
Hieratic Studies Online 5 | 2023

Julius A. Tabin

Optical Character Recognition Applied to
Hieratic. Sign Identification and Broad Analysis

ISSN 2512-6598

Hieratic Studies Online is a double-blind peer-reviewed, academic series
dedicated to presenting research on all aspects of Hieratic and cursive
hieroglyphs.

Hieratic Studies Online is edited by

Svenja A. Gülden, Tobias Konrad, Kyra van der Moezel and Ursula Verhoeven

ISSN: 2512-6598

CC-BY 4.0 (https://creativecommons.org/licenses/by/4.0/)

Akademie der Wissenschaften und der Literatur | Mainz

hso@uni-mainz.de

https://aku.uni-mainz.de/hieratic-studies-online/

https://creativecommons.org/licenses/by/4.0/
mailto:hso@uni-mainz.de
https://aku.uni-mainz.de/hieratic-studies-online/

Optical Character Recognition Applied to
Hieratic
Sign Identification and Broad Analysis

Julius A. Tabin

University of Chicago

Abstract: Despite modern advances in digital paleographic techniques, hieratic has largely
eluded the thorough application of technological methods for automatic sign recognition.

To remedy this, this article presents two new hieratic facsimiles (of the Shipwrecked Sailor

and part of the Eloquent Peasant), a novel data set of 13,134 individual hieratic signs, and

an Optical Character Recognition (OCR) based program developed to analyze them using

an Image Deformation Model. This program is highly accurate and various applications are

presented, from single character identification to large-scale sign comparisons. This article

provides an important building block in the study of hieratic digital paleography, allowing

far more signs to be compared at once than ever before, and offers a free, open-source tool

and data set.

1. Introduction

In recent years, the study of ancient Egyptian hieratic has greatly benefited from digital

paleographic methods.1 Never before has it been easier to quickly search for hieratic

signs, transmit information, and view texts. However, two major areas still present

significant challenges: character recognition and large scale comparison.2

Historically, the recognition of hieratic characters has been slow, often entailing a

new scholar to all but memorize Möller’s paleography3 or similar works. Even online,

searchable hieratic paleographic compositions still require a significant time investment,

especially when a character is uncommon and a researcher may not know what they are

even searching for (a reader may contrast this with the Demotic Palaeographical Database

Project, which is even searchable through drawing).4

1 This article is adapted from the first part of my B.A. thesis for the Department of Near Eastern Languages

and Civilizations at the University of Chicago. I would like to thank my advisor, Dr. Brian Muhs (Associate

Professor of Egyptology, University of Chicago), as well as Dr. Luiza Osorio G. Silva, for their assistance

with the thesis text. I also would like to thank Dr. Christian Casey and Dr. Mark-Jan Nederhof for their

assistance with some of the important code sections that made this work possible.
2 Berg, and Donker van Heel 2000, 39.
3 Möller 1909b.
4 DPDP n.d. Available at http://129.206.5.162/beta/index.html.

TABIN, JULIUS A., Optical Character Recognition Applied to Hieratic. Sign Identification and Broad Analysis, Hieratic Studies
Online 5, Mainz 2023, http://doi.org/10.25358/openscience-9590.

This work is licensed under CC BY 4.0.

https://orcid.org/0000-0002-3591-6620
http://129.206.5.162/beta/index.html
http://doi.org/10.25358/openscience-9590

Hieratic Studies Online 5 | 2023 4

Beyond this, paleographic work in hieratic has always been limited in some way, not

by oversight, but by necessity. For instance, the large sign identification works, such

as that of Möller5 or the far more extensive and modern AKU-PAL,6 include a limited

number of each sign to try and catalog the variation present in the corpus. Other studies

look at greater variation in a language, but must restrict the data set to specific issues or

texts.7 This system has worked well in the past, but some questions remain out of reach.

For example, one interested in the paleography of the writing system as a whole

would be unable to adequately investigate this, given the sheer amount of data that

would need to be examined. In addition, the exact statistical similarity between signs

over the corpus would be difficult to identify. This latter issue is one that remains for

many current projects not focusing on hieratic that nevertheless have made substantial

progress towards cataloging variation in their respective scripts, such as the Demotic

Palaeographical Database Project,8 Digi-Pal,9 and HebrewPal.10 This is due to the area

around glyphs being cut out and annotated, rather than the glyphs themselves. However,

these monumental questions do not need to remain unattainable. In fact, the state of

the field, having more and more technological influence and statistical power, demands

that they be addressed.

Here, I present a method for both hieratic character recognition and large scale com-

parison, in the form of an Optical Character Recognition program. I aim to demonstrate

that this program, supplemented by a large, novel data set, can automatically identify

hieratic characters to a high degree of accuracy. The recognition of these characters

can then be leveraged to create comparisons of wide swathes of the data set, presenting

a new opportunity for the field of hieratic digital paleography.11

2. Optical Character Recognition

When it comes to integral programs for the digital study of paleography, there are

few more important than Optical Character Recognition (OCR) programs. In brief,

OCR programs convert physical writing into a machine-readable format. This can

take many forms and has wide ranging applications in a myriad of disciplines. The

types of algorithms used for OCR range from simple pixel comparisons to complex

machine learning models, but the question they intend to answer is the same: when

given a written character, what is its identity?12 When applied to ancient material, OCR

programs can be used to automatically identify characters and, when trained enough,

even make inferences about partial characters, notably taking some of the guesswork

5 Möller 1909b.
6 AKU-PAL 2022. Available at https://aku-pal.uni-mainz.de.
7 Aguizy 1986, 67–70; Quirke 2011.
8 DPDP n.d. Available at http://129.206.5.162/beta/index.html
9 DigiPal 2011–14. Available at http://www.digipal.eu.
10 HebrewPal 2022. Available at https://www.hebrewpalaeography.com.
11 For an earlier suggestion of the potential of this method, see Gülden, Krause, and Verhoeven 2020, 640–641.
12 Memon et al. 2020, 142642–142643.

https://aku-pal.uni-mainz.de
http://129.206.5.162/beta/index.html
http://www.digipal.eu
https://www.hebrewpalaeography.com

TABIN, Optical Character Recognition Applied to Hieratic 5

out of identifying ones that are unusual or partially preserved. A researcher will still

have to make a judgment call of whether to accept or reject the program’s suggestion

for any given character, but OCR methods at least provide a reproducible baseline. Also,

OCR programs can allow for the rapid digitization of texts, as all one needs to do is

input a text and let the machine encode the identities of all of the characters.

Optical Character Recognition has been used in Egyptology for over a decade, often

to great effect.13 However, the goals of most of the previous OCR programs in the field

have started and ended with the aforementioned digital identification of characters

and digital transcribing of texts. This is important work, but OCR is not limited to this

use. For nearly all OCR algorithms to identify a character, the program must look at a

database of previously correctly identified characters to inform the new decision. When

determining what an unknown character is, the program uses the database to rank its

options and decide upon the best one. Directly or indirectly, this results in comparing

the input character to the characters in the data set, often accompanied by a “similarity”

score, which is a number determined by the program that describes how similar two

images are.14 Although this is usually thought of as a means to the end of identification,

the program’s insights into the similarity of various characters can be used to learn more

about the characters and the texts they came from. Leveraging these similarity statistics

provides a new way to look at ancient texts, allowing for complex comparisons to be

made between characters, texts, handwritings both ancient and modern, locations, and

time periods with more statistical power than has ever been possible before.

In the field of Egyptology, this method of looking at similarity scores to learn about

ancient material has not been significantly attempted. However, that does not mean

that OCR has been ignored. There has been significant work already on using OCR

on images of hieroglyphs, a challenging problem due to the physical dissimilarity of

hieroglyphs to most other writing systems.15 Nevertheless, these methods cannot be

easily adapted to hieratic, particularly because they are constructed for carved, rather

than written, material.

In 2015, Nederhof16 used OCR to digitize Sethe’s Urkunden der 18. Dynastie.17 In

the paper, Sethe’s individual handwritten characters are automatically detected by

considering “blobs”, defined as a connected set of black pixels. Then, each unknown

glyph is compared to a set of “prototypes”, a subset of the full data set of identified

characters that gives an approximation of the total variation. Prototypes were used to

cut down on computational costs, given that it would be costly to compare each input to

the whole data set. An Image Deformation Model (IDM) was used to fully compare the

sign to the filtered data set signs, resulting in a difference score (effectively the reverse

of a similarity score) that is then used to determine the identity of each sign. Through

this method, Urkunden der 18. Dynastie was able to be digitized.

13 Nederhof 2015; Franken, and Gemert 2013.
14 Koch, Zemel, and Salakhutdinov 2015, 9.
15 Franken, and Gemert 2013, 766; Elnabawy, Elias, and Salem 2018.
16 Nederhof 2015.
17 Sethe 1927.

Hieratic Studies Online 5 | 2023 6

Figure 1: An example of overlapping signs (left) and ligatured signs (right). In each example, one sign is

colored red and the other is colored blue, with shared areas in purple. Particularly in the overlap

example, the exact extent of overlap is uncertain, this being one possibility. Both examples come

from the Shipwrecked Sailor (P. Hermitage 1115).

Nederhof’s research is unique in the field and it provides an excellent starting point

for subsequent work. However, it is not without its limitations as well. Nederhof’s

focus on Sethe’s Urkunden der 18. Dynastie puts his tool’s use firmly within recognizing

handwritten transcriptions of ancient Egyptian, making it unable to be applied to the

actual texts themselves. Furthermore, the employment of “prototypes”, while useful

in cutting down computational costs, would not be ideal when one wants to use the

difference scores for large-scale morphological comparisons. This is because comparisons

across texts, time periods, or locations would likely need a large amount of data to be

significant. However, these types of comparisons are not even worth considering for

Nederhof’s data set, given that his program is looking at modern transcriptions and not

the ancient material itself, nor morphologically accurate reproductions.

OCR has been used on images of hieroglyphs and on modern hieroglyphic transcrip-

tions, but not on hieratic at a large scale. This is chiefly due to the numerous additional

problems hieratic poses compared to hieroglyphs. First, hieratic characters are often not

distinct from one another and can be ligatured together or can be overlapping (Figure 1).

This can cause problems even for a human analysis of a text, necessitating the use

of context clues. Although it is sometimes easy for humans to mentally separate two

signs or recognize a ligature, it is far more difficult for a program to do so. Nederhof

mentions in the end of his paper that the touching of hieratic signs poses a problem

to his blob-based automatic detection.18 Both hieroglyphs and written transcriptions

rarely have this problem. Second, many hieratic characters look nearly identical to one

another (see Figure 8 for an example). This is true for some characters in Urkunden der

18. Dynastie, but not nearly to the same degree as in hieratic. Third, hieratic can be

far more variable than hieroglyphs, with multiple ways of writing the same sign being

present even in the same text (see Figure 12 for an example). This element of hieratic

makes it particularly apt for morphological comparisons across space and time, but also

leads to difficulties in automatic recognition. Relatedly, hieratic can be written vertically

or horizontally, further increasing variation. While this is also true for hieroglyphs, the

change in orientation does not usually affect the form of the hieroglyphic signs. Hieratic,

on the other hand, has different ligatures and overlaps depending on whether the signs

are written next to one another or on top of one another.

18 Nederhof 2015, 12.

TABIN, Optical Character Recognition Applied to Hieratic 7

All of these problems are solvable with a large data set. A data set that is sufficiently

large would provide the training necessary for an algorithm to identify ligatured char-

acters and even perhaps separate overlapping ones. It would also allow a sufficiently

powerful algorithm to distinguish between similar characters, possibly with even greater

accuracy than a person could. Lastly, it would capture close to the full variation of

hieratic and make sure few signs go unrecognized. Cursive scripts that are somewhat

visually similar to hieratic, such as Urdu with its ligatures and overlaps, have also been

shown to work with OCR methods and large data sets.19 As a point of reference, Franken

and van Gemert used about 4,000 images for their 2013 hieroglyphic recognition pa-

per.20 Additionally, a limited set of 39 hieratic character classes was demonstrated by

Bermeitinger et al. to be amenable to OCR.21 Haliassos et al. also successfully performed

automatic recognition using multiple hieratic papyri, but with only three character

classes.22 Given these promising results and the aforementioned unique challenges

hieratic poses, I present here a hieratic data set more than triple the size of Franken

and van Gemert’s paper in the interest of recognizing almost 30 times the amount of

character classes of Bernhard et al.

Even with a sufficient data set, there are a number of pitfalls and limitations of

using OCR on hieratic that must be avoided or at least acknowledged. For instance,

to accurately identify hieratic characters at the moment, one needs to use facsimiles

because the variations in the damage of the material, the ink darkness, and image quality

would likely be too much for any image recognition software, especially on top of all of

the other variations present in hieratic. It is not unusual to try and remove unhelpful

variation before using a data set for OCR; Nederhof23 made Sethe’s glyphs purely black

and white for his OCR program and Franken and van Gemert24 used black and white

images of the hieroglyphs in the pyramid of Unas for their work. One could argue that,

rather than use a facsimile, one should try and just color the hieratic images so the glyphs

are purely black and the background is purely white, but doing so would effectively be

creating a facsimile. Because facsimiles are being used, some data will necessarily be lost

and, while this is good because one wants to lose some of the aforementioned negative

variation, it could also be dangerous because a facsimile maker could unwittingly lose

an important part of the variation. This process of making a facsimile is subject to

human decision making and, thus, human error. Facsimile use also introduces variation

because using facsimiles made by two different people could result in differences being

detected due to the facsimile maker, not the original, underlying hieratic. However,

using facsimiles is the only practical choice without the presence of an impossibly large

data set.25 In addition, some of these potential issues with facsimiles can be monitored.

For example, if glyphs from one facsimile maker are shown to be more similar to each

other, regardless of which text they are from, rather than showing similarities to ones

19 Naz et al. 2014.
20 Franken, and Gemert 2013, 765.
21 Bermeitinger, Gülden, and Konrad 2021.
22 Haliassos et al. 2020.
23 Nederhof 2015, 3.
24 Franken, and Gemert 2013, 766.
25 For a detailed description of the considerations to take into account when making digital facsimiles, as well

as the general importance of creating facsimiles see Berg, and Donker van Heel 2000, 39–42 and Moezel

2022, 19–24.

Hieratic Studies Online 5 | 2023 8

from their same original text by a different facsimile maker, that would raise some red

flags regarding this modern influence.

3. Sources for the Data Set

The data set used for this project consists of individually cut out hieratic characters

from facsimiles made by myself (henceforth referred to as “Tabin’s facsimile”), Georg

Möller in his “Hieratische Lesestücke”,26 and William Poe in his “Introduction to Hieratic

Middle Egyptian”.27 My facsimiles and Poe’s were already digital, whereas Möller’s had

to be digitized through high quality scans. All of the facsimiles were color-corrected to

be purely black and white.

I created two facsimiles by hand, one of the full story of The Shipwrecked Sailor

(P. Hermitage 1115) and one of the beginning of The Eloquent Peasant (P. Berlin P. 3023).

These texts were selected for three reasons. First, they are both lengthy, with many

individual signs, resulting in a multitude of data points each. Second, they both have

lots of published information about them, including clear images. Third, they both

have versions done by other facsimile makers: Poe created a full Shipwrecked Sailor

facsimile and Möller created a partial Peasant facsimile. These factors allow for easier

creation and many potential comparisons. My facsimiles were created, using methods

discussed below, to be as morphologically accurate to the original texts as possible.

They were created in Photoshop using images of the original papyrus digitized from

Golénischeff’s Shipwrecked Sailor publication28 and Parkinson and Baylis’s Eloquent

Peasant publication29 respectively. These facsimiles can be found in the appendix

(page 41).

In contrast to my facsimiles, Poe’s Shipwrecked Sailor facsimile is less focused on

being morphologically accurate, opting instead to be a simplified teaching tool for

Middle Egyptian hieratic. The individual signs are far more block-like and smooth,

without the sharper points that appear in hieratic made from physical brush strokes.

Poe produced his facsimile by scanning Golénischeff’s Shipwrecked Sailor images and

then tracing them on a computer in CorelDRAW™, a digital image editing software.30

Thus, Poe’s facsimile still maintains the basic shape of each character, but disregards

the minutiae of each sign’s detail. This is useful in multiple ways. For example, if a sign

from Poe’s facsimile is put into the program, the program should output what signs are

most similar to that one. If the signs that are most similar are all from his facsimile,

even if a different version of that exact sign is in the data set from a different facsimile

maker, that is a good indication that the general shape is not enough to determine a

specific sign. If the reverse is true and the same sign from Poe’s facsimile and Tabin’s

facsimile are shown to be most similar, then it indicates that larger shapes of signs are

26 Möller 1909a, 1–18, 21–25.
27 Poe 2008, 212–215.
28 Golénischeff 1913, pl. I–VIII.
29 Parkinson, and Baylis 2012, 42–44.
30 Poe 2008, iv.

TABIN, Optical Character Recognition Applied to Hieratic 9

most important. In this vein, Poe’s facsimile can be used to investigate questions relating

to modern facsimiles and how accurate they need to be to capture the true variation of

hieratic. It is also a good addition to the data set in a practical sense because someone

using the program on their own facsimile might not have produced that facsimile with

in-depth morphological accuracy in mind; the more variation present in the data set,

the better it will be at recognizing foreign inputs. Due to time constraints, only the first

four pages of Poe’s facsimile were added to the data set. These pages overlap in content

with my own Shipwrecked Sailor facsimile.

Möller, who cataloged hieratic morphological variation over 100 years ago, produced

a number of high-quality facsimiles spanning a wide range of genres, locations, and

time periods. For this project, only his facsimiles from “Hieratische Lesestücke für

den akademischen Gebrauch Vol. 1” were used because they are all written in Middle

Egyptian and can all be dated to around the Middle Kingdom.31 Möller produced

his facsimiles by drawing them on photographs or gelatin drawings, while constantly

comparing the facsimiles to the originals. This process produced facsimiles that are

fairly morphologically accurate, especially since Möller marked all of the damaged areas.

Although Möller did make some cosmetic or otherwise personal alterations to the glyphs

beyond what was present in the originals, the results of my program (see below) show

that the data is able to nevertheless provide accurate character recognition. Having a

gradient of facsimile accuracy (Tabin > Möller > Poe) is a benefit in this work, since

facsimiles (of various qualities) will likely be the main source of additional data for

the program’s foreseeable future. I used almost all of Möller’s facsimiles, although a

few were left out due to time constraints. Most of his facsimiles are only excerpts from

each text, rather than the whole of each. The Möller facsimiles used were those of the

Hatnub texts, Lahun temple files, Will of Wah, Hymn to Senwosret, Eloquent Peasant,

Papyrus Prisse, Sinuhe, Papyrus Ebers, the Rhind Mathematical Papyrus, and Papyrus

Westcar. Of these, his Eloquent Peasant facsimile overlaps with mine to a certain extent.

4. Methods

In the interest of space, only the details of the Optical Character Recognition program

will be discussed here at length. For in-depth information about the methods for the

creation of the data set of 13,134 individual signs and ligatures, a reader is encouraged

to read pages 30–35 of my BA thesis.32 This includes the steps for the creation of the

Tabin facsimiles, as well as the development and usage of Sobti, a program produced in

collaboration with Dr. Christian Casey for cutting out individual signs from annotated

facsimiles.

In brief, the Tabin facsimiles were created by tracing papyrus images in Photoshop

using a Wacom Intuos Pro (Paper Edition) tablet connected to the computer. In tracing

the signs, obvious damage was repaired, as is common for most facsimiles. For instance,

if a sign had a hole in the middle where the papyrus was clearly ripped, but the rest of

31 Möller 1909a.
32 Tabin 2022, 30–35.

Hieratic Studies Online 5 | 2023 10

the sign was known, the hole would be ignored in the tracing. As for signs with heavier

damage, where significant extrapolation would be needed to restore the sign, the signs

were still restored to the best of my ability for the Shipwrecked facsimile, but often not

for the Peasant facsimile. This was purely due to time constraints. The restorations

were done by referencing published transcriptions of the texts,33 common sign forms,34

and by copying non-damaged examples of the damaged signs from the same text. Then,

an outline of what the sign would be expected to look like was created. Any deviations

from what is actually on the page were recorded in a “damage” layer in Photoshop and

heavily damaged signs were not considered in the dataset. The facsimiles were each

done twice in their entirety, to maximize my familiarity with the text and, thus, my

accuracy.

The Tabin, Möller, and Poe facsimiles were then manually annotated using transparent,

colored polygons in Photoshop, each around a different sign. For ligatures or overlaps

where it was uncertain where one sign ended and another began, they were taken

as one sign and put in the same annotated polygon. Each individual line of text was

also annotated in a unique polygon. This annotation information was then loaded into

Sobti and the signs were automatically cut out and saved as black glyphs with white

backgrounds. At the end of the processing, each character had its own black and white

rectangular image.

4.1. Glyph Labeling

After the individual glyphs were extracted by Sobti, they were manually renamed with

their Gardiner sign code and how many times that sign had appeared in the text in the

following format: [Sign Code]_XXXX.png. As a concrete example, the third A1 sign to

appear in a text would be labeled “A1_0003.png”.

Some signs, which are clearly different in their hieroglyphic forms, are not different in

their hieratic forms. This led Möller to consider many of them as one sign form.35 I have

followed Möller’s lead. For example, signs U6 (𓌸) and U7 (𓌻) are both hoe signs and are

distinct in hieroglyphic form: U6 is tilted upwards whereas U7 is horizontal.36 However,

in hieratic, this distinction is never made. Therefore, all of the signs of that form could

be U6, they all could be U7, or there could be a mix, but the signs are indistinguishable

and this cannot be known. Because of this, I have taken every sign that could be U6 or

U7 as U7. This was done for many signs where this problem occurs, given that there

is no known way to tell the difference and it would be introducing personal bias to

make the distinctions myself. Some more examples of signs dealt with in this way are:

A40/A41 (𓀭/𓀯) was taken as A40, G40/G41 (𓅮/𓅯) was taken as G41, N11/N12 (𓇹/𓇺)

was taken as N11, T9/T9A (𓌒/𓌓) was taken as T9, U28/U29 (𓍑/𓍒) was taken as U29,

W17/W18 (𓏃/𓏅) was taken at W17, Z9/Z10 (𓏴/𓏵) was taken as Z9, and Aa15/Aa16

33 Casey 2008, 3–13; Parkinson 1991, 10–22; Nederhof n.d.
34 Nagai et al. 2021.
35 Möller 1909a.
36 Hieroglyphic unicode keyboard provided by Dr. Christian Casey from https://www.caseyegyptologist.com/

downloads.

https://www.caseyegyptologist.com/downloads
https://www.caseyegyptologist.com/downloads

TABIN, Optical Character Recognition Applied to Hieratic 11

(𓐝/𓐞) was taken as Aa15. If a sign does not appear in the data set, there could be no

examples of it in the texts used, but it could also be wrapped up under the umbrella of

another sign that was impossible to distinguish from it.

The last quirk of the labeling method to note is that there was no Gardiner sign present

for the beginning of a cartouche.37 Traditionally, sign code V10 is used for the whole

cartouche and V11 is used for just the end. Since cartouches in hieratic are often written

split up, sign code V10 was here used for cartouche beginnings, rather than the whole

cartouche.

This overall labeling method requires prior knowledge of what each sign is. This

was determined manually, supplemented with the Hieratische Paläographie DB38, the

Thesaurus Linguae Aegyptiae,39 the JSesh texts list,40 the Nederhof St. Andrews Corpus of

Egyptian text transliterations,41 and the Stableford Corpus of transliterations of Möller’s

work on hieratic.42 The signs were then checked against published versions of the texts:

the Collier and Quirke publication of the Lahun papyri,43 the Parkinson publication of

the Eloquent Peasant,44 the Koch publication of the Story of Sinuhe,45 the Žába and

Jéquier publications of Papyrus Prisse,46 the Golénischeff and Casey publications of the

Shipwrecked Sailor,47 the Wreszinski publication of Papyrus Ebers,48 the Erman and

Blackman publications of Papyrus Westcar,49 and the Chace publication of the Rhind

papyrus.50 In the future, this could be improved with OCR. Adding an OCR program

would identify most of the characters with high accuracy, preventing a user from having

to manually input each sign code. Instead, a user would only have to correct any errors.

This function could even be wrapped up in Sobti, fusing the two programs. A similar

method was used by Nederhof in his work on identifying Sethe’s glyphs through OCR; as

more images were added to the data set, OCR was able to be relied on for identifications

more and more.51

Lastly, “tags” were added to every image. These tags are numbers put at the end

of the file names, corresponding to the facsimile maker, provenance of the text, and

the text itself, in that order. These tags are given in Table 1. For an example of how

these tags work, the 21st A1 from Möller’s facsimile of the Will of Wah would be named

37 Gardiner 1957.
38 Nagai et al. 2021.
39 TLA 2014. Available at https://aaew.bbaw.de/tla/servlet/TlaLogin.
40 Rosmorduc 2014.
41 Nederhof n.d.
42 Stableford n.d.
43 Collier, and Quirke 2004, 16–19.
44 Parkinson 1991, 10–22.
45 Koch 1990, 1–81.
46 Žába 1956, 15–65; Jéquier 1911, pl. II, V–VII, IX.
47 Golénischeff 1913, 1–8; Casey 2008, 17–27.
48 Wreszinski 1913, 1–228.
49 Erman 1890, 22–72; Blackman 1988, 1–17.
50 Chace 1927, 50–119.
51 Nederhof 2015, 5.

https://aaew.bbaw.de/tla/servlet/TlaLogin

Hieratic Studies Online 5 | 2023 12

Table 1: The tags used for the data set images

Number Facsimile Maker Provenance Text

1 Möller Thebes Shipwrecked Sailor

2 Poe Lahun Eloquent Peasant B1

3 Tabin Hatnub Eloquent Peasant R

4 Unknown Sinuhe B

5 Sinuhe R

6 Papyrus Prisse

7 Hymn to Senwosret III

8 Lahun Temple Files

9 Will of Wah

10 Texte aus Hatnub

11 Papyrus Ebers

12 Rhind Papyrus

13 Papyrus Westcar

“A1_0021_1_2_9.png”. This system of labeling was chosen so the data for each sign could

be readily accessible when the glyph was being used in comparisons.

4.2. The Comparison (OCR) Program

The purpose of the OCR program is to identify input hieratic characters based on their

morphology, ranking the data set characters based on similarity. Although the goal is

simple, this is by no means a trivial task. Throughout the creation of the OCR program,

written in Python, a balance had to be struck between accuracy and speed. One could

make an extremely accurate program that compares an input sign to the entire data set,

but that would take far too long to be feasible as a research tool. Conversely, a program

that randomly ranks the signs in the data set would be extremely fast at doing so, but

would be immensely inaccurate and profoundly unhelpful. Thus, in many areas of this

project, tradeoffs had to be made. However, in some cases, speed could be improved

without sacrificing accuracy.

4.2.1. Calculation of Data Set Metrics

Before any input glyphs are added to the program, the program calculates aspect ratios

and vectors of pixel values for the entire data set and saves them as a file. This only

needs to happen once, because the metrics from the unchanging data set can then be

called by the program, rather than being calculated each time it is run.52 To do this, a

list of all of the images in the data set is loaded into the program. Using the Python

Imaging Library (PIL) package, each image is loaded in and its aspect ratio is calculated

by dividing its height in pixels by its width in pixels. The calculated aspect ratios are

saved in a dataframe along with the image filenames and the sign codes extracted from

52 Of course, this would need to be redone every time new material is added to the data set.

TABIN, Optical Character Recognition Applied to Hieratic 13

those filenames. This dataframe is then saved as a .csv file in a newly created folder

that can be easily accessed by the program.

After this, the images are all resized to be squares of a certain size. The images need

to be resized so they can be compared to one another easily; it would be difficult to

compare images with wildly different aspect ratios and resolutions. Each image will be

distorted to some degree, but signs that looked similar before distortion should look

similar after distortion, since they are all undergoing the same transformation. The

resizing size can be determined by a user, but, through extensive trials, 20 px by 20 px

seems to be the best size to optimize speed without meaningfully sacrificing accuracy.

The images then undergo a simple binarization process to change them from grayscale

to purely black and white. Once every image is resized, a list of its pixels is saved as

a vector and added to a dataframe, next to a column of the sign names of each image.

For example, an image that is 2 px by 2 px (much smaller than the ones used in this

program) that has a black top-left pixel, a white top-right pixel, a white bottom-left pixel,

and a black bottom-right pixel, would have a vector of [0, 255, 255, 0] (i.e. [black,

white, white, black]). This method can be extended to images of any size. Finally, the

dataframe of pixel values for every resized image from the data set is saved as a .csv file

in the same folder as the aspect ratio list.

4.2.2. Filtering by Aspect Ratio

Once the data set metrics are all saved, one can load in a new image that one wants to

identify. A user can also put in a whole folder of images to be identified, making large-

scale comparisons easy to do. When a new sign is added to the program, it undergoes

pre-processing in the same way that every image in the data set has: it is converted

to purely black and white pixels (although ideally this would also be manually done

beforehand to ensure accuracy), cropped to contain just the sign itself by locating its

most distant black pixel on each side, has its transparent pixels filled in with white to

make a rectangle, has its aspect ratio calculated and saved, is resized, and has its pixel

values saved. All of this is done according to the above methods. Then, the aspect ratio

of the input sign is compared to the aspect ratios of every sign in the data set and only

the data set signs with aspect ratios close to that of the input sign are saved. Despite this

sounding like a lot of calculation, this step is nearly instantaneous. The threshold for

when two aspect ratios are “close” to one another is up to the user to input. However,

through rigorous testing, a cutoff of 0.15 seems to be optimal. If two aspect ratios are

within 0.15 of one another, they are considered “close” and the data set sign is saved.

For the average input sign, this filtering step leaves about 1,000–3,000 candidate signs

out of the 13,134 data set signs. Sometimes this number is a bit higher or far lower,

depending on how common a sign’s aspect ratio is. The candidate signs for each input

image are saved in separate matrices.

It is important to note that, since the aspect ratio of the glyph is dependent on the

pixels present in the image, any pixels present that are not part of the target glyph to be

identified will affect the aspect ratio. These stray pixels, depending on their location,

can even lead to a false aspect ratio farther than 0.15 away from that of the target glyph,

Hieratic Studies Online 5 | 2023 14

effectively making true identification by the program impossible. Thus, it is vital that a

user screens any images being identified or added to the data set for stray pixels and

removes them. If desired, the aspect ratio filtering step can be skipped altogether, but

this will drastically increase the time the program takes to run, whilst not substantially

increasing the program’s accuracy.

Here, it is worth discussing the “tails” present on certain signs. Some signs, such as

the full variant of A1, (𓀀 “seated man”), or most versions of I9, (𓆑 “horned viper”)

other than the version in nfr, can have a long tail, a stroke dragged down longer than

what is typical for most glyphs.53 This tail often intersects other glyphs or even other

lines of the text. Although the interference of these tails for other glyphs has been

removed in the processing of the data set and the tails have been isolated to their own

glyphs, the tails drastically affect the aspect ratio of the signs for which they are present.

Some I9 signs with a short tail are nearly horizontal (e.g. with an aspect ratio of 6:1).

In contrast, the ones with a tail could have a wildly different aspect ratio (e.g. 3:2).

This affects the aspect ratio filtering steps and, by extension, the analysis steps. This

is only an issue if, as has been hypothesized by some, the tails are truly arbitrary and

do not convey significant information.54 In the interest of investigating this issue, the

tails can be cut off artificially. This is not something that can be easily done by the

program, given the variety of tail sizes and tail-like structures that should not be cut off.

For instance, one would not want the program to chop off the right side of a V31 (𓎡

“basket with handle”) sign, simply due to it looking tail-like.55 It is not within the scope

of this project to cut off every tail present in every sign, but a test data set was created

manually, by horizontally cropping all A1 signs of the full variety (the form that can

have a tail) at the lowest black pixel not in the tail. An example of this can be seen in

Figure 2. This method ensured the preservation of the sign’s overall morphology, while

also reducing the potential arbitrariness of tail length. This method is not perfect, but

it is fully standardized and one of few ways for all tails to be cut without introducing

major human bias. Once a data set was created with the tails removed, the data set

with tails and the data set without tails were then used for the program and their results

were compared. In addition to allowing the best data set to be chosen, this is able to

reveal information about the importance of tails. If the tail-less data set is better, then

that lends evidence to the hypothesis that tails are arbitrary or at least partly so. On the

other hand, if the data set with tails is better, then it may be the case that tails actually

do contain significant information and more thought should be put into them in the

future (see below).

4.2.3. Filtering by Fast Fourier Transform

After the filtering by aspect ratio, the remaining signs are filtered using a Fast Fourier

Transform (FFT) algorithm. FFT computes the discrete Fourier transform (DFT) of a

53 Hoch 1998, 4, 29.
54 Dr. Brian Muhs in discussion with the author, November 2021.
55 Hoch 1998, 62.

TABIN, Optical Character Recognition Applied to Hieratic 15

Figure 2: An example of an A1 and its tail. The red arrow points out the lowest black pixel not in the tail.

The red dashed line indicates where the tail is cut. This sign comes from Eloquent Peasant B1.

sequence which can then be compared to the DFTs of other sequences.56 The DFT is, in

essence, a number of frequencies decomposed from the original sequence (a frequency

domain representation of the sequence). FFT reduces the complexity of the input and

produces a much more quickly comparable output, allowing researchers to work with

frequencies as easily and quickly as other types of data analysis. It is this aspect of FFT

that makes it a staple in the fields of digital signal and image processing, including the

encoding of MP3s, analysis of gravitational waves, and spectral analysis.57

To make the data usable by FFT, the saved vectors of pixel values are transformed into

square matrices, each matrix being of the same dimensions of the original image. The

image matrices then undergo FFT using the np.fft.fft function provided by the NumPy

Python package. It is not worth going into the math of this function here, but interested

readers are encouraged to read Cooley and Tukey (1965).58 This produces a complex

matrix (the DFT) of both real and imaginary numbers of the same size as the input

matrix. This is separated into two matrices, one real and one imaginary. The real and

imaginary matrices for the input sign are compared to the equivalent two matrices for

all of the saved candidate signs, a method that does not take a lot of time nor computing

power. The FFT comparison algorithm is heavily inspired by the OCR work of Mark-Jan

Nederhof.59 Nederhof was kind enough to translate his FFT code into Python from Java

and much of it did not need to be altered for this project. In this method, to compare

two FFT outputs, a difference score is computed. This difference score is calculated as

the absolute value of the input’s real matrix (IReal) minus the data set sign’s real matrix

(DReal) at each value multiplied by a weight value plus the absolute value of the input’s

imaginary matrix (IImag) minus the data set sign’s imaginary matrix (DImag) at each

value multiplied by a weight value (see equation 1).

20∑
i=1

20∑
j=1

(|IRealij – DRealij| ·Weight) + (|IImagij – DImagji| ·Weight) (1)

The above equation assumes an image size of 20 px by 20 px. If the images are a

different size, the 20s are replaced with the image size.

56 Cooley, Lewis, and Welch 1969.
57 Rockmore 2000, 60.
58 Cooley, and Tukey 1965.
59 Nederhof 2015, 6–7.

Hieratic Studies Online 5 | 2023 16

The “Weight” value is determined by three factors: C, D, and g. Through testing and

plotting of FFT spectra, it was determined that, for a resizing of 20, at points (5, 0),

(10, 0), (11, 0), and (12, 0), hieratic FFT outputs are particularly variable across signs.

Thus, more emphasis should be put on the differences found at those points. If the

comparison is being made at one of those points, the program returns g as the weight.

The variable g can be altered by the user, but, after many tests, it can comfortably be

said that 1100 is the optimal value for g. If the FFT comparison is not looking at any of

the previously mentioned four points, the weight value is set to equal D+(C – i)+ (C – j),
unless i or j is greater than or equal to C, in which case the weight is set to 0. The larger

i and j are, the more of the DFT is being compared; thus, the choice of the value of C

determines the number of frequencies being compared. D is purely a constant to adjust

the weight further. The optimal values of C and D for this program have been found to

be the size of the resized images (in this case, 20) and 3, respectively. By using 20 for

C, all of the frequencies of the images are compared, which is marginally slower, but

also ensures all the variation is taken into account. A user can adjust the values of C

and D as they see fit. To summarize the weight variable (with g, C, and D set by the user):

If (i, j) = (5, 0), (10, 0), (11, 0), or (12, 0) : Weight = g

If i < C and j < C : Weight = D+ (C – i) + (C – j)
If i ≥ C or j ≥ C : Weight = 0

This FFT comparison algorithm results in a difference score for every candidate image

from the data set compared to the input image. The lower the score is, the more

similar the DFTs of the two images are. This can be seen by considering the outcome of

comparing a sign against itself. All of the values of IReal and DReal would be the same

and likewise for IImag and DImag. When plugged into the equation, at each position in

the matrix, the result would be 0. Summed up, this would still be 0, the lowest possible

score, which corresponds to the most similar two images can be (identical). One can

actually produce reasonable identification results with this method alone, but it is not

accurate enough to be used for any real morphological comparisons, as two signs which

visually do not look very alike could have DFTs that look more similar, given that they

are both just decomposed into frequencies. Therefore, this FFT algorithm is used as a

second filtration step and images with FFT difference scores above a certain threshold

are discarded from the candidate list for their respective input sign. This threshold can

be adjusted by a user, but 9,500,000 has been found to be an optimal or near optimal

value for maximizing speed while not sacrificing accuracy. This number was found

through repeated tests and does not have a real world basis or tangible implication.

It usually produces candidate lists in the low hundreds per sign, a very manageable

number.

4.2.4. Image Deformation Model

After the data set signs have been filtered by aspect ratio and FFT, producing a slim

candidate list, the candidate signs are directly compared to the input sign using an Image

TABIN, Optical Character Recognition Applied to Hieratic 17

Deformation Model (IDM). Much like the FFT algorithm, this project’s IDM algorithm

is indebted to Nederhof’s OCR work and his generosity in translating his code into

Python.60 Of course, his code had to be adapted to fit this new problem, but it, along

with Keyser et al.’s work on IDMs, provided a significant basis for the IDM section of this

project’s code.61 The IDM used for this project compares images by looking at various

windows of a certain size between the two images, outputting a difference score. The

difference score increases the farther the window has to move from its original spot to

find a matching window.

As an example, if the window size was one, image one had a black pixel in the top left

corner, and image two had a white pixel in the top left corner, then the window would

shift by a certain amount in image two, still looking for a black pixel, and increase the

difference score until it found one. Because one can shift the window in any direction,

the lowest of these scores is taken once a match is found. The difference scores for

every possible window between two images are then totaled up to find the overall

difference score. This is the essence of the code, although the implementation is a bit

more complex. Also of note are the cases where the window shifts to a location beyond

the image’s bounds. To prevent an error in these cases, all pixels outside of the bounds

of the image are assumed to be white, given that the image is cropped to fit the entire

sign within the bounds. Two images that are identical will never need to shift their

windows to produce a match, so their difference score when compared to one another

will be 0. The window size (the context) and the amount to shift the window during

comparisons (the warp) are two variables that a user can adjust. Like the other variables,

extensive tests were done to find the values that returned the highest accuracy. These

are a context of 2 and a warp of 4. Practically, this means the window is of size 2 px by

2 px and it moves 4 px when warped.

4.2.5. Sign Identification

Once the IDM computes difference scores for each input sign compared to all of their

candidate signs, the results are saved in a matrix, containing all of the candidate data

set sign names and their respective scores. This matrix is then sorted so that the signs

with the lowest scores appear at the top. The results for the whole set of input signs

are saved in one dataframe which is exported as two .csv files; one contains the sign

rankings and their difference scores and one contains just the sign rankings. These files

comprise the data that has been used for this project’s results, which can be analyzed,

plotted, and compared, as well as the rankings that will identify a sign for a user (see

section 5). An excerpt of a larger .csv results file for the hieratic sign G1𓄿 is given in

Figure 3. For more information on the format of these files, see Table 2.

60 Nederhof 2015, 5–8.
61 Keysers et al. 2007.

Hieratic Studies Online 5 | 2023 18

Figure 3: An example of a .csv file resulting from the program. This is the first 20 rows and 6 columns of

the results for the G1 signs in the data set. The first, third, and fifth columns each correspond to

the results for a different sign (given in the second row of each column). The second, fourth, and

sixth columns display the similarity scores for the sign to their left.

4.3. Data Analysis

The first investigation into the data that was performed was a comprehensive look at

the program’s accuracy. To evaluate accuracy for any given set of data, the .csv file

containing just the ranked signs is loaded into Python as a dataframe. The first row of

the dataframe, containing the names of the input files, is isolated and the specific sign

represented by each file is saved (“A1_0021_1_2_9.png” is saved as “A1”). Then, the

program can check if that sign appears in the filenames of any number of top choices in

its respective column of the dataframe. After this is done for the whole input, accuracy

can be calculated by dividing the number of times the sign did appear in the results

by the total number of signs. In other words, each original input sign’s true value is

compared to the signs in a determined number of top choices given by the OCR program

and the number of correct results is tallied and divided by all of the signs to determine

the ratio of correct identifications:

signs for which at least one of the top x signs were correct

total signs
= accuracy ratio

The number of top signs (x) for which this is computed are one, two, and ten. Each

accuracy ratio is then multiplied by 100 to produce a percentage accuracy.

The above accuracy determination method was done for data from single signs, but it

was also done for random samples of the data, to gauge the accuracy of the program

on data at large. These random samples were produced from the overall data set using

TABIN, Optical Character Recognition Applied to Hieratic 19

NumPy’s random.choice function with replace = False. Another random sample, only

drawing from the data set signs with greater than one example in the data set, was also

taken. This was done in the same way, but after counting the examples present for each

sign and filtering the signs with single examples out. Accuracy values are provided in

Table 4.

Before any further analysis could be done on the OCR results, the .csv files had to be

put in a distance matrix. As the name suggests, a distance matrix contains the distances

between each sign in a set. To do this, first, the full .csv file, containing the sign rankings

and their difference scores, is loaded into Python as a dataframe. From this, a list of all

of the original input signs is saved and is used to make up the column and row names

for a square distance matrix. Then, the matrix is filled in with the difference scores

in the .csv file. If two signs do not appear in the output of the OCR program for each

other (i.e. they were filtered out by aspect ratio or FFT), the overall difference score

is taken as NA. If two signs do appear in each other’s lists, the overall difference score

is taken to be the sum of the two respective scores. Although this should only happen

very infrequently, if one sign appears in another’s list, but not vice versa, the existing

difference score is simply doubled. To illustrate this method, a simple example of a

possible result table for five signs is given in Table 2: in red are the input signs, in

blue are the ranked data set signs (in this example, the number of ranked signs is four

or fewer, although it is usually in the hundreds for the real data), in yellow are the

similarity scores for the signs to their left. There are a few NA values in this table to

illustrate the fact that, in the real data, not every sign has the same amount of candidates

that filter through the aspect ratio and FFT steps. This produces NAs in the real data as

well.

The corresponding distance matrix (Table 3) includes only the input signs and their

difference scores when compared with one another. Even though, in Table 2, Sign 8

was the top choice for Sign 5, it is excluded because it is not within the input signs and

is just a data set sign. In general, computing a distance matrix is only relevant or useful

if one is interested in investigating the morphological similarities between a specific

subset of the data set. Putting in a random sample from the data set produces a distance

matrix of mostly NAs. It is also worth noting that the diagonal of zeros is the expected

difference scores when signs are compared to themselves.

Sign 1 compared to itself would produce a difference score of 0 and, in the distance

matrix, 0 + 0 = 0. After the distance matrix is computed, the NA values are filled in

because most algorithms that take a distance matrix as an input cannot deal with NA

values. The NA values are replaced with the highest number in the matrix (in Table 3’s

case, it would be 1680). This replacement number could be any number greater than or

equal to the highest number in the matrix and there would be no difference in results.

It is purely a placeholder that communicates “these two signs are the most unalike in

this set”.

For this project, the main value of the distance matrix is that it can be used for UMAP

(Uniform Manifold Approximation and Projection). UMAP is a non-linear dimensionality

reduction technique that allows the simplification and analysis of high-dimensional

data (in this case, the images in the data set), while preserving the original structure of

Hieratic Studies Online 5 | 2023 20

Table 2: An example of a possible .csv output from the OCR program

Sign 1 Score Sign 2 Score Sign 3 Score Sign 4 Score Sign 5 Score

Sign 4 300 Sign 9 220 Sign 2 720 Sign 1 340 Sign 8 360

Sign 7 347 Sign 3 700 Sign 4 810 Sign 6 380 Sign 4 408

Sign 6 450 NA NA NA NA Sign 5 420 Sign 1 499

Sign 5 507 NA NA NA NA Sign 3 870 NA NA

Table 3: The distance matrix produced from the example data in Table 2

Sign 1 Sign 2 Sign 3 Sign 4 Sign 5

Sign 1 0 NA NA 640 1006

Sign 2 NA 0 1420 NA NA

Sign 3 NA 1420 0 1680 NA

Sign 4 640 NA 1680 0 828

Sign 5 1006 NA NA 828 0

the data.62 In brief, UMAP constructs a low-dimensional graph representation of the

data that is optimized to preserve as much of the global and local structure as possible.

Although the theory behind UMAP is simple, the math is complex and interested readers

are encouraged to read McInnes et al. (2018), the original publication of UMAP.63

UMAP was run using the “umap” package in Python and using the umap.UMAP.fit_

transform function on the distance matrix, using metric=‘precomputed’. This sets the

sign distances from the matrix as the precomputed metric which UMAP attempts to

preserve in its output. The UMAP output was graphed using matplotlib.pyplot. For

an input (for instance, every example of A1), usually four UMAP plots were made, all

identical except for the colors. One was colored by facsimile maker, one was colored by

provenance, one was colored by genre, and one was colored by text. These identifications

were extracted from the filename tags described in Table 1. Due to the time constraints

of this work, only a few signs were able to undergo the whole analysis pipeline outlined

above. Some of the most interesting/variable signs were chosen to be looked at, as well

as some of the most common signs.

5. Results and Discussion

Overall, the data set that has been produced for this project, made up of individual,

ligatured, and intersecting characters from the Poe, Möller, and Tabin facsimiles, cut

out by Sobti and labeled with their Gardiner sign code, is extremely large. The data

set is 13,134 characters, providing a fantastic starting data set for OCR, the largest of

its kind in the field. The data set used in this project contains 1,104 distinct character

62 Coenen, and Pearce 2019.
63 McInnes, Healy, and Melville 2018.

TABIN, Optical Character Recognition Applied to Hieratic 21

classes, including unique ligatured and intersecting signs. 341 different hieratic signs,

categorized by Gardiner’s sign codes, appear in the data set, either individually or in

ligatures.64 Some hieratic signs appear many times, such as A1 (𓀀), N35 (𓈖), and G1

(𓄿), while some only appear once or not at all. The signs that appear only a few times

are not able to give much morphological insight by themselves, but they should still be

identifiable by the program, unless they look identical to a more common character.

5.1. Program Accuracy

On average, the IDM model, when given a random sample of 500 signs from the data

set, correctly identifies unknown signs in its first choice by difference score with 71.2%

accuracy, in its top two choices with 78.5% accuracy, and in its top ten choices with

84.8% accuracy. Accuracy is computed using the equation in section 4.3. In this test,

each sign is excluded from the data set when it is compared, otherwise the program

would get them all right as its top choice, as they would have a difference score of 0

when compared to themselves. These accuracy values seem a bit low at first glance, but

one must keep in mind that, if a sign only shows up once in the data set, it will not be

correctly identified when it is removed from the data set and input into the program.

When excluding signs of this nature, the model is 74% accurate in its top choice, 81.8%

accurate in its top two choices, and 88.2% accurate in its top ten choices, a slightly

better result. The accuracy values expected when using the program on new data are

certainly even higher, being brought down in these tests because of irregular writings

of certain signs which do not have a second example in the data set.

For signs for which there are a decent amount of copies, the accuracy increases even

further. For example, for G1 (𓄿), the model is 94.5% accurate in its top choice, 96.3%

accurate in its top two choices, and 98.2% accurate in its top ten choices. A variety of

accuracy values are given in Table 4. The accuracy of this program compares favorably to

other such programs. Franken and van Gemert report accuracy scores of around 85% in

their paper on hieroglyphic recognition65 and Nederhof reports accuracy scores of 91.3%

for his program’s top choice and 95.5% for his program’s top two choices in his paper on

recognition of Sethe’s glyphs.66 For many signs for which there are multiple examples,

the program outlined in this paper has extremely high accuracy, a significant feat given

the issues hieratic poses to OCR. The program’s overall accuracy being lower is not

concerning, given hieratic’s immense variability and numerous uncommon characters,

including ligatures and overlaps. The high accuracy for common signs also indicate that

the program can be used for morphological comparisons and that it has the requisite

fineness to do so. The program’s accuracy on all data types would only be improved

with a larger data set.

64 Gardiner 1957.
65 Franken, and Gemert 2013, 768.
66 Nederhof 2015, 9–10.

Hieratic Studies Online 5 | 2023 22

Table 4: Accuracy values for the IDM program

Accuracy (%)

Input in 1 choice in 2 choices in 10 choices

500 random signs 72.200 80.000 86.000

500 different random signs 70.200 77.000 83.600

500 random signs with more than one example 74.000 81.800 88.200

Every A1 sign 91.376 94.128 96.147

Every A2 sign 94.079 97.368 98.684

Every D21 Sign 72.747 85.275 97.143

Every G1 sign 94.505 96.337 98.168

Every V28 sign 77.124 91.503 97.386

Every X1 Sign 69.296 83.239 97.183

Figure 4: A typical example of an Aa1 sign (left) and an A2 sign (right) from Papyrus Prisse.

5.2. Sign Distinguishing

As expected, given the accuracy values, the OCR program is quite good at distinguishing

between signs that are very morphologically dissimilar. An example of this is given in

Figure 4 and Figure 5. Figure 4 displays two signs, Aa1 (𓐍 “unclassified/placenta?”),

and A2 (𓀁 “man with hand to mouth”).67 These signs were chosen for demonstration

purposes, due to the significant differences in form between them, as well as their

relative abundances in the data set. The two specific signs in Figure 4 are both from

Möller’s facsimile of Papyrus Prisse and are reasonable representatives of what those

signs tend to look like.

Figure 5 displays a UMAP graph of the output of the program for all Aa1 and A2

signs in the data set. For this graph and all subsequent UMAP graphs in this paper, each

point represents one sign from the data set. In addition, the units of the graph’s axes

are largely irrelevant, given that they are a result of UMAP’s graphical optimization. In

UMAP graphs, it is most important to focus on which points cluster with others. Because

of how UMAP uses local distances to influence the creation of the graph, the absolute

distances between global clusters should not be relied upon in an interpretation.68

Also, since UMAP has some stochasticity in the creation of its graphs, if one were to

rerun the code used to produce the plots in this paper, there would be some minor,

insignificant differences in the plots, mainly in the data’s rotation on the plots’ axes.

All the conclusions in this paper are the result of running the UMAP code many times,

67 Hoch 1998, 68, 4.
68 Coenen, and Pearce 2019.

TABIN, Optical Character Recognition Applied to Hieratic 23

Figure 5: A UMAP plot of every Aa1 (blue) and A2 (orange) sign from the data set.

making sure any result is not just an outcome of the stochasticity, something unlikely to

happen in the first place. For Figure 5, one can see that the Aa1 signs clearly cluster

together separately from the A2 signs. This striking separation is good evidence that

the program is accurately distinguishing the two signs.

However, one may notice that there are two Aa1 signs clustering with the A2 signs

in Figure 5. One of these signs is Aa1_0009_1_4_12, shown in Figure 6. This sign and

the other Aa1 sign that clusters with the A2s are both correctly identified as Aa1 by the

program in its top choice. However, they are from the Rhind Mathematical Papyrus,

which has a distinctive style for Aa1 signs, shown in Figure 6, that is different from the

usual writing, shown in Figure 4. Although a human might decide that the Aa1 in Figure

6 looks more like the Aa1 in Figure 4 than the A2 in Figure 4, this is not at all obvious

to the program. Because the Aa1 cluster and the A2 clusters are so dissimilar, the UMAP

algorithm opts to put the two outlier Aa1s in the A2 cluster because it recognizes more

similarities. This provides a useful and important insight into the limitations of this

OCR program. The program does not look at brush strokes or theoretical features, such

as curves versus lines, as a human might; these features would immediately make it

clear that the Rhind Aa1s are more similar to the typical Aa1s, rather than A2s. Instead,

the program takes a global morphological approach that is free of preexisting bias, for

better or for worse; it simply looks at shape alone. The type of errors in clustering that

Hieratic Studies Online 5 | 2023 24

Figure 6: An example of an atypical Aa1 sign from the Rhind Papyrus.

Figure 7: A UMAP plot of every A1 (blue) and A2 (orange) sign from the data set.

are present in Figure 5 should not happen often, unless very distinct signs with a few

outliers each are compared. Nevertheless, anyone using this program should be aware

that the program may provide slight errors in these cases.

In Figure 7, a UMAP plot is provided for A1 and A2. Examples of A1 are given later

in this section in Figure 12. Here, one can see that there are still fairly distinct clusters,

but there is more overlap and the clusters are closer together than in Figure 5. This

makes intuitive sense, given that the two signs are much more similar in general form

to one another than Aa1 and A2. This plot has been provided to demonstrate that the

closer two signs are morphologically, the less distinct the UMAP clusters will be.

This UMAP cluster comparison can be used to investigate questions relating to signs

that can look nearly identical to the human eye. For example, D21 (𓂋 “mouth”), and

X1 (𓏏 “loaf of bread”), are often indistinguishable from one another.69 For a scholar

69 Hoch 1998, 11, 65.

TABIN, Optical Character Recognition Applied to Hieratic 25

Figure 8: Four examples of X1 (𓏏) signs (top) and D21 (𓂋) signs (bottom). The examples represent the

typical variation in these signs. The X1 signs come from, in order of left to right, Papyrus Ebers,

Eloquent Peasant B1, Hymn to Senwosret III, and Eloquent Peasant B1. The D21 signs come

from, in order of left to right, Papyrus Prisse, Eloquent Peasant B1, Hymn to Senwosret III, and

Sinuhe B.

reading a hieratic text, these signs usually have to be determined through context clues

or known spellings of particular words, rather than direct morphology. This similarity

can be seen in the accuracy of the OCR program on D21 and X1 above in Table 4.

Although the accuracy is over 97% for each sign in ten choices, there is only around

70% accuracy in the top choice alone. This is due to the signs being so similar that

the program initially sometimes misidentifies an X1 as a D21 and vice versa (of course,

sometimes the program misidentifies these signs as other similar looking signs too). A

variety of different writings of X1 and D21 signs from the data set are shown in Figure

8. The examples were chosen to demonstrate the signs’ similarities to one another, but

they also represent the variations in the two signs fairly well.

From the physical appearance of X1 and D21, it seems as if the two signs are written

in effectively the same way. However, this is measurably false; Figure 9 shows a UMAP

plot for X1 and D21. Here, although there is overlap between the two signs and there

are not very distinct clusters, it is clear that D21 and X1 do tend to segregate apart from

one another overall. Indeed, even the accuracy values support this. Since X1 and D21

are being correctly identified in the program’s top choice 70% of the time, there must

be significant differences. If there were not and the signs were effectively identical, the

program would be expected to correctly identify the signs in the top choice only 50% of

the time. Given that the program demonstrates that there are differences between X1

and D21 in general, future work can be done into exactly what elements of the signs

distinguish them from one another. This is a limitation of the OCR program: it can

inform which signs are similar/different, but not what specific features make them so.

The data on which X1s cluster with D21s and which do not can be extracted from the

UMAP output and another program could be written to investigate the specific features

that separate the two signs. This is beyond the scope of this work, but would be a

fascinating follow up experiment.

A similar analysis to the above was done on O49 (𓊖 “a town’s crossroads”), and N5

(𓇳 “sun”).70 In hieroglyphs, these two are distinct. However, for hieratic, the signs are

often indistinguishable and are only determined by context, much like X1 and D21.

O49 generally appears after city-related words and place names, whereas N5 generally

70 Hoch 1998, 44, 36.

Hieratic Studies Online 5 | 2023 26

Figure 9: A UMAP plot of every X1 (𓏏) (blue) and D21 (𓂋) (orange) sign from the data set.

appears after sun-related words and date/time words. Figure 10 displays a UMAP of

O49 and N5 and, unlike the previous comparison, there is no clear separation. This is

supported by the accuracy values: for O49, the program is 25% accurate in one choice,

35% accurate in two choices, and 65% accurate in ten choices; for N5, the program

is 31% accurate in one choice, 45% accurate in two choices, and 76% accurate in ten

choices. These are very atypical and low accuracy values and, while they would likely

increase with greater sample size, it demonstrates that O49 and N5 both look so much

like other signs that they often cannot be distinguished from them.

Certain writings of O49 (𓊖) and N5 (𓇳) are identified by the program not only with one

another, but also with Aa1 (𓐍), D21 (𓂋), D32 (𓂘), N33 (𓈒), W24 (𓏌), X1 (𓏏), Z1 (𓏤), Z4 (𓏭),

and more. In this light, the high similarity between the writings of O49 (𓊖) and N5 (𓇳)

is probably not a reflection that those signs were similar in some deeper way to ancient

Egyptians. Instead, it is a good demonstration of a common theme in hieratic: small

determinatives losing detail. Modern readers are surely not the only ones who used

context to determine signs; the Egyptians were likely doing that easily when reading

and writing hieratic. Thus, they could write different determinatives exactly the same

without worry. D32, N33, W24, Z1, and Z4 are all small determinatives that follow

words, so it is no wonder that there is overlap between the cursive forms of these small

signs that have similar uses. In addition, Aa1, D21, and X1 are all common signs with

simple writings, so it is unsurprising that the simplified determinatives sometimes look

like them.

TABIN, Optical Character Recognition Applied to Hieratic 27

Figure 10: A UMAP plot of every O49 (𓊖) (blue) and N5 (𓇳) (orange) sign from the data set.

This analysis provides two pieces of insight:

1. If, in hieratic, many determinatives are collapsed into a common form so com-

pletely, it is hard to make the case that determinatives continue to carry much

meaning at this stage of the language (Middle Egyptian), at least the most com-

mon ones. By the Middle Kingdom, the determinatives seem to be an established

convention for how to write each word, but, unlike “determinative” suggests,

do not actually assist in helping a reader determine the category of a word. If

a circular writing after a word can mean O49, N5, D32, N33, W24, Z1, Z4, or

more, then it cannot be that helpful in distinguishing the word. Although the

determinatives are much clearer in hieroglyphs, if they were actually significantly

helpful in determining a word, they would also be clear in hieratic.

2. As mentioned above, the OCR program can only distinguish between different

shaped signs. Identical signs will lower the accuracy substantially. If two signs

look identical, the program’s accuracy will be 50% in one choice. If three signs

look identical, the accuracy will be 33% in one choice and so forth. The small

determinatives are a great example of an area where the program is limited in

identification ranking. On the other hand, large comparisons through UMAP are

not limited in this way, as the difference score is the important part, not the exact

ranking.

It should be noted that, while UMAP comparisons can be extremely useful, they, like

many analyses, suffer when sample size is low. Another comparison was attempted

Hieratic Studies Online 5 | 2023 28

Figure 11: A UMAP plot of every W17 (blue), F31 (orange), S15 (green), and W11 (red) sign from the data

set.

between F31 (𓄟 “three foxes’ skins tied together”), S15 (𓋣 “a piece of jewelry?”), W11

(𓎼 “ring-stand for jars”), and W17 (𓏃 “water amphorae in a rack”).71 Unfortunately, the

numbers of each sign in the data set were far too low to accurately distinguish anything.

A UMAP is provided in Figure 11, but the structure of the plot is cloud-like and the

points are almost equally spaced. This could indicate that there is little difference in the

form of the four signs or it could indicate an underlying structure that the plot cannot

demonstrate well. Although the signs do look somewhat similar, nothing conclusive can

be said without more information. This underscores the importance of having a large

data set. With less common signs, comparisons can be difficult or even impossible. This

can be ameliorated if more signs are added to the data set over time.

5.3. Tail Separation Investigation

Within single signs, there can still be a large amount of variation. A1 (𓀀 “seated man”)

is a good example of this. There are multiple writings of A1, but they generally fall

into two main groups: hereafter called “full form” and “abbreviated form”. A typical

example of each is shown in Figure 12. The two types of A1 are quite distinctive and

some texts use both versions to represent A1. Within this project’s data set, the texts

that include full form A1s are Shipwrecked Sailor, Eloquent Peasant B1, Sinuhe B, and

Texte aus Hatnub. The data from Papyrus Prisse also includes one full form A1.

71 Hoch 1998, 21, 50, 64.

TABIN, Optical Character Recognition Applied to Hieratic 29

Figure 12: Typical examples of A1 𓀀 (full and abbreviated) from P. Prisse and Eloquent Peasant B1.

Figure 13: A UMAP plot of every abbreviated form A1 (blue) and full form A1 (orange) sign from the data

set.

Figure 13 is a UMAP plot of the two variants and, as one might expect, they largely

cluster separately. There are a few examples of abbreviated A1s clustering with the

full form A1s, but this could be explained by two factors. First, as mentioned above

for Figure 5, unique writings of signs could be misidentified by the program if they are

different from both main groups. This could make sense in this example, as it is more

likely that an abbreviated A1 would be drawn with some extra projection that would

make it look like a full form than a full form somehow being written in a condensed

way to look like an abbreviated form. Second, what is a “full form” A1 and what is a

“abbreviated form” A1 was determined manually, introducing human error. Some signs

theoretically could have been misidentified at the first step. This is another utility of the

program outlined in this paper; it can be used as a check to make sure identifications are

correct. In any case, Figure 13 is unambiguous in demonstrating that the two variants

of A1 are largely distinct.

However, there is more to the variation in A1 than purely abbreviated form versus full

form. The full form A1 signs have a great amount of variance with respect to tail length.

Hieratic Studies Online 5 | 2023 30

Figure 14: Four examples of full form A1 signs, showing the great tail variation. The red line indicates

where the tail would be cut according to the “lowest black pixel not in the tail” method. The

signs come from, in order from left to right, Sinuhe B, Texte aus Hatnub, Papyrus Ebers, Eloquent

Peasant B1, and Eloquent Peasant B1.

Tails, described above in the “Methods” section, are long strokes dragged down beyond

the normal extent of a sign. These strokes, hypothesized to be arbitrary, significantly

affect the program’s comparisons.72 An example of the tail variation in full form A1

signs is provided in Figure 14. The red line indicates the start of the tail as decided by

the method described above.

Figure 15 shows a comparison between the UMAP plot of the full form A1s on their

own (a.) and those same full form A1s, but with all of the tails cut according to the

above methods (b.). The points are colored here by their original text. With the tails

intact, the signs from different texts cluster together with one another in certain places.

When the tails are removed, suddenly the clustering happens strongly by text. This

clustering by text is not always the case for signs, so it indicates that the A1 shape is

very distinctive between different handwritings. In addition, since the removal of the

tails prompted the clustering to be by text, rather than dispersed with little rhyme nor

reason, this is good evidence that tails are fairly arbitrary. No one author is lengthening

the tails in a distinctive way.

This is further demonstrated by the Hatnub data; the Hatnub signs should always

cluster on their own, apart from the other texts, given that the Texte aus Hatnub were

written on rough stone walls (as opposed to on papyrus) and, thus, have significantly

different morphology. The Hatnub data is an ideal outgroup and it offers a way to

evaluate the quality of the results. In the graph with the tails, one of the Shipwrecked

glyphs clusters with the Hatnub material, a very strange occurrence and likely due to

the similarity in tails driving the comparison, rather than the rest of the character shape.

When the tails are removed, the Hatnub glyphs cluster together without any other texts,

as expected. This is further evidence that the tails are not good elements to include

when trying to use signs for comparisons, as they can overwhelm better indicators of

the underlying sign morphology. Overall, this investigation offers striking evidence of

the arbitrariness of sign tails, at least for A1 signs. It seems that the tails are only added

when convenient and little meaning is encapsulated by their length or inclusion at all.

Far more significant is the body of each sign as an indicator of handwriting or text. In

the future, similar work should be done cutting the tails of other signs to see if these

results are more widely applicable.

72 Dr. Brian Muhs in discussion with the author, November 2021.

TABIN, Optical Character Recognition Applied to Hieratic 31

F
ig
u
re
1
5
:
T
w
o
U
M
A
P
p
lo
ts
o
f
ev
er
y
fu
ll
fo
rm
A
1
si
g
n
fr
o
m
th
e
d
a
ta
se
t
w
it
h
(a
.)
a
n
d
w
it
h
o
u
t
(b
.)
ta
il
s,
co
lo
re
d
b
y
te
x
t.
O
f
th
e
te
x
ts
th
a
t
a
p
p
ea
r
in
th
is

p
lo
t,
S
h
ip
w
re
ck
e
d
S
a
il
o
r
si
g
n
s
a
re
in
re
d
,
E
lo
q
u
e
n
t
P
e
a
sa
n
t
B
1
si
g
n
s
a
re
in
b
lu
e
,
S
in
u
h
e
B
si
g
n
s
a
re
in
p
u
rp
le
,
P
a
p
y
ru
s
P
ri
ss
e
si
g
n
s
a
re
in

o
ra
n
g
e
,
a
n
d
T
ex
te
a
u
s
H
a
tn
u
b
si
g
n
s
a
re
in
b
la
ck
.

Hieratic Studies Online 5 | 2023 32

The data clustering by text when the tails are removed leads to another interesting

observation: Sinuhe B and Eloquent Peasant B1 largely cluster separately. This is

interesting because there is evidence that those two texts were written by the same

scribe.73 Supporting that hypothesis, most of the time Sinuhe B and Peasant B1 glyphs

cluster together.74 In this light, it is quite interesting to see that, for A1, the two texts

cluster apart from one another. Some A1 signs from Sinuhe B cluster with the Peasant

B1 signs, but there is still a significant difference between the two that must be dealt

with. These differences cannot be due to handwriting (because they were written by

the same scribe), location (because they were found in the same place), or time period

(because they were written at roughly the same time). There are a few possibilities,

however.

One possibility is that the difference could be due to a difference in genre/person;

both are literary texts, but the Eloquent Peasant is a mostly third-person narrative with

poetic elements and Sinuhe is a first-person narrative written in a journal style. Thus,

there could be an as-of-yet unknown difference in writing styles between these two

texts. This is especially compelling because, in Middle Egyptian, A1 can represent

the first-person singular suffix pronoun (𓀀) and it is also included in the first-person

singular independent pronoun (). In these uses, A1 would be particularly important

for first-person narratives, like Sinuhe.75 Sinuhe also clusters closest to Shipwrecked

Sailor, another first-person narrative which would use A1s in a very similar way. In fact,

the Shipwrecked Sailor cluster has two distinct groups within it, one closer to Sinuhe B

and one farther away. This could represent the difference in first-person Shipwrecked

A1s as opposed to other usages of A1 in the text. In this case, the first-person Sinuhe

A1s would be clustering with the Shipwrecked first-person A1s and the non-first-person

Sinuhe A1s would be the ones clustering with the Eloquent Peasant A1s. In essence, this

would mean that there is a difference across different texts in the convention for how

the first-person A1s are written. Unfortunately, it is beyond the scope of this project to

analyze the use of each of these signs. However, the program has been set up to make

such comparisons trivial, provided someone collects the data. In the future, one could

record the usage of each A1 (first-person pronoun or not) and add a tag to the end of all

of them in the same way the text or facsimile maker is recorded in the current data set.

Then, it would be a simple click to add those colors to the UMAP and investigate this

question.

Another possibility for the Sinuhe-Peasant A1 difference seen in this data could come

down to writing implements. Although the scribe who wrote Sinuhe B and Peasant B1

likely used a similar brush for both, it is not at all out of the question that there were

slight differences in the scribal utensil between the writings of the texts. This could have

led to most signs being largely the same, but certain brush strokes appearing different. It

could be the case that the full form A1 sign includes some of the different brush strokes.

73 Parkinson, and Baylis 2012, 12.
74 Tabin 2022, 181–251.
75 It is worth mentioning that, for the suffix pronouns and the independent pronoun, both the full and

abbreviated form A1s can be used.

TABIN, Optical Character Recognition Applied to Hieratic 33

This would be a tough hypothesis to test, but a finer look at the ink on the papyri could

shine some light on it. However, this idea is perhaps only worth looking into if the

previous hypothesis about A1 morphology being different for first person uses is found

to be unsupported.

5.4. Facsimile Maker Investigation

Because the data set includes signs from multiple facsimiles of texts (Möller, Poe, and

Tabin), questions about the quality and accuracy of facsimiles can be investigated. If a

facsimile maker has a very distinctive style that overwhelms the underlying variation

between the texts, one would expect their signs to be clustered separately from the

rest of the data in a UMAP plot. On the other hand, if the three facsimile makers had

the exact same handwriting and style, then one would expect the signs to not cluster

based on maker at all. Beyond that, one would expect two data set signs that come

from different facsimiles of the same text (i.e. are facsimiles of the same sign) to have

a difference score of 0 and overlap completely in a UMAP plot. This can be looked at

because, as mentioned above, the Poe and Tabin facsimiles overlap to a certain degree

for the Shipwrecked Sailor text and the Möller and Tabin facsimiles overlap to a certain

degree for the Peasant B1 text.

Figure 16 is a UMAP plot of the output of the program for all D21 (𓂋) signs in the

data set. In this figure, the plot is colored by facsimile maker. D21 was chosen as an

example, but all other signs tested produced similar results with regards to facsimile

questions. In this plot, two interesting observations are immediately apparent. First,

none of the facsimile makers’ signs cluster separately from all the others, a good sign

for the accuracy of the three facsimiles. In addition, there are some places in the plot

where two differently colored points are extremely close to one another. Sometimes,

this is due to very similar writings, but many of these places are where Möller and Tabin

or Poe and Tabin made a facsimile of the same sign and they are correctly clustering

close together. However, no two points are ever completely overlapping. This is a

reflection of their difference scores not being 0 and, thus, the facsimile maker adding

extra variation. Overall, the results indicate that, while there is some effect of the

handwriting of facsimile makers, the driving factor of the clustering is the underlying

hieratic morphological variation from the original texts.

In the interest of answering a likely question, it should be noted that there are isolated

patches of blue and green points because Möller and Tabin respectively made facsimiles

of signs/texts that no other facsimile maker in this study did. However, that does not

explain the isolated patch of orange points, corresponding to signs from Poe’s facsimile.

Poe’s facsimile does not cluster separately, but it also does not line up completely with

the Tabin facsimile. Because the Tabin Shipwrecked Sailor facsimile covers all of the

signs that Poe’s does, ideally each of Poe’s signs should be right next to one of Tabin’s,

if there was little effect of the facsimile creator. This is true for many of them, but not

all, and it is the case for every plot of results from the data set, no matter the sign. Poe’s

facsimile was created more as a teaching tool than for morphological accuracy, but

maintains the general shape of all of the signs. This leads to another interesting finding:

Hieratic Studies Online 5 | 2023 34

Figure 16: A UMAP plot of every D21 sign from the data set, colored by facsimile maker. Möller signs are

in blue, Poe signs are in orange, and Tabin signs are in green.

most of the clustering can be explained by the general shape of the original signs. The

little bit of clustering that the Poe signs do together is due to the more minor variations

between facsimiles. In other words, Poe’s loss of morphological accuracy in the fine

details does have an effect, but not a substantial one.

This finding is not necessarily unexpected; it does not take much to predict that

variations in general shape, which are larger physical changes than those in minor

details, will have a greater effect on similarity than the variations in minor details.

Nevertheless, this has implications for the program and for facsimile creation. It has

been shown that the program is fine-tuned enough to recognize small morphological

changes between signs. If it was not, the Poe signs would not have grouped together.

Therefore, the limits of the technology and the data set have not been reached, so even

more complex facsimiles could be analyzed in the future. It is also clear that large

scale comparisons can still be done on facsimiles that maintain the general structure of

the original signs, but do not try to be 100% accurate. Of course, the more accurate a

facsimile is, the better, but facsimiles with lower accuracy can still be useful, provided

they adhere to overall morphological shape.

TABIN, Optical Character Recognition Applied to Hieratic 35

6. Conclusions and Future Directions

This paper has provided an overview and proof-of-concept for applying a new Optical

Character Recognition method to the field of hieratic paleography. A substantial data

set of 13,134 individual signs from a range of texts, genres, and facsimile makers was

created and an Image Deformation Model was used to analyze the signs. The program

proved adept at quickly and accurately identifying individual signs, as well as making

large scale comparisons. The sign identification element of the program will surely be a

great benefit to scholars of all stages. Those who are learning hieratic will be able to

use the program to check their own transcriptions and assist with recognizing difficult

signs, as opposed to the old way of having to flip through Möller’s paleography in the

hopes of stumbling upon the desired sign. Even those who are well versed in hieratic

will be able to benefit from the program’s ability to recognize and separately cluster

sign variants beyond the level of human perception.

As for the comparisons made possible by the program, there are infinite possibilities,

only a few of which were able to be dealt with in this work. First, through a comparison

of Aa1 (𓐍) and A2 (𓀀), the program was shown to cluster signs purely by shape, not

by strokes as humans might. Then, a comparison of X1 (𓏏) and D21 (𓂋) showed that,

although the two signs often look identical to humans, there is underlying morphology

separating them. On the other hand, O49 (𓊖) and N5 (𓇳) were shown to often look

effectively the same, underscoring the common trend of small determinatives being

condensed and written the same in hieratic. F31 (𓄟), S15 (𓋣), W11 (𓎼), and W17 (𓏃)

also were compared, but the data set did not have enough examples of each for the

comparison to be very strong.

After this, the A1 (𓀀) data set was shown to segregate into full and abbreviated

form A1s. The full form A1 data set was plotted with and without their tails. The plot

without the tails was far superior and intuitive, demonstrating that the lengths of tails of

signs are mostly arbitrary and do not convey significant information about handwriting.

However, when the tails were removed, the Sinuhe B and Eloquent Peasant B1 texts

clustered apart from one another, a curious finding given that they are known to be

written in the same hand. It was hypothesized that the usage of the first person pronoun

or variations in writing implement could account for this. Through a look at the way

signs do not seem to strongly cluster by facsimile maker, the program was also shown

to truly be viewing the underlying sign morphology, for the most part. The texts that

had facsimiles done by multiple facsimile makers had their signs cluster together as

expected and no signs segregated by facsimile more than a bit. This reflects that, even

if one is primarily concerned with general shape and not fine detail, as Poe was for

his facsimile, such a facsimile can still provide useful information. In addition, it was

extrapolated that the program’s limits have not been reached and even more complex

facsimiles could be analyzed in the future.

With these demonstrations, I hope I have shown the incredible ability and power of this

technology, making wide-scale and rapid comparisons possible. As for the utility of the

program, the same methods used to compare facsimile makers or different sign forms in

this paper can be easily adapted to different provenances, time periods, or textual genres.

Hieratic Studies Online 5 | 2023 36

Indeed, work of this nature is presented in my thesis, comparing the sign morphology

of the Shipwrecked Sailor and Papyrus Prisse, as well as better characterizing the Lahun

papyri and Papyrus Westcar.76

Overall, the various analyses performed in this paper should offer a glimpse into the

potential of the OCR program, both for learning and for research. In the future, this

program can be improved to better support such uses. For the program itself, the three

main sections of the pipeline (Sobti, the labeling program to add the “tags”, and the

OCR program) will surely be combined into one streamlined program. This will be much

more user-friendly and increase the accessibility of the tools. Sobti and the labeling

program could also use OCR to improve themselves, as mentioned above. This would

minimize the need for manual input, other than to correct for errors the program makes

in identification, further decreasing the time it takes for signs to be added to the data

set.

Even before the above occurs, the data set, the various sections of the program, and

the analysis code have all been made open-source. The code and data set images have

been put onto a GitHub repository.77 For additional long-term stability, the data set

images and precalculated metrics have been put into a citable Dataverse.78 The data set

is able to be fully released because Möller’s glyphs are no longer subject to copyright, Poe

has authorized the release of his glyphs, and I will do the same for my own facsimiles.

Because the data set and program are free to use, anyone will be able to use the program

to identify hieratic characters, allowing scholars to more easily read and learn hieratic.

Because of the open-source nature of the program, it will be able to be adapted and

expanded by anyone who is willing to contribute to the data set. As demonstrated time

and time again in this paper, more data will lead to more comparative power, more

findings, and more significance for research, not to mention vastly improving the already

high accuracy of the program. In addition, data from more provenances, texts, genres,

and facsimile creators will unlock numerous new possibilities for research. All of the

insights offered in the results section would benefit immensely from further research

to test the hypotheses outlined here and to more completely understand the patterns

observed.

Other data could be collected and added to the data set beyond what was explored in

this paper. One could add information on vertically versus horizontally written signs,

because there are known differences in some sign shapes between the two formats.79 It

would be intriguing to see if the changes between vertical and horizontal are common

across all texts or if some texts change different aspects of their writings. The methods

used in this paper could also be expanded to data from different time periods, to track the

development of hieratic morphology over time. The texts in this paper were almost all

from around the Middle Kingdom period, to avoid adding an extra confounding variable.

However, with much more data added, the time period of texts could go from being a

76 Tabin 2022, 56–66.
77 https://github.com/jtabin/PaPYrus.
78 Tabin 2023.
79 Bomhard 1999, 52.

https://github.com/jtabin/PaPYrus

TABIN, Optical Character Recognition Applied to Hieratic 37

confounder to being another axis from which one can make comparisons. One could

also add sign distribution and usage information, as suggested in the above discussion

for the A1s from Sinuhe B versus Peasant B1. In addition, one could add texts from

ostraca as well as papyri, given that some texts exist only on ostraca and the material

is very different, possibly influencing the way signs are written (e.g. see Hagen80). A

morphological comparison between the hieratic from ostraca and papyri on this scale

would be very interesting.

For the program itself, a significant future direction for its development could be an

alteration enabling the program to output information about what features of characters

make them similar to one another. The program could even highlight the exact pixels it

notes as being different, creating a differential pixel heatmap. This method was beyond

the scope of this paper, but would not be too hard to do in the future and the technology

is already available.

Much further in the future, the program will hopefully be able to be used on direct

images, rather than facsimiles. This would entail a much larger data set and far better

papyrus images than what are often available. As explained at the beginning of this work,

direct images are much harder to work with for hieratic given the variable amounts of

papyrus damage, ink density, and other factors. However, a program specially created

for this purpose, pre-trained on a myriad of facsimile images, could potentially work

for that analysis. If this hypothetical future program incorporates machine learning

techniques, which it certainly should as those techniques become exponentially more

prominent and better, it could even accurately fill in damaged sections of papyri.

This paper has provided a point to build upon for future work in the fascinating

and burgeoning field of ancient Egyptian Optical Character Recognition. The tools

provided here could be instrumental for allowing scholars to tap into modern cutting-

edge technological methods and apply them to new areas of research and learning.

Over the course of this work, the point has hopefully been made that the current,

human-driven paleographic methods can greatly benefit from the large-scale power

of OCR technologies and that computer-driven methods can eliminate some of the

bias that naturally enters paleographic work. These computer methods can distinguish

morphologies of far more characters at once and to a far deeper level than any human can.

It should be reiterated that the computer methods still require an Egyptologically trained

hand to implement them, lest one makes incorrect interpretations of the data. As more

people add to the data set and use the program, its usefulness will increase drastically.

Artificial intelligence programs, like OCR, can no longer be ignored, especially as a new

generation of motivated, technologically fluent scholars enter the field, ready to apply

the most up to date methods. As we live through a time with an unprecedented amount

of data at our fingertips, the ability to synthesize, categorize, and analyze that data in a

controlled and advantageous way will become more and more important. For hieratic

paleography, this paper has provided a step forward.

80 Hagen 2012, 84–101.

Hieratic Studies Online 5 | 2023 38

References

Aguizy, Ola El-. 1986. “A Palaeographical Study of Demotic Papyri in the Cairo Museum

from the Reign of King Taharka to the End of the Ptolemaic Period.” Enchoria: Zeitschrift

für Demostistik und Koptologie 14: 67–70.

AKU-PAL. 2022. AKU-PAL. Paläographie des Hieratischen und der Kursivhieroglyphen.

Mainz. Available at https://aku-pal.uni-mainz.de.

Berg, Hans van den, and Koen Donker van Heel. 2000. “A Scribe’s Cache from the

Valley of the Queens? The Palaeography of Documents from Deir El-Medina: Some

Remarks.” In Deir El-Medina in the Third Millennium AD. A Tribute to Jac. J. Janssen,

edited by Robert J. Demarée, 9–49. Egyptologische Uitgaven 14. Leiden: Nederlands

Instituut voor het Nabije Oosten.

Bermeitinger, Bernhard, Svenja A. Gülden, and Tobias Konrad. 2021. “How to Compute

a Shape: Optical Character Recognition for Hieratic.” In Handbook of Digital Egyp-

tology: Texts, edited by Carlos Gracia Zamacona and Jónatan Ortiz García, 121–38.

Monografías de Oriente Antiguo 1. Alcalá de Henares: Editorial Universidad de Alcalá.

https://doi.org/10.25358/openscience-6757.

Blackman, Aylward M. The story of King Kheops and the magicians: transcribed from

Papyrus Westcar (Berlin Papyrus 3033). JV Books, 1988.

Bomhard, Anne-Sophie von. “Le conte du naufragé et le papyrus Prisse.” Revue d’Égyp-

tologie 50: 51–65.

Casey, Christian. 2008. The Story of the Shipwrecked Sailor: Transcription, Transliteration,

and English Translation with Full Commentary. University of Texas at Austin.

Chace, Arnold B. 1927. The Rhind Mathematical Papyrus. Oberlin, OH: Mathematical

Association of America.

Coenen, Andy, and Adam Pearce. 2019. “Understanding umap.” Google PAIR (2019).

Collier, Mark, and Stephen Quirke. 2004. The UCL Lahun Papyri: Religious, Literary, Legal,

Mathematical and Medical. BAR International Series 1209. Oxford: Archaeopress.

Cooley, James W., Peter A. W. Lewis, and Peter D. Welch. 1969. “The fast Fourier

transform and its applications.” IEEE Transactions on Education 12, no. 1: 27–34.

Cooley, James W., and John W. Tukey. 1965. “An algorithm for the machine calculation

of complex Fourier series.” Mathematics of computation 19, no. 90: 297–301.

DigiPal. 2011–2014. DigiPal. Digital Resource and Database of Manuscripts, Palaeography

and Diplomatic. London. Available at http://www.digipal.eu.

DPDP. n.d. The Demotic Palaeographical Database Project. Heidelberg. Available at http:

//129.206.5.162/beta/index.html.

Elnabawy, Reham, Rimon Elias, and Mohammed A.-M. Salem. 2018. “Image Based

Hieroglyphic Character Recognition.” In 2018 14th International Conference on Signal-

Image Technology & Internet-Based Systems (SITIS): 32–39.

Erman, Adolf. 1890. Die Märchen Des Papyrus Westcar: I: Einleitung und Kommentar. II:

Glossar, Palaeographische Bemerkungen und Feststellung des Textes. Berlin: Spemann.

Franken, Morris, and Jan C. van Gemert. 2013. “Automatic Egyptian hieroglyph recog-

nition by retrieving images as texts.” In Proceedings of the 21st ACM international

conference on Multimedia: 765–768.

https://aku-pal.uni-mainz.de
https://doi.org/10.25358/openscience-6757
http://www.digipal.eu
http://129.206.5.162/beta/index.html
http://129.206.5.162/beta/index.html

TABIN, Optical Character Recognition Applied to Hieratic 39

Gardiner, Alan H. 1957. Egyptian Grammar: Being an Introduction to the Study of Hiero-

glyphs. 3rd ed., Oxford: Griffith Institute.

Golénischeff, Wladimir. 1913. Les papyrus hiératiques No 1115, 1116A et 1116B de

l’Ermitage Impérial à St-Pétersbourg. St. Petersburg: Dir. de l’Ermitage Imp.

Gülden, Svenja A., Celia Krause, and Ursula Verhoeven. 2020. “Digital Palaeography

of Hieratic”, In The Oxford Handbook of Egyptian Epigraphy and Paleography, ed. by

Vanessa Davies, and Dimitri Laboury, 634–646. Oxford: Oxford University Press.

Haliassos, Alexandros, Panagiotis Barmpoutis, Tania Stathaki, Stephen Quirke, and

Anthony Constantinides. 2020. “Classification and Detection of Symbols in Ancient

Papyri.” In Visual Computing for Cultural Heritage, edited by Fotis Liarokapis, Athanasios

Voulodimos, Nikolaos Doulamis, and Anastasios Doulamis, 121–40. Springer Series

on Cultural Computing. Cham: Springer International Publishing. https://doi.org/10.

1007/978-3-030-37191-3_7.

Hagen, Fredrik. 2012. An ancient Egyptian literary text in context: the instruction of

Ptahhotep. Orientalia Lovaniensia Analecta 218. Leuven: Peeters.

HebrewPal. 2022. HebrewPal. Hebrew Palaeography Album. Oxford. Available at https:

//www.hebrewpalaeography.com.

Hoch, James E. 1998. Middle Egyptian Grammar Sign List. Mississauga: Benben Publica-

tions.

Jéquier, Gustave. 1911. Le papyrus Prisse et ses variantes : papyrus de la Bibliothèque

Nationale (Nos 183 à 194), Papyrus 10371 et 10435 du British Museum, Tablette Carnavon

au Musée du Caire. Paris: Paul Geuthner.

Keysers, Daniel, Thomas Deselaers, Christian Gollan, and Hermann Ney. “Deformation

models for image recognition.” IEEE Transactions on Pattern Analysis and Machine

Intelligence 29, no. 8: 1422–1435.

Koch, Gregory, Richard Zemel, and Ruslan Salakhutdinov. “Siamese neural networks

for one-shot image recognition.” In ICML deep learning workshop, vol. 2.

Koch, Roland. 1990. Die Erzählung des Sinuhe. Bibliotheca Aegyptiaca 17. Fondation

Égyptologique Reine Élisabeth: Brussels.

McInnes, Leland, John Healy, and James Melville. 2018. “Umap: Uniform manifold ap-

proximation and projection for dimension reduction.” arXiv preprint arXiv:1802.03426.

Memon, Jamshed, Maira Sami, Rizwan Ahmed Khan, and Mueen Uddin. 2020. “Hand-

written optical character recognition (OCR): A comprehensive systematic literature

review (SLR).” IEEE Access 8: 142642–142668.

Möller, Georg. 1909a.Hieratische Lesestücke für den akademischen Gebrauch. Vol 1. Leipzig:

Hinrichs.

———. 1909b. Hieratische Paläographie: Die Aegyptische Buchschrift in ihrer Entwicklung

von der Fünften Dynastie bis zur Römischen Kaiserzeit: I. Band: Bis zum Beginn der

Achtzehnten Dynastie. Leipzig: Hinrichs.

Moezel, Kyra van der. Administrative Hieratic from Dynasties 19 and 20. Case Studies

on Selected Groups of Ostraca with Necropolis Administration. Hieratic Studies Online

4. Mainz: Akademie der Wissenschaften und der Literatur | Mainz, 2022. https:

//doi.org/10.25358/openscience-7839.

https://doi.org/10.1007/978-3-030-37191-3_7
https://doi.org/10.1007/978-3-030-37191-3_7
https://www.hebrewpalaeography.com
https://www.hebrewpalaeography.com
https://doi.org/10.25358/openscience-7839
https://doi.org/10.25358/openscience-7839

Hieratic Studies Online 5 | 2023 40

Nagai, Masakatsu, Toshihito Waki, Yona Takahashi, and Satoru Nakamura. 2021. Hiera-

tische Paläographie DB. Tsukuba University. January 31, 2021. https://moeller.jinsha.

tsukuba.ac.jp.

Naz, Saeeda, Khizar Hayat, Muhammad Imran Razzak, Muhammad Waqas Anwar, Sajjad

A. Madani, and Samee U. Khan. 2014. “The optical character recognition of Urdu-like

cursive scripts.” Pattern Recognition 47, no. 3: 1229–1248.

Nederhof, Mark-Jan. 2015. “OCR of handwritten transcriptions of Ancient Egyptian

hieroglyphic text.” Altertumswissenschaften in a Digital Age: Egyptology, Papyrology and

beyond, Leipzig.

———. n.d. St Andrews Corpus. https://mjn.host.cs.st-andrews.ac.uk/egyptian/texts/

corpus/pdf.

Parkinson, Richard B. 1991. The Tale of the Eloquent Peasant. Oxford: Griffith Institute,

Ashmolean Museum.

Parkinson, Richard B., and Lisa Baylis. 2012. Four 12th Dynasty Literary Papyri (Pap. Berlin

P. 3022–5): A Photographic Record. Berlin: Akademie Verlag.

Poe, William Clay. 2008. The Writing of a Skillful Scribe: An Introduction to Hieratic Middle

Egyptian Through the Text of the Shipwrecked Sailor. Sonoma State University.

Quirke, Stephen G. J. 2011. “Agendas for Digital Palaeography in an Archaeological

Context: Egypt 1800 BC.” In Kodikologie und Paläographie im digitalen Zeitalter 2,

edited by Franz Fischer, Christiane Fritze, and Georg Vogeler, 279–94. Schriften

des Instituts für Dokumentologie und Editorik 3. Norderstedt: Books on Demand.

http://nbn-resolving.de/urn:nbn:de:hbz:38-43548.

Rockmore, Daniel N. 2000. “The FFT: an algorithm the whole family can use.” Computing

in Science & Engineering 2, no. 1: 60–64.

Rosmorduc, Serge. 2014. JSesh Documentation. June 12, 2014. http://jseshdoc.

qenherkhopeshef.org.

Sethe, Kurt Heinrich. 1927. Urkunden der 18. Dynastie. Leipzig: Hinrichs.

Stableford, Tom. n.d. Translation of Georg Möller’s works on Hieratic. http://www.

egyptologyforum.org/bbs/Stableford/StablefordMoeller.html.

Tabin, Julius. 2022. “From Papyrus to Pixels: Optical Character Recognition Applied to

Ancient Egyptian Hieratic” (thesis). Retrieved from https://knowledge.uchicago.edu/

record/3695. Distributed by the University of Chicago.

———. 2023.“Data for Optical Character Recognition Applied to Hieratic: Sign Iden-

tification and Broad Analysis”. https://doi.org/10.7910/DVN/D8CWVZ, Harvard

Dataverse, V1.

TLA. 2014. Thesaurus Linguae Aegyptiae. BBAW, Ancient Egyptian Dictionary Project.

November 10, 2021. https://aaew.bbaw.de/tla/servlet/TlaLogin.

Wreszinski, Walter, ed. 1913. Der Papyrus Ebers; Umschrift, Übersetzung und Kommentar.

Vol. 1. Leipzig: Hinrichs.

Žába, Zbyněk. 1956. Les maximes de Ptaḥḥotep. Prague: Éditions de l’Académie Tché-

coslovaque des Sciences.

https://moeller.jinsha.tsukuba.ac.jp
https://moeller.jinsha.tsukuba.ac.jp
https://mjn.host.cs.st-andrews.ac.uk/egyptian/texts/corpus/pdf
https://mjn.host.cs.st-andrews.ac.uk/egyptian/texts/corpus/pdf
http://nbn-resolving.de/urn:nbn:de:hbz:38-43548
http://jseshdoc.qenherkhopeshef.org
http://jseshdoc.qenherkhopeshef.org
http://www.egyptologyforum.org/bbs/Stableford/StablefordMoeller.html
http://www.egyptologyforum.org/bbs/Stableford/StablefordMoeller.html
https://knowledge.uchicago.edu/record/3695
https://knowledge.uchicago.edu/record/3695
https://doi.org/10.7910/DVN/D8CWVZ
https://aaew.bbaw.de/tla/servlet/TlaLogin

TABIN, Optical Character Recognition Applied to Hieratic 41

A. Tabin Facsimiles

Here, the facsimiles created specifically for this project are presented. Figures A.1 to

A.16 are the facsimile of P. Hermitage 1115 (The Shipwrecked Sailor), lines 1–189.

Figures A.17 to A.32 are the same facsimile, but with the damaged sections marked

in red. Figures A.33 to A.37 are the facsimile of P. Berlin 3023 (Eloquent Peasant B1),

lines 32–121. In this last facsimile, red ink is indicated by hollow signs. There is no

damage-marked version of P. Berlin 3023 due to the time constraints on this work.

One should notice that there may be small errors with these facsimiles in places.

Although they were each created twice and checked many times over, there are still

places with minor errors, such as some pixels not being filled in. However, this did not

impact this work, because, during the annotation step, the facsimiles were checked for

imperfections. The individual signs were also checked multiple times after each one

was cut out of the facsimiles. Thus, the final signs used for the program are even more

morphologically accurate and pristine than those present in these images. Despite the

rigorous quality control, there are surely some signs that have retained errors, but all of

the significant ones are certainly eliminated.

Figure A.1: P. Hermitage 1115, 1–12 (clean)

Hieratic Studies Online 5 | 2023 42

Figure A.2: P. Hermitage 1115, 13–23 (clean)

Figure A.3: P. Hermitage 1115, 24–36 (clean)

TABIN, Optical Character Recognition Applied to Hieratic 43

Figure A.4: P. Hermitage 1115, 37–50 (clean)

Figure A.5: P. Hermitage 1115, 51–64 (clean)

Hieratic Studies Online 5 | 2023 44

Figure A.6: P. Hermitage 1115, 65–78 (clean)

Figure A.7: P. Hermitage 1115, 79–93 (clean)

TABIN, Optical Character Recognition Applied to Hieratic 45

Figure A.8: P. Hermitage 1115, 94–108 (clean)

Figure A.9: P. Hermitage 1115, 109–123 (clean)

Hieratic Studies Online 5 | 2023 46

Figure A.10: P. Hermitage 1115, 124–132 (clean)

Figure A.11: P. Hermitage 1115, 133–142 (clean)

TABIN, Optical Character Recognition Applied to Hieratic 47

Figure A.12: P. Hermitage 1115, 143–151 (clean)

Figure A.13: P. Hermitage 1115, 152–160 (clean)

Hieratic Studies Online 5 | 2023 48

Figure A.14: P. Hermitage 1115, 161–169 (clean)

Figure A.15: P. Hermitage 1115, 170–176 (clean)

TABIN, Optical Character Recognition Applied to Hieratic 49

Figure A.16: P. Hermitage 1115, 177–189 (clean)

Figure A.17: P. Hermitage 1115, 1–12 (damage)

Hieratic Studies Online 5 | 2023 50

Figure A.18: P. Hermitage 1115, 13–23 (damage)

Figure A.19: P. Hermitage 1115, 24–36 (damage)

TABIN, Optical Character Recognition Applied to Hieratic 51

Figure A.20: P. Hermitage 1115, 37–50 (damage)

Figure A.21: P. Hermitage 1115, 51–64 (damage)

Hieratic Studies Online 5 | 2023 52

Figure A.22: P. Hermitage 1115, 65–78 (damage)

Figure A.23: P. Hermitage 1115, 79–93 (damage)

TABIN, Optical Character Recognition Applied to Hieratic 53

Figure A.24: P. Hermitage 1115, 94–108 (damage)

Figure A.25: P. Hermitage 1115, 109–123 (damage)

Hieratic Studies Online 5 | 2023 54

Figure A.26: P. Hermitage 1115, 124–132 (damage)

Figure A.27: P. Hermitage 1115, 133–142 (damage)

TABIN, Optical Character Recognition Applied to Hieratic 55

Figure A.28: P. Hermitage 1115, 143–151 (damage)

Figure A.29: P. Hermitage 1115, 152–160 (damage)

Hieratic Studies Online 5 | 2023 56

Figure A.30: P. Hermitage 1115, 161–169 (damage)

Figure A.31: P. Hermitage 1115, 170–176 (damage)

TABIN, Optical Character Recognition Applied to Hieratic 57

Figure A.32: P. Hermitage 1115, 177–189 (damage)

Figure A.33: P. Berlin 3023, 32–50

Hieratic Studies Online 5 | 2023 58

Figure A.34: P. Berlin 3023, 51–68

Figure A.35: P. Berlin 3023, 69–89

TABIN, Optical Character Recognition Applied to Hieratic 59

Figure A.36: P. Berlin 3023, 90–107

Figure A.37: P. Berlin 3023, 108–121

	Introduction
	Optical Character Recognition
	Sources for the Data Set
	Methods
	Glyph Labeling
	The Comparison (OCR) Program
	Calculation of Data Set Metrics
	Filtering by Aspect Ratio
	Filtering by Fast Fourier Transform
	Image Deformation Model
	Sign Identification

	Data Analysis

	Results and Discussion
	Program Accuracy
	Sign Distinguishing
	Tail Separation Investigation
	Facsimile Maker Investigation

	Conclusions and Future Directions
	Tabin Facsimiles

