440 (cit. on pp. 67, 79).

[21]Albert Eugster, Jürg Ruf, Jürg Rentsch, and René Köppel. “Quantification of beef, pork,
chicken and turkey proportions in sausages: use of matrix-adapted standards and
comparison of single versus multiplex PCR in an interlaboratory trial”. In: European
Food Research and Technology 230.1 (2009), p. 55 (cit. on p. 69).

[22]A. Faraj, P. Patarasuk, and X. Yuan. “Bandwidth Efficient All-to-All Broadcast on
Switched Clusters”. In: 2005 IEEE Int. Conference on Cluster Computing. Sept. 2005,
pp. 1–10 (cit. on p. 21).

[23]L. Fleischer and M. Skutella. “Quickest Flows Over Time”. In: SIAM Journal on
Computing 36.6 (2007), pp. 1600–1630 (cit. on p. 28).

144 Bibliography

[24]Patrick Flick and Srinivas Aluru. “Parallel distributed memory construction of suffix
and longest common prefix arrays”. In: Proc. of the International Conference for High
Performance Computing, Networking, Storage and Analysis, SC 2015, Austin, TX, USA.
2015, 16:1–16:10 (cit. on pp. 50, 112).

[25]Pierre Fraigniaud and Emmanuel Lazard. “Methods and problems of communication
in usual networks”. In: Discr. Applied Math. 53.1 (1994), pp. 79–133 (cit. on p. 21).

[26]Ismael García, Sylvain Lefebvre, Samuel Hornus, and Anass Lasram. “Coherent
Parallel Hashing”. In: ACM SIGGRAPH Asia 2011. SA ’11. Hong Kong, China: ACM,
2011, 161:1–161:8 (cit. on p. 99).

[27]E Georganas, R Egan, S Hofmeyr, et al. “Extreme scale de novo metagenome assem-
bly”. In: SC18: International Conference for High Performance Computing, Networking,
Storage and Analysis. IEEE. 2018, pp. 122–134 (cit. on pp. 2, 6, 7).

[28]Y. Gong, B. He, and J. Zhong. “Network Performance Aware MPI Collective Commu-
nication Operations in the Cloud”. In: IEEE Trans. on Par. and Distr. Sys. 26.11 (Nov.
2015), pp. 3079–3089 (cit. on p. 22).

[29]Giorgio Gonnella and Stefan Kurtz. “Readjoiner: a fast and memory efficient string
graph-based sequence assembler”. In: BMC bioinformatics 13.1 (2012), pp. 1–19
(cit. on pp. 2, 6, 7).

[30]Oded Green. “HashGraph – Scalable hash tables using a sparse graph data structure”.
In: ACM Transactions on Parallel Computing (TOPC) 8.2 (2021), pp. 1–17 (cit. on
p. 100).

[31]DF Gudbjartsson, H Helgason, SA Gudjonsson, et al. “Large-scale whole-genome
sequencing of the Icelandic population”. In: Nature Genetics 47.5 (2015), pp. 435–444
(cit. on p. 1).

[32]Giulia Guidi, Marquita Ellis, Daniel Rokhsar, Katherine Yelick, and Aydın Buluç.
“BELLA: Berkeley efficient long-read to long-read aligner and overlapper”. In: SIAM
Conference on Applied and Computational Discrete Algorithms (ACDA21). SIAM. 2021,
pp. 123–134 (cit. on pp. 6, 7).

[33]Scott Hazelhurst and Zsuzsanna Lipták. “KABOOM! A new suffix array based algo-
rithm for clustering expression data”. In: Bioinformatics 27.24 (2011), pp. 3348–3355
(cit. on pp. 2, 6).

[34]David Hernandez, Patrice François, Laurent Farinelli, Magne Østerås, and Jacques
Schrenzel. “De novo bacterial genome sequencing: millions of very short reads
assembled on a desktop computer”. In: Genome research 18.5 (2008), pp. 802–809
(cit. on pp. 2, 6, 7).

[35]S. Hinrichs, C. Kosak, D.R. O’Hallaron, T.M. Stricker, and R. Take. “An Architecture
for Optimal All-to-all Personalized Communication”. In: Proc. of the Sixth Annual
ACM Symp. on Parallel Alg. and Arch. SPAA ’94. Cape May, New Jersey, USA: ACM,
1994, pp. 310–319 (cit. on p. 21).

Bibliography 145

[36]K Hou, W Liu, H Wang, and W Feng. “Fast Segmented Sort on GPUs”. In: 31th
International Conference on Supercomputing (ICS). Chicago, USA, June 2017 (cit. on
p. 113).

[37]EJ Houtgast, V Sima, K Bertels, and Z Al-Ars. “An FPGA-based systolic array to
accelerate the BWA-MEM genomic mapping algorithm”. In: SAMOS 2015. IEEE.
2015, pp. 221–227 (cit. on pp. 2, 56).

[38]EJ Houtgast, V Sima, K Bertels, and Z Al-Ars. “Hardware acceleration of BWA-MEM
genomic short read mapping for longer read lengths”. In: Computational Biology and
Chemistry 75 (2018), pp. 54–64 (cit. on pp. 2, 56, 60).

[39]Lucian Ilie, Farideh Fazayeli, and Silvana Ilie. “HiTEC: accurate error correction
in high-throughput sequencing data”. In: Bioinformatics 27.3 (2011), pp. 295–302
(cit. on pp. 2, 6).

[40]D Jünger, C Hundt, and B Schmidt. “WarpDrive: Massively Parallel Hashing on
Multi-GPU Nodes”. In: IPDPS 2018. IEEE. 2018, pp. 441–450 (cit. on p. 100).

[41]D. Jünger, C. Hundt, and B. Schmidt. “WarpDrive: Massively Parallel Hashing on
Multi-GPU Nodes”. In: 2018 IEEE Int. Par. and Distr. Proc. Symp. (IPDPS). May 2018,
pp. 441–450 (cit. on pp. 21, 39).

[42]Daniel Jünger, Robin Kobus, André Müller, et al. “WarpCore: A Library for fast Hash
Tables on GPUs”. In: HiPC 2020. IEEE, 2020, pp. 11–20 (cit. on pp. 100, 102).

[43]Felix Kallenborn, Andreas Hildebrandt, and Bertil Schmidt. “CARE: context-aware
sequencing read error correction”. In: Bioinformatics 37.7 (2021), pp. 889–895 (cit.
on pp. 2, 10).

[44]Krishna Chaitanya Kandalla, Hari Subramoni, Abhinav Vishnu, and D.K. Panda.
“Designing topology-aware collective communication algorithms for large scale Infini-
Band clusters: Case studies with Scatter and Gather”. In: 2010 IEEE Int. Symp. on Par.
& Distr. Proc., Workshops and Phd Forum (IPDPSW) (2010), pp. 1–8 (cit. on p. 22).

[45]N. T. Karonis, B. R. de Supinski, I. Foster, et al. “Exploiting hierarchy in parallel
computer networks to optimize collective operation performance”. In: Proc. 14th Int.
Par. and Distr. Proc. Symp. (IPDPS). May 2000, pp. 377–384 (cit. on p. 22).

[46]F Khorasani, ME Belviranli, R Gupta, and LN Bhuyan. “Stadium Hashing: Scalable
and Flexible Hashing on GPUs”. In: PACT 2015. IEEE, 2015, pp. 63–74 (cit. on
p. 100).

[47]Szymon M Kiełbasa, Raymond Wan, Kengo Sato, Paul Horton, and Martin C Frith.
“Adaptive seeds tame genomic sequence comparison”. In: Genome research 21.3
(2011), pp. 487–493 (cit. on pp. 2, 6).

[48]R Kobus, JM Abuín, A Müller, et al. “A big data approach to metagenomics for
all-food-sequencing”. In: BMC Bioinformatics 21.1 (2020), pp. 1–15 (cit. on pp. 3,
121).

[49]R Kobus, C Hundt, A Müller, and B Schmidt. “Accelerating metagenomic read clas-
sification on CUDA-enabled GPUs”. In: BMC Bioinformatics 18.1 (2017), pp. 1–10
(cit. on pp. 10, 59).

146 Bibliography

[50]R Kobus, D Jünger, C Hundt, and B Schmidt. “Gossip: Efficient Communication
Primitives for Multi-GPU Systems”. In: 48th Int. Conference on Parallel Processing
(ICPP ’19). 2019, pp. 1–10 (cit. on pp. 3, 100).

[51]Robin Kobus, André Müller, Daniel Jünger, Christian Hundt, and Bertil Schmidt.
“MetaCache-GPU: Ultra-Fast Metagenomic Classification”. In: 50th International
Conference on Parallel Processing. 2021, pp. 1–11 (cit. on p. 3).

[52]René Köppel, Arthika Ganeshan, Franziska van Velsen, et al. “Digital duplex versus
real-time PCR for the determination of meat proportions from sausages containing
pork and beef”. In: European Food Research and Technology 245.1 (2019), pp. 151–
157 (cit. on p. 67).

[53]René Köppel, Jürg Ruf, and Jürg Rentsch. “Multiplex real-time PCR for the detection
and quantification of DNA from beef, pork, horse and sheep”. In: European Food
Research and Technology 232.1 (2011), pp. 151–155 (cit. on p. 67).

[54]René Köppel, Jürg Ruf, and Jürg Rentsch. “Multiplex real-time PCR for the detection
and quantification of DNA from beef, pork, horse and sheep”. In: European Food
Research and Technology 232.1 (2011), pp. 151–155 (cit. on p. 69).

[55]K Korpela, A Salonen, LJ Virta, et al. “Intestinal microbiome is related to lifetime
antibiotic use in Finnish pre-school children”. In: Nature Communications 7 (2016),
p. 10410 (cit. on pp. 1, 56).

[56]Stefan Kurtz, Apurva Narechania, Joshua C Stein, and Doreen Ware. “A new method
to compute K-mer frequencies and its application to annotate large repetitive plant
genomes”. In: BMC genomics 9.1 (2008), pp. 1–18 (cit. on pp. 2, 5, 6).

[57]Julian Labeit, Julian Shun, and Guy E. Blelloch. “Parallel lightweight wavelet tree,
suffix array and FM-index construction”. In: J. Discrete Alg. 43 (2017), pp. 2–17
(cit. on p. 49).

[58]Ben Langmead and Steven L Salzberg. “Fast gapped-read alignment with Bowtie 2”.
In: Nature methods 9.4 (2012), p. 357 (cit. on pp. 6, 7, 68).

[59]B Lessley and H Childs. “Data-Parallel Hashing Techniques for GPU Architectures”.
In: IEEE Transactions on Parallel and Distributed Systems 31.1 (2019), pp. 237–250
(cit. on p. 99).

[60]HA Lewin, GE Robinson, WJ Kress, et al. “Earth BioGenome Project: Sequencing
life for the future of life”. In: Proceedings of the National Academy of Sciences 115.17
(2018), pp. 4325–4333 (cit. on pp. 1, 56).

[61]Dinghua Li, Chi-Man Liu, Ruibang Luo, Kunihiko Sadakane, and Tak-Wah Lam.
“MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics
assembly via succinct de Bruijn graph”. In: Bioinformatics 31.10 (2015), pp. 1674–
1676 (cit. on p. 10).

[62]H Li, A Ramachandran, and D Chen. “GPU acceleration of advanced k-mer count-
ing for computational genomics”. In: 2018 IEEE 29th International Conference on
Application-specific Systems, Architectures and Processors (ASAP). IEEE. 2018, pp. 1–4
(cit. on pp. 9, 10, 60).

Bibliography 147

[63]Heng Li. “Aligning sequence reads, clone sequences and assembly contigs with
BWA-MEM”. In: arXiv:1303.3997v2 (2013) (cit. on p. 68).

[64]Heng Li and Richard Durbin. “Fast and Accurate Long-Read Alignment with Burrows-
Wheeler Transform”. In: Bioinformatics 26.5 (2010), pp. 589–595 (cit. on p. 68).

[65]Heng Li and Richard Durbin. “Fast and Accurate Short Read Alignment with Burrows-
Wheeler Transform”. In: Bioinformatics 25.14 (2009), pp. 1754–1760 (cit. on p. 68).

[66]S Lindgreen, K L Adair, and P Gardner. “An evaluation of the accuracy and speed
of metagenome analysis tools”. In: Scientific Reports 6.19233 (2016) (cit. on pp. 59,
68).

[67]Chi-Man Liu, Ruibang Luo, and Tak-Wah Lam. “GPU-accelerated BWT construction
for large collection of short reads”. In: arXiv preprint arXiv:1401.7457 (2014) (cit. on
p. 10).

[68]Weifeng Liu and Brian Vinter. “A Framework for General Sparse Matrix-Matrix
Multiplication on GPUs and Heterogeneous Processors”. In: J. Parallel Distrib. Comput.
85.C (Nov. 2015), pp. 47–61 (cit. on p. 112).

[69]Y Liu and B Schmidt. “CUSHAW2-GPU: empowering faster gapped short-read align-
ment using GPU computing”. In: IEEE Design & Test 31.1 (2013), pp. 31–39 (cit. on
pp. 9, 10, 60).

[70]Yongchao Liu, Fabian Ripp, Rene Koeppel, et al. “AFS: identification and quantifica-
tion of species composition by metagenomic sequencing”. In: Bioinformatics (2017),
btw822 (cit. on pp. 68, 79).

[71]Yongchao Liu, Bertil Schmidt, and Douglas L Maskell. “CUSHAW: a CUDA compatible
short read aligner to large genomes based on the Burrows–Wheeler transform”. In:
Bioinformatics 28.14 (2012), pp. 1830–1837 (cit. on p. 68).

[72]Yongchao Liu, Bertil Schmidt, and Douglas L Maskell. “DecGPU: distributed error
correction on massively parallel graphics processing units using CUDA and MPI”. In:
BMC bioinformatics 12.1 (2011), pp. 1–13 (cit. on pp. 9, 10).

[73]Yongchao Liu, Jan Schröder, and Bertil Schmidt. “Musket: a multistage k-mer
spectrum-based error corrector for Illumina sequence data”. In: Bioinformatics 29.3
(2013), pp. 308–315 (cit. on p. 6).

[74]Jennifer Lu, Florian P Breitwieser, Peter Thielen, and Steven L Salzberg. “Bracken:
estimating species abundance in metagenomics data”. In: PeerJ Computer Science 3
(2017), e104 (cit. on p. 68).

[75]Udi Manber and Gene Myers. “Suffix Arrays: A New Method for On-Line String
Searches”. In: Proc. of the 1st Annual ACM-SIAM Symposium on Discrete Algorithms,
San Francisco, CA, USA. 1990, pp. 319–327 (cit. on p. 2).

[76]Guillaume Marçais and Carl Kingsford. “A fast, lock-free approach for efficient parallel
counting of occurrences of k-mers”. In: Bioinformatics 27.6 (2011), pp. 764–770
(cit. on pp. 2, 5, 6).

148 Bibliography

[77]Camille Marchet, Christina Boucher, Simon J Puglisi, et al. “Data structures based on
k-mers for querying large collections of sequencing data sets”. In: Genome Research
31.1 (2021), pp. 1–12 (cit. on pp. 2, 56).

[78]Pall Melsted and Jonathan K Pritchard. “Efficient counting of k-mers in DNA se-
quences using a bloom filter”. In: BMC bioinformatics 12.1 (2011), pp. 1–7 (cit. on
pp. 2, 5, 6).

[79]Peter Menzel, Kim Lee Ng, and Anders Krogh. “Fast and sensitive taxonomic classifi-
cation for metagenomics with Kaiju”. In: Nature communications 7 (2016), p. 11257
(cit. on p. 68).

[80]Jason R Miller, Arthur L Delcher, Sergey Koren, et al. “Aggressive assembly of
pyrosequencing reads with mates”. In: Bioinformatics 24.24 (2008), pp. 2818–2824
(cit. on pp. 5, 6).

[81]A Müller, C Hundt, A Hildebrandt, T Hankeln, and B Schmidt. “MetaCache: context-
aware classification of metagenomic reads using minhashing”. In: Bioinformatics
33.23 (2017), pp. 3740–3748 (cit. on pp. 2, 3, 6, 8, 57–59, 68).

[82]Gene Myers. “A fast bit-vector algorithm for approximate string matching based on
dynamic programming”. In: Journal of the ACM (JACM) 46.3 (1999), pp. 395–415
(cit. on p. 9).

[83]John Nickolls, Ian Buck, Michael Garland, and Kevin Skadron. “Scalable Parallel
Programming with CUDA: Is CUDA the parallel programming model that application
developers have been waiting for?” In: Queue 6.2 (2008), pp. 40–53 (cit. on pp. 9,
11).

[84]NA O’Leary, MW Wright, JR Brister, et al. “Reference sequence (RefSeq) database at
NCBI: current status, taxonomic expansion, and functional annotation”. In: Nucleic
Acids Research 44.D1 (2016), pp. D733–D745 (cit. on pp. 114, 121).

[85]Brian D Ondov, Nicholas H Bergman, and Adam M Phillippy. “Interactive metage-
nomic visualization in a Web browser”. In: BMC bioinformatics 12.1 (2011), p. 385
(cit. on pp. 77, 78).

[86]A Morgulis others. “Database indexing for production MegaBLAST searches”. In:
Bioinformatics 24.16 (2008), pp. 1757–1764 (cit. on p. 59).

[87]R Ounit, S Wanamaker, TJ Close, et al. “CLARK: fast and accurate classification of
metagenomic and genomic sequences using discriminative k-mers”. In: BMC Genomics
16.1 (2015), pp. 1–13 (cit. on pp. 2, 6, 7, 59, 68).

[88]TC Pan, S Misra, and S Aluru. “Optimizing high performance distributed memory
parallel hash tables for DNA k-mer counting”. In: SC18: International Conference for
High Performance Computing, Networking, Storage and Analysis. IEEE. 2018, pp. 135–
147 (cit. on pp. 2, 5, 6).

[89]P Patarasuk, A Faraj, and Xin Yuan. “Pipelined broadcast on Ethernet switched
clusters”. In: vol. 2006. May 2006 (cit. on p. 21).

Bibliography 149

[90]Pitch Patarasuk and Xin Yuan. “Bandwidth optimal all-reduce algorithms for clusters
of workstations”. In: J. of Parallel and Distr. Comp. 69.2 (2009), pp. 117–124 (cit. on
p. 21).

[91]Simon J. Puglisi, William F. Smyth, and Andrew Turpin. “A taxonomy of suffix array
construction algorithms”. In: ACM Comput. Surv. 39.2 (2007), p. 4 (cit. on p. 44).

[92]Y Qiao, B Jia, Z Hu, et al. “MetaBinG2: a fast and accurate metagenomic sequence
classification system for samples with many unknown organisms”. In: Biology Direct
13.1 (2018), pp. 1–21 (cit. on p. 60).

[93]Rolf Rabenseifner, Georg Hager, and Gabriele Jost. “Hybrid MPI/OpenMP parallel
programming on clusters of multi-core SMP nodes”. In: 2009 17th Euromicro interna-
tional conference on parallel, distributed and network-based processing. IEEE. 2009,
pp. 427–436 (cit. on p. 8).

[94]K Reinert, B Langmead, D Weese, and D J Evers. “Alignment of Next-Generation
Sequencing Reads”. In: Annual Review of Genomics and Human Genetics 16 (2015),
pp. 133–151 (cit. on pp. 2, 56, 59).

[95]F Ripp, C F Krombholz, Y Liu, et al. “All-Food-Seq (AFS): a quantifiable screen for
species in biological samples by deep DNA sequencing”. In: BMC Genomics 15:639
(2014) (cit. on pp. 68, 79).

[96]Michael Roberts, Wayne Hayes, Brian R Hunt, Stephen M Mount, and James A
Yorke. “Reducing storage requirements for biological sequence comparison”. In:
Bioinformatics 20.18 (2004), pp. 3363–3369 (cit. on p. 7).

[97]Bertil Schmidt and Andreas Hildebrandt. “Next-generation sequencing: big data
meets high performance computing”. In: Drug discovery today 22.4 (2017), pp. 712–
717 (cit. on pp. 8, 79).

[98]C Schoch. NCBI Taxonomy Help. National Center for Biotechnology Information (US),
2020 (cit. on p. 62).

[99]Jan Schröder, Heiko Schröder, Simon J Puglisi, Ranjan Sinha, and Bertil Schmidt.
“SHREC: a short-read error correction method”. In: Bioinformatics 25.17 (2009),
pp. 2157–2163 (cit. on pp. 2, 6).

[100]D. S. Scott. “Efficient All-to-All Communication Patterns in Hypercube and Mesh
Topologies”. In: 6th Distr. Memory Computing Conf., 1991. Proc. Apr. 1991, pp. 398–
403 (cit. on p. 21).

[101]M Seppey, M Manni, and E Zdobnov. “LEMMI: A continuous benchmarking platform
for metagenomics classifiers”. In: Genome Research 30 (July 2020), gr.260398.119
(cit. on pp. 59, 68).

[102]Anish Man Singh Shrestha, Martin C. Frith, and Paul Horton. “A bioinformatician’s
guide to the forefront of suffix array construction algorithms”. In: Briefings in Bioin-
formatics 15.2 (Jan. 2014), pp. 138–154 (cit. on p. 2).

[103]Jared T Simpson and Richard Durbin. “Efficient de novo assembly of large genomes
using compressed data structures”. In: Genome research 22.3 (2012), pp. 549–556
(cit. on pp. 6, 7).

150 Bibliography

[104]ZD Stephens, SY Lee, F Faghri, et al. “Big data: astronomical or genomical?” In: PLoS
Biology 13.7 (2015), e1002195 (cit. on pp. 1, 56, 79).

[105]John E Stone, David Gohara, and Guochun Shi. “OpenCL: A parallel programming
standard for heterogeneous computing systems”. In: Computing in science & engineer-
ing 12.3 (2010), p. 66 (cit. on pp. 9, 11).

[106]Shinichi Sunagawa, Daniel R Mende, Georg Zeller, et al. “Metagenomic species
profiling using universal phylogenetic marker genes”. In: Nature methods 10.12
(2013), p. 1196 (cit. on p. 68).

[107]Wing-Kin Sung. Algorithms in bioinformatics: A practical introduction. Chapman and
Hall/CRC, 2009 (cit. on p. 10).

[108]Joaquín Tárraga, Vicente Arnau, Héctor Martínez, et al. “Acceleration of short and
long DNA read mapping without loss of accuracy using suffix array”. In: Bioinformatics
30.23 (2014), pp. 3396–3398 (cit. on pp. 2, 6, 7).

[109]R. Thakur and A. Choudhary. “All-to-all communication on meshes with wormhole
routing”. In: Proc. of 8th Int. Parallel Processing Symposium. Apr. 1994, pp. 561–565
(cit. on p. 21).

[110]Andreas O Tillmar, Barbara Dell’Amico, Jenny Welander, and Gunilla Holmlund. “A
universal method for species identification of mammals utilizing next generation
sequencing for the analysis of DNA mixtures”. In: PloS one 8.12 (2013), e83761
(cit. on p. 68).

[111]D T Truong, Eric A. Franzosa, Timothy L. Tickle, et al. “MetaPhlAn2 for enhanced
metagenomic taxonomic profiling”. In: Nat Meth 12.10 (2015), pp. 902–903 (cit. on
p. 68).

[112]Yu-Chee Tseng and S. K. S. Gupta. “All-to-all personalized communication in a
wormhole-routed torus”. In: IEEE Trans. on Par. and Distr. Sys. 7.5 (1996), pp. 498–
505 (cit. on p. 21).

[113]Michaël Vyverman, Bernard De Baets, Veerle Fack, and Peter Dawyndt. “essaMEM:
finding maximal exact matches using enhanced sparse suffix arrays”. In: Bioinformat-
ics 29.6 (2013), pp. 802–804 (cit. on p. 2).

[114]L. Wang, S. Baxter, and J.D. Owens. “Fast parallel skew and prefix-doubling suffix
array construction on the GPU”. In: CCPE 28.12 (2016), pp. 3466–3484 (cit. on
pp. 21, 49).

[115]Richard Wilton, Tamas Budavari, Ben Langmead, et al. “Arioc: high-throughput read
alignment with GPU-accelerated exploration of the seed-and-extend search space”.
In: PeerJ 3 (2015), e808 (cit. on pp. 9, 10).

[116]D E Wood, J Lu, and B Langmead. “Improved metagenomic analysis with Kraken 2”.
In: Genome biology 20.1 (2019), p. 257 (cit. on pp. 2, 6, 7, 57, 59, 81, 121).

[117]D E Wood and S L Salzberg. “Kraken: ultrafast metagenomic sequence classification
using exact alignments”. In: Genome Biology 15:R46 (2014) (cit. on pp. 2, 6, 7, 58,
59, 68, 83, 121).

Bibliography 151

[118]Hongyi Xin, John Greth, John Emmons, et al. “Shifted Hamming distance: a fast and
accurate SIMD-friendly filter to accelerate alignment verification in read mapping”.
In: Bioinformatics 31.10 (2015), pp. 1553–1560 (cit. on p. 9).

[119]Lifeng Yan, Zekun Yin, Hao Zhang, et al. “RabbitQCPlus: More Efficient Quality
Control for Sequencing Data”. In: 2022 International Conference on Bioinformatics
and Biomedicine (BIBM). IEEE. 2022 (cit. on p. 136).

[120]Yuzhen Ye, Jeong-Hyeon Choi, and Haixu Tang. “RAPSearch: a fast protein similarity
search tool for short reads”. In: BMC bioinformatics 12.1 (2011), pp. 1–10 (cit. on
pp. 2, 6).

[121]E. Zahavi, G. Johnson, D.J. Kerbyson, and M. Lang. “Optimized InfiniBandTM fat-tree
routing for shift all-to-all communication patterns”. In: CCPE 22.2 (2010), pp. 217–
231 (cit. on p. 22).

[122]Jing Zhang, Hao Wang, and Wu-chun Feng. “cuBLASTP: Fine-Grained Parallelization
of Protein Sequence Search on CPU+GPU”. In: IEEE/ACM transactions on computa-
tional biology and bioinformatics 14.4 (2015), pp. 830–843 (cit. on p. 112).

[123]Yongan Zhao, Haixu Tang, and Yuzhen Ye. “RAPSearch2: a fast and memory-efficient
protein similarity search tool for next-generation sequencing data”. In: Bioinformatics
28.1 (2012), pp. 125–126 (cit. on p. 6).

[124]Yili Zheng, Amir Kamil, Michael B Driscoll, Hongzhang Shan, and Katherine Yelick.
“UPC++: a PGAS extension for C++”. In: 2014 IEEE 28th International Parallel and
Distributed Processing Symposium. IEEE. 2014, pp. 1105–1114 (cit. on p. 8).

Webpages

[@1]AMD. 2990WX Specifications. 2022. URL: https://www.amd.com/en/product/7921
(visited on Dec. 12, 2022) (cit. on p. 11).

[@2]AMD. 5995WX Specifications. 2022. URL: https://www.amd.com/en/product/11786
(visited on Dec. 12, 2022) (cit. on p. 11).

[@3]AMD. HIP Programming Guide. 2022. URL: https://rocmdocs.amd.com/en/latest/
Programming_Guides/HIP-GUIDE.html (visited on Dec. 12, 2022) (cit. on p. 11).

[@4]S. Baxter. ModernGPU: Patterns and behaviors for GPU computing. 2016. URL: https:
//github.com/moderngpu/moderngpu (visited on May 23, 2022) (cit. on p. 112).

[@5]NVIDIA Corporation. NVBIO. 2015. URL: http : / / nvlabs . github . io / nvbio/
(visited on Nov. 23, 2018) (cit. on p. 49).

[@6]NVIDIA Corporation. NVIDIA Collective Communications Library (NCCL). Jan. 2019.
URL: https://developer.nvidia.com/nccl (visited on Jan. 30, 2019) (cit. on
p. 20).

152 Bibliography

https://www.amd.com/en/product/7921
https://www.amd.com/en/product/11786
https://rocmdocs.amd.com/en/latest/Programming_Guides/HIP-GUIDE.html
https://rocmdocs.amd.com/en/latest/Programming_Guides/HIP-GUIDE.html
https://github.com/moderngpu/moderngpu
https://github.com/moderngpu/moderngpu
http://nvlabs.github.io/nvbio/
https://developer.nvidia.com/nccl

[@7]S. Dalton, N. Bell, L. Olson, and M. Garland. CUSP: A C++ Templated Sparse Matrix
Library. 2015. URL: http://cusplibrary.github.io/ (visited on May 23, 2022)
(cit. on p. 112).

[@8]Google. OR-Tools. Jan. 2019. URL: https://developers.google.com/optimization/
(visited on Jan. 30, 2019) (cit. on p. 33).

[@9]Yuta Mori. libdivsufsort 2.0.2-1. 2016. URL: https://github.com/y-256/libdivsufsort
(visited on Nov. 5, 2018) (cit. on p. 49).

[@10]NVIDIA. A100 Data Sheet. 2022. URL: https://www.nvidia.com/content/dam/en-
zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet-nvidia-us-
2188504-web.pdf (visited on Dec. 12, 2022) (cit. on p. 11).

[@11]NVIDIA. CUDA C++ Programming Guide. Apr. 2022. URL: https://docs.nvidia.
com/cuda/pdf/CUDA_C_Programming_Guide.pdf (visited on Apr. 15, 2022) (cit. on
p. 13).

[@12]NVIDIA. GPUDirect Storage. Apr. 2022. URL: htthttps://docs.nvidia.com/cuda/
pdf/GDS.pdf (visited on Apr. 15, 2022) (cit. on p. 136).

[@13]NVIDIA. GV100 Data Sheet. 2022. URL: https://www.nvidia.com/content/dam/en-
zz/Solutions/design-visualization/productspage/quadro/quadro-desktop/
quadro-volta-gv100-data-sheet-us-nvidia-704619-r3-web.pdf (visited on
Dec. 12, 2022) (cit. on p. 11).

[@14]NVIDIA Research. CUB: Cooperative primitives for CUDA C++. 2021. URL: https:
//nvlabs.github.io/cub/ (visited on May 23, 2022) (cit. on pp. 95, 112).

Webpages 153

http://cusplibrary.github.io/
https://developers.google.com/optimization/
https://github.com/y-256/libdivsufsort
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet-nvidia-us-2188504-web.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet-nvidia-us-2188504-web.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet-nvidia-us-2188504-web.pdf
https://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
https://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
htthttps://docs.nvidia.com/cuda/pdf/GDS.pdf
htthttps://docs.nvidia.com/cuda/pdf/GDS.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/productspage/quadro/quadro-desktop/quadro-volta-gv100-data-sheet-us-nvidia-704619-r3-web.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/productspage/quadro/quadro-desktop/quadro-volta-gv100-data-sheet-us-nvidia-704619-r3-web.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/productspage/quadro/quadro-desktop/quadro-volta-gv100-data-sheet-us-nvidia-704619-r3-web.pdf
https://nvlabs.github.io/cub/
https://nvlabs.github.io/cub/

Acronyms

AoS Array of Structures. 100, 105, 107–111

CAS Compare and Swap. 101, 104

CG cooperative group. 102

CUDA Compute Unified Device Architecture. 2, 9, 11–13, 20, 33, 34, 90–92,
98–101, 105, 112–114, 117

FPGA Field-Programmable Gate Array. 2, 9

GPGPU General-Purpose Computing on Graphics Processing Units. 9, 11

GPU Graphics Processing Unit. 2

HPC High Performance Computing. 8

MPI Message Passing Interface. 8

NGS next generation sequencing. 1, 5, 9, 137, 139, 141

PGAS partitioned global address space. 8

SIMD Single Instruction Multiple Data. 6–8

SM streaming multiprocessor. 12, 13, 135

SoA Structure of Arrays. 100, 101, 105, 107–111

155

List of Figures

4.1. NVLink Example Topologies. 24

4.2. DGX-1 NVLink Topology. 24

4.3. Communication collectives. 24

4.4. Ring-based scatter for four GPUs. 26

4.5. Ring-based all-to-all for four GPUs. 27

4.6. Partial time-expanded graph for the topology from Fig. 4.1a 29

4.7. Scatter/gather throughput on S1. 36

4.8. All-to-all throughput on S1. 36

4.9. Scatter/gather throughput on S2 (DGX-1, 8 GPUs). 37

4.10. All-to-all throughput on S2 (DGX-1, 8 GPUs). 37

4.11. Scatter/gather throughput on S3 (DGX-1 quad, 4 GPUs). 38

4.12. All-to-all throughput on S3 (DGX-1 quad, 4 GPUs). 38

4.13. Weak scalability of our Warpdrive application. 39

4.14. Alternative DGX topology for eight Volta-based devices connected via
three rings. 40

5.1. Overview of the employed suffix array construction algorithm. 44

5.2. Illustration of the main steps of multi-GPU prefix doubling. 46

5.3. Suffix Array construction speedup over libdivsufsort on a DGX-1 using 8
GPUs (large datasets) . 50

5.4. Suffix Array construction speedup over CUDPP skew (small and medium
datasets) . 51

5.5. Suffix Array construction speedup over NVBIO’s prefix doubling imple-
mentation (small and medium datasets) 51

6.1. MetaCache Workflow: Database construction and classification. 61

7.1. Visualization of the AFS-MetaCache results for the dataset KLyo_C using
Krona. 78

7.2. Genome coverage of Actinoalloteichus for the dataset KLyo_C. 78

7.3. Genome coverage of Brochothrix thermosphacta for the dataset KLyo_C. 78

8.1. Examples of FASTA and FASTQ file formats. 82

8.2. Single-end Sequence File Processing Benchmark. 86

157

8.3. Paired-end Sequence File Processing Benchmark. 87
8.4. MetaCache-GPU Worklow: Build and query. 89
8.5. MetaCache-GPU Build Phase. 90
8.6. MetaCache-GPU Query Phase . 92
8.7. Example of k-mer generation using a warp of size 12. 95
8.8. Kernel benchmarks for k-merization and minhashing on a GV100 GPU. 98
8.9. Cooperative Probing Scheme . 102
8.10. Multi Bucket Hash Table Layout. 103
8.11. Multi Bucket Hash Table Insertion. 104
8.12. Key-Value Distribution of RS202 B1/6. 106
8.13. Multi Bucket Hash Table Key Occupancies. 108
8.14. Multi Bucket Hash Table Value Occupancies. 108
8.15. Multi Bucket Hash Table Build Performance. 110
8.16. Multi Bucket Hash Table Query Performance. 110
8.17. Throughput for dense segmented sort. 116
8.18. Throughput for sparse segmented sort. 116
8.19. Top Candidates Generation Kernel. 118

9.1. Query performance against RefSeq202 database. 124
9.2. Query performance against AFS31+RefSeq202 database. 124
9.3. Performance breakdown for queries against RefSeq202 database using

4 GPUs. 127
9.4. Performance breakdown for queries against AFS31+RefSeq202 database

using 8 GPUs. 127
9.5. Runtime comparison of our on-the-fly mode to separate build and query

execution. 128

158 List of Figures

List of Tables

2.1. Example NGS read processing applications. 6
2.2. Example GPU-accelerated NGS read processing applications. 10

3.1. Comparison between CPUs and GPUs. 11
3.2. GV100 specifications . 13

4.1. A flow-based transfer schedule for the scatter collective generated by
our library. 35

4.2. Maximum achieved bottleneck bandwidth when running scatter and
all-to-all on the tested systems. 39

5.1. Suffix array (SA) and rank/ISA for the input string “banana$”. 44

7.1. Reference genomes from NCBI RefSeq (Release 90) used for database
construction. 69

7.2. Food-related reference genomes used for database construction. 70
7.3. Data sets used for database construction. 70
7.4. Calibrator sausage datasets and their meat composition. 71
7.5. Quantification results for the Klyo samples using the reference dataset

AFS20 and the average result for AFS31RS90. 72
7.6. Quantification results for the Kal samples using the reference dataset

AFS20 and the average result for AFS31RS90. 73
7.7. Runtimes and peak memory consumption for non-partitioned database

construction (build) and querying. 75
7.8. Partitioned build time and query speed for AFS31RS90 database. 76
7.9. Runtimes and peak memory consumption for database construction

(build) and querying for AFS10. 76
7.10. Average quantification results for the Klyo and Kal samples using the

reference dataset AFS10. 77
7.11. Detected bacteria in dataset KLyo_C using reference dataset AFS31RS90. 77

8.1. Metagenomic read datasets. 85
8.2. Reference genome set used as database. 105
8.3. Properties of used metagenomic read datasets. 105
8.4. Key-Value Distribution of RS202 B1/6. 106

159

8.5. Multi Bucket Hash Table Occupancies. 107
8.6. Reference genome sets used for databases. 114
8.7. Properties of used metagenomic read datasets. 114
8.8. Segment Size Statistics . 115

9.1. Reference genome sets used for databases. 122
9.2. Metagenomic read datasets. 122
9.3. Build performance for different databases. Total time includes build

time and time for writing DBs to files. 123
9.4. MetaCache-GPU query performance comparison. 125
9.5. Comparison of time needed until a query can be executed when using

MetaCache’s on-the-fly mode. 129
9.6. Classification accuracy using RefSeq 202 database. 130

160 List of Tables

	Titlepage
	Abstract
	Contents
	1 Introduction
	1.1 Motivation and Problem Statement
	1.2 Publications
	1.3 Thesis Structure

	2 Related Work
	3 Background
	3.1 CUDA Programming Model
	3.2 GPU Memory
	3.3 Multi-GPU Systems

	I Multi-GPU Communication
	4 Gossip Communication Library
	4.1 Introduction
	4.2 Related Work
	4.3 Background
	4.4 Ring-based Collectives
	4.5 Flow Problem Formulation
	4.6 Implementation Details
	4.7 Evaluation
	4.8 Conclusions

	5 Suffix Array Construction
	5.1 Background
	5.2 SA Construction: Prefix Doubling
	5.3 Multi-GPU Prefix Doubling
	5.4 Analysis
	5.5 Performance Evaluation
	5.6 Conclusion

	II Metagenomic Classification
	6 MetaCache Overview
	6.1 Introduction
	6.2 Background
	6.3 Related Work
	6.4 MetaCache Pipeline

	7 MetaCache in All-Food-Sequencing
	7.1 Background
	7.2 Evaluation
	7.3 Discussion
	7.4 Conclusion

	8 MetaCache Methods
	8.1 Genomic Sequence Processing
	8.2 MetaCache GPU Pipeline
	8.3 Minhashing and Querying
	8.4 Multi-Value Hash Tables
	8.5 Segmented Sort
	8.6 Top Candidate Generation

	9 MetaCache-GPU Performance Evaluation
	9.1 Build Performance
	9.2 Query Performance
	9.3 Performance Breakdown
	9.4 On-The-Fly Mode
	9.5 Query Accuracy

	10 MetaCache Conclusion

	III Future Work and Conclusion
	11 Future Work
	12 Conclusion
	Bibliography
	Acronyms
	List of Figures
	List of Tables

