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Abstract
Efficient initialization and manipulation of quantum states is important for numerous
applications and it usually requires the ability to perform high fidelity and robust swapping of
the populations of quantum states. Stimulated Raman adiabatic passage (STIRAP) has been
known to perform efficient and robust inversion of the ground states populations of a three-level
system. However, its performance is sensitive to the initial state of the system. In this
contribution we demonstrate that a slight modification of STIRAP, where we introduce a
non-zero single-photon detuning, allows for efficient and robust population swapping for any
initial state. The results of our work could be useful for efficient and robust state preparation,
dynamical decoupling and design of quantum gates in ground state qubits via two-photon
interactions.

Keywords: STIRAP, coherent control, quantum information, quantum sensing,
adiabatic approximation

(Some figures may appear in colour only in the online journal)

1. Introduction

Efficient initialization and manipulation of quantum states of
atoms and molecules is of central importance in numerous
applications including quantum information processing and
communication, sensing, and tests of fundamental symmet-
ries of nature [1]. While optical pumping has been a trus-
ted and widely used approach for state initialization since the
mid twentieth century, it has its limitations, for example, the
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loss of population to undesired atomic or molecular states
during the process. Modern lasers can be powerful enough to
invert populations of states involved in an optical transition
using ‘π pulses’ but such processes generally lack robustness
and are hard to use in practical applications. Efficient state
swapping is also crucial for manipulation of quantum states
and prolonging coherence time, for example, via dynamical
decoupling, where a sequence of π pulses is typically used to
suppress decoherence by averaging the effects of unwanted
qubit-environment interactions [2–4]. However, population
loss from fast-decaying states can similarly affect the fidel-
ity of the process. Three-level techniques involving stimulated
Raman adiabatic passage (STIRAP) reviewed in [1, 5] offer a
robust, lossless method for population transfer from an initial
state |1〉 to a target state |3〉, the population of which is usually
zero prior to the transfer, taking advantage of a (possibly lossy)
intermediate state |2〉. However, the performance of STIRAP
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is much worse if the system is not initially in state |1〉, which is
aligned with the adiabatic dark state. For example, if the sys-
tem is initially in state |3〉, the population transfer efficiency
to state |1〉, measured by the population of the latter after the
process, is highly sensitive to the experimental parameters.

In this contribution, we review and discuss modifications of
traditional STIRAP that can be employed for solving the more
demanding problem of swapping the populations of two states
in a three-level system. We define the swapping as follows:
we still wish to have robust and lossless transfer from state
|1〉 to the state |3〉, but in addition, we wish this process to
be symmetric. If |3〉 is not initially ‘empty,’ we demand that
its population ends up in |1〉 at the conclusion of the process.
Thus, the swapping process should be independent from the
initial state of the system.

Our interest is motivated by the work on efficient initializa-
tion of high-angular-momentum states, in particular, molecu-
lar states with high rotational excitation [6]. The idea discussed
in [6] (see also [1]) is that, while combining populations in a
given quantum state is impossible without spontaneous emis-
sion, only one spontaneous emission event is generally needed
per molecule to transfer it from any initial state to an arbitrarily
chosen final state. This means that, with a proper choice of the
coherent-manipulation protocols, one can rely on stimulated
processes to do most of the work, with losses minimized by
having only one spontaneous-emission event. Some of these
protocols require robust (two-way) population swapping.

We note that initialization of intrinsic (e.g. angular
momentum) states can be thought of as cooling the internal
degrees of freedom. Since such cooling is intrinsically con-
nected to cooling motional degrees of freedom in a number of
cooling techniques (see, for example, [7–9]), the problem we
discuss here is of relevance to the general problem of cooling
atoms and molecules.

In addition to initialization and cooling applications, robust
two-state population swapping in a three-level system is also
needed in other contexts. For example, a qubit might involve
two long-lived ground states of an atom, which can only
be manipulated via an excited short-lived state as the trans-
ition between the ground states is forbidden. Then, quantum
gates and dynamical decoupling of the ground states qubit
would require state swapping via a two-photon coherent excit-
ation processes, ideally with minimum population of the
excited state [10]. Examples for such applications include cyc-
lic processes for adiabatic logic operations in doped solids
[11–13] or in atom optics where one could in principle achieve
large momentum transfer and beam deflection in real space
by repeated adiabatic inversion. Other possible applications
include coherent excitation of Rydberg states, for example, in
a cloud of 87Rb atoms [14–17], or double-quantum manipula-
tion of the | ± 1〉 subsystem of an NV center’s ground states
via the intermediate state |0〉, which allows for faster phase
accumulation and more efficient quantum sensing than using,
e.g. states |0〉 and | − 1〉 only [4]. Double-quantum manipula-
tion of the ground states of SiV centers via two-photon optical
excitation is another possible application as it can reduce the
effect of heating of mK samples, which is present with the tra-
ditional microwave driving [18, 19].

The manuscript is organized as follows. In section 2, we
describe our system and characterize its time evolution in
case of adiabatic approximation. Section 3 describes the deriv-
ation of a condition for two-state swapping, which we use
to analyze the performance of several variants of STIRAP.
In section 4, we recall the traditional, resonant STIRAP and
show that it cannot be used for state-swapping. We then show
in section 5 that the introduction of non-zero single-photon
detuning, e.g. of the order of a quarter of the peak Rabi fre-
quency of the pump or Stokes fields, changes the dynamics
significantly, allowing for robust and efficient two-state pop-
ulation swapping. Finally, we demonstrate in section 6 that
when the single-photon detuning is large, i.e. of the order of
several times the peak Rabi frequency, one can also achieve
two-state swapping for any initial state without significantly
changing the population of the intermediate state in the pro-
cess. We then follow up with a general discussion in section 7
and a summary of the findings (section 8).

2. The system

We consider a three-state, e.g. Λ-system as shown in figure 1.
We aim for robust population exchange between the state |1〉
and state |3〉, mediated via couplings to an intermediate state
|2〉 by two fields. We term the two fields pump (p) and Stokes
(s), as is standard to the widely used STIRAP technique [5].

The coupling strengths are given by the Rabi frequencies
Ωp(t) =−µ12Ep(t)/� andΩs(t) =−µ23Es(t)/� [20]. Here, µij
are the transition dipole moments and Ep/s(t) are the time-
varying envelopes of the electric fields. The system dynam-
ics are described by the time-dependent Schrödinger equation
i∂tc(t) = HRWA(t)c(t), where c(t) = [c1(t),c2(t),c3(t)]T is a
column vector with the probability amplitudes of the three
states and the Hamiltonian in the rotating wave approximation
is given by (�= 1) [5, 20, 21]

HRWA(t) =
1
2




−δ Ωp(t) 0
Ωp(t) 2∆ Ωs(t)
0 Ωs(t) δ


 , (1)

where the detunings of the driving fields from the corres-
ponding resonances are defined as ∆p = ω12 −ωp and ∆s =
ω32 −ωs with the single-photon detuning given by∆= (∆p+
∆s)/2, and the two-photon detuning δ =∆p−∆s. Our goal
is efficient and robust population swapping between states
|1〉 and |3〉 (for any coherent superposition or a mixed state)
without ideally populating state |2〉 during the interaction as
it typically decays fast. We assume further that the system is
on two-photon resonance, i.e. δ= 0, which is necessary for
STIRAP and is usually experimentally feasible.

STIRAP, reviewed in [1, 5], offers robust, lossless meth-
ods for population transfer from an initial state |1〉 to a target
state |3〉. However, its performance is usually sensitive to the
initial state of the system. In order to analyze its applicabil-
ity for ground state swapping, we consider the adiabatic basis,
defined by the instantaneous eigenstates [5]

|b+〉= sinϑsinφ|1〉+ cosϑsinφ|3〉+ cosφ|2〉, (2a)

2
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|b−〉= sinϑcosφ|1〉+ cosϑcosφ|3〉− sinφ|2〉, (2b)

|d〉= cosϑ|1〉− sinϑ|3〉, (2c)

where the two mixing angles are given by

ϑ(t) = arctan
Ωp(t)
Ωs(t)

, (3a)

φ(t) =
1
2
arctan

Ωrms(t)
∆

(3b)

with the root mean square Rabi frequency Ωrms(t) =√
|Ωp(t)|2 + |Ωs(t)|2. The eigenenergies of the system are

ε±(t) = 1
2 (∆±

√
∆2 +Ωrms(t)2), ε0 = 0.

The transformation to the adiabatic basis uses the rotation
matrix

R(t) =




sinϑ(t)sinφ(t) cosφ(t) cosϑ(t)sinφ(t)
cosϑ(t) 0 −sinϑ(t)

sinϑ(t)cosφ(t) −sinφ(t) cosϑ(t)cosφ(t)


 ,

(4)

which allows us to obtain the Hamiltonian in the adiabatic
basis

Hadiab(t)

= R(t)HRWA(t)R
†(t)− iR(t)∂tR

†(t)

=




ε+(t) iϑ ′(t)sinφ(t) iφ ′(t)

−iϑ ′(t)sinφ(t) 0 −iϑ ′(t)cosφ(t)

−iφ ′(t) iϑ ′(t)cosφ(t) ε−(t)




≈




ε+(t) 0 0
0 0 0
0 0 ε−(t)


 , (5)

where we assumed adiabatic evolution in the last equality,
i.e. |ϑ ′(t)| � |ε±(t)| and |φ ′(t)| � |ε±(t)|, so we could neg-
lect the effect of the off-diagonal elements of the Hamiltonian
[5, 22].

The time evolution of the system in the adia-
batic basis is described by the propagator Uadiab(t, t0),
which connects the values of the probability amp-
litudes of the adiabatic states at the initial and final
times t0 and t: ca(t) = Uadiab(t, t0)ca(t0). The propagator

takes the form Uadiab(t, t0) = T exp
(
−i
´ t
t0
Hadiab(t ′)dt ′

)
=

exp
(
−i
´ t
t0
Hadiab(t ′)dt ′

)
, where T is the time-ordering oper-

ator and we used for the last equality that the Hamiltonian in
the adiabatic approximation commutes with itself at different
times [Hadiab(t1),Hadiab(t2)] = 0. Then, we can calculate the
propagator, which characterizes the time evolution in the bare
basis c(t) = U(t, t0)c(t0), where

U(t, t0) = R†(t)Uadiab(t, t0)R(t0)

=




As̃t̃st0 + c̃tc̃t0 Bs̃t Ac̃t0 s̃t− c̃t̃st0
Bs̃t0 C Bc̃t0

Ac̃t̃st0 − c̃t0 s̃t Bc̃t Ac̃tc̃t0 + s̃t̃st0


 , (6)

where we used the short-hand notation c̃t0 = cosϑ(t0),
s̃t0 = sinϑ(t0), c̃t = cosϑ(t), s̃t = sinϑ(t), A= e−iη+ sin2φ+
e−iη− cos2φ,B= 1

2

(
e−iη+ − e−iη−

)
sin2φ,C= e−iη− sin2φ+

e−iη+ cos2φ, η+ =
´ t
t0
ε+(t ′)dt ′, η− =

´ t
t0
ε−(t ′)dt ′, and we

assumed that the mixing angle φ(t) = φ(t0) = φ is the same
at the beginning and at the end of the interaction, which is
usually valid for STIRAP.

3. Condition for two-state swapping

We demonstrate in this section that performing efficient and
robust population transfer from state |1〉 to |3〉 and vice versa
is a sufficient condition for performing population swapping of
arbitrary populations of the two states for any coherent interac-
tion. Specifically, if the system is initially in state |1〉 its state
vector is c(t0) = [1,0,0]T. The state vector after the interaction
is given by c(t) = U(t, t0)c(t0) = [U1,1,U2,1,U3,1]

T, whereUi,j

is the i, jth element of the propagator. Thus, successful popu-
lation transfer from state |1〉 to |3〉 ensures |U1,1|= |U2,1|= 0
and |U3,1|= 1. Similarly, successful population transfer from
state |3〉 to |1〉 requires |U1,3|= 1 and |U2,3|= |U3,3|= 0.
Finally, one can use that U(t, t0)U(t, t0)† = I, which requires
|U2,2|= 1 and |U1,2|= |U3,2|= 0. Thus, successful popula-
tion transfer from state |1〉 to |3〉 and vice versa ensures

U(t, t0) =




0 0 eiα3

0 eiα2 0
eiα1 0 0


 , (7)

where αk, k= 1, . . .,3 are phases, which depend on the
specific interaction. If the initial state of the system is an
arbitrary coherent superposition of the three states c(t0) =
[c1(t0),c2(t0),c3(t0)]T, the final state after the interaction

is c(t) = U(t, t0)c(t0) =
[
eiα3c3(t0),eiα2c2(t0),eiα1c1(t0)

]T
,

i.e. the populations of the states |1〉 and |3〉: P1(t) =
|eiα3c3(t0)|2 = P3(t0) and P3(t) = |eiα1c1(t0)|2 = P1(t0) are
swapped. It is also straightforward to show that the popula-
tions of states |1〉 and |3〉 are interchanged if the system is
initially in a mixed state, so it is characterized by its density
matrix. Specifically, when the system is initially in a (par-
tially) mixed state involving |1〉 and |3〉, its density matrix
takes the form

ρ(t0) =




P1(t0) 0 e−Γeiχ
√
P1(t0)P3(t0)

0 P2 0

e−Γe−iχ
√
P1(t0)P3(t0) 0 P3(t0)


 ,

(8)
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where the diagonal element ρk,k(t0) = Pk(t0) is equal to
the population of state |k〉,k= 1, . . .,3, while ρ1,3(t0) =
ρ3,1(t0)∗ = e−Γeiχ

√
P1(t0)P3(t0) is the coherence, which

characterizes the (partially incoherent) superposition between
states |1〉 and |3〉, where χ is its phase and the parameter
e−Γ characterizes the degree of decoherence (Γ� 0). When

Γ→ 0, e−Γ → 1 and the system is in a pure coherent superpos-
ition state. On the contrary, when Γ→+∞, e−Γ → 0 and the
system is in a fully mixed, or incoherent, state. We assumed
for simplicity of presentation and without loss of general-
ity that all coherences, involving state |2〉 have completely
decayed. The density matrix after the interaction is given by

ρ(t) = U(t, t0)ρ(t0)U
†(t, t0)

=




P3(t0) 0 e−Γe−i(χ+α1−α3)
√
P1(t0)P3(t0)

0 P2 0

e−Γei(χ+α1−α3)
√
P1(t0)P3(t0) 0 P1(t0)


 , (9)

and the populations of the two states P1(t) = ρ1,1(t) = P3(t0)
and P3(t) = ρ3,3(t) = P1(t0) are interchanged. Thus, success-
ful population transfer from state |1〉 to |3〉 and vice versa is
a sufficient condition for swapping of arbitrary populations
of states |1〉 and |3〉, including for coherent superpositions or
mixed states. Next, we analyze several versions of STIRAP
and their performance for population swapping by first char-
acterizing their efficiency for population transfer from state |1〉
to |3〉 and vice versa. If a technique is successful in the trans-
fers from both of them, then it should also perform successful
swapping, as demonstrated above. In order to confirm this we
also explicitly simulate numerically the efficiency of popula-
tion swapping for arbitrarily chosen fully mixed and coherent
superposition states for each version of STIRAP.

4. Resonant STIRAP

We first consider the traditional, resonant case of STIRAP,
where the single-photon detuning∆= 0 [5]. STIRAP requires
pump and Stokes pulses in the so-called counter-intuitive
order7, as shown in figure 1, where the Stokes pulse precedes
the pump pulse by a time delay τ . It is well known that if
the system is initially prepared in state |1〉, STIRAP transfers
the population completely to state |3〉 via the dark state |d〉,
ideally, without populating state |2〉 (see figure 1(c), which
shows the composition of the dark state and figure 1(d) for
the respective population evolution). The dynamics can be
understood by analyzing the evolution in the mixing angle ϑ.
As the latter changes from ϑ= 0 to ϑ= π/2, the dark state
evolves from |d〉= |1〉 to |d〉=−|3〉. During the process, we
must maintain adiabaticity, i.e. the system must remain in the
dark state at all times. This requiresΩrms(t)� |ϑ̇|. For smooth
pulses (e.g. with Gaussian temporal shape), this adiabatic con-
dition transforms to the simpler form A=

´

Ωrms(t)dt� 1,
i.e. the pulse areaA has to be sufficiently large [5]. The larger
A, the closer the transfer efficiency approaches unity.

7 We note that after understanding the principles of STIRAP this ‘counter-
intuitive’ pulse order, in fact, becomes perfectly intuitive.

It is important to note that the population transfer effi-
ciency of STIRAP depends strongly on the initial state and it
is thus not suitable for inverting an arbitrary quantum state.
Specifically, assuming the standard ‘counterintuitive’ order
of the pulses, where the Stokes pulse precedes the pump
pulse, the population transfer is done via the dark state |d〉
if the system is initially in state |1〉. On the contrary, if the
system is initially in state |3〉, the initial state in the adia-
batic basis is an equal superposition of the bright states |b±〉
when ∆= 0 (see figure 1(e), which shows the composition
of the bright states and figure 1(f) for the respective popu-
lation evolution). As a result, the system experiences phase
evolution in the adiabatic basis during the interaction and the
populations of the final states depend strongly on the over-
all accumulated phase, which is equal to the effective pulse
area A [5]

P1 = cos2 (A/2), P2 = sin2 (A/2), P3 = 0. (10)

This also evident from the propagator of resonant STIRAP,
which can be obtained from equation (6) by taking φ(t0) =
φ(t) = φ= π/4, ϑ(t0) = 0, ϑ(t) = π/2, ε+ =−ε− =Ωrms/2,
so η+ =−η− =A/2

Ures.(t, t0) =




0 −isin(A/2) cos(A/2)
0 cos(A/2) −isin(A/2)
−1 0 0


 . (11)

We note that the case when the system is initially in state |3〉
and we apply standard resonant STIRAP is equivalent to start-
ing in state |1〉 and applying the opposite pulse ordering, where
the pump pulse precedes the Stokes pulse. It is known that the
population transfer efficiency of the latter is highly sensitive
to experimental parameters [5]. The numerical simulations in
figures 1(g) and (h) confirm the large difference in the depend-
ence of the state swapping efficiency on the peak Rabi fre-
quency and pulse delay when we start in states |1〉 and |3〉. We
used as a figure of merit in all 2D simulations the magnitude
of the relative error ε of the final polarization w(t) = P1(t)−
P3(t) with respect to the final target polarization. The lat-
ter is w̃(t) =−(P1(t0)−P3(t0)), i.e. the inverse of the initial

4
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Figure 1. (a) Coupling scheme for resonant STIRAP; (b) the respective pulse sequence. Both couplings have Gaussian shape

Ωp,s(t) = Ωmax exp(− (t−tp,s)
2

T2 ), tp = ts+ τ with tp,s—the centers of the pulses; Ωmax = 2π 40 MHz, full-width at half maximum duration
Tfwhm = 2

√
log(2)T= 0.2 µs, and time delay τ = 1.2T. The total duration is 3Tfwhm + τ . (c) The system is initially in |1〉 and the dark state

|d〉. The ratio Ωp(t)/Ωs(t) changes the mixing angle ϑ and |d〉 gets aligned with −|3〉 in the end. (d) When the system is initially in |3〉 it is
also in a superposition of |b±〉. As ϑ changes, so does the composition of |b±〉. (e) Adiabatic evolution causes population transfer from |1〉
to |3〉. (f) In contrast, the initial population of |3〉 transfers to |1〉 and/or |2〉, depending on the pulse area A=

´

Ωrms(t)dt [5]. Numerically

simulated relative error ε= |1− w(t)
w̃(t) | (see text for details) of the final polarization vs. Ωmax and pulse delay when the system is initially

(g) in state |1〉 or (h) in state |3〉.

polarization as our goal is to swap the populations of the initial
states and, thus, ε= |1− w(t)

w̃(t) |. For example, when the system
is initially in |1〉 or |3〉, ε= 1− |w(t)|, where we assumed that
w(t) and w̃(t) have the same sign. The numerical simulations
confirm that state swapping is efficient and robust only when

the system is initially in state |1〉 (see figure 1(g)) but the swap
efficiency suffers highly oscillatory behavior when initially in
|3〉 (see figure 1(h)). Thus, STIRAP efficiency and robustness
depend strongly on the initial state and cannot be used for pop-
ulation swapping.

5
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Figure 2. Numerically simulated time evolution of the populations for resonant STIRAP with all pulse parameters the same as in figure 1
for (a) an initial fully mixed state with populations P1(t0) = 0.6, P2(t0) = 0.1, P3(t0) = 0.3, (b) an initial pure state with probability
amplitudes c(t0) = [

√
0.6,

√
0.1,

√
0.3]T. In both cases the population of state |1〉 is transferred to state |3〉 but the transfer efficiency of the

population of state |3〉 to |1〉 is highly sensitive to the pulse area A. Numerically simulated magnitude of the relative error of the final
polarization ε vs. pulse delay and the maximum Rabi frequency of the pump and Stokes pulses (c) for an initial fully mixed state with
populations as in (a), and (d) for an initial pure state as in (b). The results show a highly oscillatory behavior due to dephasing in the
adiabatic basis that makes resonant STIRAP unsuitable for population swapping of arbitrary states.

This is also confirmed in figure 2 where we simulated the
population dynamics and the error in the final polarizationwith
the same pulse parameters as in figure 1. Figure 2(a) shows the
evolution for a mixed initial state with populations P1(t0) =
0.6, P2(t0) = 0.1, and P3(t0) = 0.3, while figure 2(b) demon-
strates the population dynamics for a pure state, which is a
coherent superposition of all three states with the same pop-
ulations as in figure 2(a) and probability amplitudes c(t0) =
[
√
0.6,

√
0.1,

√
0.3]T. Figures 2(c) and (d) show the high sens-

itivity of the swap efficiency of resonant STIRAP to the exper-
imental parameters for the two cases, as expected from theory.

5. STIRAP with a moderate detuning

We now consider the case of STIRAP in the presence of
nonzero single-photon detuning, e.g. when ∆� 0.1Ωmax and
the system is in two-photon resonance (δ= 0). We have
labeled it STIRAP with a moderate detuning to emphasize
that it is an intermediate case between resonant STIRAP
and the one with a large detuning where we can typically
adiabatically eliminate the intermediate state. However, we
note that the required frequency offset could actually be quite
small, i.e. a fraction of the peak Rabi frequency of the two
fields. The necessary single-photon detuning is determined
by the requirement to lift the degeneracy of the bright states
|b±〉 and the adiabatic approximation, so that there is no
population transfer between the adiabatic states during the

interaction. We assume that the evolution of the system is
adiabatic and we can analyze it using the adiabatic states in
equation (2), similarly to the theoretical analysis of STIRAP
with an intermediate-level detuning in [23]. When the system
is initially in state |1〉, the adiabatic population transfer takes
place via the dark state |d〉, similarly to the resonant case (see
figure 3(c)). In contrast, when the system is initially in state
|3〉, adiabatic population transfer goes via the bright state |b−〉
(or |b+〉), assuming ∆> 0 (or ∆< 0), as the mixing angle
φ→ 0 (orφ→ π/2) [24]. In the following analysis, we assume
∆> 0 for simplicity of presentation and without loss of gen-
erality, so the system is initially in the bright state |b−〉 (see
figure 3(f)). As the system is now in one of the eigenstates in
the adiabatic basis, the robustness of population transfer is not
affected by phase evolution in this basis in contrast to resonant
STIRAP. We note that this case is equivalent to being initially
in state |1〉 and applying STIRAP with an ‘intuitive’ ordering,
where the pump pulse precedes the Stokes pulse, also known
as bright STIRAP, as it takes place via one of the bright states
[5, 11]. Thus, STIRAP with a moderate detuning allows for
a smooth adiabatic population inversion when the system is
initially in state |1〉 and in state |3〉. The numerical simula-
tions in figures 3(g) and (h) confirm the high robustness of the
process when starting in both |1〉 and |3〉, assuming negligible
decay from |2〉. Thus, based on the analysis in section 2, we
conclude that STIRAP with a moderate detuning can perform
efficient and robust population swapping of states |1〉 and |3〉
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Figure 3. (a) Coupling scheme for STIRAP with a moderate detuning, (b) the respective pulse sequence with the same parameters as in
figure 1, except for∆= 2π 10MHz and the longer Tfwhm = 2

√
log(2)T= 0.5µs to maintain adiabaticity. (c) The system is initially in state

|1〉 and the dark state |d〉. As the mixing angle ϑ changes |d〉 aligns with −|3〉 in the end. (d) The system is initially in |3〉 and |b−〉. As |b−〉
is an eigenstate, the system is not affected by dephasing in the adiabatic basis, in contrast to resonant STIRAP. (e) Population transfer from
|1〉 to |3〉 via the dark state |d〉. (f) Population transfer from |3〉 to |1〉 via the bright state |b−〉 is efficient and robust, in contrast to resonant
STIRAP. The main drawback is the high intermediate population in state |2〉. Numerically simulated relative error ε of the final polarization
vs. Ωmax and pulse delay when the system is initially (g) in state |1〉, (h) or in state |3〉.

for arbitrary initial states. The main difference when starting
in |3〉 is the high intermediate population of state |2〉, which
can generally decay to the other states and lead to a loss of
fidelity.

The ability to perform successful population swapping is
also confirmed by analyzing the propagator of STIRAP with
a non-zero single-photon detuning. We can obtain the latter

from equation (6) by taking φ= 0, ϑ(t0) = 0, ϑ(t) = π/2 and
assuming ∆> 0 without loss of generality

Udet.(t, t0) =




0 0 e−iη−

0 e−iη+ 0
−1 0 0


 . (12)
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Figure 4. Numerically simulated evolution of populations for STIRAP with a moderate detuning with all pulse parameters the same as in
figure 3 for (a) an initial fully mixed state with populations P1(t0) = 0.6, P2(t0) = 0.1, P3(t0) = 0.3, and (b) an initial pure state with

probability amplitudes c(t0) = [
√
0.6,

√
0.1,

√
0.3]T. Numerically simulated relative error of the final polarization ε=

∣∣∣1− w(t)
w̃(t)

∣∣∣ (c) for an
initial fully mixed state as in (a), and (d) for an initial pure state coherent superposition state as in (b). It is evident that STIRAP with a
moderate detuning performs efficient and robust state swapping for an arbitrary initial state. The slightly narrower range of experimental
parameters with robust performance for a pure state is due to coherences that dephase in the adiabatic basis and make the process more
sensitive to the fulfillment of the adiabatic condition.

It is evident by comparison with equation (7) that STIRAP
with a moderate detuning can perform successful swapping
of the populations of states |1〉 and |3〉.

Finally, we perform numerical simulations for population
swapping for arbitrary mixed and coherent superposition pure
states in figure 4 with the same pulse parameters as in figure 3.
Figure 4(a) shows the evolution for a mixed initial state with
populations P1(t0) = 0.6, P2(t0) = 0.1, and P3(t0) = 0.3. In
addition, figure 4(b) describes the corresponding population
dynamics for a pure state, which is a coherent superposition
of all three states with the same populations as in figure 4(a)
and probability amplitudes c(t0) = [

√
0.6,

√
0.1,

√
0.3]T. Both

figures 4(c) and (d) show that the swap efficiency is high
and robust to the experimental parameters for both the mixed
and pure coherent superposition states, as expected from the-
ory. The slightly narrower range of experimental parameters
with robust performance for a pure state is due to the pres-
ence of coherences that dephase in the adiabatic basis, which
makes the process a bit more sensitive to the fulfillment of
the adiabatic condition. In conclusion, STIRAP with a moder-
ate detuning can be used for efficient and robust swapping of
the ground state populations of a qubit in an unknown state,
as long as the evolution of the system is adiabatic and there
is negligible decay from the intermediate state |2〉 during the
interaction.

6. STIRAP with a large detuning

We now consider the case of STIRAP with a large single-
photon detuning ∆� Ωmax. It is known that we can, in
principle, adiabatically eliminate the excited state |2〉 from
the system for the theoretical description. This transforms
the three-level system into an effective two-level scheme and
allows for state-independent state inversion [23]. Neverthe-
less, we consider the evolution of the system without apply-
ing adiabatic elimination in order to expand the applicability
of the analysis and compare directly with resonant STIRAP
and STIRAP with a moderate detuning. A detailed description
of the adiabatic elimination approach and a comparison to the
following analysis is provided in an appendix.

When the system is initially in state |1〉, the adiabatic popu-
lation transfer takes place via the dark state |d〉, similarly to the
resonant case (see figure 5(c)). In contrast, when the system is
initially in state |3〉, adiabatic population transfer goes via the
bright state |b−〉 (assuming∆> 0), as in the case of moderate
detuning [24] (see figure 5(d)). As the system is in one of the
eigenstates in the adiabatic basis, the robustness of population
transfer is not affected by phase evolution in this basis, in con-
trast to resonant STIRAP. Thus, STIRAPwith a large detuning
allows for smooth, robust, adiabatic transfer when the system
is initially in state |3〉.
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Figure 5. (a) Coupling scheme for STIRAP with a large detuning, (b) the respective pulse sequence with the same parameters as in figure 1,
except for ∆= 2π 200 MHz and the longer Tfwhm = 2

√
log(2)T= 2µs to maintain adiabaticity. (c) The system is initially in state |1〉 and

the dark state |d〉. As ϑ changes |d〉 aligns with −|3〉 in the end. (d) The system is initially in |3〉 and |b−〉. As |b−〉 is an eigenstate, the
system is not affected by dephasing in the adiabatic basis. (e) Population transfer from |1〉 to |3〉 via the dark state |d〉. (f) Population transfer
from |3〉 to |1〉 via the bright state |b−〉 is efficient and robust, similarly to STIRAP with a moderate detuning. The main advantage is the
negligible intermediate population in state |2〉. Numerically simulated relative error ε of the final polarization vs. Ωmax and pulse delay
when the system is initially in (g) state |1〉 (h) or state |3〉.

In contrast to the moderate-detuning case, there is neg-
ligible population in the intermediate state |2〉, P2(t)∼
Ωrms(t)2/∆2, during the process (see figures 5(e) and (f)),
which makes STIRAP with a large detuning robust to fast
decay from the intermediate state |2〉. The trade-off is

the longer interaction time needed to maintain adiabaticity.
Specifically, the adiabatic states |d〉 and |b−〉 have the smal-
lest energy difference (assuming∆> 0), so the adiabatic con-
dition becomes |ϑ ′(t)| � |ε−(t)− εd(t)|= |ε−(t)|. In the limit

Ωrms(t)�∆ we obtain ε− ≈−Ωrms(t)
2

4∆ , which scales as ∆−1

9
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Figure 6. Numerically simulated evolution of populations for STIRAP with a large detuning with all pulse parameters the same as in
figure 5 for (a) an initial fully mixed state with populations P1(t0) = 0.7, P2(t0) = 0, P3(t0) = 0.3, and (b) an initial pure state with

probability amplitudes c(t0) =
[√

0.7,0,
√
0.3

]T
. (f) Numerically simulated relative error of the final polarization ε=

∣∣∣1− w(t)
w̃(t)

∣∣∣ for (c) an
initial fully mixed state as in (a) and (d) an initial pure state coherent superposition state as in (b). It is evident that STIRAP with a large
detuning performs efficient and robust state swapping for an arbitrary initial state with negligible intermediate change in the population of
the intermediate state |2〉. The slightly narrower range of experimental parameters with robust performance for a pure state is due to
coherences that dephase in the adiabatic basis and make the process more sensitive to the fulfilment of the adiabatic condition, similarly to
the moderately detuned case.

while ϑ ′(t) does not depend on ∆. Thus, the duration of the
process should increase linearly with ∆ in order to maintain
adiabaticity for large detuning. The intermediate population
P2(t)∼ Ωrms(t)2/∆2 scales as an inverse quadratic function
with ∆, so there is a range of large detunings where STIRAP
can minimize population loss from state |2〉 and keep a reas-
onable total duration.

The numerical simulations in figures 5(g) and (h) confirm
the high efficiency and robustness of the process, which is
independent from the initial state, i.e. |1〉 or |3〉. Assuming
adiabatic evolution, the propagator of STIRAP with a large
detuning at the end of the interaction is given in equation (12).
It also confirms that it can perform successful swapping of the
populations of states |1〉 and |3〉.

Finally, we perform numerical simulations for population
swapping for arbitrary mixed and coherent superposition pure
states in figure 6. In all cases, the swap efficiency is high
and robust to the experimental parameters, as expected from
theory. The slightly narrower range of experimental paramet-
ers with robust performance for a pure coherent superposition
state is again due to the presence of coherences that deph-
ase in the adiabatic basis, similarly to STIRAP with a mod-
erate detuning. All simulations confirm that STIRAP with a
large detuning is very suitable for efficient and robust swap of
the populations of a qubit in an arbitrary, unknown state. As
the population of the intermediate state |2〉 does not change

during the interaction, the technique is especially useful when
the intermediate state is fast-decaying.

7. Discussion

Our analysis show that efficient and robust state-independent
state swapping is possible with STIRAP unlike the widely
accepted notion that its performance is sensitive to the initial
state of the system. We only require a non-zero single-photon
detuning, while maintaining adiabaticity. We have labeled
this case STIRAP with a moderate detuning for simplicity
of presentation but the frequency offset can actually be quite
small, e.g. of the order of a fraction of the peak Rabi fre-
quency of the pump or Stokes fields. The single-photon detun-
ing lifts the degeneracy of the bright adiabatic states, aligns
each bare state with an eigenstate in the adiabatic basis at
the beginning of the interaction, and thus reduces the effect
of dephasing in the adiabatic basis, making efficient popula-
tion swapping possible. STIRAP with a moderate detuning is
faster than the highly detuned case as the effective two-photon
couplings are stronger, so maintaing adicabaticity requires
shorter total interaction time. However, it allows for some
intermediate population in state |2〉, so it is preferable when
the latter is not fast decaying. A feasible example is double-
quantum manipulation of the | ± 1〉 subsystem of the ground

10



J. Phys. B: At. Mol. Opt. Phys. 56 (2023) 054001 G T Genov et al

state of NV centers. This qubit in principle allows for faster
phase accumulation and more efficient quantum sensing than
using, for example, the ground states |0〉 and | − 1〉 [4]. When
the intermediate state is fast decaying, population swapping
requires STIRAP with a large detuning, so that state |2〉 is not
populated in the process for any initial state. The main draw-
back is the longer duration of the process, which is necessary
in order to maintain adiabaticity.

We note that STIRAPwith a non-zero single-photon detun-
ing can also be applicable for spin refocusing, e.g. in dynam-
ical decoupling. This can be seen by considering the propag-
ator of two identical STIRAP processes in the adiabatic
approximation, which takes the form

Udet.(2tst, tst).Udet.(tst,0) = Udet.(tst,0).Udet.(tst,0)

=




−e−iη− 0 0
0 e−2iη+ 0
0 0 −e−iη−


 ,

(13)

where tst is the total duration of a single STIRAP, we took t0 =
0 without loss of generality, and we used that Udet.(2tst, tst) =
Udet.(tst,0) as the two STIRAP processes are assumed the
same. It is evident that probability amplitudes of states |1〉 and
|3〉 after the interaction are the same as the initial ones, except
for a common global phase (−e−iη−), thus allowing for robust
spin refocusing, e.g. in the presence of amplitude or detuning
errors. Embedding STIRAP as a building block for the design
of two-photon quantum gates might also be possible, e.g. by
combining themwith composite pulses, similarly to the design
robust adiabatic pulses in two-state systems.

We note that previous work [25] has also discussed exchan-
ging the populations of two ground states in a three-level sys-
tem by STIRAP but it required very careful adjustment of
the single-photon detuning and pulse delay for achieving high
fidelity. In contrast, our work (1) demonstrates that swapping
is possible for a wide range of the single-photon detuning as
long as adiabaticity is maintained, (2) it considers swapping
the populations of coherent superposition states and statistical
mixtures and the differences between these cases, and (3) it
shows that while single STIRAP is sensitive to the dynamic
phase η± (see equation (12)), it can be applicable for spin refo-
cusing by , e.g. in dynamical decoupling, by using two or an
even number of swaps, as demonstrated in equation (13).

Finally, one can also combine these techniques with other
advanced coherent control methods such as optimal control
[26–29], composite pulses [13, 30–35] and shortcuts to
adiabaticity [36–38] to improve robustness, increase speed and
suppress unwanted transitions. Expansion of the methods to
multilevel systems is also envisioned.

8. Conclusion

We considered the applicability of STIRAP and some
of its variants for implementing a robust and efficient
population-swapping between two states |1〉 and |3〉 in a

three-state system. The two states are typically long-lived
ground states and it is usually important to minimize the popu-
lation in the intermediate state |2〉, which can be fast decaying.
The results show that resonant STIRAP cannot perform swap-
ping successfully but a slight modification, where we intro-
duce a non-zero single-photon detuning, allows for efficient
and robust population swapping of the populations of states |1〉
and |3〉 for any initial state.When the intermediate state decays
fast, it usually preferable to use STIRAPwith a large detuning,
to avoid populating the lossy state, at the expense of slower
implementation. The results of our work could be useful for
efficient and robust state preparation, dynamical decoupling
and design of quantum gates in ground state qubits via two-
photon interactions.
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Appendix. Solution for STIRAP with a large
detuning by adiabatic elimination

The case of STIRAP with a large single-photon detun-
ing ∆� Ωrms(t) can also be analyzed by adiabatic elim-
ination of the excited state |2〉 from the system. The
three-state system dynamics are described by the time-
dependent Schrödinger equation [21] i∂tc(t) = HRWA(t)c(t),
where c(t) = [c1(t),c2(t),c3(t)]T is a column vector with the
probability amplitudes of the three states and the Hamiltonian
HRWA(t) is given in equation (1). We adiabatically eliminate
the highly detuned state |2〉 by taking ∂tc2(t) = 0 and substitut-
ing the resulting expression for c2(t) in the other two equations
[23, 39, 40]. Then, the dynamics of the reduced two-state sys-
tem of states |1〉 and |3〉 is described by the Hamiltonian
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Figure A1. (a) Coupling scheme for STIRAP with a large detuning and (b) the corresponding scheme after adiabatic elimination. (c) Pulse
sequence with the same parameters as in figure 5(b) and (d) the corresponding two-photon coupling and Stark shifts after adiabatic
elimination. (e) Eigenenergies of the bare and adiabatic states in the full system as in figures 5(c) and (f) the corresponding eigenenergies in
the reduced system, where the adiabatic states |d〉 and |b−〉 and are the same for both cases (compare the inset of (c) and (d)). The time
evolution in the adiabatic basis leads to an avoided crossing, where the bare eigenenergies εaek (t) cross when Ωp(t) = Ωs(t). However, the
adiabatic eigenenergies, corresponding to states |d〉 and |b−〉, cannot cross due to the interaction, leading to efficient and robust population
transfer. Numerically simulated time evolution of the populations for (g) the full system as in figures 5(e) and for (h) the reduced system
after adiabatic elimination is practically the same.

Hae(t) =
1
2

(
Sae1 (t) Ωae(t)
Ωae(t)∗ Sae3 (t)

)

=
Ωrms(t)2

4∆

(
sin2ϑ(t) 1

2 sin2ϑ(t)
1
2 sin2ϑ(t) cos2ϑ(t)

)
, (A.1)

where Sae1 (t) =−|Ωp(t)|2/(2∆) and Sae3 (t) =−|Ωs(t)|2/(2∆)
are Stark shifts of states |1〉 and |3〉 due to the off-resonant
interaction with state |2〉 and Ωae(t) =−Ωp(t)Ωs(t)∗/(2∆)
is the effective coupling between states |1〉 and |3〉. In the
last equality we assumed that Ωae(t) is real for simplicity of
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presentation and without loss of generality. Figures A1(b)
and (d) show the resulting coupling scheme and temporal
behavior of the Rabi frequency and detuning after adiabatic
elimination, respectively. It proves useful to transform our
reduced basis by using the rotation matrix

Rae(t) =

(
cosϑ(t) −sinϑ(t)
sinϑ(t) cosϑ(t)

)
, (A.2)

which allows us to obtain the Hamiltonian in the reduced adia-
batic basis after adiabatic elimination

Hae
adiab(t) = Rae(t)Hae(t)R

ae †(t)− iRae(t)∂tR
ae †(t)

=

(
0 −iϑ ′(t)

iϑ ′(t) −Ωrms(t)
2

4∆

)
≈
(

0 0
0 ε−

)
, (A.3)

where we assumed adiabatic evolution in the last equality, i.e.
|ϑ ′(t)| � |ε−(t)|, so we could neglect the effect of the off-
diagonal elements of the Hamiltonian, and used that ε− ≈
−Ωrms(t)

2

4∆ +O
(

Ωrms(t)
4

∆3

)
in the limit when Ωrms(t)�∆ (we

assumed ∆> 0 without loss of generality). It is evident that
the adiabatic states of the reduced system after adiabatic
elimination are |d〉 and |b−〉 of the complete system. This
is the case as the both the transformation matrix Rae(t) and
the reduced system Hamiltonian Hae

adiab(t) can be obtained
from R(t) in equation (4) and the Hamiltonian Hadiab(t) in
equation (5), respectively. We only require the condition
Ωrms(t)�∆, so themixing angle φ→ 0, andwe consider only
the subset of states |d〉 and |b−〉 ofHadiab(t) to obtainHae

adiab(t).
The numerical simulations of the eigenenergies of the adia-
batic states of the full and reduced system after adiabatic elim-
ination in the inset of figures A1(e) and (f) also confirm that
|d〉 and |b−〉 are the adiabatic states in both cases.

One can gain additional intuition about the mechanism
of adiabatic population swapping with STIRAP with a large
detuning by considering the time evolution of the energies of
the bare and adiabatic states in the reduced system. The time
evolution in the adiabatic basis leads to an avoided crossing,
where the bare eigenenergies εaek (t) = Saek (t)/2, k= 1,3 cross
due to the time evolution of their Stark shifts when Ωp(t) =
Ωs(t), i.e. ϑ(t) = π/4. However, the adiabatic eigenenergies,
corresponding to states |d〉 and |b−〉 approach each other then
but cannot cross due to the interaction, see figure A1(d). This
leads to efficient and robust population transfer. Specifically,
when the system is initially in |1〉 it is also in the dark state |d〉.
During the adiabatic evolution it remains in |d〉 but the latter
becomes aligned with −|3〉 due to the change of the mixing
angle ϑ(t) from 0 to π/2. This leads to efficient and robust
population transfer (see figures A1(e) and (f)). The process
is reversed and symmetric when the system is initially in |3〉
when the population transfer takes place via |b−〉 and is also
efficient and robust. As already shown, successful population
transfer from both |1〉 and |3〉 is a sufficient condition for pop-
ulation swapping, which is independent from the initial state.
The numerical simulations in figures A1(g) and (h) confirm
the above analysis and show that the time evolution of popu-
lations of the bare and the adiabatic states in both the full and

reduced system is the same, demonstrating the validity of the
adiabatic elimination approximation.

ORCID iDs

Genko T Genov https://orcid.org/0000-0002-4538-6686
Simon Rochester https://orcid.org/0000-0001-5202-5718
Dmitry Budker https://orcid.org/0000-0002-7356-4814

References

[1] Bergmann K et al 2019 Roadmap on STIRAP applications J.
Phys. B: At. Mol. Opt. Phys. 52 202001

[2] Viola L, Knill E and Lloyd S 1999 Dynamical decoupling of
open quantum systems Phys. Rev. Lett. 82 2417–21
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