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For my family

“Deep in the human unconscious is a pervasive need for a logical universe that makes sense.”

Frank Herbert, Dune

“«In almost all textbooks, even the best, this principle is presented so that it is impossible to understand.»
(K. Jacobi, Lectures on Dynamics, 1842 – 1843) I have not chosen to break with tradition.”

V. I. Arnold, Mathematical Methods of Classical Mechanics
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“It doesn’t stop being magic just because you know how it works.”
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“Tudo vale a pena, quando a alma não é pequena”

Fernando Pessoa





A B S T R A C T

The Standard Model of Particle Physics has been confirmed by numerous measurements
verifying its predictions. However, there are multiple direct and indirect hints pointing
towards physics beyond the Standard Model. Two possibilities where new physics could
show up are deviations of theory prediction and experiment in high-precision observables
or direct detection of new particles, for instance at colliders or in particle transitions forbid-
den in the Standard Model. In this thesis, we approach both possibilities in two separate
projects that are linked in their use of methodology rooted in the framework of effective
field theories.

In the first project we study gluon-gluon to Higgs boson fusion via a light quark loop
in the context of soft-collinear effective theory (SCET) at next-to-leading order in SCET
power counting. Generalising the refactorisation-based subtraction scheme to regulate end-
point divergences to non-abelian final states, we are able to derive a factorisation theorem
consisting of convolutions of hard Wilson coefficients and jet and soft functions that is
endpoint divergence-free and UV finite. We demonstrate that even though regularisation
and renormalisation do not commute in general, all mismatching terms can be absorbed
into a redefinition of Wilson coefficients. After deriving the renormalisation group (RG)
equations, we solve them iteratively to predict the leading large logarithmic corrections in
the three-loop gg → h form factor. Eventually, we solve the RG equations for the leading
contribution jet and soft function to RG-improved leading order. This allows us to resum
the three leading towers of large logarithms in the form factor to all orders of perturbation
theory.

In the second project we investigate how flavour physics experiments can constrain
parameter space of axion-like particle (ALP) models. First, we present how couplings at
the high-energy scale evolve to low energies. We show that independent of the specific
UV coupling, couplings to all Standard Model particles are generated through a series of
RG running and matching effects. This also includes effective flavour-changing couplings.
Furthermore, we explain how to consistently implement ALPs in the weak chiral and
nuclear Lagrangian, thereby freeing the formula for the branching ratio of the important
K → πa decay from a long-standing inconsistency. We then explore the bounds on ALPs
from quark and lepton flavour experiments in four benchmark scenarios, where we assume
that only a certain coupling is present at the UV scale, and all other couplings are generated
via evolution effects.
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Z U S A M M E N FA S S U N G

Das Standardmodell der Teilchenphysik wurde bereits durch zahlreiche Messungen belegt,
die die theoretischen Vorhersagen bestätigen. Es gibt jedoch etliche direkte sowie indirekte
Hinweise auf Physik jenseits des Standardmodells. Zwei Möglichkeiten, wo solche neue
Physik auftreten könnte, sind Abweichungen von Theorievorhersagen und experimentel-
len Messungen in Hochpräzisionsobservablen oder direkte Entdeckung neuer Teilchen,
zum Beispiel an Beschleunigern oder durch Beobachtung von im Standardmodell ver-
botenen Teilchenübergängen. In dieser Arbeit beschäftigen wir uns mit beiden Möglich-
keiten in zwei verschiedenen Projekten, die durch die Verwendung von Methoden der
effektiven Feldtheorien verbunden sind.

Im ersten Projekt untersuchen wir die Fusion zweier Gluonen zu einem Higgs-Boson
über eine Schleife aus leichten Quarks im Kontext der soft-kollinearen effektiven The-
orie (SCET), ein Prozess in nachführender Ordnung im SCET Powercounting. Durch
das Verallgemeinern des refaktorisierungsbasierten Subtraktionsschema zur Regularisier-
ung von Endpunktdivergenzen auf nicht-abelsche externe Felder sind wir in der Lage,
ein Faktorisierungstheorem bestehend aus Konvolutionen von Wilson-Koeffizienten und
Jet- und soften Funktionen herzuleiten, das sowohl endpunktdivergenzfrei als auch UV-
endlich ist. Wir zeigen, dass obwohl Regularisierung und Renormierung im Allgemeinen
nicht vertauschbar sind, alle nicht übereinstimmenden Terme durch eine Redefinition
der Wilson-Koeffizienten absorbiert werden können. Nachdem wir die Renormierungs-
gruppengleichungen (RGE) hergeleitet haben, lösen wir sie iterativ, um die größten log-
arithmischen Korrekturen zum drei-Schleifen Formfaktor vorherzusagen. Wir lösen die
RGE der führenden Jet- und soften Funktion in führender Ordnung, was uns erlaubt die
drei führenden Terme logarithmischer Korrekturen im Formfaktor für alle Ordnungen der
Störungstheorie aufzusummieren.

Im zweiten Projekt untersuchen wir, wie Flavourphysikexperimente den theoretisch er-
laubten Parameterbereich von Axion-artigen Teilchen (ALPs) einschränken können. Wir
zeigen zunächst, wie sich Kopplungen von einer hohen zu einer niedrigen Energieskala
durch RGE-Effekte entwickeln und dass, unabhängig von der UV-Kopplung, Kopplungen
an sämtliche Standardmodellteilchen an der Niederenergieskala generiert werden. Dies
beinhaltet auch Flavour-verletzende Kopplungen. Außerdem können wir zeigen, wie ALPs
konsistent in die schwach-chirale und nukleare Theorie eingebunden werden können.
Dabei lösen wir eine seit langem bestehende Inkonsistenz in der Berechnung der wichti-
gen K → πa Amplitude auf. Unsere Ergebnisse werden in vier Referenzszenarien, bei
denen wir jeweils angenommen haben, dass nur eine Kopplung an der UV-Skala existiert
und alle anderen durch Evolutionseffekte generiert werden, vorgestellt.
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L I S T O F P U B L I C AT I O N S

This thesis is based on the publications and preprints [1–7] listed below. Here, we give a
short summary of each work and highlight the author’s contribution. Preliminary results
of [1] were presented at the conference “RADCOR–Loopfest 2021”, and published in the
corresponding conference proceeding [2]. Additionally, the works [4–7] contributed to the
publication [8], which is listed afterwards. The following articles provide the basis to Part
I: Gluon-gluon to Higgs fusion in SCET of this thesis.

[1] Z. Liu, M. Neubert, M. Schnubel and X. Wang, Radiative quark jet function with
an external gluon, JHEP 02 (2022) 075 [2112.00018]

Radiative jet functions with external gauge fields appear in many factorisation the-
orems at next-to-leading power in SCET. They are defined in terms of matrix ele-
ments of collinear fields with a soft momentum emitted from inside the jet. While
the photon case has been studied extensively in previous work, we presented here a
detailed study of the radiative jet function with an external gluon. We calculated this
jet function at one- and two-loop order, derived its one-loop anomalous dimension
and studied its renormalisation-group evolution.
Results from this publication enter chapter 5. While all authors contributed equally
to the calculations, the author of this thesis set up the first draft for the publication.
The calculations were performed using different gauge choices among the authors.
All plots were crafted by the author, while the Feynman diagrams were created by
Z.L.L.

[2] M. Schnubel, The two-loop radiative gluon jet function for gg → h via a light quark
loop, SciPost Phys. Proc. 7 (2022) 039 [2110.05322]

Preliminary results of [1] were presented by the author at the conference “RADCOR–
Loopfest 2021”, and published in this conference proceeding.

[3] Z. Liu, M. Neubert, M. Schnubel and X. Wang, Factorization, Renormalization,
and Endpoint Divergences at next-to-leading Power in gg → h Production, JHEP 02 (2022)
075 [2112.00018]

We derived the renormalised factorisation amplitude for the fusion process gg → h
via light quarks. It is structurally similar to the one obtained previously for the
h → γγ decay amplitude, but additional challenges arise due to the external col-
oured states. We generalised the refactorisation-based subtraction scheme to regu-
late endpoint divergences. Furthermore, we used renormalisation group techniques
to predict the leading logarithmic correction in the three-loop amplitude. Addition-
ally, we solved the RG equations for the jet and soft function to RG-improved leading
order and resummed the three leading logarithmic towers to all orders of perturba-
tion theory.
This publication is the basis for chapter 5. All authors contributed equally to the
calculations. The first draft was set up by the author of this thesis and X.W., the fig-
ures were created in collaboration of the author, X.W. and Z.L.L. The author was the
main responsible person for the section on resummation and it was checked by the
co-authors.
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The second part of this thesis, Part II: Flavour physics of ALPs, is based on the works
listed below.

[4] M. Bauer, M. Neubert, S. Renner, M. Schnubel and A. Thamm, Axion-like
Particles, Lepton-Flavor Violation and a New Explanation of aµ and ae, Phys. Rev. Lett.
121 (2020) 211803 [1908.00008]

We described how ALPs with lepton flavour-violating couplings can be constrained
from various experiments. Furthermore, we gave a prospect how flavour-violating
ALPs could possibly explain the current tension in the anomalous magnetic moment
of the electron and the muon.
This publication includes research carried out in the author’s Master thesis. For this
reason, we only present the main results in chapter 7, and explicitly state when res-
ults were taken from this publication. All authors contributed equally to the text and
plots.

[5] M. Bauer, M. Neubert, S. Renner, M. Schnubel and A. Thamm, The Low-Energy
Effective Theory of Axions and ALPs, JHEP 04 (2021) 063 [2012.12272]

Here we showed how ALP couplings evolve from the high energy scale to low en-
ergies by a series of RG running and matching with heavy particles integrated out
whenever crossing a particle mass threshold. We demonstrated that independent of
the UV coupling, at the low energy scale an effective coupling to all Standard Model
particles is generated inevitably, including flavour-violating ones. Furthermore, we
repeat this study for an alternate form of the ALP Lagrangian.
This publication is the basis for much of chapter 6. All authors contributed equally
to text and calculations.

[6] M. Bauer, M. Neubert, S. Renner, M. Schnubel and A. Thamm, Consistent
Treatment of Axions in the Weak Chiral Lagrangian, Phys. Rev. Lett. 127 (2021) 081803
[2102.13112]

We showed how to consistently implement ALPs in the weak chiral Lagrangian in a
model-independent way. We argued that previous treatments of such processes have
used an incorrect representation of the flavour-changing quark currents in the chiral
theory. As the most important result, we corrected the K → πa decay formula from
a long-standing inconsistency.
This publication enters in chapter 6. The text and the computations were first ob-
tained by M.B. and M.N., and were checked by the author and the co-authors. The
author checked the derivation of the K− → π−a amplitude by an independent calcu-
lation explicitly.

[7] M. Bauer, M. Neubert, S. Renner, M. Schnubel and A. Thamm, Flavor probes of
axion-like particles, JHEP 09 (2022) 056 [2110.10698]

We presented an exhaustive study of quark and lepton flavour probes of axions and
ALPs. We summarised our former works and showed how flavour experiments con-
strain UV ALP couplings in benchmark scenarios, where only one specific ALP coup-
ling is present at the high scale, and all other interactions are generated through
evolution effects. Furthermore we explained, how ALPs could in principle tackle sev-
eral low-energy anomalies observed in rare B-meson decays, measurements at the
ATOMKI and KTeV experiments, and in the anomalous magnetic moments of the
muon and the electron.
This publication yields the basis for chapter 7 of this thesis. All authors contributed
equally to the text and calculations. The benchmark plots in chapter 7 are taken from

x

https://doi.org/10.1103/10.1103/PhysRevLett.124.211803
https://doi.org/10.1103/10.1103/PhysRevLett.124.211803
https://arxiv.org/abs/1908.00008
https://doi.org/10.1007/JHEP04(2021)063
https://arxiv.org/abs/2012.12272
https://doi.org/10.1103/PhysRevLett.127.081803
https://arxiv.org/abs/2102.13112
https://doi.org/10.1007/JHEP09(2022)056
https://arxiv.org/abs/2110.10698


this publication. The study of ALP effects in low-energy anomalies of this work is
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If not stated otherwise, the figures presented in this thesis have been created by the author
himself. Most figures from the publications listed above that are used in here have been
remade for this thesis in order to achieve a uniform layout and colouring scheme.
The works on axion-like particles [4–7] led to a contribution in the following publication
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Prologue





1
I N T R O D U C T I O N

When Max Planck was about to start his studies of physics, he asked his future advisor
Philipp von Jolly about the prospects of the field. Von Jolly told him «in this field, almost
everything has already been discovered, and all that remains is to fill a few holes», to which
Planck replied that he did not wish to discover something new, only to understand the
fundamentals [9]. Later, he went on to revolutionise physics as the originator of quantum
physics. This concept was the beginning of a development that, for the branch of particle
physics, eventually led to the Standard Model of Particle Physics (SM). It is among the
best understood theories of nature, and describes the properties and interactions of the
very building blocks of matter with incredible precision. The validity of its predictions
has been tested with countless experiments. As the most recent example, the scalar Higgs
boson [10–15] was discovered at the LHC in 2012 [16, 17], which was the last elementary
particle missing in the SM.

With this well-established theory at hand, one might be tempted to say that in today’s
particle physics, there are only “a few holes” left to fill. For various reasons, most physi-
cists refrain from doing so. Most of the problems present within the Standard Model call
for a generalised theory. However, because of its success of predicting many observables
correctly, theorists generally prefer not to abandon the SM all at once. Most theories trying
to tackle one of the SM problems therefore extend it by new symmetries and particles.
Moreover, we do not know where physics beyond the Standard Model (BSM), often used
synonymously with new physics, could show up first. Thus, one option is to look for de-
viations of high-precision calculations of SM predictions and experimental measurements.
Both branches that could possibly lead to the discovery of new physics – high precision
calculations and explicit BSM models – often make use of the methodology of Effective
Field Theories (EFTs).

The basic concept of effective theories is that one should in principle be able to disen-
tangle the dynamics of different scales involved in a process as soon as this scale separation
is large enough. Effects from physics at high scales should be very suppressed if a certain
process of interest only features low-energetic particles and momenta otherwise. On the
other hand, low-energy processes should only give perturbative fluctuations to very high-
energetic systems. A prime example for a problem involving multiple scales is the creation
of Higgs bosons at the Large Hadron Collider (LHC). With a mass of mh = 125.25GeV [18]
it is produced mainly via the gluon-gluon fusion channel [19]. Since free gluons cannot
exist in nature, they must be extracted from protons, which are collided with a centre-of-
mass energy of 13TeV [20]. The energy and momentum distribution of the gluons inside
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of the proton, however, are described non-perturbatively with parton distribution func-
tions (PDFs) at energies below the QCD factorisation scale ΛQCD ≈ 300MeV. The only
feasible way to obtain high-precision predictions is to describe the physics at these vastly
different energy scales with different effective theories, where certain assumptions can be
made for each sector.

Historically speaking, EFTs have been used to gain knowledge about physics at energies
that were still out of reach for experiments at that time. For instance, Fermi’s theory of
the weak interaction could describe nucleon β-decay with high precision, even long before
the underlying gauge principle was discovered [21]. Again, the reason was a large scale
separation. The W -boson with a mass mW = 80.38GeV is much heavier than the typical
energy of the β-decay electrons Ee ∼ O (1MeV), hence the process including a W -boson
exchange can be approximated by a contact interaction.

In the same sense that Fermi’s theory effectively describes the weak interaction, many
models for BSM physics aim to describe the effects of new physics at high energy scales
without knowing the exact dynamics. A great number of these models are motivated by so-
called anomalies – observables where the theoretical SM prediction and the experimental
measurement do not agree – in the hope that they are residual effects of yet unknown high-
energy physics. Since only a few models really influence the dynamics of just one problem
or anomaly, we emphasise that it is most important to always check that a solution to a
certain problem is not already ruled out by other experiments.

Even though the concept of EFTs has been used for a long time and Fermi’s interaction
theory celebrates its 90th birthday in 2023, effective (field) theories are an active field of
research. Apart from the countless applications of EFTs in the field of particle physics, EFT
methods can also be transferred to other problems in physics. For instance, a common
way to calculate the gravitational wave signature of inspiralling finite-sized objects is to
employ so-called non-relativistic general relativity (NRGR) [22–24]. Another famous ex-
ample is the Bardeen–Cooper–Schrieffer (BCS) theory used in condensed matter research,
yielding the first microscopic explanation for superconductivity [25, 26]. Even more sur-
prisingly, the EFT methodology has seen application outside of physics, too. In [27], the
authors established an effective theory to describe how a deep neural network manages to
detect patterns and derive rules from training data, thus gaining insights how the machine
actually “learns”.

This thesis is structured as follows: In chapter 2, we first briefly review the Standard
Model and its properties. Furthermore, we give an introduction to effective field theories
and present motivations for beyond the Standard Model physics. In Part I: Gluon-gluon
to Higgs fusion in SCET, we apply the EFT Soft-Collinear Effective Theory (SCET) to the
process of Higgs production via a gluon pair and a virtual light quark loop. As for this the-
ory, we first describe the initial problem in chapter 3 and give an introduction to SCET in
chapter 4. In chapter 5 we present our main results with the derivation of a renormalised
factorisation theorem, deriving the RG equations, and eventually solving them to resum
large logarithms in the form factor expression to an unprecedented high accuracy. Thereby
we generalise the refactorisation-based subtraction scheme (RBS) introduced in [28, 29] to
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non-abelian final states. Additional information is collected in appendix AI. The second
part of this thesis Part II: Flavour physics of ALPs is dedicated to the question how flavour
physics experiments can yield constraints on axion-like particle models. We first describe
the general set-up of the effective theory and how high-energy couplings evolve down to
the low-energy scale of experiments in chapter 6. In chapter 7 we present the derived con-
straints from various flavour experiments, in both the quark and the lepton sector. The ap-
pendix AII collects additional information about the relevant experimental measurements.
In chapter 8, we conclude and summarise the results obtained for this thesis.





2
T H E O R E T I C A L F O U N D AT I O N

Both research projects that make up this thesis, “Gluon-gluon to Higgs fusion in SCET”
and “Flavour physics of ALPs”, are rooted within the theoretical framework of Effective
Field Theories (EFTs) that are derived from the Standard Model of Particle Physics (SM)
and extensions thereof. In this chapter, we want to give a brief introduction to the SM, how
to derive EFTs from the SM in general and universal properties of EFTs. Furthermore we
will tackle what the currently unanswered questions of the SM are, giving a motivation
for beyond the Standard Model (BSM) physics. An introduction to the specific effective
theories that are used is given within each of the two parts, respectively. As usually in
high-energy particle physics, we tacitly adopt several conventions. They are summarised
in appendix A.

2.1 The Standard Model of elementary particle physics

The Standard Model was developed in the 60’s and 70’s of the last century in multiple
works, see for example [30–40]. For a pedagogical and exhaustive introduction to the SM,
we refer to the standard literature such as [41–44].

The SM describes almost all properties of all known subatomic elementary particles
as well as their strong, weak and electromagnetic interactions as a quantum field theory
(QFT). Hitherto, it has not been possible to derive a consistent quantum theory of the
fourth force, gravity. The fundamental basis of the SM as a renormalisable QFT is the
concept of local gauge symmetry groups, where the SM gauge group is

SU(3)c × SU(2)L × U(1)Y . (2.1)

Here, SU(3)c is the special unitary group describing the strong interactions, and the gauge
group SU(2)L×U(1)Y describes the unified electroweak interactions corresponding to the
weak isospin and hypercharge, respectively.

The matter content of the SM consists of three families of fermions, the strong and elec-
troweak gauge bosons, and the Higgs boson – the particle in the SM with the most recent
experimental verification [16,17]. The fermions can further be split into two groups, namely
those that interact through the strong force, called quarks, and those that do not, named
leptons. All fermions are charged under the SM symmetries (2.1), and we give their charges
in table 2.1. As a chiral field theory, left- and right-handed fermions transform differently
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under weak gauge transformations. The quarks form left-handed doublets, and up and
down-type right-handed singlets. The leptons also form left-handed doublets, but only
the charged leptons can be grouped in a right-handed singlet, too. As will be explained
later, this is the reason that neutrinos are massless in the SM.

Fields Representation electric charge

Left-handed quark doublets

(
uL

dL

)
,

(
cL

sL

)
,

(
tL

bL

) (
3, 2, 1

6

) (
2/3

−1/3

)
Right-handed up-type quarks: uR, cR, tR

(
3, 1, 2

3

)
2/3

Right-handed down-type quarks: dR, sR, bR
(
3, 1, −1

3

)
−1/3

Left-handed lepton doublets

(
eL

νe

)
,

(
µL

νµ

)
,

(
τL

ντ

) (
1, 2, −1

2

) (
−1
0

)
Right-handed leptons: eR, µR, τR (1, 1, −1) −1

Table 2.1: The fermions of the SM and their representations under the SM gauge group SU(3)c ×
SU(2)L × U(1)Y .

As it turns out, the quarks and strong gauge bosons (called gluons) are the constitu-
ents of protons and neutrons, and therefore also of all atomic nuclei. The strong interac-
tions among those quarks lead to so-called confinement. That means that no free coloured
particles can be observed in nature, and instead all quarks and gluons are confined to
bound states that carry no colour charge. The bosons of the SM are the force carriers, and
thus mediate interactions between the fermions.

All fields and their interactions can be neatly combined in the SM Lagrangian, which
can be written as

LSM = Lψ + LV + LH + LYuk . (2.2)

Here, Lψ contains the kinetic terms of fermion fields including their interactions with the
gauge bosons, LV the kinetic and self-interaction terms of the gauge bosons, LH the kinetic
and potential terms of the Higgs boson including self interactions, and LYuk the interac-
tion terms of the Higgs boson with the fermions. The gauge group of the SM completely
dictates the Lagrangian structure, and no gauge symmetry violating term is allowed. Ad-
ditionally, the SM features multiple accidental symmetries, namely baryon number and
the individual lepton numbers as global symmetries. However, it is thought that effects of
quantum gravity will eventually break those1.

This formulation of the SM is valid at energies higher than the electroweak scale ΛEW =

246GeV. Below that scale, the mechanism known as Higgs mechanism occurs that leads
to the fermions and weak gauge bosons acquiring masses [10–15]. We will explain below,
how this happens in detail.

The Higgs field transforms as (1,2, 1/2) under the SM gauge group, and its Lagrangian
term is given by

LH = (Dµϕ)
†(Dµϕ) + µ2ϕ†ϕ− λ(ϕ†ϕ)2 , (2.3)

1 Moreover, many BSM scenarios feature explicit breaking of the accidental symmetries.
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where

ϕ =

ϕ+
ϕ0

 (2.4)

is the Higgs fields, λ the dimensionless quartic coupling, and µ with µ2 < 0 has the
dimensions of a mass. The Higgs potential consists of the last two terms of (2.3) and is
often referred to as a “champagne-bottle” potential, because of their resemblance when
the former is plotted as a 3D graph with the imaginary and real part of the Higgs field
serving as coordinate axes. The potential obeys a rotational symmetry. When the Higgs
field acquires a vacuum expectation value (vev),

⟨ϕ⟩ = 1√
2

0

v

 , (2.5)

this symmetry is not respected by the specific ground state. This is known as spontaneous
symmetry breaking, and is not specific to the SM, but also happens in other QFTs. For the
SM, the gauge group SU(2)L×U(1)Y is broken, and only the subgroup of electromagnetic
symmetry U(1)em remains. With the help of a global transformation, the vev can be rotated
into the neutral component, such that the Higgs field reads

ϕ =

 ϕ+

1√
2

(
v + h+ iϕ̃0

)
 , (2.6)

where ϕ+ and ϕ̃0 are the charged and neutral would-be Goldstone bosons, and h is the
physical Higgs boson. The three would-be Goldstones provide the longitudinal degrees of
freedom for the electroweak gauge bosons. Expanding around the vev leads to the trans-
formation W1, W2, W3, B0 → W±, Z0, γ, where the charged W -bosons and the neutral Z
bosons now acquire a mass, whereas the photon γ remains massless as the force carrier
of the remaining unbroken electromagnetic gauge group. One usually says that the Gold-
stone bosons are therefore “eaten” by the weak gauge bosons. Both the Z and the photon
can be written as linear combinations of W3 and B0, and the W± are combinations of W1

and W2.
In addition to giving masses to the weak gauge bosons, the Higgs mechanism also yields

masses for the fermions. In eq. (2.2) the Yukawa interaction term LYuk is of the form

LYuk = − (Yu)ij Q̄
i
L ϕ̃ u

j
R − (Yd)ij Q̄

i
L ϕd

j
R − (YL)ij L̄

i
L ϕ̃ e

j
R , (2.7)

where ϕ̃ = iσ2ϕ
∗ and σ2 is the second Pauli matrix. After electro-weak symmetry breaking

(EWSB), we expand the Higgs fields around its vev and find

LYuk = − (Mu)ij ū
i
L u

j
R − (Md)ij d̄

i
L d

j
R − (Me)ij ē

i
L e

j
R , (2.8)
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where Mf = Yfv/
√
2 are the mass matrices. These can be diagonalised by individually

rotating the left and right-handed fields according to

f iL,R =
(
UfL,R

)ij
f jL,R , (2.9)

and UL,R are unitary rotations. This has strong implications for the fermion interactions
with the gauge bosons. The fermion term in the SM Lagrangian features current terms of
the form

Lψ ⊃ ψ̄ /Dψ , (2.10)

with ψ denoting the fermion fields and Dµ is the covariant derivative, containing the
gauge fields. All current terms remain unchanged under the UL,R transformations with
the exception of the charged current jµW . For this we obtain

jµW =
1√
2
ūiLγ

µdiL →
1√
2
ū′iLγ

µ
(
U †
uUd

)ij
︸ ︷︷ ︸

=V ij

d′jL (2.11)

with the primed quark fields denoting the fields in the mass basis and V ij is the Cabibbo-
Kobayashi-Maskawa (CKM) matrix [45, 46]. The off-diagonal entries of the CKM matrix
mediate quark flavour-changing effects, i.e. interactions between quarks that belong to
different families. At tree-level, flavour-changing neutral currents (FCNCs) are forbidden.
Via the Glashow-Iliopolus-Maiani (GIM) mechanism, FCNCs are suppressed even at loop-
level in the SM [47,48]. Since there are no right-handed partners to the purely left-handed
neutrinos, they remain massless in the SM.

In interactions where only the lightest quarks, the up, down and strange-quark, contrib-
ute, it is often useful to employ chiral perturbation theory (χPT). When the masses of these
quarks are taken to be zero, the Lagrangian features an additional chiral SU(3)L×SU(3)R

symmetry. The quark condensate now breaks this symmetry softly, and only the subgroup
SU(3)V , where V stands for vector, is unbroken. Moreover, the quark masses are tiny but
non-vanishing, so the chiral symmetry is only approximately installed. From Goldstone’s
theorem we therefore expect N2 − 1 = 9 − 1 = 8 light pseudo-Nambu–Goldstone bo-
sons (pNGBs), one for each broken generator of the SU(3) symmetry [49,50]. They are the
three pions π±, π0, the four kaons K±, K0, K̄0, and the eta meson η0.

A peculiarity of QFTs is that the coupling constants are actually not constant, but they
depend on the energy scale µ where they are evaluated. This scale dependence is governed
by the renormalisation group equations (RGEs), which take the form

d

d lnµ
α(µ) = β(α(µ)) , (2.12)

with α a generic coupling constant. For quantum electrodynamics (QED), the beta function
β(α(µ)) is positive, meaning that with higher energies, the coupling constant gets larger.
Eventually, it will get so large that it diverges and perturbation theory will break down.
This point is known as the Landau pole ΛL. Since it is in the vicinity of ΛL ≈ 1031TeV, it



2.2 effective field theories 11

is far beyond any observable physics in the near future, and is usually not regarded as a
problem. Still, several extensions of the SM can take the Landau pole further down to lower
energy scales, and its existence can generally be regarded as sign of incompleteness of the
theory [51]. In the case of quantum chromodynamics (QCD), the situation is different, since
the beta function is negative. Hence for higher energies, the coupling gets weaker, leading
to the so-called asymptotic freedom. This means that quarks and gluons can move almost
freely at high energies, or when they are in close vicinity, respectively. For energies below
the QCD scale ΛQCD ≈ 300MeV [52], perturbation theory cannot be applied any more,
because the strong coupling constant is too large. This also explains the phenomenon of
confinement mentioned earlier. Here, non-perturbative theories must take over, such as
lattice QCD [53].

2.2 Effective field theories

Though in principle it is possible to perform many computations with the Lagrangian
formulation of the SM, in practice it is often way more useful to switch to an alternat-
ive formulation instead. These effective (field) theories are often valid only in certain limits.
They work best, when there is a large hierarchy between the energy scale of interest for
the process and the scale of the underlying dynamics. Furthermore, they are generally
not renormalisable by a finite number of counterterms, like the SM is. However, they are
renormalisable by a finite number order by order in perturbation theory. With χPT, we
have already seen the basis for such an EFT, since it was constructed using the limit that
the three lightest quarks are essentially massless. Moreover, for energies below the QCD
confinement scale, it is often helpful to switch to a version of χPT, where instead of quarks
and gluons the interacting degrees of freedom are mesons instead.

Generally speaking, there are two main types of EFTs: top-down and bottom-up ap-
proaches. In the top-down theories the full theory is known, and in a certain limit an
effective theory is constructed. An example for such a theory is Soft-Collinear Effective
Theory (SCET) that is used in the first project gluon-gluon to Higgs fusion in SCET. For
SCET, the full theory it is derived from is QCD, and it is valid in the limit when mul-
tiple particles are light, but have a large momentum component into a certain direction. In
bottom-up theories the full theory is unknown, and the EFT is constructed by extending a
known EFT to higher dimensional operators. With Fermi’s theory of the weak interaction
and SM effective field theory (SMEFT) we are going to briefly present two prime examples
of a top-down and a bottom-up EFT, respectively. The EFT used in the second project,
flavour physics of ALPs, cannot easily be put into one of the two categories. It shows
characteristics of both approaches, because we construct the Lagrangian in a bottom-up
manner, but still apply assumptions from the ultraviolet (UV) completion onto the EFT
like in a top-down approach.
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n

p e

ν

W

n

p e

ν

Figure 2.1: Feynman diagrams contributing to the neutron decay n → p+e−ν̄e in the Standard
Model (left) and in Fermi effective theory (right).

fermi theory of weak interactions Fermi’s theory of nucleon β-decay is histor-
ically one of the first applications of EFTs, even though it was only identified as such at a
much later stage. It describes the interaction Lagrangian as

LF =
GF√
2
(p̄n ēν + n̄p ν̄e) , (2.13)

where p, n, e, ν denote the proton, neutron, electron and electron-neutrino, respectively.
GF is the Fermi constant, and it needs to be extracted from the full theory through a
matching calculation. The advantage of working with the Lagrangian (2.13) is that one does
neither need to know specific details of weak interactions nor how the proton and neutron
are built from quarks to derive decay amplitudes for neutron decay. The disadvantage
is then that the Lagrangian is only renormalisable order by order, because the coupling
constant has two negative mass dimensions, i.e. [GF ] = 1 eV−2.

The corresponding decay in the full SM is much more involved. In a yet simplified pic-
ture, the neutron decay can be seen as an exchange of W -bosons that changes the neutron
into a proton. In figure 2.1 we show the Feynman diagrams for both theories. In the match-
ing computation of Fermi theory onto the SM, we find that the W -boson mass is much
larger than all other scales involved, especially much larger than the momentum transfer
q between the neutron and the proton. Thus we may expand the W -boson propagator as
1/(q2 −m2

W ) = −1/m2
W + O

(
q2/m2

W

)
. This process is known as integrating out the heavy

particles from the low-energy effective theory. Performing this calculation more carefully,
one finds [54]

GF =

√
2

8

g2

m2
W

= 1.166× 10−5GeV−2 . (2.14)

smeft As will be explained in the next section, it is generally believed that the SM
itself is only an effective theory valid at lower energies. At energies somewhere above
the TeV scale, new physics is expected to come into play. The effects of the unknown
new physics are encrypted in effective higher-dimensional operators built out of SM fields.
Here, every operator that respects the SM symmetries is allowed. Sometimes, these new
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effects are allowed to break the accidental symmetries of the SM. The SMEFT Lagrangian
reads [55–57]

LSMEFT = LSM +
1

ΛBSM

∑
i

CiOi +
1

Λ2
BSM

∑
i

CiOi +O
(

1

Λ3
BSM

)
, (2.15)

where ΛBSM is the characteristic scale where new physics comes into play, Oi are the op-
erators built out of SM fields, and Ci are the Wilson coefficients. Without a given UV
completion, they cannot be calculated from other theories. Since ΛBSM is believed to be
large, higher dimensional operators become less and less relevant with more suppression
factors of 1/ΛBSM. At five spacetime dimensions, i.e. the first expansion term that is ad-
ded to the SM, only one operator is allowed, if one allows lepton number violation. This
operator can explain the smallness of the neutrino masses via the see-saw mechanism [58].

renormalisation group equations We have already noticed that the coupling
constants in the SM obey renormalisation group equations (RGEs) (2.12). We are now
going to derive a similar set of equations for a general EFT. We write the (renormalised)
amplitude of a given process as the product of Wilson coefficients Ci(µ) and operators
Oi(µ)

iM =
∑
i

Ci(µ)Oi(µ) . (2.16)

Since all physical observables must be independent of our choice of the renormalisation
scale µ, the equation

d

d lnµ
iM =

(
d

d lnµ
Ci(µ)

)
Oi(µ) + Ci(µ)

d

d lnµ
Oi(µ) = 0 (2.17)

must be fulfilled. The operators span a linearly independent basis, implying that we may
write

d

d lnµ
Oi(µ) = −γijOj(µ) , and γij =

d

d lnµ
lnZij(µ) , (2.18)

where Zij is the renormalisation factor. The quantity γij is known as the anomalous di-
mension. Note that it need not be diagonal, thus accounting for operator mixing. Inserting
this equation into (2.17), we find a similar relation for the Wilson coefficients

d

d lnµ
Cj(µ) = γijCi(µ) . (2.19)

Solving (2.19) and (2.18) then allows for a full control over the scale dependencies of
operators and matching coefficients, such that one can compute them at one scale where
it is most convenient, and then evolve them to the scale where they eventually need to
be evaluated. Note that in general instead of a simple multiplication as in (2.17) in many
cases the coefficients and operators need to be convoluted, resulting in the RG equations
containing convolution integrals, too.
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2.3 Beyond the Standard Model physics

Despite its tremendous success and a wonderful agreement of many of its predictions with
experimental measurements, there are many direct and indirect hints that the SM is not
the end of the quest for a universal description of nature. Here, we collect few of these
hints.

• Neutrino masses The discovery of neutrino oscillations, i.e. the observation that neut-
rinos have flavour-changing interactions, was only possible, because at least two of
the three neutrino flavours are massive [59, 60]. The SM does not provide a mechan-
ism to generate these masses.

• Quantum gravity Thus far, it has not been possible to develop a consistent quantum
field theory of gravity.

• Dark matter First proposed as an answer to the puzzle that galactic rotation curves
seem to indicate that there is more matter in a galaxy than is observable, dark matter
has since gained much more justification as an explanation for various observations
that cannot be explained with modifications of Newtonian gravity [61, 62]. Yet, its
origin and nature are still unknown. This is a real problem, because it is believed by
many physicists that dark matter makes up 27% of the energy density of the universe,
while the Standard Model baryonic matter only contributes 5% to that budget.

• Dark energy To explain the accelerated expansion of the universe, it needs to consist
to 68% of dark energy, an energy form whose nature is still unknown.

• Baryon asymmetry In the SM, matter and anti-matter are treated equally except for
the different charges. A small phase in the CKM matrix allows for a distinction of
the two matter forms, since it introduces CP-violating effects. However, this amount
of CP-violation is not enough to explain the observation that almost all observable
matter in the universe consists of “normal” matter, and not anti-matter.

Apart from these direct hints for BSM physics, there are several indirect ones, consisting
largely of incongruities between the actual observation and our understanding of nature.
Many of the following arguments could in principle be swept off the table with the argu-
ment “nature is just like that”, but as scientists we usually believe that there must be a
deeper meaning or a higher guiding principle behind. In the literature, these problems are
therefore often called naturalness or fine-tuning problems.

• Hierarchy problem The hierarchy problem consists of the question why the two fun-
damental scales of the Higgs mass and the Planck scale are separated by so many
orders of magnitude. Since the Higgs boson is an elementary scalar, it receives cor-
rections to its mass from all particles. If there are particles with masses between the
Higgs mass and the Planck scale, which is generally believed to be true, their effects
must precisely cancel out if there is no mechanism to protect the Higgs mass from
such corrections.
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• Strong CP problem In the Lagrangian of the Standard Model one is allowed to add
a CP-violating term proportional to θGG̃, where G is the gluon field strength tensor
and G̃µν = ϵµναβGαβ its dual. In contrast to the corresponding expression in QED, it
cannot be neglected due to non-perturbative instanton contributions even though it
can be written as a total derivative. This term gives rise to a non-vanishing neutron
electric dipole moment (EDM). Measurements constrain the coefficient associated
with this term to be θ ≲ 10−10, while there is no apparent reason why it should not
be of order θ ∼ O (1), like the other free parameters of the SM.

• Cosmological constant The cosmological constant problem consists of the discrep-
ancy between the small measured value of the cosmological constant, and therefore
the vacuum energy density, and the large theoretical prediction for these effects.

Note that we refrain from mentioning the various anomalies where Standard Model
predictions and measurement are in more or less strong disagreement. The reason why
we do so is that such discrepancies often vanish as they turn out to be mere statistical
fluctuations, misinterpretations, or a misunderstanding, as has been the case with multiple
anomalies in the past. However, if these anomalies are found to persist even with improved
measurements and theoretical predictions, and reach a statistical significance of more than
the usually required five standard deviations, then of course they would be included in the
first list of direct evidence for new physics. As an example how several anomalies can give
a misleading picture, we briefly present here the case of three anomalies that all seemed
to indicate that our understanding of muons is not quite correct: The RK(∗) anomalies, the
proton radius puzzle, and the anomalous magnetic moment of the muon. In the past, these
anomalies were used as a strong motivation for BSM models that feature lepton flavour
universality violation (LFUV). With the most recent developments, this motivation now
seems to be significantly weaker.

The RK and RK∗ measurements are the measurements of the double ratios RK =

Br(B+ → K+µ+µ−)/Br(B+ → K+e+e−) and RK∗ = Br(B0 → K∗0µ+µ−)/Br(B0 →
K∗0e+e−). For a long time, the most recent measurement was in disagreement with the
SM prediction of about ∼ 3σ [63,64]. However, it turned out that previously experimental
background was underestimated, and the latest analysis including new experimental data-
sets suggests instead a complete agreement of experiment and theory [65].
The proton (charge) radius is defined as the slope of the proton charge form factor at
vanishing momentum transfer, and has been a fundamental quantity in nuclear physics. It
can be determined with lepton scattering experiments or alternatively by measuring the
Lamb shift. Until most recently, all measurements seemed to indicate that whenever the
proton radius is measured using muons, the proton seemed to be smaller than when using
electrons [66]. New experimental results as well as a re-analysis of old experimental data
for scattering experiments instead show agreement of the two approaches [67–71].
The anomalous magnetic moment of the muon (g − 2)µ is the deviation of the muon g-
factor from 2. These deviations are due to quantum loop corrections. Here, the situation is
exactly the opposite as in the RK(∗) case. New measurements agree with older ones in their
respective uncertainty bands, and (g−2)µ is among the most precisely measured quantities



in physics [72, 73]. The uncertainty lies in the theory prediction, where the biggest contri-
bution that is not yet well-understood comes from the hadronic vacuum polarisation. It
has been calculated using experimental input from LEP measurements in a data-driven
approach to yield the theory initiative white paper (TI) prediction [74], and alternatively,
with lattice QCD computations by the Budapest, Marseille and Wuppertal (BMW) collab-
oration [75]. While the TI prediction is in tension with the measurement by 4.2σ, the BMW
result yields a better agreement with experiments. As long as the discrepancy in the two
theory approaches is not understood, it is unclear how meaningful the (possible) deviation
from the Standard Model really is.

Most new physics models try to tackle one or several of the problems presented above
with a minimal number of new parameters. Since no such model has been found yet to
address all of these problems, these BSM models are usually regarded as effective theor-
ies. In the construction of the Standard Model the importance of symmetries as guiding
principles was noticed. Therefore, many new physics scenarios also implement new sym-
metries that are usually broken spontaneously or directly by low-energy effects. While
there are too many BSM models to name them all, we give a few examples in the context
of models of axion-like particles (ALPs) in Part II: Flavour physics of ALPs.
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A T W O - F O L D M O T I VAT I O N

The discovery of the Higgs boson at the LHC in 2012 was a tremendous success for particle
physics in general and proved the high predictability of the SM. So far, all measurements
concerning the Higgs boson and its properties seem to agree with SM calculations.

At the LHC, Higgs bosons are produced in proton-proton collisions with a centre of
mass energy of

√
s = 8 – 13.6TeV in Run 1 – 3, respectively [20, 76]. The main production

channel is the fusion of two gluons via a virtual quark loop [19]. The numerically dominant
contribution is given by the top-quark, because the amplitude scales with the mass of
the loop-quark. It has been studied up to three-loop order in [77] with semi-numerical
methods in Higgs effective theory (HEFT). When instead the second-heaviest quark, the
bottom (or b) quark is included, estimates for its contribution to the amplitude vary in the
range between 9 – 13%, depending on whether one takes the value for the b-quark pole
mass m pole

b ≈ 4.8GeV [18] or the running mass mb(Mh) ≈ 2.6GeV [78]. Analysis of the
Run 3 LHC data for the gg → h process will be able to determine the production rate up
to this level of precision.

3.1 The need for an EFT approach

The computation of the gg → h amplitude is, however, a difficult task. While top-quark
loops are dominated by short-distance physics, the numerically subleading contributions
from light quarks are sensitive to three very different mass scales Mh ≫

√
Mhmb ≫ mb.

Note that in this work we focus on the case of a b-quark as the light quark. However, our
results are also valid for the other light quarks with the obvious substitutions. Using the
Feynman diagrammatic approach, one finds that loop corrections involving b-quarks scale
as αns ln

2n(−M2
h/m

2
b) at the nth order. Since this combination is parametrically of order

O (1), standard perturbation theory cannot be applied, because corrections from higher
loop orders must not be neglected. Hence, all terms must be resummed to all orders of
perturbation theory to obtain meaningful results. SCET achieves a factorisation of scales
already at the Lagrangian level (at leading order in power counting in small scale ratios),
allowing the computation of the individual components at scales where there are no large
corrections. It is therefore only natural to apply this EFT to the case at hand.
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3.2 Motivation from a technical point of view

In [28, 29, 79–81], SCET has been applied successfully to derive a factorisation theorem for
the h → γγ decay at next-to-leading power (NLP) in SCET power counting. This factor-
isation theorem consists of a sum of convolutions over Wilson coefficients with operator
matrix elements. It is by now well-known, that at subleading power, scale factorisation is
full of complexities. For instance, the factorisation formulae for gg → h and h → γγ are
plagued by endpoint divergences. These singularities manifest themselves as divergent
convolution integrals of component functions of the factorisation theorem. They may be
interpreted as a failure of dimensional regularisation and the MS subtraction scheme, be-
cause poles in the dimensional regulator are not removed by renormalising the individual
component functions. Naïve scale separation is hence violated. The problem of divergences
in the endpoint region is not exclusive to our Higgs production process, but in fact is reg-
ularly encountered in NLP problems. Examples include among others the factorisation
theorems of Refs. [28, 29, 80, 82–91]. One major novelty in [28, 29, 80] was the introduction
of the refactorisation-based subtraction scheme (RBS). It provided an efficient way to de-
rive an endpoint divergence-free factorisation formula by cleverly rearranging terms and
redefining matching coefficients. Showing that the RBS is also applicable in the non-abelian
gg → h case will help to establish the procedure as a state-of-the-art method to consistently
derive endpoint divergence-free factorisation formulae in SCET. As an affirmation of our
methodology, the RBS has already seen use in endpoint factorisation and resummation in
gluon thrust [90, 92].

3.3 Motivation from a phenomenological point of view

Besides its intriguing technical details, the study of gg → h via light quarks is also motiv-
ated by phenomenological arguments. As has been already mentioned, the SM predictions
and experimental measurements of the Higgs boson’s properties are in good agreement.
However, we already know that the SM is only valid as an EFT at low energies, and even
then effects remain that are yet inexplicable (see chapters 1 and 2). Since there is no strong
hint where new physics could show up first, it is important to pursue research in many
different directions and sectors of the SM. The Higgs boson of the SM is an elementary
scalar, which already gives rise to certain theoretical problems like the hierarchy problem
(see section 2.3). Deviations of Higgs production rates from their theoretical predictions
could hint to either previously misunderstood properties of the Higgs itself, or the pres-
ence of new particles which couple weakly to SM particles at the given scale and therefore
cause minor alterations. Hence, it is of highest importance to verify whether the Higgs
boson measurements and its SM predictions truly agree.
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I N T R O D U C T I O N T O S C E T

We find it instructive to first give a brief introduction to SCET as an effective field theory
before applying it to the gg → h fusion process. Here, we will establish the language com-
monly used in the literature and point out typical obstacles one encounters at subleading
powers in scale ratios. For an extensive pedagogical introduction to SCET, see Ref. [93].

4.1 Introduction to SCET

For a given process, different momentum regions are often of different importance, i.e.
contributions from some regions are suppressed by powers of a small expansion para-
meter λ. The basic concept of SCET is now to identify the leading momentum regions and
split up the particle fields according to that identification. For processes where SCET is
applicable, the leading regions most often come from hard, (anti-)collinear and soft mo-
menta [94, 95]. A hard momentum has large components into every direction; a (anti-)
collinear momentum has a large component only into one direction, whereas compon-
ents anti-parallel or perpendicular are power-suppressed; a soft momentum has power-
suppressed components in every direction. The collinear modes also define the directions
of light-like reference vectors ni. For the case of gg → h, those are the directions of the two
final-state gluons. They satisfy n21 = n22 = 0 and n1 · n2 = 2. In the following, we will often
use the abbreviations n1 ≡ n and n2 ≡ n̄. In the Higgs rest frame, we can choose them
to be nµ = (1, 0, 0, 1) and n̄µ = (1, 0, 0,−1). Much of the power of SCET stems from the
fact that the separation into hard, collinear and soft modes is, at leading power, already
achieved at the Lagrangian level, and interactions between the different sectors can be ab-
sorbed into field redefinitions. This allows us to factorise a given process into products
or convolutions of hard, collinear, and soft component functions, and compute each of
them at their natural scale. One major complexity of SCET at next-to-leading power is the
reintroduction of separation-violating interactions, as will be explained further later on.

Often it is not possible to use the coupling constant αs as an expansion parameter, since
it is accompanied by large logarithms. Instead, the ratio of soft to hard scales is used. For
gg → h, we expand in λ = mb/Mh ≪ 1. As usual in SCET, we decompose all momenta
into their light-cone components

pµ = (n1 · p)
nµ2
2

+ (n2 · p)
nµ1
2

+ pµ⊥ . (4.1)
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In a short-hand notation, one often writes pµ = (n1 · p, n2 · p, p⊥) = (p+, p−, p⊥). The hard,
collinear and soft momenta then scale as

hard h : pµ ∼ (1, 1, 1)Mh

collinear c : pµ ∼ (λ2, 1, λ)Mh

anti-collinear c̄ : pµ ∼ (1, λ2, λ)Mh

soft s : pµ ∼ (λ, λ, λ)Mh

(4.2)

The exact scaling of the soft momenta depends on the process. In the literature, one regu-
larly encounters (ultra-)soft scaling pµ ∼ (λ2, λ2, λ2)Q or Glauber scaling pµ ∼ (λ2, λ2, λ)Q

besides the soft scaling specified above, where Q is the hard scale of the given problem.
However, all soft scalings have in common that they vanish in the limit λ → 0. Similarly,
instead of or in addition to collinear momenta, one might face hard-collinear modes that
scale as pµ ∼ (λ, 1, λ1/2)Q or have other comparable scalings. These modes share the fea-
ture that one of the momentum components aligned with the collinear reference vectors is
unsuppressed.

In the low-energy effective theory, we eventually integrate out all hard modes from
the problem. This will result in a factorisation into a Wilson coefficient and a low-energy
effective operator (see chapter 2). After integrating out the hard momenta from a SCET
problem, we split the quantum fields into their collinear and soft components

ψ(x) = ψc(x) + ψs(x)

Aµ(x) = Aµc (x) +Aµs (x) ,
(4.3)

with ψ a fermion field and Aµ a gauge boson. Here and below we assume that the fields
only have a collinear component. The discussion can be extended to include the anti-
collinear case with obvious replacements. The propagator /p/p2 of the collinear fermion
field has a different scaling in each of its light-cone directions. Therefore we further split
the fermion field into

ψc = P+ψc + P−ψc = ξc + ηc , (4.4)

where
P+ =

/n/̄n

4
, P− =

/̄n/n

4
(4.5)

are projection operators fulfilling P 2
± = P±, P+ + P− = 1 and P+P− = P−P+ = 0. As a

consequence, P−ξc = P+ηc = 0. The scaling of the various fields can be deduced from their
two-point correlation functions. Eventually, one finds

ξc ∼ λ, ηc ∼ λ2, and ψs ∼ λ
3
2 . (4.6)

The gauge fields scale exactly as their corresponding momentum, i.e. a collinear gauge
field scales as a collinear momentum as given in eq. (4.2).
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Having all ingredients at hand, we may decompose the SCET-Lagrangian as

LSCET = Lc + Ls + Lint . (4.7)

The soft part is an exact copy of the QCD Lagrangian, where all fields are replaced by
their soft counterparts. Using eq. (4.4) and the properties of the projection operators, we
can simplify the collinear Lagrangian to

ξ̄c
/̄n

2
in ·Dcξc + ξ̄ci /Dc⊥ηc + η̄ci /Dc⊥ξc + η̄c

/n

2
in̄ ·Dcηc , (4.8)

where iDµ
c = i∂µ+gAµc . Since ηc is power-suppressed in comparison with ξc, it is most con-

venient to integrate out the small components from the Lagrangian using their equations
of motion1. The collinear Lagrangian then simplifies to

Lc = ξ̄c
/̄n

2

[
in ·Dc + i /Dc⊥

1

in̄ ·Di
/Dc⊥

]
ξc . (4.9)

At leading power in SCET all modes are completely decoupled, i.e. there are no interac-
tions between the different sectors. Interactions between soft and (anti-)collinear particles
are power-suppressed [96, 97]. Furthermore, interactions of collinear fermions with anti-
collinear gauge fields would create hard momenta, and hence are not part of the low-
energy theory.

When matching the full theory onto SCET, interactions between collinear and anti-
collinear fermions can be mediated through external currents, where the necessary hard
momentum transfer is provided by an external gauge field. The problem is that even at
leading power insertions of an arbitrary number of derivatives in the direction of the large
momentum component (i.e. n̄ · ∂ξc ∼ λ0ξc) as well as an arbitrary number of gauge field
insertions (n̄ · Aµ ∼ λ0) is allowed. To account for this fact, we could work with infinitely
many operators and Wilson coefficients, one for each power of derivative and/or gauge
field insertion. However, there is a more elegant way to deal with this problem: We allow
for non-local operators in SCET that are smeared along the light-cone direction of the large
momentum component.

ξc(x)→ ξc(x+ tn̄) =
∞∑
n=0

tn

n!
(n̄ · ∂)n ξc(x) . (4.10)

One problem that arises in this treatment is that with fields at different spacetime points,
gauge invariance is not manifest any more. To preserve the gauge symmetry, we must
transport the gauge transformation from one spacetime point at x to the one at x+ tn̄. This
can be achieved by using Wilson lines. For example, the bilinear

ξ̄c(x+ tn̄)[x+ tn̄, x]
/̄n

2
ξc(x) (4.11)

1 The resulting determinant is independent of the gauge fields and therefore no physical consequence follows
from removing ηc [93].
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with the Wilson line

[x+ tn̄, x] = P exp

ig t∫
0

ds n̄ ·Ac(x+ tn̄)

 (4.12)

is gauge invariant under the collinear gauge transformation Vc(x) = exp[iαas(x)t
a], since

the fields and the Wilson line transform as

ξc(x)→ Vc(x)ξc(x) ,

[x+ tn̄, x]→ Vc(x+ tn̄)[x+ tn̄, x]V †
c (x) .

(4.13)

The symbol P in eq. (4.12) denotes a path ordering of the matrices at different times such
that those at later times should be to the left of the ones at earlier times. In SCET, it is often
useful to define a Wilson line aligned with n̄ that runs to infinity

Wc(x) = [x, x−∞n̄] . (4.14)

The finite segment can then be expressed as

[x+ tn̄, x] =Wc(x+ tn̄)W †
c (x) . (4.15)

This introduction of the infinite length Wilson line now allows us to define gauge invariant
building blocks [97, 98]

Xc(x) ≡W †
c (x)ξc(x)

Aµ
c ≡W †

c [D
µ
cWc] .

(4.16)

Hence, the bilinear in eq. (4.11) can be written as

ξ̄c(x+ tn̄)[x+ tn̄, x]
/̄n

2
ξc(x) = X̄c(x+ tn̄)

/̄n

2
Xc(x) . (4.17)

SCET operators can then easily be built out of these building blocks. Eventually, at NLP
we will also introduce soft Wilson lines Sn and Sn̄ in the (anti-)collinear direction. They
are defined like their collinear counterparts with the replacement Ac → As. As an example
of a SCET operator built out of building blocks, we may now write down the most general
leading-power SCET current operator as

Jµ(x = 0) =

∫
ds

∫
dt CV (s, t)X̄c(tn̄)γ

µ
⊥Xc̄(sn) . (4.18)

Here, CV (s, t) is the Fourier transform of the hard component function. It corresponds to
the integral where all momentum components are of the order of the large scale. Note that
in the case of x ̸= 0, a multipole expansion of the fields is needed in order to sustain a
consistent power counting [99].
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As is common for a non-local EFT, Lorentz invariance is not obviously manifest in SCET.
Therefore, we need to require that operators are invariant under the following transform-
ations of the reference vectors n and n̄ [100]

(I)

{
nµ → nµ +∆µ

⊥

n̄µ → n̄µ
, (II)

{
nµ → nµ

n̄µ → n̄µ + ϵµ⊥

, (III)

{
nµ → (1 + α)nµ

n̄µ → (1− α)n̄µ
. (4.19)

The four-vectors ∆⊥ and ϵ⊥ obey

∆⊥ · n = ∆⊥ · n̄ = ϵ⊥ · n = ϵ⊥ · n̄ = 0 . (4.20)

Furthermore, they must count as O (λ) or smaller to not disrupt the power counting. There
is no such restriction to the parameter α in (III). The invariance of operators under (I) – (III)
is known as reparametrisation invariance (RPI), and is a central concept in SCET.

4.2 Resummation

As was mentioned earlier, in SCET problems, the strong coupling constant is for usual
accompanied by large logarithms. To obtain sensible predictions for observables, it is thus
necessary to resum those logarithms to all orders of perturbation theory. To give an ex-
ample how this procedure works in general, we briefly recapitulate the resummation of
the Sudakov form factor in [101]. Its Feynman diagram is given by two (anti-)collinear fer-
mions with incoming momenta p and −k, respectively, coupling to a boson with outgoing
momentum q = p − k, which provides the necessary hard momentum transfer. This is a
leading order process in SCET, and hence the renormalised form factor can be expressed
as

F (Q2,K2, P 2) = C(Q2, µ)J̄(K2, µ)J(P 2, µ)S(Λ2
s, µ) . (4.21)

Here, Q2 = −q2, K2 = −k2, P 2 = −p2 and Λ2
s = K2P 2/Q2. C(Q2, µ) is the hard Wilson

coefficient, J(P 2, µ) and J̄(K2, µ) are the (identical) collinear functions into the two collin-
ear directions, and S(Λ2

s, µ) is the soft function. Since the form factor is a gauge-invariant
quantity, all dependence on the renormalisation scale µ must drop out, eventually. The
renormalisation group (RG) equations for the component functions read

d

d lnµ
C(Q2, µ) =

[
CFΓcusp(αs) ln

(
Q2

µ2

)
+ γC(αs)

]
C(Q2, µ)

d

d lnµ
J(P 2, µ) = −

[
CFΓcusp(αs) ln

(
P 2

µ2

)
+ γJ(αs)

]
J(P 2, µ)

d

d lnµ
S(Λ2

s, µ) = −
[
CFΓcusp(αs) ln

(
Λ2
s

µ2

)
+ γS(αs)

]
S(Λ2

s, µ) .

(4.22)

The extra logarithmic dependence on µ is due to the presence of characteristic Sudakov
double-logs in the one-loop amplitude of the form αnsL

2n with L such a large logarithm
[93]. The function Γcusp is the cusp anomalous dimension. The label “cusp” is linked to the
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renormalisation of Wilson lines that form a cusp, e.g. a Wilson line that runs along n̄µ

from −∞ . . . 0 and back along nµ from 0 . . .∞. The cusp anomalous dimension is then
proportional to the cusp angle at 0 [102–104]. For the cancellation of all µ-dependencies
to happen for the form factor, it is crucial that the RGEs of all component functions (4.22)
feature the same coefficient for the extra logarithmic piece.

The solutions to (4.22) sum up the logarithmic terms to all orders in perturbation theory.
As an illustration, we give the solution for the hard coefficient:

C(Q2, µ) = exp


µ∫

µh

[
CFΓcusp(αs) ln

(
Q2

µ′2

)
+ γC(αs)

]
d ln(µ′)

C(Q2, µh)

= U(µh, µ)C(Q
2, µh) .

(4.23)

In the last line, the function U can be regarded as an evolution function that runs down
the scale from µh to µ. Note that because for the hard function the large logarithm is of
the form ln(Q2/µ2), if we choose µh ∼ Q, there are no large logarithms left in this problem.
This means, that eq. (4.23) is valid for all values µ, where αs(µ) remains perturbative. This
is a vast improvement over the expression for the renormalised coefficient, which through
its dependence on αs ln

2(Q2/µ2) cannot be used in the regime where µ ≫ Q or µ ≪ Q.
When evaluating the transfer function U , one exchanges the logarithmic dependence on
the scales for a dependence on coupling constants in practice, eventually reaching

U(µh, µ) = exp [2CFS(µh, µ)− aγC (µh, µ)]
(
Q2

µ2h

)CF aΓcusp (µh,µ)

. (4.24)

Here,

S(ν, µ) = −
αs(µ)∫
αs(ν)

dα
Γcusp(α)

β(α)

α∫
αs(ν)

dα′

β(α′)

aγi = −
αs(µ)∫
αs(ν)

dα
γi(α)

β(α)

(4.25)

with i = {C,Γcusp} are RG-functions. The solution to the RG equations for the collinear
and soft functions take a similar form. The procedure of eliminating large logarithms in
favour of coupling constants at different scales is known as renormalisation group improved
perturbation theory.

4.3 SCET at subleading power

At subleading power, SCET is full of complexities. The factorisation theorems consist of
sums of convolutions over Wilson coefficients and operator-matrix elements. Additionally,
scale separation is not obvious due to the reintroduction of interactions between the dif-
ferent scales. A common feature of NLP SCET problems is the occurrence of endpoint
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divergences. They manifest themselves as divergent convolution integrals over individual
component functions. Some of these singularities can be regularised using dimensional reg-
ularisation, while others still remain. One may hence interpret the presence of endpoint
divergences as a failure of dimensional regularisation and the modified minimal subtrac-
tion (MS) scheme. In general, it is therefore necessary to introduce an additional analytic
(or rapidity) regulator that is associated with its own regularisation scale. Eventually, all
dependence on rapidity regulators and the regularisation scale cancels among the different
terms of the factorisation theorem. However, regularisation of endpoint divergences and
renormalisation of UV divergences does not commute, spoiling the naïve scale separation,
and preventing the derivation of a well-defined, renormalised factorisation theorem. This
provides a bottleneck for all NLP problems.

In [28,80], the RBS has been introduced. It addresses the problem of endpoint divergent
terms in a systematic way. Its basis is the observation that the integrands of the divergent
integrals in different terms of the factorisation formula become identical in the singular
region. With its help, one is able to derive exact d-dimensional refactorisation conditions,
which subsequently allow for a rearrangement of terms in the factorisation theorem that
is free of endpoint divergences. The importance of the RBS has also been emphasised in
works about gluon thrust at NLP [89,90,92]. Up to this date, it is the only known systematic
approach how to deal with endpoint factorisation at subleading power. In this thesis, we
will generalise the approach to non-abelian final states.





5
FA C T O R I S AT I O N A N D R E S U M M AT I O N O F
G L U O N - G L U O N T O H I G G S F U S I O N

The foundation of this treatise is the derivation of a renormalised factorisation theorem, the
corresponding RG equations and eventually the resummation of the light quark induced
Higgs decay h→ γγ in Refs. [28,29,79–81]. Here, we generalise the method to non-abelian
external states, namely the Higgs production process gg → h. Throughout this thesis, we
will refer to the former as the “photon” or the “abelian case”, and the latter will be called
the “gluon” or “non-abelian case”. The results of this work have already been published
in short form in [1, 3].

5.1 Factorisation of gg → h

In this section, we apply SCET to disentangle the physics at the different relevant energy
scales and obtain a (bare) factorisation theorem for the light quark induced gg → h form
factor. The Feynman diagram for the leading order process is shown in figure 5.1. Here
and in the following, we will focus on the numerically most important case where the
light quark is the b-quark. We use λ = mb/Mh as our small expansion parameter. Note
that because of the quark loop, the amplitude is proportional to the light quark mass
M∼ mb = λMh. Hence, this is a power-suppressed process.

b

Figure 5.1: Leading order Feynman diagram for the fusion process gg → h via light quarks. The
amplitude is proportional to the quark mass, giving a power-suppressed process.
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E

Mh mb ΛQCD

⟨Ogg⟩Fgg

Figure 5.2: Illustration of the matching process for gg → h. The perturbative physics above mb are
combined in the form factor Fgg , which is calculated using SCET. All non-perturbative
effects are incorporated in the operator Ogg , whose matrix element yields the gluon
distribution functions in the proton when squared and integrated over phase space.

5.1.1 Decoupling perturbative and non-perturbative physics

There are no free gluons in nature, because they carry colour charge and due to confine-
ment all physical states must be colour neutral. Therefore, Higgs bosons are produced
at colliders like the LHC from proton-proton collisions, which then provide the necessary
gluons. For a full treatment of gg → h, it is therefore crucial to disentangle the perturbative
physics of gluon-gluon to Higgs fusion at the parton level and the non-perturbative part
of extracting the gluons from the proton. We embody all non-perturbative physics in the
EFT called LEFT (low-energy EFT), which is valid below the b-quark mass scale. The only
operator left in LEFT is the two-gluon operator

Ogg =
1

g2s
G⊥µ,a
n G⊥a

n̄µ (5.1)

built out of two collinear gluon fields along the directions n and n̄. The perturbative phys-
ics above the scale mb is captured in the form factor Fgg. At the low scale, we match onto
Ogg in LEFT, therefore we write

⟨pp|Opert|h⟩ = Fgg⟨pp|Ogg|h⟩ , (5.2)

where Opert is the sum of relevant operators encoding the perturbative physics. In this
sense, the form factor is the non-abelian equivalent to the amplitude in h→ γγ1. Since we
interpret Fgg as a matching coefficient, it can be calculated using on-shell gluon states. The
matching is shown in figure 5.2. The operator Ogg needs to be renormalised. Consequently,
its matrix element is scale dependent. This scale dependence will also manifest itself in ad-
ditional IR-poles that do not cancel out among different terms in the form factor. When the
whole amplitude is squared and integrated over phase space, the squared matrix element
of Ogg will yield the product of two well-known PDFs of the gluon in the proton.

To compute the perturbative part of gg → h via light quarks at the parton level, we
use SCET. In a two-step matching procedure we first match full QCD to an intermediate
theory SCET1 by integrating out hard modes. Further decoupling hard-collinear modes
then yields SCET2, which is the final theory used to compute Fgg.

1 In contrast to gluons, free photons exist in nature. Therefore this additional matching step onto low-energy
operators is omitted for h → γγ.
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s

hc

h

h h H1 ·

H2(z)⊗
hc h

hc hc

z

H3 ·

Figure 5.3: Leading momentum regions contributing to the matching of SCET1 to QCD in gg → h
via light quarks. The symbol ⊗ in the second row denotes a convolution integral over z.

5.1.2 Derivation of the effective SCET operators

We use the method of regions [105–107] to identify the leading contributing momentum
modes in the full QCD picture. We find the relevant modes to be in the hard, collinear,
anti-collinear and soft sector, obeying the scaling given in eq. (4.2). In an intermediate
step, when there are soft exchanges present, we need to include regions with a hard-
collinear scaling pµ ∼ (λ, 1, λ1/2) and the first two entries exchanged for anti-hard-collinear
momenta. The derivation of the QCD→ SCET1 matching is portrayed in figure 5.3. When
all loop momenta of the quark loop are of the order of the hard scale, the loop is shrunken
to a point-like interaction connecting the Higgs boson directly to two gluon fields along
the directions n and n̄, yielding the SCET1 operator

O1 =
mb

g2s
hG⊥µ,a

n G⊥a
n̄µ . (5.3)

Here, h denotes the Higgs field. Note that we pulled a factor g−2
s out in front, because the

Feynman rule for the gauge covariant gluon field contains a factor of the strong coupling
constant. From here on, fields without arguments are located at the spacetime point x = 0.
The symbol G stands for the gauge invariant building block of the collinear gluon field. The
second operator arises, when the loop momentum is collinear with one of the gluon dir-
ections. The corresponding operator contains a Higgs field, an anti-collinear gluon field in
the n̄ direction, and two collinear b-quark fields, which annihilate to produce the collinear
gluon moving along the direction n.

O2(z) = h

[
X̄nγ

µ
⊥T

a /̄n1
2
δ(zn̄1 · k1 + in̄1 · ∂)Xn

]
G⊥a
n̄µ (5.4)
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The variable z ∈ [0, 1] denotes the fraction of the n-collinear momentum k1 of the gluon
that is carried by one of the n-collinear quarks, denoted by the symbol X. Note that there
is an equivalent contribution coming from interchanging the collinear n with the anti-
collinear n̄ region, hence giving rise to an additional factor 2 for this contribution to the
factorisation theorem. The third operator consists of the time-ordered product of the scalar
Higgs current with two insertions of the subleading power SCET Lagrangian, in which
hard-collinear fields are coupled to a soft field [108].

O3 = T̂

{
hX̄nXn̄, i

∫
dDxL(1/2)qξn

(x), i

∫
dDxL(1/2)ξn̄q

(y)

}
+ h.c. . (5.5)

In the matching SCET1 → SCET2, one integrates out these hard-collinear fields. In practice,
for O1 and O2, the hard-collinear fields are simply replaced by their collinear counterparts,
whereas O3 can be further factorised into a double convolution of two jet functions and
one soft function, which we are going to demonstrate in the following.

In eq. (5.5), the two subleading power Lagrangian insertions read [108]

L(1/2)qξn
(x) = q̄s(x−)W

†
n(x)i /D

⊥
n ξn(x) ,

L(1/2)ξn̄q
(y) = ξ̄n̄(y)

[
i /D

⊥
n̄Wn̄(y)

]
qs(y+) ,

(5.6)

where the soft quark fields qs need to be multipole expanded for consistency [96, 108]. As
for momenta, we denote xµ− = (n̄ · x)nµ

2 for spacetime points, equivalently. Introducing
gauge-invariant building blocks, we may transform eq. (5.6) into

L(1/2)qξn
(x) = q̄s(x−)/G

⊥
n (x)Xn(x) ,

L(1/2)ξn̄q
(y) = X̄n̄(y)/G

⊥
n̄ (y)qs(y+) .

(5.7)

Consequently, we find for O3

O3 =h(0)

∫
dDx

∫
dDy T̂

{[
/G⊥
n (x)Xn(x)

]αi
X̄βjn (0)

}
T̂

{
X
βk
n̄ (0)

[
X̄n̄(y)/G

⊥
n̄ (y)

]γl}
× T̂

{[
S†
n̄(y+)qs(y+)

]γl
[q̄s(x−)Sn(x−)]

αi
[
S†
n(0)Sn̄(0)

]jk}
+ h.c. ,

(5.8)

where greek letters represent Dirac indices and latin letters represent colour indices. The
symbol Sni denotes the soft Wilson line in the respective direction. The first two time-
ordered products can be interpreted as operators matching onto two jet functions into the
two collinear directions, i.e.∫

dx+

∫
dD−2x⊥T̂

{[
/G⊥
n (x)Xn(x)

]αi
X̄βjn (0)

}
= 2T aij

[
γ⊥µ

/n

2

]αβ ∫ dℓ+
2π

e−iℓ+·x− iJ(ℓ+n̄ · P)
ℓ+ + i0

G
µ,a
n⊥(0) .

(5.9)

Here, n̄ · P = −in̄ · ∂ is a differential operator projecting out the large component of the
collinear momentum carried by the gluon field, ℓ+ is the momentum carried away by the
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multipole-expanded soft quark. A similar relation holds for the anti-collinear jet function
with the obvious replacements. The remaining soft operator is then given by

Wγα
ab (x−, y+) = T̂

{
TrSn̄(0)T bSn̄(y+)qγs (y+)q

α
s (x−)Sn(x−)T

aS†
n(0)

}
, (5.10)

where Tr is a trace over colour indices. In the photon case [28], the two colour matrices
T a(b) were absent, which allowed the authors to combine two semi-finite soft Wilson lines
that travel from spacetime point 0 to ∞ along n̄ and back to y+ along the same direction,
into one finite soft Wilson line

Sn̄(0)S
†
n̄(y+) = Sn̄(0, y+) = P exp

igs 0∫
y+

dt n̄ ·Gas(tn̄)T a
 . (5.11)

For our studies, this is not trivially possible due to insertions of colour matrices at y =∞.
However, we can use the identity

Sn̄(x)T
bS†
n̄(x) = (Yn̄(x))ab T b , (5.12)

with Yn̄ a semi-finite soft Wilson line in the adjoint representation that extends from 0 to
infinity along n̄. In Feynman diagrams, we will draw these soft Wilson lines in the adjoint
as red double lines. The soft operator (5.10) can hence be written as

Wγα
ab (x−, y+) = T̂

{
Trc (Yn̄(0))bd T d Sn̄(0, y+) qγs (y+) q̄αs (x−)Sn(x−, 0) (Yn(0))ac T c

}
.

(5.13)
To further simplify the calculation, we decomposeW into the different spinor structures

Wγα(x−, y+) =

∫
dDℓ

(2π)D
e−iℓ·(y+−x−)

[
S1(ℓ) + /ℓS2(ℓ) +

/n

n · ℓ S3(ℓ) +
/̄n

n̄ · ℓ S4(ℓ)

+
/ℓ/n

n · ℓ S5(ℓ) +
/̄n/ℓ

n̄ · ℓ S6(ℓ) +
/̄n/n

4
S7(ℓ) +

/̄n/ℓ/n

2
S8(ℓ)

]γα
.

(5.14)

Here, all Si are scalar functions. Eventually, the trace over spinor indices will be taken,
leaving only S1 to contribute to the final soft function. Moreover, we can integrate out the
perpendicular component of the loop momentum by defining

S(ℓ−ℓ+) =
∫

dD−2ℓ⊥
(2π)D−2

S1(ℓ) . (5.15)

With these simplifications, we can derive the final expression for O3 as

O3 =h(0)

∫
dℓ+

ℓ+ + i0

∫
dℓ−

ℓ− − i0

∫
dx−
2π

∫
dy+
2π

e−iℓ·(y+−x−) Tr
[
γ⊥µ

/n

2

/̄n

2
γ⊥ν W(x−, y+)

]
× J(ℓ+n̄ · P)Ga,µn,⊥(0) J(ℓ−n · P)G

a,ν
n̄,⊥(0)

=h(0)Ga,µn,⊥(0)G
a,ν
n̄,⊥(0)

∞∫
0

dℓ+
ℓ+

∞∫
0

dℓ−
ℓ−

J(−Mhℓ+)J(Mhℓ−)S3(ℓ−ℓ+) ,

(5.16)
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J

S3

J

Figure 5.4: Factorisation of O3 in SCET2. In the soft function, green double lines represent soft
Wilson lines, red double lines soft Wilson lines in the adjoint representation, and the
green single line denotes the soft quark propagator. The rectangular line-shape means
that the soft function is defined as the discontinuity of the object shown.

E

Mh

√
mbMh mb ΛQCD

H1 S1

H2 S2

H3 J · J S3

〈Ogg〉

Fgg

O3

Figure 5.5: Illustration of the relevant energy scales in the gg → h factorisation process. The dif-
ferent objects are shown at their respective scale. At the scale mb the perturbative form
factor Fgg is matched onto the low-energy effective theory LEFT, where only the op-
erator Ogg consisting of two collinear gluons contributes. The LEFT incorporates all
non-perturbative physics.

and

S3(ℓ−ℓ+) =
1

2πi

[
S(ℓ−ℓ+ + i0)− S(ℓ−ℓ+ − i0)

]
, (5.17)

is the soft function defined as the discontinuity of S(ℓ+ℓ−). This follows from the analytical
structure of the integrand in the first line of eq. (5.16). The jet function depending on ℓ−

(ℓ+) has a pole at ℓ− = i0 (ℓ+ = i0), and S(ℓ+ℓ−) features a cut at ℓ+ℓ− = −i0 that extends
to infinity. For ℓ+ < 0 (ℓ− < 0), this cut is located above the real axis, allowing us to
close the integration contour in the lower half-plane and thus yielding no contribution
for the integral. If instead ℓ+ > 0 (ℓ− > 0), the discontinuities must be included in the
integral, leading to the expression above. The factorisation of O3 into a convolution of two
jet functions and a soft function in SCET2 is portrayed in figure 5.4.

Having the expressions for all operators in the low-energy effective theory at hand, we
may state the matching onto the LEFT (5.2) more precisely as

⟨pp|Oi|h⟩ = Si ⟨pp|Ogg|0⟩ ; i = 1, 2 ,

⟨pp|O3|h⟩ = J ⊗ J ⊗ S3 ⟨pp|Ogg0⟩ .
(5.18)

The full matching procedure is shown graphically in figure 5.5.
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5.1.3 Bare factorisation theorem and two-loop expressions for the component
functions

The bare factorisation theorem for the form factor of the gg → h process via light quarks
reads

Fgg(gg → h) =H
(0)
1 S

(0)
1 + 4

1∫
0

dz

z
H̄

(0)
2 (z)S

(0)
2 (z)

+H
(0)
3

∞∫
0

dℓ−
ℓ−

∞∫
0

dℓ+
ℓ+

J (0)(Mhℓ−)J
(0)(−Mhℓ+)S

(0)
3 (ℓ+ℓ−) ,

(5.19)

where the function H̄2 is defined via

H2(z) =
H̄2(z)

z(1− z) . (5.20)

The pre-factor 4 in the second term is due to a symmetry relating z ↔ 1 − z, and the fact
that there are two equal contributions from the two collinear directions. The factorisation
formula (5.19) is problematic, because the second and third term diverge in the limits
z → 0 and ℓ± →∞, respectively. Before we show how to solve this problem with the RBS,
we want to give the expressions for the component functions up to two-loop order.

The hard matching coefficient H(0)
1 is given by

H
(0)
1 = δabTF

yb,0√
2

αs,0
π

[
H

(0)
1,0 +

αs,0
4π

H
(0)
1,1 + · · ·

]
, (5.21)

with

H
(0)
1,0 = (−M2

h − i0)−ϵeϵγE (1− 3ϵ)
2Γ(1 + ϵ)Γ2(−ϵ)

Γ(3− 2ϵ)
,

H
(0)
1,1 = (−M2

h − i0)−2ϵ

{
CF

[
− 1

2ϵ4
+

3

2ϵ3
− 5π2

12ϵ2
− 1

ϵ

(
29ζ3
3

+
3π2

4
+ 12

)
− 72− π2 − 19ζ3 −

3π4

16

]
+ CA

[
− 3

2ϵ4
+

1

ϵ2

(
5 +

7π2

12

)
+

18ζ3 + 14

ϵ

+20− 2π2

3
+ 18ζ3 +

73π4

240

]}
.

(5.22)

Similarly, we find
H

(0)
2 (z) =

yb,0√
2

[
H

(0)
2,0 (z) +

αs,0
4π

H
(0)
2,1 (z) + · · ·

]
, (5.23)
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H1 =

H2(z) =

H3 =

+ + + +

++ + + +

+ + + + + +

+

Figure 5.6: Feynman diagrams contributing to the hard matching coefficients Hi, i = 1, 2, 3. Note
that we omit mirror diagrams in the rows for H1 and H2.

with

H
(0)
2,0 (z) =

1

z
+

1

1− z ,

H
(0)
2,1 (z) = (−M2

h − i0)−ϵ eϵγE
Γ(1 + ϵ)Γ2(−ϵ)

Γ(2− 2ϵ)

×
{
CF

[
2− 4ϵ− ϵ2

z1+ϵ
− 2(1− ϵ)2

z
− 2(1− 2ϵ− ϵ2)1− z

−ϵ

1− z

]

− CA
[
2− 4ϵ− ϵ2

z1+ϵ
−
(
2(1− 2ϵ− ϵ2) + ϵ2

1− ϵ

)
1− z−ϵ
1− z

]
+ (z → 1− z)

}
,

(5.24)

and

H
(0)
3 = −yb,0√

2

[
1− CFαs,0

4π

(
−M2

h − i0
)−ϵ

eϵγE (1− ϵ)2 2Γ(1 + ϵ)Γ2(−ϵ)
Γ(2− 2ϵ)

]
(5.25)

for the hard coefficients of the second and third term of the factorisation theorem. Note
that H3 is the same as in the h→ γγ process. Feynman diagrams contributing to the three
hard matching coefficients are portrayed in figure 5.6. The bare soft function of the first
term is S(0)

1 = mb,0 and is exact to all orders of perturbation theory. The soft function of
the second term reads

S
(0)
2 (z) = mb,0TF δab

αs,0
4π

{
2eϵγE (m2

b,0)
−ϵΓ(ϵ)

+
αs,0
4π

(m2
b,0)

−2ϵ

[
CFKF (z) + CAKA(z) + (z → 1− z)

]}
,

(5.26)
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with

KF (z) =
1

ϵ2
(2Lz + 3) +

1

ϵ

(
L2
z − 2LzLz̄ −

1

2
− π2

3

)
+ 12Li3(z) + 2(1− 2z − 2Lz) Li2(z) +

L3
z

3
+ 2
[
z + Lz̄

]
L2
z

+

(
4Li2(z̄)− Lz̄ − 1− 3z − π2

3

)
Lz + 3 +

π2

3
− 8ζ3 +O(ϵ) ,

KA(z) =
−2Lz
ϵ2

+
1

ϵ

(
−L2

z +
1

2

)
− 8Li3(z) + 2Li2(z)

(
z − 2Lz̄

)
− L3

z

3

− 4L2
zLz̄ − zL2

z +

(
1 + 2z +

π2

3

)
Lz + 1− π2

6
+ 8ζ3 +O(ϵ) ,

(5.27)

and Lz = ln z and Lz̄ = ln(1− z).
We calculate the jet function of the third term up to two-loop order. This is needed

to predict the large logarithms in the three-loop expression for the form factor based on
iteratively solving the RG equations later in section 5.3. Up to NNLO, the jet function reads

J (0)(p2) = 1 +
αs,0
4π

(−p2 − i0)−ϵJ (0)
1 +

(αs,0
4π

)2
(−p2 − i0)−2ϵJ

(0)
2 , (5.28)

with

J
(0)
1 =(CF − CA)eϵγE

Γ(1 + ϵ)Γ2(−ϵ)
Γ(2− 2ϵ)

(
2− 4ϵ− ϵ2

)
J
(0)
2 =C2

FKFF + CF CAKFA + C2
AKAA + CF TF nfKF nf

+ CATF nfKAnf
,

(5.29)

where

KFF =
2

ϵ4
− 1

ϵ2

(
2 +

π2

3

)
− 1

ϵ

(
4 +

π2

2
+

46ζ3
3

)
− 13

2
− π2

6
− 39ζ3 +

π4

5
+O(ϵ) ,

KFA = − 4

ϵ4
+

11

6ϵ3
+

1

ϵ2

(
139

18
+
π2

2

)
+

1

ϵ

(
319

27
− π2

18
+

80ζ3
3

)
+

1087

162
− 83π2

54
+

485ζ3
18

− 49π4

360
+O(ϵ) ,

KAA =
2

ϵ4
− 11

6ϵ3
− 1

ϵ2

(
103

18
+
π2

6

)
− 1

ϵ

(
413

54
− 11π2

18
+

34ζ3
3

)
+

100

81
+

47π2

27
+

259ζ3
18

− 23π4

360
+O(ϵ) ,

KF nf
= − 2

3ϵ3
− 10

9ϵ2
− 1

ϵ

(
20

27
− π2

9

)
+

230

81
+

5π2

27
+

64ζ3
9

+O(ϵ) ,

KAnf
=

2

3ϵ3
+

10

9ϵ2
+

1

ϵ

(
11

27
− 2π2

9

)
− 491

81
− 10π2

27
− 106ζ3

9
+O(ϵ) ,

(5.30)

with TF = 1
2 , and nf denotes the number of active quark flavours. The coefficients KFF

and KF nf
are identical to the corresponding coefficients in the photon case derived in [81],

but for the remaining coefficients no simple relation between the two jet functions can be
found past one-loop order.

As has been explained before, the soft function features additional soft Wilson lines
in the adjoint representation when compared to its abelian counterpart, giving rise to
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“tipi-tent” Feynman diagrams (see figure 5.7). Therefore, one-loop corrections include ex-
changes of gluons between Wilson lines in the fundamental and adjoint representations.
Eventually, the soft function reads

S
(0)
3 (w) = −TF δab αs,0

π
mb,0

[
S(0)
a (w) θ

(
w −m2

b,0

)
+ S

(0)
b (w) θ

(
m2
b,0 − w

)]
, (5.31)

with

S(0)
a (w) =

eϵγE

Γ(1− ϵ)
(
w −m2

b,0

)−ϵ 1 + CFαs,0
4π

2eϵγE
3− 2ϵ

1− 2ϵ
Γ(1 + ϵ)

(
m2
b,0

)1−ϵ
w −m2

b,0


+
αs,0CF
4π

{(
w −m2

b,0

)−2ϵ
[
− 2

ϵ2
+

6

ϵ
+

2

ϵ
ln (1− r) + 12− π2

3

+

(
24− 3π2 +

4ζ3
3

)
ϵ

]
+
(
m2
b,0

)−2ϵ [− 2Li2 (r) + 2 (ln r + 1) ln (1− r)

− 3 ln2 (1− r)
]}

+
αs,0CA
4π

{(
w −m2

b,0

)−2ϵ
[
2

ϵ2
− π2

3
− 16

3
ζ3ϵ

]

+
(
m2
b,0

)−2ϵ [
4Li2 (r) + 2 ln2 (1− r)

]}
,

S
(0)
b (w) =

(
CF −

CA
2

)
αs,0
4π

(
m2
b,0

)−2ϵ
[
−4

ϵ
ln

(
1− 1

r

)
+ 6 ln2

(
1− 1

r

)]
, (5.32)

where r = m2
b,0/w.

Feynman diagrams for the soft and jet functions are shown in figures 5.7 and 5.8, re-
spectively. For the calculation in practice, we adopt light-cone gauge n̄ · Gn = 0 for the
computation of S2 and J , such that the collinear Wilson lines simplify to Wn = 1. The
smaller number of Feynman diagrams and the absence of ghost contributions allows for
a more streamlined computation compared to standard Feynman or general Rξ gauges.
Nonetheless, we have checked the validity of our calculations in a general covariant gauge.
The advantages of light-cone gauge come at the cost of introducing a more complicated
propagator for the gluons

i

l2 + i0

(
−gµν + n̄µlν + n̄ν lµ

n̄ · l

)
, (5.33)

where we do not adopt the Mandelstam-Leibbrandt prescription to regularise the singu-
larity at n̄ · l = 0, see [109] for further details. The two-loop diagrams of the jet function
were computed by using partial-fraction decomposition after applying simplifications to
the Dirac and Lorentz structures. Each diagram can then be mapped onto a linear combin-
ation of scalar two-loop integrals∫

ddl1

∫
ddl2

1∏12
i=1Daii

, (5.34)
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Figure 5.7: Feynman diagrams contributing to the soft functions S2(z) (top row) and S3 (bottom
row). The red double lines in S3 denote soft Wilson lines in the adjoint representation.
They are peculiar to the gluon case and lead to “tipi-tent” diagrams.

where the propagators are (omitting the −i0 prescription)

D1 = −l21 , D2 = −l22 , D3 = −(l1 + l2)
2 ,

D4 = −(l1 + p)2 , D5 = −(l2 + p)2 , D6 = −(l1 + l2 + p)2 ,

D7 = −(l1 + p− k)2 , D8 = −(l2 + p− k)2 , D9 = −(l1 + l2 + p− k)2 ,
D10 = −n̄ · l1 , D11 = −n̄ · l2 , D12 = −n̄ · (l1 + l2) .

(5.35)

With the help of algebraic relations, we have been able to express all master integrals in
terms of integrals encountered in the calculation of the jet function with an external photon
[81]. The individual integrals are then either evaluated directly by the method of Feynman
parameters or by using dimensional recurrence relations [110,111]. The expansion in ϵ was
performed using HyperInt [112] and HypExp [113].

5.1.4 Refactorisation theorems and regularisation of endpoint divergences

As has been explained earlier, the bare factorisation theorem (5.19) suffers from endpoint
divergences when the integrands of the second and third term approach z → 0 and
ℓ± → ∞, respectively. From the physical point of view, they stem from the region of
parameter space where a soft quark becomes collinear or vice versa, hence violating the
separation between soft and collinear phase space regions. In principle, one possibility to
cure these divergences would be to introduce a new so-called rapidity regulator η related
to the rapidity scale ν to regularise the singularities. Since regularisation and renormal-
isation do not commute in general, it is important to first expand in η before expanding
in the the dimensional regulator ϵ. In the sum of all terms, the dependence of the form
factor on the rapidity regulator and scale would cancel among the second and third term.
Moreover, this indicates that both terms should have a closely related structure in the sin-
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Figure 5.8: Feynman diagrams contributing to the jet function up to two-loop order in light-cone
gauge. The left cross corresponds to the spacetime point x, where the soft momentum ps
flows out, and the right cross corresponds to the point 0. The fourth diagram in the first
row evaluates to zero since it is scaleless. Graphs where the external gluon is emitted
off a quark also arise in the calculation of the jet function with an external photon [81]
when the radiated gluon is exchanged for a photon.

gular region. Indeed, in [29] two refactorisation conditions were derived, that relate the
divergent integrands in the endpoint limit. Following the same arguments, we find

JH̄(0)
2 (z)K =−H(0)

3 J (0)(zM2
h) ,

JS(0)
2 (z)K =− 1

2

∞∫
0

dℓ+
ℓ+

J (0)(−Mhℓ+)S
(0)
3 (zMhℓ+) .

(5.36)

The symbol J. . .K signifies that one should only keep the leading terms in the z → 0 limit.
The situation is portrayed in figure 5.9. In [29], both theorems have been proven to all
orders in perturbation theory. An equivalent proof is also possible in the gg → h case.
Since it follows the same steps with obvious replacements, we omit to give it here and
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(1 − z)k1 zk1

z

Figure 5.9: Graphical illustration of the refactorisation conditions connecting different objects in the
gg → h factorisation formula to all orders in αs. The left panel portrays the first equation
in (5.36), while the right panel illustrates the second equation.

instead refer to the aforementioned work. Both theorems play a crucial role in deriving the
divergence-free factorisation theorem.

With the help of the refactorisation conditions we are now able to derive a version of the
factorisation formula that is free of endpoint divergences and UV finite

F (0)
gg =

T
(0)
1︷ ︸︸ ︷(

H
(0)
1 +∆H

(0)
1

)
S1+

T
(0)
2︷ ︸︸ ︷

4

1∫
0

dz

z

(
H̄

(0)
2 (z)S

(0)
2 (z)− JH̄(0)

2 (z)KJS(0)
2 (z)K

)

+ lim
σ→−1

H
(0)
3

Mh∫
0

dℓ−
ℓ−

σMh∫
0

dℓ+
ℓ+

J (0)(Mhℓ−)J
(0)(−Mhℓ+)S

(0)
3 (ℓ−ℓ+)

∣∣∣
leading power︸ ︷︷ ︸

T
(0)
3

.

(5.37)

The singularity of the second term is regularised by subtracting the functional behaviour
in the problematic region and the third term is regularised by the explicit cutoffs. Note
that due to these cutoffs the third term contains some power-suppressed contributions
that should be dropped for consistency. Furthermore, the limit in the third term is to be
understood in the sense of an analytic continuation, where one evaluates the integral at
σMh and subsequently follows a path through the complex plane to σ = −1. Removing
the divergences in the second term and applying the refactorisation conditions introduces
these cutoffs for both convolution integrals in the third term. As shown in figure 5.10, the
region |ℓ±| > Mh is subtracted twice, hence this ∞-bin contribution must be added back.
Since it only receives contributions above the Higgs mass scale, it is purely hard and can
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∞ bin

Mh

σMh

n2-collinear

n1-collinear

`+`− = m2
b

`−

`+

soft

Figure 5.10: Graphical illustration of the impact of the cutoffs on the convolution integrals over ℓ+
and ℓ− in the last term of the bare factorisation formula (5.36). The “infinity bin” is
subtracted twice and must be added back in the form of an extra contribution to the
bare Wilson coefficient H(0)

1 .

therefore be seen as an additional input to the hard function H(0)
1 , which is why we call it

∆H
(0)
1 . It is given by

∆H
(0)
1 =− lim

σ→−1
H3

∞∫
Mh

dℓ−
ℓ−

∫ ∞
lim
σMh

dℓ+
ℓ+

J (0)(Mhℓ−)J
(0)(−Mhℓ+)

S∞(ℓ+ℓ−)

mb

=
αs,0TF δab

π

yb,0√
2

{
(−M2

h)
−ϵeϵγE

ϵ2Γ(1− ϵ) +
αs,0
4π

(−M2
h)

−2ϵe2ϵγE
[
CA

Γ(−ϵ)Γ(ϵ)(3− 6ϵ− 2ϵ2)

2ϵ2Γ(2− 2ϵ)

+ CF

(
3Γ(ϵ)Γ(−ϵ)
Γ(2− 2ϵ)

+
(1 + ϵ)Γ2(−ϵ) + 2Γ(−ϵ)Γ(ϵ)Γ(2− 2ϵ)

2ϵ2Γ(1− 2ϵ)Γ(2− 2ϵ)

)]}
,

(5.38)
and

S∞(w) =− TF δabαs,0
π

mb,0

{
eϵγE

Γ(1− ϵ)w
−ϵ +

αs,0
4π

[(
CF −

CA
2

)
4e2ϵγEΓ(ϵ)Γ(−ϵ)

Γ(1− 2ϵ)

+ CF
2e2ϵγE (1 + ϵ)Γ2(−ϵ)
Γ(1− 2ϵ)Γ(2− 2ϵ)

]
w−2ϵ

}
θ(w)

(5.39)

is the soft function S3(w) in the limit where w ≫ m2
b . This method of removing endpoint

divergences by reshuffling terms in the form factor2 and absorbing the∞-bin contributions
into hard coefficients is known as refactorisation-based subtraction scheme (RBS) [3].

Note that (5.37) is not infrared (IR) finite because it is calculated using on-shell gluon
states. We remove the IR poles by multiplying with the renormalisation factor Z−1

gg , where

2 The methodology presented here is in fact not limited to h → GG, G = γ, g processes, but more general. Other
instances where it has been used are found in [90, 92]
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Zgg is the UV renormalisation factor of the two-gluon operator Ogg, defined by Ogg(µ) =

ZggO
(0)
gg . In the MS-scheme, it is given by [114]

Zgg = 1− αs(µ)

4π

[
2CA

(
1

ϵ2
− Lh

ϵ

)
+
β0
ϵ

]
+O(α2

s) , (5.40)

where Lh = ln[(−M2
h − i0)/µ2].

To show that all UV divergences cancel in the sum of the three terms in (5.37), we first
express the bare parameters, i.e. the b-quark mass, the b-quark Yukawa coupling and the
strong coupling αs, in terms of renormalised parameters. The relevant renormalisation
conditions are given in appendix AI.1. We use the running parameters mb(µ) and yb(µ) in
the overall pre-factor of the form factor. However, in the arguments of logarithms we use
the b-quark pole mass mb.

We write the result for the gg → h form factor as

Z−1
gg F

(0)
gg =M0 Z

−1
gg

(
T
(0)
1 + T

(0)
2 + T

(0)
3

)
, (5.41)

with the overall pre-factor

M0 = TF δab
αs(µ)

π

yb(µ)√
2
mb(µ) . (5.42)

The three contributions read

Z−1
gg T

(0)
1 = −2 + αs(µ)

4π

{
CF

[
− π2

3ϵ2
+

1

ϵ

(
2π2Lh

3
− 10ζ3

)
− 2π2

3
L2
h + 4 (5ζ3 + 3)Lh

− 36− 7π4

30

]
+ CA

[
π2

3ϵ2
− 1

ϵ

(
2π2Lh

3
− 10ζ3

)
+

(
2 +

2π2

3

)
L2
h − 20ζ3Lh

− 12− π2

6
+ 18ζ3 +

π4

5

]}
+O(α2

s) ,

Z−1
gg T

(0)
2 =

αs(µ)

4π

{
CF

[
π2

3ϵ2
+

1

ϵ

(
2ζ3 −

2π2Lh
3

)
+
π2

3

(
L2
h − L2

m

)
+ Lh

(
2π2Lm

3
− 4ζ3

)
+ 8ζ3 +

13π4

90

]
+ CA

[
− π2

3ϵ2
+

1

ϵ

(
2π2Lh

3
− 6ζ3

)
− π2

3

(
L2
h − L2

m

)
+ Lh

(
4ζ3 −

2π2Lm
3

)
+ 8ζ3Lm −

π2

6
− 6ζ3 −

π4

45

]}
+O(α2

s) ,

Z−1
gg T

(0)
3 =

L2

2
+
αs(µ)

4π

{
CF

[
8ζ3
ϵ
− L4

12
− L3 + L2

(
−3Lm −

π2

3
+ 4

)
+

(
16− 12Lm +

2π2

3

)
L− 16ζ3Lm − 4ζ3 −

π4

9

]
+ CA

[
− 4ζ3

ϵ
− 5L4

12
− L3Lm −

L2L2
m

2
+

(
1 +

π2

12

)
L2 + 4ζ3(L+ 2Lm)

]}
+O(α2

s) . (5.43)
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The different logarithms appearing in the expressions are

Lh = ln
−M2

h − i0
µ2

, Lm = ln
m2
b

µ2
, L = Lh − Lm = ln

−M2
h − i0
m2
b

, (5.44)

with mb being the pole mass. It can readily be checked that the remaining 1/ϵ poles cancel
in the sum of the three contributions. Consequently, we find for the full form factor

Z−1
gg F

(0)
gg =M0

{
− 2 +

L2

2
+
αs(µ)

4π

[
CA

(
− 5L4

12
− L3Lm −

L2L2
m

2
+

(
3 +

5π2

12

)
L2

+ 4LLm + 2L2
m − 12ζ3L− 12− π2

3
+ 12ζ3 +

8π4

45

)

+ CF

(
− L4

12
− L3 − 3LmL

2 +

(
4− 2π2

3

)
L2 +

(
16ζ3 +

2π2

3
+ 12

)
L

+ 12Lm − 36 + 4ζ3 −
π4

5

)]
+O(α2

s)

}
. (5.45)

This result agrees with a corresponding expression obtained in [115] after taking into
account differences in the IR subtraction schemes. In the limit CA → 0, and performing
some simple replacements in the pre-factorM0, the above result reproduces the two-loop
amplitude for h→ γγ decay obtained in [28].

5.2 Renormalisation of the factorisation theorem

In this section, we establish the factorisation formula in terms of renormalised component
functions. It is given by

Fgg(µ) =

T1(µ)︷ ︸︸ ︷
H1(µ)S1(µ)+

T2(µ)︷ ︸︸ ︷
4

1∫
0

dz

z

(
H̄2(z, µ)S2(z, µ)− JH̄2(z, µ)KJS2(z, µ)K

)

+ lim
σ→−1

H3(µ)

Mh∫
0

dℓ−
ℓ−

σMh∫
0

dℓ+
ℓ+

J(Mhℓ−, µ)J(−Mhℓ+, µ)S3(ℓ−ℓ+, µ)
∣∣∣
leading power︸ ︷︷ ︸

T3(µ)

.

(5.46)

Its derivation is a highly non-trivial task, since renormalisation does in general not com-
mute with the RBS prescription to remove endpoint divergences. Below, we will show
how to manage the calculations to unify both concepts – RBS and renormalisation – and
implement them at the same time.
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Factorisation in terms of renormalised quantities involves two steps. First, we need to
renormalise all component functions separately. In general, the renormalised operator can
be obtained from the bare one using

Oi(µ) = ZijO
(0)
j . (5.47)

This is technically challenging, because some component functions are instead renormal-
ised in a convolutional sense. Secondly, we need to prove that the subtraction method used
to dispose of endpoint divergences between different terms will not generate additional
divergences under renormalisation. In the following, we will discuss the renormalisation
of the three terms Ti individually.

5.2.1 Renormalisation of T3

We remind the reader that T3 is the product of H3 and the time-ordered product of a scalar
current and two NLP SCET Lagrangian insertions. The Lagrangian insertions do not need
to be renormalised, and the renormalisation of the scalar current JS = hX̄nXn̄ is known
from the literature [116]. Its renormalisation factor is given by ZJS = Z33, which is known
up to three loops. The remaining IR divergences due to the external gluons can be treated
using different prescription schemes, including those in references [114, 117], the latter of
which is the MS subtraction scheme which we adopt for our calculation. As a consequence,
O3 is eventually renormalised by

O3(µ) = Z−1
gg Z33O3, (5.48)

where Zgg is the renormalisation factor of the LEFT operator Ogg. Consequently, the cor-
responding hard coefficient is renormalised as

H3(µ) = Z−1
33 H

(0)
3 =

yb(µ)√
2

[
−1 + CFαs

4π

(
L2
h + 2− π2

6

)]
. (5.49)

We collect all trivial renormalisation factors in appendix AI.1. The radiative jet function is
renormalised in the convolutional sense by

J(p2, µ) =

∞∫
0

dxZJ(p
2, xp2)J (0)(xp2) . (5.50)

Note that different values of p2 mix under renormalisation. In the photon case, this con-
volutional renormalisation condition was derived using the fact that the radiative photon
jet function appears along the leading-order light-cone distribution amplitude (LCDA) for
the factorisation formula of the B− → γℓ−ν̄ decay amplitude [118–120]. At the one-loop
order, the bare jet function can be obtained from the radiative photon jet function in [28] by
a replacement of colour factors CF → CF −CA. Therefore one might expect this relation to
hold for the renormalisation factor as well. Since the jet function at leading order is equal
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to 1, and the renormalisation factor involves a kernel that integrates to zero when con-
voluted with constant functions, the question of whether a simple replacement is viable
cannot be answered at order O (αs). However, from the requirement of scale invariance of
T3, we can extract the correct renormalisation factor and find that the convolution kernel
is accompanied by a factor of CF −CA/2 instead of CF −CA, such that the renormalisation
factor is given by

ZJ
(
yp2, xp2

)
=

[
1 +

(CF − CA)αs
4π

(
− 2

ϵ2
+

2

ϵ
ln
−p2
µ2

)]
δ(y − x) + (CF − CA/2)αs

2πϵ
Γ(y, x) ,

(5.51)
where

Γ(y, x) =

[
θ(x− y)
x(x− y) +

θ(y − x)
y(y − x)

]
+

(5.52)

is the Lange-Neubert kernel as introduced in [120]. The plus-distribution is defined such
that when Γ(x, y) is to be integrated with a function f(x), one has to replace f(x) →
f(x)−f(y) under the integral. With (5.50) and (5.51) we find at next-to-leading order (NLO)

J(p2, µ) = 1 +
αs
4π

(CF − CA)
[
ln2
−p2
µ2
− 1− π2

6

]
+O(α2

s). (5.53)

Similarly to the jet function, the soft function is renormalised by a convolution

S3(w, µ) =

∞∫
0

dw′ZS(w,w
′)S

(0)
3 (w′) . (5.54)

In the renormalisation of the photon factorisation formula, a conjecture based on the RG
evolution of T3,γ was used to derive the soft function renormalisation factor [29]. Iteratively
solving the RG equations, the leading logarithmic terms in the three-loop amplitude were
then predicted and confirmed against conventional QCD calculations [77]. Later, Bodwin
et al. verified the conjecture by a detailed computation from first principles in [121]. Here,
we apply the same arguments to derive the following relation of the jet and soft function
renormalisation factors

ZS
(
w,w′) = w

w′Z33Z
−1
gg

∞∫
0

dx

x
Z−1
J

(
Mhw

′

xℓ+
,
Mhw

ℓ+

)
Z−1
J (−xMhℓ+,−Mhℓ+) . (5.55)

Consequently, we can read off ZS as

ZS(w,w
′) = δ(w − w′) +

αs
4π

{[
(CF − CA)

(
2

ϵ2
− 2

ϵ
ln
ω

µ2

)
− 3CF − β0

ϵ

]
δ(w − w′)

− 4(CF − CA/2)
ϵ

wΓ(w,w′)

}
.

(5.56)

Through its dependence on the jet function renormalisation factor, in the soft function
renormalisation factor the Lange-Neubert kernel is accompanied by a colour factor of
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CF −CA/2 as well. This plays a crucial role even at order O(αs) because the leading order
soft function is not a constant – in contrast to the jet function. Since the soft function has
support for values below the threshold m2

b , the convolution of the kernel with the leading
order (LO) function must remove all divergences of the soft function below m2

b . Therefore,
the colour factor of the convolution kernel must be the same as that of Sb in (5.32). Using
(5.54) and (5.56), we find

S3(w, µ) = −
TF δab αs

π
mb(µ)

[
Sa(w, µ)θ

(
w −m2

b(µ)
)
+ Sb(w, µ)θ

(
m2
b(µ)− w

)]
, (5.57)

with

Sa(w, µ) = 1 +
αs
4π

{
CF

[
− L2

w − 6Lw + 12− π2

2
+ 2Li2

(
1

ŵ

)
− 4 ln

(
1− 1

ŵ

)(
3

2
ln ŵ

+ ln

(
1− 1

ŵ

)
+ Lm + 1

)]
+ CA

[
L2
w −

π2

6
+ 2Li2

(
1

ŵ

)
+ 2 ln

(
1− 1

ŵ

)(
ln ŵ

+ ln

(
1− 1

ŵ

)
+ Lm

)]}
,

Sb(w, µ) =
αs
4π

(
CF −

CA
2

)
4 ln(1− ŵ)

(
ln(1− ŵ) + Lm

)
, (5.58)

where Lw = ln(w/µ2) and ŵ = w/m2
b .

5.2.2 Renormalisation of T2

The renormalisation of T2 is more involved than that of T3. Because O2(z, µ) and O1 share
the same final states and same quantum numbers, the corresponding soft functions will
inevitably mix under renormalisation. While in principle it is possible to determine the
diagonal – i.e., non-mixing – renormalisation factors by studying the UV behaviour of
similar diagrams as in h → γγ, we instead use the refactorisation theorems (5.36) and
consistency conditions.

From the first refactorisation theorem (5.36) we see that Z33Z
−1
J renormalises JH̄2K. We

denote the combination Z33Z
−1
J by JZ−1

22 K and find that up to order O(αs) it reads

JH̄2(z, µ)K =
∞∫
0

dz′ JZ−1
22 (z, z′)KJH̄(0)

2 (z′)K

= 1 +
αs
4π

[
CF
(
2LhLz + L2

z − 3
)
+ CA

(
−L2

h − 2LhLz − L2
z + 1 +

π2

6

)]
+O(α2

s) . (5.59)

To keep the expressions compact we have abbreviated Lz = ln z and Lz̄ = ln(1 − z). The
diagonal renormalisation factor Z−1

22 , cannot be directly derived by previous results or
refactorisation theorems. However, we can deduce it following the observation that JZ−1

22 K
contains the leading terms of Z−1

22 in the z → 0 limits, as well as using the requirement
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that Z−1
22 must be symmetric under the exchange z ↔ 1− z. Based on these two properties,

we obtain

Z−1
22 (z, z′) =δ(z − z′) + αs

4π

{[
(CF − CA)

2 ln z + 2 ln(1− z) + 3

ϵ

+ CA

(
2

ϵ2
− 2Lh − 3

ϵ

)]
δ(z − z′) + 2(CF − CA/2)

ϵ
z(1− z)

×
[

1

z′(1− z)
θ (z′ − z)
(z′ − z) +

1

z(1− z′)
θ (z − z′)
(z − z′)

]
+

}
.

(5.60)

The renormalised H̄2(z, µ) then reads

H̄2(z, µ) =

1∫
0

dz′ Z−1
22 (z, z′)H̄

(0)
2 (z′)

= 1 +
αs
4π

{
CF

[
2Lh

(
Lz + Lz̄

)
+ L2

z + L2
z̄ − 3

]
+ CA

[
− L2

h − 2Lh
(
Lz + Lz̄

)
− L2

z − L2
z̄ + 1 +

π2

6

]}
+O(α2

s) .

(5.61)

The full form factor must be multiplied with an additional renormalisation factor Z−1
gg .

Therefore in the renormalisation condition for the soft function S2 this factor also appears.
Additionally, Z−1

22 depends on the hard scale Mh via the logarithm Lh, but the soft function
should only depend on the soft scale mb. This is indeed the case when we combine the
two renormalisation factors

Z−1
gg Z22(z, z

′) =δ(z − z′) + αs
4π

{
− 3CF − β0 + 2(CF − CA)

(
ln z + ln(1− z)

)
ϵ

δ(z − z′)

−2(CF − CA/2)
ϵ

z(1− z)
[

1

z′(1− z)
θ (z′ − z)
(z′ − z) +

1

z(1− z′)
θ (z − z′)
(z − z′)

]
+

}
.

(5.62)
Furthermore, in analogy with the photon case, we find that S1 and S2 mix under renorm-
alisation. Hence, the renormalisation condition takes the form

S2(z, µ) = Z−1
gg

 1∫
0

dz′Z22(z, z
′)S

(0)
2 (z′) + Z21(z)S

(0)
1

 , (5.63)

with

Z−1
gg Z21(z) =

TF δabαs
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{
− 1
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+
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2ϵ

)
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2LzLz̄ − 6 + π2/3

ϵ

]}
.

(5.64)
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For the renormalised soft function, we then obtain (with z̄ ≡ 1− z)

S2(z, µ) =
TF δabαs

2π
mb(µ)

{
− Lm +

αs
4π

[
CF

(
L2
m

(
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)
− Lm

(
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3

)
+ F (z) + F (z̄)

)
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(
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(
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)
+ Lm

(
L2
z + L2

z̄ − 1
)
+G(z) +G(z̄)

)]
+O(α2

s)

}
, (5.65)

with

F (z) =
L3
z

6
+ L2

z

(
z − Lz̄

)
− Lz

(
−Lz̄ +

1 + 3z

2

)
− (4Lz + 2z) Li2(z)

+ 6Li3(z) +
11

2
− 4ζ3 ,
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3
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6
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2
L2
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1

2
(1 + 2z − Lz̄)Lz + (2Lz − (1− z)) Li2(z)

− 4Li3(z) +
1

2
+ 4ζ3 .

(5.66)

5.2.3 Renormalisation of T1

The renormalisation of the first term T1 in (5.46) turns out to be the most involved despite
its simple definition in terms of bare objects. Especially the hard coefficient of the renorm-
alised operator receives multiple non-trivial contributions. In addition to the renormalised
hard matching coefficient itself and the renormalisation of the∞-bin subtraction ∆H1, fur-
ther terms emerge from first renormalising the component function before regularising the
endpoint divergences in the terms T2(µ) and T3(µ), where instead one should renormalise
the endpoint divergence-free objects. We will call these additional contributions mismatch
contributions, because they arise from non-matching limits in the convolution integrals.
Since they are of purely hard nature, we will absorb them into a redefinition of the hard
function H1(µ).

Eventually, the renormalisation condition for the hard function H1(µ) is given by

H1(µ) = Z−1
11

(
H

(0)
1 +∆H

(0)
1 − δH1 − δ′H1

)
+ 4

∫ 1

0

dz

z

(
H̄

(0)
2 (z)Z−1

21 (z)− JH̄(0)
2 (z)KJZ−1

21 (z)K
)
.

(5.67)

The counterterms δH1 and δ′H1 account for the mismatch contributions in T2 and T3 [29].
They are a special feature of the process under consideration for which the term T3 involves
a double convolution over jet and soft functions. In other applications of the RBS scheme
(see e.g. [90]) such subtractions are not required. Below, we show explicitly, how to derive
equation (5.67).
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Starting from the basic equation for the renormalisation of the amplitude

Z−1
gg

(
T
(0)
1 + T

(0)
2 + T

(0)
3

)
= T1(µ) + T2(µ) + T3(µ) ,

with T
(0)
1 = (H

(0)
1 +∆H

(0)
1 )S

(0)
1 , T1(µ) = H1(µ)S1(µ) ,

(5.68)

we see that H1(µ) receives contributions from T2(µ) − Z−1
gg T

(0)
2 and T3(µ) − Z−1

gg T
(0)
3 . For

the second of these two terms, we find, expressing T3(µ) in terms of bare quantities,

δT3 ≡ T3(µ)−Z−1
gg T

(0)
3 = Z−1

33 H
(0)
3

( Mh∫
0

dℓ−
ℓ−

σMh∫
0

dℓ+
ℓ+

∞∫
0

dℓ′−

∞∫
0

dℓ′+ −
∞∫
0

dℓ−
ℓ−

∞∫
0

dℓ+
ℓ+

Mh∫
0

dℓ′−

σMh∫
0

dℓ′+

)

×
∞∫
0

dwS
(0)
3 (w)J (0)(Mhℓ

′
−)J

(0)(−Mhℓ
′
+)ZJ(ℓ−, ℓ

′
−)ZJ(ℓ+, ℓ

′
+)ZS(ℓ−ℓ+, w) ,

(5.69)
where the orthogonality condition (5.55) has been used. This term is non-vanishing be-
cause the upper integration limits do not match for the ℓ(′)± integrals. Furthermore, δT3 is
generally sensitive to the low scale of the process mb, though not at the lowest order in
perturbation theory. We proceed equally for the mismatch terms in T2 and define

δ̃T2 ≡ T2(µ)− Z−1
gg T

(0)
2 = 4

1∫
0

dz

z

(
H̄2(z, µ)Z21(z)− JH̄2(z, µ)KJZ21(z)K

)
S
(0)
1

− 4Z−1
gg

( 1∫
0

dz

z

∞∫
0

dz′ −
∞∫
0

dz

z

1∫
0

dz′

)
JH̄2(z, µ)KJZ22(z, z

′)KJS(0)
2 (z′)K .

(5.70)
Only the expression in the second line in this equation is of the same nature as δT3, which
is why we will call it δT2. The first line is related to a mixing contribution, which we
will discuss later. Using the refactorisation conditions (5.36), the corresponding relation
between renormalisation factors, as well as the orthogonality relation (5.55), we can rewrite

δT2 =− 4Z−1
gg

( 1∫
0

dz

z

∞∫
0

dz′ −
∞∫
0

dz

z

1∫
0

dz′

)
JH̄(0)

2 (z, µ)KJZ22(z, z
′)KJS(0)

2 (z′)K

=

[
− Z−1

33 H
(0)
3
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0
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ℓ−

∞∫
0

dℓ+
ℓ+

∞∫
0

dℓ′−

∞∫
0

dℓ′+ −
∞∫
0

dℓ−
ℓ−

∞∫
0

dℓ+
ℓ+

Mh∫
0

dℓ′−

∞∫
0

dℓ′+

)

− Z−1
33 H

(0)
3

( ∞∫
0

dℓ−
ℓ−

σMh∫
0

dℓ+
ℓ+

∞∫
0

dℓ′−

∞∫
0

dℓ′+ −
∞∫
0

dℓ−
ℓ−

∞∫
0

dℓ+
ℓ+

∞∫
0

dℓ′−

σMh∫
0

dℓ′+

)]

×
∞∫
0

dwS
(0)
3 (w)J (0)(Mhℓ

′
−)J

(0)(−Mhℓ
′
+)ZJ(ℓ−, ℓ

′
−)ZJ(ℓ+, ℓ

′
+)ZS(ℓ−ℓ+, w) .

(5.71)
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It is obvious that, in general, δT2 is also sensitive to the low scale. Note, however that the
integrands in δT2 (5.71) and δT3 (5.69) are the same. Hence, the sum of those two terms
will only alter the respective integration limits. We define δ′H1 = δT2 + δT3, and find

δH ′
1S

(0)
1 = −Z−1

33 H
(0)
3

( ∞∫
Mh

dℓ−
ℓ−

∞∫
σMh

dℓ+
ℓ+

∞∫
0

dℓ′−

∞∫
0

dℓ′+ −
∞∫
0

dℓ−
ℓ−

∞∫
0

dℓ+
ℓ+

∞∫
Mh

dℓ′−

∞∫
σMh

dℓ′+

)

×
∞∫
0

dω S(0)
∞ (ω)J (0)(Mhℓ

′
−)J

(0)(−Mhℓ
′
+)ZJ(ℓ−, ℓ

′
−)ZJ(ℓ+, ℓ

′
+)ZS(ℓ−ℓ+, ω) .

(5.72)
This replacement simplifies the computation and is justified, because δH ′

1S
(0)
1 (5.72) is

a purely hard contribution, and hence the difference between S∞ and S3 is power sup-
pressed in this regime.

The first line in the definition of δ̃T2 (5.70) can be split into a true mixing term dependent
only on bare hard functions H̄2 and JH̄2K, and another mismatch contribution. To work out
this splitting, we first define the inverse of the off-diagonal renormalisation factor as

Z−1
21 (z) = −

1∫
0

dz′Z−1
22

(
z, z′

)
Z21

(
z′
)
Z−1
11 (5.73)

in accordance with [29]. Its expression can be found in appendix AI.1. This allows us to
rewrite

δ̃T2 − δT2 = 4

1∫
0

dz

z

(
H̄2(z, µ)Z21(z)− JH̄2(z, µ)KJZ21(z)K

)
S
(0)
1

=− 4

1∫
0

dz

z

[
H̄

(0)
2 (z)Z−1

21 (z)− JH̄(0)
2 (z)KJZ−1

21 (z)K

]
S1(µ)

− 4

( ∞∫
0

dz

z

∫ 1

0
dz′ −

1∫
0

dz

z

∞∫
0

dz′

)
JH̄(0)

2 (z)KJZ−1
22 (z, z′)KJZ21(z

′)KZ−1
11 S1(µ) .

(5.74)
This is again a purely hard contribution. Since the first term only depends on bare hard
coefficients, it is considered a true mixing effect. On the other hand, the second one is a
true mismatch contribution due to an incongruousness of integration limits. Hence, we
define

−δH1 = −4
( ∞∫

0

dz

z

∫ 1

0
dz′ −

1∫
0

dz

z

∞∫
0

dz′

)
JH̄(0)

2 (z)KJZ−1
22 (z, z′)KJZ21(z

′)K . (5.75)

To summarise this discussion, we have seen that since the RBS does not commute with
renormalisation, terms arise from the difference of T2(µ) + T3(µ) − Z−1

gg (T2 + T3), which
is not equal to 0. However, these additional contributions, called mismatch terms, are of
purely hard nature, and hence they can be absorbed into a redefinition of the renormalised
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Figure 5.11: The phase space of mismatch in T2 (yellow) and T3 (orange). The combination of those
two is given by the purple region. It can be flipped into the blue region, which is purely
hard.

hard matching H1(µ) (5.67). The mismatch terms are four-fold integrals over soft and jet
functions. The situation is shown graphically in figure 5.11. The yellow and orange region
corresponds to δT2 and δT3, respectively. Adding them up, the resulting integration in the
purple region can be further flipped into the blue region, because the four-fold integration
in the entire region is scaleless.

Going one step further, we note that ∆H(0)
1 can be written as

Z−1
gg ∆H

(0)
1 S

(0)
1 = −H(0)

3 Z−1
33

∫ ∞

Mh

dℓ−

∫ ∞

0

dℓ′−
ℓ′−

∫ ∞

σMh

dℓ+

∫ ∞

0

dℓ′+
ℓ′+

×
∫ ∞

0
dwS

(0)
3 (w)J (0)(−Mhℓ+)J

(0)(Mhℓ−)

× ZJ(Mhℓ
′
−,Mhℓ−)ZJ(−Mhℓ

′
+,−Mhℓ+)ZS(ℓ

′
+ℓ

′
−, w) ,

(5.76)

by the means of the refactorisation conditions (5.36), and thus features the same integrands
as the integrals in δ′H1. Comparing the two contributions, we see that ∆H1 is exactly
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cancelled by the second blue region in figure 5.11. As a result, the renormalised coefficient
H1(µ) can be expressed as

H1(µ) = Z−1
11 H

(0)
1 + 4

∫ 1

0

dz

z

(
H̄

(ϵ)
2 (z, µ)Z21(z)− JH̄(ϵ)

2 (z, µ)KJZ21(z)K
)
Z−1
11

−H3(µ) lim
σ→−1

∫ ∞

Mh

dℓ−
ℓ−

∫ ∞

σMh

dℓ+
ℓ+

J (ϵ)(Mhℓ−, µ)J
(ϵ)(−Mhℓ+, µ)

S
(ϵ)
3 (ℓ+ℓ−, µ)

S1(µ)
,

(5.77)
where the superscripts “(ϵ)” in J , S and H̄2 indicate that the full dependence on the
dimensional regulator must be kept in place after renormalisation, as explained in [29]. It
would seem at first sight that the appearance of the soft and jet functions in the expressions
for the subtraction terms (5.69),(5.70) and (5.76) introduces a dependence on the soft and
hard-collinear scales in the hard function H1(µ), which would upset scale factorization.
However, this form makes it explicit that H1(µ) only depends on the hard scale Mh to all
orders in αs. The explicit result for this function at NLO in perturbation theory is

H1(µ) =
yb(µ)√

2

TF δabαs
π

{
− 2 +

αs
4π

[
CF

(
− π2

3
L2
h + (12 + 8ζ3)Lh − 36− 2π2

3
− 11π4

45

)

+ CA

((
2 +

π2

3

)
L2
h − 12ζ3Lh − 12 +

π2

6
+ 18ζ3 +

19π4

90

)]
+O(α2

s)

}
. (5.78)

The soft function S1 is renormalised multiplicatively. After renormalisation, it is simply
given by the running b-quark mass, such that

S1(µ) = Z−1
gg Z11S

(0)
1 = Z−1

m S
(0)
1 = mb(µ) . (5.79)



54 factorisation and resummation of gluon-gluon to higgs fusion

5.2.4 Form factor expressions in terms of renormalised quantities

Having all expressions for the renormalised quantities at hand, we can perform the convo-
lution integrals in (5.46) and obtain explicit expressions for the renormalised terms Ti(µ)
(with i = 1, 2, 3) up to order O(α2

s). We find

T1(µ) =M0

{
− 2 +

αs
4π

[
CF

(
− π2

3
L2
h + (12 + 8ζ3)Lh − 36− 2π2

3
− 11π4

45

)
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((
2 +

π2

3

)
L2
h − 12ζ3Lh − 12 +

π2

6
+ 18ζ3 +

19π4

90

)]
+O(α2

s)

}
,

T2(µ) =M0
αs
4π

[
CF
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2π2

3
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π2

3
L2
m +

2π2

3
+ 8ζ3 +

7π4

45

)
+ CA

(
− 2π2

3
LhLm +

π2

3
L2
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π2

2
− 6ζ3 −

π4

30

)
+O(α2

s)

]
,

T3(µ) =M0

{
L2

2
+
αs
4π

[
CF

(
− L4

12
− L3 − 3LmL

2 +

(
4− π2

3

)
L2

+

(
2π2

3
+ 8ζ3

)
L− 8ζ3Lm − 4ζ3 −

π4
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)
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(
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2
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(
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12

)
L2 + 4ζ3Lm
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}
.

(5.80)

Adding up the three terms, we reproduce the result for the renormalised form factor given
in (5.45).

5.3 RG equations and prediction of large logarithms at higher
loops

In this section, we will first derive the RG equations for the individual component func-
tions. Afterwards, we will solve them iteratively to predict the large logarithmic corrections
in the three-loop expressions for the component functions. After performing the remaining
convolution integrals, we will find the leading large logarithms of the form factor, too.

5.3.1 Evolution equations for the jet and soft functions

In general, the anomalous dimensions can be extracted from the renormalisation factors
Zij defined in (5.47) using the relation

γij = 2αs
∂

∂αs
Z

(1)
ij , (5.81)

where Z(1)
ij denotes the coefficient of the single 1/ϵ pole in Zij . For convenience, we collect

all anomalous dimensions in appendix AI.2.
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The renormalised jet and soft functions satisfy the RG equations

d

d lnµ
S1(µ) = −(γ11 − γgg)S1(µ) ,

d

d lnµ
S2(z, µ) = −

∫ 1

0
dz′
[
γ22(z, z

′)− γgg δ(z − z′)
]
S2(z

′, µ)− γ21(z)S1(µ) ,

d

d lnµ
JS2(z, µ)K = −

∫ 1

0
dz′
[
Jγ22(z, z′)K− γgg δ(z − z′)

]
JS2(z′, µ)K− Jγ21(z)KS1(µ) ,

d

d lnµ
J(p2, µ) = −

∫ ∞

0
dx γJ(p

2, xp2)J(xp2, µ) ,

d

d lnµ
S3(w, µ) = −

∫ ∞

0
dw′ γS(w,w

′)S3(w
′, µ) .

(5.82)

Here we find two main differences in comparison with the photon case in [29]. First, the
cusp anomalous dimension and the convolution kernel do not share the same colour factor
any more, except for γ11. This fact was already noted for the renormalisation factors for
the jet and soft function S3 in (5.51) and, as we will see later, has severe consequences for
the solution of the RGEs. Secondly, the renormalised soft functions receive a contribution
from the renormalisation factor Z−1

gg to render them independent of the hard scale Mh. As
a result, their evolution equations feature an additional term γgg. From the renormalised
form factor (5.46) and the renormalisation condition for the soft function S3 we may deduce
the non-trivial relation

(
γ33 − γgg

)
δ(1− x) = γJ

(
Mhw

ℓ+
, x
Mhw

ℓ+

)
+ γJ (−Mhℓ+,−xMhℓ+) + γS(w,w/x) , (5.83)

which holds to all orders in αs. Despite appearance, the right-hand side of this formula is
independent of ℓ+ and w.

5.3.2 Evolution equations for the hard matching coefficients

The renormalised hard functions obey the RG equations

d

d lnµ
H3(µ) = γ33H3(µ) ,

d

d lnµ
H2(z, µ) =

∫ 1

0
dz′H2(z

′, µ)γ22(z
′, z) ,

d

d lnµ
JH̄2(z, µ)K =

∫ ∞

0
dz′ JH̄2(z

′, µ)K
z

z′
Jγ22(z′, z)K .

(5.84)

The RG equation for H1 is more involved and reads

dH1(µ)

d lnµ
= Dcut(µ) + γ11H1(µ) + 4

∫ 1

0

dz

z

[
H̄2(z, µ)γ21(z)− JH̄2(z, µ)KJγ21(z)K

]
, (5.85)

with
Dcut(µ) = −

TF αs
π

yb(µ)√
2

[
αs
4π

(
CF −

CA
2

)
16ζ3 +O(α2

s)

]
. (5.86)
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Its complicated structure has its roots in the mismatch terms and operator mixings contrib-
uting to the renormalised H1(µ) discussed in section 5.2. In the following, we will derive
the RGE step by step.

We start with the scale dependence of the amplitude(
d

d lnµ
− γgg

)[
T1(µ) + T2(µ) + T3(µ)

]
= 0 . (5.87)

Inserting the expressions for the different terms(
dH1(µ)

d lnµ
− γ11H1(µ)

)
S1(µ) +

(
d

d lnµ
+ γgg

)[
T2(µ) + T3(µ)

)]
= 0 , (5.88)

we see that the scale dependence of H1(µ) is related to that of the second and third term
of the amplitude. We investigate the scale dependence of T3(µ) first and find

dT3(µ)

d lnµ
=− γggT3(µ) +H3(µ)

∞∫
0

dxK(x)

×
[ Mh/x∫
Mh

dℓ−
ℓ−

σMh∫
0

dℓ+
ℓ+

J (xMhℓ−, µ) J (−Mhℓ+, µ)S (ℓ+ℓ−, µ)

+

Mh∫
0

dℓ−
ℓ−

σMh/x∫
σMh

dℓ+
ℓ+

J (Mhℓ−, µ) J (−xMhℓ+, µ)S (ℓ+ℓ−, µ)

]
LP

,

(5.89)

where
K(x) =

αs
π

(
CF −

CA
2

)
Γ(1, x) +O(α2

s) (5.90)

is the non-local convolution kernel of the soft function S3 and the jet functions. The contri-
butions of the second and third line in (5.89) are identical after integration. This can easily
be seen by changing the integration variables to ℓ− → σℓ+, ℓ+ → σ−1ℓ−. It is important
to remark that this contribution is not a purely hard one, but instead explicitly depends
on the soft scale mb [29, 79]. However, these effects are of higher order than the precision
desired for our purposes. Plugging in the expressions, we find

dT3(µ)

d lnµ
=M0

{
αs
4π

[
2L2

(
CALh −

β0
2

)
+ 16ζ3

(
CF −

CA
2

)]
+O(α2

s)

}
. (5.91)

The scale dependence of T2 is more involved due to the subtraction and mixing nature.
Applying the RGEs for operators (5.82) and hard functions (5.84), we find

dT2(µ)

d lnµ
=γggT2(µ)− 4

1∫
0

dz

z

(
H̄2(z, µ)γ21(z)− JH̄2(z, µ)KJγ21(z)K

)
S1(µ)

+ 4

[ 1∫
0

dz

∞∫
0

dz′ −
1∫

0

dz′
∞∫
0

dz

]
JH̄2(z, µ)K

z
Jγ22(z, z′)KJS2(z′, µ)K .

(5.92)
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Comparing this to the corresponding equation for the photon case, we find there is an
additional scale dependence governed by γgg due to the external gluons, as expected. Note
that

Jγ22
(
z, z′

)
K = − z

z′2
K
( z
z′

)
+ local terms, (5.93)

with K(x) as defined above. In the second line of (5.92), all integrals involving local terms
vanish evidently. Substituting x = z/z′ and using the renormalised version of the first
refactorisation theorem (5.36), we are able to rewrite

dT2(µ)

d lnµ

∣∣∣∣
left-over

=4H3(µ)

∞∫
0

dxK(x)

Mh/x∫
Mh

dℓ−
ℓ−

J (xMhℓ−, µ) JS2 (ℓ−/Mh, µ)K

=− 4

∞∫
0

dxK(x)

1/x∫
1

dz

z
JH̄2(xz, µ)KJS2 (z, µ)K.

(5.94)

For our next step, a renormalised version of the second refactorisation theorem (5.36)
will be helpful. Following the analysis laid out in [29], we obtain

JS2(z, µ)K = −
1

2

σMh∫
0

dℓ+
ℓ+

J (−Mhℓ+, µ)S (zMhℓ+, µ)
∣∣∣
LP

+∆21(z, µ)S1(µ), (5.95)

with

∆21(z, µ) =−
Z−1
11

2

∞∫
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∞∫
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+)J
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′
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S
(0)
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′
+)

mb,0

+ JZ21(z)KZ−1
11 ,

(5.96)
where ℓ− = zMh is implicit. Note that the term involving ∆21(z, µ) is not present in the
bare refactorisation theorem. As before, we exchanged the soft function S3 for its asymp-
totic counterpart to simplify the computation. Again, this is possible because all integration
regions lie in the hard sector. We may interpret ∆21 as a fairly complex mismatch term.
As with many complications in transferring the bare factorisation formula for gg → h to a
renormalised one, the source lies within the implemented subtraction scheme to eliminate
endpoint divergences. Up to order O(α2

s), we obtain

∆21(z, µ) =
TF δabαs

2π

{
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)
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ln3 z

6
− ln z

2
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)]}
.

(5.97)
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Setting CA → 0 retrieves the expression for the abelian case in [29]. When plugging in the
renormalised refactorisation condition (5.95) into the RGE of T2 (5.92), we observe that the
first term of (5.95) will ultimately cancel out the equivalent contributions in the RGE of T3,
i.e., the last two lines of (5.89). Combining our findings we obtain

d
(
T2(µ) + T3(µ)

)
d lnµ

=− 4

1∫
0

dz

z

(
H̄2(z, µ)γ21(z)− JH̄2(z, µ)KJγ21(z)K

)
S1(µ)

−Dcut(µ)S1(µ)− γgg
(
T2(µ) + T3(µ)

)
,

(5.98)

where

Dcut(µ) =− 4H3(µ)

∞∫
0

dxK(x)

1/x∫
1

dz

z
J
(
xzM2

h , µ
)
∆21(z, µ)

=4

∞∫
0

dxK(x)

1/x∫
1

dz

z
JH̄2(xz, µ)K∆21(z, µ).

(5.99)

Here it is explicit that Dcut depends only on the hard scale Lh.
At first sight, this function appears as a simple inhomogeneous term in the evolution

equation, which would not provide a major obstacle to finding its solution. However, it
has been shown in [29] that the quantity Dcut exhibits single-logarithmic terms in higher
orders, Dcut ∋ αs(αsLh)

n for n ≥ 2. With this complication, relation (5.85) establishes a
new type of RG equation, which is more complicated than the equations encountered in
conventional Sudakov problems. In order to solve this equation, it would be necessary to
resum the logarithms contained in Dcut to all orders.

5.3.3 Evolution equations for the form factor and its three components

The renormalised gg → h form factor fulfils the evolution equation

dFgg(µ)

d lnµ
= γggFgg(µ) , (5.100)

where
γgg =

αs
4π

(4CALh − 2β0) +O(α2
s) (5.101)

is the anomalous dimension associated with Zgg. We may also compute the scale depend-
ence of each of the three terms T1(µ), T2(µ) and T3(µ) individually, finding

dT1(µ)

d lnµ
=M0

{
αs
4π

[
−
(
CA − CF

)4π2
3
Lh + 8ζ3

(
3CA − 2CF

)]
+O(α2

s)

}
,

dT2(µ)

d lnµ
=M0

{
αs
4π

[(
CA − CF

)4π2
3
Lh − 16ζ3CA

]
+O(α2

s)

}
,

dT3(µ)

d lnµ
=M0

{
αs
4π

[
2L2

(
CALh −

β0
2

)
+ 16ζ3

(
CF −

CA
2

)]
+O(α2

s)

}
.

(5.102)
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5.3.4 Large logarithms in the three-loop gg → h form factor

Given the RG equations and anomalous dimensions for the ingredients in the factorisation
formula, we are able to predict the four leading logarithms in the three-loop expression
for the gg → h form factor in analytic form. To this end, we solve the evolution equations
iteratively and determine the leading large logarithms in the hard matching coefficients
and the soft functions at next-to-next-to-leading order (NNLO) in perturbation theory.

5.3.4.1 Higher-order logarithms in the jet and soft functions

The jet function has been calculated exactly at the two-loop level in (5.28)
The computation of the leading logarithmic behaviour of the soft function S2(z, µ) and

the endpoint-region counterpart JS2(z, µ)K requires knowledge of the leading order anom-
alous dimension. To calculate also sub-leading logarithmic terms would necessitate the
anomalous dimension at higher loop order, which is currently unknown. We obtain

S2(z, µ) =
TF δabαs

2π
mb(µ)g

µν
⊥

{
− Lm +

αs
4π

[
· · ·
]
+
(αs
4π

)2 [
c3(z)L

3
m +O(L2

m)
]}

,

JS2(z, µ)K =
TF δabαs

2π
mb(µ)g

µν
⊥

{
− Lm +

αs
4π

[
· · ·
]
+
(αs
4π

)2 [
d3(z)L

3
m +O(L2

m)
]}

,

(5.103)
with

c3(z) = −C2
F

[
2L2

z

3
+ 4Lz + 3

]
+ CFCA

[
4L2

z

3
+
LzLz̄
3

+ 4Lz

]
− C2

A

[
2L2

z

3
+
LzLz̄
3

]
− β0

[CF − CA
3

Lz +
CF
2

]
+ (z ↔ 1− z) ,

d3(z) = −C2
F

2
(
Lz + 3

)2
3

+ CFCA

[
4L2

z

3
+ 4Lz

]
− C2

A

2L2
z

3
− β0

[CF − CA
3

Lz + CF

]
.

(5.104)
The soft function S3 is parametrised as

S3(w, µ) = −
TF δab αs

π
mb(µ)

[
Sa(w, µ)θ

(
w −m2

b(µ)
)
+ Sb(w, µ)θ

(
m2
b(µ)− w

)]
, (5.105)

Sa(w, µ) = 1 +
αs
4π

[
· · ·
]
+
(αs
4π

)2 [
r4L

4
w + r3L

3
w + r2L

2
w + r1Lw +O(L0

w)

+ s3a(ŵ)L
3
m + s2a(ŵ)L

2
m + s1a(ŵ)Lm +O

(
L0
m

) ]
,

Sb(w, µ) =
αs
4π

[
· · ·
]
+
(αs
4π

)2 [
s3b(ŵ)L

3
m + s2b(ŵ)L

2
m + s1b(ŵ)Lm +O

(
L0
m

) ]
.

(5.106)
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with ŵ = w/m2
b and the coefficient functions read

r4 =
(CF − CA)2

2
,

r3 =(CF − CA)
(
6CF +

β0
3

)
,

r2 =C
2
F

(
6 +

π2

2

)
+ CFCA

140

9
+ C2

A

(
67

9
− π2

2

)
− 16CF + 20CA

9
TFnf ,

r1 =− C2
F (75− 3π2)− CFCA

(
1297

27
− 29π2

9
+ 14ζ3

)
− C2

A

(
404

27
− 14ζ3

)
+ CFTFnf

(
428

27
− 4π2

9

)
+ CATFnf

112

27
,

(5.107)

s3a(ŵ) =4 (CF − CA)
(
CF −

CA
2

)
ln
(
1− ω̂−1

)
,

s2a(ŵ) =2C2
F

[
ln
(
1− ω̂−1

) (
14 + 10 ln

(
1− ω̂−1

)
+ 9 ln ŵ

)
+ 5Li2

(
ω̂−1

)]
− 2CFCA

[
ln
(
1− ω̂−1

) (
8 + 11 ln

(
1− ω̂−1

)
+ 11 ln ŵ

)
+ 7Li2

(
ω̂−1

)]
+ 6C2

A

[
ln
(
1− ω̂−1

) (
ln
(
1− ω̂−1

)
+ ln ŵ

)
+ Li2

(
ω̂−1

)]
+ 2β0

(
CF −

CA
2

)
ln
(
1− ω̂−1

)
,

s3b(ŵ) =− 4(CF − CA)
(
CF −

CA
2

)
ln(1− ŵ) ,

s2b(ŵ) =−
(
CF −

CA
2

)[
CF

(
ln(1− ŵ)

(
24− 4 ln ω̂ + 20 ln(1− ŵ)

)
+ 4Li2(ω̂)

)
− 12CA ln2(1− ŵ) + 2β0 ln(1− ŵ)

]
.

(5.108)

Note that since s3b(ŵ), s2b(ŵ) → 0 when ŵ → 0, at order O(α3
s) the leading logarithms in

the full form factor will not feature contributions from Sb(w, µ).
In order to predict the full logarithmic behaviour of S3 at three loops, the two-loop

anomalous dimension γS would be needed. Using eq. (5.83) it can be inferred from the jet
function anomalous dimension. Thus we write

γS(w,w
′) =−

[(
ΓFcusp(αs)− ΓAcusp(αs)

)
Lw − γs(αs)

]
δ(w − w′)

− 2

(
ΓFcusp(αs)−

ΓAcusp(αs)

2

)
wΓ(w,w′)− 2

(αs
4π

)2
g

(
ŵ

w

)
+O(α3

s) ,
(5.109)

where Γ
F/A
cusp is the cusp anomalous dimension up to two-loop order in the fundament-

al/adjoint representation. Here, g(x) is an unknown non-local kernel function. In the RG
equation for the soft function, it will generate a contribution at order O(α3

s) when convo-
luted with the leading order soft function

2

∫ ∞

0
dx g(x)θ(ω/x−m2

b) = 2

∫ ω̂

0
dx g(x) ≡ G(ω̂). (5.110)
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Although the explicit functional form of g(x) is unknown, its integration over the full space,
i.e., G(∞), has been calculated in [1] by demanding the cancellation of all single ϵ poles in
two-loop jet function. It reads

G(∞) =C2
F

(
4π2 − 16ζ3

)
− CFCA

(
62π2

9
+ 24ζ3

)
− C2

A

(
4

3
− 22π2

9
− 40ζ3

)
+ CFTFnf

16π2

9
+ CATFnf

(
8

3
− 8π2

9

)
.

(5.111)

Knowing G(ŵ) only at the limits does not spoil the accuracy of the prediction of the
three-loop logarithms in the form factor, since its contributions will only show up at lower
logarithmic order.

5.3.4.2 Higher-order logarithms in the matching coefficients

The hard function H3(µ) is the same as in the photon case, hence its higher-order logar-
ithmic behaviour can be found in [29]. The hard coefficients H̄2(z, µ) and JH̄2(z, µ)K can be
parametrised as

H̄2(z, µ) =
yb√
2

{
1 +

αs
4π

[
· · ·
]
+
(αs
4π

)2 [
a4L

4
h + a3L

3
h + a2L

2
h +O(Lh)

]}
,

JH̄2(z, µ)K =
yb√
2

{
1 +

αs
4π

[
· · ·
]
+
(αs
4π

)2 [
b4L

4
h + b3L

3
h + b2L

2
h +O(Lh)

]}
,

(5.112)

where we find after solving the evolution equations

a4 = b4 =
C2
A

2
,

a3 = −2CA(CF − CA)
(
Lz + Lz̄

)
+
β0CA
3

,

b3 = −2CA(CF − CA)Lz +
β0CA
3

,

a2 = (CF − CA)
[
2(CF − CA)

(
L2
z + L2

z̄

)
− CA

(
Lz + Lz̄

)2
− β0

(
Lz + Lz̄

)]
+ CA

[(
π2

6
− 76

9

)
CA + 3CF +

20

9
TFnf

]
,

b2 = (CF − CA)
[
(2CF − 3CA) ln

2 z − β0 ln z
]
+ CA

[(
π2

6
− 76

9

)
CA + 3CF +

20

9
TFnf

]
.

(5.113)
As a consequence of the complex RG equation for H1(µ), we can only predict the first two
leading logarithms for this hard function. We eventually find

H1(µ) =
yb√
2

TF δabαs
π

[
−2 + αs

4π

[
· · ·
]
+
(αs
4π

)2 [
c4L

4
h + c3L

3
h +O(L2

h)
]]
, (5.114)
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with

c4 = −C2
A

(
1 +

π2

3

)
+ CFCA

π2

3
,

c3 = C2
F

(
2π2

3
− 16ζ3

3

)
− CFCA

(
12− 4π2

27
+

8ζ3
3

)
− C2

A

(
22

9
+

22π2

27

− 12ζ3

)
+ CATFnf

(
8

9
+

8π2

27

)
− CFTFnf

8π2

27
.

(5.115)

5.3.4.3 Higher order logarithms in the form factor

Eventually, we are able to predict the leading logarithmic corrections to the three-loop form
factor from O

(
α3
sL

6
)

to O
(
α3
sL

3
)
. As in the photon case studied in [81], we convert our

results to the on-shell scheme. Therefore, we first express the running parameters mb(µ)

and yb(µ) in terms of the pole mass mb. We then eliminate the remaining scale dependence
by taking µ2 = µ̂2h ≡ −M2

h − i0. This greatly simplifies the three-loop expressions. With v

the Higgs field vev, we find

Fgg(µ̂h) = TF δab
αs(µ̂h)

π

m2
b

v

{
− 2 +

L2

2
+
αs(µ̂h)

4π

[
CA − CF

12
L4 − CFL3

+

((
1 +

5π2

12

)
CA −

2π2

3
CF

)
L2 +

((
12 +

2π2

3
+ 16ζ3

)
CF − 12ζ3CA

)
L

+

(
4ζ3 −

π4

5
− 20

)
CF +

(
12ζ3 +

8π4

45
− π2

3
− 12

)
CA

]

+

(
αs(µ̂h)

4π

)2
[
(CA − CF )2

90
L6 + (CA − CF )

(
β0
30
− CF

10

)
L5

+ dOS
4 L4 + dOS

3 L3 + · · ·
]}

, (5.116)

where L = ln[(−M2
h − i0)/m2

b ], and

dOS
4 =

(
3

2
+
π2

18

)
C2
F −

(
191

54
+
π2

24

)
CFCA +

(
85

108
− π2

72

)
C2
A +

32CF − 5CA
27

TFnf ,

dOS
3 =

(
20ζ3
3

+
7π2

9
− 1

2

)
C2
F −

(
10ζ3 +

235

18
+

43π2

27

)
CFCA

+

(
10ζ3
3

+
11π2

18
+

4

3

)
C2
A +

(
22

9
+

8π2

27

)
CFTFnf −

(
2

3
+

2π2

9

)
CATFnf .

(5.117)
The coefficients of the colour structures C2

F and CFTF agree with the corresponding coef-
ficients in the photon case.
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5.4 Resummation

In this section, we want to resum the large logarithms in the form factor to all orders in
perturbation theory. We therefore need to solve the RG equations for the different hard,
jet, and soft functions. Choosing to set the scale where we evaluate our predictions at
µ = µh, all large logarithms in the evolution of the hard functions vanish, leaving them in
the evolution of the jet and soft functions. In this context, the general logarithmic structure
reads:

T1(µh) = TF δab
yb(µh)√

2

αs(µh)

π
mb(µh)

−2 +∑
n≥1

αs(µh)
n an

 ,
T2(µh) = TF δab

yb(µh)√
2

αs(µh)

π
mb(µh)

∑
n≥1

αs(µh)
n
n+1∑
i=0

bn,i L
i ,

T3(µh) = TF δab
yb(µh)√

2

αs(µh)

π
mb(µh)

∑
n≥0

αs(µh)
n
2n+2∑
i=0

cn,i L
i,

(5.118)

where an , cn,i and cn,i are constant numbers. It is obvious that T3 dominates the logar-
ithmic corrections since it is of Sudakov type. Hence in the following, we will only focus on
the third term. The photon case has been resummed to next-to-leading double-logarithmic
accuracy (NLL) in [29, 80]. In this paper, we include one more tower of logarithms, i.e. we
resum factors of αnsL2n, αnsL2n−1 and αnsL

2n−2 to all orders of perturbation theory. This is
conventionally named modified next-to-leading logarithm (NLL′) accuracy.

In the literature, one distinguishes two different schemes for the resummation of large
logarithms in Sudakov problems. The so-called “RG-improved perturbation theory” rests
on the assumption that αsL = O(1), where L is the large logarithm in a given prob-
lem. The parametrically leading terms in the logarithm of a quantity are then of order
L(αsL)

n ∼ α−1
s (αsL)

n and are formally larger than O(1). The leading-order approxim-
ation (LO) is therefore defined by the simultaneous resummation of all terms of order
L(αsL)

n and (αsL)
n in the logarithm of the quantity; i.e., all such logarithms get exponen-

tiated in the expression for the quantity itself. The NLO approximation resums in addition
the terms of order αs(αsL)n in the exponent, and so on. In the double-logarithmic counting
scheme, instead, one assumes that αsL2 = O(1). In this case the resummation is performed
for the observable itself. In the leading double-logarithmic approximation (LL), all terms
of order αns L2n are resummed. At the next order (NLL), one resums the logarithms of the
form αns L

2n−k with k = 0, 1, and so on. In table 5.1 we summarise the ingredients needed
at a given order in the two schemes. Nk+1LL resummations (with k ≥ 0) are contained in
RG-improved perturbation theory at NkLO, while Nk+1LL′ resummation includes match-
ing corrections at one order higher, however, the same-order anomalous dimensions are
used. Hence it is enough to use the RG-improved LO jet and soft functions to account for
NLL′ corrections from the anomalous dimensions. On top of that, it turns out that only
constant terms at NLO in the hard, jet, and soft functions at their respective matching
scales contribute to the large logarithms at NLL′, which simplifies the calculation a lot.
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RG-impr. PT Log. approx. Γcusp , β γ H3 , S3 , J αns L
k

− LL LO − LO k = 2n

LO NLL NLO LO LO 2n− 1 ≤ k ≤ 2n

− NLL′ NLO LO NLO 2n− 2 ≤ k ≤ 2n

NLO NNLL NNLO NLO NLO 2n− 3 ≤ k ≤ 2n

Table 5.1: Naming schemes for logarithmic accuracy in T3(µ). We list perturbative orders of the
cusp anomalous dimension, non-cusp anomalous dimensions γ, QCD β function, and
matching corrections from the component functions to obtain resummation at a given
logarithmic order.

In the following, we will first derive the RG-improved soft and jet function at LO. Sub-
sequently, we resum the first three towers of large logarithms in the third term of the amp-
litude. Note that at NLL′ accuracy, there are no contributions from the first and second
term apart from the fixed n = 1 contribution in the second term, which therefore does not
need to be resummed at the given logarithmic order.

5.4.1 RG-improved LO jet function

The RG-improved LO jet function can be obtained from the jet function in the photon case
in [81] by accounting for the different colour factors. We find

JRGi,LO(p2, µ) = e−2S∆Γ(µj ,µ) JLO(∂η, µj)

(
−p2 − i0

µ2j

)a∆Γ(µj ,µ)+η

×
[
e−2γE a∆Γ(µj ,µ)

Γ
(
1− a∆Γ(µj , µ)− η

)
Γ(1 + η)

Γ
(
1 + a∆Γ(µj , µ) + η

)
Γ(1− η)

]rΓ ∣∣∣∣∣
η=0

,

(5.119)

where both the Sudakov exponent

S∆Γ(µj , µ) =
∆Γ0

4β20

[
4π

αs(µj)

(
1− 1

r
− ln r

)
+

(
∆Γ1

∆Γ0
− β1
β0

)
(1− r + ln r) +

β1
2β0

ln2 r

]
,

(5.120)
with r = αs(µ)/αs(µj) and ∆Γ0 = 4(CF − CA), and the function

a∆Γ(µj , µ) =
∆Γ0

2β0
ln

αs(µ)

αs(µj)
(5.121)

are related to the corresponding objects in the photon case by the overall colour factor
(CF −CA) (instead of CF ). Another important difference is the appearance of the exponent

rΓ =
CF − 1

2CA

CF − CA
=

1

N2
c + 1

, (5.122)

which strongly suppresses the deviation of the term shown in the second line of (5.119)
from 1. Note that a consistent evaluation of the Sudakov exponent requires the two-loop
coefficients of the cusp anomalous dimension and the QCD β-function. The function
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JLO
g (∂η, µj) is a differential operator acting on functions of the auxiliary parameter η. It

is defined by the identification Jg(p
2, µj) ≡ Jg(Lp, µj). At the matching scale µj chosen

as µ2j ∼ p2, the expression for the jet function in (5.53) is free of large logarithms. In fact,
at leading order in RG-improved perturbation theory one has JLO

g (Lp, µj) = 1. Using this
initial condition, we find the simple result

JRGi,LO(p2, µ) = e−2S∆Γ(µj ,µ)

(
−p2 − i0

µ2j

)a∆Γ(µj ,µ)
[
e−2γE a∆Γ(µj ,µ)

Γ
(
1− a∆Γ(µj , µ)

)
Γ
(
1 + a∆Γ(µj , µ)

)]rΓ .
(5.123)

This formula resums the leading logarithmic corrections to the jet function to all orders of
perturbation theory.

5.4.2 RG-improved LO soft function S3

The RG-improved LO soft function S3 can be derived in a similar manner as has been the
soft function of h→ γγ in [79]. Transforming to Laplace space, we find that the ansatz

S̃(η, µ)=

(
w

µ2s

)η−a∆Γ(µs,µ)

exp

2S∆Γ(µs, µ) + aγs(µs, µ) + 2

αs(µ)∫
αs(µs)

dα
∆′Γ(α)

β(α)
F(η − a∆Γ(µs, µα))

,
(5.124)

provides a solution to the RG equation. Here, ∆′Γ = ΓF −ΓA/2 and ΓR is the cusp anomal-
ous dimension in the fundamental or adjoint representation, respectively. The RG function
aγs is defined in analogy to (5.121). The function F is defined as

F(x) ≡
∞∫
0

dw′wΓ(w,w′)

(
w′

w

)x
(5.125)

and can be expressed as the sum of two harmonic number functions [79]. It has singularit-
ies for all values where x is a positive or negative integer. At RG improved leading order,
the third term in the exponential of (5.124) can be simplified to

αs(µ)∫
αs(µs)

dα
∆′Γ(α)

β(α)
F (η − a∆Γ (µs, µα)) =rΓ

αs(µ)∫
αs(µs)

dα
∆Γ(α)

β(α)
F (η − a∆Γ (µs, µα)) +O(αs)

=rΓ

[
ln

Γ(1 + a
(0)
∆Γ − η)Γ(1 + η)

Γ(1− a(0)∆Γ + η)Γ(1− η)
+ 2γE a

(0)
∆Γ

]
+O(αs) ,

(5.126)
where the superscript (0) in the RG functions denotes that one should take the leading
terms of the corresponding function. For the sake of intelligibility, we further suppressed
the arguments of the RG functions. Comparing with the photon case, the main difference
is that we have rΓ = 1/10 instead of rh→γγ

Γ = 1. As a consequence, the soft function is not
single-valued in the complex plane. Applying the simplification (5.126) and transforming
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the ansatz back from Laplace to momentum space, we find for the soft function at leading
order

SLO
3 (w, µ) = US(w;µs, µ)

∫ ∞

0

dw′

w′ S
LO(w′, µs)

× I1,12,2

(−a∆Γ
, 1, 2rΓ) , (1− a∆Γ, 1, 2rΓ)

(1, 1, 2rΓ) , (0, 1, 2rΓ)

∣∣∣∣w′

w

 ,

(5.127)

with

US(w;µs, µ) =

(
we−4rΓγE

µ2s

)−a(0)∆Γ(µs,µ)

exp
[
2S

(0)
∆Γ(µs, µ) + a(0)γs (µs, µ)

]
,

SLO(w, µs) = −TF δab
αs(µs)

π
mb(µs)θ(w −m2

b).

(5.128)

Here, SLO(w, µs) denotes the soft function at the matching scale µs at leading order in
perturbation theory. The function I1,12,2 (· · · |x) is a so-called Rathie-I function, defined as

Im,np,q

(a1, α1, A1), . . . , (ap, αp, Ap)

(b1, β1, B1), . . . , (bq, βq, Bq)

∣∣∣∣z
 =

1

2πi

∫
L
ϕ(s)zsds ,

with ϕ(s) =

m∏
j=1

ΓBj (bj − βjs)
n∏
j=1

ΓAj (1− aj + αjs)

q∏
j=m+1

ΓBj (1− bj + βjs)
p∏

j=n+1
ΓAj (aj − αjs)

.

(5.129)

Its definition and properties were first presented in [122]. It is a generalisation of the Meijer-
G function Gm,np,q and related via

Gm,np,q

a1, . . . , ap
b1, . . . , bq

∣∣∣∣z
 = Im,np,q

(a1, 1, 1), . . . , (ap, 1, 1)

(b1, 1, 1), . . . , (bq, 1, 1)

∣∣∣∣z
 . (5.130)

So far, it has seen use in wireless communication systems [123, 124] and, most recently,
light-ray operators in celestial conformal field theory (CCFT) [125].

Though the analytic solution takes a rather complicated form, the asymptotic behaviour
is fairly simple:

SLO
3 (w, µ) = SLO(w, µs)US(w;µs, µ)

(
Γ(1 + a

(0)
∆Γ(µs, µ))

Γ(1− a(0)∆Γ(µs, µ))

)2rΓ

+O(m2
b/w). (5.131)

We have found that only the region above the hyperbola ℓ−ℓ+ > m2
b contributes to the

NLL′ accurate expression. In this context, further corrections from the Rathie-I function are
not relevant for NLL′ resummation, but will come into play in RG-improved perturbation
theory. This is however beyond the scope of this thesis.
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5.4.3 Large logarithms at NLL′ in the form factor

The scale dependence of the gg → h form factor is governed by the evolution equa-
tion (5.100). It is not scale-invariant due to the external gluon states. At LO in RG-improved
perturbation theory, we find [80]

FRgg(µ) = e2SΓA
(µh,µ)

αs(µ)

αs(µh)
FRgg(µh) , (5.132)

and ΓA stands for the cusp anomalous dimension in the adjoint representation. The scale
µ2h = −M2

h − i0 is chosen such that there are no large logarithms left in the hard match-
ing coefficients. The derivation of FRgg(µh) is highly non-trivial and will be carried out in
multiple steps. There are two kinds of contributions. One stems from the RG evolution of
the component functions, which is controlled by the respective anomalous dimension. The
second one is NLO corrections from these functions at their matching scales.

The contribution from RG evolution is given by taking the RG-improved LO component
functions for T3,

T LO
3 (µh) = lim

σ→−1
H3(µh)

LO
∫ Mh

0

dℓ−
ℓ−

∫ σMh

0

dℓ+
ℓ+

× JLO(−Mhℓ−, µh)J
LO(Mhℓ+, µh)S

LO
3 (ℓ−ℓ+, µh)

∣∣∣∣
leading power

.

(5.133)

In principle, the matching scales of the two jet functions could be different, since they
depend on different dynamical scales ℓ±. They are chosen such that all logarithms are
located only in the evolution factors. The LO jet and soft functions have been derived in
the previous section.

To extract the first three towers of large logarithms, we only need to enter the regime
ℓ+ℓ− ≫ m2

b . We may therefore use the asymptotic expression for the soft function S3 given
by (5.131). In the first step, we define the following abbreviations

as = a
(0)
∆Γ(µs, µh), a− = a

(0)
∆Γ(µ−, µh), a+ = a

(0)
∆Γ(µ+, µh) , (5.134)

where µ− is the matching scale entering the jet function J(−Mhℓ−, µh) while µ+ is that
entering the jet function J(Mhℓ+, µh). The factors of gamma functions in the RG-improved
jet (5.123) and soft (5.127) functions can be further expanded to[

e4γEas
Γ2(1 + as)

Γ2(1− as)
e2γEa−

Γ(1 + a−)

Γ(1− a−)
e2γEa+

Γ(1 + a+)

Γ(1− a+)

]rΓ
= 1 +O(a3s, a3−, a3+) . (5.135)

The jet and soft functions must be free of large logarithms at the matching scales µ± and µs.
Since these functions are integrated over soft (ℓ+ℓ− ∼ m2

b ) and hard (ℓ+ℓ− ∼ M2
h) regions,

we must set these matching scales dynamically under the integral. Hence we fix µ2s = ℓ−ℓ+,
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µ2− = σMhℓ− and µ2+ =Mhℓ+. Additionally, the pre-factor αs(µs) entering the soft function
(see (5.128)) should be converted into a scheme that only depends on the hard scale

αs(ν) =
αs (µ)

X

[
1− αs (µ)

4π

β1
β0

lnX

X
+O(α2

s)

]
, with X = 1− αs(µ)

4π
β0 ln

µ2

ν2
, (5.136)

and we abbreviate the logarithms as follows when necessary

L− = ln
µ2h
µ2−

, L+ = ln
µ2h
µ2+

, Ls = ln
µ2h
µ2s

= L− + L+ , and L = ln
µ2h
m2
b

. (5.137)

The relevant parameter ρ in NLL′ resummation is defined as

ρ =
αs(µh)

4π

∆Γ0

2
L2 =

αs(µh)

2π
(CF − CA)L2 ∼ −1.192 + 0.955 i , (5.138)

Substituting L+ = xL, L− = yL, we find up to order NLL′

αs(µs) = αs(µh)

(
1 +

ρ

L

2β0
∆Γ0

(x+ y) +
ρ2

L2

4β0
2

(∆Γ0)2
(x+ y)2 +O(L−3)

)
. (5.139)

Here, β0 = β0 and the colouring is related to a comparison with the resummation of the
photon case and will be explained further later on.

As mentioned before, there are also contributions from the NLO corrections at the match-
ing scales. Due to the dynamic scale setting, logarithms at the matching scales vanish.
Hence the corrections from the hard and jet functions are given by the constant terms of
these functions. For the soft function though, in principle there are some extra functional
terms, see (5.58). However, all these terms go to zero when ŵ is large, such that their con-
tributions are not relevant here. We find for the individual corrections from the matching
at higher order

∆H3(µh) = −
yb(µh)√

2

(
1 +

(
−2 + π2

6

)
ρ

L2

2CF
∆Γ0

)
,

∆J(µh) = 1 +
ρ

2L2

(
−1− π2

6

)
,

∆S3(µh) = −TF δab
αs
π
mb(µh)

(
1 +

ρ

L2

2

∆Γ0

[
CF

(
12− π2

2

)
− CA

π2

6

])
.

(5.140)

Their combined contribution reads

1 + ∆matching =M−1
0 (µh)∆H3(µh) (∆J(µh))

2∆S3(µh)

=1 +
ρ

L2

2

∆Γ0

[
CF

(
8− 2π2

3

)
+ CA

(
2 +

π2

6

)]
.

(5.141)
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Adding all contributions together, T3(µh) reads

T3(µh)|NLL′ =M0(µh)L
2

∫ 1

0
dx

∫ 1−x

0
dy

[
1 +

ρ

L

2β0
∆Γ0

(x+ y) +
ρ2

L2

4β0
2

(∆Γ0)2
(x+ y)2

]
×
{
1 + ∆matching

}
× exp

[
2S

(0)
∆Γ(µs, µh)− 2S

(0)
∆Γ(µ−, µh)− 2S

(0)
∆Γ(µ+, µh) + a(0)

γs (µs, µh) + a(0)
γm(µs, µh)

]
NLL′

,

(5.142)
where the term in square brackets accounts for the contribution from converting the strong
coupling constant in the pre-factor, the term in curly braces is generated by corrections to
the component functions at the matching scale, and the exponential factor is due to scale
evolution. We insert the expressions for the RG functions (see appendix AI.3) and perform
all remaining integrals.
Neglecting terms of order O(L−3) we arrive at

T3(µh)|NLL′ =M0(µh)
L2

2

∞∑
n=0

(−ρ)n 2Γ(n+ 1)

Γ(2n+ 3)

{
1 +

1

L

[
ρ
−(γ0s + γ0m) + 2β0

∆Γ0

2n+ 2

2n+ 3

− ρ2 β0
∆Γ0

(n+ 1)2

(2n+ 3)(2n+ 5)

]
+

1

L2

[
ρ
CF

(
4− π2

3

)
+ CA

(
1 + π2

12

)
CF − CA

+ ρ2
(
− β0(γ

0
s + γ0m)

(∆Γ0)2
n+ 1

n+ 2
− ∆Γ1

(∆Γ0)2
(n+ 1)2

(n+ 2)(2n+ 3)

+
(γ0s + γ0m)

2

(∆Γ0)2
n+ 1

2(n+ 2)
− β0(γ

0
s + γ0m)

(∆Γ0)2
2(n+ 1)

n+ 2
+

β0
2

(∆Γ0)2
4(n+ 1)

n+ 2

)
+ ρ3

(
β0(γ

0
s + γ0m)

(∆Γ0)2
(n+ 1)2

2(n+ 3)(2n+ 3)
− β20

(∆Γ0)2
(n+ 1)2(7n+ 18)

6(n+ 3)(2n+ 3)(2n+ 5)

− β0
2

(∆Γ0)2
(n+ 1)2

(n+ 3)(2n+ 3)

)
+ ρ4

β20
(∆Γ0)2

(n+ 1)2(n+ 2)

8(n+ 4)(2n+ 3)(2n+ 5)

]}
.

(5.143)
Note that γ0s = −6CF + 2β0. The first two towers of logarithms (up to order O(L−1)) have
already been derived in [80, 126]. It is remarkable that the leading logarithm (LL) and
next-to-leading logarithm (NLL) term can be retrieved from the corresponding ones in the
photon case by a simple replacement of colour factors CF → CF−CA, as was first noted for
the LL term in [127]. Furthermore, the NLL corrections have been derived in [128] using
non-SCET methods. As a non-trivial cross-check expression (5.143) reproduces correctly
the leading logarithms in the three-loop form factor (5.116). In [129], the resummed amp-
litude for the h → γγ process was presented at NLL′ accuracy. To compare this with our
result (5.143), it is not sufficient to set CA → 0. The reason for that is that the pre-factor of
our gg → h process features a strong coupling constant evaluated at the soft scale which
is subject to being converted to an evaluation at the high scale (5.136) and therefore gives
rise to additional terms suppressed by one and two factors of 1/L, see (5.139). In contrast,
in the h→ γγ case the pre-factor is αb(µs) = (Qbe)/(4π), which is related to the QED coup-
ling constant at the high scale via αb(µs) = αb(µh)(1 + O (αb(µh)). Since αb ≪ αs, these
higher terms are neglected consequently. To account for this effect, we must henceforth set
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CA → 0 and β0 → 0 while keeping β0 ̸= 0. Hence, we coloured the corresponding β0-terms
to easily allow comparison between abelian and non-abelian processes.

The series in (5.143) can be cast into more elegant form by executing the infinite sums.
We introduce the special functions

F1(z) = 2F2

(
1, 1;

3

2
, 2;−z

4

)
,

F2(z) = 2F2

(
1, 1;

1

2
, 2;−z

4

)
,

D(z) = e−z
2

∫ z

0
dx ex

2
,

(5.144)

where F1(z) and F2(z) are hypergeometric functions, and D(z) is a so-called Dawson
integral function. We obtain

T3(µh)
∣∣
NLL′ =M0(µh)

L2

2

{
F1(ρ) +

1

L

2

∆Γ0

[
4β0 − 3β0 − 2

(
γ0s + γ0m

)
+
(
− 2(4β0 − 3β0) + ρβ0 + 4

(
γ0s + γ0m

) ) D (√
ρ
2

)
√
ρ

]
+

1

L2

1

(∆Γ0)2

[(
− ρ2

4
β20 +

ρ

6

(
24β0

2 − 7β20
)
− 2ρβ0

(
γ0s + γ0m

)
+ 18β20 + 4∆Γ1

)√
ρD

(√
ρ

2

)
+
(
(4 + ρ)β20 − 8

(
γ0s + γ0m

)
(2β0 − β0) + 4

(
γ0s + γ0m

)2) ρ
4

−
(
6β20 − 2

(
γ0s + γ0m

)
(2β0 − β0) +

(
γ0s + γ0m

)2)
ρF2(ρ)

−
[
4β20 + 2∆Γ1 +

CA

(
π2

12 + 1
)
− CF

(
π2

3 − 4
)

CA − CF
(∆Γ0)

2

]
ρF1(ρ)

]}
.

(5.145)

For a better intelligibility of the resummed result (5.145), we find it instructive to give the
asymptotic behaviour of the special functions. In the limits ρ → 0,∞, the hypergeometric
functions can be expanded as

F1(ρ) =


1− ρ

12
+

ρ2

180
− ρ3

3360
+O

(
ρ4
)
, ρ→ 0 ,

2
ln (ρeγE )

ρ
− 4

ρ2
+O(ρ−3) , ρ→∞ ,

(5.146)

F2(ρ) =


1− ρ

4
+
ρ2

36
− ρ3

480
+O

(
ρ4
)
, ρ→ 0 ,

4− 2 ln (ρeγE )

ρ
+

12

ρ2
+O(ρ−3) , ρ→∞ .

(5.147)
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Figure 5.12: Resummed T3 at LL (black), NLL (blue) and NLL′ (red) accuracy. We fix the strong
coupling constant at αs(Mh) and vary the hard scale µ2

h = q2 entering the large log-
arithms L and expansion parameter ρ. The upper panel shows T3 for q2 > 0, the
lower two panels give the real and imaginary part for q2 < 0. NLL(′) corrections be-
come increasingly more important for q2-values further away from its physical value
q2 = −M2

h .

The Dawson function appearing first at NLL obeys the following behaviour

D

(√
ρ

2

)
=


√
ρ

2

[
1− ρ

6
+
ρ2

60
− ρ3

840
+O

(
ρ4
)]

, ρ→ 0 ,

1√
ρ

[
1 +

2

ρ
+

12

ρ2
+O(ρ−3)

]
, ρ→∞ .

(5.148)

In figure 5.12 we show the resummed T3 at LL (black), NLL (blue) and NLL′ (red)
accuracy. Here, we fix the strong coupling constant at αs(Mh) and vary the hard scale
µ2h ≡ q2 entering the large logarithms L and expansion parameter ρ. We give the plots for
both q2 > 0 (upper panel) and real and imaginary part for q2 < 0 (lower panels). NLL′

corrections become increasingly more significant the further one takes q2 from its physical
value q2 = −M2

h chosen in the resummation.
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As explained previously, at NLL′ there is one contribution from the second term in the
factorisation theorem. However, because T2 ∝ αnsL

n+1, only the term for n = 1 is relevant.
It reads

T2(µh)
∣∣
NLL′ = iM0(µh)

L2

2

ρ

L2

π2

3
. (5.149)

The full NLL′ form factor is then Fgg(µh)
∣∣
NLL′ = T2(µh)

∣∣
NLL′ + T3(µh)

∣∣
NLL′ .
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AI.1 Renormalisation factors

Here we collect the renormalisation factors of parameters and the different component
functions.

The three parameters involved in this process, a) the b quark mass entering the operators,
b) the b quark Yukawa coupling entering the hard functions, and c) the QCD coupling
constant, are renormalised in the MS subtraction scheme as

mb,0 = Zmmb(µ), yb,0 = µϵZyyb(µ), αs,0 = µ2ϵZαsαs(µ), (AI.1)

with the renormalisation factors

Zy = Zm = 1− 3CF
αs(µ)

4πϵ
+O

(
α2
s

)
, Zαs = 1− β0

αs(µ)

4πϵ
+O

(
α2
s

)
. (AI.2)

Here β0 = 11
3 CA− 4

3TFnf is the first coefficient of the QCD β-function, with nf = nb+nl = 5

being the number of active quark flavours. In order to compare our results in different
schemes, we need the following relation between the b-quark pole mass and its running
mass [130, 131]:

mb(µ)

mb
= 1 +

αs
4π
CF (−4 + 3Lm)

+
(αs
4π

)2 [
C2
F

(
9L2

m

2
− 21Lm

2
+

7

8
+ (8 ln 2− 5)π2 − 12ζ3

)
+ CFCA

(
− 11L2

m

2
+

185Lm
6

− 1111

24
+

4(1− 3 ln 2)π2

3
+ 6ζ3

)
+ CFTF

(
2nfL

2
m −

26nf
3

Lm +

(
143− 16π2

)
nb

6
+

(
71 + 8π2

)
nl

6

)]
,

(AI.3)

with Lm = ln(m2
b/µ

2).
The hard function H3(µ) (5.49) is renormalised by

Z−1
33 = 1 +

CF αs
4π

[
2

ϵ2
− 2

ϵ

(
Lh −

3

2

)]
. (AI.4)

73
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The hard coefficients H̄2(µ) and its endpoint counterpart are renormalised in equation
(5.61) and (5.59). The corresponding renormalisation factors are

Z−1
22 (z, z′) = δ(z − z′)

+
αs
4π

{
δ(z − z′)

[
(CF − CA)

2(Lz + Lz̄) + 3

ϵ
+ CA

(
2

ϵ2
− 2Lh − 3

ϵ

)]

+
2(CF − CA/2)

ϵ
z(1− z)

[
1

z′(1− z)
θ (z′ − z)
(z′ − z) +

1

z(1− z′)
θ (z − z′)
(z − z′)

]
+

}
(AI.5)

JZ−1
22 (z, z′)K = δ(z − z′) + αs

4π

{
δ(z − z′)

[
(CF − CA)

2Lz + 3

ϵ
+ CA

(
2

ϵ2
− 2Lh − 3

ϵ

)]

+
(2CF − CA)

ϵ
z

[
θ (z′ − z)
z′ (z′ − z) +

θ (z − z′)
z (z − z′)

]
+

}
. (AI.6)

At NLO, the renormalisation factor for the soft function S2(z, µ) (5.65) is given by

Z−1
gg Z22(z, z

′) = δ(z − z′) + αs
4π

{
− 3CF − β0 + 2(CF − CA)

(
Lz + Lz̄

)
ϵ

δ(z − z′)

−(2CF − CA)
ϵ

z(1− z)
[

1

z′(1− z)
θ (z′ − z)
(z′ − z) +

1

z(1− z′)
θ (z − z′)
(z − z′)

]
+

}

Z−1
gg Z21(z) =

TF δabαs
2π

{
− 1

ϵ
+
αs
4π

[
(CF − CA)

(
Lz + Lz̄

ϵ2
− L2

z + L2
z̄ − 1

2ϵ

)

+ CF
2LzLz̄ − 6 + π2/3

ϵ

]}
.

(AI.7)

AI.2 Anomalous dimensions

AI.2.1 Cusp anomalous dimension

The cusp anomalous dimension in the fundamental and adjoint representation up to two-
loop order is expanded in perturbation theory as

ΓRcusp(αs) = ΓR0
αs
4π

+ ΓR1

(αs
4π

)2
+ . . . , (AI.8)

where the superscript R refers to the SU(N) representation. In the case of QCD, the relev-
ant representations are fundamental (R = F ) and adjoint (R = A). In the MS renormalisa-
tion scheme the expansion coefficients in the respective representation are given by [132]

ΓRcusp (αs) = 4CR

{
αs
4π

+
(αs
4π

)2 [
CA

(
67

9
− π2

3

)
− 20

9
nfTF

]
+ · · ·

}
, (AI.9)
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where CR = CF for the fundamental representation while CR = CA for the adjoint rep-
resentation. We introduce the short-hand notations ∆Γ0 and ∆Γ1 which represent the
difference of the cusp anomalous dimensions at leading and next-to-leading order

∆Γ =∆Γ0
αs
4π

+∆Γ1

(αs
4π

)2
=4 (CF − CA)

{
αs
4π

+
(αs
4π

)2 [
CA

(
67

9
− π2

3

)
− 20

9
nfTF

]
+ · · ·

}
.

(AI.10)

AI.2.2 Anomalous dimension γgg

The anomalous dimension γgg is associated with the renormalisation factor Zgg of the
two-gluon operator Ogg.3 To all orders of perturbation theory, it is given by [116]

γgg = ΓAcusp(αs)Lh + 2γg =
αs
4π

(
4CALh − 2β0

)
+O(α2

s) . (AI.11)

Here, γg is the anomalous dimension associated with the gluon wave function renormal-
isation. At two-loop order, it reads [116]

γg =
αs
4π

(−β0) +
(αs
4π

)2 [(
−692

27
+

11π2

18
+ 2ζ3

)
C2
A

+

((
256

27
− 2π2

9

)
CA + 4CF

)
TFnf

]
.

(AI.12)

AI.2.3 Anomalous dimensions of component functions

The renormalisation factor of the soft function S1(µ) is the same as for the quark mass,
and so is its anomalous dimension

γ11 − γgg = −γm =
3CFαs
2π

+O(α2
s) . (AI.13)

3 The two-gluon operator is renormalised by ⟨Ogg(µ)⟩ = Zgg⟨O(0)
gg ⟩, hence the renormalised form factor reads

Fgg(µ) = Z−1
gg F

(0)
gg .
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The diagonal and off-diagonal elements involved in the RG equation of S2(z, µ) and its
endpoint region counterpart are

γ22(z, z
′)− γgg δ(z − z′) = −

αs
4π

{[
4(CF − CA)

(
Lz + Lz̄

)
+ 6CF − 2β0

]
δ(z − z′)

+ 4

(
CF −

CA
2

)
zz̄

[
1

z′z̄

θ (z′ − z)
(z′ − z) +

1

zz̄′
θ (z − z′)
(z − z′)

]
+

}
,

Jγ22(z, z′)K− γgg δ(z − z′) = −
αs
4π

{[
4(CF − CA)Lz + 6CF − 2β0

]
δ(z − z′),

+ 4

(
CF −

CA
2

)
z

[
θ (z′ − z)
z′ (z′ − z) +

θ (z − z′)
z (z − z′)

]
+

}
,

(AI.14)
and

γ21(z) =
TF δabαs

π

{
− 1 +

αs
4π

[
(CF − CA)

(
1− L2

z − L2
z̄

)
+ CF

(
4LzLz̄ − 12 +

2π2

3

)]}
,

Jγ21(z)K =
TF δabαs

π

{
− 1 +

αs
4π

[
(CF − CA)

(
1− L2

z

)
+ CF

(
2π2

3
− 12

)]}
.

(AI.15)

The anomalous dimension for H3(µ) is given by

γ33 = ΓFcusp(αs)Lh + γH(αs) =
CFαs
π

(
Lh −

3

2

)
+O(α2

s) , (AI.16)

where γH = 2γq, and its expression is known up to three loops [116,133,134]. The anomal-
ous dimensions for the jet and soft function S3 in the third term read

γJ
(
p2, xp2

)
=
αs
π

[
(CF − CA)Lpδ(1− x) +

(
CF −

CA
2

)
Γ(1, x)

]
+O(α2

s) ,

γS(w,w
′) = −αs

π

{[
(CF − CA)Lw +

3CF − β0
2

]
δ(w − w′)

+ 2

(
CF −

CA
2

)
wΓ(w,w′)

}
+O(α2

s) .

(AI.17)

These results satisfy the non-trivial relation (5.83).



AI.3 RG functions

The RG functions used in section 5.4 are defined as

SV (ν, µ) = −
∫ αs(µ)

αs(ν)
dα

γV (α)

β(α)

∫ α

αs(ν)

dα′

β(α′)
,

aV (ν, µ) = −
∫ αs(µ)

αs(ν)
dα

γV (α)

β(α)
,

(AI.18)

with γV , V = ∆Γ, s the respective anomalous dimension. In order to derive the RG-
improved soft and jet functions at leading order, we need to solve the integrals up to
leading order. We find

a
(0)
V (ν, µ) =

γV,0
2β0

ln r ,

S
(0)
V (ν, µ) =

γV,0
4β20

[
4π

αs (ν)

(
1− 1

r
− ln r

)
+

(
γV,1
γV,0
− β1
β0

)
(1− r + ln r) +

β1
2β0

ln2 r

]
,

(AI.19)
where r = αs(µ)/αs(ν).
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6.1 Introduction to ALPs

Axion-like particles (ALPs) are among the best motivated extensions of the Standard
Model of Particle Physics. They are low-energy remnants of high-energy UV-complete the-
ories. As pseudo-Nambu–Goldstone bosons, they emerge through the spontaneous break-
ing of a UV U(1) symmetry. Their name was derived from the QCD axion, a particle
that was introduced along with its corresponding spontaneously broken global U(1)PQ

symmetry by Peccei, Quinn and others to yield a dynamical solution to the strong CP
problem [135–138]. The strong CP problem is the question why the parameter associ-
ated with a CP violating term in the QCD Lagrangian is experimentally found to be tiny
θ̄ ≤ 10−10 [139], while theoretically it could be of order O (1). The Peccei-Quinn solution
promotes θ̄ to a quantum field, that dynamically relaxes the effective value to 0. Typical
axion models usually feature axions with extremely small masses ma ∼ 10−5 eV – 10−3 eV.
Such light-weight models often suffer from the “axion-quality problem” [140–144]: It is a
general belief that effects of quantum gravity will eventually break any global symmetry.
The breaking of the U(1)PQ symmetry will then give rise to higher dimensional operators
that introduce corrections to the axion potential, thus reintroducing a non-vanishing CP
phase in QCD interactions. A possible work-around is given by heavy axion models, such
as [145–150]. Moreover, in most axion models the axion mass and its coupling strength
to photons are related. Hence, in probes for axions, the viable region of parameter space
of photon coupling versus mass is a relatively thin band. In the literature, two types of
axion models have manifested. In KSVZ models the SM fermions are uncharged under
the Peccei-Quinn symmetry, hence the axion only couples to gauge bosons [151, 152]. For
DFSZ type models, additional axion couplings to SM fermions are present [153, 154].

ALPs generalise the axion concept to different, not necessarily specified U(1) symmet-
ries that are spontaneously broken. Their mass and general couplings are unrelated and
can be seen as free parameters of the theory. As a consequence, ALPs usually do not
provide a solution to the strong CP problem. Moreover, if the underlying global sym-
metry is flavour-dependent, the ALP can acquire flavour-violating couplings to quarks
and leptons in the low-energy effective theory. This would provide new sources of flavour
and CP violation in addition to the SM Yukawa couplings, and therefore offers a rich phe-
nomenology. Such patterns occur among others in generalised DFSZ models, where the
Peccei-Quinn charges of the SM fields are not flavour universal [155–162]. If the U(1)PQ
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is identified with the U(1)FN of the Froggat-Nielsen mechanism to explain the hierarchy
in fermion masses, the ALP emerges as the axiflavon or flaxion that has flavour-violating
couplings and can simultaneously address the strong CP problem [163,164]. In even more
ambitious approaches, the combined U(1)PQ/FN was further identified with the symmetry
of the Higgs field [165,166]. Additionally to the aforementioned properties of the axiflavon,
the unified Higgs-axiflavon can further deliver a trigger for electro-weak symmetry break-
ing (EWSB). In section 6.2 we will show that even flavour-conserving couplings of the ALP
in the UV will inevitably generate flavour-changing couplings at low energies through RG
running. This fact has also been noted in [167] and was first published in [5]. This is remark-
able, because it means that properties of the SM that are not part of the extended model
can imprint themselves in the low-energy effective theory, i.e. the SM + ALP. Moreover, it
has been shown recently that via RG effects, ALPs can source most dimension-6 SMEFT
operators [168]. This can potentially lead to interesting phenomenological implications, re-
inforcing the importance of studying light new physics models in contrast to heavy new
particles.

Apart from their implications on flavour physics phenomenology, ALPs have been
shown to be viable cold dark matter candidates [169, 170]. Moreover, they could have
triggered phase transitions in the early universe that could in principle be detectable
through certain signatures in gravitational waves [171, 172].

In this thesis, we will focus on ALPs within the mass range of a few MeV to a few GeV.
Classical axion solutions to the strong CP problem are typically many orders of magnitude
lighter. The reason is that as pNGBs, axions should in principle be exactly massless. This
masslessness is further protected by a so-called shift symmetry, a remnant of the high
energy Peccei-Quinn symmetry. However, QCD instanton effects give rise to a small dy-
namical mass [152, 173, 174]. We allow for additional sources of shift-symmetry breaking
entering in the form of an explicit mass term. In non-abelian extensions of the SM with an
enlarged spectrum of coloured particles, dynamically generated breaking terms can occur.
Due to the enhancement of the strong coupling constant at higher energies, these effects
can be sizeable. Early ideas of introducing extra coloured matter at an intermediate scale
either led to new hierarchy problems or spoil the solution of the strong CP problem due to
new CP-violating phases [175–180]. Some more recent realisations included mirror copies
of the SM, such that the complete particle spectrum inherits an additional Z2 symmetry,
which is broken. The symmetry-breaking scale of the mirror sector can be larger than
the electroweak scale, thereby enhancing significantly the axion mass [145–148, 150]. An-
other mechanism explored in [181] considers an enlarged colour sector, which solves the
strong CP problem via new massless fermions. The spontaneous breaking of the unified
colour group SU(6) × SU(3′) into QCD and another confining group provides a source
of naturally large axion mass due to small-size instantons, while automatically ensuring
a CP-conserving vacuum. A different approach was presented in [182], where the SU(3)c

group of the SM is extended to be a diagonal subgroup of a parent SU(3) × SU(3) × . . .
group, which is broken at a high scale. All SM quarks are charged under a single SU(3)

factor of the parent group and an axion is introduced for each one, which independently
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relaxes the corresponding θ angle to 0. This allows each of the axions to have a mass signi-
ficantly larger than in the QCD axion case. These studies show that in suitable extensions
of the SM it is possible to generate a genuine ALP mass term while preserving the solution
of the strong CP problem.

In this thesis, we will first introduce the general Lagrangian set-up for an extensive study
of flavour observables from ALPs in section 6.2. Furthermore, our study of RG effects will
show how any ALP – SM coupling in the UV will inevitably generate couplings to all
particles in the low-energy EFT, especially including quark flavour-violating couplings. In
more detail, we will demonstrate how ALP couplings evolve from the high scale of Peccei-
Quinn (PQ) symmetry breaking to the weak scale, where we integrate out heavy SM fields.
From this procedure matching corrections arise, and we give numerical estimates of their
strength. Eventually, we study the RG evolution below the weak scale down to hadronic
scales where non-perturbative QCD effects come into play. ALP interactions at such low
energies are investigated in section 6.3, where we will demonstrate how to consistently
implement ALPs into the weak chiral and the nuclear Lagrangian. In sections 7.1 and 7.2
will conduct a comprehensive study of ALP flavour phenomenology in the quark and
lepton sector, respectively, and present how flavour observables can be used to constrain
ALP models. The results displayed in chapters 6 and 7 have been published in [5–7], and
are summarised and adapted for this thesis.

6.2 The ALP Lagrangian and RG effects at low energies

We assume the existence of a new pseudoscalar resonance, the ALP a. Under SM gauge
groups, it transforms as a singlet. It is the pseudo-Nambu–Goldstone boson of a spon-
taneously broken U(1) symmetry at the UV scale, which we will call the Peccei-Quinn
or PQ symmetry. This additional global symmetry is realised at energies above the scale
Λ ≫ ΛEW, with ΛEW = 246GeV the electroweak scale. For our purposes we will typically
assume Λ = 4πTeV. The ALP can be regarded as the phase of a complex scalar at high en-
ergies. Therefore, at the classical level, its couplings are protected by an approximate shift
symmetry a → a + constant. For a classical QCD axion, this symmetry is exact. However,
for the case at hand we allow for an explicit soft breaking of the symmetry by introducing
a mass term ma,0 for the ALP. Up to dimension 5, the most general Lagrangian reads [183]

LD≤5
eff =

1

2
(∂µa)(∂

µa)−
m2
a,0

2
a2 +

∂µa

f

∑
F

ψ̄F cF γµψF + cϕ
∂µa

f

(
ϕ†i
←→
Dµϕ

)
+ cGG

αs
4π

a

f
Gaµν G̃

µν,a + cWW
α2

4π

a

f
WA
µν W̃

µν,A + cBB
α1

4π

a

f
Bµν B̃

µν .

(6.1)

Here Gaµν , WA
µν and Bµν are the field-strength tensors of SU(3)c, SU(2)L and U(1)Y , B̃µν =

1
2ϵ
µναβBαβ etc. (with ϵ0123 = 1) are the dual field-strength tensors, and αs = g2s/(4π),

α2 = g2/(4π) and α1 = g′ 2/(4π) denote the corresponding coupling parameters. The sum
in the first line extends over the chiral fermion multiplets F of the SM, and the Higgs
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doublet is denoted by ϕ. The quantities cF are 3 × 3 hermitian matrices in generation
space.

In the Lagrangian (6.1), the ALP couplings to the SM fermions and the Higgs doublet
are obviously shift symmetric. Furthermore, the effects of a shift a → a + constant for
couplings to SU(2)L and U(1)Y gauge bosons can be removed by field redefinitions. Under
a continuous shift, the coupling to the QCD gauge field is not invariant due to instanton
effects. However, also in that case, a discrete version is preserved. Note that all couplings
to SM fields are suppressed by the large scale f that is related to the scale of PQ symmetry
breaking via Λ = 4πf . In the literature for QCD axions, one often eliminates this scale
in favour of the axion decay constant fa = −f/(2cGG). In good approximation, we may
neglect operators that are suppressed by higher powers of 1/f .

The physical ALP mass receives contribution from the explicit soft breaking term as well
as from the aforementioned non-perturbative QCD dynamics [152, 173, 174]. It reads

m2
a = m2

a,0

[
1 +O

(
f2π
f2

)]
+ c2GG

f2πm
2
π

f2
2mumd

(mu +md)2
, (6.2)

where fπ ≈ 130.5MeV is the pion decay constant, and the corrections to the first term
have been calculated in [5]. From this equation it is manifest that there is a direct relation
between the ALP coupling to gluons and the effective ALP mass in the limit of vanishing
bare ALP mass1.

Counting free parameters of the Lagrangian, we find 1 (ALP mass) + 1 (ALP–Higgs
coupling) + 3 (ALP–gauge boson couplings) + 5 × 9 (ALP–fermion couplings2) = 50 real
parameters. Five of them can be removed with the help of the five global symmetries of the
individual lepton numbers, baryon number, and hypercharge [183]. We will demonstrate
this in detail next. We define QF,ϕ as the charge matrix of the fermion F and the Higgs
doublet ϕ, respectively, under one of the global symmetries. For example, Q(B)

d ψd =
1
31ψd

gives the baryon number of the down-type quarks. Then a field redefinition

ψF → exp

(
ic
a

f
QF

)
ψF , ϕ→ exp

(
ic
a

f
Qϕ

)
ϕ , (6.3)

where c is any real number (but equal for all fields involved in the transformation), will
have the following effects on the ALP couplings in the effective Lagrangian (6.1):

cF → cF − cQF ,

cϕ → cϕ − cQϕ ,
cGG → cGG +

c

2
Tr (Qu +Qd − 2QQ) ,

cWW → cWW −
c

2
Tr (3QQ +QL) ,

cBB → cBB + cTr
(
4

3
Qu +

1

3
Qd −

1

6
QQ +Qe −

1

2
QL

)
.

(6.4)

1 Note that this is especially relevant for the QCD axion case.
2 Each coupling matrix has 9 free entries as it couples to three generations. The five representations are the left-

handed quark doublet, the right-handed up- and down-type quark singlets, the left-handed lepton doublet,
and the right-handed lepton singlet.
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All transformations of this type will leave the coupling combination cWW + cBB invari-
ant. The observation that both cWW and cBB change under transformations proportional
to baryon or lepton number reflects the fact that both symmetries are anomalous in the
SM. Under the anomaly-free combination (B − L) all gauge boson couplings remain un-
changed. In the literature different choices have been made considering which parameters
to remove from the Lagrangian [183–186]. In this work, we refrain from taking a particular
choice, thus keeping some parameter redundancies. Though, we remove the ALP–Higgs
coupling from the Lagrangian by applying a transformation (6.4) proportional to hyper-
charge. While the ALP–gauge boson couplings remain unchanged, the ALP–Higgs and
–fermion couplings transform as

cQ → cQ −
c

3
1 , cu → cu −

c

3
1 , cd → cd −

c

3
1 ,

cGG → cGG , cWW → cWW −
3c

2
, cBB → cBB +

3c

2
.

(6.5)

Choosing c = 2cϕ then removes the ALP–Higgs coupling. With this choice there are still 4
parameter redundancies remaining. For this reason, physical observables can only depend
on certain combinations of couplings that are invariant under all symmetry transforma-
tions. In [5], we have shown that these physical ALP couplings can be chosen as

c̃GG = cGG +
1

2
Tr (cu + cd − 2cQ) ,

c̃WW = cWW −
1

2
Tr (3cQ + cL) ,

c̃BB = cBB + Tr
(
4

3
cu +

1

3
cd −

1

6
cQ + ce −

1

2
cL

)
,

(6.6)

and
Ỹu = i

(
Yu cu − cQYu − cϕYu

)
,

Ỹd = i
(
Yd cd − cQYd + cϕYd

)
,

Ỹe = i
(
Ye ce − cLYe + cϕYe

)
,

(6.7)

where YF are the SM Yukawa matrices. If the effective theory is extended to energies below
the weak scale, then the effects of heavy fermions decouple and need to be removed from
the above expressions.

6.2.1 RG evolution to the electroweak scale

In eq. (6.1), we pulled out a factor αi, i = 1, 2, s from the ALP coupling to the SM gauge
bosons. As a result, these couplings do not run up to two-loop order in gauge couplings
[187–189], i.e.

d

d lnµ
cV V (µ) = 0 , V = G, W, B . (6.8)

The couplings to fermions, however, receive multiple contributions to their respective
RGEs. Representative Feynman diagrams are shown in figure 6.1. Additional to multi-
plicative contributions from external leg corrections, there are mixings of the left and right-
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handed doublet and singlet coefficients cQ and cu,d, and cL and ce. The results derived
here agree with the corresponding terms in [162, 190, 191]. Furthermore, removing the
ALP–Higgs coupling can be interpreted as eliminating the corresponding operator from
the Lagrangian by re-expressing it in terms of the ALP–fermion interaction terms. How-
ever, it is needed as a counterterm for the first diagram in figure 6.1. Its contribution to
the RGEs must then be mapped back onto our chosen basis for consistency. In previous
studies this operator and its corresponding coupling coefficient were taken as independ-
ent and an own RG equation was derived [162, 190]. We want to emphasise here that
this leads to ambiguous results and should in general be avoided [192], since it is not
possible to distinguish the matrix elements of the ALP–Higgs from the ALP–fermion op-
erators. Additionally, the coefficients cV V of the ALP-gauge boson interactions mix into
the fermion RGEs through the last diagram of figure 6.1. Our findings agree with those
of [187, 193], where these structures have been studied for the QCD axion. Due to our
choice of normalisation for the bosonic couplings, Feynman diagrams that are essentially
two-loop diagrams contribute to the RGEs with the same order of magnitude as one-loop
diagrams with corrections from gauge boson interactions, and are henceforth also taken
into account. We give an example of such a diagram in figure 6.2. The results for SU(3)c

gauge bosons have been calculated in [194, 195] first. Here we generalise to the SM gauge
group. Combining all effects, we eventually find (with q = u, d)

d

d lnµ
cQ(µ) =

1

32π2

{
YuY

†
u + YdY

†
d , cQ

}
− 1

16π2

(
YucuY

†
u + YdcdY

†
d

)
+

[
QQ
8π2

X − 3α2
s

4π2
C

(3)
F c̃GG −

3α2
2

4π2
C

(2)
F c̃WW −

3α2
1

4π2
Y2
Qc̃BB

]
1 ,

d

d lnµ
cq(µ) =

1

16π2

{
YqY

†
q , cq

}
− 1

8π2
Y †
q cQYq +

[
Qq
8π2

X +
3α2

s

4π2
C

(3)
F c̃GG +

3α2
1

4π2
Y2
q c̃BB

]
1 ,

d

d lnµ
cL(µ) =

1

32π2

{
YeY

†
e , cL

}
− 1

16π2
YeceY

†
e +

[
QL
8π2

X − 3α2
2

4π2
C

(2)
F c̃WW −

3α2
1

4π2
Y2
Lc̃BB

]
1 ,

d

d lnµ
ce(µ) =

1

16π2

{
Y †
e Ye, ce

}
− 1

8π2
YecLY

†
e +

[
Qe
8π2

X − 3α2
1

4π2
Y2
e c̃BB

]
1 ,

(6.9)
where QF is the charge of the fermions under a transformation proportional to hyper-
charge as in eq. (6.5), C(N)

F = N2−1
2N is the eigenvalue of the quadratic Casimir operator in

the fundamental representation of SU(N), YF is the hypercharge of the fermion multiplet
F , and we have abbreviated

X = Tr
[
2cQ(YuY

†
u − YdY †

d )− 3cuY
†
uYu + 3cdY

†
d Yd − cLYeY †

e + ceY
†
e Ye

]
. (6.10)

Note that we keep the result general by allowing for different choices of QF than the
one we will eventually employ. All quantities at the right hand side of eq. (6.9) must be
evaluated at the scale µ.

Below the weak scale, we ultimately want to integrate out the top quark from our ef-
fective theory description. In a first step, we therefore transform all fermion fields into the
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Figure 6.1: One-loop diagrams accounting for operator mixing through Yukawa and gauge interac-
tions. The shortly dashed line represents the ALP, the long dashed one the Higgs.

Figure 6.2: Examples of two diagrams that contribute with the same order of magnitude to the
RGEs, if the coupling coefficients are taken to be equal.

mass basis by diagonalising the SM Yukawa matrices by means of bi-unitary transforma-
tions, such that

U †
uYuWu = Y

diag
u =diag(yu, yc, yt) ,

U †
dYdWd = Y

diag
d =diag(yd, ys, yb) ,

U †
eYeWe = Y

diag
e =diag(ye, yµ, yτ ) .

(6.11)

Redefining the fermion fields as

Q→ UuQ , uR →WuuR , dR →WddR ,

L→ UeL , eR →WeeR ,
(6.12)

then diagonalises the up-sector and the lepton sector, while the down-sector Yukawa mat-
rix is transformed into

Yd → U †
uYdWd = V Y

diag
d , (6.13)
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and V = U †
uUd is the CKM matrix. In the following, all ALP couplings to fermions cF are

defined in this basis. Using the fact that all Yukawa couplings are much smaller than the
top-Yukawa yt ≃ 13, the RG equations of eq. (6.9) simplify to

d

d lnµ
[cQ(µ)]ii = −

y2t
8π2

(
δi3
2

+ 3QQ

)
ctt −

α2
s

π2
c̃GG −

9α2
2

16π2
c̃WW −

α2
1

48π2
c̃BB

d

d lnµ
[cQ(µ)]ij =

y2t
32π2

(δi3 + δj3) (cQ)ij ; i ̸= j ,

d

d lnµ
[cu(µ)]ii = −

y2t
8π2

(δi3 − 3Qu) ctt +
α2
s

π2
c̃GG +

α2
1

3π2
c̃BB

d

d lnµ
[cu(µ)]ij =

y2t
16π2

(δi3 + δj3) (cu)ij ; i ̸= j ,

d

d lnµ
[cd(µ)]ij = δij

(
−3y2t
8π2

Qdctt +
α2
s

π2
c̃GG +

α2
1

12π2
c̃BB

)
,

d

d lnµ
[cL(µ)]ij = δij

(
−3y2t
8π2

QLctt −
9α2

2

16π2
c̃WW −

3α2
1

16π2
c̃BB

)
,

d

d lnµ
[ce(µ)]ij = δij

(
−3y2t
8π2

Qectt +
3α2

1

4π2
c̃BB

)
,

(6.14)

where we have defined
ctt(µ) = [cu(µ)]33 − [cQ(µ)]33 . (6.15)

In the next step, we would in principle solve the RG equations. To keep this treatment
compact, we will instead comment on the important measures taken and only give results
where appropriate. The full solutions can be found in [5].

The pure ALP–gauge couplings cV V are scale-independent (6.8). However, this is not
true for the physically observable couplings defined in (6.6), since they depend on the
fermion couplings as well. In the limit that only the top-Yukawa coupling is taken to
be non-vanishing, the four functions c̃GG(µ), c̃WW (µ), c̃BB(µ) and ctt(µ) form a closed
set of coupled differential equations. Solving those and plugging them in into the RGEs
of the other couplings (6.14), we are able to iteratively solve the equations for all ALP
couplings. To give an impression of the strength of the effects of running from the UV
scale Λ = 4πf = 4πTeV down to the EW scale µw = mt, we find numerically for the
ALP–top coupling

ctt(mt) ≃ 0.826 ctt(Λ)−
[
6.17 c̃GG(Λ) + 0.23 c̃WW (Λ) + 0.02 c̃BB(Λ)

]
× 10−3 . (6.16)

This is a very important result, because it shows that any ALP coupling in the UV will
inevitably generate a coupling to top-quarks at the electro-weak (EW) scale4. Moreover,
we will see later that this is an even more general result, and in fact any UV ALP coupling

3 The Yukawa matrices in eq. (6.9) come in pairs, hence the least suppressed terms are those proportional
to either the bottom quark or τ lepton. Compared with the top Yukawa, these contributions are weaker by
factors of y2

b/y
2
t ∼ y2

τ/y
2
t ∼ 10−4. Note that we include some electroweak contributions of the same order

of magnitude as these suppressed terms in the RGE. We do so to keep our treatment as general as possible,
because the ALP–gauge boson couplings can be enhanced in some other models.

4 Note that the c̃V V (6.6) also depend on the ALP–fermion couplings, and therefore ALP couplings to any SM
particle generates an ALP–top coupling.
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will generate couplings to all SM fermions at the low scale, even such couplings that are
flavour-violating.

6.2.2 Effective ALP Lagrangian at the electroweak scale

At the weak scale µw, it is appropriate to express the Lagrangian in terms of fields that are
defined in the broken phase after EWSB. Therefore, the Lagrangian reads

Leff(µw) =
1

2
(∂µa)(∂

µa)−
m2
a,0

2
a2 + Lfermion(µ) + cGG

αs
4π

a

f
Gaµν G̃

µν,a + cγγ
α

4π

a

f
Fµν F̃

µν

+ cγZ
α

2πsw cw

a

f
Fµν Z̃

µν + cZZ
α

4πs2w c
2
w

a

f
Zµν Z̃

µν + cWW
α

2πs2w

a

f
W+
µν W̃

−µν ,

(6.17)
where sw ≡ sin θW and cw ≡ cos θW denote the sine and cosine of the weak mixing angle,
and

cγγ = cWW + cBB , cγZ = c2w cWW − s2w cBB , cZZ = c4w cWW + s4w cBB . (6.18)

To obtain ALP–fermion interactions in the mass basis, we transform the Yukawa couplings
according to (6.11). Under these field redefinitions, the flavour matrices transform into new
hermitian matrices

kU = U †
ucQUu, kD = U †

dcQUd, kE = U †
ecLUe,

kf = W †
f cfWf ; f = u, d, e .

(6.19)

Note that the matrices kU and kD are connected via the CKM matrix V by

kD = V †kUV , (6.20)

and therefore are not independent. Likewise, the ALP coupling to neutrinos are identical
to those to the left-handed charged leptons, i.e. kν = kE . The ALP–fermion Lagrangian at
the EW scale therefore reads

L fermion(µ) =
∂µa

f

[
ūL kU (µ) γµ uL + ūR ku(µ) γµ uR + d̄L kD(µ) γµ dL + d̄R kd(µ) γµ dR

+ ν̄L kν(µ) γµ νL + ēL kE(µ) γµ eL + ēR ke(µ) γµ eR

]
. (6.21)

Since flavour-conserving ALP couplings play a crucial role in our work, we define

cfifi(µ) ≡ [kf (µ)]ii − [kF (µ)]ii . (6.22)

In strong-interaction and electromagnetic processes, the flavour-conserving vector currents
are conserved, and hence the corresponding ALP couplings [kf (µ)]ii + [kF (µ)]ii are unob-
servable.5

5 This is no longer true in weak-interaction processes, where differences of the vectorial couplings to different
quark flavours can appear in predictions for weak decay amplitudes [6].
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At the electroweak scale, the physical ALP–gauge boson couplings (6.6) can be rewritten
using the ALP–fermion couplings at this scale as

c̃GG(Λ) = cGG +
1

2

∑
q

cqq(Λ) ,

c̃WW (Λ) = cWW −
1

2
Tr
[
3kU (Λ) + kE(Λ)

]
,

c̃BB(Λ) = cBB +
∑
f

Nf
c Q

2
f cff (Λ) +

1

2
Tr
[
3kU (Λ) + kE(Λ)

]
.

(6.23)

Here, the sums run over all fermion flavours, Nf
c is the number of colour charges of the

respective fermion, Qf denotes its electric charge in units of the elementary charge e.
Let us briefly return to the question of parameter redundancies at this point. In the basis

where the SM Yukawa matrices are diagonal, the elements of the matrices Ỹf in (6.7) take
the form (

Ỹf
)
ij
= i
[
yfi [kf ]ij − [kF ]ij yfj

]
, (6.24)

where yfi denote the eigenvalues of the Yukawa matrices (the physical Yukawa couplings
of the quarks and leptons). It follows that (Ỹf )ii = iyfi cfifi , which shows that the diagonal
ALP–fermion couplings cfifi in (6.22) are physical parameters. For i ̸= j, one finds that
both (kf )ij and (kF )ij are physical quantities, since for example i(Ỹ †

f Yf + Y †
f Ỹf ) only

involves the off-diagonal elements of kf . Moreover, from (6.23) one sees that c̃GG and cGG

are both unambiguous, because their difference is a linear combination of the physical
parameters cqq. The same statement applies for the combinations c̃γγ = c̃WW + c̃BB and
cγγ = cWW + cBB , but not to cWW and cBB individually.

6.2.3 Effective ALP Lagrangian below the electroweak scale

For ALPs that are lighter than the electroweak scale, we need to evolve their couplings
to lower energies. Just below this scale, we integrate out the SM heavy particles — the
Higgs boson, the top-quark and the weak gauge bosons W± and Z0 — from the theory
and match the effective Lagrangian to one where these degrees of freedom are no longer
present. We find

LD≤5
eff (µ ≲ µw) =

1

2
(∂µa)(∂

µa)−
m2
a,0

2
a2 + L′ferm(µ)

+ cGG
αs
4π

a

f
Gaµν G̃

µν,a + cγγ
α

4π

a

f
Fµν F̃

µν ,
(6.25)

where L′ferm is given by (6.21) but with the top-quark fields tL and tR removed. In general,
the Wilson coefficients cGG, cγγ , kF and kf in this effective Lagrangian differ from the
corresponding coefficients in the effective Lagrangian above the weak scale by calculable
matching contributions.
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6.2.3.1 Matching contributions to ALP couplings at the weak scale

matching contributions to the alp–gauge boson couplings One finds that
there are no matching contribution to the ALP–boson couplings cGG and cγγ if the ALP is
much lighter than the weak scale, and therefore terms with a scaling of m2

a/m
2
t,W can be

neglected [196]. Yet, there are corrections to the c̃V V couplings in (6.23). Crossing the weak
scale and integrating out the top-quark has the effect of removing the top contribution
from their expressions. We thus obtain

c̃GG(µ ≲ µw) = cGG +
1

2

∑
q ̸=t

cqq(µ) ,

c̃γγ(µ ≲ µw) = cγγ +
∑
f ̸=t

Nf
c Q

2
fcff (µ) .

(6.26)

This procedure repeats itself at lower scales when the respective fermion mass scale is
crossed.

matching contributions to the alp–fermion couplings Matching correc-
tions to ALP–fermion couplings at one-loop order arise from diagrams involving one
or more heavy gauge bosons in the loop. Representative Feynman diagrams are shown
in figure 6.3. Below the EW scale, the top-quark is integrated out already. Therefore we
may neglect diagrams where the Higgs boson is involved, since its couplings are propor-
tional to the square of the fermion Yukawa couplings, which are all much smaller then
the top-Yukawa. We computed those diagrams in a general Rξ gauge, the final result is
gauge-independent. Furthermore, the contributions from Z-bosons and their Goldstones
cancel out in the sum of all diagrams. From W -bosons, a contribution remains when the
top-quark is present in the loop. These diagrams source flavour off-diagonal contributions
to the left-handed down-type sector ALP couplings kD(µw). It is most remarkable that
flavour-changing ALP interactions are generated in this way, even if the underlying UV
theory does not contain new sources of flavour or CP violation beyond those present in
the SM. We have neglected the Yukawa couplings of the light quarks and leptons. In this
approximation there are no flavour off-diagonal matching contributions in the up-quark
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t

Za a
V1

V2

a
V

a

V

Figure 6.3: Contributions to the matching corrections of the ALP–fermion couplings just below the
weak scale. In the second diagram (V1V2) = (WW ), (ZZ), (Zγ) or (γZ). In the third
and fourth diagram V = W, Z. In the sum of all graphs only the W -boson graph with
internal top-quark loops (and the corresponding diagrams with Goldstone bosons) are
non-vanishing. They lead to flavour-changing ALP couplings, even if the underlying
UV theory is flavour-conserving.

and lepton sectors. Combining all terms, we find for the matching contributions (with
F = U, D, E, ν and f = u, d, e)

∆kF =
3y2t
8π2

ctt

(
T f3 −Qfs2w

)
ln

(
µ2w
m2
t

)
1

+
3α2

8π2

[
cWW

2s4w

(
ln

(
µ2w
m2
W

)
+

1

2
+ δ1

)
+

2cγZ
s2wc

2
w

Qf

(
T f3 −Qfs2w

)(
ln

(
µ2w
m2
Z

)
+

3

2
+ δ1

)
+

cZZ
s4wc

4
w

(
T f3 −Qfs2w

)2(
ln

(
µ2w
m2
Z

)
+

1

2
+ δ1

)]
1 + δFD∆̂kD(µw) ,

∆kf =
3y2t
8π2

ctt(−Qfs2w) ln
(
µ2w
m2
t

)
1

+
3α2

8π2
Q2
f

[
2cγZ
c2w

(
ln

(
µ2w
m2
Z

)
+

3

2
+ δ1

)
− cZZ

c4w

(
ln

(
µ2w
m2
Z

)
+

1

2
+ δ1

)]
1 .

(6.27)
All scale-dependent parameters on the right-hand side of this equation are to be evaluated
at the scale µw. The quantity δ1 = −11

3 is a scheme-dependent constant. It stems from the
treatment of the Levi–Civita tensor ϵµναβ in d dimensions. If it is treated as a 4-dimensional
object, one obtains δ1 = 0 instead. The generated flavour-changing effects read

[
∆̂kD

]
ij
=

y2t
16π2

{
V ∗
miVnj [kU (µw)]mn(δm3 + δn3)

[
−1

4
ln

(
µ2w
m2
t

)
− 3

8
+

3

4

1− xt + lnxt
(1− xt)2

]
+ V ∗

3iV3j [kU (µw)]33 + V ∗
3iV3j [kU (µw)]33

[
1

2
ln

(
µ2w
m2
t

)
− 1

4
− 3

2

1− xt + lnxt
(1− xt)2

]
− 3α

2πs2w
cWWV

∗
3iV3j

1− xt + xt lnxt
(1− xt)2

}
,

(6.28)
with xt = m2

t /m
2
W .
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6.2.3.2 Numerical results for ALP–fermion couplings below the weak scale

The ALP–fermion Lagrangian (6.21) can be re-expressed in terms of vector and axial-vector
currents of fermion fields in the mass basis. Since vector currents are conserved below the
weak scale, it follows that we can write for the flavour diagonal ALP couplings

Ldiag
fermion(µ) =

∂µa

2f

∑
f ̸=t

cff (µ) f̄ γµγ5f , (6.29)

where the sum runs over all light fermion mass eigenstates. Applying the equations of mo-
tion and the well-known SM anomaly equations, we find that the ALP couples to fermions
proportional to their mass. Hence, from now on we neglect interactions between ALPs and
neutrinos.

Combining the effects of RG evolution and matching contributions at the weak scale, we
obtain numerically for the reference scale Λ = 4πf , f = 1TeV

cuu,cc(mt) ≃ cuu,cc(Λ)− 0.116 ctt(Λ)−
[
6.35 c̃GG(Λ) + 0.19 c̃WW (Λ) + 0.02 c̃BB(Λ)

]
× 10−3 ,

cdd,ss(mt) ≃ cdd,ss(Λ) + 0.116 ctt(Λ)−
[
7.08 c̃GG(Λ) + 0.22 c̃WW (Λ) + 0.005 c̃BB(Λ)

]
× 10−3 ,

cbb(mt) ≃ cbb(Λ) + 0.097 ctt(Λ)−
[
7.02 c̃GG(Λ) + 0.19 c̃WW (Λ) + 0.005 c̃BB(Λ)

]
× 10−3 ,

ceiei(mt) ≃ ceiei(Λ) + 0.116 ctt(Λ)−
[
0.37 c̃GG(Λ) + 0.22 c̃WW (Λ) + 0.05 c̃BB(Λ)

]
× 10−3 .

(6.30)
To obtain these solutions, we have solved the RG equations in leading logarithmic approx-
imation, thereby resumming logarithmically enhanced contributions to all loop orders. We
use the two-loop expression for the running QCD coupling αs(µ) and one-loop expres-
sions for the running electroweak couplings α1(µ) and α2(µ) as well as for the running
top-quark Yukawa coupling.

Applying the same method to the flavour-changing ALP interaction terms, it is evident
that both vector and axial-vector currents contribute. We write the corresponding Lag-
rangian as

LFCNC
fermion(µ ≲ µw) = −

ia

2f

∑
f

[
(mfi −mfj ) [kf (µ) + kF (µ)]ij f̄i fj

+ (mfi +mfj ) [kf (µ)− kF (µ)]ij f̄i γ5fj
]
.

(6.31)

For all coefficients other than kD, flavour-changing effects are inherited from the UV scale,
i.e. [kf (µw)]ij = [kf (Λ)]ij , with f = U, E, u, d, e. For the off-diagonal elements of the
coefficient kD one obtains the more interesting result

[kD(µw)]ij = [kD(Λ)]ij − V ∗
miVnj (δm3 + δn3 − 2δm3δn3)

(
1− e−U(µw,Λ)

)
[kU (Λ)]mn

− 1

6
V ∗
3iV3j It(µw,Λ) +

[
∆̂kD(µw)

]
ij
,

(6.32)
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where the evolution functions U(µw,Λ) and It(µw,Λ) are defined as

U(µw,Λ) = −
∫ µw

Λ

dµ

µ

y2t (µ)

32π2
, It(µw,Λ) =

∫ µw

Λ

dµ

µ

3y2t (µ)

8π2
ctt(µ) . (6.33)

Explicit analytic expressions for these integrals can be found in eqs. (3.14) and (3.21) of [5],
while the matching contribution [∆̂kD(µw)]ij can be found in eq. (6.28). Via these evolution
functions, ALP couplings to any SM field at the UV scale will, at some loop order, produce
logarithmically-enhanced contributions to flavour-changing down-type quark couplings
below the electroweak scale. We will make use of this important point in section 7.1 to
place new constraints on individual ALP couplings defined at the UV scale, by calculating
their flavour effects to leading logarithmic approximation via these equations.

6.2.3.3 RG evolution below the weak scale

Below the EW scale, the evolution equations take a fairly simple form. Since no Higgs
bosons, top-quarks or heavy gauge bosons are present in the theory any more, the only
diagrams giving contributions to the RGEs are those shown in figure 6.2, where the gauge
bosons are either gluons or photons. We obtain (with Q = U, D and q = u, d)

d

d lnµ
kq(µ) = −

d

d lnµ
kQ(µ) =

(
α2
s

π2
c̃GG +

3α2

4π2
Q2
q c̃γγ

)
1 ,

d

d lnµ
ke(µ) = −

d

d lnµ
kE(µ) =

3α2

4π2
c̃γγ1 .

(6.34)

The scale dependence of the gauge boson couplings c̃GG and c̃γγ can be neglected, because
it is a two-loop effect. Note that the evolution effects are diagonal in generation space,
and hence flavour-changing couplings are scale-independent in the low-energy theory. For
flavour-conserving couplings, only the combinations defined in (6.22) are physical. Solving
the RGEs (6.34), their scale evolution is given by

cqq(µ) = cqq(µw)−
4c̃GG(µw)

βQCD
0

αs(µ)− αs(µw)
π

−Q2
q

3c̃γγ(µw)

βQED
0

α(µ)− α(µw)
π

,

cℓℓ(µ) = cℓℓ(µw)−
3c̃γγ(µw)

βQED
0

α(µ)− α(µw)
π

.

(6.35)

In the effective theory below the weak scale the β-function coefficients are

βQCD
0 = 11− 2

3
nq , βQED

0 = −4

3

∑
f

Nf
c Q

2
f , (6.36)

with nq the number of light quark flavours with masses lighter than the scale µ and in the
second term the sum includes all light fermions with masses below µ. According to (6.26),
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the gauge boson couplings contain all fermion couplings below the scale where they are
evaluated. We generalise this by defining

c̃GG = cGG +
1

2

∑
q

cqq(µ)θ(µ−mq) ,

c̃γγ = cγγ +
∑
f

Nf
c QQ

2
fcff (µ)θ(µ−mf ) .

(6.37)

This means that the effective couplings change by a discrete amount whenever a fermion
mass threshold is crossed. When this happens, a matching calculation needs to be per-
formed in the usual way. To be more concrete, one evolves the coupling parameters from
the weak scale to the scale µb ≃ mb. Then one eliminates the b-quark from the list of light
fermions, and subsequently evolves from the b-quark scale to the scale µτ ≃ mτ , elimin-
ates the τ -lepton, and so on. In each step, the coefficients of the β-functions as well as the
values of c̃GG and c̃γγ need to be adjusted. For the diagonal quark couplings for example,
we thus obtain for a scale µ that is just below the b-quark mass

cqq(µ ≲ µb) =cqq(µw)−
4c̃GG(µw)

βQCD
0

αs(µb)− αs(µw)
π

−Q2
q

3c̃γγ(µw)

βQED
0

α(µb)− α(µw)
π

− 4c̃GG(µb)

βQCD
0

αs(µ)− αs(µb)
π

−Q2
q

3c̃γγ(µb)

βQED
0

α(µ)− α(µb)
π

.

(6.38)

In the first row, the ALP–boson couplings and the β-functions are evaluated with nq = 5

active quark flavours, whereas in the second row they are evaluated with nq = 4. Numer-
ically, these evolution effects below the weak scale are very small. The evolution of the
coefficients from the scale µw = mt to the low scale µ0 = 2GeV yields

cqq(µ0) = cqq(mt)−
[
3.0 c̃GG(Λ)− 1.4ctt(Λ)− 0.6 cbb(Λ)

]
× 10−2

−Q2
q

[
3.9 c̃γγ(Λ)− 4.7ctt(Λ)− 0.2cbb(Λ)

]
× 10−5 ,

cℓℓ(µ0) = cℓℓ(mt)−
[
3.9 c̃γγ(Λ)− 4.7ctt(Λ)− 0.2cbb(Λ)

]
× 10−5 .

(6.39)

In [197], analogous expressions were derived for the quark coefficients cqq, but only QCD
effects were included. Their results are in agreement with our findings when we ignore
terms proportional to the electromagnetic coupling α. For an ALP lighter than the scale
µ0, the interactions with hadrons and photons are affected by non-perturbative hadronic
effects. These can be studied in a systematic way using an effective chiral Lagrangian.

6.3 ALPs within the weak chiral and nuclear Lagrangian

6.3.1 Implementing ALPs in the weak chiral Lagrangian

For energies below the scale µ0 ≈ 2GeV it is appropriate to switch the description to
a version of chiral perturbation theory (χPT) where the ALP is included, and instead of
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interacting with quarks the ALP interacts with the pseudoscalar mesons (π, K, η). This
chiral theory was first introduced in [6, 183, 196, 198]. We start from the Lagrangian (6.25)
where the only quark degrees of freedom are the up-, down- and strange-quark. In order
to find the bosonised form of this Lagrangian, one eliminates the aGG̃ term from the
Lagrangian in favour of ALP couplings to quark bilinears, whose chiral representation is
well-known. This is accomplished with a chiral rotation [183, 199, 200]

q(x)→ exp

[
−iκqγ5 cGG

a(x)

f

]
q(x) , (6.40)

where q(x) is a 3-component object containing the light-quark fields u(x), d(x) and s(x).
The transformation parameters κq are hermitian matrices, which we choose to be diagonal
in the quark mass basis. Note that in principle one is allowed to add an additional phase
term −iδqcGG a(x)f in the exponential. Since all dependencies on κq and δq must cancel
out for physical observables and the δq-dependent structure is not needed to redefine or
simplify any coupling structures, we refrain from introducing this term here6.

Under the chiral rotation (6.40), the path integral measure is not invariant [201]. This
generates extra contributions to the ALP–gluon and photon couplings, as well as to the
quark mass matrix. Imposing the condition

Tr(κq) = κu + κd + κs = 1 (6.41)

ensures that the ALP–gluon coupling is eliminated from the Lagrangian even with these
additional terms. As long as the condition is satisfied, any choice of κq leads to an effective
chiral Lagrangian describing the same physics. The modified couplings to photons and
quarks then read

ĉγγ = cγγ − 2Nc cGG Tr
[
Q2κq

]
,

k̂Q = e
−iκq cGG

a
f
(
kQ − κq cGG

)
e
iκq cGG

a
f ,

k̂q = e
iκq cGG

a
f
(
kq + κq cGG

)
e
−iκq cGG

a
f ,

(6.42)

where Q = diag(Qu, Qd, Qs) contains the electric charges of the quarks. The matrices kQ
and kq have the texture

kQ =


[kU ]11 0 0

0 [kD]11 [kD]12

0 [kD]21 [kD]22

 , kq =


[ku]11 0 0

0 [kd]11 [kd]12

0 [kd]21 [kd]22

 , (6.43)

where the various entries refer to the ALP–fermion couplings in the mass basis defined
in (6.31). We recall that the off-diagonal couplings [kD]ij and [kd]ij with i ̸= j do not run
below the weak scale, and their values are fixed at the scale µw.

6 In [6], this term has been included and we refer the interested reader to this work.
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The derivative couplings of the ALP to the quarks are implemented by including the
ALP in the definition of the covariant derivative [202]

iDµΣ = i∂µΣ+ eAµ [Q,Σ] +
∂µa

f

(
k̂QΣ−Σ k̂q

)
, (6.44)

where Aµ is the photon field and

Σ(x) = exp

[
i
√
2

fπ
λaπa(x)

]
(6.45)

contains the pseudoscalar meson fields. Here, λa are the Gell-Mann matrices. The leading
order chiral Lagrangian can then be expressed as

Lχeff =
f2π
8

Tr
[
DµΣ (DµΣ)†

]
+
f2π
4
B0 Tr

[
m̂q(a)Σ

† + h.c.
]

+
1

2
∂µa ∂µa−

m2
a,0

2
a2 + ĉγγ

α

4π

a

f
Fµν F̃

µν ,

(6.46)

with fπ ≈ 130.5MeV the pion decay constant, and B0 ≈ m2
π/(mu + md) is proportional

to the quark condensate. Working to lowest order in the chiral expansion, we will con-
sequently neglect effects from π0–η–η′ mixing. The modified mass matrix is given by

m̂q(a) = exp

(
−2iκq cGG

a

f

)
mq (6.47)

with mq = diag(mu,md,ms).
The Lagrangian of ALP–χPT (6.46) has been the basis for numerous studies of low-

energy phenomena where ALPs interact with pseudoscalar mesons. For the case of the
QCD axion, one finds that QCD dynamics generates a mass for the ALP (see (6.2)), thereby
breaking the continuous shift symmetry of the classical Lagrangian to the discrete sub-
group a → a + nπf/cGG. One also finds that there are mass-mixing and kinetic mixing
contributions involving the ALP and the neutral mesons π0 and η, whose explicit form
depends on the κq parameters. For instance, at leading order in the 1/f expansion one
finds for the ALP–pion mixing

π0 = π0phys + θaπaphys , (6.48)

with the mixing angle

θaπ =
fπ

2
√
2f

[
m2
a(ĉuu − ĉdd)
m2
π −m2

a

− m2
π∆κ

m2
π −m2

a

]
, (6.49)

where ĉqq = cqq + 2κqcGG and

∆κ = 4cGG
muκu −mdκd
mu +md

. (6.50)
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In the literature, one often takes the “default” choice κq =m−1
q /Tr(m−1

q ), which eliminates
the mass mixing contribution ∆κ and leaves the kinetic mixing proportional to m2

a [183,
197]. The latter can then be neglected for the QCD axion. In [5] we showed that for a
non-vanishing ALP mass, the optimal choice is instead

κu =
md

mu +md
+

m2
a

m2
π −m2

a

∆cud
4cGG

, κd =
mu

mu +md
− m2

a

m2
π −m2

a

∆cud
4cGG

, (6.51)

with ∆cud = cuu − cdd + 2cGG
md−mu

md+mu
, because it eliminates all ALP–pion mixing effects.

This equation reduces to the default choice in the limit where m2
a/m

2
π → 0. However, it is

most important to note that through the dependence on the auxiliary κq parameters, θaπ is
not a physical quantity, and as such it is unobservable. We therefore refrain from adopting
a particular choice for the κq.

We will use the chiral Lagrangian (6.46) to study flavour-changing processes such as
K− → π−a and π− → e−ν̄ea, which in the SM are mediated by the weak interactions and
low energies are described by 4-fermion operators built out of products of left-handed
quark currents. Under a left-handed, flavour off-diagonal rotation qL → ULqL, the meson
fields transform as Σ → ULΣ. If we treat the modified quark mass matrix and the left-
handed ALP couplings as spurions subject to the transformation rules m̂q(a)→ ULm̂q(a)

and k̂Q → ULk̂QU
†
L, the Lagrangian is invariant under UL transformations. Applying

the Noether procedure, one finds that the chiral representation of the left-handed quark
currents q̄iγµPLqj is given by

Ljiµ = − if
2
π

4
e
i(κqj−κqi )cGG

a
f
[
Σ (DµΣ)†

]
ji

⊃ − if
2
π

4

[
1 + i(κqj − κqi)cGG

a

f

] [
Σ ∂µΣ

†]
ji
+
f2π
4

∂µa

f

[
k̂Q −Σ k̂qΣ

†]
ji
.

(6.52)

The derivative ALP couplings in the last term have been omitted in previous treatments
of the effective chiral ALP Lagrangian in [183] and all works based on it, but they are
crucial to ensure the independence of physical amplitudes from the choice of the auxiliary
parameters κq [6].

For a consistent analysis of weak-interaction decay processes involving ALPs, it is ne-
cessary to include the SM effective weak interactions at low energies. For the leptonic
pion decay π− → e−ν̄ea the weak transition is a charged-current process mediated by the
effective Lagrangian

Lu→d = −
4GF√

2
Vud L

21
µ ē γµPLνe . (6.53)

The decay amplitude for this process obtained from the chiral Lagrangian (neglecting
contributions suppressed by the electron mass) reads [6, 199]

iA(π− → e−ν̄ea) = −
iGF√

2
Vud

fπ
2f

ūeγµ(1− γ5) vν̄e

× (pπ + pa)
µ

[
2cGG

md −mu

md +mu
+ [ku − kd]11 +

m2
a

m2
π −m2

a

∆cud

]
,

(6.54)
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where ku,d denotes the ALP couplings to the right-handed up- and down-quark currents,
respectively, and

∆cud ≡ cuu − cdd + 2cGG
md −mu

md +mu
. (6.55)

All quantities are evaluated at the scale µ0. The leading-order operators mediating flavour-
changing non-leptonic meson decays such as K− → π−π0, KS → π+π− and KS → π0π0

read [203–205]

Ls→d = −
4GF√

2
V ∗
udVus

(
g8O8 + g

1/2
27 O

1/2
27 + g

3/2
27 O

3/2
27

)
, (6.56)

where the effective chiral operators are classified according to their transformation prop-
erties under SU(3) and isospin. The SU(3) octet operator O8 mediates weak transitions
with isospin change ∆I = 1

2 , while the 27-plet operators O1/2
27 and O3/2

27 mediates trans-
itions with ∆I = 1

2 and ∆I = 3
2 , respectively. These operators can be expressed in terms of

products of the left-handed operators Ljiµ defined in (6.52). One finds

O8 =
∑
i

L3iLi2 ,

O1/2
27 = L32L11 + L31L12 + 2L32L22 − 3L32L33 ,

O3/2
27 = L32L11 + L31L12 − L32L22 ,

(6.57)

where contraction over the Lorentz indices is implied. The coefficient of the octet operator,
|g8| ≈ 5.0 [206], is larger than the coefficient |g3/227 | by about a factor of 30, and in the SU(3)

symmetry limit the coefficient |g1/227 | is smaller than |g3/227 | by a factor of 5 [207]. The strong
dynamical enhancement of ∆I = 1

2 over ∆I = 3
2 transitions is known as the ∆I = 1

2

selection rule, and in our numerical analysis we will only consider the dominant octet
contributions to the decay amplitudes.

We have calculated the K− → π−a and K̄0 → π0a decay amplitudes from the Lag-
rangians (6.46) and (6.56), evaluating the Feynman graphs shown in figure 6.4. The first
two diagrams account for the ALP–meson mixing contributions, while the third graph con-
tains the ALP interactions at the weak vertex derived from (6.52). The following two graphs
describe ALP emission of an initial or final state meson. They only exist for the case of the
charged mesons K− and π− and give non-zero contributions if the ALP has non-universal
vector-current interactions with down and strange quarks. The last diagram contains pos-
sible flavour-changing ALP–fermion couplings, as parametrised by the off-diagonal ele-
ments of the matrices kQ and kq in 6.31. When all ALP couplings, flavour-conserving and
violating ones, are to be taken of the same order of magnitude, the contribution from
flavour-violating ones is dominant by far. To simplify the analysis we set mu = md ≡ m̄ in
order to eliminate the π0–η mass mixing. The meson masses are then given by m2

π = 2B0m̄,
m2
K = B0 (ms + m̄), and 3m2

η = 4m2
K −m2

π with B0 ≈ m2
π/(mu +md). Corrections to the
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Figure 6.4: Feynman diagrams contributing to the K− → π−a and K̄0 → π0a decay amplitudes
at leading order in ALP–χPT. The crossed circles denotes weak interaction vertices me-
diated by the SU(3) octet operator O8. The dots refer to interactions from Lagrangian
(6.46). The first two diagrams in the second row vanish for neutral mesons. If all ALP
couplings are assumed to be of the same order, the last diagram with the direct flavour-
changing ALP interaction is the most dominant contribution.

decay amplitudes proportional to the mass difference (mu−md) are suppressed by a factor
1/ms, and hence are very small. We then obtain [6]

iA(K− → π−a) =
N8

4f

[
16cGG

(m2
K −m2

π)(m
2
K −m2

a)

4m2
K −m2

π − 3m2
a

+ (2cuu + cdd + css) (m
2
K −m2

π)

− (2cuu + cdd − 3css)m
2
a + 6(cuu + cdd − 2css)

m2
a (m

2
K −m2

a)

4m2
K −m2

π − 3m2
a

+
(
[kd + kD]11 − [kd + kD]22

)
(m2

K +m2
π −m2

a)

]
− m2

K −m2
π

2f
[kd + kD]12 ,

(6.58)
and

−i
√
2A(K̄0 → π0a) =

N8

4f

[
16cGG

(m2
K −m2

π)(m
2
K −m2

a)

4m2
K −m2

π − 3m2
a

+ (3cdd + css) (m
2
K −m2

π)

+ (2cuu − cdd − css)m2
a − 2(cuu + cdd − 2css)

m2
a (m

2
K −m2

π)

4m2
K −m2

π − 3m2
a

− 2(cuu − cdd)
m2
a (m

2
K −m2

a)

m2
π −m2

a

+
(
[kd + kD]11 − [kd + kD]22

)
(m2

K +m2
π −m2

a)

]
− m2

K −m2
π

2f
[kd + kD]12 ,

(6.59)
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where
N8 = −

GF√
2
V ∗
udVus g8 f

2
π ≡ |N8| eiδ8 , (6.60)

with |N8| ≈ 1.53 × 10−7. Here δ8 denotes the strong-interaction phase of the phenomeno-
logical parameter g8, and we adopt the standard phase convention for the CKM matrix, in
which the matrix elements Vud and Vus are real [208]. Note that the flavour-diagonal ALP–
fermion couplings cqq in the above relations are evaluated at the low scale µ0 ≈ 2GeV.

In previous literature, crucial terms were omitted in the implementation of the left-
handed quark current in the first realisation of ALP–χPT in [183], as explained in eq. (6.52).
This inconsistency has gone unnoticed ever since, despite a 35 year history of searches for
ALPs in kaon decays. We want to briefly examine the impact of this. For the case of the
QCD axion (m2

a ≈ 0) without couplings to fermions (cqq = 0, only cGG ̸= 0), the authors
of [183] obtain (this formula was not shown in the paper, but can be derived from the
arguments made and the numerical results presented)

iA(K− → π−a) ≈ −N8m
2
K

4fa

mu

mu +md
. (6.61)

Instead, under the assumptions stated above and exchanging fa = − f
2cGG

, the correct
expression from (6.58) is

iA(K− → π−a) ≈ −N8m
2
K

2fa
. (6.62)

Hence, the amplitude was previously assumed to be smaller by a factor of mu
2(mu+md)

≈ 0.16,
corresponding to an underestimation of the branching ratio by a factor of 37.

6.3.2 ALPs in the chiral nuclear Lagrangian

To study ALP couplings to nucleons, we extend the discussion of the previous section to
include baryon fields [183, 209–211]. For our purposes it will be sufficient to only include
the proton and the neutron as nucleons, hence, we restrict the quark content to up and
down-quarks for this discussion. The nucleon spinor field is then ψ = (p n)T . The field
Σ in (6.45) is given by Σ = exp

[
i
√
2

fπ
σaπa

]
, where we now only have the Pauli matrices

σ in the exponential. In the limit when the up and down quarks have the same masses,
and so do the proton and neutron, the Lagrangian features an enhanced chiral symmetry
SU(2)L×SU(2)R. Under such a transformation the meson field transforms as Σ→ LΣR†.
To describe the nucleon–meson interactions, it is convenient to define a field ξ via ξ2(x) =
Σ(x), which transforms under the aforementioned symmetry group according to

ξ → LξU † = UξR† , ξ† → RξU † = UξL† , (6.63)

which also serves as a definition for the matrix U in terms of the left and right trans-
formation matrices L and R as well as the meson fields. The nucleon fields transform
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as ψ → Uψ. Neglecting the electromagnetic interactions for simplicity, we find that the
covariant derivative takes the form

iDµψ = i
(
∂µ + Γµ

)
ψ (6.64)

with the connection

iΓµ =
1

2

[
ξ

(
i∂µ +

∂µa

f
k̂q

)
ξ† + ξ†

(
i∂µ +

∂µa

f
k̂Q

)
ξ

]
≡ 1

2

[
ξ (i∂µ + rµ) ξ

† + ξ† (i∂µ + lµ) ξ
]
+ v(s)µ 1 ,

(6.65)

where k̂q = diag(k̂u, k̂d) and k̂Q = diag(k̂U , k̂D) are diagonal matrices containing the
modified ALP–quark couplings defined in (6.42), restricted to the case of two flavours.
In the second step we have defined the iso-vector chiral couplings

rµ =
∂µa

f

(
[ku − kd]11

2
+ cGG

κu − κd
2

)
σ3 ,

lµ =
∂µa

f

(
[kU − kD]11

2
− cGG

κu − κd
2

)
σ3 ,

(6.66)

and the iso-scalar vector coupling

v(s)µ =
∂µa

2f

(
[ku + kd]11

2
+

[kU + kD]11
2

)
, (6.67)

which is invariant under SU(2)L × SU(2)R.
In the two-flavour χPT where we couple nucleons to pions, one further introduces two

hermitian building blocks called vielbeins [212]. They are defined by

ξ

(
i∂µ +

∂µa

f
k̂q

)
ξ† − ξ†

(
i∂µ +

∂µa

f
k̂Q

)
ξ = uµ + u

(s)
µ , (6.68)

with
uµ = ξ (i∂µ + rµ) ξ

† − ξ† (i∂µ + lµ) ξ ,

u(s)
µ =

∂µa

f

[
[ku + kd]11

2
− [kU + kD]11

2
+ cGG (κu + κd)

]
1 ≡ 2a(s)µ 1 .

(6.69)

These quantities transform as axial vectors under parity. Note that the iso-scalar axial-
vector coupling a

(s)
µ is invariant under SU(2)L × SU(2)R. The condition κu + κd = 1 is

the two-flavour version of (6.41) and ensures that the vielbeins are independent of the
auxiliary parameters κq.

Up to leading order in the chiral expansion, the chiral Lagrangian including interactions
among nucleons, pions and ALPs then takes the form

LπN = ψ̄
(
i /D −mN +

gA
2
γµγ5 uµ +

g0
2
γµγ5 u

(s)
µ

)
ψ , (6.70)

where mN is the nucleon mass. Here, gA and g0 are the coupling strengths to external
iso-vector and iso-scalar source terms, respectively. In higher orders, corrections to the
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Figure 6.5: Feynman diagrams contributing to the effective ALP–nucleon coupling. The ALP is
either radiated off the nucleon directly, or stems from mixing with a radiated neutral
pion.

nucleon mass and couplings arise, as well as additional coupling structures. They are
studied in [213] and will be omitted in this work.

ALPs can interact with nucleons in two different ways: Either there is a direct interaction
vertex between the ALP and two nucleons, or a neutral pion gets radiated off a nucleon
at first and subsequently mixes into the ALP. Both possibilities are shown in the Feynman
diagrams of figure 6.5. We find for the amplitude in both cases

iA
(
p(k)→ p(k′) + a(q)

)
= −gpa

4f
ūN (k

′)/qγ5 uN (k) =
mN gpa
2f

ūN (k
′)γ5 uN (k) ,

iA
(
n(k)→ n(k′) + a(q)

)
= −gna

4f
ūN (k

′)/qγ5 uN (k) =
mN gna

2f
ūN (k

′)γ5 uN (k) ,
(6.71)

with

gpa = g0 (cuu + cdd + 2cGG) + gA
m2
π

m2
π −m2

a

∆cud ,

gna = g0 (cuu + cdd + 2cGG)− gA
m2
π

m2
π −m2

a

∆cud .

(6.72)

The quantity ∆cud was already defined in (6.55). We emphasise that the iso-vector current
contribution depends on the ALP mass in a non-trivial way, an effect that has not been
included in the literature thus far. Note further that the right-hand side of eq. (6.71) does
not scale with the nucleon mass despite its appearance in the formulae. The reason is that
the spinor product , ūN (k′)γ5 uN (k) scales like s · (k − k′)/mN for k → k′, where s is the
nucleon spin vector.

The coupling constant gA can be determined from nucleon β decays and was found to be
ga = 1.2754(13) [18]. It is not possible to retrieve the parameter g0 in that way. However, we
can take advantage of the fact that the ALP–nucleon coupling can also be inferred directly
from the Lagrangian description including quarks and gluons (6.25), instead of taking the
detour of a chiral EFT. For the proton one obtains

A
(
p(k)→ p(k′) + a(q)

)
=
∑
q

cqq(µ0)

2f
iqµ ⟨p(k′)| q̄ γµγ5q |p(k)⟩µ0

+
cGG
f

αs(µ0)

4π
⟨p(k′)|Gaµν G̃µν,a |p(k)⟩µ0 ,

(6.73)

where the sum in the first term runs over the (light) quark flavours, and the hadronic
matrix elements are renormalised at the scale µ0. An analogous expression holds for the
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neutron. When we match these expressions onto (6.71), we can derive the following rela-
tions (

g0 + gA
m2
π

m2
π − q2

)
ūN (k

′)/qγ5 uN (k) = 2 ⟨p(k′)| ū/qγ5u |p(k)⟩ ,(
g0 − gA

m2
π

m2
π − q2

)
ūN (k

′)/qγ5 uN (k) = 2 ⟨p(k′)| d̄/qγ5d |p(k)⟩ ,
(6.74)

where q2 = (k − k′)2. A third relation relates the gluon matrix element of the proton to
the couplings gA and g0. We now consider the limit qµ → 0, i.e. k → k′, in these relations.
Furthermore, we define the nucleon spin vector as

sµ ≡ 1

2
ūN (k) γ

µγ5 uN (k) ; k · s = 0 , (6.75)

and introduce the hadronic quantities ∆q via [214]

⟨p(k)| q̄ γµγ5q |p(k)⟩ ≡ 2sµ∆q . (6.76)

Combining all expressions, we find the simple equations

g0 + gA = 2∆u , g0 − gA = 2∆d , (6.77)

which are solved by g0 = ∆u + ∆d and gA = ∆u − ∆d. The hadronic matrix elements
∆q are typically computed using lattice QCD [214]. In the case at hand, we have already
integrated out all heavy degrees of freedom, hence we use the the results for ∆q obtained
by the χQCD collaboration that used Nf = 2 + 17 light fermions [215]. They calculated
the pion mass to be mπ = 171MeV, what is reasonably close to the physically observed
value of mexp

π0 = 134.98MeV. The reported values for the hadronic matrix elements are
∆u = 0.847(18)(32) and ∆d = −0.407(16)(18), from which we derive g0 = 0.440(44) and
gA = 1.254(16)(30), which is in good agreement with the measured value stated above.

Let us now briefly come back to ambiguity concerning the nucleon masses in eq. (6.71).
This mass is a large external scale and as such plays no relevant role to the chiral dynamics.
The ambiguity can be avoided by matching the ALP–nucleon Lagrangian (6.70) onto a
heavy-baryon chiral effective Lagrangian by replacing

ψ(x)→ e−imN v·x 1 + /v
2

N(x) , (6.78)

where vµ is the 4-velocity of the nucleon. Expanding eq. (6.71) to leading order in 1/mN ,
we then find

LπN → N̄
(
iv ·D + gA S · u+ g0 S · u(s)

)
N , (6.79)

where Sµ = i
2 σ

µνγ5 vν denotes the Pauli–Lubanski spin operator.
The effective ALP–nucleon couplings in (6.72) depend on the ALP mass, and the corres-

ponding results for the QCD axion are recovered in the limit ma → 0. For an ALP with
a mass not much smaller than the pion mass, this effect can become relevant, especially

7 The light fermions are the up and down-quark, and the electron.
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Figure 6.6: Mass dependence of ALP–nucleon couplings for the proton (orange), the neutron
(green), and an iso-singlet nucleus with coupling g singlet ≡ (gpa + gna)/2 (blue), in
units of the ALP–gluon coupling cGG. The ALP couplings to quarks are set to zero
(cuu = cdd = 0). For nuclei with equal numbers of protons and neutrons, the mass
dependence cancels out. However, it changes the interaction strength of ALPs with non-
singlet nuclei significantly.

in models where the ALP–gluon coupling is much larger than the ALP couplings to the
up and down-quarks. For the case where cuu = cdd = 0 at the low scale µ0, we show in
figure 6.6 the mass dependence of the effective ALP couplings to the proton, the neutron
and an iso-singlet nucleus with equal numbers of protons and neutrons. The mass de-
pendence cancels for iso-singlet nuclei, but can change the ALP interaction strength with
non-singlet nuclei significantly. For neutrons the accidental cancellation between the terms
proportional to cGG in the second relation in (6.72) is broken by the mass of the ALP.





7
F L AV O U R P R O B E S O F A L P S

In this chapter we will derive constraints on ALP couplings from flavour physics experi-
ments. We split our studies in two parts: First, we investigate flavour experiments in the
quark sector. We assume that only one flavour-diagonal or flavour-blind coupling is present
in the UV. All other ALP–SM interactions are then generated via evolution and matching
effects from high to low energies. Especially flavour-changing ALP couplings are generated
through RG-effects, as explained in the previous chapter. In the second section 7.2, we de-
rive bounds coming from searches for rare lepton transitions. Since the lepton numbers are
individually conserved in the SM, no lepton flavour-violating couplings are generated in
running from the UV to the low energy. Additionally, most observables require a coupling
of ALPs to two leptons of the same flavour to be present. Hence, our parameter space is
spanned by the ALP mass, the flavour-diagonal couplings, and one flavour-off-diagonal
coupling.

7.1 Quark flavour probes of ALPs

The focus of this section is on deriving experimental constraints on the ALP couplings
from observables sensitive to flavour-changing interactions in the quark sector. Examples
for these experiments include searches for rare meson decays like K → πa and π → eν̄ea,
and radiative J/ψ and Υ decays. After deriving general expressions for the decay rates
and branching ratios, we present our results in four representative benchmark scenarios,
where we assume that in the far UV, only a coupling to strong or weak gauge bosons, or
a coupling to the left handed quark or lepton doublet is non-zero, respectively. In other
words, we study four situations, where one of cGG, cWW , cQ, cE ̸= 0 and all other coeffi-
cients vanish. At the low energy scale, the effective ALP couplings to the other particles
are generated through RG effects, as explained in section 6.2.

The results presented in this section have been published in [7] and are summarised
for this thesis. In the cited work, we have conducted an exhaustive study of quark fla-
vour probes of ALPs, and presented benchmark scenarios for every UV ALP coupling.
Furthermore, we demonstrated how ALPs can possibly explain the (former) low-energy

107
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anomalies of hints for lepton flavour universality violation in b→ s transitions1 [63,64], the
ATOMKI anomalies consisting of an excess in excited Helium and Beryllium transitions
8Be∗ → 8Be + e+e− and 4He∗ → 4He + e+e− [216–218], as well as the long-standing KTeV
anomaly in π0 → e+e− [219]. For other works on constraints on ALPs from quark-flavour
observables, we refer the reader to [186, 190, 220–230].

7.1.1 ALPs in exotic meson decays

Most stringent bounds on the ALP parameter space can be derived from searches for rare
or SM-forbidden two-body meson decays. The reason is that in a decay Π→ π̃a with Π and
π̃ a heavy and light pseudoscalar meson, respectively, the ALP can be produced as an on-
shell resonance, hence giving experimentalists a clear decay pattern of a light meson and
missing energy and momentum in the opposite direction to look for. We will discuss the
decays K− → π−a and KL → π0a in detail. Following our layout it is then straightforward
to extend the method to B → πa and D → πa decays.

The kaon decays K− → π−a and KL → π0a as two-body decays feature the (for the
detector) invisible ALP and diametrically radiated pion as decay products. The pion energy
is therefore determined as

Eπ =
m2
K +m2

π −m2
a

2mK
(7.1)

in the kaon rest frame. The decay rates for the charged and neutral kaon decays are given
by

Γ(K → πa) =
1

16πmK
|A(K → πa)|2 λ1/2

(
m2
π

m2
K

,
m2
a

m2
K

)
, (7.2)

where
λ(ri, rj) = 1 + r2i + r2j − 2ri − 2rj − 2rirj . (7.3)

The decay amplitudes have been given in (6.58) and (6.59) for the charged and neutral
current, respectively, and they receive contribution from flavour-blind, flavour-conserving
and flavour-changing ALP couplings. If a flavour-changing coupling is present at the UV-
scale and it is of the same order of magnitude as the flavour-conserving ones, it gives
the dominant contribution by many orders of magnitude. This is because FCNCs in the
SM are loop and GIM suppressed. The CP-conjugate modes can be obtained by replacing
[kd + kD]12 → [kd + kD]21 = [kd + kD]

∗
12 and changing the overall sign. Furthermore, one

should also take the complex conjugate of the product V ∗
udVus of CKM matrix elements in

the definition of the quantity N8, though this has no effect since these parameters are real
in the standard convention for the CKM matrix. The amplitude for the decay KL → π0a, on

1 For a long time, the double ratios RK = Br(B+ → K+µ+µ−)/Br(B+ → K+e+e−) and RK∗ = Br(B0 →
K∗0µ+µ−)/Br(B0 → K∗0e+e−) were anomalous with respect to the measured value and the SM expectation.
They have been a motivation for many BSM models. However, it turned out that previously experimental
background was underestimated, and the latest analysis suggests instead a complete agreement of experiment
and theory [65].
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which constraints can be derived using existing searches for KL → π0νν̄ and KL → π0X ,
is then obtained using the relation [231]

KL =
(1 + ϵ)K0 + (1− ϵ)K̄0√

2(1 + |ϵ|2)
, (7.4)

where ϵ = 2.228(11) × 10−3 eiϕϵ with ϕϵ ≈ 43.5◦ is the parameter measuring CP violation
in K0 – K̄0 mixing [208]. One can show that the KL decay channel is especially suited
to constrain the imaginary part of the flavour-changing coupling [kd + kD]12, whereas the
sensitivity to all other couplings is reduced by a factor of |ϵ| ≈ 2 × 10−3, when compared
with the reach of charged kaon decays.

Note that since the decay rate in (7.2) receives contributions from squaring the amp-
litudes (6.58) and (6.59), a mixed term involving both flavour-conserving and flavour-
changing ALP couplings is in principle sensitive to the strong interaction phase δ8, which
cannot be calculated reliably. However, in practice this is not a problem, because the coef-
ficients of the two types of terms differ by many orders of magnitude.

Similarly to ALP production in kaon decays, an ALP can be produced by decays of
B and D mesons together with pions or kaons. In terms of the flavour-changing ALP
couplings, we find the decay rates

Γ(B− → π−a) =
m3
B

64πf2
|[kD + kd]13|2

∣∣FB→π
0 (m2

a)
∣∣2(1− m2

π

m2
B

)2

λ1/2
(
m2
π

m2
B

,
m2
a

m2
B

)
,

Γ(B̄0 → π0a) =
1

2
Γ(B− → π−a) ,

Γ(B− → K−a) =
m3
B

64πf2
|[kD + kd]23|2

∣∣FB→K
0 (m2

a)
∣∣2(1− m2

K

m2
B

)2

λ1/2
(
m2
K

m2
B

,
m2
a

m2
B

)
,

Γ(B− → K∗−a) =
m3
B

64πf2
|[kD − kd]23|2

∣∣∣AB→K∗
0 (m2

a)
∣∣∣2 λ3/2(m∗2

K

m2
B

,
m2
a

m2
B

)
, (7.5)

Γ(B̄0 → K̄(∗)0a) = Γ(B− → K(∗)−a) ,

Γ(D+ → π+a) =
m3
D

64πf2
|[kU + ku]12|2

∣∣FD→π
0 (m2

a)
∣∣2(1− m2

π

m2
D

)2

λ1/2
(
m2
π

m2
D

,
m2
a

m2
D

)
,

Γ(D0 → π0a) =
1

2
Γ(D+ → π+a) ,

Γ(D+
s → K+a) =

m3
Ds

64πf2
|[kU + ku]12|2

∣∣∣FDs→K
0 (m2

a)
∣∣∣2(1− m2

K

m2
Ds

)2

λ1/2
(
m2
K

m2
Ds

,
m2
a

m2
Ds

)
.

For B → K∗a decays the K∗ meson is longitudinally polarised, since the ALP is a pseudo-
scalar particle. The quantities F0(q

2) and A0(q
2) are scalar form factors defined in [232].

We take FB→K
0 (q2) from the lattice average of [214] (based on the calculations of the

HPQCD [233] and FNAL/MILC [234] collaborations), FB→π
0 (q2) from the FNAL/MILC

lattice calculation [235], AB→K∗
0 (q2) from the light-cone QCD sum-rule calculation of [236],

FD→π
0 (q2) from the ETM lattice calculation of [237], and FDs→K

0 (q2) from the covariant
light-front calculation of [238].
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In all of these processes, we have only taken effects from flavour-changing ALP coup-
lings into account, and included the SM weak interactions only to the extent that these
contribute to the flavour-changing ALP couplings at low energies. This is justified by the
observation we made for K → πa decays, that contributions to the amplitude involving
the SM weak transition s→ uūd are strongly suppressed. We expect a similar statement to
hold for the decays of heavy B and D mesons. For example, we expect that subprocesses of
the type B− → π−π0 → π−a via ALP–pion mixing give rise to subdominant contributions
to the B− → π−a rate. It would be interesting to work out these effects in greater detail, for
instance using the framework of QCD factorisation for non-leptonic B decays [239, 240].

The bounds we can derive from these rare meson decays are highly dependent on the
ALP mass and couplings. While the (effective) flavour-changing couplings allow for these
transitions in the first place, the (effective) flavour-conserving ones together with its mass
determine the possible decay modes of the ALP. Hence, the effective sensitivity of experi-
ments depends delicately on these parameters. Constraints on a long-lived ALP can be de-
rived from searches for rare decays such as K → πνν̄ and B → K(∗)νν̄, whereas bounds on
a short-lived ALP can be obtained by recasting searches for meson decays into a final state
meson accompanied by a pair of photons or leptons, or by dedicated searches for new light
resonances in the final state. An extensive list of experimental searches and the respective
limits on the ALP couplings [kd]ij and [kD]ij with ij = 12, 13, 23 and [ku]12 and [kU ]12 from
exotic decays of kaons, B mesons and D(s) mesons are compiled in table 7.1. These experi-
ments probe flavour-changing ALP properties up to new physics scales f ≲ 109TeV×

√
B,

where B is the branching ratio of the ALP into the respective signal final state. We emphas-
ise that it is therefore crucial to probe resonances in different channels, even though they
all examine the same flavour-changing ALP coupling.

In addition, the lifetime of the ALP changes the strength of experiments through its
effect on the fraction of ALPs that escape detection. We define the ALP decay length as

ℓa = cτa =
ℏc
Γ
≃ 0.197µm

1 eV
Γ

, (7.6)

where Γ is the total decay width. More details about how certain types of experiments
depend on the ALP decay length are presented in [7].

7.1.2 The rare pion decay π− → ae−ν̄e

An interesting opportunity to discover ALPs is provided by three-body charged pion de-
cays with leptonic final states. They are insensitive to the flavour-violating couplings of
an ALP, because they are mediated by the weak force, and thus probe ALP couplings to
gluons and light quarks. As before, these experiments are especially powerful when the
ALP can be produced in on-shell resonances, i.e. ma < mπ −me. The amplitude for this
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Observable Mass range [MeV] ALP decay mode Constrained Limit (95% CL) on
coupling cij cij ·

(
TeV
f

)
·
√
B

Br(K− → π−a(inv)) 0 < ma < 261 (∗) long-lived |kD + kd|12 1.2× 10−9

Br(KL → π0a(inv)) 0 < ma < 261 long-lived |Im[[kD + kd]12| 8.1× 10−9

Br(K− → π−γγ) ma < 108 γγ |kD + kd|12 2.1× 10−8

Br(K− → π−γγ) 220 < ma < 354 γγ |kD + kd|12 2.0× 10−7

Br(KL → π0γγ) 30 < ma < 110 γγ |Im[[kD + kd]12]| 1.3× 10−8

Br(KL → π0γγ) ma < 363(✠✠) γγ |Im[[kD + kd]12]| 1.3× 10−7

Br(K+ → π+a(e+e−)) 1 < ma < 100 e+e− |kD + kd|12 3.4× 10−7

Br(KL → π0e+e−) 140 < ma < 362 e+e− |Im[[kD + kd]12]| 3.1× 10−9

Br(KL → π0µ+µ−) 210 < ma < 350 µ+µ− |Im[[kD + kd]12]| 4.0× 10−9

Br(B+ → π+e+e−) 140 < ma < 5140 e+e− |kD + kd|13 7.0× 10−7

Br(B+ → π+µ+µ−) 211 < ma < 5140 (‡‡) µ+µ− |kD + kd|13 1.2× 10−7

Br(B− → K−νν̄) 0 < ma < 4785 long-lived |kD + kd|23 6.2× 10−6

Br(B → K∗νν̄) 0 < ma < 4387 long-lived |kD − kd|23 4.1× 10−6

dBr/dq2(B0 → K∗0e+e−)[0.0,0.05] 1 < ma < 224 e+e− |kD − kd|23 6.4× 10−7

dBr/dq2(B0 → K∗0e+e−)[0.05,0.15] 224 < ma < 387 e+e− |kD − kd|23 9.3× 10−7

Br
(
B− → K− a(µ+µ−)

)
250 < ma < 4700 (†) µ+µ− |kD + kd|23 4.4× 10−8

Br
(
B0 → K∗0 a(µ+µ−)

)
214 < ma < 4350 (†) µ+µ− |kD − kd|23 5.1× 10−8

Br(B− → K−τ+τ−) 3552 < ma < 4785 τ+τ− |kD + kd|23 8.2× 10−5

Br(D0 → π0e+e−) 1 < ma < 1730(‡) e+e− |kU + ku|12 2.8× 10−5

Br(D+ → π+e+e−) 200 < ma < 1730(††) e+e− |kU + ku|12 8.4× 10−6

Br(D+
s → K+e+e−) 200 < ma < 1475(✠) e+e− |kU + ku|12 2.4× 10−5

Br(D+ → π+µ+µ−) 250 < ma < 1730(∗∗) µ+µ− |kU + ku|12 2.1× 10−6

Br(D+
s → K+µ+µ−) 200 < ma < 1475(∗∗∗) µ+µ− |kU + ku|12 5.7× 10−5

Table 7.1: Summary of indicative constraints on quark flavour-violating ALP couplings renorm-
alised at the scale µw = mt, derived from measurements of branching fractions (first
column) for various decays of kaons and B mesons in a mass range where an on-
shell ALP can be produced. The relevant measurements and SM predictions (where
appropriate) are given in AII.3 to AII.8 in appendix AII.1. In each line, the limit cited
is the strongest limit found within the mass range probed by the measurement. In
the fifth column the symbol B denotes the ALP branching ratio to the relevant final
state. Asterisks next to the mass range mean that cuts are applied within the mass
range to exclude resonance regions, and therefore the corresponding measurement is
insensitive to an ALP with mass in the excluded ranges. The excluded regions are as
follows. (∗): 100MeV < mνν̄ < 161MeV; (∗∗): 525MeV < mµµ < 1250MeV; (∗∗∗):
990MeV < mµµ < 1050MeV; (✠): 950MeV < mee < 1050MeV; (✠✠): 100MeV <
mγγ < 160MeV; (‡): 935MeV < mee < 1053MeV; (‡‡): 8.0GeV2 < m2

µµ < 11.0GeV2

and 12.5GeV2 < m2
µµ < 15.0GeV2; (†): various cuts are applied to exclude the regions

around the J/ψ, ψ(2S) and ψ(3370) resonances; (††): 525MeV < mµµ < 1250MeV.

decay is given in (6.54). Neglecting contributions suppressed by m2
e/(m

2
π −m2

a), one finds
the decay rate

Γ(π− → ae−ν̄e) =
G2
F |Vud|2

24576π3
f2π
f2

m5
π g(xa)

[
2cGG

md −mu

md +mu
+ [ku]11 − [kd]11 +

m2
a

m2
π −m2

a

∆cud

]2
,

(7.7)
where xa = m2

a/m
2
π, and the phase-space function is given by

g(x) = 1− 8x− 12x2 lnx+ 8x3 − x4 . (7.8)
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Figure 7.1: Feynman diagrams contributing to the V → γa of the heavy vector mesons J/ψ and Υ.

This result agrees with corresponding expressions derived in [241] and [199] (for ma = 0).
The PIENU collaboration has recently put a limit on the branching ratio Br(π− → ae−ν̄e) <

10−6 Br(π− → µ−ν̄µ) [242].

7.1.3 Radiative J/ψ and Υ decays

The decays of the bound charmonium and bottomonium states J/ψ and Υ can give rise
to interesting constraints to the ALP parameter space. Since no FCNC is involved, there
are no constraints on flavour-changing couplings, however, they probe masses and flavour-
diagonal couplings in a region that is similar to the one probed by other experiments in-
volving RG induced flavour change. Hence, they can provide complementary searches for
our benchmark scenarios. In the literature, these decays have been used to install bounds
on ALP couplings to b-quarks [243–246] and photons [247,248]. The first combined analysis
of the contributions from both the ALP–photon coupling and the ALP–quark coupling was
performed in [249], neglecting however important QCD corrections. Leading Feynman dia-
grams are shown in figure 7.1. The decay rate reads

Γ(V → γa) =
mV f

2
V

6f2
Q2
q α

(
1− m2

a

m2
V

) ∣∣∣∣cqq(µq) [1− 2αs(µq)

3π
aP (x)

]
− α

2π
cγγ

(
1− m2

a

m2
V

)∣∣∣∣2 ,
(7.9)

where q = c, b as appropriate, and µq ∼ mq is an appropriate matching scale.
The scale dependence of the coefficients cbb and ccc are such that, if Λ = 4πf TeV,

cbb(mb) ≃ cbb(Λ) + 0.09ctt(Λ)− 0.02 cGG, (7.10)

ccc(mc) ≃ ccc(Λ)− 0.13ctt(Λ)− 0.04 cGG . (7.11)

In the strict non-relativistic limit, where each of the two heavy quarks in the quarkonium
state carries one half of its momentum, the QCD radiative corrections give rise to [244]

aP (x) =
3− 7x

1− 2x
+

1− 7x+ 8x2

(1− 2x)2
ln 2x+ 4

√
1− x
x

arctan

√
1− x
x

+
2(1− 2x)

x
arctan2

√
1− x
x
− 1− 4x

2x
Li2(1− 2x)− 5− 8x

2x

π2

6
, (7.12)

where x = Eγ/E
max
γ = 1 −m2

a/m
2
V . This is an increasing function of its argument, which

varies between aP (0) = 2 and aP (1) =
π2

8 + 2 ln 2 + 4 ≈ 6.62, thus giving rise to a rather
large correction. Note that the contribution proportional to the coefficient cγγ in (7.9) does
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not receive any QCD radiative corrections. In the calculation of the decay amplitude we
have used the identity

〈
0| b̄Γ b |V (p, ε)

〉
=
ifVmV

2
Tr
[
/εΓ

(1 + /v)

2

]
(7.13)

based on heavy quark effective theory (HQET) [250], where vµ = pµ/mV denotes the 4-
velocity of the quarkonium state and εµ is its polarisation vector. This identity also serves
to define the decay constant fV . The O(α0

s) part of our result agrees with [249].
Many experimental results are quoted as a ratio with the SM decay width to electrons,

which is given by

Γ(V → e+e−) =
α2πQ2

q

3

f2V
mV

[
1− αs(µq)

3π

]
. (7.14)

Searches have been done in the dimuon final state for radiative J/ψ decays [251], and in
the invisible [252], dimuon [253], ditau [254] and hadronic [255] final states for radiative Υ

decays. The experimental results are collected in tables AII.6, AII.7, and AII.8.

7.1.4 The chromomagnetic dipole moment of the top-quark

The chromomagnetic moment of the top-quark µ̂t is the QCD equivalent to the anomalous
magnetic moment (g−2) of the leptons. It is defined as the coefficient of the operator [256]

L ⊃ −µ̂t
gs
2mt

t̄σµνT atGaµν , (7.15)

and was measured by the CMS collaboration to be in the range [257]

−0.014 ≤ Re(µ̂t) < 0.004 . (7.16)

Thus, it is in agreement with the assumption of a vanishing chromomagnetic moment. An
ALP with couplings to top-quarks (and optionally gluons) generates a contribution via the
diagrams shown in figure 7.2 that reads

µ̂t =
m2
t

f2
1

32π2

{
c2tt h1 (xt) +

2αs
π
cttcGG

[
log

Λ2

m2
t

− h2 (xt)
]
− 25α3

s

16π3
c2GG log2

Λ2

m2
t

}
, (7.17)

where xt = m2
a/m

2
t . The last term in this equation is found via the RGEs for dimension six

operators in the presence of an ALP, see [168]. The explicit functional dependence of the
loop functions h1,2(x) will be given later in section 7.2, but in the limit m2

a/m
2
t = x ≪ 1,

they satisfy h1,2(x) → 1. The opposite limit of a very heavy ALP, i.e. m2
a/m

2
t ≫ 1 was

studied in [258].
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Figure 7.2: Feynman diagrams contributing to the chromomagnetic moment of the top-quark µ̂t.
Note that there is a mirrored version of the first diagram, too.

7.1.5 Flavour physics constraints on select benchmark scenarios

The phenomenology of ALPs, and with that the constraints we can derive from flavour
physics experiments, depends strongly on the UV couplings. In this section we present
four benchmark scenarios, where we assume that only one UV coupling of the ALP to a
certain type of SM particles is non-vanishing. Those couplings we take to be the coupling to
gluons cGG, to weak SU(2)L gauge bosons cWW , to the left-handed quark doublet cQ, and
to the left-handed lepton doublet cL. All other couplings are then consequently generated
through evolution effects according to chapter 6. Especially flavour-changing couplings
arise already at tree-level in the effective theory [259]. As shown in table 7.1, these are
then highly constrained. From the theory perspective, ALP models with only couplings
to gluons are for example the classical KSVZ-type models of QCD axions. In DSFZ-type
models, often an additional coupling to fermions is present. The benchmarks for couplings
to B-bosons and the right-handed quark and lepton singlets have been published in [7].

In figure 7.3, we show how the branching ratio of an ALP changes with different UV
couplings present. If the ALP only couples to weak gauge bosons, it will mainly decay
into a pair of photons for all ALP masses. This is not surprising, because in the low-
energy EFT, essentially cγγ = cWW for this case. Similarly, the ALP primarily decays into
photons when only a coupling to gluons is present at the high scale. However, when the
kinematic possibility to decay into hadrons and quarkonium states is given, the gluon
coupling ensures that these instead are the most dominant decay channels. The situation
is completely different for couplings to fermions. The ALP decays only into photons in
these cases, when there are no other kinematically allowed channels. For quark couplings,
it decays into pairs of charged leptons when the respective channel opens up, but as in
the gluon coupling case, a very heavy ALP decays into hadrons and mesons. For a UV
coupling to leptons, apart from the lightest masses, an ALP predominantly decays into the
heaviest charged lepton pair that is lighter than the ALP. Note that for all our scenarios
we take a fairly low UV scale of Λ = 4πf = 4πTeV. However, we have showed in [5]
that changing the scale to Λ = 1012TeV changes the numerical values for the effective
low-energy ALP couplings by less than one order of magnitude. This implies that the
derived bounds only depend weakly on the exact UV scale, and hence the exclusion plots
presented below are valid for various UV completions to a good approximation.
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Figure 7.3: Branching ratios of ALPs for our four benchmark scenarios, where the ALP couples
only to gluons (top left), W -bosons (top right), the left-handed quark doublet (bottom
left), or the left-handed lepton doublet (bottom right) in the UV. Photon and charged
lepton final states are given by solid lines, hadronic final states are indicated with
dashed lines.

constraints on couplings to gluons In the first scenario, only the coupling
cGG is non-zero at the UV scale. The combined constraints are presented in figure 7.4.
As shown in figure 7.3, an ALP with such couplings will mainly decay into hadrons for
masses above the QCD scale, and to photons below ma < ΛQCD. The branching ratio
into leptons is subdominant, Br(a → ℓ+ℓ−) < 1%. As a result, a light ALP is more likely
to decay into photons or escape detection. This follows from the simple estimate of the
lifetime as τa ∝ 1/(c2GGm

3
a), which typically exceeds the size of detectors ℓdet ≈ 10m for

ma ≈ 0.05c
3/2
GGGeV.

Consequently, strongest constraints for masses ma < mπ arise from bounds on Br(K+ →
π+X) from NA62, with X either decaying invisibly or outside of the detector [260]. They
are shown in pink. Bounds from the similar decay KL → π0a are significantly weaker since
the CP conserving part of the amplitude is suppressed by a factor of ϵ ≈ 2.3 × 10−3. The
reach of the KOTO experiment [261] looking for that decay is coloured in yellow. Other
searches for invisible final states lead to weaker constraints, and we show the excluded
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Figure 7.4: Left: Flavour bounds on ALP couplings to gluons with all other Wilson coefficients set
to zero at Λ = 4πf and f = 1TeV. Right: Comparison of the same flavour constraints
(light grey) with the constraints on Z → aγ decays from the LEP measurement of the Z
boson width (violet), contours of constant Br(h → aa) = 10−1, 10−2 and 10−3, depicted
as red dotted, dashed and solid lines, and contours of constant Br(h→ Za) = 10−1, 10−2

and 10−3, shown as blue dotted, dashed and solid lines, respectively.

parameter space by the measurements of B → K∗νν̄ from Belle [262] in light blue, and
π+ → ae+νe from the PIENU collaboration in dark blue [242]. For larger ALP masses,
decays into photons become relevant and constraints from searches for K+ → π+γγ and
K0 → π0γγ performed at E949, NA48, NA62 and KTeV exclude the parameter space for
larger values of cGG/f [263–266]. The corresponding parameter space is shown in purple
and yellow. These searches provide important constraints even for ma > 2me when decays
to electrons are allowed, because of the dominant ALP branching ratio Br(a→ γγ) > 99%

at ma < 3mπ.
Leptonic final states give much weaker constraints on the ALP parameter space. Yet,

LHCb searches for B decays into kaons with muon final states give the largest bounds
onto ALPs with masses mπ < ma < mB [267, 268]. Parameter region excluded is shown in
red and orange. Pions in the final state reduce the limiting power, and searches have been
performed by LHCb in [269] and are shaded green in figure 7.4. For ALPs heavier than the
B mesons, most stringent constraints come from flavour-conserving processes of Υ decays
into a photon and an ALP, followed by a subsequent decay of the ALP into hadrons. This
was measured by BaBar [255], and we show the implications in dark green.

Non-resonant ALP contributions to Bs – B̄s mixing and Bs → µ+ µ− decay lead to very
weak constraints. The reason is that with only cGG present at the UV scale, the induced
flavour-changing coupling and the coupling to leptons is rather small. Furthermore, the
meson mixing process requires two insertions of flavour change. ALPs that are heavier than
the Υ meson are best constrained by measurements of the chromomagnetic moment of the
top-quark, leading to a universal bound of cGG/f ≳ 30TeV−1. Note that this constraint
takes the assumption that the ALP only affects the chromomagnetic moment, but has



7.1 quark flavour probes of alps 117

Figure 7.5: Left: Flavour bounds on ALP couplings to SU(2)L gauge bosons with all other Wilson
coefficients set to zero at Λ = 4πf and f = 1TeV. Right: Comparison of the same
flavour constraints (light grey) with the constraints on Z → aγ decays from the LEP
measurement of the Z boson width (violet) and contours of constant Br(h → aa) =
10−1, 10−2 and 10−3 depicted as red dotted, dashed and solid lines.

no effect on the underlying pp → tt̄ process, otherwise. We consider this approximation
appropriate for heavy ALPs, but give the bound as a dashed line to indicate this caveat.

On the right-hand side of figure 7.4, we show how the obtained constraints from flavour
physics compare to other bounds from colliders, namely the searches for the Higgs boson
decays h→ Za and h→ aa at the LHC, as well as electroweak precision measurements on
the Z pole from LEP. Excluding the top-chromomagnetic moment constraint, we see that
collider searches become relevant for very heavy ALPs. For ALPs in the MeV to GeV mass
region, flavour constraints are indeed highly complementary and can reach parameter
regions unprobed by colliders. A comparison of the reach of flavour experiments with
beam dump and astrophysical searches is difficult, because a gluon coupling necessarily
induces a strong ALP–nucleon coupling as well. Henceforth, bounds that rely on the fact
that the coupling to photons is the dominant one cannot be directly reliably transferred to
bounds on cGG. An extensive investigation studying limits from astrophysics observables
where both the induced photon couplings and a coupling to nucleons is taken into account
would thus be highly appreciated.

constraints on couplings to weak gauge bosons As in the case with gluon
couplings, a coupling to weak gauge bosons results in an ALP decaying into photons
with Br(a → γγ) ≈ 100% for all ALP masses. The loop-induced fermion couplings are
considerably smaller, and so the ALP is most likely to be long-lived and decay outside of
the detector in searches for fermionic final states.

We show the combined exclusion plot for a UV cWW coupling in figure 7.5. The overall
shape of the excluded patches changes only little when compared to the ones when a gluon
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coupling is present. Here, we elaborate on the differences. For a high-energy coupling to
weak bosons, constraints from the pion decay π+ → e+aνe are very weak, since cWW enters
the amplitude only via RG effects. More significant differences lie in the mass region
ma > mK . Here, bounds from B meson decays with leptonic final states are of higher
relative importance compared to the gluon exclusion plot. The reason is that the lepton
coupling is already induced at the one-loop level when W -boson couplings are present.
Our estimate for searches for B+ → K+π0 → K+γγ at Belle [270] and BaBar [271] results
in a constraint cWW /f ≲ 6/TeV. Currently, there is no published search for the decay
B → K(∗)γγ, which would be sensitive to an ALP decaying into photons and could provide
an important constraint that would probe the unconstrained parameter space for the mass
range mK < ma < mB . We expect that a dedicated search for resonances in this channel
could yield much better sensitivity than this estimate, in particular for ALP masses larger
than the pion mass.

ALPs with stronger couplings are also constrained by the measurement of Bs → µ+µ−.
Radiative Υ → γµ+µ−,Υ → γτ+τ− and J/Ψ → γµ+µ− decays yield constraints for ma >

2mµ and ma > 2mτ respectively, which are of similar strength to the constraint from
Bs → µ+µ− [251, 254]. Even weaker limits arise from the virtual exchange of ALP in B-
meson mixing, which is suppressed by two flavour-changing vertices.

As before, we compare the derived bounds with those obtained from collider searches.
We find that searches for the Higgs boson decay h → aa yields the best limit in the case
that the ALP is heavier than the B mesons. Note also, that the chromomagnetic moment
of the top is too weakly constrained to derive meaningful constraints on ALP–W -boson
couplings.

In figure 7.6 we compare astrophysical and beam dump bounds on the effective coupling
ceff
γγ = cWW to the ones obtained from flavour experiments. They stem from helioscopes

CAST [272] and SUMICO [273,274], cosmological and astrophysical observables [275–281],
the supernova SN1987a observation [282–284], collider experiments [196,252,285–293] and
the beam dump searches in [294–297]. For light ALPs and very small couplings, bounds
from astrophysical observables are much stronger than flavour constraints, and for ALPs
with masses ma ≳ 10 GeV collider observables are more sensitive. For the case of an
ALP with a cWW coupling, flavour observables, in particular B meson decays, constrain
precisely the ALP masses and couplings in the “gap” for which astrophysical observables
and colliders lose sensitivity, because the ALP is too short-lived to be detected in beam-
dumps and too light and weakly coupled to be produced and efficiently reconstructed
at colliders. This comparison motivates a dedicated search for B → Ka with subsequent
a → γγ decays, which could provide the most sensitive probe of ALPs in the parameter
space unconstrained by either astrophysical, beam dump or collider constraints.

constraints on couplings to the quark doublet Universal ALP couplings to
quark doublets, cQ(Λ) = kU (Λ) = kD(Λ) = cQ1, lead to ALP decays into charged leptons
and hadrons once the respective decay channel is kinematically allowed. We collect bounds
from flavour physics on a UV ALP coupling cQ in figure 7.7
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Figure 7.6: Left: Bounds on ALP couplings to photons [196]. The dashed contours indicate the
part of the plot shown in various shades of grey in the right panel. Right: In colour,
we show flavour bounds on ALPs coupling only to SU(2)L gauge bosons (same as in
figure 7.5 above). They are compared to the grey astrophysical, beam dump and collider
constraints on ALP couplings to photons with ceff

γγ = cWW

In this scenario, any isospin violating effect is a consequence of running and matching
from Λ to the scale of the measurement. The ALP coupling to photons, when induced by
isospin conserving ALP couplings such as cQ, is proportional to the isospin breaking term
(md −mu)/(mu +md) ≈ 0.35 and therefore suppressed compared to a scenario where the
ALP has isospin breaking couplings, as in the case for couplings to right-handed quark
singlets. The decay width Γ(a → γγ) is thus suppressed, the ALP branching ratios into
leptons are larger and the corresponding constraints from, e.g., KL → π0e+e− are slightly
stronger compared to scenarios in which the ALP has isospin breaking couplings in the UV.
Since cQ couples the ALP to both left-handed up-type and down-type quarks in the UV,
constraints from J/Ψ and Υ decays are comparable to the cu and cd scenarios presented
in [7].

constraints on couplings to the lepton doublet Constraints on ALPs with
universal couplings to the lepton doublets are shown in figure 7.8. For this scenario, we
set cL = cL1, with couplings to all other SM fields set to zero at the scale Λ = 4πf with
f = 1TeV. Here, the ALP dominantly decay into leptons if kinematically allowed, or into
photons if ma < 2me, as shown in the bottom right panel of figure 7.3. Hadronic ALP
decay modes are irrelevant, because ALP couplings to quarks are suppressed by at least
two loops. Consequently, only observables searching for invisible, photon, or lepton final
states are sensitive to leptonic ALP couplings. ALPs with couplings to lepton doublets
induce quark flavour-changing amplitudes at the two-loop level. Due to the normalisation
of the ALP gauge boson couplings, this leads to constraints on |cL|/f similar in strength
to the constraints on |cWW |/f in figure 7.5. The combined constraints allow values of
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Figure 7.7: Left: Flavour bounds on universal ALP couplings to quark doublets with cQ = cQ1,
and all other Wilson coefficients set to zero at the scale Λ = 4πf and f = 1TeV. Right:
Constraints from flavour observables (light grey) are compared to the constraint from
Z → aγ decays from the LEP measurement of the Z boson width. Contours of constant
Br(h → aa) = 10−1, 10−2 and 10−3 are depicted as red dotted, dashed and solid lines,
respectively. Contours of constant Br(h→ Za) = 10−1, 10−2 and 10−3 are shown as blue
dotted, dashed and solid lines, respectively.

|cL|/f, |ce|/f < 0.01TeV−1 for all ALP masses. Exotic Higgs decays are only weakly sensit-
ive to ALP couplings to lepton doublets. The measurement of the Z decay width does not
provide a strong bound, because of the suppressed lepton coupling to Z bosons.

Finally, we compare the constraints from flavour observables with the constraints from
cosmological observables, collider and beam dump searches for ALPs that couple to
leptons in figure 7.9. The constraints in the left panel are: Searches by the Edelweiss
and Edelweiss III collaborations (dark and light purple respectively) [298, 299] for ALPs
produced in the Sun; observations of red giants (red) [277]; searches by the neutrinoless
double-beta decay experiment GERDA [300]; searches by dark matter direct detection ex-
periment XMASS (red-brown) [301]2; beam dump searches at KEK, SLAC and Fermilab in
orange [303], lighter blue, light green [304] and red [294,305]; SN1987A supernova bounds
(dark blue) [306] and a dark photon search at BaBar (green) [307]. Note that the light green
beam dump constraint assumes the presence of ALP–muon and ALP–electron couplings
while the BaBar bound applies only to ALP–muon couplings. All other constraints have
been derived for the ALP–electron coupling. The ALP–tau coupling still remains uncon-
strained. In this section we assume cee = cµµ = cττ and show the combined experimental
constraints in the left panel of figure 7.9. For comparison these constraints are then overlaid
with the flavour bounds on ALPs coupling only to SU(2)L lepton doublets (as in figure 7.8
above). It can be seen that flavour constraints can provide competitive and complement-
ary constraints on ALP couplings to leptons in the MeV-GeV mass range. Astrophysical
constraints dominate at smaller values of ma.

2 Note that this parameter space is also constrained by ∆Neff for ALPs lighter than ma < mµ [302].
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Figure 7.8: Left: Flavour bounds on universal ALP couplings to lepton doublets with cL = cL1, and
all other Wilson coefficients zero at the scale Λ = 4πf and f = 1 TeV. Right: Contours
of constant Br(h → aa) = 10−1, 10−2 and 10−3 are depicted as red dotted, dashed and
solid lines, respectively. Contours of constant Br(h → Za) = 10−1 and 10−2 are shown
as blue dashed and solid lines, respectively.

7.2 Lepton flavour probes of ALPs

In contrast to quarks, the numbers of the individual families of leptons are conserved in
the SM. Therefore evolution and matching effects will not generate couplings with lepton
flavour violation (LFV). However, flavour-change in the uncharged lepton sector has been
observed by the discovery of neutrino oscillations. Even when we take these into account,
we may still neglect their effects on ALP–lepton couplings, because loops featuring neut-
rinos are suppressed by factors of ∆m2

ν/m
2
W ≈ 10−4 eV2/(80GeV)2 ≈ 10−26 [18]. We will

therefore assume that additionally to a diagonal coupling to leptons cℓℓ a flavour-changing
coupling cij , i ̸= j, i, j ∈ [e, µ, τ ] is present already at the UV scale.

This part of the thesis has already been published in a similar way in [4, 7]. Since some
computations have been part of the author’s Master thesis, we will just mention the most
relevant results from there, and elaborate more on the work that has been added after-
wards. For other studies of lepton flavour-changing couplings of ALPs, see [4,226,308–318].

7.2.1 Form factors

If the ALP has LFV couplings at tree-level, it follows from eq. (6.31) that these couplings
are suppressed by the charged lepton masses. Given the large hierarchy in charged lepton
masses, loop-induced contributions to leptonic observables can hence be important if the
lepton in the loop is heavier than the external leptons. In lepton flavour-changing decay
observables such as µ→ eγ, µ→ 3e or similar tau decays, ALP contributions to electromag-
netic form factors may therefore dominate over tree-level ALP-exchange contributions to
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Figure 7.9: Left: Astrophysical, beam dump, and collider constraints on ALP couplings to leptons
cℓℓ = ce−cL (see text for further details). Right: In colour, we show flavour constraints on
ALPs coupling to SU(2)L lepton doublets, as in figure 7.8 above. For easy comparison,
the black contours depict the bounds from the left panel.
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Figure 7.10: Feynman diagrams contributing to LFV electromagnetic form factors. Note that there
is a mirrored version of the first diagram, too.

four-fermion operators, for example. Likewise, if an ALP has lepton flavour-violating coup-
lings, it can induce additional mass-enhanced loop contributions to flavour-conserving
observables such as anomalous magnetic moments.

Below, we calculate the ALP contributions to the electromagnetic form factors induced
by the diagrams shown in figure 7.10. The expressions below cover the general case in
which the external leptons may be different from each other as well as from the lepton in
the loop. We further give analytical expressions for the corresponding loop functions, in
various limits motivated by the phenomenological applications discussed in the remainder
of this work. For the case of identical leptons in the initial and final state, we additionally
provide a calculation of the two-loop form factor.

If the initial and final state lepton are of different flavour, the ALP-generated contri-
bution to the interaction between the two leptons and a photon is defined such that the
matrix elementMµϵµ(−q) for the interaction between leptons and a photon is found by

Mµ = ūj(p2)Γ
µui(p1), (7.18)
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which can be parametrised in terms of form factors F (5),i→j
2 (q2) and F (5),i→j

3 (q2) as follows,
where p = p1 + p2, and q = p1 − p2 is the outgoing photon momentum,

ℓ̄j(p2)Γ
µ(p1,p2) ℓi(p1) =

ℓ̄j(p2)

[
F i→j
2 (q2)

(
pµ − (mi +mj)γ

µ
)
+ F i→j

3 (q2)
(
qµ − q2

mi −mj
γµ
)

(7.19)

+ F 5,i→j
2 (q2)

(
pµ + (mi −mj)γ

µ
)
γ5 + F 5,i→j

3 (q2)
(
qµ +

q2

mi +mj
γµ
)
γ5

]
ℓi(p1) .

Here, we used the Ward identities to get rid of the two additional, linearly dependent form
factors F (5)

1 (q2).

one flavour-changing coupling If only one flavour-changing coupling is
present, the form factor receives contributions from the first two types of diagrams in figure
7.10, where in the centre one either one of the two ALP interactions is flavour-conserving.
Denoting the initial state lepton with ℓi, the final state lepton with ℓj , assuming mi > mj

and expanding to leading order in mj/mi, we find

F i→j
2 (q2) = − mieQi

16π2f2

(
[kE ]ij − [ke]ij

)( α

4π
cγγg2(q

2,mi,ma) +
1

4
ciig1(q

2,mi,ma)

+
α

4π

(4s2w − 1)

2(swcw)2
cγZ

(
log

Λ2

m2
Z

+
3

2
+ δ2

))
, (7.20)

F 5,i→j
2 (q2) = − mieQi

16π2f2

(
[kE ]ij + [ke]ij

)( α

4π
cγγg2(q

2,mi,ma) +
1

4
ciig1(q

2,mi,ma)

+
α

4π

(4s2w − 1)

2(swcw)2
cγZ

(
log

Λ2

m2
Z

+
3

2
+ δ2

))
, (7.21)

F i→j
3 (q2) = − mieQi

16π2f2

(
[kE ]ij − [ke]ij

)( α

4π
cγγl2(q

2,mi,ma) +
1

4
ciil1(q

2,mi,ma)

)
, (7.22)

F 5,i→j
3 (q2) = − mieQi

16π2f2

(
[kE ]ij + [ke]ij

)( α

4π
cγγl2(q

2,mi,ma) +
1

4
ciil1(q

2,mi,ma)

)
, (7.23)

where the loop functions are given in terms of Feynman integrals in appendix AII.2. For
an on-shell photon, as in the case of µ→ eγ, the loop functions simplify to

g1(0,mi,ma) = 2x
3/2
i

√
4− xi arccos

√
xi
2

+ 1− 2xi +
x2i (3− xi)
1− xi

log xi, (7.24)

g2(0,mi,ma) = 2 log
Λ2

m2
i

+ 2δ2 + 4− x2i log xi
xi − 1

+ (xi − 1) log(xi − 1), (7.25)

where we have set the scale µ = Λ = 4πf and xi = m2
a/m

2
i . The scheme dependent constant

δ2 arises from the treatment of the Levi-Civita symbol in d dimensions, and for us δ2 = −3.
The functions l1, g1 and l2 all tend to zero as m2

a/m
2
i → ∞, while l2(0,mi, 0) = 1 and

g1(0,mi, 0) = 1.

two flavour-changing couplings Although generically it is expected that
flavour-changing couplings should be suppressed relative to flavour-conserving ones, it
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is possible that diagrams containing two flavour-changing couplings may be enhanced by
a heavier mass (relative to diagrams with only one flavour-changing coupling) and should
therefore be considered. This occurs if the mass of the fermion in the loop is much larger
than that of either of the external fermions, for example µ → eγ via an internal τ . In this
case, the form factor is calculated from the centre diagram in figure 7.10 with ℓk ̸= ℓi ̸= ℓj .

Assuming mk > mi > mj (where k is the flavour index of the lepton in the loop) and
keeping only the leading order contribution in an expansion in mi/mk, the ALP contribu-
tion to the electromagnetic form factors is given by

F i→j
2 (q2) =

mkeQk
32π2f2

(
[ke]ik[kE ]kj + [kE ]ik[ke]kj

)
g3(q

2,mk,ma) , (7.26)

F 5,i→j
2 (q2) =

mkeQk
32π2f2

(
[ke]ik[kE ]kj − [kE ]ik[ke]kj

)
g3(q

2,mk,ma) , (7.27)

with

g3(q
2,mk,ma) =

1− 3xk
2(xk − 1)2

+
x2k

(xk − 1)3
log xk , (7.28)

where xk = m2
a/m

2
k. No terms involving q2 appear in this function, because q2 ≤ m2

i , so
these terms are suppressed by a factor proportional to q2/m2

k ≤ m2
i /m

2
k, and have been

dropped, along with terms dependent on m2
i . The F (5),i→j

3 (q2) form factors are suppressed
by a factor ∼ m2

i /m
2
k relative to the F (5),i→j

2 (q2) form factors, so we do not quote them
here.

alp contributions to flavour-conserving processes In principle, the ALP
can give rise to electromagnetic dipole moments like the anomalous magnetic moment or
electric dipole moment (EDM) of the leptons via all diagrams in figure 7.10. Both flavour-
conserving and violating couplings then contribute. Since a thorough discussion of ALP
contributions to these dipole moments is beyond the scope of this thesis, we limit ourselves
to presenting the expressions for the form factors.

The gauge invariant form factor decomposition of the amplitude is given by

ℓ̄i(p2)Γ
µ(p1, p2) ℓi(p1) = ℓ̄j(p2)

[
F i→i
2 (q2)

(
pµ − 2miγ

µ
)
+ 2miF

i→i
3 (q2)γµ

+ F 5,i→i
2 (q2)pµγ5 + F 5,i→i

3 (q2)
(
qµ +

q2

2mi
γµ
)
γ5

]
ℓi(p1) . (7.29)

Only the form factor F2 contributes to the anomalous magnetic moment, and only F 5
2 gives

a contribution to the EDM. If only flavour-conserving ALP couplings are present, the form
factor F 5

2 vanishes, and F2 reads

F i→i
2 (0) =

eQi
32π2

mi

f2

{
c2iih1(xi)−

2α

π
cii

[
c̃γγ

(
log

µ2

m2
i

− h2(xi)
)
+
∑
f

Nf
c Q

2
fcff

1∫
0

dz F (yz, xf )

]

− α

2π

1− 4s2w
swcw

ciicγZ

(
log

µ2

m2
Z

+ δ2 +
3

2

)}
(7.30)
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where

h1(x) = 1 + 2x+ (1− x)x log x− 2x(3− x)
√

x

4− x arccos

√
x

2
, (7.31)

h2(x) = 1− x

3
+ x2 log x+

x+ 2

3

√
(4− x)x arccos

√
x

2
− δ2 − 3 , (7.32)

F (yz, xf ) =
1

1− yz

[
h2

(
xf
yz

)
− h2 (xf )

]
. (7.33)

Here we have defined

yz = z(1− z)m
2
a

m2
f

, c̃γγ = cγγ +
∑
f

Nf
c Q

2
fcff . (7.34)

In the two limits (a) m2
a ≫ m2

µ and (b) m2
f ≫ m2

a,m
2
µ, the integral of F (yz, xf ) can be given

explicitly

1∫
0

F (yz, xf ) dz

=


−4√

xf (xf − 4)

[
π2

12
+ ln2

(
1

2
(
√
xf −

√
xf − 4)

)
+ Li2

(
−1

4

(√
xf −

√
xf − 4

)2)]
, (a)

− ln
m2
f

m2
µ

+ h2

(
m2
a

m2
µ

)
− 7

2
+O

(
m2
a

m2
f

,
m2
µ

m2
f

)
, (b)

(7.35)

Our results in these limits agree with the ones presented in [319]3.
Flavour-violating ALPs can contribute via the centre diagram of figure 7.10, when the

lepton in the loop is of different flavour. The relevant form factors are

F i→i
2 (0) = −eQkmk

32π2f2

{
m3
i

m3
k

(
|[kE ]ik|2 + |[ke]ik|2

)∫ 1

0
dx

x(1− x)2
∆i→i

(7.36)

+ 2Re [[kE ]∗ik[ke]ik]
∫ 1

0
dx

(1− x)2
∆i→i

+ 2
m2
i

m2
k

Re [[kE ]∗ik[ke]ik]
∫ 1

0
dx

(1− x)2(1− 2x)

∆i→i

+
mi

mk

(
|[kE ]ik|2 + |[ke]ik|2

)∫ 1

0
dx

(1− x)2(x− 2)

∆i→i

}
,

F 5,i→i
2 (0) = − eQk

16π2f2

(
1− m2

i

m2
k

){
mi

(
|[kE ]ik|2 + |[ke]ik|2

)
(7.37)

+ 2imkIm [[kE ]
∗
ik[ke]ik]

}∫ 1

0
dx

(1− x)2
∆i→i

,

3 Note that the authors of [319] used dimensional regularisation to perform the two-loop integrals. Therefore
they need to add a subtraction term that acts as a counterterm to the occurring divergences. However, this is
not needed since all integrals can be evaluated in four dimensions.
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where

∆i→i = x
m2
a

m2
k

+ x(x− 1)
m2
i

m2
k

+ (1− x) . (7.38)

Two interesting limits that are well motivated are the cases where the loop lepton is either
much heavier or lighter than the initial and final state ones.
Limit mk ≫ mi This is the limit where the internal fermion is much heavier than the
external fermion, for example in the case of a contribution to the anomalous magnetic
moment of the electron via a diagram with an internal muon.

F i→i
2 (0) = −mkeQk

32π2f2
Re ([kE ]∗ki[ke]ki)h(xk) +O

(
mi

mk

)
, (7.39)

where xk = m2
a/m

2
k and

h(x) =
2x2

(x− 1)3
log x− 3x− 1

(x− 1)2
. (7.40)

Limit mk ≪ mi This is the limit where the internal fermion is much lighter than the
external fermion, for example in the case of the anomalous magnetic moment of the muon
via an internal electron.

F i→i
2 (0) =

mieQk
64π2f2

(
|[kE ]ki|2 + |[ke]ki|2

)
j(xi) +O

(
mk

mi

)
, (7.41)

where xi = m2
a/m

2
i and

j(x) = 1 + 2x− 2x2 log
x

x− 1
. (7.42)

7.2.2 The decay µ → eaγ

The decay µ → eaγ can be seen as a µ → ea decay with additional initial or final state
radiation. The process µ → ea itself can give rise to very meaningful constraints, since in
the case that the ALP decays subsequently inside of the detector, it can generate effective
µ→ 3e, µ→ eγγ and µ→ eγ∗ signatures4.

The differential decay rate of µ→ eaγ is given by

dΓ(µ→ eaγ) =
αQED

4π2
1

32mµ

|[kE ]12|2 + |[ke]12|2
f2

F ds12ds23 (7.43)

with (in the limit m2
e/m

2
µ → 0)

F =
1

s12(m2
a − s12 − s23)2

[
m6
a − s223(s12 + s23)−m4

a(2m
2
µ + s12 + s23)

+ 2m2
µ(s12 + s23)(2s12 + s23)− 2m4

µ(4s12 + s23) +m2
a(2m

4
µ + 4m2

µs12 + s223)
]
, (7.44)

4 µ → eγ∗ is a µ → eγγ decay, where the two photons are so collimated or the ALP decays so close to the
detector that it is impossible to resolve the individual photons, and thus they are reconstructed as one instead.
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where sij = (pi+pj)
2 and the electron carries momentum p1, the photon carries momentum

p2 and the ALP carries momentum p3. Up to a prefactor, F is the squared matrix element
summed over electron spins and photon polarisations and averaged over muon spins. Our
findings are in good agreement with [313].

7.2.3 µ → e conversion

Experiments searching for µ→ e conversion in the presence of an atomic nucleus have put
strong limits on the branching ratio Br(µAu → eAu) < 7.0× 10−13, which was measured
by the SINDRUM-II collaboration [320] and looked for conversion in the presence of a gold
target. Future experiments aim for increased sensitivity by multiple orders of magnitude,
for example Mu2e [321] and COMET [322] which will use aluminium as a stopping target
material and hope to reach limits as low as Br ∼ O(10−17). We limit ourselves here to
the case that only ALP-lepton and/or ALP-photon couplings are present. Then only the
Feynman diagrams that are also responsible for µ → eγ will contribute. Using results
from [323], we may write

Br(µN → eN) =
8α5

QEDmµZ
4
effZF

2
p

Γcapt

(∣∣F2(−m2
µ) + F3(−m2

µ)
∣∣+ ∣∣F 5

2 (−m2
µ) + F 5

3 (−m2
µ)
∣∣) ,
(7.45)

where Zeff is the effective atomic charge, F 2
p is the nuclear matrix element squared, Γcapt

is the total muon capture rate, and we suppress the µ→ e superscript on the form factors.
The numerical values for these quantities for the cases of gold and aluminium can be
found in [311, 324, 325]. For heavy ALPs, i.e., ma > mµ, the evaluation at q2 = 0 is a good
approximation and simplifies the calculation.

7.2.4 Muonium-antimuonium oscillations

Muonium is a hydrogen-like bound state of a negative muon and a positron in the shell
(µ+e−). In the presence of flavour-changing couplings, it can oscillate into its anti-particle
(µ−e+). The ALP can mediate such transitions via both s- and t-channel diagrams [308,312].
In both cases, we have s ≈ t ≈ m2

µ, where the equality becomes exact in the limit that both
the electron mass and the binding energy of muonium are taken to be zero. This means
that there are two limits in which the ALP propagators tend to a constant, and so the
effects of the ALP can be mapped onto effective four-fermion operators; either ma ≪ mµ

or ma ≫ mµ. In the limit ma ≪ mµ,

Hma≪mµ

eff = − 1

4f2
([ke]12 + [kE ]12)

2 (µ̄e)(µ̄e)− 1

4f2
([kE ]12 − [kE ]12)

2 (µ̄γ5e)(µ̄γ5e), (7.46)
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while in the limit ma ≫ mµ:

Hma≫mµ

eff =
m2
µ

4m2
af

2
([ke]12 + [kE ]12)

2 (µ̄e)(µ̄e) +
m2
µ

4m2
af

2
([kE ]12 − [kE ]12)

2 (µ̄γ5e)(µ̄γ5e).

(7.47)
The muonium-antimuonium transition probability is then given in the ma ≪ mµ limit
by [308, 312]

P ma≪mµ =
τ2µ

2π2a6B

1

f4

[
|c0,0|2

∣∣∣4[kE ]12[ke]12 − δB([ke]12 − [kE ]12
)2∣∣∣2

+ |c1,0|2
∣∣∣4[kE ]12[ke]12 + δB

(
[ke]12 − [kE ]12

)2∣∣∣2] , (7.48)

and in the ma ≫ mµ limit by

P ma≫mµ =
τ2µ

2π2a6Bm
4
a

m4
µ

f4

[
|c0,0|2

∣∣∣4[kE ]12[ke]12 − δB([ke]12 − [kE ]12
)2∣∣∣2

+ |c1,0|2
∣∣∣4[kE ]12[ke]12 + δB

(
[ke]12 − [kE ]12

)2∣∣∣2] , (7.49)

where the muon lifetime τµ = 3.34 × 1018GeV−1 and the muonium Bohr radius aB =

2.69× 105GeV−1. The population probabilities of the muonium angular momentum states
cJ,mJ

and the value of δB depend on the experimental setup. Specifically, we define δB in
terms of the magnetic field B as δB ≡

(
1 +X2

)−1/2, with X the dimensionless parameter

X =
µBB

a

(
ge +

me

mµ
gµ

)
≈ 6.24

B

Tesla
, (7.50)

where µB = e/(2me) is the Bohr magneton, ge ≈ gµ ≈ 2 are the magnetic moments of the
electron and muon, and a ≈ 1.864× 10−5meV is the muonium 1S hyperfine splitting.

The strongest constraint on the transition probability has been reported by the MACS
collaboration which obtained P < 8.3× 10−11 at 90% CL [326]. For the MACS experiment,
the population probabilities have been estimated as |c0,0|2 = 0.32 and |c1,0|2 = 0.18 and the
magnetic field is B = 0.1T, giving δB = 0.85 [308, 327].

7.2.5 µ → eγ and µ → 3e

This subsection has already been included in the author’s Master thesis. For the sake of
completeness, we repeat the most important results here.

The partial decay width for µ→ eγ is given by

Γ(µ→ eγ) =
m3
µ

8π

(
1− m2

e

m2
µ

)[
|Fµ→e

2 (0)|2 + |F 5,µ→e
2 (0)|2

]
(7.51)
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with

Fµ→e
2 (0) = −mµeQµ

16π2f2
(
[kE ]12 − [ke]12

)(1

4
cµµ g1(0,mµ,ma) +

α

4π
cγγ g2(0,mµ,ma)

)
,

(7.52)

F 5,µ→e
2 (0) = −mµeQµ

16π2f2
(
[kE ]12 + [ke]12

)(1

4
cµµ g1(0,mµ,ma) +

α

4π
cγγ g2(0,mµ,ma)

)
.

(7.53)

The differential decay width for the three-body decay µ+ → e+e−e+ is given by

dΓ =
1

(2π)3
1

32m2
µ

|M|2ds12ds23 , (7.54)

where sij = (pi + pj)
2 and the two indistinguishable positrons carry momenta p1 and p2,

while the momentum of the e− is given by p3. The squared matrix element summed over
electron and positron spins and averaged over muon spin states is given by

|M|2 =
(
|[ke]12|2 + |[kE ]12|2

)
|cee|2

m2
em

2
µ

f4

×
{

2s23 (s12 + s13)

|s23 −m2
a + imaΓa|2

− s13s23
Re[(s23 −m2

a + imaΓa)(s13 −m2
a − imaΓa)]

}
+ 4e2

[
2 (s12 + s13) Re

[
F ∗
2 (s23)F3(s23) + F 5∗

2 (s23)F
5
3 (s23)

]
+

1

s23
(m2

µ (s12 + s13)− 2s12s13)(|F2(s23)|2 + |F 5
2 (s23)|2)

+
1

m2
µ

(s23 (s12 + s13) + 2s12s13)(|F3(s23)|2 + |F 5
3 (s23)|2)

+ s12

(
F ∗
2 (s23)F2(s13) + F 5 ∗

2 (s23)F
5
2 (s13) + F ∗

2 (s23)F3(s13)

+ F 5 ∗
2 (s23)F3(s13) + F 5

2 (s13)F
5 ∗
3 (s23) + F2(s13)F

∗
3 (s23)

)
+
s12 (s13 + s23)

m2
µ

(
F3(s23)F

∗
3 (s13) + F 5

3 (s23)F
5 ∗
3 (s13)

) ]
+

2es23me

f2
cee Re

[
[ke]21 + [kE ]21

s23 −m2
a − imaΓa

(
m2
µF

5
2 (s13) + (s12 + s13)F

5
3 (s13)

)
+

[ke]21 − [kE ]21
s23 −m2

a − imaΓa

(
m2
µF2(s13) + (s12 + s13)F3(s13)

)]
+ (1↔ 2) . (7.55)

where we have suppressed the µ → e superscript which should appear on all the form
factors. To obtain the full decay rate, the partial decay rate needs to be integrated over the
phase space of the Dalitz region [328, 329].

7.2.6 Constraints on lepton flavour-violating couplings

The combined excluded regions for ALP-induced µ → e transitions are presented in
figure 7.11. We collect the numerical values for the constraints on the coupling ceµ ≡
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Observable Mass Range [MeV] ALP decay mode Constrained Limit (95% CL) one
coupling c |c| ·

(
TeV
f

)
·
√
B

Br(µ→ ea(invisible)) 0 < ma < 13 Long-lived cµe
(†) 7.2× 10−7

Br(µ→ ea(invisible)) 13 < ma < 80 Long-lived cµe
(†) 5.0× 10−7

Br(µ→ ea(invisible)) 0 < ma < 10 Long-lived cµe
(†) 2.5× 10−7

Br(µ→ ea(invisible)γ) 0 < ma < 105 Long-lived cµe 1.0× 10−5

Br(µ→ eγγ) 0 < ma < 105 γγ cµe 1.3× 10−9

Br(µ→ eγeff) 0 < ma < 105 γγ cµe 1.0× 10−10

Br(µ→ 3e) 0 < ma < 105 e+e− cµe 1.6× 10−10

Table 7.2: Summary of constraints on the lepton flavour-violating ALP coupling ceµ derived from
measurements of branching fractions (first column) for various muon decays, in which
the lepton can decay to an on-shell ALP. The measurements and SM predictions (where
appropriate) are given in AII.9 in appendix AII.1. The limit cited is the strongest limit
found within the mass range probed by the measurement. In the fifth column the symbol
B denotes the ALP branching ratio into the relevant final state. (†): these bounds depend
on the chirality of the ALP couplings due to the experimental setup, see [313,330,331] for
details. Here we assume [ke]12 = [kE ]12 for these.

(
|[kE ]21|2 + |[ke]21|

)1/2 in table 7.2. For the flavour-diagonal couplings we make the follow-
ing assumptions

|cee|
f

=
|cµµ|
f

=
|cττ |
f
≡ |cℓℓ|

f
= 0 , for ma < 2me ,

|cee|
f

=
10−3

TeV
,
|cµµ|
f

=
|cττ |
f

=
1

TeV
, for 2me < ma < 2mµ ,

|cee|
f

=
|cµµ|
f

=
|cττ |
f
≡
|cℓℓ|
f

=
1

TeV
, for ma > 2mµ

(7.56)

which give the largest flavour-diagonal coupling to leptons that are still allowed from con-
straints from quark flavour observables in figure 7.8. They are relevant for the branching
ratios and decay lengths of the ALP. Our results assume that the coupling ceµ dominates
over the other flavour-changing ones. However, in the absence of additional assumptions,
a UV completion, in which a horizontal global symmetry group is broken to produce a
pNGB, could induce all possible flavour off-diagonal couplings to leptons. A discussion
of lepton flavour-violating ALP decays in the context of such explicit UV models can be
found in [310].

For heavy ALP masses ma > mµ the most dominant constraints come from searches
for µ → eγ, and the three-body decay µ → 3e is phase space suppressed [332, 333]. The
situation is completely different for ALPs that are lighter than the muon threshold, for
which the ALP can be produced on-shell in muon decays. Constraints from µ → ea with
subsequent decays a → γγ, a → e+e− and a → invisible are shown in orange, purple and
red, respectively, and provide stronger constraints than µ → eγ in a mass range of a few
MeV< ma < mµ. The limits are obtained by SINDRUM for µ → 3e [334] and LAMPF for
µ→ γγe [335].
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If the ALP decay is delayed, this parameter space cannot be excluded even if the decay
still happens within the detector. A search for resonances in the dataset without the strong
cut on the time of detection of the decay products would be sensitive to much smaller
ALP masses. This limit on µ→ eγγ has been improved recently by [336] and expands the
excluded region of our model in the range of 20MeV < ma < 35MeV. The Collaboration
states limits for muon branching ratios for different lifetimes in bins of 1MeV and we
have adapted the appropriate limit by calculating the ALP lifetime in the respective mass
region.

Furthermore, a very interesting effect can happen for µ → e(a → γγ) decays. When the
ALP is boosted a lot or it decays close to the detector, the two photons hit the detector closer
than its spatial resolution. Consequently, the two photons cannot be resolved individually,
and thus are reconstructed as one, leading to a misinterpretation of the µ → eγγ decay
as a µ → eγ∗ decay. We present the limits from MEG on µ → eγ∗ with a misinterpreted
photon in green.

The decay a→ invisible is defined as an ALP leaving the detector before decaying. The
corresponding constraint on the ALP-lepton coupling is derived from the limits on the
branching ratio of µ→ ea(invisible) obtained by [331] for the case in which [ke]12 = [kE ]12,
and is sensitive to the ALP decay length which is set by the ALP coupling to electrons
in this mass range. The parameter space ruled out by the measurement [331] is shown
in dark yellow in figure 7.11. For different ALP coupling structures and masses this ex-
periment can be less sensitive than the bound obtained by the TWIST collaboration [330]
as emphasised in [313]. For masses 13MeV < ma < 80MeV, the bound is largely inde-
pendent of the angular distribution of the electrons, whereas for masses ma > 80MeV, the
bound depends on whether the decay is (an)isotropic. We show the constraints from [330]
in red in figure 7.11.

A slightly weaker constraint is derived from searches for the decay µ → eaγ shown in
dark blue. Past searches for this type of decay have been performed with the Crystal Box
detector [335]. The experiment required large photon and electron energies of Ee > 38−43

MeV and Eγ > 38 MeV, respectively. Here, we take the most conservative limits on the
energy cuts for our plots. Though theoretically sub-dominant when compared with µ→ ea

due to the additional radiation, the angular distribution is less dependent on the chiral
structure of the ALP couplings and therefore can be almost competitive in constraining
parameter space of ALP couplings and masses. Future searches at the upcoming MEG II
experiment could exceed current bounds from TWIST by a factor of 5, assuming optimal
conditions and relaxed energy and angular cuts [313].

The lifetime of the ALP strongly affects the reach of the different experiments. The
constraint from the measurement of muonium-antimuonium oscillations from the MACS
experiment [326] shown in grey is weaker than other constraints throughout the ALP mass
range, but relevant for masses ma > mµ, because it is independent of cℓℓ, whereas both the
constraints from µ→ eee and µ→ eγ vanish for cee → 0 [312]. The bounds obtained from
muon to electron conversions in the presence of an atomic nucleus from the SINDRUM-
II collaboration [337] are much weaker than those from decay experiments, because we
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Figure 7.11: Bounds on ALP mediated flavour off-diagonal transitions between muons and elec-
trons with cµe ≡

√
|[kE ]21|2 + |[ke]21|2, assuming universal ALP couplings to leptons

as indicated above the plot for the different ALP mass regions.

only allow for lepton couplings in our scenario. Hence, the coupling to nucleons must be
done through the photon, or is suppressed by multiple loops. Moreover, the form factors
contributing to µ → e conversion also vanish in the limit cℓℓ → 0. For the ALP couplings
considered here, even the significant improvement in sensitivity expected at Mu2e [338]
and COMET [339] shown by the green dashed contour cannot compete with the constraints
from µ → 3e and µ → eγ. In addition, we give the optimistic reaches for the upcoming
experiments MEG II [340] and Mu3E [341, 342].

The yellow and orange translucent bands give the region where a single flavour-violating
ALP coupling could in principle explain the observed anomalies in the anomalous mag-
netic moment of the electron and the muon, respectively [72–75, 343–347]. However, such
an explanation is ruled out by various experiments [4, 7, 309]. For an extensive study
how different ALP coupling combinations could still yield a viable explanation for either
one of the anomalies and also possibly for both at the same time, we refer the reader
to [4, 7, 196, 309, 319, 348–350].

The results for the form factors presented in section 7.2.1 are also valid for LFV tau-
lepton transitions. Henceforth, it is straight-forward to extend our analysis to the tau sector,
as was done in [7]. Experimental searches have been mainly performed by the b-factories
BaBar and Belle, and upcoming limits are expected from Belle-II and upgrades of LHCb.
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AII.1 Measurements and SM predictions for flavour observables

The measured values and SM predictions for observables used to derive constraints are
given in tables AII.3 to AII.9.

Observable Mass Range [MeV] Measurement SM prediction

Br(K+ → π+X) 0 < mX < 261 (∗) [260] (search) -
Br(K+ → π+X) 110 < mX < 155 [351] (search) -
Br(KL → π0X) 0 < mX < 261 [261] (search) -
Br(B+ → K+ν̄ν) 0 < mνν < 4785 < 1.6× 10−5 [352] (4.0± 0.5)× 10−6 [353]
Br(B0 → K∗0ν̄ν) 0 < mνν < 4387 < 1.8× 10−5 [262] (9.2± 1.0)× 10−6 [353]
Br(Υ→ γa(invisible)) ma < 9200 [252] (search) -

Table AII.3: Observables relevant for a long lived ALP. Bounds are at 90% CL. (∗): cuts are applied
to exclude the region around mπ (100MeV < mX < 161MeV).

Observable Mass Range [MeV] Measurement SM prediction

Br(K+ → π+γγ) mγγ < 108 < 8.3× 10−9 [263] 6.1× 10−9 [354]
Br(K+ → π+γγ) 220 < mγγ < 354 (9.65± 0.63)× 10−7 [264] (10.8± 1.7)× 10−7 [354]†
Br(KL → π0γγ) 30 < mγγ < 110 < 0.6× 10−8 [265] (8+7

−5)× 10−8 [355]∗
Br(KL → π0γγ) mγγ < 363 (‡) (1.29± 0.03± 0.05)× 10−6 [266] 1.12× 10−6 [355]

Table AII.4: Observables with a photon pair in the final state. Bounds are at 90% CL. (‡): cuts
are applied to exclude the region around the pion pole (100MeV < mγγ < 160MeV
MeV). (†: calculated from results in the given reference. Error bars estimated from
varying parameter ĉ between its quoted errors.) (∗: calculated from results in the given
reference. Error bars estimated from varying parameter aV between its quoted errors.)

133



134 flavour probes of alps

Observable Mass Range [MeV] Measurement SM prediction

Br(K+ → π+a(e+e−)) ma < 100 < 8× 10−7 [356] -
Br(KL → π0e+e−) 140 < mee < 362 < 2.8× 10−10 [357]

(
3.1+1.2

−0.8

)
× 10−11 [358]

Br(B+ → π+e+e−) 140 < mee < 5140 < 8.0× 10−8 [359] (2.26+0.23
−0.19)× 10−8 [360]

dBr/dq2(B0 → K∗0e+e−)[0.0004,0.05] 20 < mee < 224 (4.2± 0.5)× 10−6 GeV−2 [361] (3.3± 0.7)× 10−6 GeV−2

dBr/dq2(B0 → K∗0e+e−)[0.05,0.15] 224 < mee < 387 (2.6± 1.0)× 10−7 GeV−2 [361] (3.9± 0.8)× 10−7 GeV−2

RK∗ [0.045, 1.1] 212 < mee < 1049 0.66+0.11
−0.07 ± 0.03 [362] 0.906± 0.028 [363]

Br(D0 → π0e+e−) mee < 1730 (†) < 4× 10−6 [364] 1.9× 10−9 [365]
Br(D+ → π+e+e−) 200 < mee < 1730 (∗) < 1.1× 10−6 [366] 9.4× 10−9 [365]
Br(D+

s → K+e+e−) 200 < mee < 1475 (∗) < 3.7× 10−6 [366] 9.0× 10−10 [365]

Table AII.5: Observables with an electron pair in the final state. Bounds are at 90% CL. Here we
only include observables for which the electron invariant mass can be below or near
the dimuon threshold, on the grounds that above it muonic observables will generic-
ally provide stronger bounds. Predictions without accompanying citations have been
calculated using flavio [367]. In the measurements of the D(s) branching ratios, cuts
are applied to exclude the region around the ϕ resonance. For the BaBar measure-
ments with a (∗), the excluded region is 950MeV < mee < 1050MeV, while the BESIII
measurement with a (†) excludes the region 935MeV < mee < 1053MeV. Since the
long-distance contributions to these decays peak around this excluded resonance, we
take the SM prediction to be only due to the short-distance contributions, as calculated
in Ref. [365].

AII.2 Expressions for the form factors

The loop functions for the form factors in section 7.2.1 are given by the Feynman integrals

g1(q
2,mi,ma) = 2

∫ 1

0
dx

∫ 1−x

0
dy

1− x− yx
∆′′
i→j

, (AII.57)

g2(q
2,mi,ma) = −

∫
dx

∫ 1−x

0
dy

[
4 log

m2
i

µ2
+ 2 log∆i→j + 2 log∆′

i→j − 4δ2

−
(
x(1− y)
∆′
i→j

− yx

∆i→j

)]
, (AII.58)

l1(q
2,mi,ma) = 2

∫ 1

0
dx

∫ 1−x

0
dy

1− x− yx− 2y2

∆′′
i→j

, (AII.59)

l2(q
2,mi,ma) =

∫
dx

∫ 1−x

0
dy

(
x(1− y)
∆′
i→j

− yx

∆i→j

)
, (AII.60)

and

∆i→j = y
m2
a

m2
i

− q2

m2
i

y(1− x− y)− xy , (AII.61)

∆′
i→j = (1− x− y)m

2
a

m2
i

− q2

m2
i

y(1− x− y) + x(1− y) , (AII.62)

∆′′
i→j = x

m2
a

m2
i

+ (1− x− yx)− q2

m2
i

y(1− x− y) . (AII.63)
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Observable Mass Range [MeV] Measurement SM prediction

Br(KL → π0µ+µ−) 210 < mµµ < 350 < 3.8× 10−10 [368] (1.5± 0.3)× 10−11 [369]
Br(B+ → K+a(µ+µ−)) 250 < ma < 4700 (†) [267] (search) -
Br(B0 → K∗0a(µ+µ−)) 214 < ma < 4350 (†) [370] (search) -
Br(J/ψ → γa(µ+µ−)) 212 < mµµ < 3000 [251] (search) -
Br(Υ→ γa(µ+µ−)) 212 < mµµ < 9200 [253] (search) -
Br(B+ → π+µ+µ−) 211 < mµµ < 5140 (‡) (1.83± 0.25)× 10−8 [269] (2.26+0.23

−0.19)× 10−8 [360]
Br(B0

s → µ+µ−) 5320 < mµµ < 6000 (2.69+0.37
−0.35)× 10−9 [371] (3.66± 0.14)× 10−9 [372]

Br(B0 → µ+µ−) 4900 < mµµ < 6000 (0.6+0.7
−0.7)× 10−10 [371] (1.03± 0.05)× 10−10 [372]

Br(D+ → π+µ+µ−) 250 < mµµ < 1730 (∗) < 7.3× 10−8 [373] 9.4× 10−9 [365]
Br(D+

s → K+µ+µ−) 200 < mµµ < 1475 (∗∗) < 21× 10−6 [366] 9.0× 10−10 [365]

Table AII.6: Observables with a muon pair in the final state. Bounds are at 90% CL. (†): cuts are
applied to exclude regions around the J/ψ, ψ(2S) and ψ(3370) resonances. (‡): cuts
are applied to exclude charmonium resonance regions (8.0GeV2 < m2

µµ < 11.0GeV2

and 12.5GeV2 < m2
µµ < 15.0GeV2 are excluded).(∗): a large region containing the η,

ρ/ω and ϕ resonances is excluded (525MeV < mµµ < 1250MeV).(∗∗): cuts are applied
to exclude the region around the ϕ resonance (990MeV < mµµ < 1050MeV). Since
the long-distance contributions to the D(s) decays peak around the excluded reson-
ance(s), we take the SM prediction to be only due to the short-distance contributions,
as calculated in Ref. [365].

Observable Mass Range [MeV] Measurement SM prediction

Br(B+ → K+τ+τ−) 3552 < mττ < 4785 < 2.25× 10−3 [374]
Br(Υ→ γa(ττ)) 3500 < mττ < 9200 [254] (search) -

Table AII.7: Observables with a tau pair in the final state. Bounds are at 90% CL.

The scheme dependent constant δ2 arises from the treatment of the Levi–Civita symbol in
d dimensions, and for us δ2 = −3.
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Observable Mass Range [MeV] Measurement SM prediction

Br(Υ→ γa(hadrons)) 290 < mhadrons < 7100 [255] (search) -

Table AII.8: Observables relevant for hadronic decays of the ALP.

Observable Mass Range [MeV] Measurement

Br(µ→ 3e) 0 < ma < 105 < 1.0× 10−12 [334]
Br(µ→ eγ) - < 4.2× 10−13 [340]
Br(µ→ eγγ) 0 < ma < 105 < 7.2× 10−11 [335]
Br(µ→ ea(invisible)) 0 < ma < 13 ≲ 2.1× 10−5 ∗ [330]
Br(µ→ ea(invisible)) 13 < ma < 80 ≲ 10−5 ∗ [330]
Br(µ→ ea(invisible)) 0 < ma < 10 ≲ 2.6× 10−6 ∗ [331]
Br(µ→ eγa(invisible)) 0 < ma < 105 < 1.1× 10−9 [335]
Br(µN → eN) - < 7.0× 10−13 [337]
Br(τ → ea(invisible)) 0 < ma < 1600 < 2.7× 10−3 [375]
Br(τ → µa(invisible)) 0 < ma < 1600 < 5× 10−3 [375]
Br(τ → 3µ) 211 < ma < 1671 < 2.1× 10−8 [376]
Br(τ → 3e) 200 < ma < 1776 < 2.7× 10−8 [376]
Br(τ− → µ−e+e−) 200 < ma < 1776 < 1.8× 10−8 [376]
Br(τ− → e−µ+µ−) 211 < ma < 1776 < 2.7× 10−8 [376]
Br(τ → µγ) - < 4.4× 10−8 [377]
Br(τ → eγ) - < 3.3× 10−8 [377]

Table AII.9: Lepton flavour-violating observables. Where a mass range for ma is given, the range
refers to masses that are consistent with the experimental cuts and for which the decay
can proceed via a resonant ALP. For some of the observables (for example µ→ 3e), an
ALP lying outside of this mass range may still be constrained by the experiment, if it
can mediate the decay off-shell. Where the mass range is left blank, the measurement
can never involve a resonant ALP. ∗: for the µ → ea(invisible) searches, the precise
bound depends on the chirality of the ALP couplings due to the experimental setup
and the bounds quoted here are assuming vectorial couplings, see [313, 330, 331] for
details.

Decay Experiment Initial state Time cut (ns)

µ→ 3e SINDRUM [334] at rest 0.8
µ→ eγγ Crystal Box [335] at rest 2.5
µ→ eγ MEG [340] at rest 0.7

µ→ eγa(invisible) Crystal Box [335] at rest 1.5

Table AII.10: Cuts on the decay time of the ALP that should be applied in various LFV experiments.
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C O N C L U S I O N S A N D O U T L O O K

The present thesis demonstrated how the concepts and notions of the methodology known
as effective field theories can be used to deepen our knowledge of the Standard Model and
its properties on the one hand, and how to gain meaningful insights from proposed models
beyond the SM on the other hand. We applied the EFT machinery to two specific, yet
different projects: high-precision calculations in Higgs production with SCET and flavour
physics probes of axion-like particles. Both topics are state-of-the-art research areas where
we could significantly enhance our understanding of the principles behind.

In the first part, “gluon-gluon to Higgs fusion”, we applied the soft-collinear effective
theory to the power-suppressed process of gluon-gluon to Higgs fusion via a light quark
loop. Since gluon-gluon fusion is the dominant production channel for Higgs bosons at
the LHC, and light quarks are estimated to contribute with ∼ 15% to the total cross sec-
tion, it is of utmost importance to understand the exact dynamics of the process. This
is highly non-trivial, because the appearance of large logarithms spoils the convergence
of the perturbation series in the strong coupling constant. Hence, one must resum these
large logarithmic corrections to all orders of perturbation theory. Additionally, conven-
tional QCD methods fail to resum more than the leading double-logarithmic corrections,
necessitating advanced computational methods.

In this regard, SCET allows us to significantly improve the theory predictions. We suc-
cessfully applied the SCET methods to gg → h fusion and were able to derive a factorisa-
tion theorem. Since we deal with a power-suppressed process, we expectedly encountered
endpoint divergences. By generalising the refactorisation-based subtraction scheme intro-
duced in [28, 29] to non-abelian final states, we were able to re-organise the factorisation
formula in a way that is free of divergences in section 5.1. In section 5.2, we derived the
factorisation formula in terms of renormalised parameters and component functions. This
is a crucial achievement because in general renormalisation and regularisation of endpoint
divergences do not commute. We demonstrated that all mismatching terms are only de-
pendent on the hard scale of the problem, thus they can be absorbed into a redefinition
of the renormalised hard matching coefficient H1(µ). Having all renormalisation factors at
hand, we derived the renormalisation group equations for all component functions in sec-
tion 5.3. Solving them iteratively then allowed us to predict the leading logarithmic terms
in the three-loop amplitude. Eventually, we solved the RG equations for the jet function J
and the soft function S3 to RG-improved leading order. With this we were able to derive
the resummed expression for the third term of the factorisation formula T3 to modified
next-to-leading logarithmic accuracy, i.e. to resum the three leading towers of logarithms
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to all orders of perturbation theory. Note that apart from a single constant term from the
second term T2, the first and second term yield suppressed contributions up to the given
precision. As mentioned before, conventional methods can only predict the leading tower
of logarithms. The first subleading term can also be retrieved from the expression for the
h → γγ amplitude by a replacement of colour factors [80]. It must be stressed, however,
that in this reference, too, SCET was used to derive the expressions. The result presented
in this thesis characterises the prediction for the resummed, light-quark induced gg → h

form factor with the highest precision so far.
Apart from its great phenomenological impact for the prediction of Higgs production

rates, this thesis also serves the purpose of establishing our methodology of refactorisation-
based subtractions for regularising endpoint divergences. Such divergences appear in vari-
ous subleading power SCET processes, and to this day our method is the only known
way to consistently remove them. As an affirmation, most recent works about endpoint
factorisation and resummation in gluon thrust made use of this method [90, 92].

One minor blemish of the RBS that we were hitherto unable to eliminate is the fact that
due to the various contributions the RG equation for the hard coefficient H1 takes a com-
plicated form that is not of Sudakov type. That prevents us from solving it. On that account
we solve the RGEs for the jet and soft functions instead, and evolve all component functions
up to the hard scale, where no large logarithms are left in the hard coefficients. However,
the solutions are complicated, for instance the RG-improved soft function S3 involves a
Rathie-I function, a generalisation of the Meijer-G function that itself is a generalisation
of hypergeometric functions. Consequently, we are only able to derive the RG-improved
leading order expressions. For a full resummation of gg → h via light quarks it would
therefore be necessary to find means to solve the RGEs for the hard coefficients.

In the second part of this thesis, “flavour physics of ALPs”, we explored how flavour
physics experiments can be used to constrain parameter space of axion-like particles. At
first we derived how couplings in a general UV theory of axions and ALPs evolve to
the low-energy scale via a sequence of running from a higher energy to a lower one, and
matching the theory at the mass thresholds where heavy particles need to be integrated out
of the theory. We discovered that independent from the specific UV coupling, at the low-
energy scale couplings to all SM particles are generated. Moreover, quark flavour-changing
ALP couplings are generated regardless of the underlying UV theory. In section 6.3 we
showed how to consistently implement ALP interactions in the weak chiral and nuclear
Lagrangian, thereby correcting the prediction for the important K → πa decay amplitude,
which was based on an inconsistent equation in a seminal paper [183]. The inconsistency
has gone unnoticed ever since and resulted in an underestimation of the branching ratio
by a factor ≈ 37. For ALPs in the context of the nuclear chiral Lagrangian with two quark
flavours we demonstrated how the ALP-mass dependence of the ALP-nucleon coupling
drops out for iso-singlet nuclei, i.e. nuclei with the same amount of protons and neutrons.

Chapter 7 was dedicated to study constraints on ALP-models from flavour physics. In
section 7.1 we investigated constraints from quark flavour experiments using the model
established in the previous section. Probes included exotic meson decays, rare pion de-
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cays, the flavour-conserving decays of J/ψ and Υ mesons and the chromomagnetic di-
pole moment of the top-quark. We presented our results in four benchmark scenarios
assuming that the ALP couples only to gluons, weak gauge bosons, left-handed quarks
or left-handed leptons in the UV, respectively. Since flavour off-diagonal ALP couplings
are highly constrained already, we assumed that they are only generated via running and
matching from the high scale. Furthermore, we compared our obtained flavour bounds
with limits from collider and astrophysical searches. We found that flavour observables can
neatly fill in blank space of the allowed ALP parameter space that has previously been in-
accessible by other experiments, and therefore provide important complementary bounds.
Most interestingly, we established that quark flavour observables can give constraints to
UV ALP–lepton couplings that are even stronger than dedicated ALP–lepton searches from
beam dump and astrophysics experiments. In section 7.2 we studied probes of ALPs with
lepton flavour observables. Since the Standard Model conserves each lepton number in-
dividually, no flavour changing coupling arises from evolution effects. The induced effect
from neutrino oscillations is greatly suppressed by factors of ∆m2

ν/m
2
W ≈ 10−27. We there-

fore derived constraints on UV flavour-violating couplings. Observables studied included
rare lepton decays like µ → eaγ, µ → e conversion in the presence of an atomic nuc-
leus, and muonium oscillations. In addition, we showed the reach of future experiments.
Strongest bounds are obtained when the ALP is produced on-shell and can subsequently
decay outside of the detector giving rise to missing energy signatures, or decay into pairs
of photons or leptons, which then overcome the phase space suppression of three-body
decays and yield stronger limits than for instance the µ → eγ bound. In this thesis we fo-
cussed on electron–muon flavour-changing ALPs, but the results can easily be transferred
to couplings involving tau-leptons, as was presented in [7]. For future research it will
be interesting to see whether flavour physics can also give significant constraints to other
BSM models than axions and ALPs, especially if they feature a comparably rich generation
mechanism of couplings to SM particles via evolution effects.

In this thesis we have taken important steps on the long way to find a more universal
theory for the fundamental building blocks of nature than the Standard Model. For this
purpose we employed state-of-the-art methods of effective field theory. While there are still
a lot of “holes to fill”, we think that effective theories in general and this work in particular
represent an important contribution to the general effort of improving our understanding
of the properties of the smallest particles. In this spirit, we would like to conclude with
a quote from Max Planck: «When you change the way you look at things, the things you
look at change. »





A
A P P E N D I X

A.1 Notations and conventions

In this section we want to briefly summarise the notations and conventions used in this
document. They are often tacitly accepted in works in the field of high energy physics, but
sometimes differ from conventions in other fields.

In this thesis, we use natural units for the reduced Planck constant and the speed of
light, i.e. we set

ℏ = c = 1 , where ℏ =
h

2π
. (A.1)

As a result, all other SI units can be expressed in terms of energies. Greek indices denote
spacetime coordinates, and we commonly use Latin letters as colour or flavour-space in-
dices. The symbol ϵµναβ stands for the totally anti-symmetric Levi-Civita tensor, and we
adopt the prescription ϵ0123 = 1. In addition, we employ the Einstein sum convention, i.e.
we sum over every repeated spacetime index.

Let A be a generally complex matrix, AT its transpose, and A∗ its complex conjugate. The
hermitian conjugate matrix is then A† = (A∗)T . Whenever the expression “+h.c.” appears
in a formula, it means that the hermitian conjugate of the preceding quantity is to be
added.

For the metric tensor we adopt the “mostly −” or time-like convention, i.e.

gµν =


1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

 . (A.2)

As usual, γµ represents the gamma-matrices fulfilling the anti-commutation relation

{γµ , γν} = γµγν + γνγµ = 2gµν . (A.3)

We furthermore define a fifth γ-matrix γ5 = iγ0γ1γ2γ3 and σµν = i
2 [γ

µ , γν ].
When integrals in loop calculations diverge, we choose to regularise them with dimen-

sional regularisation, i.e. we perform the integral in D = 4− 2ϵ spacetime dimensions. We
furthermore adopt the modified minimal subtraction scheme if not stated otherwise.
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144 appendix

For the first part of this thesis Part I: Gluon-gluon to Higgs fusion in SCET, we used the
position space formulation of SCET. The original papers [94,95] used a hybrid momentum-
position space formulation instead known as label formalism. Here, momenta are split into
a large constant momentum component and a small perturbation, which shows SCET’s
lineage from HQET. Label formalism is still used in recent work on the subject, and no
clear advantages result from using one or the other [93].
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