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ABSTRACT

Learning and pattern recognition inevitably requires memory of previous events, a feature that conventional CMOS hardware needs to
artificially simulate. Dynamical systems naturally provide the memory, complexity, and nonlinearity needed for a plethora of different
unconventional computing approaches. In this perspective article, we focus on the unconventional computing concept of reservoir
computing and provide an overview of key physical reservoir works reported. We focus on the promising platform of magnetic structures
and, in particular, skyrmions, which potentially allow for low-power applications. Moreover, we discuss skyrmion-based implementations of
Brownian computing, which has recently been combined with reservoir computing. This computing paradigm leverages the thermal fluctua-
tions present in many skyrmion systems. Finally, we provide an outlook on the most important challenges in this field.

VC 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0148469

I. INTRODUCTION TO RESERVOIR COMPUTING
ANDMAGNETIC SKYRMIONS

Modern-day applications of artificial intelligence (AI) have
become pervasive in many aspects of our daily lives, and their impor-
tance is only predicted to increase. Artificial neural networks (ANNs),
computational models inspired by the biological neural network archi-
tecture of the human brain, are primarily responsible for the rapid
advancement of AI research.1,2 A class of ANN known as the recurrent
neural network (RNN)3 excels at processing sequential or time series
data. RNNs are distinguished by their “memory,” which incorporates
data from previous inputs to process a specific element of an input
sequence.

Reservoir computing (RC) is a general and universal computa-
tional framework4 derived from RNNs. Its foundations can be traced
back to two independently developed RNN-based models, echo-state
networks by Jaeger5 and liquid-state machines by Maass et al.6 RC con-
sists of two main components: a fixed, randomly initialized nonlinear

RNN system called the “reservoir” and a trainable readout layer. The
reservoir, characterized by its recurrency and fading memory proper-
ties, acts as a high-dimensional, nonlinear projection of the input
data, efficiently capturing the temporal information and inherent
dynamics of the system. Recurrency in the reservoir enables it to
maintain a continuous internal state, while the fading memory prop-
erty ensures that more recent inputs have a higher impact on the res-
ervoir states than older ones, allowing for efficient short-term
memory. The higher dimensional mapping of inputs enables spatio-
temporal feature selection to be performed at the readout nodes
using relatively simple methods such as regression algorithms (e.g.,
linear, ridge, and logistic regression). In contrast to conventional
ANNs, which call for fine-tuning a plethora of interconnected node
weights across multiple layers, the internal weights of the reservoir
and the input nodes remain fixed, and only the weights of the read-
out nodes need to be trained. This significantly reduces the computa-
tional cost of learning, especially when compared to other RNNs.7
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Figure 1 schematically depicts a summary of the concept of reservoir
computing. Here, the nonlinear reservoir is exemplified by a sky-
rmion fabric system.8–11

For RC systems to work effectively, some crucial requirements
need to be met: The reservoir needs to have high complexity. This
complexity entails an intricate interplay of connectivity, dynamics,
dimensionality, adaptivity, and nonlinearity. The reservoir’s intercon-
nected recurrent units exhibit rich and diverse interactions, while the
system’s dynamics capture complex input patterns. The number of its
effective degrees of freedom must be larger than the dimensionality of
the input. High dimensionality enhances learning and generalization,
while adaptivity allows the system to evolve during the learning pro-
cess. Intrinsic nonlinearities enable the representation and processing
of complex, nonlinear relationships in input data, making reservoir
computing systems capable of handling sophisticated temporal and
spatial data. Another necessary characteristic is that the reservoir’s
internal state needs to be influenced by recent inputs while remaining
unaffected by inputs from the distant past. This quality is referred to
as fading/short-term memory.12,13 The extent of this fading memory
has a profound effect on the information processing capacity of the
reservoir.13,14 Fading memory is what makes RC well-suited for proc-
essing temporal data with transient dependencies,6 such as stochastic
or chaotic time series prediction.15,16 Additionally, a reservoir needs to
possess the ability to respond to a given input uniquely. More con-
cretely, the reservoir should distinctly map the temporal history of a
given input to a specific internal state. This is termed the echo state
property.5,17,18 Formally, a reservoir is said to possess the echo state
property if, for any input sequence u(n) with time step n, the reservoir
states x(n) it generates satisfy the condition: For all n > n0, where n0
is the initial step, and for any pair of initial reservoir states x(0) and
x0(0), the difference between the corresponding reservoir states x(n)
and x0(n) vanishes as n approaches infinity, i.e., limn!1jx(n) � x0(n)j
! 0.

Although RC does not train the internal weights of the reservoir,
it is still often possible to optimize reservoir performance by tuning
hyperparameters. For systems with many possible parameter choices,
task-agnostic metrics help in identifying excellent hyperpara-
meters.19,20 Some reservoir systems exhibit dynamics that transition
between non-chaotic and chaotic regimes upon adjustment of their
intrinsic parameters. Occasionally, such reservoirs can be optimized
by adjusting them to operate at the so-called “edge of chaos”—a criti-
cal phase transition point beyond which the reservoir system’s dynam-
ics become chaotic.21,22 While this approach can be effective in
designing reservoirs with chaotic tendencies, it is not universally appli-
cable, and there have been exceptions to this hypothesis.23–25 For this
reason, it is imperative to understand the dynamical trends of a chosen
reservoir system.

A branch of RC called physical RC (PRC) has emerged, in which
physical systems are used as reservoirs.26–29 Physical systems often
naturally fulfill the RC criteria of being complex, nonlinear, and pos-
sessing a short-term memory. It is crucial to note that for physical res-
ervoirs, consistent reproducibility is an additional essential
prerequisite, ensuring outcomes can be replicated under similar condi-
tions. Reproducibility also entails that the reservoir is robust against
noisy fluctuations and other internal transient dynamics that do not
promote the nonlinear transformation of inputs but persist even after
input signals are removed. A PRC measure of fading memory needs to
include these fleeting dynamics as they have been shown to support
short-term memory.13,30,31

In this Perspective, we describe reservoirs epitomized by sky-
rmions, such as the skyrmion fabric system shown in Fig. 1. Magnetic
skyrmions are localized magnetic whirls possessing particle-like prop-
erties. Skyrmions were proposed by Tony Skyrme in 1961 in a model
describing elementary particles.32 The magnetic versions studied now-
adays were theoretically predicted in 198933 and experimentally
observed in 2009.34 Since then, they have been shown to occur in

FIG. 1. Illustration of the reservoir computing framework taking the classification of a sequence of multicolored assorted shapes as an example. (a) An arbitrary temporal input
signal (colorful shape sequence) excites the (b) reservoir, embodied in this illustration by a physical system made up of (c) magnetic skyrmions, which then (d) projects the
input data into a linearly separable higher dimensional space in which hyperplanes can be used to (e) classify different desired features (shape or color) by only training the
output readout. Moreover, the input-excited reservoir projection also enables other inference tasks, such as (f) time series prediction.
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many magnetic systems ranging from insulators to metals at various
temperatures, even above room temperature.35–41 Furthermore, sky-
rmions have been observed as singular objects,42–45 clusters,46,47 sky-
rmion lattices34,48,49 and in the form of intermediate skyrmion phases
known as skyrmion fabrics [Fig. 1(b)].50 An example of a single sky-
rmion is illustrated in Fig. 1(c).

Skyrmions have a non-trivial topology, which implies that a
topological invariant can be associated with them, quantified by the
topological index as follows:

Q ¼ 1
4p

ð
M � @M

@x
� @M

@y

� �
dxdy; (1)

where M is the magnetization unit vector, and the integral is taken
over a two-dimensional space. Q¼61 for skyrmions in particular.
Topology has a profound effect on the physics of skyrmions and influ-
ences phenomena, such as transport51 and thermal52–55 motion.
Topology massively increases the skyrmion’s robustness against struc-
tural defects and impurities.56 Topological properties can be exploited
to build stable reservoir systems.8,9

Magnetic spin textures, such as skyrmions, originate from the
interplay of different competing energy contributions within a given
system.37 Typically, there is at least one energy term that favors a uni-
form ferromagnetic configuration of magnetic moments, e.g., exchange
or anisotropy, and there are other terms that promote twisted configu-
rations, e.g., Dzyaloshinskii–Moriya interaction (DMI) and demagneti-
zation.36 In magnetic materials with broken inversion symmetry, such
as uniaxial non-centrosymmetric ferromagnets,57 cubic helimagnets,58

and thin film heterostructure systems with structural inversion asym-
metry,36 DMI effects59 become pronounced. The aforementioned ther-
mally activated dynamics also enable skyrmion-based Brownian
computing (BC) approaches,53,60–64 as discussed in Sec. III.

Skyrmion dynamics can be manipulated by spin torques,51,65–67

magnetic fields,68–70 electric fields,71–73 magnons,74–76 temperature
gradients,77,78 and thermal fluctuations.79–81 Through such mecha-
nisms, it is possible to reliably control the creation (writing),82 detec-
tion (reading),82 rotation83,84 and even annihilation (deleting)82 of
magnetic skyrmions. These qualities, along with topological stability,
small size,85,86 maneuverability around material defects,87 and ultralow
power operation51,65 pave the way for magnetic skyrmions to be used
in applications, such as skyrmion-based racetrack memories,88,89 logic
devices,90,91 magnetic tunnel junctions (MTJs),92,93 nano-
oscillators,94,95 and unconventional computing schemes64,96–98 like
neuromorphic,99 probabilistic,53,100 and reservoir computing.8,60,101

II. OVERVIEW OF KEY PHYSICAL RESERVOIRWORKS

Systems from diverse disciplines have demonstrated their
capabilities of constructing a physical reservoir,26–29 including
bioelectronics,102–105 electronics,29,106–109 magnonics,101,110–112 mem-
ristors,113–116 nanomagnets,117–122 photonics,123–129 and spin-
tronics,60,96–98,109,130–133 summarized in Table I. This yields an
advantage from an application standpoint as different reservoirs could
be designed pertinent to a specific application considering their avail-
able inputs and readout mechanisms.134

In bioelectronic systems, information is processed using biocom-
patible materials or organic biological architectures in conjunction
with electronic sensors. While many approaches primarily focus on
clinical applications, their use for neuromorphic computation has

begun gaining interest.138–140 A study by Sumi et al.103 has demon-
strated RC on a micropatterned biological neuronal network (mBNN).
Here, the input data were transformed to frequency-dependent photo-
stimulation to create the reservoir using optogenetic techniques sup-
plied to rat cortical neurons grown on micropatterned substrates. The
readout mechanism incorporated measurements by fluorescent imag-
ing via calcium probes (20 frames/second), where the spontaneous
and evoked activities of mBNN were trained to demonstrate spatial
pattern and spoken digit recognition tasks. The performance of
mBNN reservoirs are typically bound to its timescales of short-term
memory capacity, which ranges from tens of milliseconds to a few sec-
onds.103,141,142 While it may not be suitable for high-speed electronic
applications, it may be applicable in specific cases where biological
timescales share similar orders.103,143 On the other hand, organic elec-
trochemical transistors (OECTs) have also sparked promises for
RC.104,134 Using data-encoded voltage waveforms as inputs and ana-
logue readings of output time-variant voltages, examples of nonlinear
signal and heartbeat classification have been shown.102,105

Diverse electronic systems, including analogue circuits, FPGAs,
memristors, and ferroelectrics, highlight their potential for RC.29,108,109

Such systems have flexible scalability and pose a benefit of circuit-level
implementation, compatible with silicon-based CMOS technologies at
low power. In particular, memristive technologies have continued to
proliferate for their role in neuromorphic computation and RC.115,116

Diverse architectural designs have been proposed, and detailed studies
have investigated fundamental properties in building or improving the
system efficiency/performance of the reservoirs. Numerous experi-
ments have explored various design paradigms that take a step closer
to device-level implementations of RC. For example, a recent work by
Milano et al.113 uses self-organized nanowire (NW) networks with a
memristive architecture as a reservoir. After inputting a sequence of
voltage pulses that encodes the data, it utilizes resistive random access
memory (RRAM) as a readout mechanism to convert the output vol-
tages from the NW networks to a matrix of currents that could be
trained. In this study, handwritten digit recognition and signal fore-
casting have been demonstrated. Similarly, a fully analogue RC114

involving nonvolatile memristor arrays used as RRAM in the readout
layer with data-translated input voltage pulses to dynamical memris-
tors (DMs) was shown to allow the detection of arrhythmia and
dynamic hand gesture recognition. The study reports that the power
consumption of such a system comprising 24 DMs is 22.2lW.

Among silicon-compatible systems, ferroelectric field-effect tran-
sistors (FeFETs) have been realized as an alternative approach in
designing future electronic components for in-memory144 and neuro-
morphic computation.145–147 As a multi-terminal device, while
FeFETs share similar nature with standard field-effect transistors, it
uses ferroelectric materials for the gate insulator. Its nonlinearity stems
from the time-dependent polarization reversal process on the input
gate voltage. Harnessing this property allows the output currents to
exhibit history-dependent and nonlinear dynamics adequate for
RC.106 On this note, by measuring the drain, source, and substrate cur-
rents from a data-mapped voltage waveform input, Toprasertpong
et al.106 have performed RC on a HfO2-based FeFET to compute
logic-based tasks, including temporal-XOR and parity-checks. While
FeFETs are one example, semiconductor electronics provide additional
room for increasing the fabrication complexity with innovative engi-
neering solutions and may lead to large-scale integration.148
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Spintronic and magnonic systems have also highlighted advan-
tages as a physical platform for RC.96,98,149,150 Works by Torrejon
et al.130 demonstrated PRC using a network of spin-torque nano oscil-
lators (STNOs) made from magnetic tunnel junctions (MTJs) for spo-
ken digit (pattern) recognition, with an accuracy of up to 99.6% and
nonlinear waveform classification tasks. The data-mapped voltages
were input as currents into the STNOs, and the output response of
rectified time-dependent voltages was recorded to construct a reser-
voir. Subsequently, the work has sparked interest in further develop-
ments of PRC with STNOs and MTJs.131,136,151–155 Diverse
nanomagnetic systems, including the use of their magnetic dipole-
coupling interactions, surface acoustic waves, artificial spin-vortex ice

(ASVI), and nanoring arrays, have also proposed and shown promis-
ing PRC performances by exploiting their high-dimensionalities and
rich nonlinear dynamics.117–122,156 For example, Gartside et al.120 uti-
lized nanomagnetic arrays by applying magnetic field inputs and mea-
suring the nonlinear nucleation dynamics of spinwave spectra using
ferromagnetic resonance (FMR). Dawidek et al.118 proposed PRC by
manipulating the domain wall (DW) population in the nanoring
arrays by rotating the applied magnetic fields. It was later experimen-
tally demonstrated by Vidamour et al.122 through transport measure-
ments collecting anisotropic magnetoresistance (AMR) signals
associated with the annihilation and repopulation of the DWs in the
nanorings. Furthermore, complex magnetic structures inherently

TABLE I. Examples of experimental and general skyrmion reservoir systems. Note that the “Timescale” column indicates the system’s intrinsic timescales, while the operation
speeds may be limited by their measurement and control schemes. See the main text for abbreviations.

Reference Discipline Reservoir Input Output Readout Timescales Demonstration

Experimental physical reservoir systems
103 Bioelectronics mBNN Photostimulations Evoked activity Fluorescent

calcium imaging
�s Spoken digit

recognition
102 Bioelectronics OECT Voltage waveforms Voltage Analog DAQ

system
�s Heartbeat

classification
106 Electronics FeFET Voltage waveforms Current Terminal currents ns � ls Temporal-XOR

and parity-check
114 Memristors DM Voltage pulses Current RRAM �ls Arrhythmia

detection and
gesture recognition

113 Memristors NW
networks

Voltage pulses Voltage RRAM �ls Handwritten
digit classification

122 Nanomagnets Nanorings Rotating magnetic
fields

AMR
response

Electrical
contacts

ns � ls Signal transformation
and Spoken digit

recognition
120
and 121

Nanomagnets ASVI Magnetic field
waveforms

Spinwave
spectra

FMR �ns Signal transformation
and forecasting

130 Spintronics STNO Voltage waveforms Voltage Diode
rectification

�ls Spoken-digit
recognition

Skyrmion-based physical reservoir systems (�experimental works)
101 Magnonics� Chiral

magnet
Magnetic field
waveforms

Spinwave
spectra

FMR �ns Signal transformation
and forecasting

60 Spintronics� Confined
skyrmions

Voltage pulses Skyrmion
displacement

Kerr microscopy/
electrical contacts

ns � ms Boolean logic
operations

133 Spintronics� Hall bars Magnetic fields Anomalous
Hall voltage

Electrical contacts ns � ls Waveform and
handwritten digit

recognition
8–11 Spintronics Skyrmion

fabrics
Voltage waveforms AMR response,

local magnetization
Spatially resolved
magnetization

�ns Temporal pattern
recognition, spoken
digit recognition

135 Spintronics Thin plate Microwave pulses Magnetization
oscillations

Oscillation
detectors

ns � ls Short-term memory
and parity-check

136 Spintronics MSM Current pulses Skyrmion position Mathematical
function

�ns Handwritten
digit classification

137 Straintronics Thin film Voltage-induced
strains

Time-resolved
magnetization

MTJ �ns Short-term memory
and parity-check
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provide all the important components of a reservoir without creating a
system of interconnected neurons: complexity, nonlinearity, and
short-termmemory.

On the other hand, various skyrmion-based PRC systems have
been proposed8–11,135–137 and experimentally demonstrated.60,101,133

These systems may offer particular advantages, including speed,
energy efficiency, task adaptability, and scalability, as high-speed
(�nanosecond timescales) and low-power (�microwatt or less) alter-
natives to existing PRC schemes.8–10,60 In particular, rich controllabil-
ity of material parameters can lead to performance improvements by
adjusting the system’s reservoir properties and reconfiguring its non-
linearity and memory capacity.9,10,20,101 For example, an experimental
demonstration by Lee et al.101 has shown that adding skyrmions to
conical/ferromagnetic magnetic phase-reservoirs can enhance memory
in the system and improve forecasting tasks by an order of magnitude.
Raab et al.60 highlighted the potential for device down-scaling by
exploiting current-induced spin–orbit torques to manipulate sky-
rmions and using tunnel magnetoresistance (TMR) to detect the pres-
ence of skyrmions in skyrmion-based RCs. Yokouchi et al.133 utilized
magnetic field-induced skyrmion dynamics in Hall bar arrangements
and showed promising handwritten digit recognition tasks with anom-
alous Hall voltage measurements.

Further theoretically proposed RC schemes predict promising
results. Spintronic RCs include the voltage-dependent skyrmion posi-
tions in a magnetic skyrmion memristor (MSM),136 exploiting the
resistance or magnetization changes in skyrmion fabrics8–11 and mea-
suring the spinwave propagations in a thin plate magnet hosting sky-
rmions.135 A straintronic skyrmion-based PRC system proposes
utilizing nonlinear breathing dynamics of skyrmions via voltage-
induced strain in an MTJ block.137 Therefore, given appropriate mate-
rial choices and advancements in device engineering, such properties
of magnetic skyrmions could be maneuvered for competitive perfor-
mance in unconventional computing schemes. Nevertheless, address-
ing fabrication complexities, controlling the interplay between pinning
effects, thermal fluctuations, and skyrmion dynamics, and improve-
ments for faster readout mechanisms (currently, most demonstrations
are confined to the limits of measuring instruments) are crucial for
realizing its full potential.9,10,60,101 More in-depth examples of some of
the above skyrmion-based unconventional systems are discussed in
Sec. III.

III. SKYRMION-BASED RESERVOIR AND BROWNIAN
COMPUTING

Skyrmion-based RC, working at the nanosecond timescale with
power consumption in the microwatt regime, has been theoretically
proposed by Prychynenko et al.8 Due to its independence of concrete
details of the reservoir, the input and readout method, various
approaches and models have been predicted and analyzed.9–11,135–137

For example, Prychynenko et al.,8 Bourianoff et al.,9 Pinna et al.,10

Raab et al.,60 and Msiska et al.11 have studied the response of a sky-
rmion fabrics system [as exemplified in Fig. 1(b)] to voltage inputs. In
these studies, reservoir computing is based on exploiting the nonlinear
current-voltage characteristics of skyrmion systems due to the com-
plex interplay of current-induced dynamics and pinning effects. A
readout is possible, for example, as a time traced resistance signal, a
spatially resolved magnetization measurement, or a combination of
both. By adjusting material parameters that appear as hyperparameters

in the reservoir computing model, the skyrmion reservoir can be cus-
tomized for tasks that rely more on memory or nonlinearity.20 For
example, the recently simulated multidimensional input skyrmion-
based reservoir demonstrated best-in-class in-materio RC performance
in a standard spoken digit classification benchmark task.11 Raab et al.
combined the RC principle with the Brownian computing (BC) concept
and demonstrated a skyrmion-based RC experimentally.60 BC refers to
the broad idea of exploiting intrinsic random dynamics of a physical
system to the benefit of a computing architecture.60–64 It is inspired by
noise-exploiting mechanisms in biological processes where, e.g.,
Brownian motion drives molecular machines,157,158 hence the name.
There are two main conditions for the underlying system to transfer
the advantages of these biophysical mechanisms to computing devices:
First, the systemmust exhibit significant thermal dynamics at operating
temperature, which is typically room temperature. Second, for good
integrability in existing computing hardware, the system must be
addressable electrically, i.e., inputs and outputs may be set and readout
by electrical means. Skyrmions are a particularly promising system for
BC as they have been shown to undergo thermally activated diffu-
sion53,55,159 and can be measured and manipulated by a variety of dif-
ferent mechanisms.51,65–78,82 In addition, the thermal effects compete
with different skyrmion interactions and drives at room tempera-
ture.60,160,161 There exists a multitude of ways how exactly thermal
random effects can be exploited for different computing architec-
tures.53,60,63,64,162 In particular, RC can be realized by combining the
RC concept with thermally activated skyrmion dynamics,60 which is
discussed in Subsection IIIA, along with other skyrmion-based RC
approaches. The two subsequent Subsections III B and IIIC then intro-
duce other non-conventional computing approaches based on ther-
mally activated skyrmion dynamics. These approaches, apart from
being promising future applications on their own, aid in understanding
the versatility of the BC concept in combination with different comput-
ing architectures such as RC.

A. Reservoir computing using skyrmions

While several of the theoretical skyrmion RC concepts8–10 heavily
rely on the presence of local pinning sites,160 Raab et al. realized
Brownian RC by overcoming pinning effects in confined geometries
by using thermal skyrmion diffusion.60 Their proof-of-concept reser-
voir consists of a single skyrmion in a triangular confinement,163

which provides an automatic reset mechanism after the operation due
to the repulsive skyrmion-boundary interaction.161 Inputs are encoded
by the patterns of voltages at the corners of the triangle [Figs. 2(a) and
2(b)]. The resulting current distribution acts as a biasing mechanism
for the thermal skyrmion motion and thereby alters the average spatial
distribution of the skyrmion. In a nano-scale device, the probability
for a certain region of the sample to be occupied by a skyrmion deter-
mines the average local tunnel magnetoresistance (TMR).164 For the
proof-of-concept device, the local occupation probability was deter-
mined in four regions [white circles in Fig. 2(b)] using Kerr-
microscopy to mimic TMR readout via magnetic tunnel junctions.164

The study demonstrates that training a linear readout based on the
local occupation probabilities already suffices this minimalistic
Brownian RC device to perform 2- and 3-input logic operations
including the nonlinearly separable XOR. Moreover, exploiting ther-
mal effects allows for ultra-low-current operation and overcomes pin-
ning effects that would hinder proper operation in a diffusion-free
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system. Distinguishability of the systems’ responses to different input
stimuli is key for reliable operation. Pinning effects can drastically
reduce the output configuration space as the skyrmion can become
pinned at the same position for various excitations hindering proper
operation, even if the pinning strength is only slightly stronger than
the strength of the drive. This effect can be mitigated by employing
thermally active skyrmions, as the resulting skyrmion distribution still
reflects both pinning and drive, given that both energy scales are com-
parable to the scale of thermal fluctuation.

Another skyrmion-based RC concept was realized by Yokouchi
et al., who have experimentally studied a skyrmion-based RC device
capable of complex pattern recognition.133 Their reservoir consists of a
collection of Hall bars containing skyrmions, each at a different con-
stant out-of-plane (OOP) field [Fig. 2(c)]. The input signal is encoded
as a time-dependent OOP field in addition to the constant OOP field.
Due to the different constant OOP fields, the skyrmions in each Hall
bar potentially react differently to the input signal. Training is then
performed to tune the weights combining the anomalous Hall voltages
of all Hall bars. The reservoir succeeds in high-accuracy handwritten
digit recognition as well as waveform recognition.

The spectral properties of skyrmions can be exploited for con-
structing a physical reservoir. Lee et al. recently demonstrated that the
GHz dynamics of skyrmions generated in the class of chiral magnets

can provide a scheme of phase-tunable, task-adaptive PRC.101 By uti-
lizing rich thermodynamical phases available in multiferroic
Cu2OSeO3 at low temperatures, they show that the single reservoir
unit can offer multiple reservoir properties, hence, adaptive to different
computational tasks that require different reservoir metrics (i.e., non-
linearity, memory capacity, and complexity). The studied scheme is
shown to be transferable to other similar systems, including
Co8.5Zn8.5Mn3 and FeGe, to operate at above and near room tempera-
tures. In their work, external magnetic field values and temperature
are controlled to navigate between available phase spaces to modify
the key reservoir properties on demand. Subsequently, translating the
input data (e.g., a sinewave signal) into a sequence of magnetic field
values can encode its information to the spectral states of various spin-
wave modes to construct a reservoir. During this process, a particular
input protocol, named “mapped field-cycling,” is incorporated to
nucleate metastable magnetic phase spaces such as low-temperature
skyrmions.165–167 The study demonstrates that the computational
power for different tasks highly depends on the choice of the magnetic
phase space. For example, as shown in Figs. 2(d) and 2(e), while the
skyrmion textures excel in future forecasting, their performance deteri-
orates substantially for linear-to-nonlinear transformation tasks.
However, the conical modes observe the opposite behavior, suggesting
a correlation between the intrinsic magnetic phase properties and the

FIG. 2. (a) and (b) Kerr-microscopy images of the skyrmion-based Brownian RC device by Raab et al.60 for different input voltage combinations. The white circles in (b) depict
the regions within which the local skyrmion occupation probability is measured. Adapted from Raab et al., Nat. Commun. 13, 6982 (2022). Copyright 2022 Authors, licensed
under a Creative Commons Attribution 4.0 License. (c) Schematic illustration of the skyrmion-based RC by Yokouchi et al.,133 including Kerr-microscopy images of the Hall
bars containing skyrmions at different constant OOP fields Hconst. Adapted from Yokouchi et al., Sci. Adv. 8, eabq5652 (2022). Copyright 2022 Authors, licensed under a
Creative Commons Attribution 4.0 License. (d) and (e) Performance comparison of RC for a (d) nonlinear transformation and (e) future forecasting tasks using skyrmion
(orange) and conical (blue) magnetic phase spaces, respectively. Different magnetic modes are accessed by changing the applied temperature to the magnet. (f) Kerr-
microscopy image of the skyrmion reshuffler device by Z�azvorka et al.53 The input signal is constructed as a series of time frames, when the skyrmions cross the blue thresh-
old line. The output is produced on crossing the orange line. The corresponding input signal is depicted in blue (top), and the resulting output signal in orange (bottom).
Adapted with permission from Z�azvorka et al., Nat. Nanotechnol. 14, 658–661 (2019). Copyright 2019 The Springer Nature Limited. (g) Circuit layout for a Brownian token-
based half-adder by Brems et al.64 Cjoins (colored/numbered squares) can only be passed by both signal carriers (red and violet bold dots) together. The current input place-
ment of the tokens indicates an input aþ b¼ 0þ 0. The red token on the left side may take computational paths which lead either to Cjoin 3 or 4, whereas the violet token on
the right side may reach Cjoins 1 and 4. Since Cjoins can only be traversed in pairs of two tokens, only Cjoin 4 can be passed. By similar tracing of the accessible and compu-
tational forward paths, it becomes clear that a value of 0 in both output digits is the only possible result, even if the token movement is completely random. The colored arrows
show the relevant directions of driven motion to tune the balance of computation speed and energy consumption of the device. Adapted with permission from Brems et al.,
Appl. Phys. Lett. 119, 132405 (2021). Copyright 2021 AIP Publishing LLC.
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task capability, which is related to the properties of the reservoir.
These results highlight that a single material system can be reconfig-
ured (by adjusting the magnetic field or temperature) based on the
task’s nature without creating alternative reservoir systems each time
and takes a step closer to flexible on-demand PRC. The task-adaptive
nature is important since a typical physical reservoir is often fixed and
inflexible in terms of reservoir properties due to the constraint of spe-
cific response phenomena of a given physical system: consequently,
many physical reservoirs result in severely constrained computational
performance as it lacks the versatility to meet demands requiring dif-
ferent reservoir properties. For example, a reservoir system con-
structed with a high nonlinearity would not be adequate in performing
tasks requiring a high memory capacity, and vice versa.

B. Stochastic computing using skyrmions

Thermal excitations can not only be used in reservoir comput-
ing60 but also for stochastic computing. In skyrmions-based stochastic
computing,53,100,168 numerical values are encoded as the probability of
a “1” occurring in random bit-streams, and computation results are
obtained by averaging over the results of bit-wise operations. For
instance, multiplication can be realized by bit-wise application of the
AND operation on two input-streams since the “1” probability in the
resulting bit-stream is equal to the product of the “1”-probabilities of
the two input-streams. Skyrmion-based stochastic computing can offer
interesting advantages, such as high error tolerance and increasing
accuracy with computation time (length of processed bit-stream).
However, one key challenge in this approach is that strong correlations
between bit streams severely impair computations as the individual
bit-wise computation results will no longer inherit the correct statisti-
cal distribution from the input-streams. In 2019, Z�azvorka et al. exper-
imentally constructed a skyrmion-based Brownian reshuffler device to
decorrelate bit-streams.53 As shown in Fig. 2(f), the device consists of
an upper and a lower channel, and a skyrmion passing a certain sec-
tion of a channel at a given time sets the bit-stream’s value to “1” or
“0,” respectively. Each channel contains a chamber where the effects of
the overall current-induced drift to the right are combined with ther-
mal random diffusion to decorrelate the pre-chamber (blue) and post-
chamber (orange) bit-streams. It was demonstrated that this reshuffler
device leads to very good decorrelation of the bit-streams while keep-
ing the value encoded in the bit-stream constant.

C. Brownian token-based computing using skyrmions

In Brownian token-based computing,55,61–64 discrete and indi-
visible signal carriers, called tokens, perform random motion to
explore a network of computational paths. A computation is com-
pleted when the tokens have traversed the circuit by finding a path
connecting the correct input- and output-states. Therein, all logic is
contained within the circuit layout such that random motion suffices
for the tokens to find the computational forward paths to the elements,
which advance the computation. Magnetic skyrmions are particularly
promising token candidates due to their quasi-particle nature and
thermally induced diffusive dynamics, which can be easily manipu-
lated. The key advantage of this computing method is that energy
must not be invested to move the information carriers but only to syn-
chronize their movement at certain points in the circuit, potentially
allowing for low-energy operation. Note, matching colored/labelled

squares in Fig. 2(g) represent Cjoin modules, which can only be passed
across by two tokens at the same time. Brems et al. have proposed a
skyrmion-suitable crossing-free circuit for a Brownian half-adder
[Fig. 2(g)] along with a framework to tune the balance of speed and
energy consumption of token-based computers using artificial diffu-
sion.64 Skyrmion systems, in particular, allow for superimposing ther-
mal diffusion with artificial diffusion (e.g., current-based64 or field-
based169); thus, the tokens’ dynamics can be adapted to the circuit
geometry such that the tokens find the computational forward paths
faster. Moreover, the possibility of significant speed-up at the expense
of additional energy can mitigate the disadvantage non-deterministic
computation times may pose for time-critical applications.64

Experimental advances have been made by Jibiki et al. in implement-
ing skyrmion-based circuit modules for Brownian token-based
computing.55,63

IV. PERSPECTIVE OF SKYRMIONS FOR RESERVOIR
COMPUTING

Skyrmion-based non-conventional computing is an emerging
field that aims to harness the distinct properties of magnetic sky-
rmions. While this field has already shown several promising results
and is expected to play a significant role in the future of unconven-
tional computing, there is still a multitude of challenges left to over-
come. These include both short-term goals to make skyrmion-based
reservoir computing more competitive, practical, and efficient, as well
as long-term challenges that need to be addressed to realize the full
potential of future skyrmion-based computing.

The field of RC currently features a wide range of designs and
architectures with virtually endless potential for further customization
and experimentation since it encompasses any dynamical phenome-
non that can be harnessed to build reservoirs. While this diversity is a
strength of RC, it also presents one of its biggest challenges as it makes
it difficult to achieve cohesion and standardization among the different
systems. This is also evident in skyrmion RC where a wide range of
diverse system designs have already been put forward, as elaborated in
Sec. III, despite the field being in its nascent stages. For example, there
are practically no universally applied measures or standards for evalu-
ating and comparing PRCmodels. Such methods would not only facil-
itate the selection of the most suitable models for a specific task but
also grant researchers valuable insight into the underlying principles
and dynamics of reservoir systems. This understanding can be further
leveraged to create unconventional systems that incorporate the most
advantageous features of existing models. Additionally, by comparing
models with varying parameters such as reservoir size and connectiv-
ity, researchers can determine the effect of these parameters on system
performance and optimize the design of the reservoir accordingly.
Although we are yet to realize a unified formalism for RC, progress is
being made in certain sub-fields of PRC to introduce reliable measures.
In the particular case of skyrmion RC, task-agnostic local metrics have
been proposed.20 In addition to performance classifications, it is also
important to establish what constitutes fair comparison among mod-
els. There have been instances in PRC where researchers have selected
or modified datasets to achieve favorable benchmark results.
Implementing standardized comparison schemes would help to elimi-
nate such practices and ensure fair and unbiased evaluations.

Reservoirs possess memory capabilities that enable them to
retain information about past inputs for a certain period of time due
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to recurrent connections within the reservoir.170 However, nonlinear-
ity in the reservoir’s dynamics decreases memory capacity.171

Therefore, the role of nonlinearity, which is necessary for input map-
ping, needs to be balanced with the memory capacity for optimal per-
formance. One way to achieve this in RC design is to create a gradient
mixture reservoir, where one section of the reservoir has high nonline-
arity/low memory, while another section has high memory/low non-
linearity.121 Additionally, it is possible to achieve output states that
emphasize either memory or nonlinearity by strategically placing read-
out contacts.20

In task-specific RC, it will be important to identify tasks that are
particularly suited to skyrmion-based reservoirs. These tasks will fun-
damentally depend on the intrinsic properties of skyrmion systems,
such as the time scales of driven dynamics and decorrelation dynamics
(fading memory) as well as the nonlinearity of skyrmion interactions.
One of the reasons skyrmions have emerged as promising physical res-
ervoir candidates is their internal and collective dynamics on different
time scales and competing interactions on different length scales.
Timescale harmonization plays a crucial role in effectively harnessing
these distinctive properties, ensuring that diverse temporal behaviors
are synchronized and optimally integrated. Time scales are particularly
important to consider since a computationally expensive conversion
algorithm from the relevant timescale of a specific task to that of the
reservoir may prove to be a bottleneck and potentially impede the
high computational speed and energy efficiency advantages of RC.

Another important factor to take into consideration is the pleth-
ora of excitation methods for skyrmion dynamics like spin-
torques43,65,172–174 and field gradients69,70 and readout methods like
magneto-resistance.164 These methods must be gauged with regard to
their applicability in skyrmion-based RC. Apart from stimulation and
response measurement methods, the skyrmion pinning effect has
played a significant role in recent RC concepts. Skyrmion pinning is
an essential ingredient for some RC approaches and an obstacle for
others. So methods to engineer the strength and distribution of pin-
ning areas and thus tune it as necessary for a given reservoir may be

major benefits for future RC approaches. This includes both material
engineering as well as methods to manipulate the effective pinning
effect on state-of-the-art samples.169 Finally, the tradeoffs introduced
by thermal effects in skyrmion reservoirs must be further investigated.
It has been demonstrated that thermal dynamics can benefit a device’s
energy efficiency and error tolerance. On the downside, the stochastic-
ity accompanying thermal dynamics is expected to act to the detriment
of the systems’ short- and long-termmemory.

The future of skyrmion RC holds significant promise, with
numerous untapped research avenues to be explored, including sky-
rmion oscillators, cyclic reservoirs, and beyond. Figure 3 depicts the
predicted importance of materials, algorithms, and applications, visu-
alized by blue-colored beams that vary in size over time. As research
progresses, the field will likely move from a broad range of reservoir
materials to only a narrow selection of the most effective, while algo-
rithms and applications are anticipated to grow with advancements in
research. In particular, architectures will presumably evolve beyond
standard RC. For example, the incorporation of the Brownian com-
puting paradigm was an initiative to blend different ideas into existing
RC concepts. Additionally, the figure suggests some key areas for res-
ervoir optimization, such as the use of cascaded architectures, in which
multiple physical reservoirs are connected sequentially, allowing for
the enhancement of computational capacity and the representation of
more complex tasks.121 This approach optimizes the spatial and tem-
poral characteristics of the input data by leveraging the advantages of
each individual reservoir. One can also combine the unique strengths
of RC with other computational approaches, offering a powerful and
versatile hybrid framework for solving complex tasks. For instance,
RC can be combined with ANNs to enhance the capacity to learn
intricate patterns and generalize effectively.175 By fusing RC’s
memory-enhanced capabilities and rapid adaptation with the robust
learning and optimization mechanisms of ANNs, an ANN/RC hybrid
system can be optimized to tackle a wide range of applications, from
time series prediction and signal processing to natural language proc-
essing and image recognition.

FIG. 3. Skyrmion reservoir computing perspectives.
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Scalability is a key property where skyrmion RCs likely excel, sur-
passing alternatives of individually connected components like
MTJs,98 nano-oscillators,131 artificial nanomagnets,121 and so on. The
intrinsic advantage of skyrmion RC over these systems lies in their
natural connectivity and a vast number of degrees of freedom, which
would otherwise require artificial enhancement. This naturally leads to
more efficient spatial packing and fewer energy losses that would result
from the overhead caused by the wiring of the individual components.
Additionally, skyrmions provide a localized and topologically stabi-
lized alternative to general spin-wave or domain wall-based devices.
Although skyrmions exhibit favorable scalability properties, managing
and controlling them effectively becomes increasingly challenging as
systems grow larger. To tackle this issue, it is crucial to develop effi-
cient, scalable algorithms tailored for large-scale reservoirs, in addition
to other stabilization mechanisms. These algorithms should be able to
adapt to variations in the system’s size, complexity, or environment,
including readout techniques. Incorporating self-organization princi-
ples may be beneficial, as they allow the system to dynamically recon-
figure and maintain its computational capabilities while scaling.

Despite having numerous advantages that strengthen their posi-
tion in the emerging field of neuromorphic computing, skyrmions face
further challenges that are yet to be addressed. For instance, the devel-
opment of efficient skyrmion-based devices requires overcoming diffi-
culties in material engineering and optimization, as well as the need
for more advanced fabrication techniques. While significant progress
has been made in recent years, further research is necessary to identify
more affordable and durable material systems that host stable sky-
rmions over a broad temperature range. Moreover, it will be crucial to
develop both efficient, low energy and cost-effective readout methods
that can merge seamlessly with I/O components of electronic systems.
Currently, reliable optical readout techniques for skyrmions face con-
siderable obstacles, such as limited spatial resolution, signal-to-noise
ratios affected by thermal factors, and constraints on high-speed detec-
tion. To circumvent these limitations, one can utilize electrical readout
techniques that take advantage of magnetoresistive effects. Such meth-
ods are presently employed in skyrmion neuromorphic computing
prototypes. However, this approach necessitates a relatively large volt-
age within the device, calling for overall device size expansion. Moving
forward, the development of ultrasensitive low-power detection meth-
ods will be crucial.

To conclude, skyrmion-based unconventional computing shows
great potential as a research area. It is exciting to anticipate the pro-
gress of this field over the next few years and to see how skyrmions
will be incorporated into mainstream computing applications.
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