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Abstract

Observations of low energy neutrinos from astrophysical sources are performed currently by
either liquid scintillator detectors or water Cherenkov detectors. To date, liquid scintillator
detection in particular is the only technique that allows precision spectroscopy of sub-MeV
solar neutrinos, as demonstrated by the Borexino detector at the Gran Sasso National Lab-
oratory in Italy. This is made possible by the high light-yield of the scintillation, which is
also responsible for a low energy threshold of ∼ 0.2 MeV, together with the unprecedented
radio-purity of the detector materials. In contrast, water Cherenkov detectors are only able
to measure solar 8B neutrinos above a few MeV with high precision. They reconstruct the
event direction via the corresponding Cherenkov photon hits, to differentiate between the
solar neutrino signal and the background events. A combination of the directional Cherenkov
information and the high light-yield and low energy threshold of the scintillation spectroscopy
can enable an unprecedented precision in the measurement of solar neutrinos and other
physics goals. Exploring this novel hybrid detection approach, this thesis describes the first
measurement of sub-MeV solar neutrinos using their associated directional Cherenkov pho-
tons, as well as a directional measurement of the CNO-neutrino rate, using the Borexino
detector. These analyses are based on the specially developed Correlated and Integrated
Directionality method, where the individual photon hits of the events are correlated to the
known position of the Sun. The integration of these angular hit values over a large number of
events allows the statistical inference of the number of solar neutrino events. The directional
measurement of the 0.862 MeV line of the 7Be-neutrinos is performed in an energy window
between 0.56 MeV to 0.76 MeV, which is selected through the dominant scintillation light.
The measured rate is R(7Be)CID = 51.6+13.9

−12.5 (stat. + syst.)cpd/100t, with an exclusion of
the zero neutrino hypothesis of > 6σ . The directional measurement of the CNO-neutrino
rate is performed in an energy region between 0.85 MeV to 1.3 MeV. The measured rate is
RCNO = 7.2+2.8

−2.7 (stat. + syst.)cpd / 100 t, with an exclusion of the zero CNO-neutrino hypoth-
esis of > 5σ . These results correspond to the first detection of low energy solar neutrinos
using only their directional Cherenkov information in a large-scale, high light-yield scintillator
detector. Additionally, this is also a very direct proof of the solar origin of the 7Be- and
CNO-neutrino signal events. This demonstration of a directional sensitivity in a monolithic
liquid scintillator target provides an experimental proof-of-principle for the concept of hybrid
event detection, which could be implemented in future, purpose-built neutrino detectors.
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Introduction

This thesis presents the first directional detection and measurement of low energy neutrinos
produced in the Sun. This is done with the Borexino detector, that uses about 280 t of liquid
scintillator as a target material. Here, solar neutrinos scatter elastically off the target electrons,
which then excite the scintillator, that subsequently emits scintillation light. These recoil-
electrons also emit Cherenkov photons, which are strongly sub-dominant to the scintillation.
The measurements presented in this thesis are based on these Cherenkov photon hits, in
contrast to the typical scintillation spectroscopy of the Borexino experiment.

For this task a novel analysis technique has been developed, validated and optimised. This
has been done through the development of new software tools and necessary changes in the
existing Monte Carlo model framework of the experiment. The systematic uncertainties have
been investigated and quantified through the variation of the different data selection and fit
parameters, through the use of calibration sources and background events outside the region of
interest, and through toy Monte Carlo studies, as well as more complex pseudo data analyses
that include the full detector response.

The thesis is divided into eight chapters. The first Chapter 1 provides a rough introduction
on solar neutrinos, with a focus on the neutrino flavour oscillations, as well as an overview
of neutrino production processes inside the Sun and the solar neutrino flux predicted by
the Standard Solar Model. It also gives an overview of solar neutrino detectors, to provide
a context for the novelty of the analyses in this thesis. The second Chapter 2 describes
the Borexino detector, gives an overview of the signal and background components and
explains the reconstruction and particle discrimination algorithms used in this thesis. The third
Chapter 3 then explains the Correlated and Integrated Directionality, as well as the changes
introduced in the existing Borexino Monte Carlo simulation.

The next two Chapters 4 and 5 present the measurement of the effective scintillation group
velocity and the effective Cherenkov group velocity correction, respectively. These parameters
are important for the time-of-flight correction of the detected photon hits, which allows for a
time sorting of the Cherenkov and scintillation hits and therefore improve the sensitivity of
the analysis. The Chapter 6 provides a first experimental proof-of-principle for the feasibility
of a directionality based analysis in a liquid scintillator detector, using the sub-MeV 7Be-
neutrinos. This analysis provides important lessons and avenues for improvement, which are
implemented in the Chapter 7, where the CNO-neutrino rate is measured. Here, the potential
systematic uncertainties are investigated in a more sophisticated and in-depth fashion. The last
Chapter 8 summarises the results of this thesis and gives an outlook for the potential future use
of the Correlated and Integrated Directionality in upcoming or proposed neutrino detectors.

This work has been performed in the context of the analysis group of the Borexino
collaboration and it therefore includes work by people other than myself. These individuals
and their direct contributions are explicitly mentioned at the beginning of each chapter to
which they have contributed.
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Chapter 1

Solar Neutrinos

The direct study of solar neutrinos has been of interest since at least 1968, where radio-
chemical experiments [1, 2, 3] proved that fusion provided the energy of the Sun. At the
same time, the measured neutrino flux was significantly lower than the Standard Solar Model
predictions. This led to the so called solar neutrino problem and its subsequent solution
through the experimental discovery of neutrino flavour oscillations and a non-zero neutrino
mass [4, 5, 6]. Solar neutrinos continue to be of great interest as they stand at the crossroad
between astro-, nuclear- and particle physics. On one hand, they can be used as astrophysical
messengers, probing the nuclear processes in the deep interior of our Sun in real time. At the
same time, the large solar neutrino flux can be used to measure the properties of the neutrinos
themselves and to search for physics beyond the Standard Model of particle physics.

This chapter introduces the basic concepts of neutrino physics and the production processes
of solar neutrinos, to provide a context for the measurement of solar neutrinos performed
in this thesis. First, Section 1.1 gives a short description of neutrinos in the framework of
the Standard Model of particle physics, including the neutrino flavour oscillation in vacuum
and in matter. The second Section 1.2 explains the principles behind the production of solar
neutrinos, and it provides a description of the Standard Solar Model with its predicted neutrino
flux. The last Section 1.3 gives an overview of different types of solar neutrino detectors,
as the topic of this thesis is the development of a new, hybrid detection method for solar
neutrinos.

Although the histories of the Standard Model of particle physics and the Standard Solar
Model are both a rich and interesting topic, they will not be discussed here in any detail. A
good overview can be found for example in [7], or other textbooks. Likewise, there exist
a wide range of different neutrino sources, such as the atmosphere, accelerators, reactors,
Supernovae, the earth (geo-neutrinos) and so on. While they all provide a rich field of scientific
discovery, they are beyond the scope of this thesis and will therefore not be discussed further.

1.1 Properties of Neutrinos

The existence of neutrinos has been first proposed by Pauli in 1930 [8] as a potential expla-
nation for the continuous energy spectrum of electrons emitted in the β -decay. This was
unexpected at the time, as the β -decay was assumed to be a two-body process, which should
provide a mono-energetic electron. By adding a third, neutral decay particle with spin 1/2,
the experiment could be made compatible again with the conservation of energy.

In the following years Fermi [9] proposed a first version of the weak interaction framework,
including the neutrino. The theory was now in agreement with the experimental data of the
time. Fermi already came to the conclusion that the rest mass of the neutrino is either zero or
at least very small with respect to the mass of the electron, based on the shape of the electron
energy endpoint region1. Then, in 1956 Cowan and Reines provided the first observation of

1A method that is still used in the current measurements of the neutrino mass in the KATRIN experiment [10].
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the (electron anti-)neutrino [11], using a nuclear reactor as a neutrino source, resulting in the
award of the Nobel Prize [12]

Since then neutrinos have been observed from a wide range of sources, both natural and
man-made, from the Earth itself, the atmosphere, the Sun, from a supernova, nuclear reactors
and from particle accelerators. This section is intended to provide a short description of the
neutrinos, with a focus on their flavour oscillations and their relationship to solar neutrinos. A
deeper introduction to the fundamentals of neutrino physics can be found in textbooks, such
as [13], while the particle Data Group [14] provides a comprehensive review of the entire field
of particle physics.

1.1.1 Neutrinos in the Standard Model of particle physics

The Standard Model of particle physics [14] (SM) is one of the most successful theories of
physics, which elegantly describes three of the four known fundamental forces (the electro-
magnetic, the weak and the strong interactions) in the framework of quantum field theory.
The success of the SM comes from its ability to provide predictions for a variety of particle
properties that have been confirmed with remarkable precision. Probably most famously in
recent times was its prediction of the Higgs particle, detected in 2012 [15, 16, 17].

The SM is based on the gauge group SU(3)C×SU(2)L×U(1)Y, where the C, L and Y
denote color charge, left-handed chirality and weak hypercharge, respectively. There are the
eight massless gluons that mediate strong interactions, corresponding to the eight generators
of SU(3)C, while the electroweak interactions are governed by three massive gauge bosons
(W± and Z0) and one massless boson (the photon γ).

The interaction of neutrinos is only governed by the electroweak part of the SM, which
is mediated either through the weak Charged Current (CC) via the exchange of the W±

(mW ' 80GeV [14]) bosons or through the weak Neutral Current (NC), via the exchange of
the Z0 boson (mZ ' 91GeV [14]). They gain their mass through their interaction with the
Higgs field through the electroweak symmetry breaking. The large masses of the exchange
bosons are the reason for the relatively small cross-sections seen in the weak interactions of
neutrinos, which are on the order of 10−44 cm−2 at MeV scales (see Figure 2.3 in the next
chapter). This necessitates large target masses, to measure even large fluxes, such as is the
case for solar neutrinos. Figure 1.1 shows examples of the NC, where no charge is exchanged,
and the CC interactions.

FIGURE 1.1: Examplary trilinear couplings of the weak neutral current (left) and the weak charged
current (right), represented by Feynman diagrams.

The decay width of Z0 depends on the number of light, active (left handed) neutrinos
states. Therefore, the measurement of this Z0 decay width it is possible to infer the number
these active neutrino states. At present the measurement provided Nν = 2.984±0.008 [14].
Thus, nature provides a number of three generations of fermions, divided in two categories of
quarks and leptons, where the neutrinos are named after their corresponding charged lepton:

The gauge bosons Z0 and W± couple only to left-handed particles or right-handed anti-
particles, due to the maximal parity violating nature of weak interactions. Therefore, the
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Generation 1 2 3

Leptons e (electron) µ (muon) τ (tau)
νe (electron-neutrino) νµ (muon-neutrino) ντ (tau-neutrino)

left-handed charged leptons and their corresponding neutrinos form a doublet state of the
weak interaction, while the right-handed charged leptons are described by singlet states:

LL,l =

(
νl
l

)
L

ER,l = (l)R l = {e,µ,τ} (1.1)

In the SM, the masses of the charged fermions are generated via the Yukawa coupling
of the scalar Higgs field to the right-handed charged lepton fields ER and left-handed lepton
doublets LL of the fermion. However, since the SM does not contain right-handed neutrinos,
no Yukawa coupling can be built for the neutrinos. Consequently, neutrinos are truly massless
fermions in the SM, where there is neither mixing nor CP violation.

Currently, the absolute neutrino mass is being measured by such experiments as KA-
TRIN [10] or Project8 [18], both of which investigate the β−-decay spectrum of tritium.
However, the best current constrain of the neutrino mass comes from the Planck measurements
of the cosmic microwave background [19] as ∑mν < 0.12 eV (95%). It has to be noted here,
that the observation of neutrino flavour oscillations exclude a neutrino mass of exactly zero.
The small, but non-zero neutrino mass is in need of an explanation, for which a number of
mass models exit [20]. Some mass models make the realisation of a Dirac mass in principle
possible, but this would require the existence of right handed neutrino states. These states
would be inactive and are called sterile neutrinos. While they would not participate in the
weak interaction they would still be accessible through flavour oscillations. Here, the existence
of light (eV-scale) sterile neutrinos has been significantly constrained in the recent past [21,
22]. Some other mass models require the neutrino to be a Majorana particle, i.e. its own
anti-particle. The experimental search for the Majorana nature of the neutrino is typically
performed through the search for the neutrinoless double beta decay, in a number of different
experiments and with different candidate isotopes [23].

It is quite clear that neutrinos in general continue to be of great interest as there are still
many remaining questions about their nature left open. The experimental evidence for neutrino
masses provided an unambiguous signal of new physics. This evidence came through the
observation of neutrino flavour oscillations in vacuum and matter, which are described in the
following sections.

1.1.2 Neutrino oscillations in vacuum

As mentioned at the beginning of this chapter, the earliest measurements of solar neutrinos
were in disagreement with the expectations, only providing about 30%–50% of the predicted
electron-neutrino flux. The experimental results of atmospheric neutrinos [4], solar neu-
trinos [5, 24] and reactor neutrinos [25], and others, have established the neutrino flavour
oscillations [26] as the reason for the missing solar neutrinos. While all solar neutrinos are
produced as electron-neutrinos, some of them oscillate into muon- or tau-neutrinos, giving
rise to the apparent loss of solar neutrinos in the measurement. This phenomenon is energy
dependent and requires a non-zero neutrino mass, contrary to the Standard Model.

The oscillations emerge because the neutrinos are produced via the weak-interaction in
their flavour eigenstates |νe〉, |νµ〉, |ντ〉, which are linear combinations of the Hamiltonian
(mass) eigenstates |ν1〉, |ν2〉, |ν3〉. Thus, a flavour eigenstate |να〉 is linked to the mass
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eigenstates |νk〉 through the Pontecorvo-Maki-Nakagawa-Sakata [27, 28] (PMNS) mixing
matrix U , which is a unitary 3×3 matrix:

|να〉=
3

∑
k=1

U∗αk |νk〉

|νk〉 =
e,µ,τ

∑
α

Uαk |να〉
(1.2)

The time evolution of the flavour state in vacuum |να〉 can be described by the solution of the
Schrödinger equation in the plane wave approximation:

|να(t)〉=
3

∑
k=1

U∗αke−iEkt |νk〉=
e,µ,τ

∑
β

(
3

∑
k=1

U∗αke−iEktUβk

)
|νβ 〉 (1.3)

Here, the unitarity of U is used to express of the pure flavour state |να〉(t = 0) as a su-
perposition of different flavour states evolving in time. In other words, the different mass
eigenstates have a different velocity, resulting in a variation in time of the relative mass phases.
Thus, depending on the time of observation, the flavour eigenstate has a certain probability
P(α → β )(t) of being detected either as its original flavour at α time of production, or as
different flavour β :

P(α → β )(t) =
∣∣〈νβ |να(t)〉

∣∣2 = ∑
k, j

U∗αkUβkUα jU∗β je
−i(Ek−E j)t (1.4)

The oscillation probability P(α → β )(t) is only influenced by the relative phase ∆Ek jt =
(Ek−E j) t between the different mass eigenstates. In the highly relativistic case the energy Ei

can be approximated as:

Ei = |~pi|=⇒ Ei =
√

p2
i +m2

i ≈ E +
m2

i

2E
(1.5)

Additionally, the travel time t can be well approximated by the distance traveled L2. The
oscillation probability can then be written as:

P(α → β )(E,L) = δαβ −4 ∑
k> j

ℜ

[
U∗αkUβkUα jU∗β j

]
sin2

(
∆m2

k jL

4E

)
(1.6)

+2 ∑
k> j

ℑ

[
U∗αkUβkUα jU∗β j

]
sin

(
∆m2

k jL

2E

)
(1.7)

It can be seen that the mass-splitting ∆m2
k j must be non-zero for at least one combination

of mass eigenstates to allow for oscillations and that L/E is the physical value over which the
oscillation can be experimentally accessed. The values of ∆m2

k j are realised in nature in such
a way, that different experiments are sensitive to different oscillation parameters. A global
analysis of neutrino experiments [26] results in mass splittings of ∆m2

21 = (7.35±0.17) ·
10−5 eV2 and ∆m2

31 ≈ ∆m2
32 (2.455±0.035) · 10−3 eV2. The first squared–mass difference

∆m2
21 is responsible for the oscillation of solar neutrinos, while the oscillation of atmospheric

neutrinos is influenced more by ∆m2
31. For example, if an experiment is sensitive to the small

solar mass splitting ∆m2
21, such that ∆m2

21L/4E ≈ 1, then the corresponding oscillation phase
for ∆m2

31 is ∆m2
31L/4E � 1 and therefore averaged to 〈sin2 x〉 = 1/2, independent of L/E.

2In natural units
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For the opposite case, where ∆m2
31L/4E ≈ 1 it also follows that ∆m2

21L/4E� 1, meaning that
these solar terms do not not contribute to the oscillation of atmospheric neutrinos.

For this reason the PMNS-matrix is typically represented as a multiplication of three
matrices, that depend on the mixing angles θ12,θ13,θ23. Given the assumption that neutrinos
are Dirac particles a phase factor δ can introduce a violation of the charge-parity (CP)
symmetry, if it is different from zero. Should neutrinos be Majorana particles, i.e. their own
antiparticle, two additional phase factors can exist.

U =

1 0 0
0 c23 s23
0 −s23 c23

 c13 0 s13e−iδCP

0 1 0
−s13eiδCP 0 c13

 c12 s12 0
−s12 c12 0

0 0 1

 (1.8)

Here, the mixing angles sinθk j, cosθk j are abbreviated as sk j and ck j, respectively. Typi-
cally, solar neutrino experiments and short-baseline reactor experiments are sensitive to the
oscillation parameters (∆m2

21,θ12), while atmospheric neutrino experiments and long-baseline
accelerator experiments are sensitive to the oscillation parameters (

∣∣∆m2
23

∣∣ ,θ23). It is worth
to note that matter effects in the Sun make it possible to constrain the sign of the solar mass
splitting ∆m2

21 to be positive, while the sign of the atmospheric mass-splitting is still unknown.
Therefore, two possible arrangements of the mass hierarchy are possible: The normal ordering
with m1 < m2 < m3 or the inverted ordering, with m3 < m1 < m2.

It is possible to simplify the three neutrino scenario to describe the neutrino oscillation
with an effective model considering only two neutrinos, due to the decoupling effect of the
large difference between the mass-splittings ∆m2

21 and ∆m2
23. In this case the mixing matrix U

is given by a rotation matrix, with a single angle θ = θ12. For solar neutrinos this corresponds
to the rightmost matrix of Equation 1.8. The probability that a neutrino is detected in the same
flavour eigenstate |να〉 in which it has been produced is called survival probability. In the
simplified two neutrino case it can be written as:

P(α → α)(E,L) = 1− sin2 (2θ)sin2
(

∆m2L
4E

)
(1.9)

For solar neutrinos the survival probability due to oscillations in vacuum is effectively
averaged out. The reason for this is the large size of L in combination with the detector energy
resolution and the relative large size of the fusion zone, where solar neutrinos are produced:

〈Psolar, vacuum(e→ e)〉= 1− 1
2

sin2 (2θ12) (1.10)

In Borexino, and in this thesis, the expected rate of solar neutrino events in the detector is
calculated using the oscillation parameters in the normal ordering, from the global analysis
presented in [26]. The global best fit values are summarised in Table 1.1.

1.1.3 Neutrino oscillation matter effect

Due to their weakly interacting nature, the neutrinos that are produced in the centre of the Sun
are well able to escape the dense stellar core and can therefore be used as a direct probe of the
nuclear processes in the Sun. At the same time, the solar neutrinos experience an influence of
the matter potential on their way out of the Sun, which causes a significant, energy dependent
change in the electron-neutrino survival probability.

The idea of neutrino oscillations in matter was first proposed in [29], with additional
contributions in [30], resulting in the name of Mikheyev-Smirnov-Wolfenstein (MSW) effect,
after the authors. Ultimately, the solar neutrino problem has been solved by the combination
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Parameter Ordering Best fit 1σ range

∆m2
21/10−5eV2 Both 7.34 7.20 - 7.51

sin2
θ12/10−1 Normal 3.04 2.91 – 3.18

Inverted 3.03 2.90 – 3.17

sin2
θ13/10−2 Normal 2.14 2.07 – 2.23

Inverted 2.18 2.11 – 2.26

|∆m13|/10−3eV2 Normal 2.455 2.423 – 2.490
Inverted 2.441 2.406 – 2.474

sin2
θ23/10−1 Normal 5.51 4.81 – 5.70

Inverted 5.57 5.33 – 5.74

δCP/π
Normal 1.32 1.14 – 1.55
Inverted 1.52 1.37 – 1.66

TABLE 1.1: Best fit values and allowed 1σ region of the neutrino oscillation parameters, for the normal
and inverted mass ordering. From the global fit performed in [26].

of vacuum oscillations and the MSW effect. This is the so called LMA-MSW (large mixing
angle) solution, due to the (unexpectedly) large size of the solar mixing angle θ12.

The MSW effect relies on the fact that ordinary matter is made up of electrons. Therefore,
the νe can interact with electrons with both the CC and NC, while νµ,τ can only interact via
the NC. This introduces an additional potential for νe, that is dependent to the Fermi constant
GF and on the electron density Ne of the matter:

VCC =
√

2GFNe (1.11)

In the following, the MSW effect is illustrated in the two neutrino (νe, νµ ) approximation.
The evolution of a neutrino state with initial flavour α is described by the Schrödinger
equation:

i
d
dt

(
ν1
ν2

)
=

1
2E

(
m2

1 0
0 m2

2

)(
ν1
ν2

)
= Hk

(
ν1
ν2

)
(1.12)

Here Hk is the diagonal Hamiltonian matrix (mass matrix), meaning the mass eigenstates in
vacuum are eigenstates of Hk. Using the mixing matrix U , the Hamiltonian matrix can be
written in the representation of flavour eigenstates with the mixing angle θ12 = θ :

Hα =UHkU† =
1

2E

(
m2

1 cos2 θ +m2
2 sin2

θ
(
m2

2−m2
1
)

sinθ cosθ(
m2

2−m2
1
)

sinθ cosθ m2
1 sin2

θ +m2
2 cos2 θ

)
(1.13)

In the presence of matter the mass of νe is modified trough an additional potential with a value
of VCC:

Hα
m = Hα +

(
VCC 0

0 0

)
(1.14)

Transforming this matrix back into the mass representation (ν1, ν2) results in:

Hk
m =U†Hα

mU =
1

2E

(
m2

1 +2cos2 θEVCC 2cosθ sinθEVCC

2cosθ sinθEVCC m2
2 +2sin2

θEVCC

)
(1.15)
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The neutrino mass eigenstates in matter (ν1m, ν2m) are now different from the mass eigen-
states in the vacuum, due to the coherent forward-scattering off electrons. The additional
on-diagonal terms will alter the effective mass squared difference and thus change the oscilla-
tion lengths, while the off-diagonal allows the transition between mass eigenstates. However,
if the electron density ne is constant or varies only slowly (adiabaticity) then the so called
crossing probability is negligible. Therefore, the neutrino oscillations can now be described
in terms of the effective matter eigenvalues (m2

1m, m2
2m), their mass splitting ∆m2

m and the
effective mixing angle θm:

m2
1m,2m =

1
2

[
m2

1 +m2
2 +EVCC∓

√(
EVCC−∆m2

21 cos2θ
)2

+
(
∆m2

21 sin2θ
)2
]

(1.16)

∆m2
m = m2

2m−m2
1m =

√(
EVCC−∆m2

21 cos2θ
)2

+
(
∆m2

21 sin2θ
)2 (1.17)

sin2θm =
∆m2

21 sin2θ

∆m2
m

(1.18)

It can be seen from the above equations, that for very small neutrino energies the matter
effects can become negligible. In the Sun this is the case for neutrino energies below 1 MeV,
where the survival probability is given by the vacuum oscillation. Furthermore, the condition
EVCC = ∆m2

21 cos2θ results in a matter enhanced resonance, maximising the mixing angle
sin2θm = 1. What is most interesting in the context of solar neutrinos is that for large values
of EVCC the mixing angle can become very small sin2θm→ 0 as the effective mass splitting
in matter is ∆m2

m ∝ EVCC. This is the case in the centre of the Sun for neutrino energies
above 10 MeV. These neutrinos are now produced in the electron flavour, but since θ12 ≈ 33◦

they are associated entirely to the mass eigenstate ν2m. The neutrino then leaves the Sun
in the corresponding vacuum mass eigenstate ν2, as the density profile of the Sun changes
adiabatically. Because νµ has a larger admixture of ν2 than νe (or vice versa ν2 has a larger
admixture of νµ than of νe) this has the consequence that the electron neutrino survival
probability Pee is now decreased due to the matter effect. It follows for sufficiently large
neutrino energies (in the two neutrino approximation):

Pee =
∣∣U2

12
∣∣= sin2

θ12 (1.19)

FIGURE 1.2: The electron-neutrino
survival probability Pee as a function
of the neutrino energy. The vacuum os-
cillation is shown as a grey band, while
the MSW-LMA prediction is shown as
a pink band. The data points show the
results of the Borexino measurement
of solar neutrinos at different energies,
named after their production process.

Taken from [31].

This is illustrated in Figure 1.2, where Pee is plotted against the solar neutrino energy. The
vacuum oscillation of the LMA parameters is shown as a grey band around Pee ∼ 54%, while
the MSW effect introduces a transition region between ∼ 1MeV-10MeV, after which the
matter effect defines the value of Pee ∼ 33%. The data points show the result of the Borexino
neutrino spectroscopy [31], that is well in agreement with the MSW-LMA solution.
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Additionally, the MSW effect also plays a role for the neutrino propagation through the
matter of the Earth [32]. The electron neutrino flux is expected to be partially regenerated,
leading to an increase of the measured neutrino interaction rates during night time. The
Earth matter effect is small and proportional to the neutrino energy; for 10 MeV neutrinos it
regenerates on average about ∼ 3% of the νe flux in the detector at night.

1.2 Standard Solar Model

Standard Solar Models (SSMs) constitute a well-defined framework that provides a description
of the Sun at the present time, from which predictions can be made. They provide a well
defined reference for different fields of research, ranging from solar and stellar modeling to
solar neutrinos and particle physics. This section provides a short introduction to the SSM, as
it is used for the calculation of the expected fluxes of the solar neutrinos. More details can be
found in [7, 33, 34, 35].

The actual predictions of the SSM require detailed model calculations, using underlying
assumption of the stellar evolution, summarised as follows:

• The Sun is in a hydrostatic equilibrium, meaning that the radiative and particle pressure
of the model is balanced by the gravitational attraction.

• The energy transport is dominated by radiative processes for the interior of the Sun and
by convection for its outer layer. Additional transport due to acoustic or gravity waves
are considered negligible in the SSM.

• The primary energy source of the Sun is the nuclear fusion of four protons into a Helium
nucleus, which produces the observable solar luminosity and neutrinos. Typically, small
effects of contraction or expansion are also included in the SSM.

• The primordial solar interior is assumed to be chemically homogeneous and changes
in the local abundances of individual isotopes occur only by nuclear reactions. This
implies that mass loss is negligible during the life time of the Sun.

Given these assumptions, the SSM is then the result of the evolution of a 1M� stellar
model up to the present solar age τ� = 4.57Gyr. The SSM is required to match the solar
luminosity L�, the solar radius R�, and the surface (photospheric) metal3-to-hydrogen ratio
(Z/X)�, at the present time τ�. The calibration of the SSM is done by adjusting the mixing
length parameter (αMLT) and the initial helium (Yini) and metal (Zini) mass fractions. These
three parameters are correlated with each other, as they all depend on the three observational
constraints. The SSM is of importance not only for the understanding of solar physics but for
astrophysics in general, as it constitutes a benchmark for stellar evolution models. Additionally,
the SSMs depend on other physical inputs, such as the radiative opacities, cross sections of
nuclear reactions and others.

1.2.1 Energy and neutrino production in the Sun

The Sun is powered by two sets of nuclear reactions, where four protons are fused into one
Helium nucleus, which releases an energy of 26.7 MeV. These sets are the pp-chain [36] and
the CNO-cycle4 [37, 38, 39]. The solar neutrino fluxes can be predicted from the SSM by
estimating these nuclear reaction rates. They depend on the fusion cross sections, temperature,

3Here every element heavier than helium is called a metal, as is usual in Astronomy.
4Also known as Bethe–Weizsäcker cycle.
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nuclei density, and chemical composition inside the Sun. In general, the interaction rate R
between two nuclei can be written as [7]:

R =
nanb

1+δab
〈σv〉 (1.20)

Here, na, nb are the particle densities, σ the energy dependent cross-section, v their relative
velocity and δab is used to avoid double counting of identical nuclei. The temperature averaged
product 〈σv〉 assumes a Maxwell-Boltzmann distribution. This does not provide the particles
with enough energy to overcome the Coulomb barrier, given thermal energies of several keV
inside the Sun. Thus, the fusion reactions are possible thanks to quantum tunneling, which
provides an energy dependent probability to cross the Coulomb potential of the respective
fusion reaction. The cross sections σ are of fundamental importance as input parameters for
the SSM, but they are hard to measure at the solar energies due to their small size. Therefore,
they are typically extrapolated through Taylor expansion from higher energy measurements,
or through ab initio calculations, when possible. See [40] for more details on the solar fusion
cross sections. Due to this dependence on the particle densities and their temperature, the
different species of solar neutrinos show different radial distributions in their production rate.
All solar neutrinos are produced well within a radius of 0.3R�, while neutrinos produced in
fusion processes involving heavier nuclei tend to have a radial production rate distribution that
is shifted closer to the centre, i.e. to higher temperatures and densities.

FIGURE 1.3: The schematic overview of the Hydrogen fusion from the pp-chain (left) and the
CNO-cycle (right). Taken from [31].

The pp-chain

The pp-chain is responsible for about ∼ 99% of the total energy production in the Sun, while
the CNO-cycle accounts for the remaining ∼ 1%. It is shown schematically in 1.3 on the left,
where the neutrinos are named after the nuclei involved their production. The first reaction
step, and basis of the entire pp-chain, is the fusion of protons into a deuteron, either through
pp (99.6%, Eν ≤ 0.42MeV) or pep (0.4%, Eν = 1.44MeV) fusion:

pp-ν : p+ p→ 2H+ e++νe (1.21)
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pep-ν : p+ e−+ p→ 2H+νe (1.22)

The 2H then absorbs a proton and afterwards the reaction chain divides into branches that
are called pp-I, pp-II, pp-III and hep, where only the latter three produce neutrinos. In the pp-I
branch two 3H fuse directly into 4H and two protons are emitted. For the pp-II branch a 3H
and 4H nucleus produce 7Be, which subsequently decays through electron capture into 7Li
and emits a neutrino:

7Be-ν : 7Be+ e−→ 7Li+νe (1.23)

The 7Be decays with a probability of 89.48% into the ground state of 7Li, emitting a mono-
energetic neutrino with Eν = 0.862MeV. For the remaining 10.52% it decays to the first
excited state 7Li∗ with a subsequent emission of a neutrino with Eν = 0.384MeV and a
0.478 MeV γ-ray. The pp-II branch then terminates trough the production of two 4H via
7Li+ p→ 2 4H.

The pp-III branch starts similar to the pp-II branch, but here the 7Be captures a proton,
producing a 8B. This 8B is unstable and its β+–decay provides another neutrino with Eν ≤
15MeV:

8B-ν : 8B→ 8Be∗+ e++νe (1.24)

The excited 8Be∗ then dissociates into two 4H, closing the pp-III chain. At last, 4H is also
produced with a very low fraction of 2 ·10−5 by a proton capture on 3H, which produces a
neutrino with Eν ≤ 18.77MeV:

hep-ν : 3H+ p→ 4H+ e++νe (1.25)

The CNO-cycle

The CNO-cycle is a catalytic process, which relies on the presence of C, N and O in the Sun.
This is schematically shown in Figure 1.3 on the right. Almost all the energy produced by the
CNO catalysed fusion is due to the CNO-I cycle (CN-cycle) with a small contribution of the
CNO-II cycle (NO-cycle). The CNO-I cycle consists of a loop of reactions that starts with
the proton capture on 12C and ends in the proton capture on 15N, again producing a 12C and a
4H. The sub-dominant CNO-II cycle starts with the proton capture on 15N and ends with the
proton capture on 17O and the production 14F and 4H.

CNO-I : 12C+ p→ 13N+ γ (1.26)
13N→ 13C+ e++νe (Eν ≤ 1.20MeV) (1.27)

13C+ p→ 14N+ γ (1.28)
14N+ p→ 15O+ γ (1.29)

15O→ 15N+ e++νe (Eν ≤ 1.73MeV) (1.30)
15N+ p→ 12C+ 4He (1.31)

CNO-II : 15N+ p→ 16O+ γ (1.32)
16O+ p→ 17F+ γ (1.33)

17F→ 17O+ e++νe (Eν ≤ 1.74MeV) (1.34)
17O+ p→ 14F+ 4He (1.35)

(1.36)

The CNO-I cycle (CN-cycle) conserves the number abundance of the solar metals, but
changes their distribution as it eventually achieves an equilibrium. In the Sun this leads
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to the conversion of most of the primordial 12C in the core into 14N. This change in the
chemical composition over time has an impact on the SSM as it changes, for example, the
core opacity and the heavy element mass fraction Z. The CNO-cycle requires preexisting
metals (C, N and O) to fuse the protons into 4He, where the reactions are characterised by
larger Coulomb barriers than for the pp-chain. As such, the CNO-cycle energy production has
a much steeper temperature dependence compared to the pp-chain. For the CNO-cycle the
energy dependence of the 4He production rate is proportional ∝ T 17, while for the pp-chain it
is ∝ T 4 [40]. Consequently, while the CNO-cycle is sub-dominant in the Sun, it dominates
the energy production in heavier main-sequence stars.

1.2.2 Solar neutrino flux predictions

FIGURE 1.4: The energy spectra
of the solar neutrinos [41] with the
updated fluxes from [35]. CNO is
the sum of the 13N, 15O and 17F

neutrinos. Taken from [31].

The SSM provides a complete description of the Sun, after its parameters have been
correctly calibrated. One of its most important predictions is the production rate of solar
neutrinos from the nuclear reactions, described in the previous section. Figure 1.4 shows the
(un-oscillated) energy spectrum of the expected solar neutrino flux at the earth according to
the SSMs of [35], with the uncertainty of the SSM prediction shown in the brackets. The
constituents of the CNO-cycle are shown as dotted, yellow lines, while the neutrinos from
the pp-chain are shown as solid, coloured lines. The pep- and 7Be-neutrinos can be seen as
mono-energetic lines.

As stated in the previous section, the SSM depends on the abundance of chemical elements
in the Sun. These abundances are determined primarily through the spectroscopy of the solar
photo-sphere. For this type of measurement it is necessary to model the solar atmosphere,
to determine its radial temperature and density distribution, as well as performing detailed
radiation transfer calculations. It is then then possible to infer the elemental abundances
from the spectral line distributions. New three-dimensional, time-dependent hydro-dynamical
modeling of the solar atmosphere [42] lead to lower estimations of the solar metallicity by
about ∼ 20%, compared to previous estimations [34, 43].

Among other things, the solar metallicity also impacts the opacity and the sound speed
profile of the Sun. Here, helioseismology [44] provides a tool for the investigation of the
interior properties of the Sun, where the measurement of the global acoustic eigenmodes has
allowed the reconstruction of the interior structure of the Sun with great precision. While the
older, high-metallicity SSM predictions are in agreement with the sound speed profiles inferred
from helioseismic data, the newer, low-metallicity SSM predictions show some tension. This
is sometimes called the solar metallicity puzzle. A higher metal abundance increases the
opacity and therefore the temperature of the Sun’s interior, which in turn is correlated to the
production rate of the solar neutrinos. Therefore, a direct measurement of the CNO-ν flux is
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interesting because it is correlated directly to the solar metallicity and can help to provide a
solution to the metallicity puzzle [45].

The Borexino measurements are typically compared to, or constrained by, the two different
SSM predictions presented in [35], which is also the case for this thesis. The high-metallicity
model B16-GS98 (HZ-SSM) is calculated with a metal abundance of (Z/X)� = 0.02292,
while the low-metallicity model B16-AGSS09met (LZ-SSM) has (Z/X)� = 0.01780. Here,
the metal abundance in the Sun has been calculated with information from the composition
of meteorites in addition to the photospheric measurements. The predictions for the solar
neutrino fluxes (without oscillations) of these two models is shown in Table 1.2:

Flux HZ-SSM (B16-GS98) LZ-SSM (B16-AGSS09met) (HZ-LZ) / HZ
[cm−2 s−1] [cpd / 100 t] [cpd / 100 t] [%]

pp 5.98 (1±0.006) ·1010 6.03 (1±0.005) ·1010 −0.84
pep 1.44 (1±0.01) ·108 1.46 (1±0.009) ·108 −1.39
hep 7.98 (1±0.30) ·103 8.25 (1±0.30) ·103 −3.38
7Be 4.93 (1±0.06) ·109 4.50 (1±0.06) ·109 +8.72
8B 5.46 (1±0.12) ·106 4.50 (1±0.12) ·106 +17.6

13N 2.78 (1±0.15) ·108 2.04 (1±0.14) ·108 +26.6
15O 2.05 (1±0.17) ·108 1.44 (1±0.16) ·108 +29.8
17F 5.29 (1±0.20) ·106 3.26 (1±0.18) ·106 +38.4

CNO 4.88 (1±0.16) ·108 3.51 (1±0.19) ·108 +28.1

TABLE 1.2: The predicted neutrino fluxes of the HZ-SSM and LZ-SSM according to [35]. CNO is the
sum of the 13N, 15O and 17F fluxes.

1.3 Solar Neutrino Detectors

While the Sun provides the highest natural neutrino flux on Earth, the detection of neutrinos
is extremely challenging because of the very low reaction cross sections provided by the
weak interaction. Thus, the measurements of solar neutrinos requires large detectors to
gather enough statistics, as well as sufficiently low background levels. For this reason the
typical neutrino detector is situated deep underground, to shield from cosmic rays and cosmic
muon induced background. This section is intended to provide an overview of such solar
neutrino detectors, starting from the historical radio-chemical experiments, to the current
water Cherenkov and liquid scintillator detectors , to proposed future hybrid detectors, using
both scintillation and Cherenkov radiation. The intention here is to provide a context for
the directional and spectral measurement of solar neutrino detection and to highlight future
experiments that may benefit from the new analysis method developed in this thesis. An
overview of the potential, future use of noble liquid (Xenon, Argon) experiments for the
detection of solar neutrinos is left out here, but can be found for example in [46, 47]. A good,
recent review on the future of solar neutrino detection in general can be found in [48].

1.3.1 Radio-chemical detectors

As mentioned previously, the radio-chemical experiments constituted the first generation of
solar neutrino detectors and were critical in the understanding of the solar neutrino problem.
Here, the neutrinos are detected through the CC reaction on a specifically selected target
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isotope, which produces a radioactive daughter nucleus. This daughter nucleus is then
chemically extracted from the target and can then be detected through its own decay signature.
The Homestake experiment [2], named after its location in the Homestake gold mine in the
USA, used the inverse beta decay of 37Cl:

37Cl+νe→ 37Ar+ e− (1.37)

This reaction has an energy threshold of 814 keV and the 37Ar has a lifetime of τ37Ar ≈ 35d.
It was chemically extracted every two months and detected through the 37Ar electron decay in
small proportional counters. The Homestake experiment in particular gave rise to the solar
neutrino problem and operated between 1967 and 1994. It measured an average neutrino
capture rate of 2.56±0.16(stat.)±0.16(syst.) SNU, compared to the 9.3±1.3 SNU predicted
by the SSM of that time [2]. The SNU stands for Solar Neutrino Unit, which is a convenient
unit of measurement corresponding to 10−36 neutrino captures per target nucleus and second.
The principle detection of solar neutrinos was awarded with a part of the Nobel prize in 2002
to R. Davis [3].

The Homestake experiment was then followed by two experiments using the inverse beta
decay of 71Ga: The first was SAGE (Soviet American Gallium Experiment) [49], which began
its activity in 1989 at the Baksan Neutrino Observatory in Russia. While it is still running,
it is renamed and is focused on the so-called gallium anomaly nowadays [50]. The second
was GALLEX (GALLium EXperiment) [51], which ran at the INFN Gran Sasso National
Laboratory in Italy from 1991 to 1997.

71Ga+νe→ 71Ge+ e− (1.38)

The detection threshold for 71Ge of 233 keV is significantly lower than for 37Cl and well
below the 422 keV end point of the pp-neutrino spectrum. For these experiments the measured
neutrino signal was once again smaller than the SSM prediction at about ∼ 60%.

The radio-chemical detection method can only provide an integrated measurement of
the solar neutrino flux above a certain energy threshold, but it is not able to separate the
contributions of the different solar neutrino spectra. Today the radio-chemical detection of
solar neutrinos is still an area of ongoing research; an example being the lorandite experiment
(LOREX) [52]. Here, the proposed use of the isotope 205Tl provides a threshold value of only
52 keV. The daughter isotope 205Pb has a half-life of several million years and could thus
provide the possibility to measure the average solar neutrino flux over the last million years.

1.3.2 Water Cherenkov detectors

A breakthrough in solar neutrino physics came from the advent of purpose-built water
Cherenkov detectors, in particular the Sudbury Neutrino Observatory (SNO) [53] situated in
a nickel mine in Canada, which was initiated in 1984 explicitly to solve the solar neutrino
problem. The central element of the detector were 1000 t of heavy water (2H2O, D2O) in a
12 m diameter acrylic vessel. The use of heavy water allowed for three different interaction
channels for the solar neutrinos:

Neutral Current (NC): νX +d → νX + p+n (1.39)

Elastic Scattering (ES): νX + e−→ νX + e− (1.40)

Charged Current (CC): νX +d → e−+ p+ p (1.41)

While the NC and ES interactions are sensitive to all neutrino flavours, the CC interaction
is sensitive only to electron neutrinos. This way it was possible to directly prove that the total
measured neutrino rate was in good agreement with the predictions of the SSM, but only a



14 Chapter 1. Solar Neutrinos

fraction of the solar neutrinos conserved their electron flavour. This experimental evidence led
to the Nobel Prize in 2015 to A.B. McDonald [6], together with T. Kajita and the associated
results of the Super-Kamiokande experiment.

The fast moving electrons produced in the CC and ES reactions provide Cherenkov
radiation which was detected with ∼ 9500 20 cm photo-multiplier tubes (PMTs). The NC
reaction was detected in three different ways for separate phases of the experiment. The
neutrons of the NC reaction were captured on deuterium in Phase 1 and on chlorine from
dissolved NaCl in Phase 2. The subsequent emission of γ-rays provided Cherenkov light that
could be detected, due to Compton scattered electrons. In Phase 3 the NC produced neutrons
were detected by an array of 3He-filled neutron counters. The principal results of SNO clearly
showed that the solar 8B-neutrinos change their flavour in transit to Earth.

The infrastructure of SNO has been reused for the SNO+ experiment [54], which started
data taking in 2017. In the first operating phase of the experiment the detector was filled with
light water (H2O) and a second phase has started, which uses 780 t of liquid scintillator. For
the third phase it is planned to load the scintillator with 3.9 t of tellurium. The main goal of
SNO+ is the search for neutrinoless double beta decay, the detection of which would prove
the Majorana nature of neutrinos, meaning that the neutrino is its own antiparticle. In addition,
the physics program also includes the studies of geo- and reactor antineutrinos, supernova and
solar neutrinos, and exotic physics.

The second important water Cherenkov detector in the context of solar neutrinos is Super-
Kamiokande [55], the successor of Kamiokande (Kamioka Nucleon Decay Experiment).
Kamiokande was initially built to search for the proton decay, but it was able to provide a
direct proof of the solar origin of the detected neutrinos [56] as well as a detection of neutrinos
from the supernova 1987A [57]. For this achievement a part of the Nobel prize was awarded
in 2002 to M. Koshiba [3].

Super-Kamiokande is a large, cylindrical, water Cherenkov detector, containing 50 kt of
ultra-pure water, instrumented with ∼ 12000 PMTs, that started data taking in 1997. Here,
the detection channel for solar neutrinos is only given by the ES reaction (Equation 1.40).
The direction of each event can be reconstructed, based on the PMT hit pattern of the recoil-
electron Cherenkov cone. As the direction of the recoil-electron is correlated to the direction
of the solar neutrinos it is possible to efficiently differentiate between the background events
and the solar neutrino signal events.

FIGURE 1.5: Exemplary angular event
distribution in Super-Kamiokande for
3.5 MeV to 19.5 MeV of kinetic energy
of the recoil-electron. The distribution
of the angle cosθsun between the recon-
structed event direction ~rrec and the in-
coming neutrino direction~rν . The data is
shown as black points, while the best fit is
shown as a histogram. The neutrino and
background contributions are shown as
dark and light shaded areas, respectively.

Taken from [58]

This is illustrated in Figure 1.5 from [58], which shows the angular distribution cosθsun
between the reconstructed event direction~rrec and the solar neutrino direction~rν . It can be
clearly seen that the background (light shaded area) follows a uniform distribution, while
the solar neutrino signal (dark shaded area) shows a peak at cosθsun = 1, smeared by the
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resolution of the event direction reconstruction. A typical analysis in water Cherenkov
detectors is performed on this angular distribution, binned for a number of energy regions to
make use of both the directional and spectral information of the solar neutrinos.

Both SNO and Super-Kamiokande provide a low energy threshold for their solar neutrino
analysis at 3.5 MeV [58, 59], for the kinetic energy of the recoil-electrons. This is due to the
combination of the relatively low light-yield of the Cherenkov radiation at these energies, with
only about 30 detected photo-electrons per event, and the presence of a residual radioactive
background in the water. Therefore, water Cherenkov detectors are only sensitive to the high
energy part of the solar neutrino spectrum and have only measured 8B neutrinos, for which
Super-Kamiokande provides the most precise flux measurement [58] to date.

In addition to the solar neutrino program Super-Kamiokande famously provided evidence
for the neutrino oscillation through the measurement of atmospheric neutrinos [4], for which
a Noble prize was awarded in 2015 to T. Kajita [6]. Here, the data exhibited a zenith angle
dependent deficit of muon neutrinos that was inconsistent with the expectations while it was
consistent with the two-flavour νµ ↔ ντ oscillations. Furthermore, Super-Kamiokande was
also used as the far detector for the investigation of accelerator neutrinos from the long-baseline
K2K [60] and T2K [61] experiments, the latter of which is still ongoing.

The next generation of the water Cherenkov concept will be the Hyper-Kamiokande
detector [62], south of the Super-Kamiokande site. It is expected to start data taking in
2027 [63]. It will be filled with 260 kt of ultra-pure water, providing a ∼ 8 times larger
fiducial volume than Super-Kamiokande, and it will be instrumented with 40 000 PMTs. The
enormous scale of Hyper-Kamiokande will allow it for a rich physics program, ranging from
oscillation studies from accelerator, atmospheric and solar neutrinos, sensitivity studies on the
proton decay, the search for astrophysical neutrinos, and so on. The search for a CP-violating
phase, visible through asymmetries in accelerator neutrino and antineutrino oscillations, is
quoted as one of the major goals of Hyper-Kamiokande.

1.3.3 Liquid scintillator detectors

Liquid scintillator (LS) detectors are the second workhorse of the current generation of solar
neutrino experiments. Charged particles deposit their kinetic energy in the LS, mostly through
ionisation, which excites the LS molecules, resulting in the emission of isotropic scintillation
light. Typically the LS consists of a solvent, for example pseudocumene or linear alkylbenzene,
and a secondary fluorophore 5 at a concentration at about 1.5 g/l to 2.5 g/l. This secondary
fluorophore is called a wavelength shifter, as it absorbs the energy from the solvent and then
emits the scintillation light at a wavelength outside of the absorption region of the solvent.
This increases the attenuation length of the scintillation light drastically and makes it possible
to construct large scale LS detectors. Thus, the LS provides a relatively high light-yield per
deposited energy, compared to the light-yield of the Cherenkov process. The main detection
channel of solar neutrinos is again their ES off the target electrons, but now the information on
the neutrino energy is provided by the scintillation. The high light-yield of the LS allows for a
relatively low energy threshold, as well as a high precision position and energy reconstruction,
compared to the water Cherenkov detectors. The solar neutrinos are then typically measured
through a fit of the detected energy spectrum, but without the directional information from the
Cherenkov radiation.

Furthermore, the high light-yield also allows for the efficient detection of electron anti-
neutrino events, which, for example, are produced by nuclear reactors or by the decay of 238U
and 232Th within the Earth, providing the so called geo-neutrinos. The detection method for
electron anti-neutrinos is based on the inverse beta decay and the coincidence of the prompt

5Often called a fluor in the context of scintillation experiments.
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positron signal and the delayed signal (∼ 260 µs) of a neutron capture hydrogen, which then
emits a 2.2 MeV γ-ray:

ν̄e + p→ e++n (1.42)

Since the produced neutron is heavier than the target proton, the inverse beta decay has a
kinematic threshold of 1.8 MeV.

The KamLAND (Kamioka Liquid Scintillator Anti-Neutrino Detector) experiment started
operation in 2002, and is situated in the Kamioka Observatory; same as Super-Kamiokande.
The detector consists of 1000 t of LS, contained in a transparent nylon-vessel. The scintillation
light is detected by an array of about 1800 17" and 20" PMTs, mounted on the inner surface
of an 18 m stainless steel sphere. It is also surrounded by a 3.2 kt water Cherenkov detector,
which tags cosmic muons and absorbs γ-rays and neutrons from the detector structure and
the surrounding rock. One of the main achievements of the experiment was the precise
measurement of the ∆m2

12 mass splitting, as well as improving the precision of θ12 in combi-
nation with the solar neutrino data. This was done through the detection of the high statistics,
distorted reactor (electron) anti-neutrino spectrum at a 180 km baseline, which allowed to
establish the LMA-MSW neutrino oscillation mechanism as the solution to the solar neutrino
problem [25]. Additionally, the anti-neutrino spectrum allowed KamLAND to perform the
first experimental study of geo-neutrinos [64]. In the context of solar neutrinos KamLAND
performed a measurement of 7Be-neutrinos [65] and 8B-neutrinos [66]. It suffered from an
unfortunately high contamination of radioactive background, specifically 210Bi, which made
the 7Be-neutrino measurement less precise by almost an order of magnitude compared to the
Borexino result. The current iteration of the experiment is called KamLAND-Zen [67], where
the LS now is loaded with 136Xe in the search of neutrinoless double beta decay.

The Borexino detector was situated at the INFN Gran Sasso National Laboratory in Italy
and took data from 2007 to 2021. It consisted of 280 t of LS, monitored by ∼ 2000 20" PMTs.
The main physics goal of the experiment was the measurement of solar neutrinos, which was
successfully achieved thanks to its unprecedented radio-purity. Borexino managed to provide
a measurement of the full pp-chain [31], with the exception of the hep-neutrinos, as well as the
first direct, experimental evidence for the existence of CNO-cycle neutrinos in the Sun [68].
Details about the Borexino detector will be presented in Chapter 2.

The main improvements necessary for the next generation of organic LS detectors can
achieved by the significant increases in the target mass, as well as lower background levels
or improved capabilities for background discriminating. The upcoming JUNO (Jiangmen
Underground Neutrino Observatory) [69] detector takes the first approach, where it will use
a 20 kt LS target, monitored by ∼ 17000 20" PMTs. in addition to ∼ 25000 3" PMTs. It
is scheduled to start data taking in 2024. The JUNO LS will consist of linear-alkylbenzene
as a solvent and two wavelength shifters: PPO at 2.5 g/l and bis-MSB at 1.5 mg/l, which
further increases the attenuation length of the scintillation light as this is crucial for such a
large detector. Due to the large light-yield, large attenuation length and the high (80%) PMT
coverage, JUNO is expected to provide an unprecedented energy resolution of 3%

√
E/MeV.

JUNO is expected to detect around ∼ 1350 photo-electrons per MeV of deposited energy,
which is drastically higher than the performance of Borexino at∼ 500 photo-electrons per MeV.
The main goal of JUNO is the determination of the mass hierarchy, through the measurement
of reactor anti-neutrinos at a baseline of 53 km. The physics programs further includes
the precision measurement of neutrino oscillation parameters, the search for the diffuse
supernova (anti)-neutrino background, the study of geo-neutrinos and solar neutrinos, and
others. However, the analysis of solar neutrinos is much more susceptible to the impact of
background in the detector, compared to the detection of anti-neutrinos, as the latter provide the
an efficient coincidence tagging. The cosmogenic background in JUNO will be relatively high,
as the overburden is is only 700 m thick and the LS may not be able to reach a sufficiently
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high radio-purity for the solar neutrino analysis. For JUNO the greatest potential lies in
the measurement of the 8B-neutrinos, with a possibility to measure 7Be-neutrinos, while a
measurement of the pep- and CNO-neutrinos is hindered by the cosmogenic background [69].

The proposed Serappis (SEarch for RAre PP-neutrinos In Scintillator) experiment [70]
takes the opposite approach, where the detector is small with a LS volume of only ∼ 20m3.
The detector would benefit from the existing JUNO infrastructure, as it would be an upgrade
of the OSIRIS [71] sub-system, used to monitor the LS radio-purity during the filling of JUNO.
The goal of the experiment would be the measurement of the low energy solar pp-neutrino at
a few-percent level. This would allow for a sensitive test of the solar luminosity constrain and
contribute to the study of solar neutrino oscillations. For this, Serappis aims to provide an
excellent energy resolution (∼ 2.5% at 1 MeV) and a low internal background level of 14C,
compared to 12C with a ratio of ∼ 1.9 ·10−18. The small size of the detector is crucial, as it
makes the pile-up of 14C decays with themselves and other spectral components negligible.
This pile-up would otherwise smear the lower energy 14C events into the endpoint region of
the pp-neutrinos and add a systematic uncertainty.

1.3.4 Hybrid detectors

The idea of so called hybrid detection is to use both the unique morphology of Cherenkov
light in combination with the benefits of high light-yield scintillation in the same detector. The
Cherenkov light would provide directional information, as well as the potential for particle
discrimination given its dependency on the particle momentum, for example between γ-rays,
electrons and muons. The scintillation would provide a low energy threshold, as well as
drastically improve the performance of the energy and position reconstruction. This approach
could potentially achieve unprecedented levels of background rejection that would allow for a
rich physics program.

One such proposed hybrid detector is Theia [72] (after the Titan goddess of light), located
at the Sanford Underground Research Facility, with a volume of 25 kt–100 kt water-based
liquid scintillator [73]. This water-based liquid scintillators (WbLS) is a dispersion of LS
micelles in ultra-pure water, stabilised by a surfactant. This LS dilution reduces the absorption
of Cherenkov photons in the bulk material, while still providing scintillation. Furthermore,
the background of 14C and muon spallation products from 12C is also reduced, relative to pure
LS. The main challenges for WbLS to be used as a large scale hybrid detection medium are
Rayleigh scattering on the scintillator micelles, as well as the radio-purification of the water
phase. The current proposal is for Theia to be realised in phases, where the first phase consists
of lightly-doped WbLS and very fast photosensors and has as its main physics goals the
measurement of long-baseline accelerator neutrino oscillations, the 8B-neutrino flux, as well
as the search for the diffuse supernova neutrino background. The second phase would feature a
high light-yield WbLS, or pure but slow LS, which would allow for the additional investigation
of the MSW transition region and the measurement of solar CNO- and pep-neutrinos, as well
as reactor- and geo-neutrinos. The water phase makes the loading of metal isotopes possible,
which could offer an additional CC interaction for the measurement of solar neutrinos or
which could be used in a third phase for the search of the neutrinoless double beta decay.

The Jinping Neutrino Experiment (Jinping) [74] is a proposed detector at the Jinping
Underground Laboratory in the Sichuan province of China, with a rock shielding of 2400 m.
Its main goals would be the measurement of solar neutrinos of both the pp-chain and the
CNO-cycle, as well as geo-neutrinos and supernova neutrinos. The proposal is to build
two neutrino detectors with a total fiducial target mass of 2000 t for solar neutrino physics,
equivalently to 3000 t for geo-neutrino and supernova neutrino physics6, and a light collection
range between 200 to 1000 photo-electrons per MeV. Jinping considers to use a slow LS

6As they are anti electron-neutrinos.
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as the target material, to allow for the hybrid detection of the events. Here, the Cherenkov
light and scintillation could be differentiated through their differences in the PMT hit time
distribution. The prompt Cherenkov light can be used for the directional reconstruction of
the events and particle discrimination, while the slow scintillation light can be used for the
energy and position reconstruction of the events. These different timing structures between the
scintillation and the Cherenkov light would require a dedicated electronics system to record
the waveform output from the PMTs, which then could also help to discriminate between
different particles. A 1 t prototype LS detector is running since 2017 [75], to test the hardware
and to measure the radioactive background for Jinping.

1.4 Final remarks

In recent decades, the study of solar neutrinos has yielded a profound and, at the time,
surprising experimental discovery: The non-zero mass and flavour oscillation of neutrinos.
It seems likely that in the future solar neutrinos will be investigated as a part of a broader
physics program by large scale, multipurpose detectors with a focus on different main physics
goals, from rare event searches to long-baseline neutrino experiments. Nonetheless, these
next-generation neutrino detectors will feature higher event statistics, and novel and improved
detection technologies.

One topic of interest for solar neutrinos is the vacuum to matter transition region. While
the two extreme flavour conversion regimes have already been measured, where either the
vacuum term or the matter term dominates, there exists no direct measurement of the transition
from one to the other. A high statistics sample of CNO-, pep- and the lower energy region
of 8B-neutrinos could make such a measurement possible. This would also allow for a
sensitive search of non-standard interactions affecting the neutrino propagation. In the same
context of neutrino matter transitions, the present experiments have so far struggled to provide
a significant detection of the day-night asymmetry, i.e. the regeneration of the electron-
neutrino flavour, expected from the matter effects of neutrinos traversing the Earth. Another
important investigation would be a precise measurement of the pp-neutrino flux, as this is the
bottleneck of the pp-chain through which the vast majority of the solar energy is produced.
The comparison between the pp-neutrino flux and the well known solar luminosity would
allow new opportunities to study the Sun, as well as search for physics beyond the Standard
Model. Furthermore, a precision measurement of CNO-cycle neutrinos would allow for a
direct measurement of the total C and N abundance in the solar core, almost free from the
uncertainties of the Standard Solar Model. This would not only help to improve the SSM,
solving the metallicity problem, but it would also provide a means to study the evolution of
the proto-planetary disk to the solar system of today [76].

The future study of solar neutrinos will continue to offer a unique insight, not only into
our Sun, but also into the most fundamental laws of physics. This may, yet again, lead to
surprising and drastic discoveries, but it will certainly help our understanding of the universe
in which we live.
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The Borexino Experiment
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FIGURE 2.1: The Borexino data taking time line.

Borexino is a large liquid scintillator (LS) detector, primarily devoted to the spectroscopic
measurement of low energy solar neutrinos. It arose from the proposed BOREX detector
in 1990 [77] and in the following years new techniques for the purification and handling of
the scintillator have been developed [78, 79, 80, 81]. In 1998 the counting test facility [82]
has been used to measure the radio-purity of the LS and proved the feasibility of multi-ton,
low-background LS detectors. The high radio-purity is one of the fundamental achievements
of the Borexino detector, on which all subsequent measurements and analyses are based. For
example, the LS had a 238U residual contamination of (5.3±0.5)10−18 g/g in Phase 1 [83]
and in Phase 2 this value has been reduced to < 9.4 ·10−20 g/g (95% CL) [84], following the
additional purification campaign in 2010-2011. This corresponds to a reduction of the natural
background by about 9–10 orders of magnitude.

Borexino started data taking in May 2007 and ended data taking in October 2021, as shown
in the time line in Figure 2.1. A calibration campaign [85] has been performed during Phase 1,
and the LS underwent a further purification between Phase 1 and Phase 2. Borexino provided
the measurement of the full pp-chain (pp-ν , 7B-ν , pep-ν , 8B-ν) [83, 31, 86, 87, 88], with
the exception of hep-neutrinos, that have a very low flux. Following the thermal insulation
of the detector in Phase 2 and the development of new analysis techniques [89], Borexino
has also been able to provide the first experimental evidence for the existence of CNO-cycle
neutrinos in the Sun [68]. This result has been improved in a subsequent measurement, using
the entirety of Phase 3 [45]. In addition to the solar neutrino program, Borexino has also
measured geo-neutrinos [90], provided a limit on the neutrino magnetic moment [91] and
performed other measurements that are not listed here.

This chapter will first give a brief overview of the detector design in Section 2.1. The
signal and background components that are relevant for Borexino are discussed in Section 2.2
and Section 2.3. Then, Section 2.4 gives a rough overview over the data acquisition procedure
and explains some event reconstruction algorithms that are of importance for the analyses
performed throughout this thesis. The last Section 2.5 describes the Monte Carlo (MC)
simulation framework. An example of the standard spectral fit is also shown, to illustrate its
contrast to the main analyses of this thesis, which measures the solar neutrinos solely through
they directionality, without direct use of the spectral shape.

The electronic trigger scheme and data read-out are not discussed here. A more detailed
detector description can be found in [83, 92, 93] and the references therein.
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2.1 Detector design

(a) (b)

FIGURE 2.2: (a) Schematic illustration of the Borexino detector. (b) A picture taken of the stainless
steel sphere interior from its entrance door. The PMTs can be seen with their light collecting cones.

Both pictures are taken from [92].

The Borexino detector is situated underground, in the Hall C of the Laboratori Nazionali
del Gran Sasso (LNGS), with about 3800 m water equivalent (w.e.) rock shielding above
it. This corresponds to a suppression of the muon flux of about 10−6, relative to the surface.
Figure 2.2(a) shows the schematic design of the detector, which consists of two sub-detectors:
The outer, water Cherenkov detector and the inner liquid scintillator detector, which are
separated by the stainless steel sphere (SSS). The external water tank has a diameter of 18 m
and a height of about 17 m. Within, the outer detector is filled with 2400 t of ultra-pure water
and instrumented with 208 8" photo-multiplier tubes (PMTs). It serves as a passive shielding
against the external γ and neutron background radiation, as well as an active muon veto, which
allows for the reconstruction of the muon track [94].

The SSS has a radius of 6.85 m and contains the inner detector, which is segmented into
three sub-volumes through two transparent nylon vessels [95]. The outer nylon vessel shields
the inner volume (IV) from radioactive contamination that can detach from the PMTs and the
SSS. The inner vessel has a nominal radius of 4.25 m and contains 280 t of ultra-pure LS and
is used as an additional barrier against radioactive contamination from the outside. The LS
is composed of pseudocumene (PC, 1,2,4-trimethylbenzene, C6H3(CH3)3) as a main solvent
and the additional fluorophore PPO (2,5-diphenyloxazole, C15H11NO) with a concentration of
1.5 g/l. The nylon vessels are hold in place with nylon ropes that connect to the vessel end cap
structures at the top and bottom of the respective vessel.

The PPO acts as a wavelength shifter, where the PC molecules are first excited by a
charged particle and then they transfer this energy non-radiatively to the PPO. The emission
of the scintillation light then occurs from the PPO, with a wavelength distribution that peaks
at ∼ 330nm, now removed from the absorption region of the PC. At these wavelengths the LS
has an attenuation length of ∼ 10m and it has a scintillation light-yield of about 10k photons
per MeV of deposited energy. This composite LS has a decay time that can be modeled with a
multi-exponential distribution, where the fastest component contributes ∼ 90%, with a decay
time τ1 = 3.5ns. The buffer liquid outside the inner vessel is composed of PC and 5 g/l DMP
(dimethyl phytalate, C10H10O4), which quenches the intrinsic scintillation of the PC by a
factor of ∼ 20. This strongly suppresses the potential signals outside the LS volume.

The SSS is instrumented with a number of 2212, 8" ETL-9351, PMTs, which are used for
the detection of optical photons. A number of 1838 PMTs are equipped with light collecting
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cones, made out of aluminium. These cones enhance the effective light collection area by
a factor ∼ 2 and at the same time limit the field of view to the inner vessel volume. The
total optical coverage of the inner detectors SSS surface is about 30%. Figure 2.2(b) shows a
photo of the SSS with the mounted PMTs, taken trough the entrance door. The PMTs have
a typical transit time spread (TTS) of ∼ 1ns and a typical, maximum quantum-efficiency
of ∼ 30% at 360 nm. The characteristics of the PMTs can be found in [92, 96]. Different
PMTs can have a different single photo-electron response function, i.e. a different charge
distribution corresponding to the detection of a single photon. Additionally, the PMTs can
have different quantum efficiencies, as well as a small time offset between each other, which
includes the impact of the electronic PMT read out system. For this reason a laser calibration
system exists, to align the PMT times and their single photo-electron charges [92, 97]. The
effective PMT quantum efficiencies are also continuously calibrated, using the intrinsic 14C
decay events [98].

2.2 Solar neutrinos in Borexino

Solar neutrinos are detected in Borexino through the elastic scattering off electrons of the LS,
where a fraction of the neutrino energy is transferred as kinetic energy to the electron.

νe,µ,τ + e−→ νe,µ,τ + e− (2.1)

The recoil-electron in turn deposits its energy in the LS through ionisation, exciting the LS
molecules, which then de-excite through the emission of photons. Thus, the measurable
electron energy spectrum is continuous even for mono-energetic solar neutrinos. It has an
endpoint of Tmax, defined by the neutrino energy Eν and the electron rest mass mec2. The
recoil-electron spectra of the mono-energetic 7Be-ν (0.862 MeV) and pep-ν (1.44 MeV)
exhibit a Compton-like edge, with the endpoints of 0.665 MeV and 1.22 MeV, respectively.

Tmax =
Eν

1+ mec2

2Eν

(2.2)

FIGURE 2.3: The energy dependent cross section
of the neutrino-electron elastic scattering. The νe
(solid line) can interact via the CC and NC, while
the νµ,τ (dashed line) can only interact via the NC.

Taken from [83].

The following is a summary of the neutrino rate calculation in Borexino, based on [83]
and the updated, internal document [99]. The rate of neutrino–electron elastic scattering
interactions is given by the product of the incoming neutrino–flux Φν , the elastic scattering
cross section σe,µ,τ and the number of electrons in the respective target ne. For Borexino
the latter value is ne = (3.307±0.015) ·1031 per 100 t [68]. Neutrinos of all flavours can be
detected in Borexino, where the νe interact via both the Charged Current (CC) and Neutral
Current (NC), while the νµ andντ interact only via the NC. Thus, the νe have a larger cross
section than the νµ and ντ , which are shown as energy dependent functions in Figure 2.3
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as a solid line and a dashed line, respectively. These cross sections σe,µ,τ are obtained
from the electroweak Standard Model and they include radiative corrections, as described
in [100]. The electron neutrino survival probability Pee is calculated according to [32, 101],
where the neutrino mixing parameters are taken from the global analysis results of [26]. The
total expected neutrino interaction rate Rν in Borexino is given by the integration over the
recoil-electron energy T and the differential neutrino energy spectrum dλ/dEν [83]:

Rν = neφν

∫ dλ

dEν

dEν

∫ (dσe(Eν ,T )
dT

Pee(Eν)+
dσµ(Eν ,T )

dT
[1−Pee(Eν)]

)
dT (2.3)

Here, the neutrino energy spectra are taken from [41] and the different neutrino fluxes
are given by the HZ-SSM (B16-GS98) and LZ-SSM (B16-AGSS09met) [35]. The resulting
neutrino rates of the low energy solar neutrinos in Borexino are summarised in Table 2.1:

ν
HZ-SSM (B16-GS98) LZ-SSM (B16-AGSS09met)

[cpd / 100 t] [cpd / 100 t]

pp 131.28±1.74 132.38±1.69
7Be (0.384 MeV) 1.88±0.11 1.72±0.10
7Be (0.862 MeV) 46.01±2.82 42.00±2.57

7Be 47.90±2.82 43.72±2.57
pep 2.74±0.04 2.78±0.04

13N 2.30±0.34 1.68±0.24
15O 2.55±0.43 1.79±0.29
17F 0.066±0.013 0.041±0.007

CNO 4.92±0.78 3.52±0.52

TABLE 2.1: The expected neutrino rates in Borexino. The 7Be branching ratios at 0.384 MeV and
0.862 MeV are 0.1052 and 0.8948, respectively [83]. CNO is the sum of the 13N, 15O and 17F rates.

2.3 Backgrounds in Borexino

FIGURE 2.4: The expected energy spectra of the
solar neutrinos (solid, red lines) and the main back-
ground components (black and coloured, dotted
lines), for Phase 1. The rates used for the produc-
tion of this plot are shown in the parenthesis in

units of cpd / 100 t. Taken from [83].

While Borexino managed to purify the LS to unprecedented levels of radio-purity there
still exist a residual contamination. Additionally, there is also an irreducible background of
14C, intrinsic to the organic scintillator, and the background that is continuously produced by
cosmic muons. Figure 2.4 shows the expected energy spectra of the low energy neutrinos in
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comparison to the most relevant background contributions, following the assumptions made in
Phase 1 [83]. The neutrinos are shown as red solid lines, while the background contributions
are shown as dotted lines, for 14C, 210Po and 11C in black, for 85Kr in green and for 210Bi in
blue. This section is meant to give a short overview of some background species in Borexino,
which can be put in three categories: Internal, external, and cosmogenic background.

2.3.1 Internal background

The internal background stems from the decays of radioactive isotopes contaminating the LS.
The most abundant background is 14C (β−, Q-value= 156keV, τ = 8270a), which constitutes
a fraction of the organic LS carbon atoms. It is chemically identical to 12C and therefore
cannot be reduced through chemical processes. Instead, the Borexino LS is derived from
petroleum that is pumped from relatively deep wells, where the levels of 14C are reduced
roughly by a factor of a million down to a concentration of ∼ 2 ·10−18 g/g [83]. The average
14C rate is around ∼ 3.5 ·106 cpd/100 t, which is reduced to ≤ 30Hz by the trigger threshold
of 50 keV. This 14C, as well as the random coincidence of two 14C decays, is the most
important background for the spectral measurement of the low energy pp-neutrinos.

The isotope 85Kr (β− (99.57% branching ratio), Q-value = 687keV, τ = 15.4a) has a
spectral shape that is very similar to that of the 7Be-ν electron recoil, which makes it an
important background to reduce for the spectral analysis. It is present in the atmosphere with
an average activity of 1 Bqm−3, and can be efficiently removed by stripping the LS with
nitrogen gas [81]. For Phase 1 it has been measured around ∼ 30 cpd / 100 t [83], while it
has been reduced to < 7.5 cpd / 100 t (95% CL) [84] in Phase 2, following the purification
campaign.

Another background of great concern for the spectral analysis is 210Bi (β−, Q-value =
1.16MeV, τ = 7.23d), which has a shape that is similar to that of the CNO- and pep-neutrinos,
given the expected statistics. The 210Bi is supported by the detector contamination with its
parent nucleus 210Pb (β−, Q-value = 63.5keV, τ = 32a). The strong spectral degeneracy
between the 210Bi and the CNO-neutrinos makes the measurement of the latter very challeng-
ing. It has been first proposed in [102] that it is possible to constrain the 210Bi rate through
measuring the rate of its own daughter 210Po (α , Q-value = 5.4MeV, τ = 200d):

210Pb
β−−−→
32a

210
Bi

β−−−−→
7.23d

210Po α−−−→
200d

206Pb (2.4)

This idea has been successfully realised in Borexino after the installation of the thermal
insulation, using the so called low polonium field method [89]. The Phase 3 constraint of 210Bi
to ≤ 11.5±1.3cpd / 100 t made it possible to provide the first experimental evidence for the
existence of the CNO-cycle neutrinos in the Sun [68] .

The 210Po decay has a large Q-value, but the α-particle it produces has a high ionisation
energy loss dE/dx. The amount of scintillation light produced by an α-particle is quenched
by a factor of ∼ 10, relative to the same energy deposited by an electron [103], which is
explained further in Chapter 3. Additionally, the α-particles can be efficiently differentiated
from electrons, as α-particles induce a slower scintillation decay time. The discrimination
method is outlined in Section 2.4.3.

Typically, the internal background is assumed to be uniformly distributed within the LS
volume. This is not the case for 210Po, which has a so called vessel component that comes
from the convective migration of 210Po from the inner nylon vessel into the LS volume. Here,
the 210Po is produced from the 210Pb→210 Bi→210 Po decay chain, where the 210Pb and 210Bi
stay on the inner vessel. As such, the main purpose of the thermal insulation has been the
suppression of this 210Po convective motion, to be able to constrain the 210Bi rate.
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2.3.2 External background

The main source of the external background is the radioactivity of the detector materials
that contain the LS, but γ radiation from outside the detector may also reach the LS. These
are, for example, the SSS, the PMTs and their light collecting cones, the vessel support
structures and the other hardware components mounted on the SSS. The external background
is strongly suppressed by the shielding provided by the quenched buffer region and the only
relevant background that can reach the active, inner scintillation volume are the γ-rays from
the 40K (Q-value = 1.46MeV), 214Bi (Q-value = 2.45MeV) and 208Tl (Q-value = 2.61MeV)
decays. These γ-rays deposit their energy trough Compton scattering on the LS electrons.
This attenuation in the LS volume results in an exponential radial distribution, which allows
for the efficient reduction of the γ-background through the selection of a fiducial volume. The
total contribution of these external background is ∼ 6 cpd / 100 t [84] and the impact of these
external γ-rays is small for the measurement of 7Be-neutrinos, but it is relevant for the pep-ν
and CNO-ν measurement.

2.3.3 Cosmogenic background

The 3800 m w.e. overburden provides a reduction of the cosmic muon flux by about six
orders of magnitude, resulting in a flux of about ∼1.2 m−2 h−1 [94], corresponding to ∼ 4300
muons crossing the inner detector per day. These muons can be tagged with good accuracy
by the outer, water Cherenkov detector and also by the inner detector. They can produce
a variety of unstable isotopes via spallation processes along their path through the detector.
These cosmogenic isotopes have a stable rate in Borexino, given by the equilibrium of their
respective production and decay rates. Consequently, they cannot be reduced through the
purification of the LS. A dead time of 300 ms is applied after each passing muon, to efficiently
suppress the contribution of most spallation products (see Table XI in [83]).

After this cut, the dominant muon–induced cosmogenic background is 11C (β+, Q-value=
960keV, τ = 29.4min), which is accompanied by a neutron:

µ +12 C−→ µ + 11C+n (2.5)

The 11C undergoes β+ decay with a Q = 960keV, followed by the electron-positron anni-
hilation with 2× 511keV. This provides a total energy deposition between 1.02 MeV and
1.98 MeV.

11C−→ 11B+ e++νe (2.6)

This energy region is is very important for the measurement of the pep-ν and CNO-ν rates
in Borexino. Therefore, it is necessary to reduce the contribution of the 11C, as the expected
pep-ν and CNO-ν rates are small compared to the ∼ 26 cpd / 100 t rate of the 11C. This is
achieved trough a space-time coincidence tagging between the passing muon, the subsequent
neutron capture on hydrogen and the delayed signal from the 11C decay, which is explained in
Section 2.4.4.

2.4 Event reconstruction

Charged particles deposit energy in the LS, which leads to the emission of scintillation photons
and their subsequent detection by the PMTs mounted on the SSS. The number of detected
PMT hits is expected at about Nh = 400 for an electron-equivalent energy deposition of
1 MeV, or a total charge of all PMTs, in units of photo-electrons, of about Npe = 500. This
corresponds to an energy resolution of about 5% at 1 MeV. The PMT charge information is
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obtained through the integration of the first 80 ns of the PMT pulse, which is followed by a
60 ns dead-time, to write the data to the internal memory buffer.

At the energies of interest around 1 MeV the PMTs operate mainly in the single photo-
electron regime, but multi-photon hits become more likely at off-centre position for PMTs
close to the energy deposition. Should a PMT detect multiple photon hits in the 80 ns time
window, then the total charge of all photon-hits is collected, but only the start of the PMT
pulse is recorded as the single time information of these photon-hits. This means that the
earliest detected photo-electron defines the PMT hit time, while the timing information of the
additional hits is lost within the 80 ns time window.

The Borexino trigger is implemented with a digital logic, due to the large number of PMTs
and their dark count rate of 20 kHz [96]. Typically, the trigger threshold is set to a number of
20-25 detected PMT hits within a time window of 100 ns, which corresponds to an energy
threshold of around ∼ 50keV. The information on the PMT hits (time and charge) is acquired
in a 16.5 µs time window, following the trigger of the inner detector. This normal trigger type
for the inner detector requires that the outer detector did not see a signal at the same time.
Another trigger type concerns the internal muons, where both the inner and outer detectors
are triggered. Here, a second time window of 1.6 ms is opened, following the first acquisition
window. This guarantees a high detection efficiency of cosmogenic neutrons that follow the
passing of an internal muon. These are used for the rejection of the 11C background through
the so called three-fold coincidence method, outlined in Section 2.4.4. Additionally, there
exits a range of other trigger types that are used for monitoring and calibration purposes.

The set of PMT hits, each with their corresponding hit time and charge, is called a
trigger event in Borexino, where the event information also includes the absolute time of the
trigger, given in the Global Positioning Systems (GPS) time format. Each trigger event is
reconstructed using the ROOT [104] based reconstruction software ECHIDNA, developed
by the Borexino collaboration. A first reconstruction algorithm removes non-physical PMT
hits and identifies hits that belong to the same scintillation signal of an energy deposition.
These so called clustered events are then the fundamental objects of the Borexino data, to
which the subsequent reconstruction algorithms are applied. As such, the terms event and
PMT hit, used throughout this thesis, correspond to these clustered events and their set of
PMT hit information. The raw PMT hits are reconstructed in batches of so called runs, which
correspond to a typical data taking time of around six hours.

This section provides a short description of the reconstruction algorithms that are relevant
for this work. These are the energy estimators, the position reconstruction algorithm as well as
the methods for the discrimination of α-particles and 11C events. Details about the electronic
signal processing, the trigger system and the data acquisition system can be found in [92, 93].

2.4.1 Energy estimators

ECHIDNA provides a number of energy estimators for the events, based on the corresponding
cluster of PMT hits. The true energy distribution of the different events is smeared, due to
the finite number of PMT hits. The different analyses performed in this thesis make use of
two different estimators, which are the total number of PMT hits Nh and the geometrically
normalised number of PMT hits Ngeo

h . The Nh is simply the total number of detected PMT
hits, including multiple hits on the same PMT following the 80 ns integration and 60 ns dead
time of the previous hit. The charge information is not used in Nh.

The number of live PMTs Nlive
h (t) has decreased over time in Borexino, as the PMTs have

been dying at a rate of 50-80 PMTs per year. In order to account for this variation of active
PMTs the estimator is normalised to a number of 2000 working PMTs through the relation
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factor feq:

Nnorm
h = feq(t) ·Nh(t) =

2000
Nlive

h (t)
·Nh(t) (2.7)

This value Nnorm
h shows a non-linearity for high energies, as multiple hits are are not

resolved within the 80 ns integration time. A charge based energy estimator Npe suffers less
from such a non-linearity, but at the same time it could be more affected by dark noise. The
Nh estimator seems like the better choice in the context of this thesis, given the relative low
energy region of interest.

However, if an energy deposition happens off-centre, at a large radial position, the PMTs
close by are able to detect more hits than PMTs further away, simply due to the geometric ac-
ceptance given by the solid angle of the respective PMTs. This introduces a radial dependence
on the energy estimators. As the main analyses in this thesis select relatively large fiducial
volumes it is helpful to use an energy estimator, which corrects for this radial dependence.
Such an estimator exists with the geometrically normalised number of PMT hits Ngeo

h , which
makes use of the reconstructed event position~rev:

Ngeo
h =

2000 ·αc

∑i α live
i (~rev)

·Nh(t) (2.8)

Here, αc = 0.00298623 is the value of the solid angle seen by a PMT for an event in
the detector centre and the denominator ∑i α live

i (~rev) is the sum of the solid angles of all
live PMTs at the time of the event detection. The solid angle αi is defined for each PMT
individually, depending on the PMT position (xi,yi,zi) relative to the reconstructed event
position (xev,yev,zev):

αi(xev,yev,zev) =
πR2

d2
i
· xi(xi− xev)+ yi(yi− yev)+ zi(zi− zev)

di

√
x2

i + y2
i + z2

i

(2.9)

Where R is the radius of the PMT cathode, and di is the distance between the PMT position
and the reconstructed event position:

di =
√

(xi− xev)2 +(yi− yev)2 +(zi− zev)2 (2.10)

The Ngeo
h is an energy estimator that is normalised to a number of 2000 PMTs, as if they

have detected a number of hits for an event at the centre of the detector. Thus, it takes into
account the decreasing number of live PMTs over time, as well as the radial dependence of
the number of detected hits, which is beneficial for the main analyses of this thesis.

2.4.2 Position reconstruction

The position reconstruction in Borexino is a log-likelihood fit Lpos, based on the detected
PMT hit times ti and photo-electron charges qi. The value of Lpos is calculated from the
charge dependent hit time probability density functions (PDFs) P(t,q) and minimised over
the proposed event position~rev and the associated event time tev:

Lpos(~rev, tev | {~ri, ti,qi}) =−
I

∑
i

log [P(ti, qi |~rev, tev)] (2.11)

Here, the dependence of P(ti, qi |~rev, tev) is treated implicitly through the time-of-flight
correction of the PMT hit times with a distance di to the event position, defined in Equa-
tion 2.10. This correction is calculated with the use of the effective refractive index neff, which
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describes the effective group velocity of the photons, given the speed of light c:

P(ti,qi | ~rev, tev) = P(ti−
neff

c
di + tev, qi) (2.12)

(a) (b)

FIGURE 2.5: (a) The photo-electron charge dependent PMT hit time PDFs used for the position
reconstruction. (b) Performance of the position reconstruction algorithm. Both plots are taken from

[85].

The reference PDFs P(t,q) are shown in Figure 2.5(a), for ten different values of the
detected PMT charge, in units of photo-electrons (p.e.). They have been produced for electron
events using the Borexino Monte Carlo (MC) simulation [105], briefly described in Section 2.5.
The PDF shapes follow that of an exponentially modified Gaussian distribution, which
becomes more narrow and shifts to earlier times for larger values of the detected charge. This
behaviour stems from the 80 ns integration window of the PMTs, where the first detected
hit defines the hit time ti. This means that for multiple photon hits, which then produce a
large detected charge, the hit time peak must shift to earlier times and become more narrow,
as the PMT hit time is selected as the earliest time from a set of photon hits. The PDFs for
detected charges that are in-between the presented distributions are produced through linear
interpolation of the nearest neighbor charge values.

The position reconstruction algorithm has been optimised and tested during the calibration
campaign, where the active, inner volume has been mapped with calibration sources of
different energies [85]. For example, the PDFs are modified to have a constant, minimal
probability value following the peak, which allows relatively late PMT hits to be moved
around in time without changing their contribution to Lpos. This particulate choice has
been used simply because it provides a good position resolution for a broad range of event
energies and true calibration source positions. Thus, the neff have also a certain value, that is
different for the data and the MC simulation, just to provide a good position reconstruction in
combination with the particular choice of PDFs. The values of ndata

eff = 1.68 and nMC
eff = 1.66

do not necessarily represent the true group velocity of the photons in the data and in the MC.
The exact positions of the calibration sources have been determined by CCD cameras,

with a precision of ∼ 1cm [85]. The result of the calibration campaign for the position
reconstruction can be seen in Figure 2.5(b), where the resolution σ is plotted against the
energy estimator of the total collected charge of all PMTs. The values for the x, y, and z-axes
are shown in red, green and blue, respectively. The position resolution in the energy region of
interest for this work, between 300 p.e. to 700 p.e. around 1 MeV, is between 10 cm to 12 cm.

A last note is that the event time tev corresponds to the time of the event energy deposition,
relative to the time of the PMT hit detection, such that the measured PMT hit time distribution
aligns well with the PDFs. In Borexino this value is not centered around zero, but it has an
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arbitrary constant offset of ∼35 ns added, which is the same for all events and positions. This
constant corresponds to the time-of-flight of photons that are emitted in the detector centre,
and therefore represents the normalisation of the PMT hit time distributions, as if all photons
have been emitted in the detector centre.

2.4.3 Discrimination of α and β events

The time distribution of the scintillation depends on the particle type and its energy loss dE/dx
in the LS. As such, it is in principle possible to differentiate particle types based on their
detected event hit time distribution. This is most prominently the case for the discrimination
between β -like particles and highly ionising α-particles.

Typically, the scintillation molecules are excited to their first singlet state, from which they
can de-excite through the emission of a photon. For the α-particles however, due to their large
dE/dx, a large fraction of the PPO molecules is excited into the first triplet state, from which
a de-excitation into the singlet ground state is spin-forbidden. Thus, the slow component
of the scintillation time decay, also called the delayed scintillation, is more pronounced for
α-particles than for β -particles. For more details see [106], or other textbooks.

  

(a) (b)

FIGURE 2.6: (a) PMT hit time distribution for 214Bi β -particles (black) and 214Po α-particles (red).
Taken from [83]. (b) Measured energy spectra of the Phase 2 data set, once with (blue) and once
without (red) the MLP cut. The 210Po peak is greatly reduced, with a small remaining residue. Taken

from [107].

ECHIDNA has different pulse-shape discrimination algorithms available, which aid in the
distinction of α-like and β -like energy depositions. The parameters of the algorithms have
been tuned using a clean sample of α and β events from the coincidence of the 214Bi(β−)–
214Po(α) decays [83]. Their time-of-flight corrected PMT hit time distributions are shown in
Figure 2.6(a), for the sum of a large number of events. Here the pulse-shape of the 214Po(α) is
shown in red and the 214Bi(β−) is shown in black. The highly ionising α-particles result in
a pulse-shape that has a larger contribution at late times, compared to the β -particles. The
features visible in the distributions around ∼60 ns and ∼180 ns come from the reflections
on the SSS and the PMT cathodes, and the PMT dead-time after the charge integration,
respectively.

This work makes use of the so called MLP parameter for the α/β pulse-shape discrim-
ination. MLP stands for Multi-Layer Perceptron, which is a neutral network architecture
used for supervising binary classifiers. It has been trained with the events selected from
the 214Bi(β−)–214Po(α) coincidence. The MLP uses a number of 13 α/β input variables
to discriminate each event, according to the distribution of the time-of-flight correct PMT
hit times. These input variables are for example, the tail-to-total ratio, the mean, variance,
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skewness of the hit time distribution, and so on [108] . The MLP parameter is used, for
example, for the measurement of the geo-neutrinos [90], and it plays an important role in the
210Bi-constraint for the spectroscopic CNO-ν measurement [89, 68]. Figure 2.6(b) , from
[107], shows the event energy spectra with and without the MLP cut, as blue and red lines,
respectively. The large 210Po peak around Npe = 200 is efficiently reduced, with only a small
residual contribution, while the β -like events are almost unaffected.

2.4.4 Discrimination of 11C events

The cosmogenic 11C events are a major background component, mostly important for the
measurement of the pep-ν and CNO-ν rates. In order to reduce this background, the so-called
three-fold coincidence (TFC) algorithm has been implemented in Borexino [83, 109]. The
basic working principle of the TFC is based on the space-time correlation between the passing
of a muon in the inner volume, the accompanying neutron captures on hydrogen and the
delayed 11C decays.

(a) (b)

FIGURE 2.7: (a) Three-fold-coincidence (TFC) scheme. Veto regions are defined, after the passing of
a muon through the inner volume. The veto volumes are: A cylinder around the muon track (blue) and
spheres around the neutron capture points (shaded) and around their projection upon the track (green).
(b) The spectrum of the 11C-depleted (blue) and 11C-enriched (red) data events of Phase 2, using the

TFC algorithm. The spectra are normalised to the same exposure. Both figures taken from [109].

The muons cross the detector at a rate of about three per minute, where they interact with
the 12C of the LS and produce 11C and a neutron through spallation. This neutron is captured
on hydrogen relatively fast, with a lifetime of τn ∼ 260µs, which results in the emission of
a 2.2 MeV γ-ray. The 12C decays via positron emission with a relatively long lifetime of
τ11C = 29.4min. The TFC now works by defining a list of space-time veto regions, as is
depicted schematically in Figure 2.7(a). Following a muon track, a neutron window is opened,
a second 1.6 ms acquisition window after the first 16.5 µs window. Events that fall in this
window are called neutron events. If at least one neutron event is found, a number of veto
regions is defined as follows: (1) a cylindrical volume with a radius of 0.7 m of around the
reconstructed muon track; (2) a sphere with a radius of 1.2 m around every reconstructed
neutron event position; (3) a spherical projection of every neutron event position onto the
muon track. These latter projections correspond to the likely regions of the actual 11C events,
as they have to be produced by the muon along the track. If a high neutron multiplicity is
detected or if the neutron events have a position reconstruction that is considered unreliable,
then the cylindrical volume is vetoed for two hours. Otherwise the spherical volumes are
vetoed for two hours. A more detailed veto scheme can be found in [83, 108]
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The TFC algorithm provides a TFC-tagged (11C-enriched) data set and a TFC-subtracted
(11C-depleted) data set, as is shown in Figure 2.7(b) in red and blue, respectively. The TFC-
tagged data set includes a large fraction of non-11C events, as the veto time is relatively long.
For Phase 2 the TFC cut results in a > 90% rejection of the 11C events, while at the same
time it provides an exposure of all events in the TFC-subtracted spectrum of about ∼ 60%.
The exact parameters used for the TFC cut are tuned using toy-MC studies [83], such that the
TFC algorithm can provide a good compromise between the 11C rejection and the amount of
exposure which is left in the TFC-subtracted spectrum used for the analysis.

2.4.5 Standard data selection cuts

The events can be selected according to an energy region of interest, a fiducial volume, and the
particle discrimination cuts, after the ECHIDNA reconstruction chain. These selection choices
are dependent on the particular analysis goal and are therefore different for different analyses.
Before that, however, a battery of standard cuts is applied for the selection of all data events,
to remove muons and short-lived cosmogenic background, as well as noise events. Only a
rough overview is given here, further details can be found in [83].

• Muon and muon daughter cut: If a muon is detected by either the outer detector or by
the inner detector a 300 ms veto is applied to the entire detector. This means that events
detected in this time window are not selected for further analysis, which de-selects most
of the unstable isotopes associated with the muon.

• Single energy deposit: Only a single cluster is selected for each event. The event is
rejected if the reconstruction algorithm fails to find even a single cluster in the 16.5 µs
acquisition window. Should multiple clusters be found, then only the first cluster is
used.

• Fast coincidence events: Events that occur in a time window of 2 ms and that are
reconstructed with a distance smaller than 1.5 m between each other are rejected. This
cut is used to remove the 214Bi-214Po coincidence events, possible correlated events of
unknown origin and noise events.

• Charge quality control: The total collected charge of all PMTs is compared to the
number of PMTs that saw a hit. The event is deselected if the ratio between the total
charge and the average charge per PMT is too small or too high.

• Additional noise removal: The cluster that has been responsible for the event trigger
has a well defined position in the the data acquisition window. Thus, an event is only
accepted if the cluster start time is within a 1.7 µs window around a fixed position in the
data acquisition window. Additionally, noise events are deselected if more than 75% of
the detected PMT hits are readout and powered by a single electronics rack.

2.5 Monte Carlo simulation

The Borexino collaboration has developed a GEANT4 [110, 111, 112] (v4.10.5) based Monte
Carlo (MC) simulation package called G4BX2, which is used to simulate the full detector
response for both the neutrino signal and background events. This section gives a short
overview of G4BX2 and more details can be found in [105].

Technically, the software is structured as a chain of three separate parts. First is the
simulation of the physics processes and the light tracking in the detector. For this purpose a
wide range of event generators exist, from solar neutrino interactions, to radioactive decays,
geo-neutrinos, and the calibration source events. The particles are simulated according to their
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theoretical energy spectra, which for solar neutrinos is taken from [41]. The energy loss of
each specific particle is simulated for every material present in the detector. Then a number
of scintillation or Cherenkov photons are generated, considering the particle energy loss in
the media and the properties of the scintillator or the buffer volumes. The path of each single
optical photon is tracked until a PMT is hit or the photon is absorbed somewhere else. The
interactions of the photons with the medium are also simulated, such as reflection, scattering,
and absorption and re-emission by the LS.

The second part is the simulation of the electronics response, after a photon hits a PMT.
Here, the quantum efficiency of each individual PMT is considered, and the PMT signal pulse
takes into account the specific design of the electronics chain in Borexino. Then the trigger
generation is simulated and a raw file is saved. This filet has the same structure as the one
produced for real data.

The last part is then the event reconstruction of the MC simulation with ECHIDNA,
including the energy estimators, position reconstruction and pulse-shape parameters. The
ECHIDNA code is the same for both the real data and the MC simulation.

FIGURE 2.8: The Nh distribution of the γ-ray cal-
ibration sources for the data (black) and the MC

(blue) at the centre of the detector. From [105].

The primary use of the G4BX2 MC is to produce the fit models used for the spectral
analyses of the solar neutrinos, including the full detector response. The full simulation of
the light production and propagation requires a large number of parameters, that describe
the various features of the LS and other materials. Examples for these parameters are the
attenuation lengths, the reflectivity, the re-emission probabilities and the refractive indices.
Here, the calibration campaign has provided a number of different radioactive sources, which
have been used to optimise these parameter values, to validate the accuracy of the MC
simulation and to quantify the systematic differences between the source data and the MC.
The results of the calibration campaign can be found in [85] and an exemplary plot for the
MC validation is shown in Figure 2.8. The energy distribution Nh is plotted for a number of
different γ-ray calibration sources, at the centre of the detector, together with the 2.2 MeV
γ-ray from the neutron capture on hydrogen, provided by the 241Am–9Be source. The source
data is shown in black, while the MC simulations are shown in blue. It can be seen that both
the mean values and the resolutions of these distributions are well reproduced by the MC. In
total, the systematic difference between the data and the MC energy response is estimated
to be < 0.5% [68], including inaccuracies in the energy scale and in the description of the
non-uniformity and the non-linearity of the response.

2.6 Exemplary spectral fit

Almost all analyses performed with Borexino have been performed using the energy spectrum.
This is explicitly different for the solar neutrino measurement of this thesis, which makes
use of the solar neutrino directionality. Therefore, this section presents an overview of the
typical spectral fit used in Borexino, to make the differences between the standard energy and
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directional analysis more understandable. For this, the analysis of Phase 2 is shown as an
example of the spectral fit. The details can be found in [84, 31, 113].

The spectral analysis uses a fiducial volume cut on the reconstructed event radius R and
z-position with R < 2.8m, −1.8m < z < 2.2m, which selects the innermost 71.3 t of the LS
and excludes the residual radioactive background from the nylon vessel and the vessel end
cap structures at z =±4.25m. The analysis is performed with a multivariate fit, that uses the
spectrum the Nh energy estimator, the reconstructed radial distribution of the events and a
e+/e− pulse shape discriminator, based on the likelihood value of the position reconstruction
algorithm. The energy range for the fit corresponds to 0.19 MeV–2.93 MeV.

First, the data is split into two data sets consisting of the TFC-tagged and TFC-subracted
events, which are then fitted simultaneously through the maximisation of the binned likelihood
function L3D:

L3D(k | θ) = LTFC-sub(k | θ) ·LTFC-tag(k | θ) (2.13)

Here, θ symbolises the set of arguments over which the function is maximised, i.e. the rates of
the solar neutrino signal events and the background events. The measured data is symbolised
by k. The likelihoods LTFC-sub(k | θ) and LTFC-tag(k | θ) are given by the standard Poissonian
likelihood functions for three- and two-dimensional histograms, respectively:

LTFC-sub(k | θ) =
NE

∏
j

NR

∏
l

NP

∏
m

λ jlm(θ)
k jlm

k jlm!
eλ jlm(θ)

LTFC-tag(k | θ) =
NE

∏
j

NR

∏
l

λ jl(θ)
k jl

k jl!
eλ jl(θ)

(2.14)

Here the number of data entries k jlm in the energy bin j, the radial bin l, and pulse shape
parameter bin m are compared to the expected number of bin entries from the G4BX2 MC
model λ jlm(θ). The value of λ jlm(θ) depends on the rates and the MC spectra of the relevant
event species. These rates are kept in common between the TFC-tagged and TFC-subtracted
spectra, except for the cosmogenic 11C itself and the 210Po, as it has a non-uniform position
distribution in the fiducial volume.

  

(a)

  

(b)

FIGURE 2.9: (a) Phase 2 result of the multivariate fit for the TFC-subtracted energy spectrum. The
total number of PMT hits Nh is shown on the top. From [31]. (b) An example of the radial distribution

of the TFC-subtracted events, with a selection of Nh > 290. From [84].

Figure 2.9 shows the results of the multivariate fit for Phase 2, for the TFC-subtracted
energy spectra on the left and an example of the radial distribution on the right. For the energy
spectra, estimated with the normalised number of PMT hits Nnorm

h , the data is shown in black,
the MC solar neutrino signal events are shown in red and the different MC background spectra
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are shown in different colours. It can be seen that the spectral shape of data is well reproduced
by the MC model. The presented radial distribution is an example, where the events are
selected according to Nh > 290 from the TFC-subtracted data. The data is shown in black, the
uniform components are shown in green and the external γ-ray background is shown in blue.
Again, the MC model is well able to reproduce the measured data.

Ultimately, the fundamental achievement of an unprecedented low background level has
allowed Borexino to measure all neutrino components of the pp-chain except hep-ν , as well
as to provide the first direct detection and measurement of the CNO-cycle neutrinos in the
Sun. As will be seen in the following chapters, it is also these same conditions that allow
for a measurement of solar neutrinos through a fundamentally different approach: Using the
directional information of the solar neutrinos provided by the Cherenkov radiation of their
recoil-electrons. The current solar neutrino results of Borexino are summarised in Table 2.2:

Solar-ν Rate [cpd / 100 t] Flux [cm−2 s−1] HZ-SSM flux [cm−2 s−1]

pp 134±10+6
−10

(
6.1±0.5+0.3

−0.5

)
·1010 5.98(1.0±0.006) ·1010

7Be 48.3±1.1+0.4
−0.7

(
4.99±0.11+0.08

−0.06

)
·109 4.93(1.0±0.06) ·109

pep (HZ) 2.43±0.36+0.15
−0.22

(
1.27±0.19+0.08

−0.12

)
·108 1.44(1.0±0.01) ·108

pep (LZ) 2.65±0.36+0.15
−0.24

(
1.39±0.19+0.08

−0.13

)
·108 1.44(1.0±0.01) ·108

8BHER 0.223+0.015 +0.006
−0.016−0.006

(
5.68+0.39 +0.03

−0.41−0.03

)
·106 5.46(1.0±0.12) ·106

CNO 6.7+2.0
−0.8

(
6.6+2.0
−0.9

)
·108 4.88(1.0±0.11) ·108

hep < 0.002 (90% CL) < 2.2 ·105 (90% CL) 7.98(1.0±0.30) ·103

TABLE 2.2: The current solar neutrino results of Borexino, as reported in [31, 88, 45]. The results
are presented with their separated statistical and systematic uncertainties, except for the CNO-ν rate,

where the total uncertainty is quoted. For hep-ν only a limit can be given.
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Chapter 3

Correlated and Integrated
Directionality

At present, the measurement of solar neutrinos is performed with two different detector
designs: Water Cherenkov (WCh) detectors like Super-Kamiokande [55], SNO [53] and liquid
scintillator (LS) detectors like Borexino, KamLAND [65] or JUNO [69]. Both types detect
solar neutrinos indirectly via elastic scattering off electrons and the light produced by these
recoil electrons is typically detected with photo-multiplier tubes (PMTs). The fundamental
difference between these detector types is the process of light production, as well as the
subsequent analysis procedure. Using either Cherenkov light or scintillation as the main signal
component leads to different sets of advantages and disadvantages between these detectors.

For WCh detectors, the use of Cherenkov light from the recoil electrons (or other leptons)
allows for the reconstruction of the event direction. This is a powerful tool for background sup-
pression, essential for the measurement of solar neutrinos [58] in these detectors. Furthermore
the Cherenkov ring morphology allows for particle identification, such as for electron and
muon events for the measurement of atmospheric neutrinos [114]. The primary disadvantage
of WCh detectors is the relatively low light-yield at MeV neutrino energies. Compared to
LS detectors, this leads to a higher low-energy threshold, due to the presence of background.
Likewise, WCh detectors have a worse reconstructed energy and position resolution than LS
detectors. Another disadvantage is that charged particles can only be detected if their velocity
in the medium is greater than the speed of light. For water, with a refractive index of n≈ 1.33,
this results in a kinetic energy threshold of about 0.26 MeV for electrons and about 54 MeV
for muons. The effective low-energy threshold is higher in practice because of the presence of
background, as the number of Cherenkov photons emitted is low close to the threshold. For
example, taking into account the detector coverage, photon detection efficiency the presence
of radioactive background results in an effective, (kinetic) low-energy threshold of ∼ 3.5MeV
for Super-Kamiokande [58] and SNO [59]. At this energy, only about 30 photo-electrons are
detected per event, resulting in an energy resolution of ∼ 20%.

In comparison, LS detectors offer a relatively high light-yield and consequently a better
energy resolution, more precise event position reconstruction and a lower energy threshold,
provided they have a sufficiently low radioactive background level. Here, the neutrino recoil
electrons excite the LS molecules, which in turn emit scintillation light isotropically. For
Borexino this results in 400 PMT hits at 1 MeV deposited energy, assuming the nominal
number of 2000 live PMTs. This corresponds to an energy resolution of ∼ 5% and the
effective low-energy threshold for the spectral analysis in Borexino is ∼ 0.19MeV [31]. The
main disadvantage of LS detectors is that an event direction reconstruction is not possible.
For Borexino, with a refractive index of n ≈ 1.5, the electron kinetic energy threshold for
the Cherenkov process is about 0.17 MeV, but for a kinetic energy of 1 MeV the expected
number of direct Cherenkov PMT hits is ∼ 1.5 out of 400 hits in total. The presence of the
Cherenkov photons is actively taken into account in Borexino, as it contributes ∼ 5% to the
visible energy, where the vast majority of Cherenkov photons is absorbed and re-emitted
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by the LS. Consequently, this impacts the non-linearity of the energy spectrum [105, 115].
Although the directional Cherenkov information is in principle present in LS detectors, it has
until now not been possible to make use of it.

In recent years there has been an ongoing effort from a broad community to pursue the
idea of hybrid event detection. The goal is to combine the directionality and morphology of
Cherenkov light with the excellent energy resolution and low-energy threshold of scintillation,
as for example in the proposed THEIA detector [72]. This pursuit is motivated by the potential
for a rich physics program, including the measurement of solar neutrinos, especially an
improved measurement of solar CNO-neutrinos [116] and the search for neutrino-less double
beta decay, where solar neutrinos constitute a background [117]. Another possible application
is in future long-baseline neutrino oscillation experiments [72], where the scintillation light
provides a means to reconstruct hadronic recoils in the final states of GeV neutrino interactions.

To achieve this goal of hybrid detection there is currently a diverse range of research and
development activities ongoing [118], which can be grouped into four categories:

• New target materials, such as water based liquid scintillator [119], slow scintillator [120]
or the use of novel wavelength shifting fluorophores such as quantum dots [121]. These
new targets potentially allow for a better separation of Cherenkov light and scintillation
by tuning the scintillation time profile and wavelength distribution.

• Fast photo-detectors, to explicitly improve the time separation of Cherenkov light and
scintillation, such as large area picosecond photo-detectors (LAPPDs) [122, 123].

• Hardware for the spectral sorting and separation of Cherenkov light and scintillation,
for example with bandpass or dichroic filters [124, 125].

• New reconstruction algorithms, making explicit use of both scintillation and Cherenkov
light on an event-by-event basis [126, 127, 128, 129], to reconstruct the event position,
direction and energy.

These promising target materials, the new hardware and the reconstruction techniques have so
far only been investigated experimentally on a relatively small scale, such as in CHESS [130],
FlatDot [131], or ANNIE [132]. The feasibility and impact of hybrid event detection in large
scale detectors has so far only been studied with Monte Carlo simulations [72, 116, 133]. To
summarise this introduction: Combining the directional Cherenkov information with the high
light-yield of scintillation is of great interest for a diverse number of neutrino related physics
goals, but the experimental proof of this hybrid detection in an existing, large scale detector
has been outstanding. The provision of that proof is the primary topic of this thesis and it
is successfully achieved [134, 135] through a novel analyses method called the Correlated
and Integrated Directionality (CID), using the Borexino detector. The idea of the CID is
not to perform an event-by-event direction reconstruction, but instead correlate the measured
photon direction of each hit PMT with the known direction of the solar neutrinos and then
integrate over a large number of events. The resulting distribution of angular hit values allows
then to perform a statistical inference on the number of neutrino events. The current chapter
introduces the general idea of the CID method as well as some details of its implementation in
the Borexino detector. The initial idea of this integrated approach came from ,
as part of his work on the proposed Theia experiment [72].

The first Section 3.1 explains the general principle of the CID method, which should
be applicable for all types of solar neutrino detectors that have a reasonably precise event
position reconstruction, such as KamLAND [65], JUNO [69] or the LS phase of SNO+ [136].
Then, Section 3.2 explains the production of the CID Monte Carlo model, and Section 3.3
introduces the Nth-Hit time like variable, which is necessary for the Cherenkov-scintillation
time separation. After this, the following Chapters 4 and 5 present the in-situ calibration
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of the effective group velocity of scintillation and Cherenkov photons, respectively. The
measurement of 7Be-ν events in Chapter 6 is then used as the proof-of-principle for the CID
method, making it the first experimental hybrid detection of solar neutrinos in a monolithic,
high light-yield LS detector. This 7Be-ν analysis provides important lessons for the application
of CID in Borexino. Subsequently the CID analysis is improved in the final Chapter 7, for the
measurement of CNO-ν events, providing a detection as well as a direct proof of the solar
origin of the CNO-cycle neutrinos.

3.1 Method

The basic principle of the Correlated and Integrated Directionality (CID) method is schemati-
cally illustrated in Figure 3.1. First, a solar neutrino with an energy Eν interacts in the LS via
elastic scattering off an electron, transferring the kinetic energy T . This electron with mass me

now has the scatter angle θe, relative to the initial direction of the neutrino:

cosθe =

(
1+

me

Eν

)√
T

T +2me
, (3.1)

For relative large values of T the electron is scattered in forward direction. If the corre-
sponding particle velocity v is larger than the speed of light c in the LS, given by the refractive
index n, then the electron emits Cherenkov radiation in an angle θch [14]:

cosθch =
c
nv

=
1

nβ
(3.2)

The direction of these Cherenkov photons ~dch is now correlated to the initial direction of
the solar neutrino ~dν . Now each measured PMT hit can be correlated to the known position
of the Sun, i.e the neutrino direction ~dν , with the correlation angle cosα . It is necessary to
estimate the photon direction ~dhit, using the known PMT position~rPMT and the reconstructed
event position~rev:

~dhit =
~rPMT−~rev

|~rPMT−~rev |

cosα = ~dhit · ~dν

(3.3)

The integration of a large number of events results in a cosα distribution. For a high
light-yield LS detector the PMT hits are made up mostly of scintillation light, but a fraction
of PMT hits, at early hit times, consists of Cherenkov photons. This results in an expected
cosα distribution for neutrino signal events which is made up of two components: First, a
relatively large baseline, a flat distribution from scintillation hits, which are isotropic and
thus uncorrelated to the direction of the solar neutrinos. Second, on top of the scintillation
baseline, a cosα distribution with a distinct Cherenkov peak corresponding to cosθch. This
peak is smeared by the position resolution and Rayleigh scattering inside the LS, as well as
the distribution of cosθe, according to the selected energy region. The cosα distribution of
the intrinsic, radioactive residual background events is expected to be flat, as the direction of
background events is not correlated to position of the Sun.

Because the signal and background cosα distributions look different, it is now possible
to statistically infer the number of neutrino events, given a sufficiently high event statistic.
The use of the directional Cherenkov information for background suppression is normally
performed through event-by-event direction reconstruction, but CID effectively transforms
this problem to the event-by-event position reconstruction, a task at which LS detectors excel.
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(a) (b)

(c) (d)

FIGURE 3.1: Schematic representation of the angular correlation α , between the reconstructed direction
of the detected photon hits and the position of the Sun, with respect to Borexino. The photon direction
is estimated using the reconstructed event position and the hit PMT position. From [135, 134]. (a)
A solar neutrino recoil-electron at the centre of the detector produces Cherenkov light in a cone (red
arrows), pointing forward in the direction of the Sun. At the same time it produces isotropic scintillation
light (blue arrows). The directional angles α1 and α2 correspond here to the first and second detected
photons of the event, respectively. The Cherenkov photons are correlated to the incoming direction
of the solar neutrinos and so are the PMT hits they trigger. (b) The first detected photon here is a
scintillation photon, therefore not correlated to the direction of the solar neutrino, and the second
detected photon is a Cherenkov photon. Compared to (a), this event would result in a flatter angular
distribution. Additionally, this event happens off-centre. (c) A radioactive background, electron event
also produces Cherenkov light (green arrows) and isotropic scintillation photons (blue arrows). Again,
α1 and α2 are the directional angles of the first and second photons of the background event. Here
these are Cherenkov photons, but they have no correlation to the Sun’s direction. (d) The same as (c),
but here the event is off-centre, where the first photon is a scintillation photon and the second detected

photon is a Cherenkov photon. These background events result in a flat angular distribution.
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Calculation of the solar direction

The Cherenkov information of the CID is given by the cosα distribution of the integrated
event hits. For the calculation of cosα it is first necessary to know the position of the Sun
with sufficient precision. In Borexino this is accomplished by the use of the solar position
algorithm from [137], which has also been used previously for the study of the solar neutrino
day-night asymmetry [138].

The algorithm uses the event trigger time and the geographic coordinates of the Borexino
detector (latitude = 42.421, longitude = 13.515) to calculate the solar position in horizontal
coordinates (azimuth, altitude). The direction of solar neutrinos can then be expressed in the
Borexino (spherical) coordinate system, where ϕ , in contrast to the azimuth, is defined in the
mathematically positive sense and ϕ is moreover offset from the geographic north by 52◦:

ϕ = 308◦− azimuth

cosθ = cos(90◦+ altitude)
(3.4)
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FIGURE 3.2: The distribution of the
solar neutrino direction in Borexino
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tion of the solar direction at the geo-

graphic location of Borexino.

Figure 3.2 shows the distribution of the solar direction for Phase 1 (with the data events
selected in Chapter 6). The daily motion of the Sun is visible as the sinusoidal shape, while the
seasonal modulation of the Sun’s altitude is given by the cosθ width of the distribution. The
important thing to note here is that the solar direction is not uniformly distributed. This means
that the event morphology, averaged over many events, does not necessary need to produce a
flat cosα distribution for background events. The reason for this is that the background event
hits still use the solar direction in the calculation of cosα . Only a certain set of PMT positions
is even able to contribute hits with cosα = 1, for example, while only a different set of PMTs
is able to contribute to cosα = 0. The background hits may be isotropically distributed on the
PMTs, but the PMTs do not contribute uniformly to the cosα distribution.

3.2 Production of the Monte Carlo model

To be able to perform a statistical inference on the number of neutrino events it is necessary to
produce a model of the CID cosα distribution, that is able to fully reproduce the features of
the measured data cosα distribution. This is done here with the GEANT4 [110, 111] based
Borexino G4BX2 Monte Carlo (MC) framework [105]. The parameters of the MC have been
tuned with the calibration campaigns in the period between 2008 and 2011 [85] and G4BX2
is well capable of building the MC model required for the spectral fit. As Borexino has never
been intended to make direct use of the Cherenkov light it is now necessary to modify the
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standard MC for the correct production of the CID cosα distributions. Furthermore, CID
specific calibrations of the MC must also be performed, as explained in the Chapters 4, 5.

3.2.1 Simulated step length

The first important change is the correct selection of the GEANT4 simulation parameters, more
specifically the choice of a sufficiently small simulation step length. The following part is
intended for readers who are explicitly trying to implement the CID in a simulation framework
and to draw attention to the fact that even single parameters for the simulation of the physics
model can introduce substantial errors.

In GEANT4, when a particle is shot and transported, all physics processes associated to
the particle propose a step length, dependent on the process cross section. The particle is
then moved according to the shortest proposal and all continuous processes (e.g. Cherenkov
radiation, ionisation and scintillation) are executed along the step. Then, the post step phase
of the process that limited the step is executed and the procedure begins anew. Here, the
continuous energy loss imposes a limit on the step size because of the energy dependence of
the cross sections. The MC generally assumes that the particle cross sections are approximately
constant along a step. The step size should be small enough that the change in the cross
section, from the beginning of the step to the end, is sufficiently small. To achieve a good
compromise between the step length and the computation time, GEANT4 is limiting the step
length by not allowing the stopping range of the particle to decrease by more than a ratio
of k = ∆R/R. This results in a faster computation time, but it effectively averages out the
particle path in the presence of multiple scattering. This is a simplified explanation, please see
the GEANT4 handbook for more details [110].

0 0.1 0.2 0.3 0.4 0.5

x [mm]

0

0.1

0.2

0.3

0.4

0.5

y
 [

m
m

]

  
i

 = 0.2 Ri R∆Nominal MC energy change per step ratio: 

i
 = 0.01 Ri R∆Corrected MC with decreased step length: 

Schematic of first electron simulation step

(a)

1− 0.5− 0 0.5 1

αcos

0

1

2

3

4

D
is

tr
ib

u
ti

o
n

 [
ar

b
. 

u
n

it
s]

  
i

 = 0.2 Ri R∆Nominal MC energy change per step ratio: 

i
 = 0.01 Ri R∆Corrected MC with decreased step length: 

 distributionαMC Cherenkov cos 

(b)

FIGURE 3.3: Dependence of cosα on the simulated minimal step length of the energy deposition.
For GEAN4 physics processes with a simulated continuous energy loss, such as Cherenkov radiation,
the maximum step length is limited by the relative change of the ratio k = ∆R/R. (a) Schematic
illustration of the electron path for the first energy deposition step. For the normal Borexino energy
step ratio k = 0.2 (blue) and the corresponding path for the corrected ratio of k = 0.01 (red), used in
the production of the CID MC. (b) The cosα distribution between the initial electron direction and the
true direction of the Cherenkov photons, for k = 0.2 (blue) and k = 0.01 (red). The cosα distribution
is incorrect, if the step length is too large. The electrons are simulated with T = 0.64MeV, with an

expected peak at cosα ≈ 0.72.

By default k = 0.2 for electrons, which is also the value used for the nominal Borexino
MC. For all purposes of the standard Borexino analysis this value is well able to reproduce the
data energy spectrum, but for the CID cosα distribution this value produces incorrect results.
This can be seen in Figure 3.3, where the left side is a schematic illustration of the very first
simulated step of electrons with a kinetic energy of T = 0.64MeV. The nominal value k = 0.2
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results always in a first step length of 0.7 mm (blue), out of a total path length of ∼ 3.6mm for
this electron energy in the LS. Then, the energy loss due to ionisation, subsequent scintillation
and Cherenkov radiation is distributed uniformly along this path, as they are simulated as
continuous energy loss processes. For the isotropic scintillation this is not of importance,
but for the directional Cherenkov radiation this imposes a single Cherenkov angle for a large
number of emitted photons. Now a smaller step ratio of k = 0.01 is shown in red in Figure 3.3,
with a path, comparable to that of k = 0.2. The smaller step-size results in a significantly
different angular distribution of the emitted Cherenkov photons, as the electron changes its
direction after each small step.

This is shown on the right side of Figure 3.3, with the cosα distribution between the initial
electron direction and the true direction of the Cherenkov photons. For T = 0.64MeV the
expected value of the Cherenkov angle is cosα ≈ 0.72, which is then smeared by the multiple
scattering change of the electron direction. For k = 0.2 (blue) this peak is split in two by the
Cherenkov photons of the first step, with a relative large simulated step size, while for k = 0.01
(red) the expected Cherenkov peak is clearly visible in the MC. Smaller values of k < 0.01
produce the same results as k = 0.01, which is therefore selected as the maximum step length
ratio for the CID MC. This step length does not change the total number of scintillation or
Cherenkov hits produced.

3.2.2 Cherenkov and scintillation photons

Ultimately the analyses of the CID cosα distribution provides a number of detected signal
Cherenkov hits, correlated to the solar position, for a given number of selected data events.
In order to then infer the number of solar neutrino events from the cosα distribution, it is
necessary to have the correct ratio of detectable Cherenkov hits per neutrino event in the
MC model In G4BX2 the average number of Cherenkov photons N for electron events per
path-length dx and wavelength dλ is calculated according to the Frank-Tamm equation [14,
105]:

d2N
dxdλ

=
2πα

λ 2

(
1− 1

n(λ )2β 2

)
(3.5)

Here α is the fine-structure constant, n(λ ) is the wavelength depended refractive index of
the LS and β is the electron velocity over c. From this, the number of simulated photons is
calculated from a Poisson distribution with a mean proportional to the simulated step length
dx, following the λ−2 and n(λ )−2 dependencies.

Figure 3.4 shows the refractive index implemented in G4BX2 in black. The corresponding
wavelength distribution of the simulated Cherenkov photons is shown in red for electrons
with T = 0.64 (β = 0.896). Most Cherenkov photons are below 300 nm, as is expected
from N ∼ λ−2. Around ∼ 170nm the simulated energy is too small to produce Cherenkov
photons for the given refractive index, as the condition of β > n(λ )−1 is not fulfilled. On the
right side of Figure 3.4 the emission profile of the LS is shown in blue and the attenuation
length of the LS is shown in black, in a logarithmic scale. In the MC, photons below
310 nm are immediately absorbed, while above 310 nm the physics processes associated to the
attenuation (e.g. absorption, Rayleigh scattering) are taken fully into account for the different
LS constituents (PC, PPO). If a photon is absorbed in the LS it has a 82% probability to be
re-emitted with a wavelength following the PPO scintillation emission profile.

The PMTs are sensitive between about 290 nm to 550 nm, but the LS absorption effectively
limits the wavelength of detected photons to λ > 370nm. The Cherenkov photons contribute
about ∼ 5% to the total light-yield, but most of this contribution is absorbed and re-emitted
as isotropic scintillation light, following the emission and time profile of the LS. The direct
Cherenkov hits, which are detected without being absorbed and re-emitted, and are thus
able to provide the directional information, make up only < 0.5% of all hits in Borexino.
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FIGURE 3.4: (a) Refractive index (black) used in the Borexino MC and the corresponding wavelength
distribution of the simulated Cherenkov photons (red) at time of production, before absorption. (b)
Attenuation length used in the MC (black), in a logarithmic scale. In the simulation photons with a
wavelength below 310 nm are absorbed immediately. For comparison the scintillation emission profile

of the LS (blue) is also shown before absorption.

Throughout this thesis the term "Cherenkov hits" is therefore used explicitly for photons that
have been produced in the Cherenkov process but have not been absorbed in the LS, while the
term "scintillation hits" now includes both the initial scintillation photons, as well as those
Cherenkov photons that are absorbed and re-emitted by the LS.

The number of emitted scintillation photons and their time distribution depend on the
molecular interactions between solvent (PC) and the wavelength shifter (PPO), as well as the
energy loss processes of the charged particles in the LS. In G4BX2 the number of emitted
scintillation photons is modeled with the Birks formula [105, 103], an empirical description
of the light-yield Y ph

p of a particle p that deposits the energy E in the LS over a path-length dx,
with a stopping power dE/dx:

Y ph
p = Y ph

0 Qp(E)E

Qp(E) =
1
E

∫ E

0

dE
1+ kBdE/dx

(3.6)

Here Qp(E) is the particle specific quenching factor, which is material dependent through the
Birks factor kB and the stopping power dE/dx. This Qp(E) describes the ionisation quenching,
which introduces an intrinsic non-linearity between the deposited energy E and the number of
emitted scintillation photons. Both the primary scintillation yield Y ph

0 and kB are empirical
parameters that have to be determined for every particular scintillator. In G4BX2 these values
are set to Y ph

0 = 11700photons/MeV and kB = 0.0109cm/MeV for electron events.
The left of Figure 3.5 shows the wavelength distribution for Cherenkov light (red) and

scintillation (blue), as detected by the PMTs in the MC. This includes the effects of absorption
and re-emission, as well as the quantum efficiencies (QE) of the PMTs. For comparison, the
Cherenkov distribution is scaled to the scintillation, but it has its own y-axis. The right side
of Figure 3.5 shows the time-of-flight corrected PMT hit time distribution for Cherenkov
light (red) and scintillation (blue). In the MC Cherenkov photons are emitted instantly, while
the scintillation follows a multi-exponential decay, with a fastest decay time of 3.7 ns (see
Table VI in [105]). The detected PMT hit times are further delayed and smeared through
absorption and re-emission, scattering in the LS and on the detector materials, the PMT transit
time spread, electronic signal readout and the event reconstruction. The simulated PMT
hits in Figure 3.5 are from 7Be-ν events, where the recoil electrons are selected close to the
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FIGURE 3.5: (a) Borexino MC wavelength spectra for Cherenkov light and scintillation as detected by
the PMTs, including the effects of absorption and re-emission. (b) MC distributions of the hit times
corrected with their time-of-flight, for solar 7Be-ν recoil electrons from Chapter 6. The left y-axis
shows the scintillation (blue), where the area is normalised to 1 and the right y-axis corresponds to
Cherenkov light (red), normalised to the number of Cherenkov hits relative to scintillation (< 0.4%).
The scintillation includes those Cherenkov photons that have been absorbed and re-emitted by the LS.

Compton-like edge (T ≈ 0.6MeV), following the data selection from Chapter 6. The ∼34 ns
offset corresponds to the time-of-flight of photons emitted in the detector centre and the
detected Cherenkov hits are mostly distributed in the peak around this hit time. In comparison,
the scintillation hits are distributed much more broadly and are detected, on average, much
later. However, scintillation hits are ∼ 250 times more abundant and as such Cherenkov hits
are sub-dominant even at early times.

The following conclusions can be drawn from these plots: It is necessary to perform some
sort of time-cut to improve the Cherenkov to scintillation hit ratio, as otherwise the Cherenkov
signal would be lost in the statistical noise of the scintillation hits. Since such a time-cut
must be applied to both the data and the MC, it can introduce a systematic uncertainty if the
hit-time distribution of the data differs from the hit-time distribution of the MC. The refractive
index implemented in the MC is taken from a fit on a laboratory measurement with finite
statistics and possible systematic uncertainties. This means that the MC refractive index can
be systematically different than the real refractive index in data. Likewise, the wavelength
distribution of the detected PMT hits can be different in the MC and the data, as it has never
been measured in-situ. As such, the effective group velocities for photon propagation can
be different in the data and the MC, introducing a difference in the detected PMT hit time
distributions. All previous Borexino calibrations are explicitly performed in the context of the
spectral analysis, where the focus is to optimise the accuracy of the energy scale between the
MC simulation and the data. The total light-yield and the scintillation parameters are provided
by laboratory measurements, as well as the tuning of the MC with radioactive calibration
sources [105, 85]. Additionally, the intrinsic background events (11C, 210Po, cosmogenic
neutrons) are used for a continuous calibration of the PMT quantum efficiencies, and to
measure the agreement of the energy scales between the data and the MC over time. This
results in a systematic uncertainty on the energy response of 0.34% [139].

In contrast, the calibration of the MC hit time behaviour has been performed with less
effort, where the scintillation decay times are tuned to give a general agreement between the
data and the MC hit time histograms, without a specific focus on early times. For the spectral
analysis the hit time distribution is of secondary importance, as its most important use is
the position reconstruction algorithm used for the definition of the fiducial volume (FV) and
for the α/β -particle discrimination. Both these use cases are evaluated quantitatively under
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the conditions of the tuned MC scintillation parameters and are considered good enough, i.e.
with sufficiently small systematic differences between the data and the MC. This effectively
bypasses an in-depth analysis of the PMT hit time differences between the data and the
MC, because the impact such differences would have on the relevant algorithms is measured
explicitly. Moreover, the Cherenkov hit time behaviour has not been investigated at all for the
Borexino LS. This is negligible for the spectral analysis, but it now necessitates a CID specific
calibration, to investigate and minimise possible systematic differences in the PMT hit time
behaviour between the MC and data, especially at early hit times. The first step for this task is
explained in Section 3.3, introducing time like variable "Nth-Hit".

3.2.3 Implementation of the solar direction

The last property missing in G4BX2 for the production of the CID model is the implementation
of the solar direction. For this it is important to correctly reproduce the CID hit morphology
of the data. Borexino started data taking in May 2007 with 20721 live PMTs and it ended
data taking in October 2021 with 1130 live PMTs [140], where 942 PMTs have died during
the Detector live time 2. The MC simulation is performed with the knowledge of the live
PMT distribution on a run-by-run basis. For individual runs some live PMTs can also have
been turned off due to some misbehaving characteristics, such as too much dark noise. This
means that the underlying, possible PMT hit morphology can look drastically different for
different events, given the corresponding position of the Sun at the time of the event trigger.
For example, if the Sun is positioned at the north-east, but the south-west region of the detector
has no live PMTs, then no neutrino signal Cherenkov hits can be detected and here the possible
hit morphology would be such, that signal and background cosα distributions would look
the same. As a data taking run is about six hours long, even events with the same live PMT
distribution can have a vastly different underlying, possible cosα distribution, because the
Sun can be situated at significantly different positions for different events.

For this reason the production of the CID MC is performed on a data event-by-event basis.
Given a data event and its corresponding solar direction (ϕ , cosθ ) a number of 200 MC events
are simulated using the same live PMT distribution as this data event. For each data event the
neutrino signal is simulated with the initial solar direction (ϕ , cosθ ) and the recoil-electron is
scattered with the angle given by Equation 3.1, according to the sampled, transferred kinetic
energy T . Then, the background MC is also produced for each selected data event, where
now the initial direction of the corresponding background particle is sampled isotropically.
Both MC signal and background events are simulated within a sphere of 15 cm around the
reconstructed position of the associated data event. The data is selected according to a fiducial
volume cut and within an energy region of interest and finally the MC events are then also
selected according to the same cuts. Thus, for a given data event the MC production of the
cosα distributions takes fully into account the live PMT distribution.

The question now is if this procedure introduces a systematic uncertainty. Ideally the
number of MC events per data event should be infinite to correctly produce the possible,
underlying PMT hit morphology, but due to computation time constraints only 200 MC events
are produced per data event. There could be a dependence of the MC cosα distribution on the
simulated position, due to the geometric acceptance of the PMTs; closer PMTs have a higher
chance to get hit than PMT further away from the event position. Lastly, the neutrino signal
is uniformly distributed, while the data background can be non-uniformly distributed within
the fiducial volume. The MC production cannot take this into account easily, as each data
event is used for the production of both MC signal and background. All these things could

1In total 2212 PMTs have been installed, while some PMTs were already inactive at the start of the data taking.
2It is interesting to note that PMTs with lower QE die faster. The same properties that give a PMT a high QE

also seem to give it a longer live time. Consequently, the average PMT QE increases over time [141].
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add systematic differences between the CID data and the MC model, potentially introducing a
systematic uncertainty in the MC cosα distributions. This is explored in Chapter 6, where
the proof of the CID principle is provided and it is found that none of the aforementioned
problems contribute a systematic uncertainty. The CID MC model, as will be shown later, is
well able to reproduce the CID data cosα distribution.

3.3 The Nth-Hit time like variable

Each event has a reconstructed event position~rev, an associated reconstructed event time tev
and a number of PMT hits. These PMT hits have a hit time traw

hit each, normalised to 0 ns
for the earliest detected PMT hit, and the associated PMT has a position ~rPMT. Then the
time-of-flight (ToF) corrected hit time tToF

hit is calculated using the effective refractive index
neff

g and the distance dhit between the event position and the hit PMT:

dhit =|~rev−~rPMT |

tToF
hit = traw

hit + tev−
neff

g

c
·dhit

(3.7)

This refractive index neff
g describes the effective group velocity veff

g = c/neff
g of the detected

photon hits, which represents the average velocity of the detected photon hits in the LS. The
reconstructed event time tev is an estimation of the time difference from the first detected PMT
hit relative to the start time of the event energy deposition, plus an arbitrary time offset of
∼34 ns that corresponds to the ToF from photons emitted in the detector centre. This value is
the same constant for all events and positions. Thus, the ToF corrected PMT hit times tToF

hit
correspond to a reconstruction of the photon emission time for a start time of the event energy
deposition at 0 ns, normalised to the detector centre position. The tToF

hit is the fundamental
parameter on which a time sorting, or a time cut of some sort can be applied. This is necessary
to improve the Cherenkov over scintillation hit ratio, as Cherenkov photons on average are
emitted at earlier times relative to the scintillation.

For the CID application in Borexino the time like Nth-Hit variable is used instead of the
absolute hit time in units of nanoseconds. The Nth-Hit is defined by the sorted time position of
the ToF corrected PMT hits of each individual event. Every event has a number of PMT hits,
with an associated tToF

hit (Equation 3.7) and cosα (Equation 3.3). The tToF
hit with the smallest

value is the first Nth-Hit (or just first hit), the next is the second Nth-Hit (second hit) and so on.
Integrating over all selected events results in a cosα histogram for each Nth-Hit of all events.
The first hits of the events should then have the largest Cherenkov / scintillation hit ratio and
each subsequent Nth-Hit cosα histogram should have a smaller Cherenkov / scintillation ratio.
The Nth-Hit variable is of fundamental importance for the CID analysis in Borexino, as it
allows for the time sorting of Cherenkov and scintillation hits, greatly improving the CID
analysis sensitivity. This time sorting could also be performed on the absolute time scale,
but the use of the Nth-Hit variable effectively reduces the number of free parameters that are
necessary to describe the potential systematic differences in the hit time distributions of the
data and the MC. The reasons for this are twofold:

1. Nth-Hit is a relative time variable, where the absolute differences in the underlying hit
time distributions between data and MC are irrelevant.

2. Every event contributes a single hit for each Nth-Hit cosα histogram, whether it is a
neutrino signal event or a background event, independent of the background type.

To illustrate and explain the impact of Nth-Hit, compared to the use of an absolute time
scale, it is sensible to look at a simplified model of the hit time distribution. This is done here
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with a toy-MC of the hit time distribution, modelled as the convolution of a Gaussian with an
exponential decay for the scintillation and as a Gaussian for the Cherenkov hits. The mean
µ describes the start time of the event plus the ToF of photons from the detector centre, the
standard deviation σ describes the detector response and τ represents the effective exponential
decay of the scintillation, including the delay from absorption and re-emission.

25 30 35 40 45 50 55 60

Hit Time [ns]

0

0.2

0.4

0.6

0.8

1

D
is

tr
ib

u
ti

o
n

 [
a
rb

. 
u

n
it

s]

Pseudo Data scintillation hits

Pseudo Data Cherenkov hits

Pseudo MC scintillation hits

Pseudo MC Cherenkov hits

(a)

30 30.5 31 31.5 32 32.5

Hit Time [ns]

0

2

4

6

S
c
in

t.
 [

%
]

 / 
C

h
e
r. Pseudo Data

Pseudo MC

1 2 3 4 5 6 7 8 9 10

NthHit

0

2

4

6

S
c
in

t.
 [

%
]

 / 
C

h
e
r.

Pseudo Data

Pseudo MC

(b)

FIGURE 3.6: The impact of the Nth-Hit variable on the time dependent Cherenkov / scintillation
hit ratio, illustrated with a toy-MC model. (a) Hit time distributions of pseudo-data (solid lines)
and pseudo-MC (dotted lines) for Cherenkov hits (red) and scintillation hits (blue). Cherenkov hits
are modeled as a Gaussian (µ , σ ), scintillation hits are modeled as an exponentially (τ) modified
Gaussian. Pseudo-data and pseudo-MC are different only in their Gaussian mean value µdata = 34.0ns,
µMC = 34.5ns. The injected ratios of Cherenkov / scintillation hits is 0.4% for the full scintillation
time profile. (b) Using the hit time distribution from (a) 10k toy-MC events are sampled with 500 hit
times each. At the top, the pseudo-data is used to define time bins, such that each bin includes exactly
10k hits and the Cherenkov / scintillation hit ratio is plotted for pseudo-data (black) and pseudo-MC
(red). The ratios are significantly different between pseudo-data and pseudo-MC, where pseudo-MC
has lower values due to the constant time offset. At the bottom the Cherenkov / scintillation hit ratio is

plotted for the time relative Nth-Hit variable, where pseudo-data and pseudo-MC are in agreement

Figure 3.6(a) now shows the model neutrino signal event hit time distribution of pseudo-
data as a solid line and pseudo-MC as a dotted line, for Cherenkov hits in red and scintil-
lation hits in blue. The parameters are µdata = 34.0ns, µMC = 34.5ns, σdata = σMC = 2ns
and τdata = τMC = 15ns. These parameters model the effect of a constant offset between
the data and the MC hit time distributions. Such a difference could, for example, come
from a small difference in the group velocity (refractive index) between the data and the
MC or from a small misalignment in the PMT time calibration. The right Figure 3.6(b)
shows the Cherenkov / scintillation ratio of the toy-MC with 10k pseudo events, each with
500 hits sampled from the corresponding hit time distributions. The injected ratio of
Cherenkov / scintillation hits is 0.4% for the full scintillation time profile, two Cherenkov hits
per pseudo event. The time dependent Cherenkov / scintillation ratio is shown in black for
the pseudo-data and in red for the pseudo-MC. At the top, the hit time distribution is plotted
as a histogram with equi-statistic bins, where each data bin includes exactly 10k hits and
the same bin borders are used for the pseudo-MC. The first bin begins at 0 ns but is shown
to start at 29 ns for illustration purposes. It can be seen that such a binning, effectively a
time-cut, improves the Cherenkov / scintillation ratio drastically from 0.4% up to 7% for
first time bin. Nonetheless, the scintillation hits are still dominant even at the earliest times.
The Cherenkov / scintillation ratio for each bin is different between the pseudo-data and the
pseudo-MC, because the bin width is defined by the pseudo-data from which the pseudo-MC
has a constant offset. Consequently, the application of a time-cut here would result in a
different number of Cherenkov hits per neutrino signal event between the data and the MC.
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At the bottom of Figure 3.6(b) the same plot is shown for the Nth-Hit variable. Again each
Nth-Hit bin has exactly 10k hits, as each of the 10k events contributed exactly one hit for
each Nth-Hit bin. Now the pseudo-data and the pseudo-MC have the same distribution of
the Cherenkov / scintillation hit ratio, given the simulated statistics. Thus, the use of the
time-relative Nth-Hit variable excludes systematic differences that have the form of a constant
hit time difference between the data and the MC.

Ultimately the CID method provides only information about the number of neutrino signal
Cherenkov hits, from which then the number of actual neutrino events is inferred using the
ratio of "Cherenkov hit per neutrino event". This ratio is estimated from the G4BX2 MC model
and includes systematic uncertainties. Contrary to the presented toy-MC, in reality there are
differences in all parameters µ , σ , τ between data and MC. While the Cherenkov / scintillation
hit ratio of the Nth-Hit variable is still dependent on σ , τ , its use effectively decreases the
number of systematic uncertainty sources by one. When using the Nth-Hit variable it is
sufficient to measure three parameters for the description of the systematic differences in
the hit time distribution between data and MC, to construct an adequate CID MC model:
The effective refractive indices (group velocities) of scintillation in the data and the MC
and additionally the relative group velocity correction of the Cherenkov hits in the MC.
The effective refractive indices of the scintillation are explained and measured in-situ in
Chapter 4, using α-particle calibration sources. The MC Cherenkov group velocity correction
is explained and measured in Chapter 5, using γ-calibration sources, as there are no dedicated
Cherenkov sources for Borexino.
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FIGURE 3.7: The impact of the Nth-Hit variable on the time dependent signal / background hit ratio.
(a) The toy-MC hit time distributions are modeled as exponentially modified Gaussian distributions (µ ,
σ , τ). The neutrino signal (black) and the background A (red) have µ = 34ns, σ = 2.0ns, τ = 15ns,
where their difference is that the signal has a Cherenkov / scintillation hit ratio of 0.4% and background
A has 0.8%. The background B (blue) has the Cherenkov / scintillation hit ratio of 0.4% and has a
different σ = 2.1ns. (b) Using the pseudo-data hit time distribution, made up of equal parts from the
signal, background A and background B (1:1:1) to simulate 10k events with 500 hits each. At the top,
the pseudo-data is used to define time bins, such that each bin includes exactly 10k hits. The resulting
signal / background hit ratios for background A (red) and background B (blue) are shown for each
time bin. Both background types contribute significantly more hits than the signal and they result in
significantly different ratios. At the bottom, the signal / background hit ratio is plotted for the Nth-Hit
variable, where each bin again contains 10k hits. Here both background types give ratios in agreement

with each other and in agreement with the injected signal / background event ratio

Furthermore, the Nth-Hit variable effectively reduces the number of free parameters
necessary for the fit of the CID cosα distribution, which is illustrated through a toy-MC study
in Figure 3.7. Figure 3.7(a) shows the model event hit time distributions for the neutrino
signal in black, for one background A in red and for a different background B in blue. For the
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CID it is necessary to select a large number of data events to gain enough statistical sensitivity
for a measurement. This means that data events are selected within an energy window, e.g.
at the 7Be-ν edge region or a region with a large number of CNO+pep-ν events. In this
selected energy region the average energy of the neutrino signal events can be different than
the average energy of the background events. Thus, if background events have a larger average
energy than the ν-signal events, they also produce a larger ratio of Cherenkov / scintillation
hits. This is the case at the 7Be-ν edge region for the 210Bi background, for example. Here,
this is modeled as the difference between the signal and the background A, where both have
the same hit time parameter values µ = 34ns, σ = 2.0ns, τ = 15ns, but now the signal has a
Cherenkov / scintillation hit ratio of 0.4%, while the background A has an exaggerated ratio of
0.8%. Additionally, there are different types of background in Borexino, such as the 210Bi
electrons, 210Po α-particles, 11C positrons and γ-particles. Every different background particle
has a different, underlying hit time distribution and Cherenkov to scintillation hit ratio. Thus,
the background B is modeled to represent 11C positrons also with a Cherenkov / scintillation
hit ratio of 0.4%, but with an increased σ = 2.1ns.

The goal of this toy-MC study is not to investigate the potential impact of systematic dif-
ferences, but to illustrate the effect of the intrinsic hit time differences between the background
species on the signal / background ratio. Figure 3.7(b) shows the resulting signal / background
ratios for the background A in red and the background B in blue. A number of 10k pseudo-data
events are simulated according to an equal ratio between the signal, the background A and
the background B, each with a probability of 1/3. Every pseudo-event is sampled with 500
hit times from the relevant hit time distributions. At the top, the pseudo-data is shown in
equi-statistic time bins, where each bin has exactly 10k hit entries. It can be seen that the
signal / background hit ratio is time dependent and both the background A and the background
B contribute significantly more hits then the signal, for each shown time bin. The different
backgrounds result in significantly different signal / background hit ratios, relative to each
other. This means that a fit of the cosα distribution, given a certain, absolute time-cut, would
result in a signal to total hit ratio that is different then the signal to total event ratio. Thus,
the calculation of the number of neutrino signal events would require the knowledge of the
number of background events for each different background species. In the best case this
would require another free parameter in the cosα fit, for every additional background species.
As different backgrounds have indistinguishable cosα distributions this would introduce an
even greater fit uncertainty in the CID measurement.

At the bottom of Figure 3.7(b) the same 10k pseudo-data events are used to produce
the signal / background hit ratios using the Nth-Hit variable. Each Nth-Hit bin has 10k hit
entries, and now both the background A and the background B are in agreement with each
other and both contribute the same amount of hits as the signal events. Because every event
contributes exactly one hit per Nth-Hit there is no time dependent over-selection of background
hits and each Nth-Hit has the same signal / background hit ratio which is also equal to the
signal / background event ratio. Using the Nth-Hit variable, a fit of the cosα distribution
only needs a single parameter to describe the number of neutrino events: The signal to
total event ratio, given the known number of total selected data events. The conclusion
is then, that the relative, time-like Nth-Hit is a powerful variable that minimises both the
number of free parameters in the CID cosα fit, as well as the number of possible sources of
systematic uncertainty. It provides a significant contribution to the observed robustness of
the CID analysis of the 7Be-neutrinos presented in Chapter 6, as well as the measurement of
CNO-neutrinos in Chapter 7.
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Chapter 4

Measurement of the Effective
Scintillation Group Velocity

Abstract

The total Cherenkov to scintillation ratio in Borexino is relatively small, with < 0.5% for
1 MeV electron events, which is obstructive to the Correlated and Integrated Directionality
analysis of the solar neutrinos. To improve this ratio it is possible to perform a hit time sorting
using the Nth-Hit variable and select only early hits, as Cherenkov light is emitted instantly
while the scintillation follows an exponential decay. To estimate this emission time, it is
necessary to correct the time-of-flight of the corresponding PMT hits, which requires the mea-
surement of the effective group velocity of the scintillation photons veff

g . Here, the 14C–222Rn
α-event calibration source is used to produce hit time distributions for each individual PMT
and for every source position. Fitting these hit time histograms results in a distribution of the ex-
pected arrival times µ of the earliest detectable photon hits, as a function of the known distance
d between the PMT and the source position. This distribution allows for the in-situ measure-
ment of the effective group velocity, expressed by the effective refractive index neff

g = c/veff
g .

For the data the result is neff
g (d) = (1.6867±0.0026)−d · (0.296±0.020)10−2 m−1, while

for MC it is neff
g (d) = (1.7141±0.0026)−d · (0.575±0.015)10−2 m−1. The linear distance

dependence takes into account the dispersion of the detected photons for the full length of
the scintillator volume. These results have a precision of the corresponding time-of-flight
correction that is negligible compared to the position resolution of >10 cm. The measurements
of the effective refractive indices performed in this chapter provide a good foundation for the
calibration of the Cherenkov hit time behaviour and the subsequent measurement of solar
neutrinos in the following chapters.

Cherenkov and scintillation light have fundamentally different emission time profiles,
where the Cherenkov light is emitted instantly and the scintillation follows a multi-exponential
decay profile. For this reason it is possible to apply a time sorting of the detected PMT hits
to increase the relative contribution of Cherenkov light in the CID cosα distribution. In the
CID method this is done through the Nth-Hit variable, whose calculation depends on the ToF
correction using the effective group velocity veff

g . This parameter is described by the effective
refractive index neff

g = c/veff
g , as defined in Equation 3.7. Prior to this work, the effective

refractive index in Borexino has been quoted as ndata
eff = 1.68 for data and as nMC

eff = 1.66
for MC events. These values have been determined using calibration data to optimise the
position reconstruction algorithm [105]. The exact procedure on how these values have been
determined is not explained in any Borexino publication and the values are given without
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uncertainty. Furthermore, they are explicitly linked to the position reconstruction algorithm
and depend on the particular choices made for the hit time PDF used in the likelihood fit. As
such, these values are not so much a property of the LS, but more so a property of the position
reconstruction algorithm; a different PDF would result in different optimal values of neff. The
conclusion is then that the correct effective refractive index of the LS must be measured for
the data and for the MC and its uncertainty must be estimated, as it represents a systematic
uncertainty on the production of the Nth-Hit cosα histograms. For this reason a new method
has been developed to perform an in-situ measurement of the effective group velocity, using
the 14C–222Rn source, deployed during the 2008-2009 calibration campaign [85]. As the
source has been deployed at a large number of different positions in the detector it is possible
to produce distance dependent PMT hit time distributions. Fitting these hit time distributions
for each individual PMT, allows one to plot the average arrival time of the earliest detected
photons, as a function of the distance between the PMT and the source position. The effective
refractive index neff

g can then be estimated through a polynomial fit.
This measurement is explained in some detail, because the methods developed here could

be potentially useful for future, large scale LS experiments. First, Section 4.1 explains the
event selection from the 14C–222Rn source spectrum. Then, Section 4.2 defines the effective
group velocity veff

g and the effective refractive index neff
g in the context of the CID method

and the Borexino detector. Section 4.3 explains in detail the measurement procedure and
Section 4.5 presents the results of the measurement and the systematic uncertainties. Finally
Section 4.6 concludes this chapter with a summary.

4.1 14C–222Rn calibration source event selection

During the calibration the vast majority of the calibration points have been obtained with
the compound 14C–222Rn source, as it provides α , β , and γ particles in a relatively large
energy region. The main purpose of this source has been the measurement of the position
reconstruction uncertainty, necessary for the estimation of the FV systematic, as well as the
measurement of the position dependent non-uniformity of the energy response [85, 142].
The 222Rn decay chain provides three α emitters: 222Rn, 218Po and 214Po, with energies of
5.5 MeV, 6.0 MeV and 7.4 MeV, respectively. As α particles have a large stopping power
dE/dx, they consequently have a large ionisation quenching factor, reducing the β equivalent
visible energy. In the Borexino LS this quenching factor is Q(E) = 20.3−1.3E [MeV] [143].
For the measurement of the effective scintillation group velocity these α events are of primary
interest, as they exclusively provide scintillation without a contamination of Cherenkov light.
Additionally, the total number of scintillation photons is relatively low, which is important
because it makes sure that the PMT hit time distributions are well within the single photon-
electron regime. The impact that multiple photon-electrons could have on the detected hit
time does not need to be taken into account here. The β -emitters 14C and 214Bi are not of
interest here, but they are also present in the source spectrum.

Figure 4.1(a) shows the energy distribution of the events (black) from Run 8817 and
Run 8819, for which the 14C–222Rn source is deployed close to the detector centre. The energy
estimator Nh used here is the raw number of hit PMTs, without a geometric correction and
without a normalisation to 2000 live PMTs. The true position of the source is known from
pictures taken by CCD cameras, with a precision of . 1cm [142]. Applying a cut of 0.5 m
between the reconstructed event position and the true source position drastically reduces the
contamination from non-source events, mostly from 14C. The peaks of 214Bi, 14C and 214Po
are clearly visible, while 222Rn, 218Po are not distinguishable due to the Nh statistics.

Two independent energy regions are selected for the measurement of the effective scin-
tillation group velocity: The 214Po peak and the 222Rn+218Po peak. This makes it possible
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FIGURE 4.1: (a) Distribution of the number of hit PMTs Nh for the 14C–222Rn source for Run 8817
and Run 8819, with the source deployed in the centre of the detector. In black: All detected events,
in red: Events with a reconstructed position with a 0.5m distance to the source position. (b) The Nh
distribution with the source at different positions. For a radial position of 2.42 m in blue and for 0.05 m
in red. Events are selected if the reconstructed position is within 0.5m of the source position. The
measurement of the effective group velocity is performed two times, on independent energy regions.

These are shown as the red and blue bands for the respective source positions.

to investigate a potential energy dependent systematic uncertainty. Figure 4.1(b) shows the
selected Nh region for two different source positions. In red, the source is close to the detector
centre with a position radius of R = 0.05m, while in blue the source is off-centre at R = 2.42m.
It can be seen that the 214Po and 222Rn+218Po peaks are shifted to higher Nh values for the
larger radial position. This is due to the greater geometric acceptance of the PMTs that are
now closer to the source position. The events of interest are selected for each peak within
±2σ around the mean of a Gaussian fit, shown as the red and blue bands. In total there are 151
source positions used in this analysis. The calculation of the 214Po and 222Rn+218Po selected
Nh regions has been automated, but verified by eye. Here the focus of the event selection is
to exclude a contamination of the events by 14C on the left and by 214Bi on the right, while
providing a clear separation between the 214Po and 222Rn+218Po selected Nh regions. It is not a
problem if there is some fraction of 214Po events within the Nh region of 222Rn+218Po, or vice
versa, as the they are all α emitters. For the investigation of an energy dependent systematic
uncertainty it is enough that the average event energy is different for the two selected Nh
regions. The nominal analysis is performed on the 214Po events for the data and for the MC,
while the analysis result of 222Rn+218Po is used for the estimation of the energy dependence
systematic uncertainty.

4.2 The effective group velocity

The group velocity of a photon wave packet is different than its phase velocity due to the
effect of dispersion in the medium. Given the wavelength dependent refractive index n(λ ) the
group velocity vg(λ ) can then be expressed with ng(λ ), as shown in Equation 4.1. Here ng(λ )
corresponds effectively to the function of the refractive index in the absence of dispersion:

ng(λ ) = n(λ )−λ
dn
dλ

vg(λ ) =
c

ng(λ )

(4.1)
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FIGURE 4.2: The refractive index n(λ ) of the
Borexino MC (black) in comparison to ng(λ ) (red),
which effectively describes the photon group veloc-

ity through vg(λ ) = c/ng(λ ).
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Figure 4.2 shows the comparison of the normal MC refractive index n(λ ) in black with
ng(λ ) in red. In the wavelength region where photons can be detected, between about 370 nm
to 600 nm, the refractive index varies by about ∆n = 0.05. The variation of ng(λ ) and the
group velocity is much greater at ∆ng = 0.14, due to the impact of the derivative dn/dλ . This
also means that relatively small differences in the refractive index between the data and the
MC can introduce relatively large systematic differences in the resulting group velocity and
propagation time of the photons.
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FIGURE 4.3: (a) The MC PPO emission spectrum (black) compared to the detected spectrum at the
PMTs for electron events simulated uniformly in a 3 m radius. The change between the emitted and
detected scintillation spectrum is due to the absorption by PPO, which dominates the LS attenuation
(red) below ∼390 nm. (b) The MC wavelength distribution of the detected hits for different distances d
between the true event position and the hit PMT. At d = 4.0m (red) there is a small, but significant
difference compared to d = 7.5m (yellow) if all PMT hits are considered. If only the earliest 10% of
all detected PMT hits are considered, then d = 4.0m (black) and d = 7.5m (blue) have a much larger
difference between each other. Longer distances result in more red-shifted wavelength distributions

due to PPO absorption and Rayleigh scattering.

The group velocity can be calculated for a single photon wavelength from the refractive
index. Because the PMTs detect a broad wavelength distribution of photons the effective
group velocity could then be defined as the average value of the product from the group
velocity function, weighted by the wavelength probability distribution. In the context of the
Cherenkov directionality this is more complicated, because there is a need to focus on the
detection time of early PMT hits to be able to perform a time separation between Cherenkov
light and scintillation. Figure 4.3(a) shows the PPO emission spectrum (black) as it is used by
the Borexino MC, the PPO attenuation (red) for the concentration of 1.5 g/L in the LS and the
PPO scintillation spectrum as it is detected by the PMTs (blue), after travelling through the
detector. The events are simulated in a 3 m radius spherical volume around the detector center.
The scattering length in the LS is not shown separately, but it is negligibly large compared
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to the absorption length of PPO below ∼ 390nm. The PPO emission spectrum peaks around
330 nm which is well within the region of its self absorption and consequently the detected
scintillation spectrum is shifted to higher wavelength values with a peak around 380 nm. This
means that most of the emitted scintillation photons are absorbed and re-emitted and only
photons with a wavelength > 370nm are detectable in Borexino, according to the MC.

The effect of the PPO absorption and Rayleigh scattering is illustrated in Figure 4.3(b).
Here the MC wavelength of the detected PMT hits is shown for different distances d between
the simulated event position and the hit PMT. Looking at all detected hits with d = 4.0m
(red) in comparison to d = 7.5m (yellow) shows a small, but significant red-shift for the
larger distance between their respective distributions. This is in accordance with the expected
behaviour due to PPO absorption. Looking specifically at the earliest 10% of the detected
PMT hits for the same distances d = 4.0m (black), d = 7.5m (blue) shows a much larger
difference in the their wavelength distribution. Due to the effects of Rayleigh scattering, PPO
absorption as well as the wavelength dependence of the group velocity, there is a selection bias
for the wavelength distribution of early hits. First, those photons that are produced at larger
wavelengths travel faster through the LS because they have a larger group velocity (smaller ng),
relative to photons with a smaller wavelength. Second, those photons that underwent the least
amount of scattering and no absorption and re-emission tend to be detected earlier because
they have the shortest, most direct path. Therefore, the detected wavelength distribution of
the earliest 10% of PMT hits is much broader and with a more pronounced tail to longer
wavelengths, than the wavelength distribution that includes all PMT hits. Larger distances
select PMT hits at longer wavelengths, which is more pronounced for early PMT hits, where
the impact of Rayleigh scattering becomes more important, compared to all (time independent)
PMT hits, where only the PPO absorption influences the detected scintillation spectrum.

This means that the effective scintillation group velocity of early PMT hits depends
on the refractive index of the LS, the scintillation wavelength distribution as well as the
PPO absorption length and Rayleigh scattering length in the LS. All these parameters are
implemented in the MC from laboratory measurements and have statistical uncertainties, as
well as unknown systematic uncertainties. Thus, the group velocity of early PMT hits is likely
different between the data and the MC due to the complex interplay and selection bias of these
factors. For the production of the CID Nth-Hit cosα distributions it is necessary to provide an
in-situ measurement of the effective group velocity of early hits for both the data and the MC.
This is done in the following sections using the 14C–222Rn calibration sources.

4.3 Fitting of the PMT hit time distributions

The following measurement of the effective group velocity of early PMT hits is defined by a
phenomenological formula, through the use of the effective refractive index neff

g . Let µ(d) be
the expected, average, true emission time of the earliest detectable photons for a given distance
d between the source position and the hit PMT. Consequently, the Tof of the photons is given
by the effective group velocity veff

g = c/neff
g . The ToF distribution is already smeared, for a

given distance, due to the broad distribution of the scintillation wavelength. The Gaussian
standard deviation σ describes (approximately) this ToF smearing in addition to the detector
response from the PMT transit time spread, the read-out electronics, and event reconstruction
algorithms. With this the empirical definition of the effective group velocity of early PMT hits
follows from a measurement of µ(d) = d · veff

g = d · c/neff
g .

The value of µ(d) can be estimated by fitting the measured PMT hit time thit distribution,
which is defined similarly to Equation 3.7, but here thit = traw

hit + tev explicitly excludes the
ToF correction. The multi-exponential time decay of the scintillation, as well as the effect of
absorption and re-emission is modeled effectively through a bi-exponential decay with the
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parameters τ1, τ2, and the relative contribution of each exponential decay component R. The
fit is then defined as the convolution between the Gaussian and the exponential decay:

f (t) =A R e
1
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(4.2)

Here A is the total amplitude of the function, given the statistics of the data and Aref, µref,
σref is the effective description of a possible reflection peak. The reflections can occur on the
stainless steel vessel, on the PMT cathode, and inside the PMT light collection cones. This
can introduce a non-negligible secondary peak at later times in the hit time distribution. This
relatively complex behaviour is included here, as otherwise the choice of a particular time cut
would be necessary to exclude this reflection peak, which could introduce a systematic fit bias.
Given the measured PMT hit time distribution N(thit) in form of a histogram, with a number
of I bins, the fitting is then performed with a Poissonian log-likelihood ratio test statistic λLR:

λLR =−2
I

∑
i=0

log

(
f (ti)P(ti) e− f (ti)

N(ti)!

)
(4.3)

The hit time distribution N(thit) of the data is produced for each PMT and each source
position individually. For the 1827 live PMTs during the calibration campaign this could
result in ∼ 270 k hit time histograms. In reality, most source positions do not provide enough
hit statistics for most PMTs to be fitted, resulting in a number of ∼ 54k usable histograms for
the data. Here, the minimum statistic is limited to histograms that have a peak value of at least
30 hit entries. The hit time distribution of the MC is produced in the same way as the data: For
each source position a number of 214Po events is simulated with about∼ 1.5 times the statistics
of the selected data events. The minimisation of λLR = λLR(A,µ,σ ,R,τ1,τ2,Aref,µref,σref)
is performed with the MINUIT [144] algorithm of ROOT [104]. The fit is performed once
with a binning of 1.0 ns and once with a binning of 0.5 ns for the estimation of the systematic
uncertainty from the binning selection.

The parameter of interest here is µ(d), while the other parameters give supplementary
information, that could in principle be used for a relatively precise fine-tuning of the MC.
A plot of µ(d) vs. d allows then the correct calculation of the effective reflective index of
early hits for scintillation light in Borexino, including the effects of the photon wavelength
distribution, Rayleigh scattering and the full detector response.

The fitting is done by an automated script and a sample of the results is cross-checked
by eye. The performance of the fit function from Equation 4.2 is exemplary illustrated in
Figure 4.4 for a relatively small PMT-source distance d = 3.58m. The measured hit time
distribution of PMT No. 1426 (black dots) is plotted on the left for the data and on the right
for the MC. The yellow line is the best fit function f (t), while the red bands represent the
Poissonian 68.3% and 95.5% confidence intervals. The blue line shows the position of the best
fit value of µ , with the uncertainty of the fit ∆µ =∼0.1ns. The influence of the (effective)
exponential decay times can be seen by the relative large difference between the peak of the
function and µ , which represents the average arrival time of the earliest detectable photon hits.
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FIGURE 4.4: Exemplary fit for a short PMT-source distance of 3.58 m. The hit time distribution is
shown as black dots, the best fit as a yellow line and the Poissonian confidence intervals as red bands.
The best fit for the fit parameter µ , describing the average arrival time of the earliest detectable photon

hits, is shown as a blue line. (a) 214Po data fit. (b) 214Po MC fit.

The reflection peak (Aref) is not visible here, as it is cut off; it arrives at around ∼100 ns and it
is negligibly small due to the geometric acceptance of this PMT.
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FIGURE 4.5: Exemplary fit for a large PMT-source distance. This is an extreme, but rare example
between the possible differences in the qualitative hit time distribution of data and MC. The source is
positioned directly on the line between two opposite PMTs with light collection cones, giving rise to a
very large reflection peak in MC, likely due to a slightly incorrect geometry of the light collector. The
hit time distribution is shown as black dots, the best fit as a yellow line and the Poissonian confidence
intervals as red bands. The best fit for the fit parameter µ , describing the average arrival time of the

earliest detectable photon hits, is shown as a blue line. (a) 214Po data fit. (b) 214Po MC fit.

This is different in Figure 4.5, where a particular large PMT-source distance of 8.55m
is plotted for PMT No. 1185. Again, the data is plotted on the left and the MC is plotted on
the right. For the data the reflection peak is clearly visible and the fit function is well able to
reproduce the full hit time distribution. This PMT and source position is selected to showcase
the biggest observed difference between the data and the MC in this analysis. The source here
is situated in such a way, that it lies directly on the connecting line between two PMTs, where
one PMT is close by and PMT No. 1185 is far away, and both PMTs have a light collecting
cone. For the MC the reflection peak is about ∼ 5 times larger than the primary peak. This
explicit investigation of the individual PMTs brought forth a systematic difference between
the MC and the data, where the light collecting cones of MC likely have an incorrect geometry.
Under rare circumstances the MC hit time distribution is grossly incorrect, but for most PMTs
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the hit time distributions are in qualitative agreement and such extreme differences no not
occur often. Such a behaviour is not visible in a hit time distribution that is averaged over all
PMTs, as has been done in the Borexino calibration [85], and as such its impact is negligible
for the spectral analysis. Likewise this is not of concern for the CID method, where the focus
is on early PMT hits to improve the Cherenkov to scintillation hit ratio, but it shows the
robustness of the fit function 4.2.
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FIGURE 4.6: The distribution of fit parameters for data (black) and MC (red). (left) Detector response
smearing 〈σdata〉 = 1.47ns, 〈σMC〉 = 1.60ns. (middle) Fast component of the effective exponential
decay 〈τ1, data〉= 6.8ns, 〈τ1, MC〉= 7.5ns. (right) Slow component of the effective exponential decay

〈τ1, data〉= 51.5ns, 〈τ1, MC〉= 54.6ns.

The last Figure 4.6 of this section shows the distribution of the best fit values of the σ ,
τ1, τ2 parameters. It can be seen that all parameter distributions are significantly different
between the data and the MC. Here only the difference of 〈σ〉MC−〈σ〉data = 0.13ns is of
some interest, because σ is an effective description of the detector response smearing for the
scintillation. If the underlying time distribution of scintillation hits is different between the
data and the MC, the Cherenkov to scintillation hit ratio will also be different and is therefore
in need of correction. This is done in Chapter 5. The differences of τ1, τ2 are not important for
any analysis of this thesis because they describe the time behaviour of α-particle scintillation,
which is different from the neutrino recoil electron time behaviour. Nonetheless, these plots
show that the fitting of the individual PMT hit time distributions could be potentially useful
for future large scale LS detectors, if there is a need for a very precise tuning of the MC PMT
hit time behaviour. This could be the case for hybrid detectors, which aim for event-by-event
direction reconstruction.

4.4 Polynomial fit of the scintillation effective refractive index

The next step for the measurement of the effective refractive index neff
g is a polynomial fit

of the distance dependent arrival time of the earliest emitted photons µ(d). The effective
scintillation group velocity veff

g is described by neff
g through Equation 4.1.

µ(d) =
neff

g (d)
c
·d

(
=

d
veff

g (d)

)
(4.4)

Equation 4.4 describes the measured ToF µ(d) of the earliest detectable hits as a function of
the effective refractive index neff

g . This dependence is visible in Figure 4.7, where the best fit
values of µ(d) are plotted against the known distance between the hit PMT and the source
position d. Here all PMTs are plotted for all source positions, on the left for the data and on
the right for the MC. First, it can be seen that both the data and the MC roughly follow a linear
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(a) (b)

FIGURE 4.7: Distribution of best fit µ(d) vs. d for all PMTs for the 214Po event selection. (a) For data.
(b) For MC, with the PMTs close to the vessel end-caps (| zPMT |> 6m) shown in red, the PMTs in the

main SSS door shown in blue and all other PMTs in black.

trend, as is expected from the Tof of the photons. The data has a much broader distribution
of µ(d) compared to the MC, while the MC has some discernible features. In the MC the
bulk of the PMTs is shown in black, while PMTs close to the vessel end-caps are shown
in red, where some source positions produce visible outliers that have too large values of
µ(d), compared to most other source positions. The 19 PMTs which are positioned inside
the stainless steel sphere (SSS) door of Borexino all have a systematically decreased value of
µ(d) and are shown in blue. The reason for this has been identified as a mistake in G4BX2,
where these door PMTs are simulated at a position with a radius 6.5 m, while in reality they
have a radial position of 6.9 m. The indentation and geometry of the door in the stainless steel
sphere is correctly implemented, but the "door PMTs" are incorrectly simulated with the same
radial position as all other PMTs. This mistake has not been identified before this work, but
it likely is negligible. Thus, here the blue "door PMTs" in Figure 4.7(b) have a fit value for
µ(d−0.4m) at an assumed distance of only d, which can easily be corrected.
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FIGURE 4.8: The distribution of µ(d) vs. d for the PMT No. 1878 in black and PMT No. 39 in red.
(a) For data these PMTs have a significant constant time offset between each other of ∼4.5 ns. These
two PMTs are selected to illustrate this offset behaviour and most other PMTs have a smaller but still
significant offset between each other. (b) For MC the same PMTs are well in agreement and no such

constant offset is visible.

The next Figure 4.8 illustrates the first reason for the relative broad µ(d) distribution of
the data compared to the MC. As an example, the PMT No. 39 is shown in red and the PMT
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No. 1878 is shown in black, on the left for the data and on the right for the MC. It can be seen
that the individual PMTs have qualitatively the same linear trend in both the data and the MC.
But in the data the two PMTs have a constant ∼4.5 ns offset between each other. For MC
this is not the case and both PMT µ(d) vs. d distributions are well aligned. The origin of
this constant offset is not known, but it can be seen here that it is stable in time for hundreds
of different source runs. Most PMTs in the data have such a constant offset between each
other, which is also often larger than the fit uncertainty ∆µ(d). This is the main reason for the
relative broadness of µ(d) in the data, while in the MC this offset does not exit.
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FIGURE 4.9: The distribution of µ(d) vs. d for the PMT No. 693. (a) The data (black) shows a large
spread of µ(d) for different calibration runs, even when the source is positioned at similar distances.
For the MC this effect does not exits. The PMT is selected to illustrate this behaviour and in most other
data PMTs this effect is much smaller, but non-negligible. (b) The measured hit time distributions
(without ToF correction) of the same PMT No. 693 for different calibration runs with similar distances.
Run 9575 (black) has 5637 hits, while Run 10345 (blue) has 4624 hits. The shapes of the hit time

distributions are similar to each other, but they have a clear constant offset between them.

The second reason for the relative broad data µ(d) distribution is exemplary illustrated
in Figure 4.9(a). On the left the best fit µ(d) values are plotted against d for PMT No. 693,
which is a normal PMT with a light collecting cone, that is neither in the door nor close to the
end-caps of Borexino. For data (black) the points show a large spread for different source runs,
even for comparable distances d. This spread is significantly larger then the corresponding fit
uncertainty ∆µ(d) and this behaviour is present in most data PMTs, albeit to a much smaller
extent. For MC (red) this effect does not exit and the spread of µ(d) is in agreement with
∆µ(d). The origin of this behaviour is unknown and Figure 4.9(b) on the right shows the data
hit time distribution for PMT No. 693, for a d = 5.42m in black and for a different source
run with d = 5.41m in blue. These distances are the same within the uncertainty of the CCD
camera position reconstruction, but the hit time distributions have a clear offset from each
other. It is also important to note, that the shape of these distributions, estimated by the best fit
parameters, is quantitatively the same except for the amplitude A and an offset in µ(d). The
conclusion is then that the data PMTs have a hit time misbehaviour, where different runs have
a different constant time offset between each other, but this time offset is stable within a single
run. This effect exits for most PMTs, where it is relatively small, but still larger than the fit
uncertainty ∆µ(d) for some runs. For some PMTs this effect is very large, with PMT No. 693
being the worst performing PMT. The origin of this misbehaviour could be some unknown
error in the PMT time alignment with the laser system [97, 98], but it is unclear exactly what
the problem could be.

The last Figure 4.10 concerns the µ(d) outliers that exist in both the data and the MC,
but only for PMTs close to the vessel end-caps. These PMTs typically have an absolute z
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FIGURE 4.10: The distribution of µ(d) vs. d for PMT No. 1554, which has a position of x = 0m,
y = 1.8m, z =−6.1m, close to the vessel end-cap. (a) Both the data (black) and the MC (red) show
two µ(d) outliers for the same source positions. The positions correspond to distances, for which
the direct photon path is obstructed by the end-cap structure. (b) The MC PMT hit time distribution
of PMT No. 1554 for source runs of similar distance. The calibration Run 9515 (black) with 5697
hits as an obstructed photon path, while for Run 9554 (blue) with 4276 hits it is unobstructed. The
distributions have a significantly different shape that cannot be explained by a simple constant hit time

offset.

position of | z |> 6m (cosθ > 0.9) and they number about 108 PMTs. Figure 4.10(a) on
the left shows data in black and MC in red for the same PMT No. 1554. The distribution of
µ(d) is similar between data and MC, where both exhibit two outliers for the same source
positions. The reason for these outlying µ(d) values is shown in Figure 4.10(b), where the hit
time distribution of the MC PMT No. 1554 is plotted for two runs with similar distances of
d ≈ 4.7m. The source position of Run 9515 (black) is such that the direct path between the
source and the PMT intersects the vessel end-cap structure, while the direct path for the source
position of Run 9554 (blue) is unobstructed. The hit time distribution of the unobstructed path
is qualitatively similar to most other hit time distributions, while the hit time distribution of
the obstructed path is much broader with a peak position shifted to later hit times.

This likely means that the end-caps have a shadowing effect, which only allows photon
paths to be detected when they are scattered around the end-cap structure. The conclusion is
then that these outliers can safely be excluded for the calculation of the effective refractive
index neff

g . They are not the sign of an instability in the µ(d) fit, but they are rather a geometric
hit selection bias that is correctly reproduced in the MC.

To summarise the qualitative differences and similarities between the data and the MC
best fit µ(d) distributions:

• µ(d) has a low order polynomial dependence on d for both the data and the MC.

• For the data the hit time distributions are offset by a constant time between the PMTs.

• For the data the PMTs have a different constant time offset of the hit time distribution
for different runs. For some PMTs this results in a large spread of µ(d).

• The data and the MC have some outliers in µ(d) for PMTs close to the end-caps due to
the shadowing effect of the vessel end-cap structure for some source positions.

Thus, the effective refractive index neff
g of the earliest detectable scintillation hits can be

estimated with a polynomial χ2 fit of the µ(d) vs. d distributions:

neff
g (d) = p1 + p2 ·d (4.5)
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χ
2
i (p1, p2,Ci) = ∑

j

(
µ(d j)−Ci−neff

g ·d j/c
Si ·∆µ(d j)

)2

χ
2(p1, p2,C1, ...,C1827) =

1827

∑
PMT i

χ
2
i (p1, p2,Ci)

χ
2(p1, p2) = argmin

C1,...,C1827

[
χ

2(p1, p2,C1, ...,C1827)
]

(4.6)

Due to the wavelength selection bias of early PMT hits there could be a complex distance
dependence on their effective refractive index. For the purpose of the ToF correction it is
enough to perform a phenomenological Taylor approximation that is well able to describe the
measured µ(d) vs. d distribution, given the statistics. Here neff

g (d) is estimated as a constant
as well as a linear function of d and it is found that the constant approximation is insufficient,
while the linear function is fully sufficient to explain the µ(d) distribution. Please note
that the terms constant and linear are used here for the number of parameters in the neff

g (d)
function. It is not a description of the µ(d) vs. d distribution, which additionally includes
Ci. These parameters C1, ...,C1827 are the constant time offset values for each individual
PMT to accommodate the discovered systematic offsets between the data PMTs. The factors
S1, ...,S1827 are used to increase the fit uncertainty ∆µ(d) to include the systematic spread
of µ(d) for different runs, as seen in Figure 4.9. These two consideration of the systematic
differences between the individual PMT allows the correct estimation of the effective refractive
index for the scintillation. Additionally, the source positions that produce the µ(d) outliers of
the PMTs close to the vessel edge are not included in the fit. The MC is fitted in the same way
and with the same PMT and source position selection as the data.

4.5 Fit results
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FIGURE 4.11: (a) Ascending values of the individual χ2
i /ndfi values for the 1827 fitted PMT µ(d) vs. d

distributions. Here ndf is the number of source positions used for each individual PMT minus one. The
data (black) has consistently larger values than MC (red) and some outliers of up to χ2

i /ndfi = 278.2
(b) The distribution of the same χ2

i /ndfi values for the data (black) and the MC (red).

The first step to perform the fit is to deselect those PMTs, which have the worst systematic
µ(d) spread from run to run, such as PMT No. 693 in Figure 4.9. In total there have been
1827 live PMTs available during the calibration campaign, but here 10 PMTs are deselected
to avoid a possible systematic shift of the best fit neff

g (d) parameters. The deselection process
is illustrated in Figure 4.11(a), where the χ2

i /ndfi value of each individual PMT is plotted, in
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ascending order. For the data (black) the χ2
i /ndfi values are always larger than the χ2

i /ndfi

values of the MC (red) and the largest data χ2
i /ndfi values show the impact of the run-by-

run spread of µ(d). The 10 worst performing data PMTs are deselected and their µ(d) vs.
d plots can be found in the Appendix A.1. Figure 4.11(b) shows the χ2

i /ndfi distribution
of the individual, selected PMTs for the data in black and the MC in red. It can be seen
that the data χ2

i /ndfi is much broader distributed than the MC and with a skew. This is
the effect of the systematically different run-by-run hit time offset of the individual data
PMTs. The fit uncertainty ∆µ(d) itself is not necessarily perfect, as it results in a mean
value of 〈χ2

i /ndfi〉= 1.3 for MC, while ∆µ(d) is too small for the data with a mean value of
〈χ2

i /ndfi〉= 1.9.
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FIGURE 4.12: Distribution of residuals before (black) and after scaling (blue) of the uncertainties
∆µ(d) in the denominator. (a) For the data the standard deviation changes from 1.4∆µ(d) to 1.0∆µ(d).
This value is large without the scaling because of the systematic run-by-run spread of µ(d), which is
needs to be accounted for in the uncertainty. (b) For the MC the change is less severe from 1.1∆µ(d)

to 1.0∆µ(d), as there no such systematic misbehaviour exists.

The run-by-run spread of µ(d) needs to be taken into account, which is done here through
the scaling factor Si, individually for each PMT. Every PMT has a corresponding number
of fitted µ(d) values and a resulting χ2

i value. The value of Si is selected for each fitting
value, during the minimisation process, such that χ2

i /ndfi = 1 for every individual PMT. This
rescaling increases the fit uncertainty, to take into account the systematic uncertainty from
the change of the hit time offset for each run of a given PMT. The effects of the rescaling are
shown in Figure 4.12 for the data on the left and the MC on the right. The distribution of all
residuals (µ(d j)−Ci−neff

g (d j) ·d j/c)/∆µ(d j) is shown in black, while the distribution of the
rescaled residuals (µ(d j)−Ci−neff

g (d j) ·d j/c)/(Si ·∆µ(d j)) is shown in blue. Without the
rescaling the residuals have a standard deviation of 1.4 for the data and 1.1 for the MC and with
the rescaling these values are by definition 1.0. Using this method results in a conservative
estimation of the uncertainty ∆neff

g . The χ2
i /ndfi values and residual standard deviations of the

PMTs can be > 1.0 due to simple statistical fluctuations, but here the rescaling assumes that
these values are > 1.0 only due to the unaccounted systematic spread of µ(d) for different
runs. This means that the values of Si > 1.0 are underscaling the summed χ2 value of all
PMTs, as it is forced to take a value that is smaller than expected from the given statistics.
This results in an overestimation of the uncertainty ∆neff

g , as it is given by the ∆χ2 = ±1,
corresponding to the 68.3% (1σ ) CI.

The next step is to decide the degree of the polynomial neff
g (d) function. Due to the

introduction of the scaling factor Si it is not helpful to look at the absolute values of χ2 for
different neff

g models, as they are set to the same χ2 value by definition of the Si factors.
A hypothesis test for the number of polynomial parameters is not possible and instead it
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FIGURE 4.13: The distance dependence of the residuals, including the scaling of the uncertainty
Si ·∆µ(d). Here the residual values are averaged in bins of ten residuals, to make an incorrect fit model
more visible. For data on the left (a) and for MC on the right (b). On the top, the constant fit of neff

g = p1

shows clearly a non-flat distance dependence of the residuals. The linear fit neff
g (d) = p1 + p2 ·d at the

bottom has a much flatter distribution and no clear distance dependence is visible. Please note that the
residual values are relatively small due to the averaging and to a smaller extent due to the application

of the uncertainty up-scaling with Si.

is necessary to look at the actual distance distribution of the residuals. This is shown in
Figure 4.13 for the data on the left and the MC on the right. The ten residuals that are closest
to each other are averaged to make deviations from zero more visible. On the top, the averaged
residual distribution is given for the constant fit of neff

g = p1, while the bottom shows the
averaged residual distribution for a linear fit of neff

g (d) = p1+ p2 ·d. It can be seen for both the
data and the MC that a constant neff

g function is not well able to describe the measured µ(d)
vs. d distribution. The average residual distributions have the shape of a negative parabola,
which is much more pronounced in the MC. The residual values are significantly smaller than
1.0 due to the averaging of ten residuals and the error bars correspond to the uncertainty of the
average. Using the linear neff

g (d) function shows a much flatter residuals distribution. This
does not necessarily mean that the true, underlying neff

g (d) function is fully described by a
linear function. Here neff

g (d) only needs to approximate the true behaviour well enough, such
that the systematic differences in the ToF correction between the true group velocity and its
linear approximation are negligible, compared to the other uncertainties on the PMT hit time
distribution of the earliest detectable hits.

Figure 4.14 shows the ∆χ2(p1, p2) distribution in units of the Gaussian equivalent σ

(1σ = 68.3%, 2σ = 95.5%, 1σ = 99.7%). The data is shown on the left and the MC is shown
on the right. The profile is produced through a scan of the two dimensional parameter space,
where for each selection of (p1, p2) the PMT constants (C1, ..., C1827) are treated as nuisance
parameters, see Equation 4.6. Thus, the absolute χ2 value is calculated with Ci values such that
χ2 is minimal for the selected values of (p1, p2). The two dimensional confidence intervals
are then calculated from the ∆χ2 profile with two degrees of freedom. It can be seen that the
parameters p1, p2 are anti correlated in the fit and the quoted uncertainties ∆p1 and ∆p2 take
this into account. The best fit results of the effective refractive index neff

g = p1 + p2 ·d are:

• For the data: p1 = 1.6867±0.0023, p2 = (−0.296±0.018)10−2m−1

• For the MC: p1 = 1.7141±0.0015, p2 = (−0.575±0.012)10−2m−1

The results of the data and the MC are significantly different between each other, with
relatively small statistical uncertainties of ∆neff

g /neff
g < 0.2% for distances up to 9 m. The
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FIGURE 4.14: The best fit results for the linear model of the effective refractive index neff
g (d). They are

shown as a two-dimensional ∆χ2 profile, in units of the two dimensional Gaussian standard deviation
σ . The parameters p1 and p2 are strongly anti-correlated in the fit. (a) For the data the fit values are
p1 = 1.6867, p2 =−0.00296m−1. (b) For the MC the fit values are p1 = 1.7141, p2 =−0.00575m−1.

quoted uncertainty of the data is bigger than that of the MC due to the systematic run-by-run
spread of µ(d), accommodated through Si. The negative slope p2 results in a lower effective
refractive index and consequently in a faster effective group velocity for larger distances.
This behaviour is qualitatively in agreement with the expectations from Figure 4.3, where the
wavelength distribution of photons with a larger distance d is selected from longer wavelengths
due scattering. Longer wavelengths correspond to a larger group velocity (smaller refractive
index). The constant model of neff

g = p1 results in values of neff
g = 1.6631±0.0002 for data

and neff
g = 1.6531±0.0001 for MC.

4.5.1 Final results with systematic uncertainties

It follows the estimation of the systematic uncertainties for the neff
g (d) analysis. First is

the effect of the scaling factors Si: The PMTs in MC do not (and can not) exhibit the
systematic run-by-run spread of µ(d). Thus, the incorrect application of Si on MC can be
used to estimate the potential systematic uncertainty from the use of the scaling factors.
The uncertainty values are estimated from the absolute difference of the MC best fit results
with and without Si, resulting in systematic uncertainties of ∆p1(scaling) = ±0.0008 and
∆p2(scaling)=±0.007×10−2 m−1. The application of Si on the data is a conservative method
for the inclusion of the systematic µ(d) spread in the total uncertainty budget of ∆µ(d). The
systematic uncertainty from Si in the data is then estimated to be the same as for the MC.

Next is the selection of the PMT hit time binning. The nominal bin width used for the
analyses is 1 ns, where the hit time histograms are fitted for µ(d), only when the peak of the
distribution has more than 30 entries. Applying a bin width of 0.5 ns, with a requirement of
the histogram peak to have at least 15 entries. This results in a slightly different selection
of PMTs and source positions. Additionally, there could be small scale structures in the
PMT hit time distribution that could influence the µ(d) fitting procedure. Thus, the smaller
bin width selection can be used to estimate the potential systematic uncertainty from these
two sources. For the data this results in an absolute difference of the best fit values of
∆p1(binning) =±0.0001 and ∆p2(binning) =±0.003×10−2 m−1.

The last point is the systematic uncertainty from the energy selection of the events. For the
measurement of neff

g it is important to be in the single photo-electron regime for all distances,
as otherwise there could be a potential distance dependence on the best fit µ(d), coming
from the impact of multiple photon hits on a single PMTs. The best fit value of µ(d) would
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shift to earlier times for multiple photon hits because only the time of the first detected
photo-electron is registered. For the selected 214Po events with less than ∼ 400 hits over
∼ 1800 PMTs this is likely already the case, but the selected 222Rn+218Po events have about
1.7 times less hits on average. At the same time there are more 222Rn+218Po events, such
that the total PMT hit number is larger than for the 214Po events. This results in a slightly
different selection of PMTs which pass the minimal statistics condition at different source
positions. The 222Rn+218Po events are only analysed in the data with the best fit results
of p1(

222Rn+218 Po) = 1.6859± 0.0014, p2(
222Rn+218 Po) = (−0.292±0.011)10−2m−1.

Again the absolute differences between the results with the 214Po events and the 222Rn+218Po
events are used as an estimation of the potential energy depended systematic uncertainty. They
follow as ∆p1(energy) =±0.0008 and ∆p2(energy) =±0.004×10−2 m−1

All these potential systematic uncertainties are estimated maximally conservative, where
the absolute difference between the different neff

g (d) results is used. It is possible that the
analysis results are different from each other, mostly due to simple statistical fluctuations,
but at the same time this method of estimation is very simple. The final values of the
neff

g (d) = p1 + p2 ·d measurement are given in the following, under the assumption that the
systematic uncertainties are uncorrelated:

• For the data: p1 = 1.6867±0.0023(stat.)±0.0012(syst.)

p2 = (−0.296±0.018(stat.)±0.009(syst.))10−2 m−1

• For the MC: p1 = 1.7141±0.0015(stat.)±0.0012(syst.)

p2 = (−0.575±0.012(stat.)±0.009(syst.))10−2 m−1

4.5.2 Validation of the MC result

The question now is how well this analysis procedure is able to measure the true, underlying
value of interest, which is the effective group velocity of the earliest detectable PMT hits of
the scintillation. This velocity is necessary to perform a ToF correction on the PMT hits, such
that the Nth-Hit time like variable can be used to improve the Cherenkov to scintillation ratio
for the CID analysis.

What are these "earliest detectable PMT hits"? They are those hits that are emitted
almost instantly by the LS, do not undergo absorption and re-emission and are only minimally
scattered in the detector. Using the G4BX2 simulation it is possible to produce the hit time
distribution for exactly these scintillation hits of interest. For this purpose the re-emission
probability is set to zero in G4BX2 and likewise the scintillation emission decay times are also
set to zero, i.e. an instantaneous photon emission. Additionally, the production of Cherenkov
photons is turned off. The absorption and scattering inside the LS is kept on because those are
necessary to select the same, distance dependent photon wavelength distribution as for the full
MC neff

g (d) analysis.

FIGURE 4.15: Validation of the neff
g measurement

for the MC. Here the simulation is modified, such
that the scintillation photons are emitted instanta-
neous, and without re-emission after absorption in
the LS. This results in the MC true hit time distribu-
tion, without the PMT transit time spread and event
reconstruction uncertainties. The peaks of the hit
time distributions for different distances correspond

to the Tof of the earliest detectable photons.
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Figure 4.15 shows the distribution of the MC true PMT hit times of the scintillation
photons, for different distances between the event position and the hit PMT. First, the electron
events are simulated at a position of x = 3.5m and the four closest PMTs are selected to
produce the black distribution, corresponding to d = 3.0m. The red distribution is for electron
events in the centre and all PMTs with light collecting cones are selected, except the door
PMTs, for a distance of d = 6.5m. The blue distribution is for electrons simulated at x = 2.5m,
but now the opposite four PMTs are selected, which are furthest away from the event position
with a distance of d = 9.0m. All distributions have a distinct peak with a tail at later times. This
peak then corresponds to those scintillation hits, that are emitted instantly in the scintillation
process and do not undergo absorption and re-emission. The spread of the peaks comes
from the wavelength dependence of the group velocity for the different photons, given the
scintillation spectrum. The tails of the hit time distributions correspond to photons that are
affected by Rayleigh scattering, multiple scattering or by reflection on some surface.

The peaks are fitted with a Gaussian, while safely excluding the tail region. This re-
sults in the expected ToF values for the "earliest detectable PMT hits" as µtrue(3.0m) =
(16.971±0.009)ns, µtrue(6.5m) = (36.335±0.009)ns, µtrue(9.0m) = (49.880±0.009)ns.
The expected ToF values µfit are calculated according to Equation 4.4 with neff

g .

d = 3.0m d = 6.5m d = 9.0m

µtrue (16.971±0.009)ns (36.287±0.009)ns (49.880±0.009)ns

µfit (16.969±0.020)ns (36.329±0.047)ns (49.871±0.071)ns

(µtrue−µfit)√
∆µ2

true +∆µ2
fit

−0.12 0.88 −0.14

TABLE 4.1: Validation of MC effective refractive index neff
g (d).

Table 4.1 compares the ToF from the modified MC simulation µtrue with the expected
values µfit according to the neff

g (d) measurement. The absolute difference between the ToF
MC truth and fit values is smaller than 0.05 ns and the results are well in agreement within
their (conservative) uncertainties. The ToF uncertainties ∆µfit of the fit are negligibly small,
compared to the fitted standard deviation of the early hit times with σ = 1.6ns, which includes
the transit time spread of the PMT and the event reconstruction (see Figure 4.6). It can be
concluded that the neff

g (d) fitting procedure, using the 14C–222Rn calibration source, is well
able to describe the effective group velocity of the earliest detectable PMT hits. As this is
certainly the case in the MC it is then reasonable to assume that it is also true for the data. The
linear neff

g (d) model is sufficient for a phenomenological description of the effective group
velocity and is thus used in the following CID-analyses of the solar neutrinos.

4.5.3 Effect of the PMT time constants on the position reconstruction.

The analysis of the individual PMT hit times is used mainly for the measurement of the
effective refractive index, by fitting the best fit µ(d) vs. d distributions of the individual
PMTs. As previously stated this analysis approach makes it in principle possible to perform
a very precise fine tuning of the MC to reproduce the data results. Here an additional use-
case of the fitting procedure is explored through the potential improvement of the position
reconstruction algorithm. In the Borexino calibration campaign it has been noticed, that the
position reconstruction of the data exhibits a position dependent systematic shift in -Z of up to
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∼ 4cm and this shift is maximal in the centre of the detector, see Figure 22 in [85]. The origin
of this systematic shift has never been found out but its impact negligible for the spectral fit.
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FIGURE 4.16: (a) The distribution of the best fit constant hit time offsets Ci of the individual PMTs for
the data (black) and the MC (red, blue). The data has a much larger distribution than the MC, while
in the MC a substructure is visible for PMTs with (red) and without (blue) the light collecting cones.
(b) The corresponding fit uncertainty ∆Ci distribution. The data has larger uncertainties due to the

increased uncertainty ∆µ(d).

Figure 4.16(a) on the left shows the distribution of the best fit PMT constants Ci, relative
to their average value. For the data (black) the bulk of the distribution is concentrated in
a Gaussian, with a standard deviation of ∼ 0.3ns, while there are some outliers of up to
±3ns. The MC is shown in red for PMTs with a light collecting cone and in blue for PMTs
without one. The reflection within the light collecting cones results in a small hit time offset
of ∼ 0.2ns relative to the PMTs without cones. Additionally, again the incorrect simulation
of the door PMTs is visible around −2 ns. Figure 4.16(b) on the right shows the distribution
of the corresponding fit uncertainties of the PMT constants ∆Ci, for the data in black and the
MC in red. The data has a higher uncertainty, mostly due to the impact of the systematic
run-by-run spread of µ(d).

40− 30− 20− 10− 0 10 20 30 40 50 60

X [cm]∆

0

200

400

600

800

1000

E
v

e
n

ts
 /

 c
m

 0.07 cm± = 0.66 µ
Normal Position Reco.

 0.07 cm± = 0.55 µ
Remove extreme PMTs

 0.07 cm± = 0.13 µ
Correct all PMTs

(a)

40− 30− 20− 10− 0 10 20 30 40 50 60

Z [cm]∆

0

200

400

600

800

1000

E
v

e
n

ts
 /

 c
m

 0.07 cm± = 4.06 µ
Normal Position Reco.

 0.07 cm± = 4.31 µ
Remove extreme PMTs

 0.07 cm± = 1.27 µ
Correct all PMTs

(b)

FIGURE 4.17: The effect of the PMT hit time constants on the position reconstruction, for calibration
runs at the detector centre. The difference between the true source position and the reconstructed
position is shown for the X-axis on the left (a) and for the Z-Axis on the right (b). The normal position
reconstruction (black) shows a relatively large systematic offset for the Z-axis. Excluding the most
extreme offset PMTs with |Ci |> 1ns (red) does not improve the position reconstruction. Correcting
the PMTs with their hit time constant Ci (blue) does improve the position reconstruction significantly,

but it is still not in agreement with the true source position.
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Because the position reconstruction algorithm is a fit of the detected PMT hit times it
is reasonable to assume that the different PMT constants in the data can have a noticeable
influence. This is shown in Figure 4.17, where the 14C–222Rn source is deployed in the
detector centre. The difference between the source position and the reconstructed event
positions is shown on the left for the X-axis and on the right for the Z-axis. The nominal
position reconstruction is shown in black, while the position reconstruction that excludes the
PMTs with the largest absolute constant values |Ci |> 1ns is shown in red. Just excluding the
most extreme offset PMTs does not improve the systematic mis-reconstruction, the ∆Z offset
is even increased in comparison to the nominal position reconstruction. The blue distribution
shows the result of the position reconstruction, where all PMTs are corrected with their hit
time constants Ci. This results in a significant improvement compared to the nominal position
reconstruction. The systematic mis-reconstruction is reduced from ∆Z = (−4.31±0.07)cm
to ∆Z = (−1.27±0.07)cm. This is still significantly different from zero but it is nonetheless a
relatively large improvement in absolute terms. Thus, the systematic offset in the data position
reconstruction is mostly due to the combined effect of all the PMTs that have different constant
hit time offsets between them and not only due to a few PMTs with a large offset. Here the
effect of the systematic run-by-run spread of the PMT hit time offsets is likely the origin of
the remaining systematic position mis-reconstruction, together with the finite precision of the
measured hit time constants Ci used for the correction.

These PMT hit time constants can have an impact on the CID analysis and should be taken
into account for the calculation of the ToF corrected hit times. Otherwise some PMTs can be
over-selected or under-selected for the first Nth-Hits cosα histograms. This could introduce
a bias in the cosα distribution that is not present in the corresponding cosα distribution
of MC. In contrast, the impact of the PMT constants on the systematic event position mis-
reconstruction for the ToF correction neff

g ·d/c is likely negligible, because it is small compared
to the position resolution with σ > 10cm.

4.6 Conclusion and outlook

To perform a CID analysis it is necessary to improve the Cherenkov to scintillation ratio
through time sorting, as early PMT hits are more likely to have been produced in the Cherenkov
process than hits detected at later times. As such, the hit time sorting must be applied on the
reconstructed emission time of the corresponding photon. This reconstruction is performed
trough the time-of-flight correction of the distance from the reconstructed event position to the
position of the hit PMT. In this chapter the effective group velocity of scintillation light veff

g ,
necessary to calculate the ToF correction, is expressed trough the effective refractive index
veff

g = c/neff
g .

It is possible to construct distance dependent hit time distributions for the individual
PMTs, using the 14C–222Rn (α-particle) calibration source at different positions inside the
detector. Fitting these distributions with a bi-exponentially modified Gaussian distribution
results in a distribution of the earliest detectable hit times µ(d) vs. d, for each individual
PMT. It is found that the µ(d) vs. d distribution of all PMTs is well described by a linear
function of neff

g (d) = p1 + p2 ·d. The data PMTs exhibit a constant hit time offset between
each other, with a standard deviation of ∼ 0.3ns, where some PMTs have a relative difference
of up to ±3.0ns. Furthermore, the data PMTs show a systematic uncertainty of µ(d) on a
run-by-run basis, which is larger than the uncertainty from the fit ∆µ(d), and it is different for
different PMTs. Accommodating these systematic differences between the individual PMTs
results in best fit results of the effective refractive index for the data as p1 = 1.6867±0.0026,
p2 = (−0.296±0.020)10−2 m−1. The MC is analysed in the same manner as the data and
gives the best fit results as p1 = 1.7141± 0.0026, p2 = (−0.575±0.015)10−2 m−1. The
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linear dependence of neff
g comes from the wavelength distribution of the scintillation light and

the dispersion in the LS. This results in an over-selection of photons with a longer average
wavelength, and a faster average group velocity for larger distances, which is reflected in
the measured neff

g (d) parameter values. It follows from the effective refractive index, that
the group velocity of the detectable photons is larger for the data than for the MC, given the
distances between 3 m to 9 m.

The uncertainties include the parameter anti-correlation of p1, p2 in the fit, as well as
the systematic uncertainties of the selection of the energy region, the hit time histogram
binning, and the run-by-run systematic uncertainty of µ(d). These systematic uncertainties
are estimated maximally conservative as the absolute difference between the fit results of
the different selections. These results have a relative small uncertainty, compared to the
position resolution of∼10cm, for events with 1 MeV electron equivalent energy. For example,
using Equation 4.4, at d = 6.5m this position resolution provides a ToF uncertainty of up to
∆t = 0.55ns, compared to the ToF uncertainty from the effective refractive index of data, with
only ∆t = 0.06ns.

The measurement of the effective refractive index for MC is validated trough a modified
G4BX2 simulations, where the scintillation is emitted instantly and re-emission is turned off.
It is found that the analysis method, using the α-source at many different positions, gives ToF
results that are well in agreement with the MC true, underlying group velocity of the early
PMT hits. This means that the analysis method used here provides a valid measurement of
the effective refractive index and group velocity of the earliest detectable PMT hits. This
measurement is taken in-situ, including the effect of the scintillation wavelength distribution
and the dispersion in the full LS volume. The significant differences between the data and
the MC results can stem from a variety of different sources, including differences in the
scintillation spectrum, absorption and attenuation length and the refractive index of the LS.
Ultimately, the origin of the differences can be summarised such, that the data and the MC
have a different wavelength distribution of the detected scintillation hits and a difference of
the refractive index, resulting in a different effective group velocity between data and MC.

Following this it would be possible to fine tune the G4BX2 parameters of the scintillation
time profile to improve the agreement between data and MC, but this is not done here for two
reasons: First, it is a prohibitively large amount of work, which would make it also necessary
to re-perform the entire calibration for the position reconstruction, α/β discrimination, light-
yield, and so on. The MC is already well able to model the spectral shape of the data and
it is successfully used for the spectral fitting. Secondly, the fine tuning of the scintillation
would not improve the knowledge of the Cherenkov time behaviour and there would still be a
systematic difference left between Cherenkov light and scintillation in the data and the MC.
Instead, only a small correction will be introduced in the G4BX2 event simulation, which
is the relative Cherenkov group velocity correction gvch. This parameter is explained and
measured in the following Chapter 5, using γ-calibration sources, as no dedicated Cherenkov
sources exits for the Borexino detector.

The detected mis-behaviour, where the individual data PMTs show a constant hit time
offset between each other, should be included and corrected for in the ToF calculation of
the PMT hits. For MC this mis-behaviour does not exist, which is why it can introduce a
systematic uncertainty. From the measurement here it is not clear how stable this behaviour is
in time, as the calibration sources have only been deployed in a relatively short time window
between 2008–2009. Consequently, the measured PMT constants must not necessarily be
applicable for the entire detector live time. Considering the run-by-run hit time offset of
individual PMTs it is well possible that the effective hit time offset is different from the results
of this chapter compared to the full live time of the different detector phases. Therefore,
additional measures are taken to select PMTs with a good time behaviour for the CID analysis.
First, for the CID proof-of-principle using the 7Be-ν edge energy region in Chapter 6, the
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PMTs are selected according to a statistical argument between the number of the first detected
PMT hits in data and MC. For the measurement of the CNO neutrinos in Chapter 7 a more
sophisticated method is developed, where the cosmogenic 11C events are used to produce the
PMT hit time distributions for the full live-time of each phase. This takes into account the
effective change that the PMT hit time behaviour can undergo throughout a single detector
phase.

The analysis method presented here could also be potentially useful for future, large scale
LS detectors like JUNO [69]. JUNO has a much larger detector volume of 20 kt compared to
Borexino with 278 t, and with a radius of 19m. This will likely result in a greater influence of
the dispersion and consequently the effective refractive index function could need a higher
order polynomial > 2 to correctly model the scintillation photon ToF behaviour. Likewise,
for hybrid detectors like the proposed THEIA [72] the fitting of the individual PMT hit times
distributions potentially allows for a very precise fine tuning of the MC hit time behaviour.
This could be helpful for the identification of systematic uncertainties, and for the improvement
of a time based event-by-event direction reconstruction algorithm.
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Chapter 5

Cherenkov Group Velocity
Calibration using γ Events

Abstract

The CID measurement of neutrino events necessitates a selection of early PMT hits, to increase
the Cherenkov over scintillation hit ratio, as otherwise the high scintillation hit statistics would
overwhelm the directional information of the Cherenkov hits. When applying such a selection
of early PMT hits it is necessary to have a correct knowledge of the Cherenkov to scintillation
hit ratio for each Nth-Hit, such that the number of neutrino events can be inferred from the
number of Cherenkov hits in the CID data set. This can be quantified through a calibration
of the Cherenkov hit time behaviour, relative to that of the scintillation hits, between the
data and the MC. This chapter presents such a calibration, modeled through the so called
"effective Cherenkov group velocity correction" gvch. The gvch parameter has the units of
[nsm−1] and it is applied on the lowest level of the G4BX2 simulation, shifting the true PMT
hit times of Cherenkov photons to earlier times. This correction is effectively an increase
of the MC Cherenkov group velocity, relative to that of the MC scintillation photons. The
gvch parameter is measured using γ calibration sources, for which it is possible to reconstruct
the initial event direction, as no dedicated electron calibration source exists for Borexino.
The calibration result is gvch = (0.108±0.006(stat.)±0.038(syst.)) nsm−1, where the large
systematic uncertainty is dominated by the systematic direction mis-reconstruction between
the data and the MC γ events. This gvch parameter is an effective parameter, changing the
MC Cherenkov group velocity in such a way that the angular distribution of PMT hits is in
agreement between the data and the MC for the early Nth-Hits of the events.

This Chapter deals with the relative hit time calibration of the Cherenkov hits. The pre-
vious Chapter 4 showed that there is a significant difference between the data and the MC in
the group velocity of the earliest detectable scintillation photons. For the scintillation hits
of the data a larger group velocity (smaller effective refractive index) is measured than for
MC. The likely, underlying origin of this difference is the combination of a difference in the
scintillation wavelength spectrum as well as a difference in the refractive index of the LS. This
means that the Cherenkov hits must also have a difference between the data and the MC, which
must be measured and corrected for. Ideally, this should be done with a dedicated electron
Cherenkov calibration source, where the direction of the electron events is well known. There
is no such source in Borexino, as the Cherenkov directionality has not been of interest at
the time of the calibration campaign. Instead, the calibration of the Cherenkov hit time is
performed here on 54Mn- and 40K-γ events. Previously, the 54Mn+40K-γ-source has been used
for the calibration of the energy scale, in combination with other γ-sources [85, 142].
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The first Section 5.1 explains the Cherenkov calibration method using the γ-sources. The
reason for the use of the γ-source, instead of an electron source, is that it is reasonably possible
to perform a direction reconstruction on the γ-events, while this is not possible for the electron
sources available in Borexino. The second Section 5.2 shows the event selection and the
angular distribution of the detected hits, i.e. the equivalent of cosα , while the subsequent
Section 5.3 explains the choice of the effective model for the Cherenkov calibration. The next
Section 5.4 explains the origin and correction of the most relevant systematic uncertainty of
this calibration: The direction reconstruction systematic. Then, Section 5.5 defines the test
statistic and shows the result of the Cherenkov calibration, including additional, but relatively
small systematic uncertainties. The last Section 5.6 presents a summary and conclusion of the
effective Cherenkov calibration trough γ events.

The analysis method of this chapter has been jointly developed with
and results have been cross-checked and independently reproduced by her as part of her
dissertation [145]. Parts of the analysis presented here are also published in the associated
CID paper [135].

5.1 Method

To be able to perform a Cherenkov calibration it would be ideal to have a calibration source that
either produces pure Cherenkov light without scintillation or a source where the Cherenkov
light has a well known direction. Ideally, both conditions should be fulfilled. Such a source
has not been produced for the Borexino calibration campaign, as the Cherenkov light is not of
direct importance for the spectral neutrino analyses. While electron calibration sources exit
(214Bi for example), it is not possible to perform a direction reconstruction of these electron
events, as the relative number of Cherenkov to scintillation hits is far too small.

Nonetheless, there is a type of calibration source, for which the Cherenkov direction
can be estimated through the reconstruction of the event direction: The γ-sources1. These
sources have been used for the energy calibration in Borexino, which necessitated them to be
mono-energetic, and where the scintillation light from the associated α or β emissions had to
be suppressed. To achieve this, the radioisotopes of interest have been dissolved in de-ionised
water and filled in a 1" diameter quartz sphere [85].

FIGURE 5.1: Schematic illustration of the
cosδ angle used for the Cherenkov calibration
with a γ-source. A γ event (dashed, red line)
is emitted from the calibration source position
~rsource (red circle). The initial direction of the
Compton-scattered electrons (solid, red line)
tends to be correlated to the γ direction. These
electrons emit Cherenkov light (orange cone)
that is then also correlated to the initial γ di-
rection, while scintillation photons (blue) are
uncorrelated. The directional angle cosδ is then
given by the reconstructed gamma direction and

the photon hit direction. Used in [135] .

Figure 5.1 shows the schematic idea of the Cherenkov calibration trough the γ-source
events. The source position (red sphere) is known with a precision of <1cm from the CCD
cameras [142]. Thus, the origin of the γ-source events is known with a precision of ∼1.5cm,
given the radius of the spherical vial. The γ event deposits its energy through Compton

1 had the original idea of using the γ-sources
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scattering in the LS. This results in a total event energy deposition that is not point-like, but
rather a cloud made up of a number of individual point-like energy depositions from the
Compton scattered electrons. This "deposit cloud" is indicated by the green ellipse in the
figure. The energy deposits have a standard deviation of about ∼20cm around the barycentre,
according to the MC true deposit positions, for 40K-γ events with 1.46 MeV. This deposit
cloud is reconstructed as a single event position~rsource, given the γ event PMT hit times. Using
the source position~rsource and the reconstructed γ event position~rγ it is possible to estimate
the γ event direction. The Compton scattered electrons can have enough energy to produce
Cherenkov photons, shown in the red cone of Figure 5.1. Using the known position~rPMT of
the hit PMTs it is then possible to calculate the angle δ , which is an analogue to the definition
of cosα for the solar neutrinos. Here, cosδ describes the angle between the estimated γ

direction ~dγ and the reconstructed photon hit direction ~dhit:

~dγ =
~rev−~rsource

|~rev−~rsource |

~dhit =
~rPMT−~rev

|~rPMT−~rev |

cosδ = ~dhit · ~dγ

(5.1)

The kinetic energy of the scattered electrons is largest for a small Compton angle, thus
they produce the most number of Cherenkov photons when they travel in the direction of the
γ . Due to multiple Compton scattering, the overall distribution of Cherenkov hits is expected
to be strongly smeared out, with respect to the reconstructed γ direction. It it reasonable to
expect that there is a larger contribution of Cherenkov hits for cosδ > 0, relative to cosδ < 0,
as the Cherenkov direction is correlated to the direction of the γ events, while the direction
of scintillation hits is uncorrelated. Therefore, the cosδ distribution for a large number of
γ events should have some sensitivity on the time dependent number of Cherenkov hits and
the Cherenkov to scintillation hit ratio. The time like variable Nth-Hit is used to perform a
time sorting of the PMT hits, as is explained in Chapter 3. The ToF correction (Equation 3.7),
necessary for the correct estimation of the emission time of the photons, and for the Nth-Hit
sorting, uses the effective refractive indices measured in Chapter 4. Additionally, the relative
hit time offsets between the PMTs from Chapter 4 are also included in the ToF correction.
The general idea of the Cherenkov calibration is then to produce a model of the difference in
the Cherenkov hit time distribution between the data and the MC and then to perform a fit of
the model parameters on the Nth-Hit cosδ distributions of the data.

5.2 The γ event selection

The Borexino calibration has made use of a number of γ-sources, namely 85Sr (0.514 MeV),
54Mn (0.835 MeV), 65Zn (1.115 MeV), 60Co (1.173MeV + 1.333MeV), 40K (1.461 MeV)
[85]. Only 54Mn and 40K are able to provide enough event statistic at a high enough energy,
such that enough Cherenkov hits are included in the cosδ distribution to perform a measure-
ment. The reasons for this are that 85Sr has a too low energy, 65Zn has a too low event statistic.
The 60Co is unusable because one event is made up of two consecutive γ emissions with an
uncorrelated direction, which makes the direction reconstruction impossible.

The 54Mn- and 40K-γ event selection is illustrated in Figure 5.2. On the right the number
of hit PMTs, Nh distribution is plotted for the combined 54Mn+40K-source. The source
is positioned close to the detector centre, at x = 8.6cm, y = −8.8cm, z = 0.2cm (Runs
10415+10416). The black histogram shows all events during the run time, while the red
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FIGURE 5.2: The selection of the 54Mn- and 40K-γ data events. (a) Distribution of the Nh, number of
hit PMTs of the events, with (red) and without (black) a radial cut of 0.8 m around the source position.
The dotted lines show the selected energy regions for the respective γ events. (b) Radial distribution
of the data events within the selected energy regions of 54Mn (black) and 40K (red). The dotted line

shows the radial cut.

histogram shows the event selection after a radial cut of 0.8 m between the source and
reconstructed event position. The main peaks of the 54Mn and 40K events are well visible
at around 310Nh and 530Nh, respectively. Below ∼ 260Nh the influence of the intrinsic LS
background is visible (mostly 210Po and 14C), as well as its reduction by a factor ∼ 2, due
to the radial cut. The energy region of interest is selected as 290 < Nh < 350 for the 54Mn
events and 480 < Nh < 600 for the 40K events. These selections are shown as the dotted,
black lines. The number of intrinsic LS background events within the RoI is considered
safely negligible compared to the number of γ events. The number of selected data events are
N(54Mn) = 86414 and N(40K) = 72842.

The right side of Figure 5.2 shows the corresponding radial distribution of these energy
regions, where the black and red distributions correspond to 54Mn and 40K, respectively.
The radial cut is shown as a dotted line. While electron events at these energies provide
point-like energy depositions with a path length <5 mm, the γ events have a much larger
free path length. The average difference between the source position and the reconstructed
event position is ∼32 cm and ∼36 cm, for 54Mn and 40K, respectively. This is larger than
the fit uncertainty of the reconstructed position, which allows for the reconstruction of the
initial γ direction ~dγ , as defined in Equation 5.1. The necessity of the direction reconstruction,
using the position reconstruction, introduces the most relevant systematic uncertainty of this
Cherenkov calibration, which is discussed in Section 5.4.

The G4BX2 MC model is produced with a statistic of 20×data, with the same energy and
radial event selection as for the data. The Nth-Hit cosδ histograms are produced according
to Equation 5.1, using the measured effective refractive index from Chapter 4 for the ToF
correction. Figure 5.3(a) shows the cosδ distribution of the 40K MC, for the first hits of the
events, Nth-Hit = 1. The black histogram shows all first hits on the PMTs, while the blue and
red histograms show only the scintillation or Cherenkov hits, respectively. The contribution of
Cherenkov hits follows the qualitative expectations, where the hits are concentrated in forward
direction cosδ > 0, with a broad peak around cosδ ≈ 0.8. The scintillation hits dominate
over the Cherenkov hits and they do not have a flat cosδ distribution. Instead, their cosδ

distribution follows a negative slope, with a decreasing contribution for larger cosδ .
This effect stems from a selection bias of the earliest detected hits, introduced by the

ToF correction. First, the position reconstruction has a fit uncertainty for the barycentre of
the γ event deposit cloud. Those PMTs, which are closest to the reconstructed position also
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FIGURE 5.3: (a) The cosδ distribution of the 40K MC for the first hits of the events (black), with
the contribution of Cherenkov hits (red) and scintillation hits (blue). (b) The Nth-Hit dependence of
the Cherenkov to total hit ratio. The 54Mn MC (0.835 MeV) (blue) has a maximum at the first hits
of the events of 3.8% and the 40K MC (1.461 MeV) (red) has a maximum of 8.7%. The overall MC

Cherenkov to total hit ratio is 0.2% and 0.5% for 54Mn and 40K, respectively.

correspond to the positive cosδ > 0 values, as the reconstructed direction is given simply
by the normalised reconstructed position. Likewise, this means that the PMTs which are
furthest away from the reconstructed position can only contribute to negative cosδ < 0 values.
Should the reconstructed position now be closer to some PMT, along the reconstructed event
direction, compared to the true barycentre of the event, then the hits on those PMTs, which
are furthest away (cosδ < 0) are over-corrected for their ToF. The close by PMTs (cosδ > 0)
are under-corrected for the same reason. The consequence is then that the corresponding,
reconstructed emission time of those PMT hits with cosδ < 0 is estimated at too early times.
These hits are then over-selected as the first hit of the events, resulting in a higher probability
for the selection of cosδ < 0 hits, i.e a negative slope in cosδ . This effect is amplified by the
cloud like distribution of energy deposits for the single γ events. Later Nth-Hits > 10 show a
flat cosδ distribution of the scintillation hits.

Figure 5.3(b) shows the fraction of MC Cherenkov hits as a function of the Nth-Hits.
The 54Mn MC (0.835 MeV) is shown in blue, with a maximum of 3.8% and the 40K MC
(1.461 MeV) is shown in red, with a maximum of 8.7%. As expected, the earliest hits have
the highest Cherenkov hit fraction, much higher than the overall MC Cherenkov to total hit
ratio of 0.2% and 0.5% for 54Mn and 40K, respectively. From this it follows that the Nth-Hit
dependent cosδ distribution can in principle be used for the calibration of the Cherenkov hit
time behaviour of the MC, as there is a sufficient Cherenkov hit statistic, as well as a clear
difference in the cosδ shape of the Cherenkov and scintillation hits.

5.3 Choice of the effective Cherenkov calibration model

The goal of this section is to define a reasonable model for the calibration of the MC Cherenkov
hit behaviour. In the last Chapter 4 the effective group velocity of scintillation hits is measured
to be faster in the data compared to the MC. It is now reasonable to assume that the same is
true for the effective group velocity of the detectable Cherenkov hits, as the underlying reason
for this data–MC difference likely comes from a difference in their respective refractive index
functions. Therefore, the Cherenkov calibration here consist of an effective change in the
group velocity of the Cherenkov hits. This change is performed on the lowest level of the
G4BX2 MC: The MC true hit time t true of the Cherenkov photon hit on the PMT cathode,
before any electronics simulation or event reconstruction. The so called "effective Cherenkov
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group velocity correction" gvch is defined as:

tcorr = t true−gvch ·Ltrue

= t true− ∆nch

c
·Ltrue

(5.2)

This gvch has the units of [nsm−1] and corresponds to the difference in the effective
refractive index ∆nch of Cherenkov photons between data and MC, which results in a difference
of the ToF, given the MC true photon path length Ltrue. The true MC hit time of Cherenkov
photons t true is changed to a corrected value tcorr trough gvch, such that the Nth-Hit cosδ

distributions are in agreement between the data and the MC. This means that the number
of Cherenkov hits is effectively increased for the early Nth-Hits in the MC, such that it
corresponds to the Nth-Hit dependent number of Cherenkov hits in the data cosδ distributions.
It is expected here that gvch is positive, because the effective group velocity of the scintillation
is faster in the data than in the MC and this should also be true for the Cherenkov hits, i.e. a
decrease of tcorr relative to t true.

While the effective refractive index of scintillation is well described by a linear func-
tion, the Cherenkov calibration parameter gvch is modeled here as a constant. This does
not necessarily mean that the true, underlying difference between the data and the MC is
correctly modeled through this single parameter. It is rather expected that a higher order
approximation is not sensitive, given the statistical and systematic uncertainties of this γ

calibration. Ultimately, the gvch is an effective parameter, that just needs to be good enough to
explain the difference between the data and the MC cosδ histograms.

The calibration is performed on γ events, while the neutrinos are detected through electron
events. This makes it necessary to introduce the effective Cherenkov group velocity correction
gvch at the lowest level of the MC, such that the hit time differences of the Cherenkov and the
scintillation hits can take into account the photon path lengths Ltrue, given the true position of
the γ event energy depositions. At the same time this correction is minimally invasive, as it
only changes the time behaviour of the sub-dominant Cherenkov hits, instead of, for example,
the shape of the refractive index function. The consequence of this is that no re-calibration
of other MC parameters is necessary. The gvch corresponds to an effective calibration of
the Cherenkov time behaviour given the full detector response, including the ToF correction
using the measured refractive index from the previous chapter. Any systematic differences in
the Cherenkov time behaviour, which are introduced by the constant model of gvch, will be
investigated in the respective CID measurement of the solar neutrinos. Ultimately, it has turned
out that this model is sufficient for the measurement of both the 7Be- and CNO-neutrinos, as
explained in the respective Chapters 6, 7.

Both the 54Mn and 40K MC is simulated with four different gvch values: (0.08 nsm−1,
0.10 nsm−1, 0.16 nsm−1, 0.22 nsm−1). These full G4BX2 γ simulations are then used to
produce the cosδ histograms for all values with 0.08nsm−1 < gvch < 0.22nsm−1 through
the linear interpolation of the nearest neighbours.

5.3.1 Nth-Hit(max) selection

To maximise the sensitivity of the gvch measurement it is necessary to select a number of early
PMT hits, to get an increased Cherenkov to total hit ratio. From Figure 5.3(b) one could select
the very first hit of each event, as it has the highest Cherenkov to total hit ratio. This is not
necessarily the best choice, as later hits, with a lower Cherenkov ratio, can still have enough
Cherenkov hits to provide useful information for the measurement, through their respective
cosδ histograms.
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Thus, the number of early hits to consider in the analysis, Nth-Hit(max), is estimated
through Figure 5.4. Here, the absolute χ2 value of the individual Nth-Hit cosδ histograms
is calculated between the parameter values of gvch = 0.08nsm−1 and gvch = 0.22nsm−1

for the 40K MC. A large χ2 value means, that this Nth-Hit cosδ histograms have large
differences for the two gvch values, which corresponds to a large expected sensitivity for the
gvch measurement. These χ2 value are calculated using the statistics of the MC and a binning
of 50. It can be seen that Nth-Hit = 1,2,3,4 provide the largest expected sensitivity, while
later Nth-Hits are approximately flat in χ2. The number of early hits, until which the analysis
is then performed is selected as Nth-Hit(max) = 3. The values of Nth-Hit(max) = 2 and
Nth-Hit(max) = 4 are used to estimate the systematic uncertainty coming from this particular
Nth-Hit(max) = 3 choice.

5.4 Systematic direction mis-reconstruction

In the course of this analysis it has been found out that the biggest systematic uncertainty of
the gvch is given by the direction reconstruction. This section describes the origin, impact and
solution to the systematic direction mis-reconstruction between the data and the MC γ events.
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FIGURE 5.5: Comparison of the data and the MC cosδ for the sum of the three hits of the events
(Nth-Hit =1, 2, 3). The data (black) shows a negative slope, but no pronounced Cherenkov peak. The
MC with gvch = 0.08nsm−1 (red) and gvch = 0.16nsm−1 (blue). Both also have a negative slope for
cosδ < 0, but here a Cherenkov peak is clearly visible. This peak is larger for gvch = 0.16nsm−1, as
is expected, due to the larger contribution to early hits from the faster Cherenkov photons. No value of
gvch is able to describe the cosδ histogram of the data well, while the pure scintillation hits (yellow)

show a much better agreement between the data and the MC. (a) For 54Mn. (b) For 40K.

Figure 5.5 shows the summed first, second and third hits of the events (Nth-Hit = 1, 2, 3)
cosδ distributions of the data in black in comparison to the gvch corrected MC. The 54Mn
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events are shown on the left and the 40K events on the right. Exemplary MC distributions with
the values of gvch = 0.08ns and gvch = 0.16ns are shown in red and blue, respectively. The
pure MC scintillation hits are shown in yellow and all MC distributions are normalised to
the statistics of the data. It can be seen for both 54Mn and 40K events, that no gvch value is
able to describe the cosδ distribution of the data. In fact, the cosδ distribution of pure MC
scintillation hits gives the best agreement with the data. For the 54Mn it would even require a
non-physical, negative number of Cherenkov hits to provide a good agreement between the
data and the MC. This means not only that the selected model of the Cherenkov hit time gvch
is unable to explain the data, but rather that no Cherenkov hit time model of any sort is able to
bring the MC and the data cosδ distributions in agreement with each other.

Thus, the underlying difference between the data and the MC cosδ distributions must have
a systematic uncertainty contribution from some source. This source has been identified as
the difference of the direction reconstruction, which provides systematically different results
between the data and the MC, for the cosδ value of the earliest Nth-Hits.
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FIGURE 5.6: (a) The cosδ distribution of 214Po events for a source position in the centre of the
detector. The 214Po α events have no directionality, as the energy deposition is point-like and no
Cherenkov photons can be produced from α particles at these energies (7.4 MeV). Nonetheless, the
cosδ distributions of the first hits of the events look different for the data (red) and the 214Po MC
(blue). Consequently, this cosδ difference must come from a systematical difference of the direction
(position) reconstruction. (b) The Nth-Hit dependent mean value of the cosδ distributions. For early
Nth-hits the data and the MC have the largest difference, while for Nth-Hit > 12 both distributions are

in agreement.

The effect can be seen in Figure 5.6, where the Nth-Hit dependent cosδ distributions
are produced for the 214Po source, for the source position in the centre of the detector, and
with the event selection from Chapter 4. The source provides only α-particle events, it has
no Cherenkov photons at all, and it has a point-like energy deposition. The 214Po source has
no event direction, but the definition of Equation 5.1 can still be applied to investigate the
performance of the direction reconstruction, based on the position reconstruction. The left
side shows the cosδ distribution of the first hits of the 214Po events for the data in red and
for the MC in blue. These are purely scintillation hits, that show some structure for the data
and a relative flat behaviour for the MC. Unexpectedly, the data and the MC are significantly
different from each other. This can also be seen on the right side of Figure 5.6, where the
average cosδ value is plotted vs. the Nth-Hit. The first Nth-Hit has the biggest difference,
while the cosδ distributions are in agreement between the data and the MC for Nth-Hit > 12.

Since the 214Po–α events neither produce Cherenkov photons nor have an event direction,
the only explanation is a difference in the direction reconstruction between the data and
the MC. There exists some form of correlation between the early hits of an event and its
reconstructed event direction, which is different between the data and the MC. The origin of
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FIGURE 5.7: The ToF corrected PMT hit time dis-
tribution of 214Po events for the data (red) and the
MC (blue). These distributions are compared to
the single photo-electron position reconstruction
PDF (black). The PDF has been produced for elec-
tron events, which explains the difference to the
α events. The data and the MC have a small, but
significant difference in their hit time distributions,
while both are reconstructed with the same PDF.

this behaviour is shown in Figure 5.7, where the ToF corrected PMT hit time of the 214Po data
is shown in red and the MC is shown in blue. The probability density function (PDF) for the
single photo-electron, used in the position reconstruction algorithm, is shown for comparison
in black. It can be seen that the 214Po distributions are different from the PDF, as it has been
produced from electron events and has therefore a faster decay-time.

What is important here, is that the 214Po event hit time distributions are different for the
data and the MC, which must result in some difference in the position (direction) reconstruction
of the individual events. Even at early times, in the rising hit time slope, the data and the MC
hit time distributions are significantly different from each other. These early hit times have a
different impact on the position (direction) reconstruction, which then causes the difference of
the direction reconstruction, resulting in the cosδ distributions from Figure 5.6.
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FIGURE 5.8: (a) The ToF corrected PMT hit time distribution of the 54Mn events for the data (red) and
the MC (blue), normalised to the statistics of the data. While both distributions look similar, they are in
fact significantly different, given the statistics. This can be seen in (b), where the absolute difference

between the two histograms is shown with the corresponding uncertainty.

The conclusion is then that this difference in the direction reconstruction also exists for the
γ events and must be corrected first, before a calibration of the Cherenkov hit time behaviour
is possible. This can be seen in Figure 5.8, where the right side shows the ToF corrected
hit time distributions of the 54Mn data in red and the MC in blue. The left side shows the
absolute difference between these histograms, which are significantly different from each
other. Different values of gvch result in slightly different MC hit time distributions.

How then is the direction reconstruction equalised between the data and the MC? As
the MC hit time distribution cannot easily be changed, here instead the position (direction)
reconstruction is modified. The gvch calibration is then performed in a two step approach.
First, the idea is to use different, separate position (direction) reconstruction PDFs for the data
and the MC, such that the cosδ distributions are in agreement between the data and the MC.
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This is done independently for every value of gvch on the 54Mn source, as the information
on gvch is lost due to the modification of the direction reconstruction. It is a-priori not clear
which gvch value is correct and as such all gvch values must be treated equally. Correcting
the direction reconstruction systematic should then result in a good agreement between the
54Mn cosδ distributions of the data and the MC, independently of the gvch value. After such
a good modification of the position (direction) reconstruction is found, the second step is then
to use the same PDF for the direction reconstruction of the 40K events. it follows then that
there should be a sensitivity for the measurement of the effective Cherenkov group velocity
correction, as the higher energy 40K events provide more Cherenkov hits than the 54Mn events.

The position (direction) reconstruction PDF could be modified with any arbitrary function
and number of parameters; the parameter space is in principle infinite, as it is an effective
correction. Here, the choice of the PDF modification is informed by the shape of the hit time
difference in Figure 5.8. The PDF is modified through the addition of this function f (t), a
Gaussian derivative described by the amplitude A, the mean value µ and the standard deviation
σ :

f (t) = A · (µ− t) · exp
(
−1

2
(t−µ)2

σ2

)
(5.3)

These parameters (A,µ,σ) are effectively treated similar to nuisance parameters for the
measurement of gvch. Therefore, for each value of the gvch parameter the position of all
events must be reconstructed again, which makes this calibration tedious. The selection of
the parameters is not based on a minimisation algorithm, but rather on a number of position
re-reconstructions for all events, for different sets of parameters (A,µ,σ), which are selected
by hand. Then, the best performing sets of parameters are used for the position (direction)
reconstruction of the 40K events. The different (A,µ,σ) parameter values used for the position
re-reconstruction are given in Appendix B. The data and each gvch MC has six sets of
parameters.

To summarise: First the (A,µ,σ) parameters are used to calibrate the direction mis-
reconstruction between data and MC on and then the corrected 40K events are used to measure
the effective Cherenkov group velocity correction gvch.

Modified MC performance on position reconstruction

FIGURE 5.9: Exemplary performance of the po-
sition reconstruction on the z-position with ∆z =
zsource − zrec. The 40K data (black), MC with
gvch = 0.08nsm−1 (red) and gvch = 0.16nsm−1

(blue) all show the same general performance of
the position reconstruction. Additionally, these
distributions are produced with different values
of (A,µ,σ) resulting in slightly different position

reconstruction PDFs.
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Figure 5.9 shows an example of the impact on the position reconstruction, given the 40K
data in black and the MC in red, blue for different values of gvch, which also have different
(A,µ,σ) values for the modified position reconstruction PDF. It can be seen that the general
performance of the position reconstruction is not impacted by either the gvch parameter or the
small change in the PDF. This means that the general idea of a minimally invasive Cherenkov
calibration is satisfied.
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5.5 Fit definition and result

In this section the result of the effective Cherenkov group velocity correction gvch measurement
is presented. As described above this is done through a two step approach. The systematic
direction mis-reconstruction between the data and the MC is corrected through the modification
of the position reconstruction PDF using the parameters (A,µ,σ) for both the data and the
MC, dependent on gvch. Then a χ2 scan of the gvch parameter is performed on the cosδ

histograms of both γ-sources, as defined in Equation 5.4:

χ
2 (gvch,(A,µ,σ)data,(A,µ,σ)MC) =

Nth-Hit(max)

∑
n=1

I

∑
i=1

(
(norm ·Mn

i −Dn
i )

2

norm ·Mn
i +norm2 ·Mn

i

)
(5.4)

The number of histogram entries at the cosδ bin number i, of the Nth-Hit = n is given by Dn
i

and Mn
i for the data and the MC, respectively. Here, "norm" is the scaling factor between the

MC and the data event statistics. The term "norm2 ·Mn
i " in the denominator takes into account

the finite statistics of the MC. The selected binning for the cosδ histograms is I = 50 and
the selected number of Nth-Hits until the analysis is performed is Nth-Hit(max) = 3, given
the estimation from Figure 5.4. The cosδ distribution of the data depends on the position
reconstruction PDF (A,µ,σ)data, while the MC depends on (A,µ,σ)MC as well as on the
gvch parameter of interest. The χ2(gvch) values are calculated for both the 54Mn and the 40K
events, using the same values of A,µ,σ)data, (A,µ,σ)MC.

It is time prohibitive to let a minimisation algorithm run for the selection of (A,µ,σ)data
and (A,µ,σ)MC, as the position reconstruction must be re-performed for every change in
(A,µ,σ) and for all the data and the MC events. For this reason a number of six sets of
parameters (A,µ,σ) have been produced for the data and each fully simulated MC value of
gvch (see Appendix B). The analysis is then considered valid only under the condition that
both χ2(54Mn)/ndf and χ2(40K)/ndf are smaller than 1.5:

χ
2 (gvch,(A,µ,σ)data,(A,µ,σ)MC | 54Mn

)
/ndf < 1.5

χ
2 (gvch,(A,µ,σ)data,(A,µ,σ)MC | 40K

)
/ndf < 1.5

(5.5)

This somewhat arbitrary choice of the χ2/ndf value introduces a systematic uncertainty, which
needs to be evaluated. This is done using a toy-MC analysis described later.

First, Figure 5.10 illustrates the general improvement of the analysis after the application
of the direction (position) reconstruction modification through (A,µ,σ), in comparison to
the nominal position reconstruction PDF used in Figure 5.5. The cosδ histograms of the
first three hits of the events (Nth-Hit = 1, 2, 3) are summed up for illustration purposes. The
black crosses are the γ data for the 54Mn source on the left and the 40K source on the right.
Both γ-sources use the same (A,µ,σ)data values for the direction reconstruction. It can be
seen that both γ-sources have a negative slope imposed on the cosδ distribution, as described
before. The 40K events provide a visible Cherenkov peak, while this is not visible for the
lower energy 54Mn events. The impact of the modified direction reconstruction is visible for
the 54Mn source on the left, where the corresponding MC cosδ histograms are shown for a
value of gvch = 0.08nsm−1 in red and gvch = 0.16nsm−1 in blue. Both gvch values show a
good agreement with the data. The 54Mn source has no sensitivity for the gvch measurement,
but it can clearly be used to constrain the (A,µ,σ)data, (A,µ,σ)MC parameters. The 40K
source on the other hand does have a sensitivity for the measurement of gvch, as shown on
the right side of Figure 5.10. Using the same values (A,µ,σ)MC to reconstruct the direction
of the 40K events results in a clear difference for the different values of gvch = 0.08nsm−1

and gvch = 0.16nsm−1. This is in contrast to the previous Figure 5.5 without the direction
reconstruction correction. From this plot it is possible the roughly estimate the best fit value
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FIGURE 5.10: Comparison of the data and the MC cosδ for the sum of the three hits of the events
(Nth-Hit =1, 2, 3), after correcting the direction mis-reconstruction between the data and the MC. (a)
For 54Mn. (b) For 40K. The data (black) shows a negative slope, and a Cherenkov peak for the 40K
source. The MC with gvch = 0.08nsm−1 (red) and gvch = 0.16nsm−1 (blue) both also have a negative
cosδ slope, while now only the 40K MC has a visible Cherenkov peak. For 54Mn all values of gvch are
able to describe the cosδ histogram of the data reasonably well, while the 40K cosδ distribution has a

clear sensitivity for the gvch measurement.

of gvch to be between 0.08 nsm−1 and 0.16 nsm−1.
From the 144 produced combinations between (A,µ,σ)data and (A,µ,σ)MC only four

best fit gvch results pass the condition of Equation 5.5:

• gva
ch = (0.109±0.006)nsm−1, χ2/ndf = 1.32

• gvb
ch = (0.102±0.006)nsm−1, χ2/ndf = 1.43

• gvc
ch = (0.110±0.007)nsm−1, χ2/ndf = 1.47

• gvd
ch = (0.112±0.007)nsm−1, χ2/ndf = 1.48

The statistical uncertainty is estimated trough ∆χ2 =±1. The weighted average gives a value
of gvch = (0.108±0.006)nsm−1 and these results are illustrated in Figure 5.11 in red.

5.5.1 Systematic uncertainties

The biggest systematic uncertainty of this analysis is given by the need for the direction
reconstruction modification through (A,µ,σ). This systematic is estimated with a toy-MC
study, as follows:

1. The MC is used to sample pseudo-data, using a true, injected value of gvch = 0.1nsm−1,
for both 54Mn and 40K.

2. The pseudo-data is produced for all different values of (A,µ,σ)MC

3. Every (A,µ,σ)MC set of pseudo-data cosδ histograms is analysed according to Equa-
tion 5.4, again for every set of (A,µ,σ)MC for the MC cosδ histograms. This gives six
best fit results for every pseudo-data set.

4. The analysis is performed 10k times for every pseudo-data (A,µ,σ)MC set. In total
there are then 36 best fit gvch distributions, given the injected value of 0.1 nsm−1.

5. The average value of these best fit gvch distributions then gives the systematic offset of
interest, introduced by performing the analysis with an incorrect set of (A,µ,σ)MC.
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FIGURE 5.11: The results of gvch measurement,
after correction of the direction mis-reconstruction
between the data and the MC. The best fit gvch
values are plotted vs. their χ2(40K)/ndf. The data
results (red) passing the selection of χ2/ndf < 1.5
are shown with their statistical uncertainty. The
MC values (blue) show the average expected best
fit gvch for a number of 10k toy-analyses, for an
injected value of gvch = 0.1nsm−1. Used in [135].

The result of these toy-MC analyses can be seen in Figure 5.11 in blue. Here, the best
fit gvch values are plotted vs. the χ2(40K)/ndf value, selected according Equation 5.5. If the
pseudo-data and the analysis MC use the same values of (A,µ,σ)MC then the corresponding
χ2(40K)/ndf is relatively small and the systematic offset between the injected gvch value and
the average best fit gvch value is zero, as is expected.

For large χ2(40K)/ndf values this systematic offset increases. The systematic uncertainty,
associated to the direction mis-reconstruction, is then estimated from the largest observed
difference between the injected and extracted value, with ∆gvch = ±0.038nsm−1. This
value is situated at χ2(40K)/ndf = 1.34, which is within the region of the data results. This
toy-analysis is also performed for an injected value of gvch = 0.16nsm−1, which gives a
similar but smaller value of ±0.035nsm−1. The larger uncertainty is used for the systematics
estimation. The other systematic uncertainties are sub-dominant and are estimated as follows:

• Nth-Hit(max) selection: There could be a Nth-Hit dependence on the best fit result,
which is estimated by performing the full analysis again, but with a different choice
of Nth-Hit(max) = 2 and Nth-Hit(max) = 4. The biggest difference between the best
Nth-Hit(max) dependent gvch result and the nominal result is used as the systematic
uncertainty: ∆gvch =±0.006nsm−1.

• Nh energy cut: The energy cut is applied to select the data 54Mn, 40K events in such
a way that the contribution of non-γ events is negligible. This is estimated now by
varying the energy cut by ∆Nh =±10 around the nominal low and high Nh cut values.
The full analysis is then performed again and the biggest difference of the gvch results
compared to the nominal Nh selection is used as the systematic uncertainty. The value
is ∆gvch =±0.004nsm−1.

Thus, the final result on the calibration of the effective Cherenkov group velocity correction
is gvch = (0.108±0.006(stat.)±0.038(syst.)) nsm−1, where the systematic uncertainty is
dominated by the direction mis-reconstruction between the data and MC.

5.6 Conclusion and outlook

In this Chapter the group velocity of Cherenkov photons has been calibrated using the param-
eter gvch. This effective Cherenkov group velocity correction is applied on the lowest level
of the G4BX2 simulation, changing the Cherenkov hit time on the PMTs before performing
the electronics simulation and before the event reconstruction. The value of this parameter
is calibrated trough the use of the 54Mn, 40K γ calibration sources, with a best fit result of
gvch = (0.108±0.039(stat. + syst.)) nsm−1. This number can be expressed as an effective
change of the refractive index. Assuming an effective refractive index value of n = 1.6 for
the Cherenkov photons results in a change of ∆nch = 0.032±0.012. This corresponds to a
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relative correction of about (2.0±0.8)% for the effective refractive index of the Cherenkov
hits. This seems reasonable, considering that the differences between the data and the MC are
measured at about 1% for the effective refractive index of scintillation.

The uncertainty is dominated by the systematic mis-reconstruction of the γ event direction,
which results in a relatively high uncertainty of 37%. As expected, the use of γ-sources and
their Compton scattered electrons is not optimal for the calibration of the Cherenkov PMT
hit time behaviour. Future hybrid detectors, using both scintillation and Cherenkov hits will
benefit from using a dedicated electron Cherenkov calibration source also at low energies
∼ 1MeV. An idea for such a source could be the use of 144Ce-144Pr, as illustrated in the
internal document [146]. Preliminary toy-MC studies show, that the knowledge of the initial
electron direction could provide a relative uncertainty as low as 1% on the gvch measurement,
but this will not be discussed any further here.

One important consideration of this calibration has been its dependence on the full detector
response. The γ calibration sources have only been deployed in 2009. This means that the
events of Phase 2 and Phase 3 are further removed in time from this calibration than Phase
1. At the time of the publication of [134, 135] it has been not clear if the results of this
gvch calibration are also applicable to Phase 2 and Phase 3, because there could exists some
unknown change in the detector response over time, which would result in a different gvch
value. If this γ calibration would have been performed in 2021, would the best fit gvch result
be compatible with the result of 2009? As this question could not be answered at the time
of the CID measurement of the 7Be-ν events, it has been decided that this following CID
measurement is only performed for Phase 1.

Following the publication of [134, 135] the gvch value for Phase 1 and Phase 2+3 is also
measured using the 7Be-ν edge region neutrino events. This is done in the context of the CID
measurement of CNO neutrinos. In the last Chapter 7 of this thesis it is found that the gvch
value measured with the γ-sources is well in agreement with the gvch calibration using the
neutrino events at the 7Be-ν edge region. This means that the initial decision of only using
Phase 1 for the CID 7Be-ν measurement has been overly conservative.
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Chapter 6

Proof of Principle for the Correlated
and Integrated Directionality

Abstract

Currently, the most precise measurements of sub-MeV solar neutrinos are only performed with
liquid scintillator (LS) detectors, such as Borexino. Water Cherenkov detectors have a relative
high energy threshold and are only able to measure neutrinos above ∼3.5 MeV, due to the
low light yield of the Cherenkov process in the presence of background. The high light-yield
of Borexino makes it possible to perform a precise spectroscopic neutrino measurement due
to the correspondingly good energy resolution and a sufficiently low background level. Until
now the directional Cherenkov information has been inaccessible at the sub-MeV neutrino
energy range. In this chapter the so called Correlated and Integrated Directionality (CID)
is used to provide a proof-of-principle for the possible use the directional Cherenkov hits
even for sub-MeV neutrino events, using the Borexino detector. The CID method exploits
the correlation between the early detected Cherenkov PMT hits and the known position of
the Sun. Integrating a large number of events makes it possible the infer the number of
contributing neutrino events, through the statistical inference on the angular hit distribution.
As the Cherenkov hits make up only < 0.4% of all hits it is necessary to increase the sen-
sitivity by selecting only the early PMT hits of the events. The CID analysis is performed
in an energy region from 0.56MeV to 0.76MeV around the Compton-like edge of the 7Be
neutrinos, for Phase 1 of the Borexino detector. This results in a measurement of the 7Be-ν
rate with R(7Be)CID = 51.6+13.9

−12.5 (stat. + syst.)cpd/100t. The zero-neutrino hypothesis can be
excluded with a ∆χ2(Nsolar−ν = 0) = 38.7, corresponding to a > 6σ exclusion. These results
are the first directional detection of sub-MeV neutrino events, as well as the first experimental
evidence that the sub-dominant Cherenkov information is accessible, even in a monolithic
liquid scintillator detector. This provides the experimental proof-of-principle for the potential
use of hybrid event detection at low neutrino energies.

As described in Chapter 3, the hybrid event detection, i.e. combining the directional Cherenkov
information with the low energy threshold of scintillation, is of interest for a diverse number
of neutrino related physics goals. The present chapter provides the experimental proof for
the feasibility of the hybrid event detection at sub-MeV neutrino energies, using the high
light-yield Borexino detector. This is done with the so called Correlated and Integrated
Directionality (CID), which makes it possible to access the Cherenkov information even for
neutrino events with a very low expected number of Cherenkov hits per individual event.
The basic idea behind CID is to correlate the photon hit direction with the know direction of
the solar neutrinos. The photon direction can be estimated through the reconstructed event
position and the hit PMT position. Thus, each hit is assigned an angular correlation angle
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cosα , relative to the Sun. For a large number of events it is then possible to make a statistical
inference on the total number of neutrino events in the event integrated cosα distribution. This
is in contrast to the typical use of the Cherenkov hits, where the event direction is reconstructed
on an event-by-event basis and then afterwards compared to the position of the Sun. See
Chapter 3 for more details.

In Borexino it is possible to trigger sub-MeV neutrino events and to reconstruct the event
vertex using the scintillation hits and their hit time distribution. Thus, the events can be
selected according to their reconstructed position and energy.. The first Section 6.1 explains
this event selection for an advantageous energy region of interest and a fiducial volume,
providing a large expected ratio of neutrino signal over background events. This region
corresponds to the Compton-like edge of the 7Be-ν events. Next, Section 6.2 explains the MC
model used in the measurement of the number of solar neutrino events. While the parameter
of interest is the number of solar neutrino events, here it is also important to identify and
understand the nuisance parameters that govern the possible shape of the cosα distribution of
the neutrino signal and the background. To maximise the sensitivity of the CID measurement it
is necessary to select early hits of the events. This is effectively a time sorting of the event hits,
where early hits have a higher probability of coming from the Cherenkov process compared to
later hits. This selection is performed in Section 6.3.

In the previous Chapter 4 it has been found out that the data PMTs can show a misbehaviour
in their hit time distribution between each other and in comparison to the MC PMT hit time
behaviour. For this reason it is necessary to make a selection of PMTs that are in agreement
between the data and the MC. This PMT selection is explained in Section 6.4. Then Section 6.5
defines the χ2 test statistic and provides the measurement on the number of solar neutrino
events, based solely on the Cherenkov information from the cosα histograms. Additionally,
supplementary analyses are performed to produce a picture of the Sun as seen with the CID.
Section 6.6 investigates the possible sources of systematic uncertainty between the data and
the MC model, and gives a conservative estimation on the value of the relevant systematic
uncertainties. Following that, Section 6.7 gives the final results of the CID measurement,
for the number of solar neutrinos at the 7Be-ν edge, as well as the rate of 7Be neutrinos in
Borexino. The last Section 6.8 concludes this chapter with a summary and an outlook.

The results of this analysis and the method of the PMT selection have been cross-checked
and reproduced by as part of her dissertation [145]. Furthermore, the
toy-MC studies that are investigating the potential systematic uncertainty of the CID back-
ground [147] have been conducted by as part of her dissertation, as well
as the selection of the number of cosα histogram bins [148]. The fiducial volume (FV) and
energy region of interest (RoI) have been optimised by as part of her master
thesis [149], including the calculation of the corresponding event selection efficiency. Her
work was based on a previous study performed by . This CID measurement
of the solar neutrinos at the 7Be-ν edge is published in the associated papers [134, 135].

6.1 Selection of the data events

The principal goal of this analysis is to provide the proof-of-principle for the hybrid detection
of low energy neutrinos. For this purpose the data is selected in an energy RoI, for which
the expected ratio of neutrino signal to background events is large. The energy region with
the largest expected ratio of neutrino events is around ∼ 0.66MeV. This corresponds to the
Compton-like edge of the recoil electrons from the 0.862MeV line of the 7Be-ν . The FV and
RoI are selected according to the figure of merit (FoM), defined as follows:

FoM(R,Ngeo
h (min),Ngeo

h (max)) =
Nsolar−ν

Nα−back. +
√

Nsolar−ν +Nβ−back.
(6.1)
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Here, Nsolar−ν is the expected number of solar neutrino events, while Nβ−back., Nα−back.
are the expected number of α- and β -like background events. These numbers depend on the
selected energy RoI Ngeo

h (min, max) and the spherical FV with a radius of R. The idea behind
the FoM is to maximise the signal over the expected statistical event uncertainty. The α events
are treated separately, to incur a stronger penalty than the β -like background. The reason
for this is that α events in the RoI come from the decay of 210Po, which is distributed highly
non-uniformly inside the inner vessel [83, 89, 150]. This non-uniformity could introduce a
systematic difference in the cosα distribution of the 210Po background, compared to other
background species with a uniform position distribution. The main de-selection of 210Po
is performed through the application of the MLP parameter > 0.7, with a large α rejection
efficiency [107]. The exposure of non-α events is estimated as 99.5%± 1.0%, measured
through the 214Bi-214Po event coincidence, during the LS purification campaign in 2010-
2011 [145].

The number of expected events Nsolar, Nβ−back., Nα−back. is calculated according to the
spectroscopic Borexino results of the event rates [83, 86, 68]. To calculate the number of
events from the event rate it is necessary to know the event trigger efficiency and the fraction
of events that fall within the selected energy region Ngeo

h (min, max). These value is called εE

here and it is estimated using the full G4BX2 simulation of the different event species.

Phase Live time R [m] Fiducial mass [t] Ngeo
h (min, max) Ntotal

1 740.7 days 3.3 132.2 (225, 305) 19904
2 1291.5 days 3.3 132.2 (210, 310) 29686
3 1596.5 days 3.0 99.3 (200, 320) 29042

TABLE 6.1: Selected RoI for the CID analysis at the 7Be-ν edge and the number of data events Ntotal.

Table 6.1 shows the selected RoI and FV for Phase 1, 2, and 3 separately. The FV radius
R decreases for later phases, as the loss of live PMTs over time results in a decrease of the
position resolution. This means that for later phases more external γ events are reconstructed
inside the FV, which makes it necessary to decrease the value of R. In contrast to this,
the energy RoI Ngeo

h (min, max) increases for later phases, as the internal 210Bi background
decreases over time. Please note, that 210Bi has a half life of five days but it is a daughter of,
and supplied by 210Pb with a half life of 22.3 years. The fiducial mass is calculated from the
spherical FV, using a LS density of (0.878±0.004) gcm−3 [90].

The next Table 6.2 shows the combined trigger and energy efficiency εE for the neutrino
signal events of 7Be, pep, and CNO neutrinos. The expected number of neutrino events is
given by the product of the neutrino rate, the live time, the fiducial mass, and εE . The neutrino
rates are calculated with the neutrino fluxes from the low (LZ) and high-metallicity (HZ)
B16 standard solar models (SSM) [35, 99]. These values are later used to compare the CID
measurement with the independent model predictions. Additionally, Npep

SSM+NCNO
SSM account for

∼ 12% of the total neutrino signal events, and these values are used to constrain the calculation
of the neutrino rate R(7Be-ν) [cpd / 100 t].

The selection of the RoI for Phase 1 is shown in Figure 6.1(a) as a yellow band, in the
context of the spectroscopic fit of Phase 1 [83]. The 7Be-ν events comprise the main signal
component and the corresponding MC spectrum is shown as a red line. The main background
is given by 210Bi, while 210Po is safely excluded. On the right side, Figure 6.1(b) shows
the Ngeo

h spectrum for Phase 1 in black, Phase 2 in red and Phase 3 in blue. The distinct
Compton-like shoulder can be seen in all phases.
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Phase ε
7Be
E ε

pep
E εCNO

E N
7Be
SSM Npep

SSM NCNO
SSM

1 0.193 0.158 0.147
HZ 9059±530 423±6 705±112

LZ 8264±473 429±6 505±75

2 0.245 0.198 0.189
HZ 20001±1178 929±14 1588±251

LZ 18256±1073 943±14 1136±168

3 0.278 0.237 0.225
HZ 21145±1178 1028±15 1754±278

LZ 19299±1135 1043±15 1255±185

TABLE 6.2: Energy efficiency εE and SSM expected number of solar-neutrino events in the RoI. The
SSM rates are R(7Be) = {47.90±2.82 (HZ), 43.72±2.57 (LZ)} cpd / 100 t, R(CNO) = {4.92±0.78

(HZ), 3.52±0.52 (LZ)} cpd / 100 t, R(pep) = { 2.74±0.04 (HZ), 2.78±0.04 (LZ)} cpd / 100 t.

400 600 800 1000 1200 1400 1600

Energy [keV]

2−10

1−10

1

10

210

d
ay

)
×

to
n

×
C

o
u
n
ts

 /
 (

1
0
0
0
 k

eV

/NDF = 141/1382χFit:

1.5±Be: 45.5.7

1.7±Kr: 34.8.85

1.5±Bi: 41.5.210

0.2±C: 28.9.11Cosmogenic

7.3±Po: 488.8.210

0.7±: 4.5γExternal

pp, pep, CNO (Fixed)

(a)

200 220 240 260 280 300 320
geo
hN

0

50

100

150

200

250

300

350

400

450

500

ge
o

h
E

nt
ri

es
 / 

N

Phase 1: 19904 events
Phase 2: 29686 events
Phase 3: 29042 events

(b)

FIGURE 6.1: (a) The spectral fit of Phase 1, taken from [83]. The data is shown in black, while the
best fit solar-neutrino and background contributions are shown as coloured lines. The RoI selected for
the CID analysis is shown as a yellow band around the 7Be-ν shoulder. (b) The Ngeo

h distribution for
the selected data events from Phase 1 (black), Phase 2 (red) and Phase 3 (blue), following the selection

criteria of Table 6.1. The 7Be-ν shoulder is visible for all phases.
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The primary CID measurement of the number of neutrino events Nsolar is performed only
on Phase 1. The reason for this is that the CID measurement here has been intended as
proof-of-principle for the hybrid detection method, and as such a very conservative approach
has been adopted for this analysis. The important parameter of the effective Cherenkov group
velocity correction gvch is measured in the previous Chapter 5, using the γ-sources from the
calibration campaign. The γ-sources have been deployed in 2009, which is closest in time to
Phase 1. The measurement of gvch suffers from a relatively large systematic uncertainty of
∼ 36%. At the time of this analysis it has not been clear if the gvch value could be assumed
to be stable over the full detector live time, or what undiscovered systematic differences
between the data and the MC could contribute to its measurement. If the gvch measurement
would have been performed again in 2021, would the results be compatible with that of 2009,
or would a difference in the detector response introduce a difference in the measured gvch
value? Therefore, only Phase 1 is used in the current chapter for the measurement of Nsolar
and subsequently the corresponding rate R(7Be-ν) [cpd / 100 t]. The combined CID cosα

histograms of Phase 1+2+3 are instead used for the signal model independent rejection of the
pure background hypothesis, without performing a fit on Nsolar.
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FIGURE 6.2: The CID cosα distribution of Phase
1, for the first (solid line) and second (dotted line)
hits of the events. The 19904 events selected in
the RoI (black) are made up out of neutrino signal
events and β -background events. For comparison
1.8 million MLP tagged 210Po events (blue) are also
shown, normalised to 19904 events. Used in [135].

Figure 6.2 provides the first look at the Phase 1 CID data cosα histogram. The solid lines
show the first hits of the events (Nth-Hit=1), while the dotted lines show the second hits of
the events (Nth-Hit = 2). The black histograms show events from the selected energy region
of Ngeo

h (min, max) = (225,305), which are composed of neutrino signal events and 210Bi
(electron) background. The blue histograms shows MLP selected 210Po-α events around the
peak at Ngeo

h = 160 (0.4 MeV), normalised to the statistic of the nominal CID data. Starting
from cosα > 0.2 a clear peak can be seen for the neutrino rich RoI, for both early hits.
Additionally, there is a negative slope for −1.0 < cosα < 0.0. In contrast, the almost pure
210Po event selection provides a relatively flat cosα distribution and shows no Cherenkov
peak, as expected. This α-background cosα distribution is not perfectly flat, but rather
follows a quadratic function, with a minimum around cosα ≈ 0.1. This first cosα plot already
shows that the neutrino events do in fact include Cherenkov information, and they are clearly
distinguishable from the background events.

6.2 Neutrino signal MC and background MC

The CID analysis is used to perform a statistical inference on the number of neutrino events
contributing to the data cosα distribution. This is done through the use of a MC model, using
the G4BX2 simulation, as explained in Chapter 3.2. It is necessary to estimate the average
number of detected Cherenkov hits per neutrino signal event, as the cosα distribution is
produced from the individual hit information, for a given Nth-Hit. This is done here through
the use of the effective Cherenkov group velocity correction gvch in the MC, which is measured
in Chapter 5. Furthermore, the impact of the live PMT position distribution and solar direction
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needs to be taken into account to produce the correct shape of the signal and background MC
cosα distributions. This is accomplished by performing the MC simulation on an event-by-
event basis. For each individual data event 200 MC events are simulated for both the 7Be-ν
signal and the 210Bi background, within a 15 cm sphere around the reconstructed data event
position. The known position of the Sun in the data is used to simulate the correct 7Be-ν MC
event direction, while the recoil-electrons in the LS are scattered in an angle cosθe according
to Equation 3.1. The 210Bi background MC event direction is sampled randomly, as it is
uncorrelated to the Sun.
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FIGURE 6.3: (a) The angular distribution cosθe between the solar neutrino directions and the simulated
recoil-electrons, from Equation 3.1. The 7Be-ν MC (red) shows that the recoil electrons are scattered
in forward direction for the selected Phase 1 RoI of 225 < Ngeo

h < 305. The direction of the 210Bi
background MC electrons (blue) are not correlated to the solar direction. (b) The CID cosα distribution
for the first (solid line) and second (dotted line) hits of the events. The 7Be-ν signal MC (red) shows a
clear Cherenkov peak at cosα ≈ 0.7, which is decreased for the second hits. The 210Bi background
MC (blue) has a relative flat distribution and no difference between the first and second hits of the

events can be seen. Used in [135].

Figure 6.3(a) shows the MC cosθe angular distribution between the simulated solar
direction and recoil-electron direction in red. It can be seen that the electrons are scattered in
forward direction for the RoI, as is expected for these events around the Compton-like 7Be-ν
shoulder. The background MC is shown in blue and it is uncorrelated to the solar direction.
Figure 6.3(b) on the right shows the CID cosα distribution of the 7Be-ν signal MC in red and
for the 210Bi background MC in blue. The first hits of the events (Nth-Hit=1) are shown as
a solid line, while the second hits of the events (Nth-Hit=2) are shown as a dotted line. The
background MC cosα distribution is looking flat, and there is no difference between the first
and second hits of the events. The signal Cherenkov peak around cosα ≈ 0.7 is clearly visible
and corresponds to the expectation of the Cherenkov cone opening angle for electrons with
T ≈ 0.66MeV. Likewise, the Nth-Hit=1 signal cosα distribution also follows the expectation,
as it has a more pronounced Cherenkov peak than the Nth-Hit=2 cosα distribution. Another
notable feature is the negative slope for cosα < 0, which comes from a bias in the position
reconstruction, similar to, but less severe than the observation discussed in Chapter 5. This
biased position mis-reconstruction is explained in the following section.

6.2.1 MC model nuisance parameters

The primary value of interest is the number of solar neutrino events Nsolar−ν . From Figure 6.3
it can be seen that the neutrino signal and the background cosα distributions are clearly
distinguishable. This means that the data cosα distribution can be fitted with the signal
and background MC to estimate Nsolar−ν . Furthermore, it has been identified that the signal
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cosα distribution are influenced by two additional parameters. The first parameter is the
effective Cherenkov group velocity correction gvch, defined in Equation 5.2. It governs the
Cherenkov to scintillation hit ratio of the early PMT hits. This parameter is measured as
gvch = (0.108±0.039)nsm−1, using the γ calibration sources in Chapter 5. The second
parameter is the mis-reconstruction in the initial electron direction ∆rdir. The definition of
which is given by the (initial) electron direction ~dtrue, and the true position of the neutrino
interaction (energy deposition)~rtrue in respect to the reconstructed event position~rrec:

∆rdir = (~rrec−~rtrue) · ~dtrue (6.2)
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FIGURE 6.4: (a) Schematic definition of the mis-reconstruction in the initial electron direction ∆rdir.
The reconstructed event position~rrec has a small bias to be shifted away from the true event position
(position of energy deposit)~rtrue, following the electron direction ~dtrue. (b) The ∆rdir distribution for a
7Be-ν MC with a simulated gvch = 0.108nsm−1 value results in an average offset of 〈∆rdir〉= 1.89cm
(black). A value of gvch = 0.228nsm−1 results in an average offset of 〈∆rdir〉 = 2.35cm (blue). A
larger Cherenkov to scintillation hit ratio at early times increases the ∆rdir offset. The standard deviation

of both distributions is 11.9cm.

The definition of ∆rdir is schematically illustrated in Figure 6.4(a). Figure 6.4(b) on the
right shows the distribution of ∆rdir for the 7Be-ν MC. The average offset depends on the
implemented value of gvch in the MC. The MC with a nominal value of gvch = 0.108nsm−1 is
shown in black and has an average offset of 〈∆rdir〉= 1.89cm, while the 7Be-ν MC simulated
with a value of gvch = 0.228nsm−1 results in a 〈∆rdir〉= 2.35cm, shown in blue. Likewise a
simulation with gvch =−0.012nsm−1 results in 〈∆rdir〉= 1.50cm, which is not shown.

This means that the early Cherenkov hits tend to pull the reconstructed position towards
their own direction. The greater the fraction of early Cherenkov hits, the stronger this effect is.
This means that this position reconstruction bias is consistently correlated to the initial solar
neutrino direction, because the Cherenkov direction is correlated to the initial direction of the
solar neutrinos. The ∆rdir offset is small compared to the standard deviation of ∼ 12cm and is
thus likely negligible for single events, but this effect becomes important after the integration
of a large number of events.

The value of 〈∆rdir〉 can be different between the data and the MC. First, because they
could have a different, underlying gvch value between them. Second, the 〈∆rdir〉 can be
different because the position reconstruction performs slightly different between the data and
the MC, as has been observed in Chapter 5.4. This is also conveyed in Figure 6.5, where
the PMT hit time distribution of the data events in the Phase 1 RoI is plotted in black, in
comparison to the corresponding MC events in red. The 210Bi MC and 7Be-ν MC exhibit hit
time distributions that are fully in agreement, given the statistics of the MC, which is why only
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FIGURE 6.5: ToF corrected hit times for the Phase
1 RoI of the data (black) and the 7Be-ν MC (red),
normalised to the data statistics. Both 7Be-ν MC
and 210Bi MC are comparable with each other,
given their statistics and only the 7Be-ν MC is
shown. The data and MC distributions are signifi-

cantly different from each other. Used in [135].
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the 7Be-ν MC is shown. What is important to note is that the data and the MC distributions
are significantly different from each other, given the statistics of the data. This means that
the data and the MC can have a different value of 〈∆rdir〉, as the position reconstruction is
governed by the underlying event hit time distribution.

Unlike the gvch parameter, the 〈∆rdir〉 value cannot be measured for the data. It would
require a dedicated electron calibration source with a known event direction, but such a
source has not been deployed in Borexino. This means that 〈∆rdir〉 and gvch are both nuisance
parameters in the context of the measurement of the number of solar neutrino events in
Borexino. The effective Cherenkov group velocity correction can be constrained by the
measurement of Chapter 5 using the γ calibration sources, while the mis-reconstruction in
direction 〈∆rdir〉 must be left free in the fit.
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FIGURE 6.6: The impact of the nuisance parameters on the 7Be-ν signal cosα distribution for the
first hits of the events (Nth-Hit=1) of Phase 1. (a) The nominal MC with gvch = 0.108nsm−1 and
〈∆rdir〉 = 1.89cm (black) is compared to the MC with gvch = 0.108nsm−1 where 〈∆rdir〉 is set to
2.35cm (blue) by shifting the reconstructed event position in the MC neutrino direction. The number
of Cherenkov hits is the same for both cosα distributions. The Cherenkov peak is decreased for the
larger 〈∆rdir〉 value, due to the increase in the negative cosα slope. (b) The nominal MC (black) with
gvch = 0.108nsm−1 is compared to the MC with gvch = 0.228nsm−1, where 〈∆rdir〉 is set to 1.89cm
(red) by shifting the reconstructed event position in opposition of the neutrino direction. The Cherenkov

to scintillation hit ratio for the first hits of the events is increased from 8% to 15%.

Figure 6.6 shows the impact of these two nuisance parameters on the 7Be-ν signal MC, on
the CID cosα distribution of the first hits of the events (Nth-Hit=1). The left plot shows the
nominal 7Be-ν MC with gvch = 0.108nsm−1 and 〈∆rdir〉= 1.89cm in black in comparison
to the a modified value of 〈∆rdir〉= 2.35cm in blue. This new 〈∆rdir〉 value is produced from
the same gvch = 0.108nsm−1 simulation, by shifting each single reconstructed event position
in the known neutrino direction by 0.46 cm. The total amount of Cherenkov hits in both cosα
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distributions is the same, with a Cherenkov to scintillation hit ratio of 8%. The increase in
〈∆rdir〉 results in an increase in the negative slope at cosα < 0.

This negative slope is superimposed on the Cherenkov peak at cosα ≈ 0.7, which has the
consequence that an increase in 〈∆rdir〉 results in a decrease of the Cherenkov peak without
changing the number of Cherenkov hits. It is induced by the non-zero value of 〈∆rdir〉 due
to the necessary application of the ToF correction. The events are reconstructed in direction
of the neutrino, which corresponds to PMT hits with cosα > 0. These hit PMTs are now, on
average, closer to the reconstructed event position than they should be, which in turn means
that their hit times are under-corrected by the photon ToF. Likewise, those PMTs which are
opposite to the neutrino direction, i.e. cosα < 0, are over-corrected by their hit photon ToF.
The combination of these ToF corrections is then such that PMT hits with the lowest cosα

values have a higher chance to be selected as the early hits of the events (Nth-Hit=1, 2, 3, ...),
while the PMT hits with the largest cosα values have the lowest chance to be selected as the
early hits.

The right Figure 6.6(b) shows the cosα distribution of the first hits of the events for the
nominal 7Be-ν MC with gvch = 0.108nsm−1 and 〈∆rdir〉= 1.89cm in black, in comparison
to a simulation with gvch = 0.228nsm−1 in red. This latter simulation is also set to 〈∆rdir〉=
1.89cm by shifting the reconstructed event direction by −0.46 cm, to look only at the impact
of gvch on the cosα distribution. The larger value of gvch results in a larger Cherenkov peak,
due to an increase in the number of Cherenkov hits at Nth-Hit=1. This is as expected, as
the gvch parameter effectively increases the Cherenkov photon velocity relative to that of
scintillation light. The Cherenkov to scintillation hit ration is 8% and 15% for the values of
gvch = 0.108nsm−1 and gvch = 0.228nsm−1, respectively.
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with each other, given the statistics of the MC.

Figure 6.7 shows the impact of the nuisance parameters on the 210Bi background cosα

distribution for the first hits of the events. The expectation is that different values of gvch
and 〈∆rdir〉 should not produce any difference in this cosα distribution, as the Cherenkov
light and initial electron direction of the background are uncorrelated to the position of the
Sun. This is the case for the investigated values of gvch = 0.108nsm−1,0.228nsm−1 and
〈∆rdir〉= 2.35cm in black, red and blue, respectively. The background MC cosα distribution
is not uniform, but rather follows a parabolic shape, with a minimum around cosα ≈ 0.1
and a peak to valley difference of about 2%. This shape is caused by the live PMT position
distribution in combination with the non-isotropic distribution of the solar direction. The
possible systematic uncertainty from this background shape is studied in Section 6.6 and is
found to be negligible.

6.2.2 Linear interpolation of cosα parameters

For the 210Bi background MC it is enough to simulate a single set of gvch, 〈∆rdir〉 parameter
values, as the background does not depend on them. In contrast to this, the 7Be-ν signal MC
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needs to be produced for different sets of gvch, 〈∆rdir〉 parameter values. The parameter gvch
is implemented at the lowest level of the G4BX2 simulation, according to Equation 5.2, which
makes it necessary to run the full MC simulation multiple times. The value of 〈∆rdir〉 can be
changed following the event position reconstruction by shifting every reconstructed 7Be-ν
event position by the appropriate value towards the neutrino direction or opposite to it. This
means that all possible values of 〈∆rdir〉 can be produced from a single simulation with any
gvch value.
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FIGURE 6.8: (a) The linear interpolation of gvch dependent cosα histogram of the 7Be-ν signal
in the Phase 1 RoI. Using gvch = −0.012nsm−1 (red) and gvch = 0.228nsm−1 (blue) results in an
interpolated cosα histogram with gvch = 0.108nsm−1 (magenta) that is well in agreement with the full
MC gvch = 0.108nsm−1 cosα histogram. χ2 = 7.7/9, p-value = 0.56. (b) Linear extrapolation using
gvch = −0.012nsm−1 (red) and gvch = 0.108nsm−1 (see (a)) to produce gvch = 0.228nsm−1 (ma-
genta) and using gvch = 0.228nsm−1 (blue) and gvch = 0.108nsm−1 to produce gvch =−0.012nsm−1.
The comparison between the extrapolated and full MC cosα histograms gives a χ2 = 10.3/9,

p-value = 0.33.

It is time inefficient to produce the full G4BX2 simulation for a very fine binning of
different gvch values. Thus, the cosα histograms for different gvch values are instead inter-
polated between just two full gvch simulations. This is shown in Figure 6.8, where the cosα

distribution of the full G4BX2 simulation of the 7Be-ν signal is plotted for three different gvch
values. These are gvch =−0.012nsm−1, gvch = 0.108nsm−1 and gvch = 0.228nsm−1 in red,
black and blue, respectively. These values correspond to the ∼ 3σ level of the measurement
with gvch = (0.108±0.039)nsm−1. The magenta line in Figure 6.8(a) shows the interpo-
lation of cosα with a value of gvch = 0.108nsm−1, using the other two histograms. This
interpolated histograms is well in agreement with the true cosα distribution with a χ2 = 7.7/9,
p-value = 0.56.

Additionally, the right Figure 6.8(b) shows the extrapolation of the cosα histogram with
gvch =−0.012nsm−1 in yellow and gvch = 0.228nsm−1 in magenta. The comparison to the
full MC cosα histograms shows again a good agreement with χ2 = 10.3/9, p-value = 0.33,
given the statistics of the MC. The conclusion is then that the contribution of Cherenkov hits to
the cosα distribution is well described by a linear interpolation between gvch =−0.012nsm−1

and gvch = 0.228nsm−1. Therefore, it is sufficient to use these two full gvch simulation to
produce all relevant signal cosα distributions. This behaviour does not necessarily need to
hold true at higher event energies which provide a larger number of Cherenkov hits per event.
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FIGURE 6.9: (a) The Nth-Hit dependence of the Cherenkov to total hit ratio for the 7Be-ν signal MC
with a value of gvch = 0.108nsm−1. The first hits of the events have a maximum of 8%, while the
overall Cherenkov to scintillation hit ratio is about 0.34%. (b) The χ2 test value between the individual
Nth-Hit cosα histograms of the 7Be-ν signal MC and the 210Bi background MC. Larger χ2 values
come from greater differences between the cosα histograms, which corresponds to a larger expected

sensitivity for the CID measurement.

6.3 Selection of the Nth-Hit cut off and number of histogram bins

Using the cosα distribution of the signal and background MC it is now possible to select a
value for the Nth-Hit(max) cut off, until which the analysis should be performed. The left
Figure 6.9(a) shows the Nth-Hit dependence of the Cherenkov to scintillation hit ratio for a
7Be-ν simulation with a value of gvch = 0.108nsm−1. The first hits of the events show the
largest Cherenkov fraction, which is still sub-dominant to the scintillation, while later hits
show a decrease in the ratio.

The right Figure 6.9(b) is a plot of the χ2 test values between the 7Be-ν MC and 210Bi
background MC cosα distribution for a given Nth-Hit. The cosα histograms have a binning
of 60 and the χ2 value is calculated using the statistical uncertainty of the MC cosα bins. It
can be seen again, that the first hits of the events have the greatest difference between the cosα

histograms, while later Nth-Hits have a decline that is much steeper, relative to the decline in
the Cherenkov to scintillation hit ratio on the left. Starting from Nth-Hit = 5 the χ2 values
are flat. A larger χ2 value means that the signal and background cosα distributions have a
greater discriminatory power between them, which corresponds to a larger expected sensitivity
in the CID analysis. Thus, the Nth-Hit until which the CID analysis is performed is chosen
as Nth-Hit(max) = 2, while the values of Nth-Hit(max) = 3, Nth-Hit(max) = 4 are used to
estimate the systematic uncertainty that could stem from this particular choice in Section 6.6.

The cosα histogram binning is selected according to a similar argument, based on a
toy-MC study [148]. For an injected number of solar neutrino events the estimated uncertainty
of the analysis results shows a decrease until a number of 20 bins, followed by a stable value
of the expected fit uncertainty. The number of 60 histograms bins is then selected for the CID
analysis and this somewhat arbitrary choice is varied in Section 6.6 to estimate a potential
systematic uncertainty.

6.4 Selection of good PMTs

The last selection that needs to be performed for the CID analysis is the selection of suitable
PMTs, that show the same behaviour between the data and the MC. This is illustrated in
Figure 6.10(a), on the left, where each PMT is plotted against the number of times it detected
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FIGURE 6.10: (a) The number of the first hits of the events (Nth-Hit = 1) at the different PMTs. The
data (black) shows an over-selection of some PMTs, while the 7Be-ν MC (red), normalised to the
data statistics, shows a relatively flat distribution. (b) The number of total hits at the different PMTs.
The data (red) and the normalised 7Be-ν MC (red) are in agreement with each other. Different PMTs
detect a different number of hits in the distributions due to different quantum efficiencies as well as the
presence or absence of the light collecting cone. Both these effects are well reproduced by the MC.

the the first hits of the events. The data of Phase 1 in the RoI is shown in black, while the
corresponding 7Be MC is shown in red, normalised to the 19904 data events. It can be seen
that some PMTs are grossly over represented in the data, while the MC shows a relative flat
distribution. The right Figure 6.10(b) shows the same data and MC, but now for all PMT hits.
The data and MC are well in agreement, with a visible structure for the number of detected
PMT hits. The difference between different PMTs comes from the difference in the PMT
quantum efficiency, as well as the impact of the light collecting cone or its absence. Both
effects are well reproduced in the MC compared to the data.

This means that the over- and under-selection of the first hits of the PMTs for certain
PMTs is coming from a time mis-alignment of individual PMTs in the data. This is a problem,
because it influences the cosα distribution shape of the early hits independent of the Cherenkov
to scintillation hit ratio and the bias of the position reconstruction. Some early PMT hits in the
data are selected not because they are hit by Cherenkov photons, but rather because the PMTs
have an intrinsic time misbehaviour. This has been already observed in Chapter 4, were some
PMTs have a run-by-run misbehaviour in their hit time distribution, while all PMTs have
a small, constant time offset between their hit time distributions. Therefore, these constant
time offsets Ci between the individual PMTs are corrected in the data, using the results of
the Ci measurement with the 214Po calibration source from Chapter 4.5.3. These corrections
alone are not enough to remedy the PMT misbehaviour of the data, as some PMTs remain
over-represented in their number of first hits, even after the time offset correction. This is
not unexpected, because the calibration campaign has been performed in a relative short time
window between 2008-2009, while Phase 1 ran from 2007-2010. It is possible, that the time
behaviour of some PMTs can degrade or change over time and some PMTs that have been
alive before 2008 have already been dead by the time of the calibration. Thus, the results of
the 214Po calibration are not sufficient to correct the PMT time misbehaviour for the entirety
of Phase 1.

To correct the systematic difference between the early PMT hits of the data and the MC
only a sub-set of all live PMTs is selected to be used in the CID analysis. These so called "good
PMTs" are selected here based on a statistical argument. First, the data PMTs are corrected
with their measured constant hit time offsets Ci and the PMTs with the worst run-by-run
hit time mis-alignment are deselected in both the data and the MC, following the results of
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Chapter 4 (see Figure A.1). Then, the same distribution of the number of first hits at each
PMT as in Figure 6.10(a) are used to compare each individual PMT between the data and the
MC, normalised to the data statistic. If the number of first hits is in a statistical agreement
between the data and the MC, than the PMT is selected to be used in the CID analysis. This
"statistical agreement" is defined as the two-sided Poissonian 68.3% confidence interval (CI),
where the Poissonian distribution is used because the expected number of first hits per PMT is
at about ∼ 12. The calculation of the CI follows from the relationship between the Poissonian
and χ2 distribution function, as described for example in [151] (using the “usual” intervals).
For a coverage probability of (1−α) (= 68.3%) and an observed number of first hits x at the
PMT the resulting interval is then defined as:

1
2

χ
2
[ndf=2x], (α/2) to

1
2

χ
2
[ndf=2x+2], (1−α/2) (6.3)

Equation 6.3 can be solved numerically or by using the inverse of the cumulative function
(χ2 quantiles). The PMTs are used in the CID analysis only if the intervals of the data and the
MC are overlapping. PMTs that do not fulfill this condition are deselected in both the data
and the signal and background MC for the production of the respective cosα histograms. The
same PMT selection procedure has also been performed in Chapter 5.

6.5 Measurement of the number of solar-neutrino events

The χ2 test statistics depends on the number of solar neutrinos Nsolar−ν , the mis-reconstruction
in direction ∆rdir, the Cherenkov group velocity correction gvch and is defined as follows:

χ
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(6.4)

Here, Dn
i represents the number of entries in the cosα histogram for Nth-Hit=n and at

bin i. The number of entries in the MC Mn
i depends on gvch, ∆rdir and is normalised to the

statistics of the data with "norm". The term "norm2 ·Mn
i " in the denominator describes the

uncertainty from the finite statistics of the MC simulation. The number of early hits to use for
the analysis is selected as Nth-Hit(max) = 2, while the number of histogram bins is 60. The
right part of the equation is a pull-term constraint on gvch, given the results of Chapter 5. The
∆rdir cannot be measured in Borexino and is left free from zero to 4 cm, which is large enough
such that a further increase has no impact on the χ2 profile. A negative ∆rdir value is excluded,
as it would mean that the data event position is reconstructed with a consistent bias in the
opposite direction of the Cherenkov hits. This is in opposition to the principle behaviour of
the position reconstruction algorithm. Only Nsolar−ν is of interest for the CID analysis, which
is why gvch, ∆rdir are treated as nuisance parameters. This means that the three dimensional
χ2 profile is minimised over gvch, ∆rdir for each given value of Nsolar−ν .

The neutrino signal MC cosα histogram is produced through linear interpolation of the
gvch, ∆rdir parameters, as described in 6.2.2. The full MC cosα histogram (M) is then the
weighted sum of the 7Be-ν signal MC (Msolar−ν ) and the 210Bi background MC (Mbackground),
constrained by the total number of selected data events Ntotal = 19904:

M =
Nsolar−ν

Ntotal
· (Msolar−ν(gvch, ∆rdir))+

Ntotal−Nsolar−ν

Ntotal
·Mbackground (6.5)
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FIGURE 6.11: The CID analysis χ2 profile (black)
in comparison to the individual contribution of
Nth-Hit = 1 (red) and Nth-Hit = 2 (blue) cosα

histograms. The number of histograms bins is
60. The performance of the three parameter CID
model provides a minimum at Nsolar−ν = 10887
with χ2/ndf = 124.6/117, p-value = 0.30, with
χ2(Nth-Hit = 1) = 57.3, χ2(Nth-Hit = 2) = 67.3.
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Using this χ2 test statistics defined in Equation 6.4 results in a best fit value of Nsolar−ν =
10887+2386

−2103(stat.), with χ2/ndf = 124.6/117, p-value = 0.30. The statistical uncertainty is
estimated from the χ2 profile trough ∆χ2 =±1, corresponding to the Gaussian equivalent 1σ

level, i.e. a 68.3% CI. This χ2 profile can be seen in Figure 6.11 in black, where the individual
χ2 of the cosα histograms corresponding to Nth-Hit = 1, Nth-Hit = 2 are shown in red and in
blue, respectively. In the absence of additional systematic uncertainties the pure background,
zero-neutrino hypothesis can be excluded with a ∆χ2 = 46.9. The Nth-Hit = 2 χ2 profile
is flatter than the Nth-Hit = 1 profile, as is expected from the larger number of Cherenkov
hits for Nth-Hit = 1. The kink around Nsolar−ν ≈ 1800 comes from the physical boundary of
∆rdir ≥ 0.0cm. For a given, low number of Nsolar−ν the fit accommodates the real Cherenkov
peak in data by reducing ∆rdir and increasing gvch, i.e. increasing the MC Cherenkov peak
by decreasing the negative cosα slope and increasing the Cherenkov hit per neutrino event
ratio. This is only possible until ∆rdir = 0.0cm reaches zero, and a further decrease in Nsolar−ν

results in a steeper χ2 rise.
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FIGURE 6.12: The cosα distributions of the first (a) and second (b) hits of the data events in Phase 1
(black). This is compared with to the MC model cosα distributions of the best fit result (red) and the
pure background MC (blue). The MC histograms are normalised to the statistics of data. Used in [135].

The best fit results are presented in Figure 6.12, on the left for the cosα distribution of
first hits of the events, and on the right for the second hits of the events. The data is shown
in black, with the corresponding statistical uncertainty. The best fit MC cosα histogram is
shown in red, while the pure background MC is shown in blue. The three parameter CID cosα

model seems to able to describe the data well, given the χ2/ndf = 124.6/117 value and the
appearance of these cosα distributions. The best fit result of the constrained gvch parameter is
0.094 nsm−1, which well within the 68.3% confidence interval from the measurement. The
relevant systematic uncertainties are estimated in the following Section 6.6 and the calculation
of the 7Be-ν rate from the measured Nsolar−ν is performed in Section 6.7.
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FIGURE 6.13: The CID analysis is per-
formed with different, assumed neutrino
directions around the Sun. The plot
shows the sinusoidal projection of the
best fit results given the assumed neu-
trino direction, where the true solar di-

rection is defined as φ = 0◦, θ = 0◦.

The CID analysis works by assuming the known position of the Sun as the origin of the
neutrino events. It is now also possible to assume a different origin of the neutrinos and
produce equivalent angular distributions cos α̃ . This is presented in Figure 6.13. Here, the
true solar direction is defined in spherical coordinates as (φ = 0◦, θ = 0◦) and the sinusoidal
projection shows the best fit number of neutrinos Nsolar−ν for a given direction (φ ,θ) around
the Sun. The true solar direction shows the largest number of measured neutrino events, while
the assumed directions perpendicular to the solar direction have a best fit of Nsolar−ν ≈ 0.
The Nsolar−ν values at 180◦ are again non-zero, but significantly smaller than for the true
solar direction. This effect comes from the negative slope, induced by the mis-reconstruction
in direction ∆rdir, which can mimic a small Cherenkov peak. Figure 6.13 is then a picture
of the Sun, as seen by the sub-MeV 7Be neutrinos. This is similar to the picture of Super-
Kamiokande for 8B neutrinos [152]. While this representation has no additional sensitivity,
compared to the nominal CID cosα histogram analysis, it clearly shows the solar origin of the
sub-MeV neutrino events in Borexino.

6.6 Investigation of systematic uncertainties

The primary goal of this analysis is the proof-of-principle of the CID method by performing
a measurement on sub-MeV 7Be neutrinos. The last step necessary for this measurement is
the estimation of the relevant systematic uncertainties, which is performed in this section.
As there is not much experience with the CID analysis the quantification of the relevant
systematic uncertainties are performed in a simple, but maximally conservative fashion. This
can accommodate the potential systematic uncertainties that have not been considered at the
time of this analysis, while not endangering the qualitative goal of the analysis. It seems
reasonable to err on the side opposing the analysis goal and then still be able to proof the
feasibility of the CID method, than to be overly optimistic and to potentially gloss over the
result. However, not all of the sources that are examined here have proven to be relevant.

6.6.1 MC production method

The first investigated source of a systematic uncertainty concerns the production method of
the MC cosα histograms for the neutrino signal and the background. The MC is simulated
with 200 MC events per data event, using the correct solar direction for the neutrino signal
and simulating the MC events in a 15 cm sphere around the reconstructed data event position.

The idea behind the 15 cm sphere is to minimise the potential impact of the event position
distribution on the cosα distribution. The calculation of cosα depends on the reconstructed
event position, as it defines the reconstructed photon direction. This is investigated in Fig-
ure 6.14(a), where the nominal 7Be-ν signal MC, in black, is compared to a signal MC
simulation, that is simulated with a uniform but random event position, in red. The comparison
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FIGURE 6.14: (a) The 7Be-ν MC cosα distribution, where the true MC event positions are simulated
in a 15 cm sphere around the reconstructed event position of the corresponding data event (black).
This is compared to the MC simulation, where the true event position is sampled uniformly in the
detector (red). Both distribution are in agreement with χ2/ndf = 9.8/9, p-value = 0.36. (b) The cosα

distribution of the first hits of the events for the full MC simulation of the 210Bi background (black) in
comparison with a toy-MC background simulation (red). The toy-MC takes into account only the live
PMT distribution and the solar direction distribution but has no information about the hit timing. Both

distributions are well in agreement with χ2/ndf = 9.4/9, p-value = 0.40.

between the two histograms gives a χ2/ndf = 9.8/9, p-value = 0.36, given the statistics of
the MC. For a given neutrino direction the significantly different event positions still produce
an integrated cosα distribution that is compatible with the more constrained 15 cm sphere
method. This means that the CID cosα distribution is robust, relative to the exact position
distribution of individual events.

Another concern is the exact shape of the cosα distribution, given the distribution of
selected PMT positions, and the solar direction distribution. This is investigated in Fig-
ure 6.14(b), where the nominal 210Bi background MC, in black, is compared to a toy-MC
study of the background, in red. The toy-MC uses the same selected PMT positions as the
data and the full MC, and simulates pseudo events uniformly in the detector, with a random
photon direction and with a solar direction sampled from Figure 3.2 It has no PMT timing
information and it is produced with about 1.5 times the statistic of the full MC. The cosα

distributions of the full MC and the toy-MC are well in agreement with a χ2/ndf = 9.4/9,
p-value = 0.40. This means that the parabolic shape of the background cosα distribution is
produced by the geometric effect of the selected PMT positions, which is well reproduced
through the event-by-event simulation approach. The conclusion is then that no systematic
uncertainty can be attributed to this MC production procedure.

6.6.2 Non-uniformity of 210Bi background

The next possible source for a systematic uncertainty is the non-uniform distribution of the
data background events. This can be seen in Figure 6.15(a), where the reconstructed z-position
distribution is shown in black, in comparison to the expected distribution for a uniform event
distribution, in red. These distributions are significantly different from each other, giving a
χ2/ndf = 311.6/65. There is an over-representation of events in the data close to the vessel
end-caps at large z-values. The potential impact of this non-uniformity has also been studied
with a toy-MC simulation, which is presented in Figure 6.15(b). Here, all simulated photons
crossing a radius of 6.5 m are defined as detected, which then corresponds to a full photo
coverage of the detector. The solar direction is again sampled according to the true data
distribution shown in Figure 3.2 The toy-MC simulation is performed for a uniform position
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FIGURE 6.15: (a) The distribution of the reconstructed event position in z. The Phase 1 data (black) in
the RoI is compared to the expected distribution following a uniform event position distribution (red).
The distributions are significantly different from each other with χ2/ndf = 311.6/65. (b) The cosα

distribution of a toy-MC background simulation with a uniform position distribution (red), compared
to the cosα distribution produced by an event position distribution following the data in (a). A detector
coverage of 100% is assumed, i.e. there is no geometric effect from a finite number of PMT positions.
Both distributions are simulated with 109 photon hits and they are significantly different from each

other. The absolute difference is negligible given the statistics of the data.

distribution in red and for the non-uniform distribution seen in the data in Figure 6.15(a), in
black. These simulations are performed with a statistic of 109 photon hits.

It can be seen that the uniform position distribution now produces a flat cosα distribution,
which agrees with the previous observation, that the finite PMT position distribution is the
cause of the parabolic cosα shape for the background. In contrast, the toy-MC with the non-
uniform event position distribution is significantly different from a flat cosα distribution, but
the absolute difference is smaller than 0.1%. This difference is so small, that it is considered
safely negligible given the statistics of the MC and the other systematic uncertainties. Please
note, that Figure 6.14(b) and Figure 6.15(b) show different background cosα distributions, as
the former uses the live PMT distribution and coverage, while the latter toy-MC assumes a
full detector coverage.

6.6.3 Uncertainty of the effective scintillation group velocity

The CID analysis is performed on those PMTs hits, which have the earliest estimated emission
time. This photon emission time is estimated trough the ToF correction of the path length
between the hit PMT and the reconstructed event position. This ToF correction depends on the
effective scintillation group velocity, which is measured as the effective scintillation refractive
index neff

g (d) in Chapter 4. It is found, that neff
g (d) is well described by a linear dependency on

the d, due to the attenuation in the LS. The uncertainty ∆neff
g (d) needs to be considered, as it

can influences which PMT hits are selected as Nth-Hit = 1,2. Varying neff
g (d) according to its

relatively small uncertainty results in a expected ToF difference of ∆t ∼ 0.06ns at d = 6.5m.
At the time of this analysis and its publication in [134, 135] the incorrect, constant neff

g
model has been used for the ToF calculation. This mistake has been found only after the
publication of the results in a re-evaluation of the neff

g (d) measurement. Using the correct linear
model of neff

g (d) for the ToF correction results in a best fit value of Nbest
solar−ν

= 11015+2412
−2127.

This means that even using the incorrect neff
g (d) model introduces only a relatively small

systematic uncertainty of the 1.2% compared to the nominal result. The results presented in
the next Section 6.7 are the same as the published ones for the sake of compatibility. The best
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fit difference is relatively small and the other systematic uncertainties are already estimated
maximally conservative to take into account exactly these types of mistakes. As such, an
update of the best fit Nsolar−ν value compared to the published results [134, 135] would not
change the conclusion of this CID analysis.

6.6.4 Selection of Nth-Hit(max)

The selection of Nth-Hit(max) = 2, for the number of early hits to be considered in the
CID analysis, could introduce a systematic uncertainty. The Nth-Hit dependence of the
Cherenkov to scintillation hit ratio is influenced by the gvch parameter, which could have
unaccounted for systematic differences between the γ-source measurement and the imple-
mentation in the G4BX2 neutrino simulation. For this reason the CID analysis is performed
two more times, for Nth-Hit(max) = 3,4 and the biggest observed difference is used to esti-
mate the systematic uncertainty. The best fit values are Nbest

solar−ν
(Nth-Hit(max) = 2) = 10887,

Nbest
solar−ν

(Nth-Hit(max) = 3) = 10370, Nbest
solar−ν

(Nth-Hit(max) = 4) = 10540. Thus, the sys-
tematic uncertainty is conservatively taken as±517, given the results between Nth-Hit(max)=
2 and Nth-Hit(max) = 3.

6.6.5 Selection of cosα histogram binning

The analysis is performed on histograms with a number of 60 bins, selected according to the
results of a toy-MC study regarding the expected sensitivity. This particular choice is somewhat
arbitrary, as all numbers of bins > 20 are expected to perform equally well. This choice could
introduce a systematic uncertainty, should there be a unconsidered difference between the
data and MC cosα distributions. For example, there could be some large scale structures
in the data or the MC, for which a too fine binning could decrease their potential impact
due to low bin statistics. Likewise, should there could be some cosα outliers due to some
undetected effect in the data and those would be smeared out by a too large bin-width. Thus,
the CID analysis is performed again with a number of 30, 40 and 120 cosα histogram bins.
Again, the largest difference between these analysis results and the nominal best fit value is
used to estimate the systematic uncertainty. The best fit values are Nbest

solar−ν
(30 bins) = 10991,

Nbest
solar−ν

(40 bins) = 11343, Nbest
solar−ν

(120 bins) = 10931. Thus, the systematic uncertainty is
conservatively taken as ±456, given the results between 40 and 60 bins.

6.6.6 Selection of good PMTs

The data PMTs exhibit a misbehaviour in their hit time distribution, which can over- or under-
select early PMT hits, based on the particular hit PMT. This misbehaviour is taken into account
for the production of the cosα histograms, by only selecting PMTs that show a good agreement
between the data and the MC. This "good agreement" is defined here as the Poissonian 68.3%
(1σ ) CI for the number of first hits at the PMTs between the data and the MC. It is clear that
this statistical approach is de-selecting a relatively large number of PMTs that do not have any
systematic difference between the data and the MC, while there is still a chance that bad PMTs
are not de-selected. To estimate the possible systematic uncertainty from the PMT selection
method the analysis is performed again, with a less stringent selection of PMTs according to
the 95.5% (2σ ) CI. The result is Nbest

solar−ν
(95.5%CI PMT selection) = 10247, which gives a

systematic uncertainty of ±640.

6.6.7 CNO-ν and pep-ν constraint

The next systematic uncertainty concerns the measurement of the 7Be-ν rate in Borexino,
in units of [cpd / 100 t]. For this, the measured number of neutrino events Nsolar−ν must be
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subtracted by the expected number of CNO-ν + pep-ν events. Their B16 SSM [35, 99]
expected event numbers are given in Table 6.2. Overall, the CNO-ν + pep-ν events are
expected to contribute about∼ 12% of the total number of neutrino signal events. The CNO-ν
+ pep-ν events can only be subtracted from Nsolar−ν if their MC cosα distributions have a
reasonable agreement to the cosα distribution of the 7Be-ν MC, which is used as the signal
histogram in the CID analysis.
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treme case, for a neutrino energy of Eν = 1.74MeV
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tograms are comparable with each other, χ2/ndf =

24.8/19, p-value = 0.16.

This is evaluated with Figure 6.16, where the nominal 7Be-ν MC (Eν = 0.862MeV) is
compared to a simulated neutrino event corresponding to the endpoint of the CNO-ν with
Eν = 1.74MeV. This corresponds to the most extreme possible difference in the neutrino-
electron angle cosθe. Figure 6.16 shows the cosα distribution of all Cherenkov hits between
the 7Be-ν MC in black and the CNO-ν in red. The comparison of these histograms gives a
χ2/ndf = 24.8/19, p-value = 0.16. It is possible that there is a relatively small systematic
difference between the neutrino signal cosα distributions, where the CNO-ν cosα distribution
is shifted to larger cosα value, compared to the 7Be-ν cosα distribution. Given the sub-
dominant contribution of CNO-ν + pep-ν events and the non-significant cosα difference
between the most extreme neutrino energy differences, it seems reasonable to consider this
cosα shape systematic uncertainty negligible.

Thus, the relevant systematic uncertainty here comes only from the SSM expected number
of CNO-ν + pep-ν events. This value is NSSM

pep+CNO = 1128+120
−230, where the HZ model is used

as the central value with the corresponding model uncertainties and the difference between
the HZ and LZ models is used as an additional systematic uncertainty.

6.6.8 Exposure

The last relevant systematic uncertainty concerns the calculation of the 7Be-ν rate. This
calculation is performed by simply multiplying the measured number of N7Be−ν , after the
CNO-ν + pep-ν correction, with the effective exposure f . This effective exposure is the
product of the live time, the fiducial mass, the energy efficiency εE and the MLP exposure,
which has an uncertainty of 1%. The exposure uncertainty is estimated conservatively by
using the single largest observed difference in the reconstructed position between the data
and MC calibration sources and calculating the fiducial volume accordingly. This difference
is 5 cm (see Figure 22 in [85] ), which results in a relative uncertainty of 4.6%, given the
selected spherical fiducial volume with a radius of R = 3.3m.

6.6.9 Summary

In this chapter, the relevant sources of systematic uncertainty have been examined. The
contribution of different parameter selections, such as the Nth-Hit(max), the cosα histogram
binning and the PMT selection, has been estimated maximally conservative. It is clear that
different parameter choices will result in different best fit outcomes purely due to statistical
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Source Uncertainty [%] Source Uncertainty[%]

Selection of binning 4.2 MLP exposure 1.0

Selection of Nth-Hit(max) 4.8
∆NSSM

pep+CNO

Nsolar−ν

+1.2
−2.3

Selection of good PMTs 5.9 Fiducial mass 4.6

Total
∆Nsolar−ν

Nsolar−ν

8.7 Total
∆R(7Be)
R(7Be)

+10.0
−10.2

TABLE 6.3: Relevant systematic uncertainties for the CID measurement of Nsolar−ν and the 7Be-ν rate.

effects, and potentially also due to systematic differences between the data and the MC model.
Here, these different best fit outcomes are instead attributed fully to systematic uncertainties
of unknown origin. While this method likely overestimates the uncertainty it is at the same
time relatively simple to perform. Likewise, the exposure has also been estimated maximally
conservative, using the largest possible difference in the FV. This approach does not hinder
the principle analysis goal, which is the proof-of-principle of the CID method, and not a
maximally sensitive measurement of the 7Be-ν rate. The relative systematic uncertainties
are summarised in Table 6.3, relative to the best fit value for the number of neutrino events
Nsolar−ν .

These estimations can be improved by a more thorough study, using toy-MC simulation
to disentangle the purely statistical and potential systematic components of the best fit result
differences. This is performed and explained in detail for the CID measurement of the CNO-ν
rate in Chapter 7.

6.7 Final results

FIGURE 6.17: The ∆χ2 profile of
the CID analysis, with (solid line)
and without (dotted line) the system-
atic uncertainties. The 68.3% CI
(blue band) is given by Nsolar−ν =
10887+2386

−2103(stat.)± 947(syst.). This is
in agreement with the SSM expecta-
tion of NSSM

solar−ν
= 10187+541

−1127 (orange
band). Used in [135, 134].

The final result on the CID measurement of the number of solar neutrino events now
includes the systematic uncertainties: Nsolar−ν = 10887+2386

−2103(stat.)±947(syst.). These system-
atic uncertainties are included in the measured ∆χ2(Nsolar−ν) profile through the convolution
of the likelihood function exp(−1

2 ∆χ2) with a Gaussian distribution. Its standard deviation is
given by the quadratic sum of all relevant systematic uncertainties. The ∆χ2 profile, including
the systematics, is shown in Figure 6.17 as a solid blue line, in comparison to the ∆χ2 profile
without systematics as a dotted blue line. The blue band shows the 68.3% CI (1σ ) of the CID
measurement, while the orange band shows the SSM expected value of NSSM

solar−ν
= 10187+541

−1127.
This value uses the HZ model as a central value and the difference of the HZ and LZ models
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as an additional model uncertainty. The SSM expectations and the CID measurement are well
in agreement with each other, given the relatively large uncertainty of the measurement of
−22%, +24%. The exclusion of the zero-neutrino, pure background hypothesis is given by
∆χ2(Nsolar−ν = 0) = 38.7, p-value = 5 ·10−10. This corresponds to an exclusion at the > 6σ

level, i.e. a detection of sub-MeV solar neutrinos with a fit that depends only on the directional
information of the Cherenkov hits.

It has to be noted here that the so called statistical uncertainty includes the impact of the
nuisance parameters, meaning it is not actually purely defined by the number of data events
and PMT hits. Fixing the nuisance parameters to their best fit value results in a ∆χ2 profile
with a purely statistical uncertainty of ∆Nsolar−ν =±1523. Thus, the impact of the nuisance
parameters ∆rdir, gvch can be estimated as (+1837, −1450).

Next is the calculation of the 7Be-ν interaction rate in the Borexino detector. This is done
by constraining Nsolar−ν with the number of expected events NSSM

pep+CNO = 1128+120
−230 and then

scaling the resulting number of N7Be−ν with the effective exposure f = 189.0 (100 t×days):

R(7Be) =
1
f

(
Nsolar−ν −NSSM

pep+CNO
)
= 51.6+13.9

−12.5 (stat. + syst.)
cpd
100t

(6.6)

This rate R(7Be) corresponds to both the mono-energetic lines of the 7Be neutrinos with
0.862 MeV and 0.384 MeV.

Systematic free exclusion of the zero-neutrino hypothesis
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FIGURE 6.18: The cosα distribution of the full de-
tector live time Phase 1 + Phase 2 + Phase 3 (black),
compared with the background MC distribution
(blue), normalised to the statistics of data. The
distributions are significantly different from each
other, with χ2/ndf = 107.0/9, p-value = 6 ·10−19.
This plot is updated relative to the published re-
sult [135], which used only a part of the Phase 3

data.

The principal CID measurement is performed here only on Phase 1, due to the potential
impact of a change in the detector response of the gvch measurement, as well as the mea-
surement of the constant hit time offsets between the different PMTs. These parameters are
measured using the calibration sources deployed in relatively short time intervals between
2008-2010. At the time of this analysis it has not been clear how applicable these values
could be for Phase 2 and Phase 3. Thus, the cosα distributions of all phases is used here,
not to perform a measurement, but to provide an additional exclusion of the zero-neutrino
hypothesis.

This can be seen in Figure 6.18, where the cosα histogram of the sum of the Phase
1+2+3 events is shown in black, in comparison to the corresponding background MC. The full
detector live time of 3628.7 days provides in total 78632 data events. A Cherenkov peak can
be clearly seen in the data, albeit at cosα ≈ 0.9 instead of the expected cosα ≈ 0.7, likely
due to statistics. The comparison between the data and the pure background MC gives a
χ2/ndf = 107.0/9, p-value = 6 ·10−19. This means that the background alone is not able to
explain the cosα shape of the data and there must be a contribution of solar-neutrino events.
This exclusion of the zero-ν hypothesis is free from the previous systematic uncertainties and
does not depend on the three parameter MC model of the CID measurement. It is an additional
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reinforcement for the proof of the CID principle, where the directional information of the
solar neutrinos can be accessed through the Cherenkov hits, even for sub-MeV neutrinos.

6.8 Conclusion and outlook

The goal of this Chapter is to provide the proof-of-principle for the detection of sub-MeV
neutrino events, using their directional Cherenkov hit information in the Borexino LS detec-
tor. The analysis is performed on the Correlated and Integrated Directionality (CID) cosα

distribution. This distribution is produced by correlating the known position of the Sun with
the detected PMT hits for every event. The integration of these angular correlation PMT hit
values cosα over a large number of events then provides a cosα distribution from which the
number of neutrino events can be inferred statistically.

The data events are selected in a beneficial RoI and FV, with a RoI of 225 < Ngeo
h < 305,

This efficiently selects the Compton-like shoulder of the recoil-electrons from the 0.862MeV
line of 7Be-ν . These borders correspond to a range of 0.56MeV < Ee < 0.76MeV, smeared
by the finite PMT hit statistic. It has to be noted here that this event selection makes explicit
use of the dominant scintillation hits, as the Cherenkov to scintillation hit ratio at these energies
is only about 0.34%.

The model of the cosα distribution is produced with the G4BX2 MC and uses the two
nuisance parameters gvch and ∆rdir in addition to the number of neutrino events. The gvch
can be measured in Borexino through the use of γ calibration sources while ∆rdir cannot be
measured due to the lack of a dedicated electron Cherenkov calibration source. Consequently,
the gvch can be constrained with a Gaussian pull-term, while ∆rdir is left entirely free in the
fit of the number of solar neutrino events. These two nuisance parameters are effectively
the largest contribution to the systematic uncertainty budget. The other sources of relevant
systematic uncertainties are estimated maximally conservative from the biggest difference
between the nominal analysis and variations in the Nth-Hit(max), histogram binning and the
selection of good PMTs.

The final result on the number of solar neutrinos is then Nsolar−ν = 10887+2568
−2307 (stat.+syst.),

which is well in agreement with the SSM expected value of NSSM
solar−ν

= 10187+541
−1127. This results

in a rate of R(7Be)CID = 51.6+13.9
−12.5 (stat. + syst.)cpd/100t, after constraining the CNO+pep-ν

event number. The CID measured result is well in agreement with the result of the corre-
sponding Phase 1 spectroscopy of R(7Be) = 47.87±2.28cpd/100t [83]1. It is clear that the
distinct 7Be-ν shoulder can be fitted rather well by the spectroscopic analysis using the scintil-
lation hits, resulting in much smaller uncertainties compared to the CID results. Nonetheless,
the CID method also provides a measurement of the 7Be-ν rate, using only the directional
Cherenkov information for the fitting. The CID analysis gives a ∆χ2(Nsolar−ν = 0) = 38.7,
corresponding to a > 6σ rejection of the zero-ν hypothesis. Thus, the combination of the
event selection through the scintillation hits and the subsequent analysis of the directional
cosα Cherenkov information makes this analysis a hybrid detection of the neutrino events.
The CID analysis provides the first direct use of the Cherenkov photons from sub-MeV solar
neutrinos and this is an additional proof of the solar origin of the signal events in Borexino.
The conclusion is then, that it is quite possible to access the directional Cherenkov information,
even in a monolithic, high light-yield LS detector, such as Borexino. These CID results are
published in [134, 135].

Therefore, the ongoing development of hybrid target materials and detection hardware
[119, 120, 124, 122] can be seen in a positive light. All developments that are intended
to improve the event-by-event direction reconstruction will likely also improve the CID
method. For future experiments it seems reasonable to suggest the use of a dedicated electron

1Summing both the 0.862MeV and 0.384MeV lines of 7Be-ν
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Cherenkov calibration source, in addition to all the other improvements that are necessary for
future generation (solar) neutrino detectors. The immediate improvement of the CID analysis
in Borexino is performed in the following Chapter 7, where the CNO-ν rate will be measured.
In the current chapter only Phase 1 is used for the analysis, which is a deliberate conservatism.
The main argument for this has been, that at the time of this analysis it has not been clear how
well applicable the measured gvch pull-term is on Phase 2 and Phase 3, as well as the constant
PMT hit time offsets. Both these properties are measured with calibration sources deployed
between 2008-2009, i.e. only during Phase 1. The following CID CNO-ν analysis will use
the full detector live time and measure these values for each phase separately, using the 7Be-ν
edge events, as well as 11C background events.
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Chapter 7

Correlated and Integrated
Directionality Measurement of
CNO-Neutrinos

Abstract

Borexino has provided the first experimental evidence for existence of CNO-cycle neutrinos
in the Sun, by performing a multivariate, spectral fit. This has been achieved through the
thermal stabilisation of the detector in Phase 3, which allowed for the constraint of the internal
210Bi background. The strong degeneracy between the spectra of the 210Bi background and
the CNO-ν signal would otherwise not allow for a sensitive measurement of the latter. The
Correlated and Integrated Directionality (CID) method now offers a unique crosscheck and
complementary measurement to this spectral fit of the CNO-ν rate, where the CID does
not depend on a 210Bi constraint and can therefore be performed for the full detector live
time. The CID analysis has been further improved in this chapter, compared to the previous
proof-of-principle of the hybrid event detection of sub-MeV neutrinos. First, the effective
Cherenkov group velocity correction gvch is measured trough the CID analysis on the neutrino
dominated region around the Compton-like 7Be-ν edge, around ∼0.5 MeV–0.8 MeV. For
this, the number of solar neutrinos is treated as a nuisance parameter for the measurement
of gvch, where the 7Be-ν and pep-ν neutrinos are constrained according to the Standard
Solar Model predictions. The CID measurement of the CNO-neutrinos is then performed in
a decoupled energy region around 0.85 MeV–1.3 MeV. Further improvements of the CID
sensitivity are provided by an optimised selection of the early PMT hits to use for the anal-
ysis, as well as an improved selection of well behaving PMTs. Two separate data sets are
selected, Phase 1 and Phase 2+3, to account and investigate for the potential change of the
detector response over time. No systematic differences have been found between the CID
analyses of Phase 1 and Phase 2+3. The full CID measurement of the CNO-ν rate results
in RCNO = 7.2+2.8

−2.7 (cpd / 100 t), using the entire detector live time of 3628.7 days, trough the
combination of the Phase 1 and Phase 2+3 results. The associated probability for the zero
CNO-ν hypothesis is P(NCNO = 0) = 7.8 ·10−8. This corresponds to a detection of the solar
CNO-cycle neutrinos with more than 5σ . Therefore, the CID method provides a relatively
direct proof of the solar origin of the CNO-ν signal. Future, large scale liquid scintillator
or hybrid detectors may be able to further benefit from the CID for the measurement of low
energy solar neutrinos by combining the spectral and CID analyses.

Borexino has successfully measured the fluxes of solar neutrinos from the entire pp-chain
of fusion reactions [86, 87, 84, 31, 88], with the exception of hep neutrinos. Nonetheless,
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the spectral measurement of the solar neutrinos from the CNO-cycle requires an even more
attentive treatment of the residual radioactive background. The main hurdle here is the
degeneracy between the 210Bi background spectrum and the CNO-ν recoil electron spectrum.
Additionally, the endpoint energy region of the CNO-ν spectrum has a large contamination
of cosmogenic 11C events. Therefore, the measurement of CNO-neutrinos using the spectral
fit is dependent on an external estimation of the 210Bi background [153]. Such an estimation
requires a sufficiently high thermal stability of the detector and the understanding of the
fluid-dynamical, convective motions inside the detector, as well as certain assumptions about
the transport mechanisms of the 210Bi and 210Po daughters of the 210Pb decay chain. For
this purpose the detector has been thermally insulated in 2015, to minimise the convective
transport of 210Po from the vessel surface to the inside of the FV. The thermal behaviour is
continuously monitored and compared to fluid dynamics simulations [154, 155]. With this
understanding of the convective transport, the 210Bi rate can be indirectly constrained through
its daughter 210Po, using the so called low-polonium field [89].

With these efforts Borexino has managed to provide the first direct experimental evidence
for the existence of the CNO fusion cycle inside the Sun, as well as a measurement of the
CNO-ν rate [68, 45]. Here, the data taking live time is limited by the thermal stability to
1431.6 days of Phase 3 [45], starting from January 2017. Furthermore, the solar origin of
the measured CNO-ν events is proven only indirectly, by the subtraction of the background
and pep-ν events from the measured energy spectrum, after which the remainder is in good
agreement with the spectrum expected from CNO-ν events.

Naturally, the CID analysis method now offers itself as an interesting cross-check and
supplementary measurement of the CNO-ν rate. It can potentially provide a direct proof of
the solar origin of the (assumed) CNO-ν events. The CID cosα shape has a fundamentally
smaller degeneracy between the 210Bi background and CNO-ν events. The cosα shape of all
background events originates from the distribution of live PMTs and it is relatively flat, while
the signal cosα shape of all solar neutrino species exhibits a distinct Cherenkov peak around
cosα ∼ 0.7, given sufficient statistics.

This means that the CID can be used throughout the entire detector data taking time from
Phase 1, Phase 2 to Phase 3 and does not depend on an external 210Bi constraint. It needs
no thermal insulation or fluid dynamics simulation and the CID does not depend on any
assumptions about the convective motions of the different background species. Given enough
statistics and a sufficiently high sensitivity, the CID has the potential to provide a measurement
of CNO-neutrinos, independent and without the challenges of the multivariate fit.

To achieve this goal, first an advantageous fiducial volume (FV) and energy region of
interest (RoI) is selected in Section 7.1, based on the expected number of neutrino events given
by the standard spectral fit. Then, the following Section 7.2 explains the production of the MC
signal and background cosα histograms used for the CID analysis, given the selected FV and
energy RoI. The previous CID analysis of 7Be-neutrinos provided important lessons, which
open up a multitude of avenues for the improvement of the current CID analysis, maximising
its sensitivity for the measurement of the CNO-ν rate. The first of which is the optimised
selection of the Nth-Hit(max) cutoff, described in Section 7.3. The new selection increases
the expected sensitivity by a factor of about ∼ 1.5, compared to the selection used for the CID
7Be-ν measurement. Next is the selection of good PMTs to use for the production of the CID
cosα histograms, described in Section 7.4. Here, the PMTs are deselected according to their
individual hit time distributions, allowing for a less conservative selection of a greater number
of PMTs to use, further improving the sensitivity.

The CID analysis chain is explained in Section 7.5, where Phase 1 and Phase 2+3 are
analysed separately to investigate a potential change of the CID detector response over time.
First, the effective Cherenkov group velocity correction gvch is calibrated on the 7Be-ν
edge region, ∼0.5 MeV–0.8 MeV. For this, the expected number of neutrino events are now
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treated as a nuisance parameter and gvch is the parameter of interest in the CID analysis.
The standard solar models (SSM) B16 [35] are used for the calculation of the expected
neutrino rates, with the high metallicity model GS98 (HZ-SSM) and the low metallicity
model AGSS09met (LZ-SSM). Then this gvch measurement is used as a pull-term for the
measurement of the CNO+pep-neutrinos in their RoI, decoupled from the 7Be-ν edge region at
0.85 MeV–1.3 MeV. This approach has the advantage that a potential change of the detector
response over time is effectively included in the gvch calibration, while at the same time
the gvch uncertainty is smaller compared to the gvch calibration using the γ-sources of the
calibration campaign, for both Phase 1 and Phase 2+3.

Next is the study of the systematic uncertainties in Section 7.6. Here, toy-MC studies
are used in the investigation of the different selection choices made for the analysis and the
CID background is examined with events outside of the energy RoI. While the previous CID
analysis of 7Be neutrinos is intended as a proof-of-principle and therefore uses maximally
conservative estimates of the systematic uncertainties, the emphasis of this chapter is on
more reasonable estimates, that require more thorough investigations. Following this train
of thought, Section 7.7 examines the fit response itself, where a fitting bias is found and
corrected through a Bayesian toy-MC sampling of the posterior. The final results of the CID
measurement of the number of solar neutrinos NCNO+pep and the CNO-ν rate are presented in
Section 7.8, including the systematic uncertainties and with the correction of the fit response
bias. The last Section 7.9 concludes the CID analysis of CNO-neutrinos with a summary.

The presented CID results, as well as the ROOT scripts used for their production, have
been cross-checked and reproduced by as part of her dissertation. She
also performed the γ background systematic toy-MC study [156] and the calculation of the
TFC-cut exposure efficiency. The FV and RoI selection has been primarily performed by

as part of her master thesis [149] and Section 7.1 is based on her Borexino
internal document [157].

7.1 Selection of CNO- and pep-neutrino region of interest

In this section the data event selection is explained, where the first selection is the data taking
live time to be used. The CID analysis will be performed independently for Phase 1 and
the sum of Phase 2+3. The use of at least two independent CID data sets makes it possible
to crosscheck the results, which could potentially help in the investigation of systematic
uncertainties stemming from a change of the detector response over time. At the same time,
using the sum of Phase 2+3 is expected to maximise the absolute number of CNO+pep-
neutrinos, as Phase 2 and Phase 3 have both a longer data taking live time than Phase 1 and a
reduced number of 210Bi background events.

The next selection parameter is the cut on 11C events, using the three fold coincidence
(TFC) [83, 109] algorithm, where otherwise 11C events could dominate over the ν-signal
events. Thus, the main CID analyses in the following sections are performed on 11C TFC-cut
data, while the TFC-tagged data is not used directly for the CID analyses. Next, it is necessary
to define a RoI which has a favourable number of CNO- and pep-neutrinos NCNO+pep, relative
to the total number of events Ntotal. At the same time the CNO+pep-ν region should be
decoupled from the previously selected 7Be-ν edge region to avoid potential correlations
from the calibration of gvch, as it is used as a pull-term for the NCNO+pep measurement. The
spherical FV cut on R is limited mostly by the external γ events (40K, 214Bi and 208Ti) as their
number increases exponentially for larger R.
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A figure of merit (FoM) is defined here as the ratio between the expected number of
CNO+pep-neutrinos NCNO+pep over the statistical uncertainty of Ntotal:

FoM(R, Ngeo
h (min), Ngeo

h (max)) =
NCNO+pep√

Ntotal
(7.1)

The FoM is calculated for each phase independently and maximised to find the best
combination of the spherical FV cut R and the upper and lower energy cuts of Ngeo

h . The
estimation of NCNO+pep and Ntotal is based on the results of the standard spectral fit for a given
combination of R and Ngeo

h (min), Ngeo
h (max). The exception are the external γ background

events, which have been fixed by hand in the fit to give reasonable results. The systematic
uncertainties of the standard fit are not considered in this estimate. The FV radius R is
varied between 2.90 m and 3.10 m in steps of 0.05 m and the spectral fit is performed at
each FV to calculate the FoM with the fit results of NCNO+pep and Ntotal, for a range of
340 < Ngeo

h (min)< 400 and 400 < Ngeo
h (max)< 600. The RoI is then selected according to

the highest FoM given the parameters R, Ngeo
h (min) and Ngeo

h (max).

R [m] Ngeo
h (min) Ngeo

h (max) Ntotal

Phase 1 3.05 340 520 2990
Phase 2+3 2.95 340 515 5974

TABLE 7.1: Selected RoI for CNO+pep-ν CID analysis and the number of selected data events Ntotal.

Live Time Fiducial Mass TFC Exposure

Phase 1 740.7 days 104.3 tons 55.77%
Phase 2+3 2888.0 days 94.4 tons 63.97%

TABLE 7.2: Live time, fiducial mass and TFC exposure for the selected RoI.

Table 7.1 summarises the RoI parameters which maximise the FoM for Phase 1 and
Phase 2+3. The RoI for the combined analysis of Phase 2+3 is reduced to Phase 3 for the
sake of simplicity, as Phase 2 and Phase 3 have very similar RoI values, R(Phase 2) = 3.00m,
R(Phase 3) = 2.95m and no difference in Ngeo

h (min) and Ngeo
h (max). The selected R decreases

for later phases as more external γ events are reconstructed inwards, due to the decrease in
position resolution from the loss of PMTs over time. This also has the consequence of a
reduced energy resolution, such that more external γ events are reconstructed inside the energy
RoI, which results in a lower Ngeo

h (max) selection Phase 2+3, compared to Phase 1.
Table 7.2 shows the data taking live time, the fiducial mass and TFC-cut exposure for the

selected RoI of each phase. Phase 1 has a data taking live time of 740.7 days [83], Phase 2+3
has 2888.0 days (1291.5 days from Phase 2 [84], 1596.5 days from Phase 3 [158]). Using
the LS density of (0.878±0.004) gcm−3 [90] results in a fiducial mass of (104.3±0.5) tons
for Phase 1 and (94.4±0.4) tons for Phase 2+3. The TFC-cut exposure has been calculated
using the standard toy-MC TFC exposure study [83] for the selected FV. The TFC exposure
values are 55.77% for Phase 1 and 63.97% for Phase 2+3, both with a negligible uncertainty
of ±0.02%. The TFC algorithm has been explicitly optimised for Phase 2 and Phase 3, for
the neutrino measurement using the standard spectral fit. For this reason Phase 1 provides a
lower exposure compared to Phase 2+3, but the updated TFC algorithm nonetheless provides
a better Phase 1 exposure compared to the old result of 48.5% [83].

Figure 7.1 shows the distribution of Ngeo
h for the selected TFC-cut data events of Phase

1 and Phase 2+3 in black and red, respectively. There is no discernible structure visible for
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FIGURE 7.1: The Ngeo
h distribution of data events

for Phase 1 and Phase 2+3 in the selected RoI.
Phase 1 in black, with R < 3.05m and 340 <
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these Ngeo
h distributions.

ν εE(Ph. 1) εE(Ph. 2+3) Rate [cpd / 100 t] NSSM
ν (Ph. 1) NSSM

ν (Ph. 2+3)

7Be 5 ·10−5 1.2 ·10−4 47.90±2.82 (HZ) 1.1±0.1 10.0±0.6
43.72±2.57 (LZ) 1.0±0.1 9.1±0.6

CNO 0.099 0.091
4.92±0.78 (HZ) 210±33 783±124
3.52±0.52 (LZ) 150±24 560±83

pep 0.343 0.316
2.74±0.04 (HZ) 405±6 1510±22
2.78±0.04 (LZ) 411±6 1531±22

TABLE 7.3: Energy efficiency εE and SSM expected number of solar neutrinos in the RoI.

Table 7.3 shows the expected number of solar neutrinos according to the HZ-SSM (B16-
GS98 [35]) and LZ-SSM (B16-AGSS09met [35]) for the selected phase and RoI, after the
TFC-cut. The fraction of events inside the energy RoI, including the trigger efficiency, is
called the energy efficiency εE here. The expected number of neutrino events is calculated as
the product of εE, detector live time, fiducial mass, TFC exposure (Table 7.2) and the SSM
expected neutrino rates. For the sum of CNO- and pep-neutrinos the expected HZ-SSM signal
to total ratio is NCNO+pep/2990 = 20.6±0.8% for Phase 1 and NCNO+pep/5974 = 38.4±1.5%
for Phase 2+3.

7.2 Production of neutrino signal MC and background MC

The general G4BX2 production of the CID MC cosα histograms for the neutrino signal and
background events is described in Section 3.2. For the selected CNO+pep-ν RoI, again, 200
MC events are simulated for every single data event, each with the corresponding position of
the Sun and live PMT distribution.

The main background components are 210Bi, 11C and a smaller number of external γ events.
The expected, relative contribution of the background species are ∼ 31% for 210Bi, ∼ 58% for
11C and ∼ 11% for the external γ’s, according to the results of the Phase 2 spectroscopy [84],
scaled with the corresponding εE of the selected RoI. Both main background species 210Bi
and 11C are simulated, to study a potential, energy dependent systematic uncertainty for a
uniformly distributed CID background in Section 7.6.4. As no relevant systematic differences
are found between the 210Bi and 11C events the background MC cosα histograms used for
the CNO+pep-ν region is the sum of 210Bi and 11C. The external γ events are not uniformly
distributed in the FV, as they follow an exponential attenuation in the LS. For this reason
they could potentially exhibit a non-negligible systematic difference in their cosα distribution
compared to the other background species. This systematic is studied by means of a toy-MC,
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as well as through the comparison of the full 210Bi and 11C CID MC with a selection of pure
external γ data events in Section 7.6.5. The full G4BX2 simulation of external γ events is
time-prohibitive.

For the signal MC both CNO-ν and pep-ν events are simulated, as they have significantly
different neutrino energy distributions. The CNO-ν spectrum is continuous, with an endpoint
energy of 1.74 MeV, while pep-neutrinos are mono-energetic at 1.44 MeV [41]. The impact
of the differences between the cosα histograms of CNO-ν and pep-ν is treated as a systematic
uncertainty and quantified in Section 7.6.6. For the 7Be-ν edge region of both Phase 1
and Phase 2+3 only the 7Be-neutrinos are simulated as the signal and only 210Bi events are
simulated for the background, as both are highly dominant relative to the other signal and
background species. The CID signal MC is produced for different values of gvch, as described
in Section 6.2. It is not practical to perform the full G4BX2 simulation for every possible
gvch value, as it would take too much time. Instead only a small number of gvch values
are simulated with the full simulation chain and then used to produce the corresponding
signal cosα histograms. All other gvch dependent cosα histograms are produced through
interpolation of these fully simulated cosα histograms. For the 7Be-ν edge region it is
found that a linear interpolation between only two histograms with gvch =−0.012nsm−1 and
gvch = 0.228nsm−1 is enough to reproduce the cosα histograms of the full MC chain, for all
gvch values in between.
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FIGURE 7.2: (a) Linear extrapolation of histogram with gvch = 0.228nsm−1 from gvch =
−0.012nsm−1, 0.108nsm−1 (red) compared to the full MC histogram (black): χ2/ndf = 44.6/19.
Linear extrapolation of histogram with gvch =−0.012nsm−1 from gvch = 0.108nsm−1, 0.228nsm−1

(yellow) compared to the full MC histogram (blue): χ2/ndf = 50.6/19. (b) Quadratic extrapolation
of histogram with gvch = 0.228nsm−1 from gvch = −0.012nsm−1, 0.108nsm−1 (red) compared
to the full MC histogram (black): χ2/ndf = 20.7/19. Quadratic extrapolation of histogram with
gvch = −0.012nsm−1 from gvch = 0.108nsm−1, 0.228nsm−1 (yellow) compared to the full MC

histogram (blue): χ2/ndf = 18.4/19.

For the selected CNO+pep-ν RoI this linear interpolation is not able to adequately re-
produce the cosα histograms of the full MC, as the larger electron energies at this RoI
produce a larger number of Cherenkov photons compared to the 7Be edge region. This
can be seen in Figure 7.2(a), where the signal cosα histograms are produced for three gvch
values with gvch = −0.012nsm−1, gvch = 0.108nsm−1 and gvch = 0.228nsm−1, using the
full MC chain. The true cosα histograms of gvch = 0.228nsm−1 is shown black and for
gvch =−0.012nsm−1 in blue. They are compared to the extrapolated histograms in red and
yellow, respectively. The extrapolation is performed with a linear fit of the cosα value for each
bin of the two histograms from the other gvch values. The true cosα histograms are signifi-
cantly different from the extrapolated histograms, with a χ2/ndf= 44.6/19, p-value= 8 ·10−4

for gvch = 0.228nsm−1 and χ2/ndf = 50.6/19, p-value = 1 ·10−4 for gvch =−0.012nsm−1.
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Figure 7.2(b) instead shows that using a quadratic fit between three gvch values provides an
extrapolation that is in agreement with the full MC cosα histograms. Using a set of four gvch
values {−0.012nsm−1,0.068nsm−1,0.148nsm−1,0.228nsm−1} to perform a quadratic fit
on the first three gvch values to extrapolate the last cosα histogram with gvch = 0.228nsm−1

gives χ2/ndf = 20.7/19, p-value = 0.35 and using the last three gvch values to extrapolate
the first cosα histogram with gvch =−0.012nsm−1 gives χ2/ndf = 18.4/19, p-value = 0.49.
This means that the underlying dependency of the neutrino signal cosα distribution on gvch is
approximated well by a quadratic function for the CNO+pep-ν region.

The signal cosα histograms for different values of the nuisance parameter ∆rdir are
produced from the linear interpolation between ∆rdir = 0cm and ∆rdir = 6cm. As ∆rdir cannot
be calibrated and consequently cannot be constrained by a pull-term in the CID analysis the
performance of this method compared to the full MC does not matter. The parameter ∆rdir
is allowed to take any value, necessary to reproduce the cosα histograms of data with the
corresponding MC histograms, as good as possible.

7.3 Selection of the Nth-Hit cutoff and CID-histogram binning

Previously the Nth-Hit cutoff for the Phase 1 CID analysis at the 7Be-ν edge has been selected
conservatively as Nth-Hit(max) = 2. The reason for this is twofold:

1. The gvch = (0.108±0.039)ns pull-term is measured with the 40K γ-source for a cutoff
of Nth-Hit(max) = 3 and has been unclear how applicable this gvch value would be for
a very different Nth-Hit cutoff in the neutrino measurement.

2. The χ2 values between 7Be-ν and 210Bi MC cosα histograms, as a function of indi-
vidual Nth-Hits, have shown an unchanging, flat distribution starting from the fifth hit
to the tenth. This has been incorrectly interpreted, such that there is only Cherenkov
information until the fourth hits of the events. Values for Nth-Hit> 10 have not been
investigated and only a single set of nuisance values for gvch and ∆rdir has been used.

For this reason the analysis has been performed on Nth-Hit(max) = 2 and the systematic
uncertainty from this choice has been estimated maximally conservative, as the absolute
difference between Nth-Hit(max) = 2 and Nth-Hit(max) = 3. The final goal of this CID
measurement is to maximise the sensitivity on the CNO-ν rate, which makes it is necessary
to revisit the Nth-Hit(max) selection and perform a more sophisticated estimation of the
corresponding systematic uncertainties. The method for optimising the Nth-Hit cutoff is a
comparison of the χ2 values between the pure signal and background MC cosα histograms, as
a function of the individual Nth-Hits. For this toy-MC study both signal MC and background
MC cosα histograms are produced with the statistics of data for the relevant phase and RoI.
A χ2-test is then calculated between the two histograms, independently for each selected
Nth-Hit and the χ2 is subtracted by the ndf (#Bins-1), i.e. the expected χ2 value for a perfect
statistical agreement between the signal and background.

∆χ
2 = 10−4

104

∑

(
#Bins

∑
i

(N(cosαi)
signal−N(cosαi)

back)2

N(cosαi)signal +N(cosαi)back

)
− (#Bins−1) (7.2)

Let N(cosαi) be the number of entries for the histogram bin i, out of a total number of bins
#Bins. Equation 7.2 then gives the value of the Cherenkov information as ∆χ2 for each Nth-
Hit between the neutrino signal MC and background MC histograms, averaged over 10k toy
simulations. This calculation is now performed up to a Nth-Hit for which ∆χ2 = 0 and beyond,
as ∆χ2 = 0 means that signal and background events are indistinguishable, given the statistics
of data. The bigger the difference between signal and background MC is, the larger is ∆χ2
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value and the expected CID sensitivity. The benefit of this procedure is that the calculation of
∆χ2 is simple, as it does not depend on the full CID analysis with nuisance parameters. It gives
an estimate on how well neutrino signal and background can be distinguished. This toy-MC
study is performed for multiple sets of nuisance parameter values and the same method is also
used to optimise the cosα histogram binning again, as Phase 2+3 has not been investigated
previously.

2 4 6 8 10 12 14 16 18 20

NthHit

0

20

40

60

80

100

2
χ

∆

: 60 bins
2

χ∆Be MC 
7

Phase 2+3 

 = 1.9cmdirr∆ = 0.108 ns/m, 
ch

gv

 = 2.2cmdirr∆ = 0.108 ns/m, 
ch

gv

 = 1.9cmdirr∆ = 0.068 ns/m, 
ch

gv

(a)

0 20 40 60 80 100 120

# Histogram Bins

0

20

40

60

80

100

2
χ

∆

 hits of events
st

: 1
2

χ∆Be MC 
7

Phase 2+3 

 = 1.9cmdirr∆ = 0.108 ns/m, 
ch

gv

 = 2.2cmdirr∆ = 0.108 ns/m, 
ch

gv

 = 1.9cmdirr∆ = 0.068 ns/m, 
ch

gv

(b)

2 4 6 8 10 12 14 16 18 20

NthHit

0

5

10

15

20

25

30

2
χ

∆

: 60 bins
2

χ∆Phase 2+3 CNO MC 

 = 2.7cmdirr∆ = 0.108 ns/m, 
ch

gv

 = 3.0cmdirr∆ = 0.108 ns/m, 
ch

gv

 = 2.7cmdirr∆ = 0.068 ns/m, 
ch

gv

(c)

0 20 40 60 80 100 120

# Histogram Bins

0

5

10

15

20

25

30

2
χ

∆

 hits of events
st

: 1
2

χ∆Phase 2+3 CNO MC 

 = 2.7cmdirr∆ = 0.108 ns/m, 
ch

gv

 = 3.0cmdirr∆ = 0.108 ns/m, 
ch

gv

 = 2.7cmdirr∆ = 0.068 ns/m, 
ch

gv

(d)

FIGURE 7.3: The toy-MC study of the Cherenkov information ∆χ2 as a function of the individual
Nth-Hit cosα histograms and the histogram binning, for Phase 2+3. The nominal MC ∆rdir value and
gvch = 0.108nsm−1 is shown in blue, an increased ∆rdir value is shown in red and the nominal MC

∆rdir with a decreased gvch = 0.068nsm−1 is shown in blue.

(a) ∆χ2 vs. the Nth-Hits for the 7Be-ν region.
(b) ∆χ2 vs. cosα histogram binning for the 7Be-ν region.
(c) ∆χ2 vs. the Nth-Hits for the CNO+pep-ν region.
(d) ∆χ2 vs. cosα histogram binning for the CNO+pep-ν region.

Figure 7.3 shows the result of the ∆χ2 toy-MC study for Phase 2+3. The corresponding
plots for Phase 1 can be found in the Appendix C.1. On the right ∆χ2 is plotted as a function of
the number of histogram bins for the first hits of the events, while on the left ∆χ2 is plotted as
a function of the Nth-Hits of the events for histograms with 60 bins. The statistical uncertainty
on ∆χ2 is about 0.7 and smaller than the plotted points. Three sets of gvch are investigated: the
expected value of gvch = 0.108nsm−1 from the γ-calibration and the nominal MC value of
∆rdir for each RoI in black, an increased ∆rdir and the same gvch value in red and a decreased
gvch = 0.068nsm−1 with the nominal ∆rdir value in blue. As expected, the ∆χ2 value shows
a decrease for later Nth-Hits. The first hits of events is highest for gvch = 0.108nsm−1 and
the nominal MC ∆rdir value, while it is lowest for the gvch = 0.068nsm−1. The lower gvch
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value consistently gives a lower ∆χ2 until the fourth (third) hits of events for the CNO+pep-ν
region (7Be-ν edge), where both injected gvch values give the same ∆χ2 within the statistical
uncertainty. This means that the direct information from Cherenkov hits is only relevant up
until Nth-Hit = 4. On the other hand the effect of an increased ∆rdir is clearly visible for the
high statistics 7Be-ν edge region of Phase 2+3. While the first hit gives still a larger ∆χ2 for
the nominal ∆rdir value, already starting from the second hit the ∆χ2 is larger for the increased
∆rdir value. Due to lower statistics this is less pronounced for the CNO+pep-ν region, but it is
still visible.

The reason for this behaviour is that the parameter ∆rdir describes the influence of
Cherenkov hits on the position reconstruction, where the Cherenkov hits on the PMTs apply
a bias on the position reconstruction, towards the initial direction of the electron. All PMT
hits are ToF corrected on the reconstructed position of a given event. This means that the
cosα value of all PMT hits is indirectly influenced by the Cherenkov hits through the position
reconstruction. The lower ∆χ2 value of the first hits of the events given by the larger ∆rdir is
the effective decrease of the Cherenkov peak, due to an increase of the ∆rdir induced negative
cosα slope. For later Nth-Hits this indirect Cherenkov information continues to influence the
scintillation hits and so there is still a ∆χ2 > 0 until Nth-Hit∼ 17. The total information given
by this indirect influence of the Cherenkov hits is given by the area under the ∆χ2 histogram,
as the CID analysis sums up the χ2 values of all Nth-Hits until Nth-Hit(max). Hence, it can be
estimated that the indirect Cherenkov information from the scintillation hits is smaller, but of
similar size as the Cherenkov information from the early, direct Cherenkov hits of the events.

The optimised value for Nth-Hit(max) is selected according to the condition of ∆χ2 = 0,
where no difference between signal and background MC cosα histogram can be expected
anymore, given the statistics of data. For Phase 2+3 this is Nth-Hit(max) = 17 and for Phase 1
this is Nth-Hit(max) = 15, given that the true ∆rdir value of data is unknown. These selections
are made by eye and as such are somewhat arbitrary. If the MC would perfectly reproduce data
it would in principle be possible to use every hit of the events (> 200 hits), as the CID analysis
summation of the χ2 profiles of the late hits > 17 would only contribute noise, effectively
adding only a constant to the summed χ2 profile. This cannot be guaranteed and even a
hypothetical systematic difference between the data background and the MC background, that
is negligible for the first ∼ 20 hits of the events, could become significant if 200 hits are used
for the CID analysis. It is thus beneficial to select Nth-Hit(max) in such a way that all available
direct and indirect Cherenkov information is used, given an unknown true value of ∆rdir. At the
same time it is reasonable to avoid adding too many hits without any Cherenkov information
(∆χ2 = 0), as they could potentially contribute a systematic uncertainty. Consequently, the
study of such a potential systematic uncertainty between the data background and the MC
background is performed in Section 7.6.5 for the selected Nth-Hit region. The systematic
impact of the somewhat arbitrary choice the Nth-Hit cutoff is studied in Section 7.6.1 for a
range of Nth-Hit(max) values around the nominal Nth-Hit(max) selection.

Looking at the binning optimisation, for both the 7Be-ν edge region in Figure 7.3(a) (top)
and the CNO+pep-ν region 7.3(c) (bottom), the ∆χ2 increases as the number of histograms
bins increases and saturates to a constant value at ∼ 30 bins. For less than 20 bins there are
structures in the graphs that are larger than the uncertainty on the averaged ∆χ2, indicating a
strong dependence of the signal cosα shape on the exact number of bins for < 20 bins. For
gvch = 0.108nsm−1 and the nominal ∆rdir MC value the shown ∆χ2 values are the highest,
while it is lower for the increased ∆rdir and lowest for gvch = 0.068nsm−1. This is as expected
for the first hits of the events, because an increase in ∆rdir means a large negative slope, which
effectively decreases the Cherenkov peak at cosα ∼ 0.7, without changing the number of
Cherenkov hits. Here, gvch = 0.068nsm−1 gives the least number of Cherenkov hits so the
corresponding ∆χ2 values are also the smallest. To optimise the selection of the number of
cosα histogram bins the ∆χ2 must be maximised. This is the case for any number of bins
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> 30, independent of the RoI and the exact value of gvch and ∆rdir. Here, a number of 60 bins
is chosen for the main CID analysis, for both Phase 1 and Phase 2+3 and for both the 7Be-ν
edge region and CNO+pep-ν region. A possible systematic uncertainty from this choice of
binning is investigated in Section 7.6.1. Table 7.4 summarises the selection of Nth-Hit(max)
and cosα histogram binning, which are the same for the 7Be-ν edge region and CNO+pep-ν
region for a given phase.

Nth-Hit(max) Binning

Phase 1 15 60

Phase 2+3 17 60

TABLE 7.4: Optimised selection of Nth-Hit and cosα histogram binning.
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FIGURE 7.4: (a) The number of the first hits of the events on a given PMT, for the 7Be-ν region of
Phase 2+3. data (black) shows over-selected PMT peaks, while the 7Be-ν MC (red), normalised to
data statistics, shows a relatively flat distribution. (b) The distribution of Ngeo

h for the TFC-tagged 11C
data events used for the production of the PMT hit time distributions.

A major systematic difference between the CID data and the MC has been identified as
the over-selection of some PMTs for early hits in data. This can be seen in Figure 7.4(a) for
the 7Be-ν region of Phase 2+3, where the comparison to MC clearly shows some data PMTs
show peaks for the number of detected first hits of the events.

Previously, this systematic difference has been corrected by selecting PMTs based on a
statistical argument, where the distribution of first hits of the events on the PMTs is compared
between data and MC. If the number of detected first hits on a data PMT is outside of the
expected Poissonian 68.3% CI of the corresponding MC PMT, then the hits on this PMT are
ignored for the production of the cosα histogram of data and MC; the PMT is deselected.
This is explained in Section 6.4 and the method is by design a conservative approach that
likely deselects too many non-misbehaving PMTs. The reason for this conservatism is that
the initial 7Be-ν CID measurement has been used to study the principal feasibility of CID
and all methods and uncertainty estimations have been maximally conservative. Here on the
other hand the goal is perform a CID measurement of CNO-neutrinos with a reasonably high
sensitivity, i.e. without being maximally conservative at every step of the analysis. For this



7.4. PMT selection and correction of the relative PMT time offset 119

reason a better method to deselect the misbehaving PMTs is presented in this section, based
on the PMT hit time distributions of the separate PMTs.

The underlying cause for the over-selection (and under-selection) of the first hits of events
for some PMTs, as seen in Figure 7.4(a), is the time behaviour of those individual PMTs
relative to the other PMTs. This effect has already been noticed in Chapter 4, where some
PMTs have shown a run to run time misbehaviour as well as a statistically significant, relative
time offset between the PMTs. There the analysis is based on the PMT hit time distributions
of the 214Po calibration source events. The calibration campaign has been performed only
at the end of Phase 1 and only for specific source positions for a number of calibration runs
close in time. Furthermore, these 214Po-source studies have been produced with a known
source position and without the ToF correction, precisely because there the effective refractive
index, necessary for the ToF correction, has been measured for the purpose of the CID
analysis. As the Nth-Hit definition for the production of the CID cosα histograms relies
on the reconstructed position and ToF correction this means that effectively the PMT time
misbehaviour and relative time offset between the hit time distributions of the PMTs could
also rely on the performance of the position reconstruction algorithm and ToF correction itself.
It is therefore not clear if a PMT selection based on the results from Section 4.5 is applicable
to Phase 2+3, or even to the entirety Phase 1.

Thus, in this section the ToF corrected hit time distributions of each individual PMT are
investigated using 11C-tagged data events 1, separately for Phase 1, Phase 2 and Phase 3. The
events are selected within 350 < Ngeo

h < 700, 11C-tagged and within the CNO+pep-ν region
FV for each phase (Phase 1: R < 3.05m, Phase 2: R < 2.95m, Phase 3: R < 2.95m). The
reason for this selection is that 11C is produced uniformly throughout the detector and has
a reasonably large number of events and at the same time a large number of PMT hits per
event in the selected RoI. Additionally, the 11C-tagged data is independent from the 11C-cut
data of the CNO CID analysis, excluding potential systematic correlations between the PMT
selection and the CID analysis.

Figure 7.4(b) shows the Ngeo
h distribution of 11C-tagged data events in the corresponding

RoI for each phase. Phase 1 has 20270 11C-tagged events, Phase 2 has 42769 events and Phase
3 has 47932 events. The average number of PMT hits per event is 〈Ngeo

h 〉 ≈ 500. The ToF
corrected hit time t-distribution of each individual PMT is produced for each phase separately,
according to the definition of Equation 3.7. The reason to look at the t-distribution separately
for each phase is shown in Figure 7.5(a), exemplary for PMT No. 1006. For this particular
PMT the t-distribution of Phase 3 is significantly different compared to Phase 1 and Phase 2,
which is not the case for most other PMTs, which show a time behaviour that is comparable
between all phases. The t-distributions are fitted with a bi-exponentially modified Gaussian
distribution similar, but less complex than Equation 4.2. The fit function f (t) is defined here
as:

f (t) =A1 e
1
2

(
σ

τ1

)2
− t−µ

τ1 erfc
(
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2

(
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(
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)2
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(

1√
2

(
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τ2
− t−µ

σ

)) (7.3)

Where t is the ToF corrected hit time, "erfc" is the complementary error function (erfc(x) =
1− erf(x)), A1, A2 are the amplitudes, τ1, τ2 are the exponential time constants and µ and σ

are the Gaussian mean and standard deviation, respectively. The test statistic used to fit these

1The low energy 14C events have also been investigated, but have been found to be unusable for this analysis.
The position reconstruction uncertainty is too large, given the number of PMT hits of Nh

geo < 160.
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parameters is the likelihood-ratio λLR, defined as follows:

λLR =−2
I

∑
i

[
log

(
e− f (ti) f (ti)di

di!

)
− log

(
e−diddi

i
di!

)]
(7.4)

Where the PMT hit time distribution is given as a histogram with a binning of 1 ns from i = 0,
to I = 55. The number of data entries in each bin i is given by di, whereas the number of
expected entries is given by the function value f (ti) of Equation 7.3. The likelihood-ratio
λLR is then the sum of the logarithm of the Poissonian likelihood for each bin. The constant
likelihood, where di is assumed to be its own expected value is subtracted to make λLR more
comparable to a Gaussian χ2 value.
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FIGURE 7.5: (a) The normalised hit time distribution of the same PMT No. 1006 for Phase 1 (black),
Phase 2 (blue) and Phase 3 (red) as an example that time behaviour of individual PMTs can change
drastically over time. (b) Example of the PMT hit time distribution fit for the misbehaving PMT No.
693 in Phase 2. The data hits (black) are fitted with the bi-exponentially modified Gaussian distribution
(yellow) and the resulting confidence intervals are shown in shades of red. For comparison the best fit

distribution of a normal PMT is also shown (blue).

An example of the fit is given in Figure 7.5(b), where for Phase 2 the hit time distribution
of PMT No. 693 is shown in black, with the corresponding best fit in yellow and the 68.3%
(1σ ), 95.9% (2σ ) confidence intervals in shades of red. It can be seen that some data points are
outliers, but the overall λLR/ndf = 1.9 is not intolerably large. For the purpose of illustration
the best fit result of the normal PMT No. 1735 is also shown in blue. In this case "normal"
means that the best fit parameter values of PMT No. 1735 are distributed similar to the bulk
of the best fit values of all PMTs. It can be seen that PMT No. 1735 and 693 have a clearly
different hit time distribution and that PMT No. 693 gets over-selected for the first hits of
an event, not because it sees more Cherenkov hits, but because the ToF corrected PMT hit
time distribution is much broader and contributes more hits at earlier times compared to most
other PMTs. Thus, under the assumptions that most PMTs in data behave comparably to the
PMTs simulated in MC it is possible to deselect individual PMTs if they show a ToF corrected
hit time distribution significantly different from the bulk of the PMTs. Correspondingly, the
deselection of misbehaving PMTs is based on the distribution of the best fit parameters from
Equation 7.3 and is performed as follows:

1. Produce and fit the ToF corrected hit time t-distributions for each PMT.

2. Plot the distribution of the best fit results of (a) λLR/ndf, (b) µ , (c) the corresponding fit
uncertainty ∆µ , (d) σ , and (e) the early hits over total ratio, where early hits are defined
as t < µ−2σ . This ratio is chosen because it is sensitive to distributions which are to
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broad or have a hit time distribution at early times that is not well explained by the fit
function.

3. Deselect PMTs which have outlying best fit result compared to the bulk of the PMTs for
any of the above mentioned parameters. The µ cut values are to deselect PMTs outside
of ±1 ns around the average of the bulk distribution 〈µ〉, i.e. a Gaussian fit of the µ

distribution, while explicitly excluding outliers. The values are 〈µ〉(Phase 1) = 35.34ns
〈µ〉(Phase 2) = 35.32ns and 〈µ〉(Phase 3) = 35.33ns each with a statistical uncertainty
of 0.01 ns. The other cut values are the same for all phases: deselect PMTs with
∆µ > 0.3ns, λLR/ndf > 2, or early hits over total ratio with values larger than 0.015.

4. Fix σ in the fitting algorithm to the peak value of the distribution of only the selected
PMTs. These fixed values are 〈σ〉(Phase 1) = 1.808ns, 〈σ〉(Phase 2) = 1.840ns and
〈σ〉(Phase 3) = 1.842ns, each with a statistical uncertainty of 0.006 ns.

5. Perform the fit and PMT selection again, now with the fixed σ value. This is done to
improve the selection power of λLR/ndf, where misbehaving PMTs give larger, best fit
λLR values as their hit time distribution shape cannot be accommodated by the fit with
the fixed σ value. For example the fit of PMT No. 693 in Phase 2 gives λLR/ndf = 1.9
with a free σ parameter and λLR/ndf = 3.8 with the fixed value.

Figure 7.6 shows an example of the fit parameter distributions used for the PMT deselection
in Phase 2. The black histograms show the distribution of the parameters for all PMTs, before
any deselection and the red histograms show the distribution of the parameters after fixing
σ in the fit and after the PMT deselection. The distribution of µ in Figure 7.6(a) shows
the bulk of the PMTs around 35.3 ns and this value is the same within the statistics for all
phases, which is a good sign that the collective hit time behaviour of most PMTs stays stable
between the phases. It can be seen that there are some PMTs with outlying µ values, which
are deselected. The same is true for the other plots of the ∆µ , λLR/ndf and early hits over
total ratio distributions. The λLR/ndf values of the PMTs are shifted to slightly higher values
after the cut on parameters, i.e. after fixing σ .

The effective result of this hit time distribution based deselection of PMTs is shown in
Figure 7.7 for Phase 2. The distribution of PMTs with a certain number of first hits of the
events is shown for the data without the deselected PMTs in black and for data with the
PMT deselection in red. The data without deselected PMTs has PMTs with up to 286 first
hits and the bulk is shifted to smaller numbers compared the distribution of data after the
PMT deselection. This is compared the expected distribution according to MC in blue. The
expectation is produced by normalising the number of MC events to the statistics of data (as
in Figure7.4(a)) and applying a Poissonian smearing around the expected number of first hits.

After the PMT deselection the data is in good agreement with the MC expected distribution.
The corresponding plots for Phase 1 and Phase 3 are in the Appendix C.2, where the data is
also in good agreement with the MC expectation after the PMT deselection.

Method of PMT selection Phase 1 #PMTs Phase 2 #PMTs Phase 3 #PMTs

First hit statistics 1432 1326 975
11C hit time distribution 1678 1499 1121

TABLE 7.5: Number of selected PMTs for the two different methods of PMT selection.

Table 7.5 compares the numbers of selected PMTs for both methods of PMT deselection,
the statistical deselection of Section 6.4 and the method based on the hit time distribution of
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FIGURE 7.6: Example distributions of the four parameters used to select good PMTs in Phase 2. The
black histograms show the distributions for all PMTs with a free σ parameter. The red histograms

show these parameter distributions for the final PMT selection, after fixing σ = 1.842ns.

(a) Distribution of the Gaussian mean value µ .
(b) Distribution of the fit uncertainty on the Gaussian mean value ∆µ .
(c) Distribution of the early hits (t < µ−2σ ) over total ratio.
(d) Distribution of the best fit negative log-likelihood λLR results.

FIGURE 7.7: Distribution of the number of first
hits of the events on the PMTs for the 7Be-ν region
of Phase 2. The data without a PMT deselection
(black) has PMTs with up to 286 first hits. The
comparison of the data with the PMT deselection
(red) and the expected distribution from MC (blue)

show a good agreement.
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NCNO+pep analysis of Phase 2+3 for a number of ad-
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of PMTs from this section is given as N = 0.

this section. The latter keeps more PMTs selected and thus gives a higher expected sensitivity,
under the assumption that all misbehaving PMTs are deselected.

The dependence on the statistical uncertainty of the CID analysis is shown in Figure 7.8
for the fit of NCNO+pep in Phase2+3. Here, 1000 toy-MC samples have been produced with a
simulated value of NCNO+pep = 2293 events out of 5974 according to the HZ expectation. The
nuisance parameters are simulated as gvch = 0.108ns and ∆rdir = 2.7 cm. The toy-analyses
are performed with the selections for the nominal data analysis of Nth-Hit = 17 and 60 bins
for the cosα histograms. The PMTs used in the cosα histograms production are selected by
the hit time distribution method of this section and additional PMTs have been deselected by
further constraining the cut values of the fit parameters. Deselecting additional PMTs increases
the statistical uncertainty, where the nominal PMT selection gives an expected uncertainty
of ∼ 480 and each additional deselected PMT increases the uncertainty by about ∼ 0.2
(∼ 0.09%). This is because the signal neutrino MC and background MC cosα histograms are
looking more similar to each other for a lower number of selected PMTs.

Although here the selection of the PMTs is based on the underlying hit time distribution,
instead of just statistical arguments, the cut values of the parameters are still selected somewhat
arbitrary. There is no a-priori reason to select ±1.0ns around 〈µ〉 instead of ±1.2ns for
example. For this reason Section 7.6.2 has a dedicated study of the PMT selection systematic
uncertainty, where additional PMTs are deselected in the same way as above, to see whether a
significant change of the data CID analysis results occurs.

Relative PMT time offset correction

The fit parameter µ shows a certain distribution around a central value 〈µ〉. It is shown in the
following that the µ distribution of data cannot be explained from the statistical uncertainty of
the PMT hit time distribution fit itself, but rather that the PMTs have effectively a constant
offset relative to each other. For this the 11C MC PMT hit time distributions are fitted in the
same way as data, where the MC PMT hit time distribution is reduced to the statistics of the
corresponding data PMT for each phase. The MC analysis is not used to deselect PMTs but
the same PMT selection is applied as on data. Figure 7.9(a) shows the resulting PMT hit time
fit parameter distribution of the fit uncertainty ∆µ between data in black and MC in red, for
the sum of all phases. Both ∆µ distributions of data and MC show a similar shape, where
a double peak structure with an exponential tail is visible. The peak at smaller ∆µ values
comes from Phase 2 and Phase 3 which have higher event statistics compared to Phase 1 and
therefore produce smaller uncertainties. The exponential tail likely comes from the different
hit statistic on the PMTs, stemming from the difference in quantum efficiencies and spatial
distribution of the PMTs, as well as the presence of a light collecting cone.

The fit procedure results in a reasonable agreement between the data and the MC for the
uncertainty ∆µ . Figure 7.9(b) on the other hand shows a significant difference between the
data and the MC for the µ distribution around the central value 〈µ〉, in units of the uncertainty
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FIGURE 7.9: (a) Distribution of the fit uncertainty ∆µ for data in black and for MC normalised to data
statistics in red. The results of Phase 1, Phase 2 and Phase 3 are summed up. (b) Distribution of the
best fit time mean values around the average of all mean values (µ−〈µ〉) in units of fit uncertainty ∆µ .
The MC (red) has a standard deviation of 1.0, while the data (black) has a standard deviation of 4.7.

∆µ . Here, PMTs with and without light collecting cone are plotted relative to their own central
value. If the value of µ around the central value is only smeared by the statistical uncertainty
of the fit, then the (µ−〈µ〉)/∆µ distribution should have a standard deviation of 1.0. This is
the case for the MC, which means that the fit procedure itself behaves correctly, as it is known
that MC has no systematic differences of the time behaviour between the PMTs. For the data
on the other hand the distribution has a standard deviation of 4.7, which corresponds here
to 0.3ns. It is not possible that the data standard deviation of µ is systematically increased
by the fit procedure itself, as the fit is performed the same way for the data and the MC. The
only explanation is then, that the data PMTs show an effective constant time offset relative to
each other. This has also been the case for the measurement of the effective refractive index
in Section 4.5, but in this 11C analysis the ToF correction on the reconstructed position is
explicitly included in the same way as for the production of the CID cosα histograms. This
should be a better estimation, as it includes the effective detector response throughout the full
data taking time of the respective phase, instead of just a small number of calibration source
runs close in time.

The origin of the relative time offset between the PMTs is not known. It could be from
a small, systematic misalignment of the PMT laser calibration system [97], differences in
the PMT rise time and also an effect of the position reconstruction, which is known to be
asymmetric in data (see. Section 4.5.3). It could be a combination of any of those and other
effects, but ultimately the origin of this relative time offset between the data PMTs is not
important. It is only important that the data and the MC behave systematically different, as this
systematic difference translates into a difference between the data and MC cosα histograms,
which depend on the relative hit times between the PMTs. Consequently, the relative, constant
time offset (µ −〈µ〉) of the data PMTs should be corrected. This correction introduces a
separate systematic uncertainty which is studied in Section 7.6.3, as (µ−〈µ〉) is only known
with an uncertainty ∆µ .

The last thing that has to be noted here is that (µ−〈µ〉) is calculated on 11C tagged events,
which are positron events. The neutrino signal used in the CID analysis comes from the
neutrino recoil electrons. This difference is not a problem because only the relative, constant
time differences between each PMT are relevant for the calculation of the Nth-Hit value. This
is the case here as the hit time distributions are produced from the same 11C tagged events
for each and every PMT. The absolute time differences between different event species are
not important for the Nth-Hit variable, as each event provides a cosα value for every Nth-Hit,
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independently from all other events.

7.5 Measurement of NCNO+pep without systematic uncertainties

In the following section the full analysis chain for the measurement of the number of CNO+pep-
neutrinos NCNO+pep is performed for a first time. This is done without including the various
systematic effects and uncertainties, as to explain the analysis procedure.

First, the calibration of the effective Cherenkov group velocity correction gvch is performed
for Phase 1 and Phase 2+3 on their respective 7Be-ν edge region. By applying a pull-term
on the expected number of solar neutrinos Nν and treating them as a nuisance parameter it is
then possible to produce a χ2-profile for gvch. The two χ2-profiles for Phase 1 and Phase 2+3
represent an effective calibration of gvch which could include unknown systematic differences
between Phase 1 and Phase 2+3 and as such they are then used independently to constrain
gvch for the measurement of NCNO+pep of Phase 1 and Phase 2+3.

All cosα histograms used in the CID analyses are produced with the PMT selection and
time offset correction (µ(PMT)−〈µ〉) described in the previous Section 7.4, but without the
systematic uncertainty from ∆µ(PMT). In this section only the plots for Phase 2+3 are shown
due to their higher statistics, while the corresponding plots of Phase 1 can be found in the
Appendix C.3.

7.5.1 Calibration of gvch at the 7Be-ν edge region

The CID analysis of the 7Be-ν edge region is used to calibrate the effective group velocity
correction gvch in this section. The selection of the data events in the FV and RoI, as well as
the production of the CID MC for the 7Be-ν signal and 210Bi background is described in the
previous Section 6.1. Phase 1 has Ntotal = 19904 and Phase 2+3 has Ntotal = 58728 selected
data events at the 7Be-ν edge region.

χ
2
gvch

(Nν ,gvch,∆rdir) =
Nth-Hit(max)

∑
n=1

I

∑
i=1

(
(norm ·Mn

i −Dn
i )

2

norm ·Mn
i +norm2 ·Mn

i

)
−2ln(P(Nν))

χ
2
gvch

(gvch) = argmin
Nν ,∆rdir

[
χ

2
gvch

(Nν ,gvch,∆rdir)
] (7.5)

The χ2-test statistic for the calibration of gvch is given by Equation 7.5. Here, I = 60
is the selected binning for the cosα histograms and the selected number of Nth-Hits until
the analysis is performed is Nth-Hit(max) = 15 for Phase 1 and Nth-Hit(max) = 17 for Phase
2+3. The number of histogram entries at the cosα bin i of the Nth-Hit = n is given by Dn

i
and Mn

i for data and MC, respectively, where "norm" is the scaling factor between the MC
and data event statistics. The term "norm2 ·Mn

i " in the denominator takes into account the
finite statistics of MC. The number of solar neutrinos Nν are constrained according to the
distribution P(Nν) from the SSM expected values and their corresponding uncertainties. It
is then possible to produce the χ2(gvch) profile by treating Nν and the mis-reconstruction in
direction ∆rdir as the nuisance parameters, where for each given gvch the three dimensional
χ2

gvch
(Nν ,gvch,∆rdir) is minimised over Nν and ∆rdir.

Table 7.6 lists the HZ-SSM and LZ-SSM expected number of solar neutrino events for
Phase 1 and Phase 2+3 according to their respective FV and selected energy region at the 7Be
-ν edge. Here, the MLP-cut is applied, but no TFC-cut. Using these numbers Figure 7.10
then shows the allowed probability distributions P(Nν) for Phase 1 on the left and Phase
2+3 on the right. The SSM uncertainty is assumed to be Gaussian and the HZ and LZ
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FIGURE 7.10: Different possible distributions for the allowed number of neutrino events, used as
a pull-term for the gvch calibration. Blue: Normalised sum of the LZ-SSM and HZ-SSM expected
values of 7Be + pep + CNO-neutrinos. Black: LZ-SSM and HZ-SSM expected values of 7Be + pep,
where CNO is left free. Red: The LZ-SSM and HZ-SSM expected values of 7Be + pep, where CNO is
uniformly distributed between zero and the upper 5σ confidence level of HZ-SSM. This is the selected

distribution for the pull-term on the gvch calibration. (a) For Phase 1. (b) For Phase 2+3.

N7Be (HZ) N7Be (LZ) Npep (HZ) Npep (LZ) NCNO (HZ)

Phase 1 9059±530 8264±473 423±6 429±6 705±112

Phase 2+3 41146±2405 37555±2208 1958±29 1986±29 3342±530

TABLE 7.6: Expected number of solar neutrinos at 7Be-ν edge region for Phase 1 and Phase 2+3. The
total number of data events is 19904 for Phase 1 and 58728 for Phase 2+3.

expectations are treated as equally likely, by summing up their respective distributions and
then normalising the summed distribution. This creates the blue distributions for the expected
number of solar neutrino events. These distributions are not used as a pull-term for the gvch
calibration, because it makes an explicit assumption about the possible number of CNO-ν
events, which later could introduce a bias for the CID measurement of CNO-ν with a pep-ν
constraint. Instead two other options are presented in black and red. For the black distribution
the number of CNO-ν events is left entirely free from zero to the total number of measured
data events and for the red distribution the number of CNO-ν events is constrained from zero
to a value corresponding to the upper 5σ confidence level of the HZ-SSM. This means that the
distribution of N7Be+pep is convoluted with a flat distribution of 0 < NCNO < Ntotal−N7Be+pep
for the black distribution and 0 < NCNO(Phase 1)< 1265, 0 < NCNO(Phase 2+3)< 5992 for
the red distribution of Phase 1 and Phase 2+3, respectively. This red distribution is then
used as the actual P(Nν) constraint on the number of expected neutrino events, because it
is a tighter constraint than leaving the CNO-ν rate entirely free, while at the same time it is
very unlikely to introduce a bias that could affect the CID measurement of CNO-ν with a
pep-ν constraint later on. An important note is that these distributions explicitly include the
statistical uncertainty on the expected number of neutrinos and not only the SSM uncertainty.

Performing the gvch calibration according to Equation 7.5 produces the ∆χ2(gvch) profile
shown in Figure 7.11(a) for Phase 2+3. The best fit value is gvch = (0.089±0.018)nsm−1,
where the uncertainty is estimated from ∆χ2(gvch) = ±1, corresponding to a Gaussian
68.3% (1σ ) CI. This value is in agreement with the results of the γ calibration sources
of gvch = (0.108±0.039)nsm−1 (see Chapter 5), even though both calibration methods and
Nth-Hit(max) selection are very different. Overall, the best fit MC cosα histogram is able to
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FIGURE 7.11: (a) Resulting ∆χ2(gvch) profile of Phase 2+3, with χ2/ndf = 1036.3/1017,
p-value = 0.33. The best fit value is gvch = (0.089±0.018)nsm−1. (b) The χ2 corresponding p-
values of each individual Nth-Hit cosα histogram between data and MC. The MC histograms are
not fitted individually on data, but use the best fit results of the full Nth-Hit(max) = 17 analysis. The
p-values are calculated for a number of bins of 60 (black) and 20 (red). The dotted lines correspond to

p-value = 0.32 andp-value = 0.05.

explain data well, with an absolute χ2/ndf = 1036.3/1017, p-value = 0.33. Using the best fit
results of the analysis with 60 bins per histogram and reducing the number of bins to 20 gives
χ2/ndf = 336.4/337, p-value = 0.50, which also shows a good agreement between data and
MC. If there would be large scale structures in the cosα histograms that are systematically
different for data and MC, then a binning of 60 could potentially hide those due to lower
statistics per bin, but this is not the case here.

For the same reason, the corresponding, combined p-value of 17 cosα histograms with 60
bins each could mask a potential difference between data and MC for the cosα histograms
at the individual Nth-Hits. Figure 7.11(b) shows the χ2 corresponding p-values for each
individual cosα histogram at a given Nth-Hit for a binning of 60 in black and 20 in red.
This is not an independent analysis of each individual Nth-Hit, but it is using the best fit
results of the full Nth-Hit(max) = 17 analysis. The dotted lines represent p-value = 0.32 and
p-value= 0.05. The number of points with p-value< 0.32 is six and zero with p-value< 0.003
out of 17, for both 60 bins and 20 bins histograms. This means that no single cosα histogram
is significantly different between data and MC and the overall goodness of fit performance is
satisfactory, as statistically about 5.4 values with p-value < 0.32 are expected, while six are
realised.

It is not easy possible to give an intuitive, graphical understanding of the fit performance
by showing all 17 histograms with 60 bins each. For this reason Figure 7.12 instead shows the
sum of the early Nth-Hits and late Nth-Hits cosα histograms, with 10 bins each. On the left
the sum of the first to fourth Nth-Hits is shown and on the right the sum of the fifth to 17th

Nth-Hits. The data is shown in black, while the best fit MC is shown in red. For comparison,
the pure background MC is shown in blue. In the early hits the Cherenkov peak is clearly
visible for cosα ∼ 0.7, as well as the second peak with a negative slope for −1 < cosα < 0.0.
This second peak comes from the effect of ∆rdir, as explained in Section 6.2.1 and it is also
clearly visible for the later Nth-Hits on the right side. This shows that the optimised selection
of Nth-Hit(max) is able to use the indirect Cherenkov information of late Nth-Hits through
∆rdir, to provide a non-negligible sensitivity for the CID analysis, even though no peak from
direct Cherenkov hits is visible. The shape of the background cosα histograms is defined
by the position distribution of the selected, live PMTS. The goodness of fit performance and
observations on the cosα shape are qualitatively also true for Phase 1, whose plots can be
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FIGURE 7.12: Summed cosα histograms of the Phase 2+3 7Be region used for the gvch calibration.
data is shown in black, pure 210Bi background MC in blue and in red the best fit MC histogram with
gvch = 0.089nsm−1, Nν = 40663 fitted signal events and 18065 background events out of 58728
events in total. (a) The sum of the first to fourth Nth-Hits. The peak of direct Cherenkov hits is visible
around cosα ∼ 0.7. (b) The sum of the fifth to 17th Nth-Hits. The negative cosα slope of neutrino
events due to ∆rdir = 1.66cm is visible in data. The non-flat cosα shape of the MC background comes

from the distribution of selected, live PMTs.

found in Appendix C.3.
Table 7.7 summarises the results of the gvch calibration at the 7Be-ν edge region. Compar-

ing the Phase 1 result of gvch(Phase 1) = (0.138±0.028)nsm−1 with the result gvch(γ-calib.)
= (0.108±0.039)nsm−1 from the γ sources shows that they are in agreement with 0.6σ ,
while the comparison between the Phase 1 and the Phase 2+3 results gives a difference of
1.5σ .

χ2/ndf p-value gvch [nsm−1] Nν

Phase 1 868.3/897 0.75 0.138±0.028 9400

Phase 2+3 1036.3/1017 0.33 0.089±0.018 40663

TABLE 7.7: Results of the gvch CID calibration without systematic uncertainties. The total number of
data events is 19904 for Phase 1 and 58728 for Phase 2+3.

The gvch parameter and its calibration can be considered a robust estimation of the
underlying Cherenkov photon properties that are systematically different between data and
MC. The calibration at the 7Be-ν edge has good p-values for the full analysis and for each
individual Nth-Hit, meaning that the MC model is able to correctly reproduce the cosα shape
of data. In total, the three independent gvch measurements of Phase 1, Phase 2+3 and on the γ

sources give agreeable results, even for the drastically different analysis method between the
CID approach and the γ sources, as well as the different selection of Nth-Hit(max) between
Phase 1 and Phase 2+3. Due to the 1.5σ difference of the Phase 1 and Phase 2+3 results
a conservative approach is taken in the following CID analysis of the CNO+pep-ν energy
region, where gvch is constrained only by the results of the corresponding phase and not by
the weighted average of all gvch measurements. This approach keeps the statistical uncertainty
higher than it would be for a combined gvch pull-term, but it can potentially account for small,
systematic differences in gvch between Phase 1 and Phase 2+3, should they exist.
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7.5.2 Measurement of NCNO+pep

χ
2
ν(NCNO+pep,gvch,∆rdir) =

Nth-Hit(max)

∑
n=1

I

∑
i=1

(
(norm ·Mn

i −Dn
i )

2

norm ·Mn
i +norm2 ·Mn

i

)
+∆χ

2
gvch

(gvch)

χ
2
ν(NCNO+pep) = argmin

gvch,∆rdir

[
χ

2
ν(NCNO+pep,gvch,∆rdir)

] (7.6)

The CID analysis of NCNO+pep is performed using the optimised RoI selection from Section 7.1.
Phase 1 has Ntotal = 2990 and Phase 2+3 has Ntotal = 5974 selected data events in the CNO+pep-
ν RoI and FV. A χ2-test statistic is used to compare the data and MC cosα histograms, as
shown in Equation 7.6.

The selected binning for the histograms is I = 60 and the selected number of Nth-Hits
until the analysis is performed is Nth-Hit(max) = 15 for Phase 1 and Nth-Hit(max) = 17 for
Phase 2+3. The number of entries at the cosα bin i of the nth hits of the events is given by Dn

i
2

and Mn
i for data and MC, respectively, where "norm" is the scaling factor between the MC and

data event statistic. The term "norm2 ·Mn
i " in the denominator takes into account the finite

statistics of MC. The value of gvch is constrained using the ∆χ2
gvch

(gvch) profile, produced
from the CID analysis at the 7Be-ν edge region in the previous section. By treating gvch and
∆rdir as nuisance parameters, the three dimensional χ2

ν(NCNO+pep,gvch,∆rdir) is minimised
over gvch, ∆rdir to a one dimensional χ2

ν(NCNO+pep) profile.
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FIGURE 7.13: (a) Resulting ∆χ2(NCNO+pep) profile of Phase 2+3, with χ2/ndf = 1000.5/1017,
p-value = 0.64. The best fit value is NCNO+pep = 2770+515

−491 out of 5974 events. The red and blue bands
represents the 68.3% CI of the SSM expectations of HZ and LZ, respectively. (b) The χ2 corresponding
p-values of each individual Nth-Hit cosα histogram between data and MC. The MC histograms are
not fitted individually on data, but use the best fit results of the full Nth-Hit(max) = 17 analysis. The
p-values are calculated for a number of bins of 60 (black) and 20 (red). The dotted lines correspond to

p-value = 0.32 and p-value = 0.05.

The ∆χ2(NCNO+pep) profile of this CID analysis is shown in Figure 7.13(a) for Phase 2+3.
The best fit value is NCNO+pep = 2770+515

−491 out of 5974 total events, where the uncertainty
is estimated from ∆χ2(gvch) =±1, corresponding to a Gaussian equivalent 68.3% (1σ ) CI.
This best fit NCNO+pep is well in agreement with the HZ-SSM (NHZ

CNO+pep = 2293±125) with
a 0.9σ difference, while The LZ-SSM (NLZ

CNO+pep = 2092±85) has a difference of 1.4σ . The
no-neutrino hypothesis can be excluded with ∆χ2 = 34.8, > 5σ . The best fit parameters

2The continuity correction for the Gaussian approximation of the Poisson distribution (Dn
i + 0.5) does not

impact the results, as the expected entries per bin are about 50 and 100 for Phase 1 and Phase 2+3, respectively.
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provide a χ2/ndf = 1000.5/1017, p-value = 0.64 and reducing the number of bins to 20 for
the same best fit results gives χ2/ndf = 331.2/337, p-value = 0.58. There is a good agreement
between data and MC, but these values of χ2/ndf < 1 could be an indication of some sort of
small, but not critical overfitting. It is possible that here the uncertainty from the bin statistics
is relatively large compared to the model differences between MC histograms with different
gvch, ∆rdir values.

Figure 7.13(b) shows the χ2 corresponding p-values for each individual cosα histogram
for a given Nth-Hit with a binning of 60 and 20 in black and red, respectively. These
values are calculated with the best fit results of the CID NCNO+pep analysis using 60 bins
and Nth-Hit(max) = 17. The dotted lines represent p-value = 0.32 and p-value = 0.05. The
number of p-values < 0.32 is six and there are zero p-values < 0.003, for both histogram
binning selections. The early Nth-Hits < 5 in particular have large p-values, independently
from the later Nth-Hits. Thus, the observation of χ2/ndf < 1 is not driven by noisy, late
Nth-Hits, which are expected to have only small Cherenkov hit features. This is good, because
it means that the gvch, ∆rdir parameters that govern the MC cosα shape are likely not strongly
influenced by random fluctuations in data of late Nth-Hits. The overall goodness of fit
performance is satisfactory, meaning that the CID MC model is well able to describe the data.
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FIGURE 7.14: (a) Summed cosα histograms of the Phase 2+3 CNO+pep-ν region. data is shown in
black, pure MC background in blue and in red the best fit MC histogram with Nν = 2770 fitted signal
events, 3204 fitted background events out of 5974 events in total and gvch = 0.096nsm−1. (a) The sum
of the first to fourth Nth-Hits. The peak of direct Cherenkov hits is visible around cosα = 0.7. (b) The
sum of the fifth to 17th Nth-Hits. The negative cosα slope of neutrino events due to ∆rdir = 2.69cm is
visible in data. The non-flat cosα shape of MC background comes from distribution of selected, live

PMTs.

To illustrate the results of the fit and the agreement between data and MC the cosα

histograms of the sum of early Nth-Hits and late Nth-Hits are shown in Figure 7.14. For the
sum of the first to fourth Nth-Hit histograms the peak from direct Cherenkov hits is visible
at cosα = 0.7. For the sum of the late hits from the fifth to the 17th Nth-Hit, the indirect
effect of the Cherenkov hits, ∆rdir is also visible by eye. The best fit MC histogram explains
the negative slope better than the pure background. The non flat cosα distribution of MC
background is governed by the position distribution of the selected live PMTs, which is well
described in MC as it is simulated on an data event-by-event basis. The observations made on
the NCNO+pep CID analysis of Phase 2+3 are qualitatively also true for Phase 1, where the CID
data is well explained by the best fit MC histogram also for individual Nth-Hits. The relevant
plots can be found in the Appendix C.3.

The results of the CID NCNO+pep measurement are summarised in Table 7.8 and the Phase 1
value NPhase 1

CNO+pep = 676+235
−224 is well in agreement with both the HZ-SMM (NHZ

CNO+pep = 615±34)
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and LZ-SSM (NHZ
CNO+pep = 561±25). For Phase 1 the no-neutrino hypothesis can be excluded

with ∆χ2 = 10.3, > 3σ .

χ2/ndf p-value NCNO+pep

Phase 1 886.9/897 0.59 676+235
−224

Phase 2+3 1000.5/1017 0.64 2770+515
−491

TABLE 7.8: Results of the NCNO+pep CID analysis without systematic uncertainties. The total number
of data events is 2990 for Phase 1 and 5974 for Phase 2+3.

A last observation is the difference of the best fit ∆rdir values between the phases and energy
regions. For Phase 1 these values are ∆rdir = (1.89±0.19)cm and ∆rdir = (3.20±0.77)cm
for the 7Be-ν edge and CNO+pep-ν region, respectively. For Phase 2+3 these values are
∆rdir = (1.66±0.12)cm and ∆rdir = (2.69±0.31)cm. The ∆rdir values between Phase 1 and
Phase 2+3 are comparable with each other due to the relatively large uncertainty, but Phase 1
shows consistently higher values for both energy regions. This is expected, as the loss of PMTs
over time increases the position reconstruction uncertainty, which should decrease the effect
of ∆rdir. The ∆rdir values are larger for the CNO+pep-ν region, which is a significant effect
for the combined differences of Phase 1 and Phase 2+3. This is also expected, as the larger
electron energies at the CNO+pep-ν energy regions result in a higher Cherenkov/scintillation
ratio, which gives a bigger ∆rdir mis-reconstruction in the initial electron direction.

Here, the detailed study of systematic uncertainties is still outstanding. Neither are
these the final results of the NCNO+pep CID measurement, nor is the number of pep-ν events
constrained to perform a measurement of the CNO-ν rate. The different systematic uncertainty
studies are explained in the following Section 7.6 and 7.7. The final results of the CID analysis
of NCNO+pep and NCNO, including systematic uncertainties, are given in Section 7.8.

7.6 Estimation of systematic uncertainties

The biggest systematic uncertainty of the CID analysis comes from the uncertainty of the
parameters gvch and ∆rdir, which are used to model the data cosα histograms. Their influence
is automatically included in the ∆χ2 profiles because they are treated as nuisance parameters
in the fit. The other possible sources of systematic uncertainties can be categorised into two
groups. First, there are those sources which only influence the CID measurement regarding
the number of neutrino events in the selected data set:

• The selection of Nth-Hit(max) until the analysis is performed.

• The selection of the number of cosα histogram bins.

• The selection of good PMTs to be considered for the analysis.

• The relative time alignment between different data PMTs.

• The position distribution of different background species.

• The cosα shape differences between pep-ν and CNO-ν events.

• The expected number of neutrino events that are not of interest.

The second category of systematic uncertainty sources are those that impact the calculation
of the neutrino rate [cpd / 100 t] from the measured number of neutrino events and vice versa:
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• The selection of the fiducial volume.

• The selection of the energy region of interest.

• The exposure efficiency of the MLP and TFC algorithms.

For the previous CID measurement of 7Be-neutrinos the uncertainties have been estimated
with simple, but maximally conservative methods. The intention of this previous measurement
has been to provide a robust proof of principle for the CID method and the overestimation of
the systematic uncertainties does not impede this strategic analysis goal. As the primary goal
of this analysis is to provide an actual measurement of CNO-neutrinos, now the listed sources
are investigated in detail and with a reasonable estimation of their systematic uncertainties
values. The methods used for these investigations are toy-MC studies and the comparison of
pure data background events outside the selected energy RoI with MC background events.

7.6.1 Selection of Nth-Hits(max) and number of histogram bins

The number of Nth-Hit(max) cosα histograms used for the CID analysis is optimised to take
into account the sensitivity on direct Cherenkov hits, as well as the indirect information of
Cherenkov hits, provided through the biased position mis-reconstruction ∆rdir. In principle it is
possible to use all hits of the events, as each Nth-Hit is independent from the others and starting
from some late Nth-Hits, they only provide random noise and no Cherenkov information
of any kind. Nonetheless the analysis is constrained to Nth-Hit(max) = 15 for Phase 1 and
Nth-Hit(max) = 17 for Phase 2+3, which is a somewhat arbitrary selection and an equally
good Nth-Hit(max) value could have been selected between about Nth-Hit(max)≈ 10 to 20,
or more. The reason that very large Nth-Hit(max) values are not considered, is that there
could be systematic differences between the cosα histograms of data and MC, dependent
on the Nth-Hits, without adding more CID sensitivity. Such systematic differences could
stem from the MC and data background for example, where even a very small difference, that
is negligible for individual Nth-Hits, would dominate the analysis for the use of hundreds
of Nth-Hits. Likewise, the selection of the number of bins for the cosα histogram is also
somewhat arbitrary. The existence of a systematic uncertainty through the choice of binning
seems unlikely, but it could be possible that some large scale cosα structures are different
between the data and the MC and hidden through the lower bin statistics for a larger binning.
Conversely there could exist systematic cosα outliers in data, which then would be averaged
out and effectively hidden by the use of too few bins.

Therefore, the impact of the selection of Nth-Hit(max), as well as the binning on the
CID result and systematic uncertainties are studied here, through the use of a toy-MC. The
toy-MC used here is the same as for the Acceptance Sampling Unfolding used to unfold the fit
response, described in the later Section 7.7 and the procedure is as follows:

1. The values of the CID parameters Nsim
ν , gvsim

ch , ∆rsim
dir are selected randomly from the

entire parameter space. This means that for the 7Be-ν edge region Nsim
ν is sampled

according to the allowed probability distribution P(Nν), while for gvsim
ch , ∆rsim

dir the
values are sampled uniformly in a region of interest. For the CNO+pep-ν region
gvsim

ch is sampled according to the ∆χ2(gvch) corresponding probability distribution
P(gvch) = exp(−1

2 ∆χ2(gvch))
3, while for Nsim

CNO+pep, ∆rsim
dir all physically allowed values

are equally likely to be selected.

2. The toy-data is produced from MC cosα histograms according to the sampled parame-
ters and with the statistics of data. Then the toy-data is analysed in exactly the same

3This is the same as the Bayesian posterior from the gvch measurement, now used as a prior.
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way as the true data, with the nominal selection of Nth-Hits(max) and number of bins
as well as including the relevant pull-terms. This results in the best fit values for the toy
analysis as Nfit

ν , gvfit
ch, ∆rfit

dir.

3. If all best fit values of the toy analysis are the same as the results of the true data analysis,
within a small window, then the toy-data analysis is performed a second time where the
selection of either Nth-Hit(max) or the number of histogram bins is changed relative
to the nominal analysis. The best fit parameter distribution of this second analysis is
the conditional probability distribution to see a certain result for a changed selection of
Nth-Hit(max) or the number of bins, given the results from the nominal data analysis.

4. The standard deviation of the toy-MC fit result distributions then corresponds to the
expected statistical uncertainty for the variation of the Nth-Hit(max) and binning selec-
tion. This makes it possible to identify a potential systematic uncertainty in fit results of
the data , should they be statistically unlikely.

0.075 0.08 0.085 0.09 0.095 0.1 0.105

]1m  [ns
ch

ToyMC Best Fit gv

0

50

100

150

200

250

300

350

D
is

tr
ib

u
ti

o
n

 [
ar

b
. 

u
n

it
s]

Selected results for NthHit(max) = 17

Conditional results for NthHit(max) = 18

Conditional results for NthHit(max) = 12

 Probability Distribution
ch

Phase 2+3 Conditional gv

(a)

2200 2400 2600 2800 3000 3200

CNO+pep
ToyMC Best Fit N

0

100

200

300

400

500

D
is

tr
ib

u
ti

o
n

 [
ar

b
. 

u
n

it
s]

Selected results for NthHit(max) = 17

Conditional results for NthHit(max) = 18

Conditional results for NthHit(max) = 12

 Probability DistributionCNO+pepPhase 2+3 Conditional N

(b)

FIGURE 7.15: Conditional probability distributions produced by toy-MC, given the true results of
data analysis with a nominal selection of Nth-Hit(max) = 17 in black. For the toy-MC analyses with
Nth-Hit(max) = 18 in red and Nth-Hit(max) = 12 in blue. (a) For the gvch calibration at the 7Be-ν

edge region, with 2000 events. (b) For the NCNO+pep analysis, with 10k events.

Figure 7.15 shows the toy-MC produced, conditional PDFs for the nominal selection of
Nth-Hit(max) = 17 in black, Nth-Hit(max) = 18 in red and Nth-Hit(max) = 12 in blue, for
the 7Be region gvch calibration on the left and for the NCNO+pep measurement on the right.
The black distribution shows the width of the acceptance region, i.e. the toy-MC results
must give the same results as the true data analysis within this small window. Given these
results of the pseudo-data analysis the conditional PDFs show that the mean value stays the
same, independent of Nth-Hit(max), as is expected. The larger the difference between the
investigated Nth-Hit(max) and the nominal selection is, the larger the standard deviation
becomes, which is also as expected. While it is shown here that Nth-Hit(max) = 12 is much
broader than Nth-Hit(max) = 18, this is also true for all other values, Nth-Hit(max) = 22 is
about as broad as Nth-Hit(max) = 12 and so on. The PDFs for the binning selection and for
Phase 1 are not shown, as they are qualitatively the same.

Given the results of the CID analysis at Nth-Hit(max) = 17 of NCNO+pep = 2770, what is
the probability to get the result of NCNO+pep = 2742 at Nth-Hit(max) = 18? With the expected
statistical uncertainty provided by the conditional PDFs of the toy-MC it is possible to search
for systematic uncertainties from the Nth-Hit(max) and binning selection. This is shown for
Phase 2+3 in Figure 7.17, for the 7Be region gcch calibration at the top and NCNO+pep measure-
ment at the bottom. The corresponding plots of Phase 1 are in the Appendix C.10. The results
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FIGURE 7.16: (a) Results of the gvch calibration at the 7Be-ν edge region, for Phase 2+3. On the top
(black) for a range of Nth-Hit(max) values around the nominal value of Nth-Hit(max) = 17, all with
60 bins for the cosα histogram. On the bottom (red) for a range of number of bins around the nominal
value of 60 bins, all with Nth-Hit(max) = 17. (b) Difference between the varied gvch results and the

nominal analysis result of gvch = 0.089nsm−1 in units of the expected standard deviation.
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FIGURE 7.17: (a) Results of the NCNO+pep measurement, for Phase 2+3. On the top (black) for a range
of Nth-Hit(max) values around the nominal value of Nth-Hit(max) = 17, all with 60 bins for the cosα

histogram. On the bottom (red) for a range of number of bins around the nominal value of 60 bins, all
with Nth-Hit(max) = 17. (b) Difference between the varied NCNO+pep results and the nominal analysis

result of NCNO+pep = 2770 in units of the expected standard deviation.
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of the true data analysis are shown on left for a range of Nth-Hit(max) = {12,13, ...,21,22}
and #Bins = {40,44, ...,76,80}. On the right the difference between the results of the current
Nth-Hit(max), binning selection and the result of the nominal selection is shown in units of
the expected statistical uncertainty. No significant pattern or structure can be seen for any of
the plots. Between Phase 1 and Phase 2+3 some points are outside of 1σ , two points in total
are outside of 2σ and none are outside of 3σ .

Results > |1σ | Nth-Hit(max) #Bins
Total

gvch NCNO+pep gvch NCNO+pep

Phase 1 2 4 4 3
25

Phase 2+3 3 4 2 3

TABLE 7.9: Number of results, where a varied Nth-Hit(max), #Bins fit result differs from the nominal
analysis by more than 1σ . The expected number is 3.2 for each table entry and 25.4 in total.

This is summarised in Table 7.9 for Phase 1 and Phase 2+3, where the number of results
outside 1σ is given for each corresponding plot, with the expected number of results outside
of 1σ is 3.2 as each plot has ten points. In total a number of 25.4 is expected, while a number
of 25 is realised. All plots show a behaviour that is fully consistent with pure statistical
fluctuations and the conclusion is then that there is no relevant systematic uncertainty for the
selection of Nth-Hit(max) or the selection of the number of histogram bins, in the investigated
regions.

7.6.2 Selection of good PMTs

The PMTs selection is optimised for the CID analysis through the use of the ToF corrected
hit time distribution of the individual PMTs in data. Fitting these hit time distributions with
a Gaussian modified exponential PDF results in a distribution of the fit parameters and the
PMTs are deselected based on the difference between their fit parameter values relative to the
mean values of the full parameter distributions (see Section 7.4). Because the Nth-Hit time
like variable used for the CID analysis is sensitive only to the relative hit time differences
between the PMTs this approach is the correct way to select PMTs, as the applied cuts means
that PMTs are considered good to use if they have a hit time distribution similar to most other
PMTs. The stricter the parameter cuts are, the less likely it is that the selected PMTs have
some systematic, relative differences in their hit time distributions between each other. The
exact cuts applied for the PMT selection are somewhat arbitrary as they have been selected by
eye and are not based on a rigorous toy-MC study.

For this reason it is possible that the particular PMT selections could still have some
systematic differences between the relative hit time distribution of the data PMTs, which would
result in a systematic uncertainty for the CID analyses. This is investigated here for Phase
2+3 by applying stricter parameter cuts on the PMT selection in such a way that an additional
number of PMTs N−PMTs is deselected in steps of 40 PMTs, N−PMTs = {40,80,120,160,200}.
Should there be a systematic uncertainty left from the selection of good PMTs, then such a
stricter PMT selection would potentially show a difference in the CID analyses results that
would be noticeably larger than what is expected from pure statistical fluctuations. This is in
principle the same type of systematics study as the previous investigation of the Nth-Hit(max)
and binning selection, although with some differences in the calculation of the expected
standard deviation. The relevant plots of Phase 1 can be found in the Appendix C.4.

Again, a toy-MC is used to estimate the expected, purely statistical standard deviation
from the deselection of an increased number of PMTs. This toy-MC can not be performed
through random sampling of toy events from the cosα histogram of the full MC, because
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different PMT selection give different cosα histograms for the same selection of MC events.
Thus, the previous method is not able to produce conditional probability distributions, because
the random events sampled from the cosα histogram of the nominal PMT selection are
independent from the events sampled from the histograms of the stricter PMT selection.
Instead a more laborious toy-MC study must be performed:

1. Because the full CID MC is produced on a data event-by-event basis, here for each
data event only a single corresponding MC event is randomly selected, either from the
neutrino MC or from the background MC, such that the resulting MC event selection
has the correct signal to background ratio. Only MC events which pass the relevant
Ngeo

h and FV cuts are considered, where the MC event selection has the same number of
events as the data for each phase and RoI.

2. A number of 1000 random MC event selections are performed, where the true MC
parameters Nν , gvch, ∆rdir are sampled from their respective posterior distribution,
given the results of the nominal PMT selection analysis results (see Section 7.7.2). This
procedure makes sure that the possible underlying, true CID parameter values are taken
into account correctly.

3. The full MC events are used to produce the CID cosα histograms for the different PMT
selections. Thus each set of toy-data events produces six cosα histograms, one for the
nominal and five for the stricter N−PMTs PMT selections. These toy-data cosα histograms
are now correlated to each other, as they use the exact same set of underlying, full MC
events, just with a different selection of PMT hits from the sampled events.

4. The normal CID analysis is performed on the toy-data cosα histograms with the relevant
full MC histograms, which now are produced with the same PMT selection as the toy-
data. Each set of toy-data events and the corresponding analysis produces six best fit
values for each CID parameter. This results in five difference distributions for each CID
parameter, where the toy analysis fit result given by the additionally deselected N−PMTs
PMTs is subtracted with the toy analysis result of the nominal PMT selection. The
standard deviation from these distributions is the desired N−PMTs dependent estimation
of the purely statistical uncertainty.

5. Comparing the differences of the true data CID analysis results with this toy-MC
standard deviation makes it possible to identify a potential systematic uncertainty from
the method of PMT selection.

Figure 7.18 shows examples of the N−PMTs dependent distributions which give the estima-
tion on the expected standard deviation used for the study of the PMT selection systematic
uncertainty. On the left ∆gvch from the 7Be-ν edge region is shown and on the right ∆NCNO+pep.
The additional deselection of N−PMTs = 40 PMTs is shown in black, while the additional de-
selection of N−PMTs = 200 PMTs is shown in red. The standard deviation gets larger for
a larger number of additionally deselected PMTs, as is expected. It is interesting to note
that for N−PMTs = 200 the standard deviation of ∆NCNO+pep is 780, which is much larger than
the estimated uncertainty from the nominal data analysis ∆χ2(NCNO+pep) profile of ∼ 490,
while for ∆gvch the estimated standard deviation is 0.014nsm−1, which is smaller than the
uncertainty from the data analysis ∆χ2(gvch) profile of 0.018nsm−1.

It seems that the low event statistic at the CNO+pep-ν region makes the analysis more
dependent on the exact distribution of selected PMTs. This likely comes from the reduced
effect of averaging over a large number of different solar directions, compared to the ∼ 10
times higher event statistic at the 7Be-ν edge region. For a low number of events the exact
distribution of the position of the Sun relative to the selected PMTs becomes more influential
on the CID analysis.
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FIGURE 7.18: The conditional probability distributions of the difference between the CID results
obtained with the nominal PMT selection and CID results obtained with the deselection of additional
PMTs. The distributions are produced with 1000 toy-MC analyses, with the additional deselection of
40 PMTs in black and the additional deselection of 200 PMTs in black. (a) For the gvch calibration at

the 7Be-ν edge region. (b) For the NCNO+pep analysis.
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FIGURE 7.19: (a) Results of the data gvch calibration at the 7Be-ν edge region of Phase 2+3 for the
nominal and stricter selection of PMTs. (b) Difference between the gvch results nominal and stricter

selection of PMTs in units of the expected statistical uncertainty.
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FIGURE 7.20: (a) Results of the data NCNO+pep measurement of Phase 2+3 for the nominal and the
stricter selections of PMTs. (b) Difference between the NCNO+pep results of the nominal and the stricter

selections of PMTs in units of the expected statistical uncertainty.
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Figures 7.19(a) and 7.20(a), on the left, show the absolute fit results of the CID analysis
for the gvch calibration at the 7Be-ν edge region and for the NCNO+pep measurement. On
the right 7.19(b) and 7.20(b) show the results for the difference between the different N−PMTs
selections and nominal PMT selection, in units of the expected statistical uncertainty σ . There
is no significant systematic uncertainty observed, as no result is outside of 2σ and for Phase
2+3 both N−PMTs dependent CID analyses show only a single result outside 1σ each, while for
Phase 1 both CID analyses show only two results outside 1σ each. Overall there is a good
agreement between the expected difference of the N−PMTs dependent results compared to the
estimated statistical uncertainty, as for 20 results in total 6.3 are expected to be outside 1σ ,
while only six are observed for Phase 1 and Phase 2+3. The conclusion is then that the nominal
PMT selection can be safely used for the CID analysis, without contributing a systematic
uncertainty.

7.6.3 Systematic uncertainty from PMT time correction

The study of the ToF corrected hit time distributions of the individual PMTs is showing
that the selected data PMTs have a constant time difference µ(PMT) between each other,
while still showing a good agreement for the overall shape of their hit time distributions (see
Section 7.4). These constant offsets are significantly larger than the fit uncertainty ∆µ(PMT)
for data, while the corresponding values of the same analysis on MC are well in agreement
with the fit uncertainty. It is then reasonable to correct each data PMT with its measured
constant offset (µ(PMT)−〈µ〉), relative to all the other PMTs, as otherwise there could
still be an over-selection for some PMTs and under-selection for other PMTs for the early
Nth-Hits.

Thus, the nominal CID analysis chain is performed with exactly this PMT time offset
correction (µ(PMT)−〈µ〉). Because µ(PMT) is only known with a finite precision it is
necessary to propagate the uncertainties ∆µ(PMT) of each selected PMT through the entire
CID analysis chain to include the systematic uncertainty from the small, but significant time
differences of the data PMTs.
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FIGURE 7.21: Distribution of Phase 2+3 best fit results, where the PMT hit time correction is randomly
varied a number of 10k times, using to the uncertainty ∆µ(PMT) as a Gaussian standard deviation.

(a) For the gvch calibration at the 7Be-ν edge region. (b) For the measurement of NCNO+pep.

The error propagation of ∆µ(PMT) is done by performing the CID analysis an additional
1000 times, where each time the nominal time corrections (µ(PMT)−〈µ〉) of the PMTs are
changed by a Gaussian smearing with a standard deviation of ∆µ(PMT). The distribution of
the Phase 2+3 best fit results for the relevant CID parameters is shown in Figure 7.21, for the
7Be-ν edge region gvch calibration on the left and the NCNO+pep analysis on the right.
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The propagated systematic uncertainty from the finite precision on the PMT time constant
correction is estimated with the standard deviation of the best fit result distribution. It has to
be noted that the systematic uncertainty is propagated through the full analysis chain, thus the
NCNO+pep analyses are performed after the calculation of the gvch systematic uncertainty and
the average ∆χ2(gvch) profile is used as the pull-term for the NCNO+pep analyses, explicitly
including the systematic gvch uncertainty. The corresponding plots of Phase 1 can be found in
the Appendix C.11.

〈gvch〉±〈stat.〉± syst. [nsm−1] 〈NCNO+pep〉±〈stat.〉± syst.

Phase 1 0.1394±0.0278±0.0052 681+236
−226±26

Phase 2+3 0.0878±0.0178±0.0018 2821+519
−497±63

TABLE 7.10: Systematic uncertainties from PMT time constant correction.

Table 7.10 summarises the propagated systematic uncertainty from the PMT time constant
correction. Each variation of the PMT time constant correction gives a different best fit result
with a corresponding estimated Gaussian uncertainty from the profile ∆χ2 = 1. The resulting
average value 〈NCNO+pep〉 of the distribution is different from the single result given by the
nominal CID analysis. Overall, the finite precision of the constant PMT time correction
contributes a relatively small systematic uncertainty on NCNO+pep of ∼ 4% and ∼ 2% for
Phase 1 and Phase 2+3, respectively.

7.6.4 Comparison of 11C and 210Bi background MC
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FIGURE 7.22: (a) Distribution of Ngeo
h for 11C MC (red) and 210Bi MC (black) for Phase 2+3. (b)

Distribution of the distance between reconstructed event position and the PMTs which detected the
first hits of the events for 11C MC (red) and 210Bi MC (black) for Phase 2+3. The distribution of 11C is
shifted to lower distances, as 11C events have a larger average energy which causes an over-selection of

close PMTs, relative to 210Bi events.

The two main background components of the CNO+pep-ν region are expected to be
11C and 210Bi. In principle there should be no difference in the cosα histograms between
those two event types, but they have significantly different energy distributions which could
potentially introduce a systematic difference between them. For this reason the compatibility
of the cosα histograms between 11C MC and 210Bi MC is investigated in this section.

Figure 7.22(a) shows the Ngeo
h distribution of 11C MC in red and 210Bi MC in black for

the Phase 2+3 RoI. The distributions are significantly different, with an average value of
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〈Ngeo
h 〉 ≈ 380 for 210Bi and 〈Ngeo

h 〉 ≈ 510 for 11C. This large difference could potentially
introduce a systematic difference in the cosα histograms for early Nth-Hits because the
definition of the Nth-Hit depends on the relative PMT hit time for a given event. The PMTs
cannot resolve individual photon hits, but integrate all photon hits in a 80 ns window after
the first detected photon, with a 60 ns dead time following that. The PMT hit time is then
defined as the time of the first detected photon. This means that the underlying PMT hit time
distribution shifts to earlier times and becomes more narrow for a larger number of detected
photon hits (see also the position reconstruction PDF in Chapter 2).

At the same time PMTs closer to the event position have a higher probability to detect a
photon due to their larger geometric acceptance. This means that there could be a selection
bias of the first hits of the events for 11C, relative to 210Bi, which would over select close
PMTs simply because 11C events have a larger pool of photons to select the earliest hit from.
Figure 7.22(b) shows this effect for the first hits of the events, where the distance between the
reconstructed event position and the position of the PMT which detected the first hit is plotted.
The general shape of the distribution is governed by the geometric acceptance of the PMTs
and the number of PMTs at a given distance. The distance distributions of 11C and 210Bi are
significantly different, with a χ2/ndf = 1686/115, given the statistics of MC. The distribution
of 11C is shifted to smaller distances due to the larger 11C event energy compared to 210Bi,
which validates the concerns discussed above. At the same time the absolute difference
between the distributions is small, with the average values of (5.972±0.001)m for 11C and
(5.983±0.001)m for 210Bi.
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FIGURE 7.23: (a) The sum of the 1st to 17th hits of events cosα histograms of 11C MC (red) and
210Bi MC (black) for Phase 2+3, normalised to the same integral. (b) p-values corresponding to the χ2

between 11C MC and 210Bi MC cosα histograms for a given Nth-Hit, with 60 bins (black) and 20 bins
(red). The dotted lines show p-value = 0.32 and p-value = 0.05.

Figure 7.23 now shows the comparison of the 11C MC and 210Bi MC cosα histograms.
The sum of the first to 17th hits of the events is shown on the right 7.23(a). The histograms
are comparable with a χ2/ndf = 64.2/59, p-value = 0.30 for 60 bins and χ2/ndf = 23.3/19
(p-value = 0.22) for 20 bins, given the statistics of MC. The additional binning of 20 is
selected to investigate potentially larger structures in the cosα histogram, as those could be
obfuscated by the lower bin statistics for a binning of 60. As the sum of these cosα histograms
has a relatively large number of entries, compared to the single Nth-Hit cosα histograms, a
general systematic difference between the in 11C MC and 210Bi MC cosα histograms seems
unlikely.

Following this result, Figure 7.23(b) on the left shows the χ2 corresponding p-value for
60 bins and 20 bins between the 11C MC and 210Bi MC cosα histograms, for each individual
Nth-Hit. The dotted lines highlight p-value = 0.32 and p-value = 0.05. The first hits of
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the events are in agreement between both MC backgrounds and overall there is no Nth-Hit
dependency visible, such as a linear trend or a clustering of low p-values at early Nth-Hits.
For the 22 histograms investigated the number of p-values below 0.32 is expected to be seven
and there are eight for 60 bins and seven for 20 bins. At the same time there is no p-value
below 0.003. The conclusion is then, that there is no systematic difference between the MC
cosα histograms for 11C and 210Bi, given the statistics of MC. There is no energy dependence
of cosα for the background events and the concerns discussed above are not relevant in the
selected RoI. For this reason the background MC used for the CID analysis of the CNO+pep-ν
region is the sum of the 11C MC and the 210Bi MC. The background MC study for the RoI of
Phase 1 is not shown as it gives qualitatively the same results, where no systematic differences
are found.

7.6.5 Investigation of systematics between data and MC background

In this section the potential systematic differences between the background MC (11C MC
plus 210Bi MC), the TFC-tagged 11C data background and external γ data background is
studied. The 11C data events are chosen because it is possible to efficiently tag them with
the TFC algorithm, which provides a pure selection of a relatively large number of events,
uniformly distributed in the FV. From the investigation of the MC it is expected that 210Bi
and 11C background give the same CID cosα distribution. But, as previously there is the
concern about the impact of the 11C event hits on cosα , due to the relatively larger number
of PMT hits. This is because data and MC events have a small, but significant difference
between their absolute hit time distributions. It could be possible that this small difference
introduces a noticeable change in the cosα histograms between 11C data and MC, as these hit
time distribution differences are more pronounced here due to the larger number of PMT hits
(event energy) for 11C events, compared to 210Bi events. Another reason is that 11C events are
positron events and there is no dedicated positron calibration in Borexino, which could mean
there are non-negligible differences between 11C MC and data for the CID analysis 4.

For the external γ events there is no dedicated CID MC production, as it is prohibitively
time consuming, but instead the 11C MC plus 210Bi MC background MC is used for all types
of CID background. Consequently, there is again the concern regarding the difference in
hit time distribution between external γ data and MC background. Of special concern is
the unique difference between the external γ events and MC, as their position distribution
is highly non-uniform. They are coming from the outside of the detector and their position
distribution follows an exponential increase for larger event radii, given by the attenuation
length of the LS for these γ energies. For this reason it is important to study their general
cosα shape, as well as the single Nth-Hit cosα histograms. As for the CID analysis, here the
cosα histograms are produced with the PMT selection, as well as the PMT time correction of
data PMTs of Section 7.4. The investigation of pure background events can also be used as
a supplementary estimate of this selection. Should the PMT selection be insufficient or the
PMT time correction drastically wrong, then this would introduce a Nth-Hit dependence in
the statistical agreement between the data and MC cosα histograms. All these systematic
studies are performed in this section on Phase 2+3, while the relevant plots for Phase 1 can be
found in the Appendix C.4.

Figure 7.24(a) shows the selected 11C and external γ data events, in red and blue, re-
spectively. The 11C events are selected trough the TFC-tagging with 520 < Ngeo

h < 700 and
the external gammas with neither TFC-cut not tag with 700 < Ngeo

h < 1000. The number of
selected data events is N11C = 19302 and Nγ = 7026, both of which are larger than the total

4For example, the difference in the hit time distribution of 11C MC and data has lead to the abandonment of
the position reconstruction likelihood parameter (Fig. 2 and Fig. 3 in [84]) of the multivariate fit after Phase 2.
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FIGURE 7.24: (a) The selected Ngeo
h region for the TFC-tagged 11C (red) and external γ (blue) data

events of Phase 2+3. The γ events are neither TFC-cut nor TFC-tagged. The events numbers are
N11C = 19302 and Nγ = 7026. (b) The corresponding distribution of the reconstructed event radius,
in a log-scale. 11C follows a third order polynomial distribution, as expected from a uniform event
distribution vs. the radius. The external γ’s show the expected exponential increase for larger radii.

number of events in corresponding the CNO+pep-ν RoI with Ntotal = 5974 for Phase 2+3.
The same is true for Phase 1 with N11C = 9318, Nγ = 3840 and Ntotal = 2990.

Figure 7.24(b) shows the radial distribution of the reconstructed event positions for
these events. The uniformly distributed 11C events correctly show a third order polynomial
distribution, where the bin entries are proportional to the volume of the 1 cm wide radial shells
given the histogram binning. The external γ’s show an exponential increase with larger radii.

Toy-MC study of external γ background non-uniform position distribution

FIGURE 7.25: Toy-MC cosα histogram for uni-
form (black) and exponential radial event position
(blue) distributions. Using the live PMT distribu-
tion of Run 17328 a number of 108 toy events is
simulated for each position distribution. First, the
solar direction is randomly selected from the mea-
sured distribution and the event position is sampled
according to the relevant distribution. Then a single
photon direction for each event is sampled isotropi-
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The measured exponential radial distribution is used in the following to perform a toy-MC
study, where the difference in cosα , introduced by the pure geometric differences between a
uniform and exponential radial event distribution, is investigated.

Figure 7.25 shows the cosα distribution of toy-MC simulations with a uniform event
distribution in black and with the exponentially increasing radial distribution of the external
γ’s in blue. The toy-MC study is performed with the live PMT profile of run 17328, with
a statistic of 108 PMT hits. First, the direction of the Sun is randomly sampled from the
measured distribution of the solar orientation in Borexino coordinates (Figure 3.2). Then
the event position is sampled from the relevant radial distribution and a photon direction is
sampled isotropically and cosα is calculated if a PMT is hit. These PMT hits have no time
information, as to estimate the purely geometrical effect of the exponential radial distribution
on the cosα shape of the external γ background.
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Given the statistics of the toy-MC, the two cosα histograms are significantly different
from each other with a χ2/ndf = 40.1/9, p-value = 6.4 · 10−6. This means that there is in
principal an influence of the position distribution of the events on the cosα shape, where the
exponential radial distribution gives an increase around cosα ≈ 0.0 and a correlated decrease
around cosα ≈±1.0. At the same time however, the absolute cosα difference is small with an
average, relative difference ∆cosα between the uniform and exponential radial distribution of
〈∆cosα〉= 0.08% · 〈cosα〉. This value is relatively small, even in comparison to the∼ 0.15%
statistical uncertainty of the full MC cosα histograms with 60 bins and with the 200 simulated
MC events per data event in the CNO+pep-ν RoI. The effect of the drastically non-uniform
position distribution of the external γ events is therefore safely negligible given the statistics
of data. Even if the data would be made up entirely of γ events, the cosα shape would be
described well enough by the 11C MC plus 210Bi MC background MC.

Summed data cosα histogram comparison
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FIGURE 7.26: Comparison of the cosα histograms summed over the 1st to 17th hits of events, for data
and MC background of Phase 2+3. The histograms are normalised to the same integral. (a) TFC-tagged
11C data compared to MC background with a χ2/ndf = 53.5/59, p-value = 0.67. (b) External γ data

compared to MC background with a χ2/ndf = 60.4/59, p-value = 0.42.

The principle, statistical compatibility between the data and MC background events is
investigated with the sum of the first to 17th hits of the events cosα histograms. Should there
be a relevant difference in the cosα histograms between data and MC due to a geometric
difference, such as the live PMT distribution or non-uniform event position distribution, it
would be visible here, given to the large statistics compared to the cosα histogram of a single
Nth-Hit. Figure 7.27 shows this sum of the cosα histograms for the TFC-tagged 11C events
in red and the external γ events in blue, in comparison with the background MC in black. The
histograms are normalised for easier comparison between the 11C and the external γ events.
There are no significant differences between the data and MC histograms visible. Both data
background species are well in agreement with the background MC, given the results of the
χ2 test. The cosα histograms are also compared with a binning of 20 to investigate potential
structures of a larger cosα scale. Again, both data background species are in agreement with
the MC background.

The χ2/ndf and p-values of both background species and number of bins for Phase 1 and
Phase 2+3 are summarised in Table 7.11. Phase 1 and Phase 2+3 give qualitatively the same
results, where the data background and the MC background are statistically comparable to
each other, with no p-value below 0.32. There are no relevant systematic difference in the
principal cosα shape between data background and MC background, given the statistics of
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TFC-tagged 11C data vs. MC External γ data vs. MC
χ2/ndf p-value χ2/ndf p-value

Phase 1 (20 bins) 15.8 / 19 0.67 16.5 / 19 0.62

Phase 1 (60 bins) 48.6 / 59 0.83 62.8 / 59 0.34

Phase 2+3 (20 bins) 20.7 / 19 0.35 21.0 / 19 0.33

Phase 2+3 (60 bins) 53.5 / 59 0.68 60.4 / 59 0.42

TABLE 7.11: χ2 test comparison between the data background and the MC background.

the selected data background events. This validates again the result of the previous toy-MC
studies for γ events, as well as the selection of good PMT’s.

Nth-Hit dependent data cosα histogram comparison
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FIGURE 7.27: The χ2/ndf corresponding p-values between data and MC background of Phase 2+3,
as a function of the individual Nth-Hit cosα histograms. The dotted lines show p-value = 0.32,
p-value = 0.05. (a) TFC-tagged 11C data compared to MC background for a binning of 60 (black) and
20 (red). (b) External γ data compared to MC background for a binning of 60 (black) and 20 (blue).

The next investigation concerns the Nth-Hit dependence of the cosα shape. The absolute
time differences of the external γ and TFC-tagged 11C data events, compared to the MC
background, could potentially introduce a systematic cosα difference for early hits between
data background and MC background. The applied PMT time correction from Section 7.4
could also introduce such a systematic difference, should it be drastically incorrect.

Figure 7.27 shows the χ2/ndf corresponding p-value as a function of the individual
Nth-Hit cosα histograms for the TFC-tagged 11C data on the left and the external γ’s on
the right, both with 20 and 60 histogram bins. The dotted lines highlight p-value = 0.32
and p-value = 0.05. The p-values are calculated until the 22nd hits of the events. The cosα

histograms of both data species are comparable with the MC background and there is no
Nth-Hit dependence visible, such as a linear trend or clustering of p-values. Overall, the data
background Nth-Hit dependent cosα histograms show a good agreement with the MC. For
22 histograms the expected number of p-values below 0.32 is seven, while the graphs show
five for 11C for both 20 and 60 bins and six and eight for 20 and 60 bins, respectively, for the
external γ events. For Phase 2+3 there are no p-values below 0.003, while for Phase 1 there
is a single p-value = 0.0016 for Nth-Hit = 8 of the external γ events. This is the case only
for 60 bins, while for 20 bins it has p-value = 0.0031. This implies a significant difference
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between the data and MC cosα histogram for this particular Nth-Hit, but the neighbouring
Nth-Hit cosα histogram are again in agreement. In total 84 histograms (22+22 from Phase
2+3 and 20+20 from Phase 1) are investigated, which gives an expected number of p-values
below 0.003 as 0.25. Using a Binomial distribution with the probability p = 0.003 and the
total number of points n = 84 gives a probability of 22% to have at least one point with a
p-value below 0.003. Thus, this single point is likely just a statistical outlier and cannot be
used to estimate a systematic difference between the γ data and MC background. Continuing
with the important cosα histogram of the first hits of the events shows a p-value ≈ 0.2 for
the γ events, but only for a binning of 60 and not for 20, while the p-value of the 11C is well
above 0.32. This seems not enough to imply a relevant systematic difference between the data
and the MC and the same is true for Phase 1, where, again the γ events show a p-value≈ 0.2,
but now for 20 bins and not for 60 bins.

The statistics of the selected data background events are larger then the total number
of events in the corresponding CNO+pep-ν RoI for Phase 1 and Phase 2+3. Therefore it
can be concluded from the 11C data events that the systematic uncertainty from the PMT
hit time correction can only be small compared to the statistical uncertainty. Likewise, the
systematic uncertainty from an absolute difference of the hit time distribution of external
γ data events compared to 11C MC plus 210Bi MC background is likely negligible, as is
expected from the use of the event-by-event Nth-Hit method. To summarise: There is no
relevant systematic uncertainty from the geometric differences or from the differences in
the absolute hit time distributions between any species of background in the data and the
MC. Furthermore, there are no significant Nth-Hit dependent systematic differences visible,
which is in agreement with the explicit systematic studies of the PMT selection, PMT hit time
correction and Nth-Hit(max) selection of the previous sections.

7.6.6 CNO and pep neutrino signal MC
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FIGURE 7.28: Comparison between pep-ν (black) and CNO-ν (red) MC. (a) Ngeo
h distribution. (b)

Cherenkov/scintillation ratio of individual Nth-Hits, with a simulated gvch = 0.108nsm−1. The total
ratio is 0.475% for pep-ν MC and 0.469% for CNO-ν MC.

The main signal components for the CID analysis are the CNO-ν and pep-ν events, where
the relative contribution is unknown for the purpose of the NCNO+pep measurement. The
corresponding MC cosα histograms of these neutrino species are very similar, such that a
simultaneous CID analysis of both NCNO and Npep number of neutrino events is not able to
discriminate them in any usable way. Thus, the nominal NCNO+pep analysis is performed with
pep-ν MC cosα histograms only. Nonetheless, their cosα histograms are in fact different
as their energy distributions are different and the corresponding systematic uncertainty is
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quantified in this section. The ν-MC Ngeo
h distributions can be seen in Figure 7.28(a). The mean

values are about 〈Ngeo
h 〉 ≈ 404 and 〈Ngeo

h 〉 ≈ 421 for CNO-ν and pep-ν events, respectively.
For the pep-ν events the Ngeo

h distribution has a Compton-edge like shape, as the pep-neutrinos
are mono-energetic with 1.44MeV. CNO-ν events on the other hand follow a continuous
distribution, with an endpoint at 1.74MeV. This results in a significantly different Ngeo

h
distribution, where the event probability rises for lower event energies.

FIGURE 7.29: The MC cosα histograms of pure
Cherenkov hits for pep-ν (black) and CNO-ν (red).
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The average energy of the scattered electrons from pep-ν events is higher than the average
energy of the electrons corresponding to the CNO-ν events. This results in a larger ratio of
Cherenkov over scintillation hits, which is shown in Figure 7.28(b) on the right, where the
Cherenkov over scintillation ratio is plotted for the first ten hits of the events, for a simulated
value of the Cherenkov group velocity correction of gvch = 0.108nsm−1. The overall ratio for
all PMT hits is 0.475% for pep-ν events and 0.469% for CNO-ν events, according to the MC.
The number of Cherenkov hits per event is about 1% lower for the CNO-ν events relative to
the pep-ν events. A naive expectation would be that the best fit value of NCNO+pep performed
with the CNO-ν MC cosα histograms should be about 1% higher, compared to the nominal
results using the pep-ν MC histograms, as the ratio of Cherenkov hits per data event should be
kept equal. Moreover, the shape of the cosα histograms are also explicitly different between
the CNO-ν and pep-νevents for the selected CNO+pep-ν RoI, due to their different energy
distributions. It is expected that the lower average electron energies of CNO-ν events should
shift the average Cherenkov angle and consequently also the CID cosα distribution to larger
cosα values, compared to pep-ν events. Exactly this can be seen in Figure 7.29, where the
sum of the first ten Cherenkov hits of all MC events (without scintillation hits) is shown in
black for pep-ν and in red for CNO-ν . The cosα difference is relatively small with a shift
of the peak value by ∆cosα ≈ 0.02, but this is significant within the ten times increased MC
statistics as the χ2-test between the histogram gives a χ2/ndf = 184.7/59.

NCNO+pep pep signal MC CNO signal MC ∆NCNO+pep

Phase 1 681 695 14 (2.1%)

Phase 2+3 2821 2768 -53 (1.9%)

TABLE 7.12: Systematic uncertainty from CNO and pep MC cosα histogram differences.

To estimate the systematic uncertainty on the NCNO+pep measurement, introduced by the
differences in the cosα histograms of CNO-ν and pep-ν MC, the CID analysis is performed
once nominally with the pep-ν signal MC histograms and a second time with the CNO-ν
signal MC histograms, including the systematic uncertainty from the PMT time correction.
The difference between the two 〈NCNO+pep〉 results is used as the systematic uncertainty. This
is a maximally conservative approach as it assumes that NCNO+pep is made up entirely either
of CNO-ν or pep-ν events, while in reality it is a mixture of both neutrino species. The
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values of this systematic uncertainty are summarised in Table 7.12. It is interesting to note
that for Phase 1 the NCNO+pep value increases with the use of the CNO-ν MC as the signal
cosα distribution, while it decreases for Phase 2+3. This likely means that the difference in
the cosα shape dominates the systematic uncertainty, compared to the effect of a decreased
Cherenkov to scintillation ratio when using the CNO-ν MC for the CID analysis. Overall, the
systematic uncertainty from the CNO-ν and pep-ν MC cosα histogram difference is relevant,
but relatively small with ∼ 2% of the nominal best fit NCNO+pep value.

7.6.7 Constraint on expected 8B-ν , 7Be-ν and pep-ν events

While it is expected that CNO-ν and pep-ν dominate the signal events in data, there is still a
small contribution of the 8B-ν and 7Be-ν events, which is taken into account as a systematic
uncertainty on the NCNO+pep measurement in this section.

Table 7.3 shows the HZ- and LZ-SSM expected number of 7Be-ν events in the RoI and
their averaged values are N7Be(Phase 1) = 1.0±0.1 and N7Be(Phase 2+3) = 9.5±0.7. For the
expected number of 8B neutrino events the Super-Kamiokande measurement of the flavour-
stable5 8B neutrino flux is used: 2.345±0.014(stat)±0.036(syst) ·106 cm−2 s−1 [58]. For
Borexino this corresponds to a 8B-ν rate of 0.420±0.007 cpd / 100 t [88], for the full 8B-ν
energy range. The energy efficiency, including the trigger efficiency εE is given by the full
G4BX2 MC simulation as εE(

8B, Phase 1) = 0.088 and εE(
8B, Phase 2+3) = 0.081. With

the corresponding FV, detector live time and TFC-exposure this leads to the expected number
of 8B neutrino events of N8B(Phase 1) = 15.9±0.3 and N8B(Phase 2+3) = 59.0±1.0. Those
neutrino species, that are not of interest here, are subtracted from the best fit NCNO+pep value
with their number of expected 8B-ν , 7Be-ν events. Their corresponding uncertainties are
treated as additional systematic uncertainties.

The previous investigation of the systematic uncertainty, given by the difference of the
CNO-ν and pep-ν MC in Section 7.6.6, shows that a difference of the cosα shape can either
increase as well as decrease the best fit CID result. As the neutrino energies are different for
8B-ν and 7Be-ν compared to pep-ν and CNO-ν the exact cosα shape is unknown without
a full CID MC simulation. In the best case the cosα histograms of 8B and 7Be would
look comparable to the histograms of CNO-ν and pep-ν , which seems reasonable for the
mono-energetic 7Be-ν (0.862 MeV). For the 8B neutrino events, with an energy distribution
maximum around 6.4 MeV an endpoint near 15 MeV [159], it is not clear how the correct
8B cosα histograms would influence the NCNO+pep result. Thus, the assumption on the 8B-ν
number can be considered a somewhat conservative correction on the NCNO+pep measurement.
This is because the 8B-ν cosα distribution should be slightly flatter than for pep-ν and CNO-ν ,
due to the larger average angle between the neutrino direction and the recoil electron direction.

It is additionally necessary to constrain the number of pep-ν events Npep on the measured
NCNO+pep, for the CID measurement of NCNO. This is done in the toy-MC estimation of the
posterior distribution, described in Section 7.7.2, where the expected distribution P(Npep) is
included as a prior. This distribution is assumed to be the sum of two Gaussian distributions
with the mean and standard deviation given by the values of the HZ-SSM and LZ-SSM,
respectively. Furthermore, the Poissonian, statistical uncertainty from the expected number of
all ν events is also explicitly taken into account, as the expected statistical uncertainty is larger
than the model uncertainties given by the SSM. This is done, so as to be able to marginalise over
all possible, true values for the number of 8B-ν , 7Be-ν and pep-ν events in the data sample.
Thus, the full correction can be estimated as ∆N7Be+8B+pep(Phase 1) =−425±29 (expected
stat. + SSM) and ∆N7Be+8B+pep(Phase 2+3) = −1588± 48(expected stat. + SSM), which
adds an additional systematic uncertainty to the CID measurement of NCNO.

5Meaning it includes the flavour transformation assuming the MSW-LMA solution, shown in [68] and is
therefore smaller than the pure SSM expectation.
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7.6.8 Fiducial volume selection

FIGURE 7.30: The toy-MC estimation of the sys-
tematic uncertainty on the FV, for R < 3.30 m in
black and R < 2.95 m in red. In the toy-MC the
radial cut of the FV is randomly sampled according
to the systematic uncertainty of the reconstructed
data event radius, which is known from the results
of the calibration campaign. The plot shows the dis-
tribution of the relative difference ∆V / V between

the sampled volume and the nominal volume V.
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%  = 0.51σ%,   = 0.53µm):  FV(R < 3.30

%  = 0.57σ%,   = 0.59µm):  FV(R < 2.95

∆V / V R < 3.30 m R < 3.05 m R < 3.00 m R < 2.95 m

Mean -0.53 % -0.57 % -0.58 % -0.59 %

Std. Dev. 0.51 % 0.55 % 0.56 % 0.57 %

TABLE 7.13: Relative systematic uncertainty of the different spherical FV used in the CID analyses.

The data events are selected trough a cut on the reconstructed event radius, which results
in a FV with a certain target mass. The FV is used for the calculation of the neutrino rate in
[cpd / 100 t] from the measured number of neutrino events and vice versa. The uncertainty on
the FV is calculated in this section, using the standard Borexino toy-MC method which has
been used in most Borexino publications. For this the 222Rn+14 C source positions close to
the FV edge at R > 3m are selected and the reconstructed event position radius is compared
to the nominal one obtained from the CCD cameras. For the southern hemisphere the mean
offset and standard deviation is ∆R = (1.4±0.8)cm, while for the northern hemisphere it is
∆R = (−2.6±0.8)cm, where this offset is dominated from the systematic mis-reconstruction
of the z-position in data [85].

The toy-MC volumes are produced by randomly sampling the edge of the FV according
to these ∆R values and then comparing them to the nominal volume. Figure 7.30 shows
the resulting distributions of ∆V / V for the FV of R < 3.30 m in black, which is used for
Phase 1 and Phase 2 at the 7Be-ν edge region and R < 2.95 m in red, which is used for Phase
2+3 at the CNO+pep-ν region. The systematic uncertainties are summarised in Table 7.13
for the different FV used throughout the CID analysis chain. Larger FV produce smaller
relative uncertainties and all FV have a negative offset and a standard deviation of about
0.6 %. The offset to smaller volumes in the data compared to the MC is due to the systematic
position mis-reconstruction of the z-position in the data. The uncertainty of the LS density of
(0.878±0.004) gcm−3 [90] should also be included here, which results in a total uncertainty
of 0.7 % for the fiducial mass.

7.6.9 Energy selection cuts

The data events are selected in an optimised energy region, using the Ngeo
h estimator. This

results in an efficiency εE on the energy cut, which is the fraction of events within the selected
energy window. The value of εE is calculated for each event species from the Ngeo

h spectrum
of the full G4BX2 MC simulations. It is then used for the calculation of the neutrino rate
from the measured number of neutrino events within the RoI and vice versa.

There is a systematic difference in the energy scale between the data and the MC, which
results in a systematic uncertainty on εE. The true Ngeo

h region of the data can be different
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∆εE /εE

7Be-ν edge region CNO+pep-ν region
7Be-ν pep-ν CNO-ν pep-ν CNO-ν

Phase 1 1.3 % 1.6 % 1.5 % 0.8 % 1.4 %

Phase 2 1.0 % 1.3 % 1.2 % 0.8 % 1.4 %

Phase 3 0.8 % 1.1 % 1.0 % 0.8 % 1.4 %

TABLE 7.14: Relative systematic uncertainty of εE from the Ngeo
h cuts for the relevant energy regions

and neutrino species of the CID analyses.

to the region that is used to calculate εE from the MC Ngeo
h spectrum. Using the calibration

sources, cosmogenic neutrons (from the muon-12C spallation) and the internal 218Po and
11C events the non-linearity of the energy scale, light-yield stability over time, and spatial
non-uniformity have been studied by the Borexino collaboration [68]. The relative uncertainty
on the energy scale is 0.32% and the uncertainty from the non-uniformity and non-linearity of
the response is at the level of 0.06% and 0.09%, respectively [139].

The total, relative uncertainty on the energy response of 0.34% is used as a Gaussian
standard deviation, to randomly sample the edge of the selected Ngeo

h cuts. Then the resulting
εE values are compared to the nominal value for the different neutrino species. Table 7.14
summarises the standard deviation of the toy-MC ∆εE /εE distributions. The mean values for
all energy regions and neutrino species are centred around zero. The sub-percent uncertainty
on the energy scale can result in a relative systematic uncertainty above one percent on εE. The
reason for this is that the Ngeo

h energy distributions of the different neutrino species are not flat
and have different probability values for the low and high Ngeo

h cuts. For the selected Ngeo
h cut

around the 7Be-ν edge region the relative uncertainties decrease as the regions are broader for
later phases, while for the CNO+pep-ν region the selected Ngeo

h cuts are too similar between
Phase 1 and Phase 2+3 to produce a relevant difference for ∆εE /εE.

7.6.10 Summary of systematic uncertainties

The systematic uncertainties, relevant for the CID analysis, have been studied in this section
and a number of possible sources of uncertainties can be excluded. The selection of Nth-
Hit(max), as well as a general Nth-Hit dependence of the CID analysis has been of great
concern, as the MC model of the data neutrino events through the CID parameter gvch is only
a linear approximation of the possible, underlying difference in the Cherenkov time behaviour
between data and MC. It turns out that there is no relevant systematic uncertainty from the
Nth-Hit(max) selection and neither is there a general Nth-Hit dependence. The best fit result
provides a good p-value for each individual Nth-Hit and the pure data background and the
MC background are also in agreement with each other for all Nth-Hits, given the statistics of
the selected data background. Toy-MC studies confirm that the differences of the CID results
for different Nth-Hit(max) are well explained with only statistical fluctuations. Likewise,
toy-MC studies show that the selection of the number of bins for the cosα histograms, as well
as the selection of the good PMTs to use for the CID analysis do not contribute a systematic
uncertainty.

The cosα shape of background is only determined by the distribution of the selected, live
PMTs relative to the positions of the Sun for the selected events. There is no cosα dependence
on the background energy as the 210Bi MC and 11C MC histograms are in agreement within
the large statistics of MC. In principle the external γ events could produce a different cosα

distribution, compared to uniformly distributed events, but a toy-MC study shows that this
effect is safely negligible given the statistics of the data. This is also confirmed through the
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comparison of the external γ data at high energies with the background MC. Combining the
observations of the uncertainty studies and the fit results it can be concluded that the use of the
Nth-hit time like variable greatly helps the CID analysis, as absolute time differences between
event species become irrelevant. Likewise, using gvch and ∆rdir works well enough as to not
introduce a detectable systematic uncertainty between the MC model and the data.

Following that, a number of systematic uncertainties have been identified that are relevant
for the CID analysis. First is the contribution from the uncertainty of the time constant
correction ∆µ(PMT), applied for each PMT. Another source is the difference between CNO-ν
and pep-ν MC cosα histograms. Unlike the background, the neutrino signal cosα histogram
does depend on the energy. The Cherenkov over scintillation ratio increases for larger recoil
electron energies and also because the cosα shape is influenced by the energy dependent
angle of the Cherenkov cone. As such, the choice to perform the NCNO+pep CID analysis with
either the CNO-ν or the pep-ν MC histograms adds a systematic uncertainty. Furthermore,
there are additional neutrinos species which are not of interest and must be constrained, which
also introduces an uncertainty. These are 8B+7Be-ν for the measurement of NCNO+pep and
additionally pep-ν for the measurement of NCNO.

The next category of systematic uncertainties does not directly impact the CID analysis,
but it is used for the calculation of the neutrino rate in [cpd / 100 t] from the CID measurement
of the number of neutrino events, and vice versa. Here, the selection of the FV as well as the
Ngeo

h RoI introduces uncertainties, which are evaluated through calibration data and toy-MC
studies. The MLP algorithm is known to provide an exposure of 99.5%±1.0%, while the
uncertainty of the TFC exposure is negligible with a value of ±0.02%. Overall, the total
contribution from the relevant systematic uncertainties is small compared to the uncertainty
given by the CID fit.

The last observation of these systematics studies is that Phase 1 and Phase 2+3 are
principally comparable to each other. Phase 1 and Phase 2+3 have been analysed independently
to cross-validate the CID method and to search for potential systematic uncertainties arising
from a change of the detector response over time, such as the loss of PMTs. A potential
difference between the phases is given by the difference in the effective gvch calibration
which is not significant and gvch is constrained independently for Phase 1 and Phase 2+3.
Furthermore, the selection good PMTs to use for the analyses and the relative PMT hit time
correction is different between the phases, as well as the uncertainties on the FV and εE. Apart
from this no systematic differences are found between Phase 1 and Phase 2+3, given the
investigation of pure background data, the performance of the best neutrino fit on individual
Nth-Hit cosα histograms, as well as the lack of a Nth-Hit(max) dependence of the fit results.
This shows that the CID method is also robust over time, where the detector exhibits a decrease
in position and energy resolution given the loss of PMTs and other potential changes of the
detector response. The conclusion is then that the results of Phase 1 and Phase 2+3 can be
combined as they are (conditionally) independent from each other and no prohibitively strange
behaviour has been observed between them.

The systematic uncertainties are summarised in Table 7.15 with their absolute and relative
values. The relative values are given in comparison to the expected Nν at the 7Be-ν edge
region and to the final result of the CID NCNO measurement. The ∆Nν values at the 7Be-ν
edge region are included in the −2ln(P(Nν)) pull-term and affect the gvch calibration only
indirectly.

7.7 Fit bias and Bayesian interpretation of the CID results

The final goal of this CID analysis is to provide a limit on the zero-neutrino hypothesis for
NCNO+pep and NCNO, as well as the measurement of the CNO-ν rate. For this, the production of
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gvch calibration at 7Be-ν edge region

Source Phase 1 Phase 2+3

PMT time correction 0.0052 nsm−1 (3.7%) 0.0018 nsm−1 (2.1%)
∆Nν (∆FV/FV) 67 (0.7%) 320 (0.7%)
∆Nν (∆εeff/εeff) 130 (1.3%) 423 (0.9%)

∆Nν (MLP) 97 (1.0%) 470 (1.0%)

CNO-ν measurement

Source Phase 1 Phase 2+3

PMT time correction 26 (9.6%) 63 (5.5%)
CNO-ν vs. pep-ν MC 14 (5.2%) 53 (4.6%)

pep+8B+7Be-ν constraint 29 (10.8%) 48 (4.2%)

∆FV/FV 0.7% 0.7%
∆εeff/εeff 1.4% 1.4%

TABLE 7.15: Relevant systematic uncertainties for the CID analyses and the neutrino rate conversion.

confidence intervals is of great importance, but at the same time the method of their production,
as well as the correct interpretation of the CID ∆χ2 profiles, is not trivial.

The CID analysis is performed with a χ2-test between the data and the MC cosα his-
tograms, where χ2 is calculated as a function of three parameters: the number of solar neutrinos
Nν , the effective Cherenkov group velocity correction gvch and the mis-reconstruction in the
initial electron direction ∆rdir. This model is able to describe the data well, given the selection
of good PMTs to use, as is shown in Section 7.5 and Section 7.6.

One peculiarity of the fit is that the parameters gvch and ∆rdir only influence the shape
of the cosα histogram for the neutrino signal but not of background. The Cherenkov hits
of background events are not correlated to the position of the Sun and neither is the initial
direction of electrons from the 210Bi background, for example. The analysis is furthermore
performed as a chain of two sub-analyses, where first Nν is treated as a nuisance parameter
with a pull-term for the effective calibration of gvch at the 7Be-ν edge region and this is then
in turn used as nuisance parameter with a pull-term for the NCNO+pep fit.

Last is the problem of physical boundaries present in the analysis: there cannot be a
negative number NCNO+pep and neither can there be a negative rate of CNO-ν after introducing
the pep-ν constraint. The relative large statistical and systematic uncertainties imply that the
physical boundaries have a real impact on the interpretation of the CID results, more so for
Phase 1 than for Phase 2+3 and most importantly for the CNO-ν rate. The peculiarities of
the CID fitting procedure are investigated, exemplary on Phase 2+3, in the first part of this
Section 7.7.1. The relevant plots for Phase 1 can be found in the Appendix C.5.

As far as the production of frequentist confidence intervals is concerned it is in principle
possible to avoid non-physical regions using the Feldman-Cousins method [160], but then
the question opens up on how to treat the nuisance parameters and how to include the
systematic uncertainties as well as the pep-ν constraint. For the Feldman-Cousins method it is
necessary to simulate toy-experiments, which depend on the values of the nuisance parameters.
The choice of which true nuisance values to simulate is somewhat arbitrary and different
methods have been proposed, for example using the best fit values or their posterior, likelihood
distributions [161]. A seemingly popular method for the inclusion of systematic uncertainties
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in the confidence interval production is by integrating over probability density functions which
parameterise the uncertainties [162, 163]. This marginalisation of the systematic uncertainties
is itself a Bayesian method and it is sometimes called a semi-Bayesian or hybrid method. As
such, the production of frequentist confidence intervals [164, 14] under the conditions of the
CID analysis seems possible but not trivial.

In contrast, the correct production of Bayesian credible intervals [14] seems relatively
simple, including the effect of the physical boundaries, the nuisance parameters and the
systematic uncertainties. Furthermore, the interpretation of the credibility intervals is relatively
intuitive, where the probability is interpreted as a degree of belief: how much do we think
that something is true given the evidence of the data. For example a 68.3% interval means
that the true, unknown parameter value has 68.3% chance to be inside this interval (see
[165] or other textbooks). For this reason I have decided to use Bayesian statistics for the
interpretation of the CID analysis, where the complete results are given by the posterior
distributions P(NCNO+pep | data) and P(NCNO | data). The production method of the Bayesian
posterior distributions is called Acceptance Sampling Unfolding in this work and it is explained
in the second part of this Section 7.7.2, together with the equations used for the production of
the credible intervals.

7.7.1 Qualitative investigation of the fit response bias

For a given set of true parameter values t =
(
Ntrue

ν ,gvtrue
ch ,∆rtrue

dir

)
, the fitting procedure itself

can introduce a systematic shift on the best fit values b =
(
Nfit

ν ,gvfit
ch,∆rfit

dir

)
, relative to t. This

fit response bias is now studied qualitatively by performing 10k toy-MC analyses, where the
simulated (true) parameters are set to certain values s =

(
Nsim

ν ,gvsim
ch ,∆rsim

dir

)
. Then toy-data

is sampled from the MC cosα histograms according to s with the statistics of real data and
the analysis is performed normally, including the respective pull-terms. The Gaussian mean
of the resulting best fit distributions of interest P(Nfit

ν | s), P(gvfit
ch | s) is then compared to the

simulated values s.
Figure 7.31(a) shows the gvfit

ch distribution for gvsim
ch = 0.044nsm−1 (black, red) and

gvsim
ch = 0.172nsm−1 (blue, yellow) for the 7Be-ν region, where the simulated number of

neutrinos is set to the minimum of the −2ln(P(Nν)) pull-term, Nsim
ν = 43771. The nuisance

parameter ∆rsim
dir is set to 1.8 cm. The gvch fit is performed with both nuisance parameters

Nν , ∆rdir (red, yellow) and also only with gvch as a one-dimensional fit (black, yellow) to
investigate the effect of the nuisance parameters, i.e. the nuisance parameters are known with
infinite precision. As expected, the one dimensional fit without nuisance parameters produces
a more narrow distribution and the mean value of the gvfit

ch distribution is in agreement with
the injected value for both configurations of the fit. This can be seen for a range of injected
gvsim

ch values in Figure 7.31(b), where ∆gvch = gvfit
ch− gvsim

ch is in agreement with zero with
(red) and without (black) the nuisance parameters. There is no bias in the fit of gvch at the
7Be-ν region, for an injected Nsim

ν at the minimum of the Nν pull-term.
For the NCNO+pep fit the general behaviour is different, as can be seen in Figure 7.32(a).

The Nfit
CNO+pep distributions are plotted for the injected values of Nsim

CNO+pep = 0 (black, red)
and Nsim

CNO+pep = 5974, which corresponds to a signal to total ratio of 0.0 and 1.0, respectively.
Again the NCNO+pep fit is performed once normally (red, yellow) and once without the nui-
sance parameters gvch, ∆rdir. Their injected values are set to gvsim

ch = 0.089nsm−1, which
corresponds to the minimum of the χ2(gvch) pull-term and the value of ∆rsim

dir = 2.7cm. Now,
the inclusion of the nuisance parameters shows a clear effect for a low signal to total ratio,
where the best fit value of Nfit

CNO+pep = 0 is maximally disfavoured. The fit is allowed beyond
the physical limits to illustrate this effect in Figure 7.32(a) and a double peak structure is
visible at Nfit

CNO+pep ≈±500, while the fit without the nuisance parameters shows a Gaussian
distribution around zero.
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FIGURE 7.31: Fit response on gvch at the 7Be-ν edge region. The simulated value of Nsim
ν is set to

the minimum of the pull-term. (a) Distribution of the fit results for 10k toy-MC analyses, where the
simulated value is set to gvsim

ch = 0.044nsm−1 (black, red) and gvsim
ch = 0.172nsm−1 (blue, yellow).

The analyses are performed once, including the two nuisance parameters Nν , ∆rdir of the fit (red, yellow)
and for comparison with fixed values of the nuisance parameters and only gvch as a free parameter
(black, blue). (b) Difference between the mean value of the gvfit

ch distribution and the simulated gvsim
ch .

The mean value is estimated with a Gaussian fit.
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FIGURE 7.32: Fit response on NCNO+pep, where the simulated value of gvsim
ch is set to the minimum of

the pull-term. (a) Distribution of the fit results for 10k toy-MC analyses, where the simulated value
is set to Nsim

CNO+pep = 0 (black, red) and Nsim
CNO+pep = 5974 (blue, yellow). The analyses are performed

including the two nuisance parameters of the fit (red, yellow) and for comparison only with NCNO+pep as
a free parameter (black, blue). The fit is not constrained to the physical limits (0≤ NCNO+pep ≤ 5974)
to illustrate the impact of the gvch, ∆rdir nuisance parameters. (b) Offset between the mean value of
the Nfit

CNO+pep/total distribution and the simulated Nsim
CNO+pep/total. The mean value is estimated with a

Gaussian fit performed within the physical limits of NCNO+pep.
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Figure 7.32(b) plots the relative difference ∆NCNO+pep /Ntotal against the injected value.
Here, ∆NCNO+pep = Nfit

CNO+pep−Nsim
CNO+pep is calculated as the difference between the Gaussian

mean and the injected value. The Gaussian fit is performed only within the physical limits
0≤ Nfit

CNO+pep ≤ 5974. While the one dimensional fit (black) of only NCNO+pep shows a good
agreement with zero for all simulated values Nsim

CNO+pep, the normal analysis including the
nuisance parameters (red) shows a significant bias for low signal to total ratios. The lower
the number of Nsim

CNO+pep the bigger is the bias towards a higher fitted number of neutrinos
Nfit

CNO+pep. For a gvsim
ch value set to the minimum of the pull-term the bias stops after a signal

to total ratio of ∼ 0.4, corresponding to NCNO+pep ∼ 2400 in Phase 2+3 which is also true for
Phase 1, where a signal to total ratio of 0.4 corresponds to NCNO+pep ∼ 1200.
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FIGURE 7.33: Distribution of the fit results for 10k toy-MC analyses of NCNO+pep, where the simulated
gvsim

ch is set to the minimum of the pull-term. Three simulated NCNO+pep values are shown, with
NCNO+pep = 0 (left), NCNO+pep = 2987 (middle) and NCNO+pep = 5974 (right). (a) NCNO+pep vs. gvch.

(b) NCNO+pep vs. ∆rdir.

The bias at low signal to total ratios comes from the asymmetrical influence of the nuisance
parameters on the CID neutrino signal compared to the CID background. As a consequence
larger neutrino ratios effectively increase the degrees of freedom of the analysis up to a point,
because gvch, ∆rdir only influence the cosα shape of the neutrino events. Fitting close to pure
background means that the analysis effectively only has a single degree of freedom: signal
vs. background, while (incorrectly) increasing the absolute value of Nfit

CNO+pep scales up how
much the cosα histogram is influenced by gvch, ∆rdir. Thus, for a low number of injected
neutrinos Nsim

CNO+pep the fit prefers to increase Nfit
CNO+pep as random noise in the toy-data cosα

histogram can then be better fitted through the increased impact of gvch, ∆rdir on the MC cosα

histogram used for the fit.
This can be seen in Figure 7.33, where the distribution of Nfit

CNO+pep is plotted against
gvfit

ch (7.33(a)) and ∆rfit
dir (7.33(b)), for three different values of Nsim

CNO+pep, corresponding to
signal to total ratios of 0.0, 0.5 and 1.0. The injected values of the nuisance parameters are
again gvsim

ch = 0.089nsm−1, which corresponds to the minimum of the gvch pull-term and
∆rsim

dir = 2.7cm. For the simulation of pure background Nsim
CNO+pep = 0 there is no correlation

between gvfit
ch, ∆rfit

dir and Nfit
CNO+pep. The distribution of gvfit

ch is constrained by the pull-term, but
broadens for larger absolute values of Nfit

CNO+pep, while the distribution of ∆rfit
dir is unconstrained

and does not depend on Nfit
CNO+pep, given Nsim

CNO+pep = 0. Arbitrary values of gvfit
ch, ∆rfit

dir can fit
the injected, pure background better by using a larger absolute value of Nfit

CNO+pep. For larger
values of the simulated number of neutrinos there is a clear anti-correlation visible between
the gvfit

ch, ∆rfit
dir and Nfit

CNO+pep, where the anti-correlation increases for increasing Nsim
CNO+pep.
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This is expected, as the analysis is effectively a counting of the early Cherenkov hits
and corresponding them to a total number of neutrinos events. Increasing the value of gvfit

ch
corresponds to a higher ratio of early Cherenkov hits per neutrino event, for a given number
of Cherenkov hits in the toy-data, and consequently less neutrino events are needed to explain
the fixed number of toy-data Cherenkov hits.
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FIGURE 7.34: Fit response of the respective parameters of interest, for simulated nuisance parameters
which are offset from their pull-term minimum. The simulated values of the nuisance parameters are
bigger than the minimum of the pull-term for the yellow graph and smaller for the blue graph. (a)
Difference between the mean value of the gvfit

ch distribution and the simulated gvsim
ch . (b) Offset between

the mean value of the Nfit
CNO+pep/total distribution and the simulated Nsim

CNO+pep/total.

The anti-correlation of the fit parameters with each other has the effect, that the pull-terms
also influence multiple fit parameters and not only the single parameter on which the pull-term
is explicitly applied. For the 7Be-ν region analysis of gvch this means that if the best fit
value of Nfit

ν is offset from the minimum of the Nν pull-term, then gvfit
ch will be also shifted

relative to the true value of gvsim
ch . For the CNO+pep-ν region analysis of NCNO+pep the same

is true if now gvfit
ch is offset from the minimum of its gvch pull-term. This behaviour is shown

in Figure 7.34(a) for the 7Be-ν region and in Figure 7.34(b) for the CNO+pep-ν region
analysis. An increased Nsim

ν is pulled to lower Nfit
ν values and thus gvfit

ch is also increased.
These biases are relatively symmetric around zero for the region around gvch = 0.089nsm−1,
which suggests that they cancels each other for a symmetric gvsim

ch region around the best fit.
This means that for the calibration of gvch the fit procedure itself is unlikely to introduce a
bias. Again, this looks very different for Nfit

CNO+pep, where simulated low signal to total ratios
are systematically fitted to larger values for both values of gvsim

ch and these pull-term induced
biases on Nfit

CNO+pep are symmetric around zero only for a signal to total ratio larger ∼ 0.4.
To summarise this section: The overall CID fit procedure has three peculiarities that give

rise to a complex fit response which introduces a bias for the measured number of CNO+pep-ν
events Nfit

CNO+pep relative to the true value:

• The fit parameters gvch and ∆rdir only influence the shape of the cosα histogram of
the neutrino signal, but not of background. Low signal to total ratio fit values are
disfavoured up to a point, because a higher fitted ratio has effectively a larger degree of
freedom to fit noise.

• All three fit parameters have a (anti-)correlation between each other in the fit. The
size and sign of the correlation factor depends on the event statistic and on the true,
underlying values of the parameters.



156 Chapter 7. Correlated and Integrated Directionality Measurement of CNO-Neutrinos

• The two pull-terms for the effective gvch calibration and NCNO+pep measurement fulfill
their function by pulling the relevant fit parameters towards the minimum of the pull-
term histogram. Because of the (anti-)correlations between the fit parameters this means
that all parameters are influenced by the pull-term in some way.

Under optimal circumstances the effect of pull-terms and correlations of the nuisance
parameters does not introduce a bias for the credible intervals from the ∆χ2 profile, as
normally the pull-term bias is symmetric and averages out over the (posterior) likelihood
distribution. The pull-term is effectively just the prior of the relevant parameter. This is
likely the case for the gvch calibration at the 7Be-ν edge region. The reason that here no fit
bias is expected is that the expected Nν / total ratio is relatively large, with relatively small
uncertainties with ∼ 48.6%±4% for Phase 1 and ∼ 74.5%±6% for Phase2+3 and as such
the asymmetric influence of the signal to total ratio can be expected to be only small for
Phase 1 and certainly negligible for Phase 2+3. This is different for the CNO+pep-ν region,
where the previous fit, without systematic uncertainties, gives ratios of ∼ 22.0%±7.6%for
Phase 1 and ∼ 47.2%±8.5% for Phase 2+3. Due to the relatively large statistical uncertainty
here, the estimated region of the underlying NCNO+pep posterior distribution goes well below
the ∼ 40% ratio, for which the signal to total bias quickly increases and so the fit bias is
expected be non-negligible. Thus, it is not possible to use a simple calculation of the likelihood
distribution P = exp(−1

2 ∆χ2), normalise it and recalculate the credible intervals within the
physical boundaries. It is necessary to first unfold the fit response, quantify and correct the
fit bias to produce the correct posterior distribution of Ntrue

CNO+pep, which is explained in the
following section.

7.7.2 MC sampling of the posterior: Acceptance Sampling Unfolding

This section explains the production of the Bayesian posterior distribution through the so
called Acceptance Sampling Unfolding. Let t =

(
Ntrue

ν ,gvtrue
ch ,∆rtrue

dir

)
be the set of the true,

underlying parameters that give rise to the CID data. Typically t is smeared by the finite
statistics of data and the analysis then results in a set of best fit values b =

(
Nfit

ν ,gvfit
ch,∆rfit

dir

)
which provide the best description of data using the MC model. The posterior distribution
P(t | data) is then given by Bayes’ theorem:

P(t | data) =
P(data | t)π(t)∫

P(data | t′)π(t′)dt′
(7.7)

Where "data" means the cosα histograms of data. In the case of the CID test statistic
(Equations 7.5, 7.6) the posterior is expressed as a ∆χ2 profile and the priors π(t) = π(Nν) ·
π(gvch) ·π(∆rdir) are implemented as pull-terms on Nν and gvch for the respective analyses.
The other parameter priors are effectively uniform distributions, bound by the parameter space
that is scanned for the analysis.

Because the best fit results b MC histograms are able to reproduce the data cosα shape
well, b can be used as an estimate on the most likely parameter values that give rise to the data
cosα histograms. As the fit procedure itself introduces a systematic bias on b, relative to tbest,
it follows that the simple ∆χ2 likelihood is not a correct estimation of the posterior distribution.
This bias can be expressed as a response matrix M, which transforms tbest into b = Mtbest

To reconstruct or unfold tbest from the measured values of b we could use toy-MC studies to
produce the three dimensional matrix M. This would be done by scanning the true parameter
space with a certain binning and then measuring the bias of the fit parameter space, as has
been done for example in Figure 7.31(b) for only one dimension. Then M could be inverted
to produce an estimate t̃ = M−1b. Applying M−1 on all possible parameter values makes it
then possible to construct a bias corrected posterior distribution. This process is potentially
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complex, tedious to perform and could itself introduce a systematic bias based on the algorithm
used for the matrix inversion, such as the choice of bin width and the interpolation method
between the bins.

Instead, here a method of estimating the posterior distribution of t is applied in which
neither the explicit knowledge of M, nor a matrix inversion is necessary. This method is called
Acceptance Sampling Unfolding (ASU) and an idea very similar to ASU is expressed in [166],
where it is called Unfolding by Folding. Ultimately, the ASU method is simply the estimation
of the posterior distribution through toy-MC sampling:

1. A sample of CID parameters tsim =
(
Nsim

ν ,gvsim
ch ,∆rsim

dir

)
is randomly selected from their

independent prior distributions π(Nν), π(gvch), π(∆rdir).

2. The corresponding toy-data cosα histograms are sampled with the statistics of the
true data from the full signal and background MC cosα histograms, according to the
randomly selected CID parameters tsim.

3. The analysis is performed in the same way as for real data, including the relevant
pull-terms. Each toy-analysis provides a set of best fit values bsim, which are compared
to the measured best fit result of real data bdata.

4. The parameter values of tsim are accepted and saved in a histogram, if and only if
bsim = bdata + ε , where ε is a set of parameter values that defines the acceptance region
around bdata. The size of ε is given by the relevant values of the systematic uncertainties
for each CID parameter. The acceptance region is fuzzy and modeled as a Gaussian,
meaning the tsim is only accepted with a certain probability given by the standard
deviation ε .

5. The toy-analyses are performed 4000 times for the 7Be-ν edge region and 20k times for
the CNO+pep-ν region to produce a distribution P(tsim | bsim = bdata).

The best fit results b MC histograms are able to reproduce the data cosα shape well, so
the use of P(tsim | bsim = bdata) as an estimate for P(tsim | data) is a reasonable approximation,
as otherwise the exact reproduction of the 17 ·60 = 1020 cosα histogram bin entries through
random sampling would take too long. The selection of the prior distributions from which to
sample the CID parameters is as follows: At the 7Be-ν edge region Nsim

ν is sampled according
to the allowed neutrino distribution, while gvch is sampled uniformly within −0.012nsm−1 ≤
gvch≤−0.228nsm−1 and ∆rdir is sampled uniformly from 0.0 cm to 4.0 cm. At the CNO+pep-
ν region gvsim

ch is then sampled from the marginalised posterior distribution of the gvch
calibration. NCNO+pep is sampled uniformly within the physical boundaries 0≤ NCNO+pep ≤
2990 for Phase 1 and 0 ≤ NCNO+pep ≤ 5974 for Phase 2+3 and ∆rdir is sampled uniformly
from 0.0 cm to 6.0 cm. The choice for ∆rdir is informed by the physical limit at 0.0 cm, as the
position reconstruction algorithm can only introduce a systematic mis-reconstruction in the
direction of the early Cherenkov hits, while the upper limit is at most given by total position
resolution of ∼ 12cm. A smaller maximum value is chosen to speed up the simulation, as
the contribution of toy-analyses with ∆rsim

dir > 6cm are safely negligible given the statistics of
the ASU simulation. A larger selected ∆rsim

dir region does not change the results. The same
argument is used for the selection of the uniform gvsim

ch prior at the 7Be-ν edge region, for
which otherwise no physical limit is assumed.

In this way the ASU method produces a distribution P(tsim | bdata) of the simulated,
underlying CID parameters tsim that are able to reproduce exactly the measured best fit CID
results bdata. Therefore, the distribution of tsim is an estimator on the true distribution of the
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CID parameters t and the distribution of gvch or NCNO+pep is obtained through marginalisation:

P(tsim | bsim = bdata) = P(t | bdata)

P(gvch | bsim = bdata) =
∫∫

P(tsim | bsim = bdata)dNν d∆rdir

P(NCNO+pep | bsim = bdata) =
∫∫

P(tsim | bsim = bdata)dgvch d∆rdir

(7.8)

The advantage of ASU is that there is no direct matrix inversion involved and because
the method takes into account the full fit response for every possible combination of the
CID parameters it cannot introduce any bias to the distribution P(tsim | bsim = btrue). This
distribution can then be used to construct the unbiased credible intervals and corresponding
Gaussian equivalent ∆χ2 profiles for the parameters of interest.

The treatment of the nuisance parameters is a simple marginalisation and the inclusion of
the systematic uncertainties also follows from the automatic marginalisation of the Gaussian
acceptance region with the standard deviation ε . The implementation of the N8B+7Be correction,
as well as the Npep constraint, can either be done during the ASU simulation, where these
parameters are sampled according to their correction values and uncertainties, or it can be
done after the ASU simulation through a Gaussian convolution. The ASU method is also used
in the previous Section 7.6.1 for the production of conditional probability distributions, used
for the study of the systematic uncertainty from the Nth-Hit(max) selection.

7.7.3 Equations used for the final results

The full result of the CID analysis is the posterior probability distribution P(t|data). The
problem is that the ASU distribution can only be produced with a finite number of simulations,
which means that it cannot be used for the production of credible intervals or exclusion limits
with probabilities that are small compared to the statistics of the ASU. To solve this problem
the ASU distribution is fitted with a single parameter β that represents a simple shift of the
∆χ2 corresponding likelihood distribution P(∆χ2(NCNO+pep)) = exp

(
−1

2 ∆χ2(NCNO+pep)
)
:

β
best = argmin

β

{
−2∑

n
ln
(
Poisson

(
P(n | bdata) | norm ·P(∆χ

2(n−β ))
))}

(7.9)

P(NCNO+pep | data) = norm ·P(∆χ
2(NCNO+pep−β

best)) (7.10)

Here, β best is the value of the fit response bias and it has an uncertainty that depends on
the simulated ASU statistic. The same procedure is also used to fit P(NCNO | data), where
β best corresponds to the sum of the bias and the mean value of the Npep constraint.

From this fit of the posterior distribution it is possible to calculate all probabilities p within
the physically allowed 0≤ NCNO+pep ≤ Ntotal region. The probability p can then be expressed
as a fraction δ of the standard deviation for the same probability of a Gaussian distribution
and the corresponding χ2 value for a single degree of freedom. These δ , χ2 values can be
calculated numerically from the Gaussian cumulative distribution Φ(δ ) and the χ2 cumulative
distribution F(χ2), respectively:

p = 2Φ(δ )−1 = F(χ2 | ndf = 1)

δ
2 = χ

2 (7.11)

Using the posterior distribution it is possible to perform a hypothesis test between the
HZ-SSM and LZ-SSM as P(HZ-SSM | data)/P(LZ-SSM | data), where each probability is
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given by the multiplication of the expected SSM distribution and the posterior:

P(SSM | data) =
Ntotal

∑
n=0

P(n | data) ·P(n | SSM) (7.12)

While the full result of the CID analysis is the posterior distribution it is necessary to
communicate the results as credible intervals to make sense of them. For the exclusion of the
zero-neutrino hypothesis this is a simple one-sided credible interval. On the other hand here the
production of two-sided credible intervals is ambiguous, as the physical boundaries effectively
introduce a skew and the peak (mode), mean and median of the posterior distribution are
different from each other. For this reason two different credible interval definitions are used
here. First, the equal-tail (ET) credible interval for a probability p is defined such, that the
same probability 0.5(1− p) is on the left side and on the right side outside the interval. The
central value of the ET-CI is the median of the posterior distribution, which is the minimum
value of the equivalent δ , χ2 distributions. For a number of neutrinos N the corresponding
credible interval probability pET(N) is calculated as:

pET(N) = 1−2min

{
N

∑
n=0

P(n | data),
Ntotal

∑
n=N

P(n | data)

}
(7.13)

The other definition is the highest density (HD) credible interval which is the narrowest
interval as it includes the values of highest probability density. This HD-CI always includes
the peak of the posterior, the minimum values of the equivalent ∆, χ2 correspond to the highest
probability. For a number of neutrinos N1, N2 around the peak, which must have the closest
probability to each other P(N1 | data) = P(N2 | data), the CI probability pHD(N) is:

pHD(N1) = pHD(N2) =
N2

∑
n=N1

P(n | data) (7.14)

The last thing to consider is the calculation of the CNO-ν rate R from the number of
neutrinos N. This is done by using the effective exposure factor f , which is the product of the
detector live time, TFC-exposure, fiducial mass and energy efficiency εE of each phase. For
Phase 1 this factor is f1 = 42.5 ·100t days and for Phase 2+3 it is f2+3 = 158.2 ·100t days. The
posterior distribution of the CNO-ν rate P(R) then follows from the law of total probability:

P(R) =
Ntotal

∑
n=0

P(n) ·Poisson(n | f R) =
Ntotal

∑
n=0

P(n)
( f R)ne−( f R)

n!
(7.15)

Effectively, this Equation 7.15 corresponds to the simple scaling R = n/ f of the x-axis, for
expected values smaller than the total number of measured data events f R < Ntotal. This is
different for the calculation of the combined CNO-ν rate posterior distribution P(R1+2+3),
which is correctly given by the law of total probability using the independent posterior
probability distributions of Phase 1, P1(n1) and Phase 2+3, P2+3(n2+3)), i.e. a two dimensional
marginalisation over n1 and n2+3

6:

P(R1+2+3) =
N1

total

∑
n1=0

N2+3
total

∑
n2+3=0

P1 (n1) ·P2+3 (n2+3) ·Poisson(n1 +n2+3 | ( f1 + f2+3) R) (7.16)

6This can also be written as a one dimensional equation, after the convolution P1(n)∗P2+3(n) = P1+2+3(n).
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7.8 Final results

In this section the full CID analysis chain performed for a last time, including all relevant
systematic uncertainties and with the correction of the fit response bias. The results are
presented as Gaussian equivalent ∆χ2 profiles, which take into account the physical limits of
the corresponding parameters. Here, the plots are only shown for Phase 2+3 and the relevant
plots of Phase 1 can be found in the Appendix C.6.

7.8.1 Calibration of gvch
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FIGURE 7.35: Final results of the gvch calibration for Phase 2+3. (a) Resulting ∆χ2(gvch) profile
including the systematic uncertainties (red), with χ2/ndf= 1036.2/1017, p= 0.33. The best fit value is
gvch = 0.089±0.019nsm−1. (b) The ASU distribution of gvch (black) for 4000 toy-analyses compared

to the likelihood distribution (red) of the ∆χ2 profiles. There is no fit response bias.

The gvch calibration of the 7Be-ν edge region is performed as described in Section 7.5.1
and the result is shown in Figure 7.35. The red ∆χ2 profile in Figure 7.35(a) is produced
with the −2ln(P(Nν)) pull-term that now includes the systematic uncertainty on the FV and
εE, while ∆χ2 now explicitly includes the systematic uncertainty from the propagation of the
uncertainty on the PMT time constant correction ∆µ(PMT). The black, dotted line shows the
∆χ2 profile without these systematic uncertainties and it can be seen that their contribution is
relatively small. The absolute performance of the fit is good, with a χ2/ndf = 1036.2/1017,
p-value = 0.33 and the best fit values are bdata = (Nfit

ν = 40140, gvfit
ch = 0.0894nsm−1, ∆rfit

dir =
1.65cm). The acceptance region ε is given by the systematic uncertainty propagated from
∆µ(PMT), ε = (Nsyst

ν =±247, gvsyst
ch =±0.0018nsm−1, ∆rsyst

dir =±0.01cm).
These values are used to produce the black ASU distribution in Figure 7.35(b) with

4000 toy-MC analyses. The ASU distribution is compared to the red probability distribution
P = exp(−1

2 ∆χ2), from the corresponding ∆χ2 profile of the CID data analysis. As expected,
both distributions are well in agreement with each other and the difference between the
mean values is ∆〈gvch〉= (0.0001±0.0003)nsm−1. A possible fit response bias can only be
negligibly small, which is also the case for Phase 1.

The final result of the gvch calibration is gvch = 0.089±0.019nsm−1 for Phase 2+3 and
gvch = 0.140± 0.029nsm−1 for Phase 1, where the uncertainty is given by the Gaussian
68.3% CI, corresponding to ∆χ2 =±1. These results differ by 1.5σ and are used separately
for Phase 1 and Phase 2+3 in the NCNO+pep analysis to include possible systematic differences
of the detector between Phase 1 and Phase 2+3. The results are summarised in Table 7.16:
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Fit bias
[
nsm−1

]
(gvch ± stat. ± syst.)

[
nsm−1

]
Phase 1 (1±3)10−4 0.1404 ±0.0278 ±0.0058

Phase 2+3 (−1±4)10−4 0.0894 ±0.0178 ±0.0043

TABLE 7.16: Results of the gvch CID analysis with systematic uncertainties. The fit performance is
χ2/ndf = 874.9/897, p = 0.70 for Phase 1, χ2/ndf = 1036.2/1017, p = 0.33 for Phase 2+3.

7.8.2 Measurement of NCNO+pep
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FIGURE 7.36: Final results of the NCNO+pep measurement for Phase 2+3. (a) The ASU distribu-
tion of NCNO+pep with 20k toy-analyses (black), compared to the nominal likelihood distribution
exp(− 1

2 ∆χ2(NCNO+pep)) (blue) and the distribution, corrected for the fit response bias (red). The latter
is the posterior distribution P(NCNO+pep | CID data) for the probability of the true, underlying number
of neutrino events. The 68.3% CI for the LZ-SSM and HZ-SSM is shown as a cyan and magenta
band, respectively. They include the systematic uncertainties of FV, Eeff. (b) The equal-tail credible
intervals of NCNO+pep, represented in a Gaussian equivalent ∆χ2 profile (solid line). The corresponding
68.3% CI (NET

CNO+pep = 2650+525
−501) is shown as a grey band. For comparison the ∆χ2 profile without

systematics and with fixed nuisance parameters is also shown (dotted line).

The ∆χ2(NCNO+pep) analysis is performed again, as described in Section 7.5.2, including
all relevant systematic uncertainties. The absolute performance of the fit is good with a
χ2/ndf= 1000.7/1017, p= 0.64 and the mean values of the best fit results from the PMT time
constant correction systematic are bdata = (Nfit

CNO+pep = 2805, gvfit
ch = 0.0965nsm−1, ∆rfit

dir =
2.69cm). The relevant systematic uncertainties are used to define the ASU acceptance region
as ε = (Nsyst

CNO+pep =±88, gvsyst
ch =±0.0015nsm−1, ∆rsyst

dir =±0.03cm). The uncertainties on
the FV and εE are not included here, as they are only relevant for the neutrino rate, but not for
the number of neutrinos.

These bdata, ε values are used for the production of the black ASU distribution in Fig-
ure 7.36(a), including the 8B+7Be-ν subtraction. The comparison with the ∆χ2 corresponding
likelihood distribution in blue clearly shows the expected fit response bias β , which is quanti-
fied according to Equation 7.10 with a value of β =−109±4 for Phase 2+3 and β =−50±4
for Phase 1, where the uncertainty comes from the finite statistics of the ASU distribution.

The shifted ∆χ2 likelihood distribution describes the simulated ASU distribution well.
The χ2-test between the distributions for a binning of ∆NCNO+pep = 10 and ≥ 10 entries
per bin results in χ2/ndf = 253.5/243, p-value = 0.31, while a binning of ∆NCNO+pep = 20
results in χ2/ndf = 127.0/134, p-value = 0.63. As such, the estimation of the posterior
distribution P(NCNO+pep | CID data) can be considered valid. This leads to the posterior
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probability for zero neutrino events P(NCNO+pep = 0 | CID) = 1.5 · 10−10 for Phase 2+3
and P(NCNO+pep = 0 | CID) = 3.5 ·10−5 for Phase 1, which corresponds to an exclusion of
the zero-neutrino hypothesis with 6.4σ and 4.1σ , respectively. The 68.3% CI for the HZ-
SMM and LZ-SSM are also shown in Figure 7.36(a) and the probability of these models is
P(HZ | CID)/P(LZ | CID) = 0.060%/0.043%, which means that the HZ-SSM is 1.4 times
more likely to be true than the LZ-SSM, given the CID data of Phase 2+3, while for Phase 1
the value is 1.04.

Figure 7.36(b) shows the equal-tail credible intervals, represented as a Gaussian equivalent
∆χ2 profile for Phase 2+3. The impact of the physical boundaries can be seen as an increasing
slope at the edges. The dotted line shows the ∆χ2 profile for a posterior distribution without
systematic uncertainties and without the effect of the nuisance parameters, which are fixed to
their best fit values and without their marginalisation. This shows the asymmetric influence of
the nuisance parameters, as an increased signal to total ratio generates a bigger systematic
uncertainty.

The final 68.3% (1σ ) credible intervals with all relevant systematic uncertainties are
summarised in Table 7.17. The equal-tail and high density CI definitions give only a small
difference here.

Fit bias P(0|CID) P(LZ|CID) P(HZ|CID) NET
CNO+pep NHD

CNO+pep

Phase 1 −50±2 3.5 ·10−5 0.163% 0.170% 626+239
−226 613+237

−225

Phase 2+3 −109±4 1.5 ·10−10 0.043% 0.060% 2650+525
−501 2626+523

−499

TABLE 7.17: Results of the NCNO+pep CID analysis with systematic uncertainties. The fit performance
is χ2/ndf = 884.8/897, p = 0.61 for Phase 1, χ2/ndf = 1000.7/1017, p = 0.64 for Phase 2+3. The

NCNO+pep uncertainties correspond to the equal-tail (ET) and highest density (HD) 68.3%CI (1σ ).

7.8.3 Measurement of the CNO-ν rate
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FIGURE 7.37: Final results of the NCNO measurement for Phase 2+3. (a) The ASU distribution of NCNO
with 20k toy-analyses (black) and the corresponding posterior distribution P(NCNO | CID data) (red).
The 68.3% CI for the LZ-SSM and HZ-SSM is shown as a cyan and magenta band, respectively. (b)
The equal-tail CI of the CNO-ν rate RCNO, represented in a Gaussian equivalent ∆χ2 profile. For Phase
1 (red) and Phase 2+3 (blue), with the corresponding 68.3% CI RCNO(Phase 1) = 6.4+5.2

−4.1 (cpd / 100 t),
RCNO(Phase 2+3) = 7.3+3.4

−3.2 (cpd / 100 t).
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The production of the ASU distribution for the number of CNO-ν events NCNO uses the
same bdata, ε values for NCNO+pep, where the number of pep-ν events Npep is constrained. Npep
is sampled according to the SSM expectation, including the model uncertainty, as well as
the uncertainties from the FV, εE, and the HZ-SMM and LZ-SMM values are selected with
equal probability. Then the number of CNO-ν events NCNO is sampled from 0 ≤ NCNO ≤
Ntotal−Npep. Effectively this is the same as the convolution of the P(NCNO+pep |CID) posterior
with the distribution of the expected (negative) number of pep-ν events.

Figure 7.37(a) shows the NCNO ASU distribution in black for Phase 2+3, where the
number of entries at NCNO = 0 is 1/20k = 5.0 ·10−5 for Phase 2+3 and 25/20k = 1.25 ·10−3

for Phase 1 (C.19(a)). The ASU estimated posterior distribution P(NCNO | CID) is shown in
red, and given the CID data of Phase 2+3, results in a probability for exactly zero CNO-ν
events of P(NCNO = 0 | CID) = 5.78 ·10−5(= 1.16/20k), which corresponds to a one-sided
exclusion of the zero CNO-ν hypothesis with > 4σ . For Phase 1 this value is P(NCNO = 0 |
CID) = 1.35 ·10−3(= 27.0/20k) corresponding to a one-sided > 3σ exclusion. Both posterior
probabilities are well in agreement with the estimations from the ASU distributions. The
probability that a true, underlying number of exactly zero CNO-ν events is responsible for the
measured data cosα histograms in both Phase 1 and Phase 2+3 is given by the product of Phase
1 and Phase 2+3 as P(NCNO = 0 | Phase 1 and Phase 2+3) = 7.80 ·10−8. This means that the
zero CNO-ν hypothesis can be excluded with 5.3σ . This value depends on the assumptions
made on the correction and systematic uncertainties from the number of non-CNO neutrinos.
It is therefore assumed to be a slightly conservative estimation, as the uncertainty from pep-ν
vs. CNO-ν MC is included, as well as the statistical uncertainty on the expected number of
pep-ν events.

The NCNO 68.3% CI for the HZ-SMM and LZ-SSM are also shown in Figure 7.37(a)
and the probability of these models is P(HZ | CID)/P(LZ | CID) = 0.062%/0.042%, which
means that the HZ-SSM is 1.5 more likely to be true than the LZ-SSM, given the CID
data of Phase 2+3, while for Phase 1 the value is 1.03. The NCNO posterior distributions
of Phase 1 and Phase 2+3 result in 68.3% credible intervals of NET

CNO(Phase 1) = 270+221
−171,

NHD
CNO(Phase 1) = 208+188

−180 and NET
CNO(Phase 2+3) = 1146+526

−494, NHD
CNO(Phase 2+3) = 1115+520

−496.
The calculation from the number of CNO-ν events NCNO to a neutrino rate R is given by
Equation 7.15.

Figure 7.37(b) shows the ET-CI of the CNO-ν rate RCNO for Phase 1 and Phase 2+3 in
red and blue, respectively, represented as a Gaussian equivalent ∆χ2 profile for Phase 2+3.
The impact of the physical boundary can be seen for the ET-CI, where value of ∆χ2 increases
for RCNO→ 0. As the posterior distribution is bound by RCNO ≥ 0 the probability for the true
CNO-ν rate to be outside the ET-CI also goes to zero when RCNO goes to zero. Consequently,
the ET-CI representation in units of ∆χ2 diverges to infinity for values of RCNO getting closer
to zero. The HD-CI in Appendix C.19(b) does not show this effect, as it only makes a
statement about the probability of RCNO being inside the CI. It does not make a statement on
how probable is is to find RCNO on the left of the HD-CI, relative to the probability to find
it on the right side of the HD-CI. Instead the HD-CI corresponding ∆χ2 profile exhibits a
kink, where the lower boundary of the CI has reached the minimum rate of zero cpd/100 t.
The final 68.3% (1σ ) credible intervals of RCNO with all relevant systematic uncertainties are
summarised in Table 7.18.

Figure 7.38(a) shows the posterior density function for the combined CNO-ν rate of Phase
1 and Phase 2+3, which is calculated according to Equation 7.16. The black line shows the
posterior density function7 including the systematic uncertainties, while the dotted line shows
a hypothetical density function without systematic uncertainties and without the influence of

7Please note that the number of neutrinos is a non-negative integer providing a probability distribution for each
individual number value, while the neutrino rate is a non-negative real number, with a probability density function.



164 Chapter 7. Correlated and Integrated Directionality Measurement of CNO-Neutrinos

0 2 4 6 8 10 12 14 16 18 20

tonnes] 100 /  Rate [cpdνCNO-

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16
PD

F 
[a

rb
. u

ni
ts

]
Posterior w/o systematics

Posterior w/ systematics

HZ-SSM 68% CI 

LZ-SSM 68% CI 

CID 68% CI 

 rate posterior distributionνCombined CID CNO-

(a)

0 2 4 6 8 10 12 14 16 18

tonnes] 100 /  Rate [cpdνCNO-

0

10

20

30

40

50

2 χ∆

Combined Phase 1 + Phase 2+3 CID

Bi constraint210Phase 3 MV fit with 

CID 68% CI 

MV fit 68% CI 

Bi constrained MV fit results210Comparison of CID and 

(b)

FIGURE 7.38: The final result of the Phase 1 and Phase 2+3 combined CNO-ν rate RCNO, with RET
CNO =(

7.2+2.8
−2.7

)
(cpd / 100 t). (a) The CNO-ν rate posterior density function with all relevant systematics

(solid line) is compared to the (expected) PDF without systematic uncertainties and without the effect
of the CID nuisance parameters (dotted line). The 68.3% CI for the LZ-SSM and HZ-SSM expectation
of the CNO-ν rate is shown as a cyan and magenta band, respectively. (b) The comparison of the CID
measurement of the CNO-ν rate (black) to the CNO-ν rate from the multivariate fit with the 210Bi
constraint (red) [45]. The 68.3% equal-tail CI of the CID measurement is shown as a grey band, while

the 68.3% CI of the MV fit is shown in red with RMV
CNO =

(
6.7+2.0
−0.8

)
(cpd / 100 t).

the nuisance parameters, which are fixed here to their best fit values. The 68.3% CI for the
LZ-SSM and HZ-SSM is shown as a cyan and magenta band, respectively. This results in a
probability ratio for these models of P(HZ | CID)/P(LZ | CID) = 0.107%/0.062%, where
the HZ-SSM is 1.7 times more likely to be true than the LZ-SSM, given the combined Phase 1
and Phase 2+3 CNO-neutrino rate posterior distribution.

The equal-tail and highest density 68.3% (1σ ) credible intervals are:

• RET
CNO =

(
7.2+2.5
−2.5 (stat.)+1.2

−0.9 (syst.)
) cpd

100t =
(
7.2+2.8
−2.7

) cpd
100t

• RHD
CNO =

(
7.0+2.5
−2.5 (stat.)+1.2

−0.9 (syst.)
) cpd

100t =
(
7.0+2.8
−2.7

) cpd
100t

These credible intervals are dominated by their statistical uncertainty and the positive
systematic uncertainties are larger than the negative systematic uncertainties because of the
asymmetric impact of the nuisance parameters on the neutrino signal MC cosα histograms,
while they do not impact the background MC histograms. The two-sided 5σ ET-CI is
0.008(cpd / 100 t) < RCNO < 22.795(cpd / 100 t).

Figure 7.38(b) shows the Gaussian equivalent ∆χ2 profile of the ET-CI of the combined
CID analysis in black, in comparison to the improved measurement of CNO-ν rate using
the 210Bi constrained multivariate fit [45] in red. Both the CID and MV fit results are
fully in agreement with each other. The MV fit has smaller uncertainties with a 68.3% CI
of RMV

CNO =
(
6.7+2.0
−0.8

)
(cpd / 100 t) and also a more significant exclusion of the zero CNO-ν

hypothesis at about 7σ CL [45]. It is interesting to note that the CID uncertainties are only
bigger by a factor of 3.4 for the negative uncertainty and 1.5 for the positive uncertainty. The
final CID results on the CNO-neutrino rate RCNO with all relevant systematic uncertainties are
summarised in Table 7.18.

7.9 Conclusion and outlook

In this chapter the Correlated and Integrated Directionality (CID) has been applied on the
energy region for which CNO+pep-ν events are expected to dominate the signal contribution.
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Results P(NCNO = 0 |CID) P(LZ|CID) P(HZ|CID)
RET

CNO RHD
CNO

[cpd / 100 t] [cpd / 100 t]

Phase 1 1.35 ·10−3 0.198% 0.204% 6.4+5.2
−4.1 4.9+4.5

−4.3

Phase 2+3 5.78 ·10−5 0.042% 0.062% 7.3+3.4
−3.2 7.0+3.3

−3.2

Combined 7.80 ·10−8 0.062% 0.107% 7.2+2.8
−2.7 7.0+2.8

−2.7

TABLE 7.18: Results of the CNO-ν rate CID analysis with systematic uncertainties. The uncertainties
correspond to the equal-tail (ET) and highest density (HD) 68.3% credible intervals.

The goal has been to provide a measurement on the number of CNO+pep-neutrinos NCNO+pep,
as well as a measurement of the CNO-ν rate where pep-ν is constrained to the SSM expected
value. For this purpose the CID analysis has been significantly improved, relative to the
previous measurement of 7Be-neutrinos.

The two data sets of Phase 1 and Phase 2+3 are investigated and analysed independently,
to search for a potential systematic uncertainty related to the change of the detector response
over time. The data is selected in a optimised fiducial volume and a Ngeo

h region of interest, to
maximise the expected neutrino signal over background ratio. This includes the application of
the TFC-cut to minimise the contribution of cosmogenic 11C. Likewise, the CID parameters,
namely the number Nth-Hit(max) cosα histograms and the binning of the those histograms,
are selected to optimise the sensitivity of the CID analysis. This is done by maximising the χ2-
test difference between the pure background and pure neutrino signal MC cosα histograms.
Here, a value of Nth-Hit(max) is chosen which is larger than what is necessary to fully
include the information of the direct Cherenkov hits on the PMTs. The reason for this is that
the systematic mis-reconstruction in the initial electron direction ∆rdir contains the indirect
information of the Cherenkov hits, as they systematically influence the position reconstruction.
This effect has a noticeable impact on the cosα shape of the scintillation hits, which then
propagate this indirect Cherenkov hit information to much later Nth-Hits than the information
provided by the direct Cherenkov hits

As the CID analysis is based on the time ordered Nth-Hits of the events on the PMTs it
is necessary to select PMTs with a good hit time behaviour and deselect PMTs that exhibit
systematic differences between the data and the MC model. For this selection the TFC-tagged
11C region is used, where the time-of-flight corrected hit time distribution of each individual
PMT is fitted. Systematically incompatible PMTs are easily identifiable by their different
fit results. This analysis also provides a correction of the relative hit times between the data
PMTs, which is necessary to minimise systematic differences between the data and MC CID
cosα histograms. The PMT selection and hit time corrections are applied individually on
Phase 1, Phase 2 and Phase 3, to take into account the changing detector response over time
due to the loss of live PMTs.

Another improvement of the CID analysis here is the calibration of the effective Cherenkov
group velocity correction gvch on the high statistics 7Be-ν edge region. This means, that
the neutrinos themselves are used to calibrate the Cherenkov hit time behaviour between the
data and the MC. The effective calibration results of gvch(Phase 1) = 0.140±0.029 ns m−1,
gvch(Phase 2+3) = 0.089±0.019 ns m−1 show a 1.5σ difference between Phase 1 and Phase
2+3 and they have a substantially smaller uncertainty, compared to the calibration using
γ-sources gvch(γ-sources) = 108±0.039 ns m−1. Using the gvch results independently is a
conservative approach, as the statistical uncertainty for a combined calibration would be
smaller, but it potentially takes into account systematic differences between Phase 1 and Phase
2+3, should they exist.
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The systematic uncertainties of the gvch calibration and NCNO+pep measurement are inves-
tigated independently for Phase 1 and Phase 2+3, which allows a thorough examination of the
CID systemics on two independent energy regions and two independent time periods. There
is an effort to perform the estimation of the systematic uncertainties in a reasonable manner
and not maximally conservative, which makes an in-depth examination necessary. For this
purpose, toy-MC studies are performed for the production of conditional probability distribu-
tion to investigate the Nth-Hit(max) selection, PMT selection and histogram binning selection.
The results of these studies is that all these selections do not contribute to the systematic
uncertainties. Likewise, the different background species of 210Bi, 11C, and external γ’s do not
contribute a systematic uncertainty, as they are indistinguishable in their cosα distributions,
given the statistics of the data. In this regard, the CID is more robust than the multivariate
(MV) fit, as all background species look the same and are well distinguishable from the cosα

distribution of the neutrino signal.
The relevant systematic uncertainties come from the difference in the energy distribution of

CNO-ν and pep-ν events and the uncertainty of the relative data PMT hit time correction. The
different neutrino recoil-electron energies result in a slightly different Cherenkov/scintillation
ratio of the neutrino events, as well as a slightly different electron scattering angle. This
provides a systematic uncertainty of 5.2% for Phase 1 and 4.6% for Phase 2+3, relative to
the final result of the CNO-ν measurement. The data PMT hit time correction corresponds
to a relative systematic uncertainty of 9.6% for Phase 1 and 5.5% for Phase 2+3. The rest of
the systematic uncertainties are not unique to the CID analysis but are also relevant for the
MV fit, such as the correction for the number of 8B-ν , 7Be-ν and pep-ν events, as well as the
uncertainty on the FV and RoI. They provide a combined, relative systematic uncertainty of
10.9% for Phase 1 and 4.5% for Phase 2+3, for the measurement of the CNO-ν rate.

The CID specific fit response has been investigated and it has been found that the fit itself
introduces a bias between the best fit value of NCNO+pep and the true, underlying number of
neutrino events. The reason for this is that the nuisance parameters gvch, ∆rdir only affect the
signal cosα shape, which shifts the best fit NCNO+pep to larger values. This bias is estimated
with the so called Acceptance Sampling Unfolding, which is a toy-MC sampling of the
Bayesian posterior distribution for the measurement of NCNO+pep, and NCNO with the pep-ν
constraint. Here, the results of toy-MC analyses are saved if and only if they reproduce the
best fit result of the data analysis, which provides a distribution of the true, underlying values
of NCNO+pep, i.e. the posterior. The bias introduces an overestimation of the naive ∆χ2 best fit
NCNO+pep value of∼ 8% for Phase 1 and∼ 4% for Phase 2+3, compared to correct calculation
of the posterior.

Phase 1 and Phase 2+3 are analysed independently to investigate if the detector response
changes over time to such a degree, that the CID method becomes unusable. This is not the case,
as the CID measurement results, as well as the systematic behaviour of the background, for
Phase 1 and Phase 2+3 show no visible systematic differences between each other. Therefore,
it is possible to combine the independent results of Phase 1 and Phase 2+3, which provides an
exclusion of the zero CNO-ν hypothesis with a probability of 7.8 ·10−8, or > 5σ CL. Thus, the
CID measurement of NCNO corresponds to the detection of solar CNO-neutrinos. The equal-
tail 68.3% (1σ ) credible interval of the CNO-neutrino rate is RCID

CNO =
(
7.2+2.8
−2.7

)
(cpd / 100 t).

The MV fit with the 210Bi background and pep-ν constraint has a better exclusion of the zero
CNO-ν hypothesis at about ∼ 7σ and a CNO-ν rate measurement with smaller uncertainties
RMV

CNO =
(
6.7+2.0
−0.8

)
(cpd / 100 t) [45].

On the other hand, the MV fit only provides a relatively indirect proof of the solar origin
of the measured signal. There, the proof that the signal corresponds to solar CNO-neutrinos
comes from the background subtracted energy distribution (Figure 3 in [45]), which is well
in agreement with the expected energy distribution of solar CNO-ν events in Borexino.
Compared to that, the CID provides a more direct proof for the solar origin of the measured
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signal. By construction the measured signal can only originate in the Sun. Thus, the CID
method provides an epistemologically more convincing argument for the solar origin of the
assumed NCNO signal, compared to the MV fit8. Furthermore, the CID does not depend on any
background constraint and needs no assumptions about the fluid dynamics of the Borexino
detector [154] and the transport mechanisms of the 210Bi and 210Po isotopes in the LS. The
last difference between the CID and the MV fit is that the combined CID result uses the
entire detector live time, corresponding to 3628.5 days, while the MC fit only uses a part of
Phase 3, corresponding to 1431.6 days. The conclusion is then, that the CID measurement
can be understood as a supplementary proof of the solar origin of the CNO-ν events, which
compliments the more sensitive, 210Bi constrained MV fit. Both measurements taken together
provide a more reliable experimental proof for the existence of the CNO-cycle neutrinos than
each single measurement on its own.

Therefore, the natural, next step for the CNO-ν measurement in Borexino is the com-
bination of both the MV fit with the CID. Here, a very first estimation can be given by
simply combining the posterior, likelihood distributions, which results in a best fit value of(
6.8+1.6
−0.8

)
(cpd / 100 t), with an exclusion of the zero-CNO-ν hypothesis by more than 8σ . A

more sophisticated approach would be to implement the CID posterior distribution directly
into the MV fit, such that the neutrino signal to background ratio can be constrained trough
the directionality of the neutrino events. This would not only provide a direct increase in
the sensitivity for the measurement of the CNO-ν rate, but it would simultaneously apply an
additional, independent constraint on the problematic 210Bi background. This second effect
is then expected to increase the sensitivity on the CNO-ν rate even further. Ultimately, the
full implementation of the CID into the MV fit would provide the best currently achievable
measurement of the CNO-ν rate [167], all thanks to the unprecedented radio-purity of the
Borexino detector. This assumes that the MC fit and CID analyses are independent from
each other, which seems reasonable, but should be investigated further. The task of this
implementation is currently being worked on by , as part of his dissertation.

8Not that there is any reasonable doubt about that in the MV fit approach. The CID solves more of a
philosophical problem, compared to the practical problem of the actual CNO measurement.
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Chapter 8

Conclusions and Outlook

The main topic of this thesis concerns the measurement of low energy solar neutrinos, trough
their associated directionality in the high light-yield liquid scintillator (LS) Borexino detector.
On the one hand, Borexino is the ideal candidate for such an endeavour, as it offers an
unprecedented radio-purity. On the other hand, the directionality is not easily accessible in
Borexino, exactly because its monolithic scintillator design and high light-yield make the
directional Cherenkov hits exceptionally sub-dominant to the scintillation. The task is further
complicated by the relatively fast decay time of the scintillator, in combination with the lack
of dedicated hardware and electronics systems that could allow for the separation between the
scintillation and Cherenkov light.

Borexino was never intended nor expected to be able to make use of the directional
Cherenkov information. It was utilised nonetheless, through the Correlated and Integrated
Directionality (CID) method, specifically developed as part of this thesis. The CID method
works by calculating the angle between the reconstructed PMT hit photon direction and the
known position of the Sun for the first few hits of every event. The integration over a large
number of events then provides an angular distribution, which can be used to make a statistical
inference on the number of solar neutrino events. Ultimately, the CID accesses the neutrino
directionality not through the event direction reconstruction, but rather through the event
position reconstruction. This is a task that is well suited for liquid scintillation detectors.
Another important aspect of the CID is the use of the relative time-like variable called Nth-Hit,
which is the time sorted sequence of PMT hits. The use of only the earliest Nth-Hits provides
an improved Cherenkov to scintillation hit ratio, which increases the sensitivity of the analysis.
Additionally, the Cherenkov hits imprint their directionality through a bias on the position
reconstruction. This in turn influences the angular distribution of the scintillation hits, but
only for solar neutrino signal events, which also increases the sensitivity of the CID analysis.

CID measurements

The first use of the CID is the measurement of the 0.862 MeV line of the 7Be-neutrinos, as a
proof-of-principle for its feasibility. For this measurement the systematic mis-behaviour of
the Cherenkov hit times between the data and the MC model has been measured using the
available γ calibration sources. The analysis is performed in a conservative fashion, using only
Phase 1 of the detector and estimating the systematic uncertainties maximally conservative.
The measurement is performed close to the Compton-like 7Be-ν edge, between 0.56 MeV–
0.76 MeV, which selects a total number of 19904 events. The zero-neutrino hypothesis can
be excluded with > 6σ , using the CID analysis. This corresponds to a detection of sub-MeV
solar neutrinos with a fit that depends solely on the directionality provided by the Cherenkov
hits. The measured number of solar neutrinos is Nsolar-ν = 10887+2386

−2103(stat.)± 947(syst.).
This is well in agreement with the expected values of the SSM [35] NSSM

solar−ν
= 10187+541

−1127,
where the uncertainty includes the difference between low (LZ) and high (HZ) metallicity
models. The 7Be-ν rate is then calculated as R(7Be)CID = 51.6+13.9

−12.5 (stat. + syst.)cpd/100t,
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after constraining the number of CNO+pep-neutrino events. This CID measurement is
well in agreement with the result of the corresponding Phase 1 spectroscopy of R(7Be) =
47.87±2.28cpd/100t [83]. The spectral fitting provides a significantly greater sensitivity for
the measurement of the 7Be-neutrinos. The sensitivity of the CID analysis is limited here due
to the low number of Cherenkov hits per neutrino events. Nonetheless, this result is the first
directional detection and measurement of sub-MeV solar neutrinos. At the same time, it is
also a hybrid detection of sub-MeV neutrinos, as the events are explicitly triggered by the
scintillation hits. This proofs the principle feasibility of the hybrid detection concept, even in
a large scale, monolithic LS detector.

The second use of the CID, with significant improvements of the analysis, is the mea-
surement of the CNO-ν rate. Here, the effective Cherenkov group velocity correction gvch
is quantified on the 7Be-ν edge region, while the main analysis is performed in a decoupled
energy window between 0.85 MeV–1.3 MeV, optimised on the expected ratio between the
neutrino signal to the background. This means that the neutrinos themselves are used to
constrain the nuisance parameter gvch, which provides a better sensitivity than the use of γ

calibration sources. Another improvement of this CID analysis is the use of both the ear-
liest, direct Cherenkov hits, as well as later PMT hits that are influenced indirectly by the
Cherenkov hits. This indirect directionality stems from the influence of the Cherenkov hits
on the position reconstruction, which applies a bias in direction of the solar neutrino. This
bias then also impacts the later scintillation hits of the solar neutrino signal events to some
extent, while it is not present for the angular distribution of the background. The full detector
live time of 3628.7 days is analysed in two separate data sets for Phase 1 and Phase 2+3, to
search for potential systematic differences stemming from a change of the detector response
over time. The final results of this CID analysis is calculated through the toy-MC sampling
of the Bayesian posterior distributions. For Phase 1 the number of CNO+pep-ν events is
measured as NCNO+pep = 626+239

−226 (stat. + syst.), out of 1990 selected events, and for Phase
2+3 the result is NCNO+pep = 2650+525

−501 (stat. + syst.). Both results are well in agreement with
the SSM [35] expectations of NLZ-SSM

CNO+pep = 561± 25, NHZ-SSM
CNO+pep = 615± 34 for Phase 1, and

NLZ-SSM
CNO+pep = 2091±86, NHZ-SSM

CNO+pep = 2293±126 for Phase 2+3. The systematic uncertainties
are investigated in depth, using toy-MC studies, as well as independent background data sets.
It is found, that the change of the detector response over time does not introduce a prohibitive
systematic difference between Phase 1 and Phase 2+3. Therefore, the result of the CNO-ν
rate measurement is given by the combination of Phase 1 and Phase 2+3, after constraining
the number of pep-ν events in each data set with the SSM predictions. This combined CID
analysis provides a probability for the zero CNO-ν hypothesis of P(NCNO = 0) = 7.8 ·10−8,
which corresponds to a detection of CNO-neutrinos with > 5σ , using only their directionality.
This result is a very direct proof of the solar origin of the assumed CNO-ν events. The
measured CNO-ν rate is RCNO =

(
7.2+2.5
−2.5 (stat.)+1.2

−0.9 (syst.)
)
(cpd/100t). The CID posterior

distribution implies that the investigated HZ-SSM is 1.7 times more likely to be true than the
corresponding LZ-SSM. This CID measurement is in agreement with the result of the spectral,
multi-variate (MV) fit of RMV

CNO =
(
6.7+2.0
−0.8

)
(cpd / 100 t) [45]. The MV fit provides smaller

uncertainties, but it depends on an external constraint of the 210Bi background. This constraint
requires a good thermal stability of the detector, to limit convective motions of the LS, and it
is only possible to apply it for Phase 3. In this regard the CID analysis is more robust than the
spectral fit, as the CID signal and background distributions have no degeneracy between their
angular distributions and an external background constraint is not necessary.

Outlook for the CID

What then could the future of the CID method be? First, the parameters used for the CID
analysis seem reasonable well decoupled from the MV fit, where the energy spectrum is fitted
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simultaneously with the radial distribution of the selected events. The position of the Sun, i.e
the true direction of the solar neutrino events, does not depend on the neutrino energy nor
on the reconstructed event position r in the Borexino detector. Similarly, the time-of-flight
corrected PMT hit time, by design, does not depend on the reconstructed event radius. Thus,
for a given energy selection, the CID measurement of NCNO+pep is (conditionally) independent
from the MV fit result and consequently both analyses can be combined. This can be achieved
by implementing the NCNO+pep to total ratio measurement of the CID as an independent pull-
term into the MV fit. This would improve its sensitivity while at the same time taking correctly
into account the correlations of the pep-ν , CNO-ν and 210Bi parameters in the MV fit. At the
time of writing this idea is actively under investigation by the collaboration. The goal is to
produce the best possible measurement of the CNO-ν rate using the Borexino detector.

Second, the uncertainty of the CID measurement is dominated by the statistical uncertainty,
which could potentially be drastically improved in future experiments. The size of the
statistical uncertainty is not only realised due to the finite number of neutrino events, but more
so due to the unfavourable Cherenkov to scintillation hit ratio present in Borexino. For the
same number of data events the impact of a better separation of the neutrino signal Cherenkov
to scintillation ratio can be estimated through a toy-MC. For example, all other things being
equal, improving the Cherenkov to scintillation ratio by a factor of 2, from ∼ 0.47% to
∼ 0.95%, would reduce the statistical uncertainty on the CNO-ν rate measurement by a factor
of ∼ 2 from 2.5(cpd / 100 t) down to 1.2(cpd / 100 t). A hypothetical, perfect separation of
Cherenkov and scintillation hits would provide a reduction of the statistical uncertainty by a
factor of ∼ 8, down to 0.3(cpd / 100 t). Of course, in reality a simple reduction of the number
of scintillation hits would increase the position reconstruction uncertainty and consequently the
spread from the time-of-flight correction, which would then negatively affect the Cherenkov
to scintillation ratio. The true potential of CID under advantageous circumstances must be
studied by taking into account the full detector response. Examples for target materials with a
better Cherenkov to scintillation ratio would be water based LS [73, 130], or the use of a slow
LS with a decay constant larger than PPO, such as linear-alkylbenzene (LAB) with a slow
fluorophore [168]. While the exact sensitivity of a CID analysis used in a purpose-built hybrid
detector, such as Theia [72] or Jinping [74, 75], needs to be estimated trough a dedicated
sensitivity study it seems almost certain that the use of improved target materials, better
hardware [123, 125, 124] and improved vertex reconstruction algorithms [126, 129, 128] will
likely empower the CID method. Every development that helps an event-by-event direction
reconstruction in a LS should in principle also improve the CID analysis.

A very concrete example for the application of CID in a future detector is JUNO [69], a
20 kton LS detector at a depth of 1800 m water equivalent, which is currently under construc-
tion and is expected to start data taking in 2024. The main goal of JUNO is the determination
of the neutrino mass ordering, but it has also a large number of other physics goals, includ-
ing the measurement of solar neutrinos. For this task the main challenges are the intrinsic
radio-purity of the LS, the electronic PMT pile-up due to a large rate of 14C events from the
enormous LS volume, as well as the relatively high muon flux and consequent production of
11C background, compared to Borexino (at 3800 m water equivalent). The measurement of
8B-neutrinos above 2 MeV is a prime candidate due to the large size of JUNO [169], while
measuring 7Be-neutrinos is considered challenging [69], given the expected background rate.
In this context CID could potentially provide a substantial improvement to the solar neutrino
measurement, due to the expected large neutrino signal event statistics, as well as the use of
the relatively slow LAB scintillator. The latter should in principle allow for a better separation
between Cherenkov and scintillation hits, based on their arrival time. On the other hand,
JUNO uses PMTs with a relatively large transit time spread, as well as PPO as a primary and
bis-MSB as a secondary wavelength shifter [170]. This could have the consequence that more
Cherenkov photons are absorbed and re-emitted as isotropic scintillation light, compared to
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Borexino. The exact potential of the CID method in the JUNO experiment must be explored
in a dedicated sensitivity study, a task that has been recently started by as
part of her dissertation.

It seems likely that a dedicated event-by-event direction reconstruction will in general
provide a better measurement sensitivity in a purpose-built detector than the CID. At the
same time it seems also reasonable that for a sufficiently low trigger threshold, there will be a
low energy region, in which CID will outperform the event-by-event direction reconstruction
analysis methods. The reason for this is that below a certain signal energy the number
of Cherenkov photons per event will become so small, that an event-by-event direction
reconstruction becomes useless, as many events will produce an insufficient number of
Cherenkov hits to be detected. The CID on the other hand can still perform well for even a
very small Cherenkov hits per event ratio, as it can make up the small Cherenkov hit statistic
with a sufficiently large number of neutrino events. This is already the case for the Borexino
detector and the 7Be-ν and CNO-ν CID measurements presented in this thesis.

Another interesting, potential candidate for the application of CID is the measurement of
pp-neutrinos. The maximum energy of pp-neutrinos is 0.42 MeV [41], where the maximum
energy transfer for the electron scattering is T = 0.26MeV. This is larger than the minimal
energy T > 0.16MeV required for Cherenkov radiation in a typical LS with a refractive
index of ∼ 1.55. Thus, it seems likely that the CID can be applied for the measurement of
pp-neutrinos, while they are almost certainly outside of the scope of a directional analysis
using an event-by-event direction reconstruction. Such a measurement could be tried in
Borexino, but the end of data taking in October 2021 and the following, slow dissolution
of the collaboration make this proposal unlikely. Thus, a potential CID measurement of
pp-neutrinos is likely reserved for future detectors with advantageous conditions, such as
in the proposed Serappis detector [70]. Here again, it is reasonable to suggest a sensitivity
study for the possible impact that CID would have on the pp-ν measurement, as well as a
simultaneous study of the detector setup, under which the CID sensitivity could be maximised.
This task was recently started by as the topic of his master thesis in the group of

in Mainz.
The Correlated and Integrated Directionality offers a novel and robust method for solar

neutrino detection. It can be used on its own, as a supplementary measurement, or even as
an additional constraint in a spectral, multivariate analysis. The Sun is always shining in
neutrinos and hopefully it will continue to shine on the CID.
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Appendix A

Measurement of the Effective
Scintillation Group Velocity

FIGURE A.1: The nine PMTs with the worst χ2/ndf for a linear fit of the early hit mean times vs.
distance, for the 214Po source. The PMTs are sorted from worst to least bad PMT. They have been
deselected for the calculation of the effective scintillation group velocity. The tenth deselected PMT is

not shown.
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Appendix B

Cherenkov Group Velocity
Calibration using γ Events

PDF A[ns−1] µ[ns] σ [ns]

Data

-0.100 33.0 0.75
-0.094 32.3 0.91
-0.060 33.0 0.75
-0.300 33.0 1.00
-0.120 32.5 0.75
-0.080 33.0 0.75

MC, gvch = 0.08nsm−1

0.078 32.8 1.08
0.070 32.2 1.30
0.060 33.5 1.40
0.070 32.3 1.35
-0.090 34.7 1.30
-0.142 33.1 1.16

MC, gvch = 0.10nsm−1

0.065 32.3 1.45
0.060 33.7 1.70
0.060 32.2 1.45
0.092 32.7 1.00
-0.090 34.7 1.30
-0.125 33.1 1.15

MC, gvch = 0.16nsm−1

0.060 32.5 1.65
0.095 32.4 1.35
0.065 33.6 1.65
0.094 32.8 1.15
-0.075 34.3 0.80
-0.110 32.9 1.15

MC, gvch = 0.22nsm−1

0.080 32.7 1.65
0.075 32.5 1.65
0.085 33.1 1.40
0.065 33.7 1.85
-0.100 32.7 1.05
-0.100 34.7 1.05

TABLE B.1: The parameters used for the modification of the position reconstruction PDF, necessary
for the gvch calibration using the γ sources.
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Appendix C

Correlated and Integrated
Directionality Measurement of
CNO-Neutrinos

C.1 Selection of the Nth-Hit cut-off and CID-histogram binning
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FIGURE C.1: The toy-MC study of the Cherenkov information ∆χ2 as a function of the individual
Nth-Hit cosα histograms and the histogram binning, for Phase 1. The nominal MC ∆rdir value and
gvch = 0.108nsm−1 is shown in blue, an increased ∆rdir value is shown in red and the nominal MC
∆rdir with a decreased gvch = 0.068nsm−1 is shown in blue. (a) ∆χ2 vs. the Nth-Hits for the 7Be-ν
region. (b) ∆χ2 vs. cosα histogram binning for the 7Be-ν region. (c) ∆χ2 vs. the Nth-Hits for the

CNO+pep-ν region. (d) ∆χ2 vs. cosα histogram binning for the CNO+pep-ν region.
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C.2 PMT selection and correction of the relative PMT time offset

10 20 30 40 50 60 70 80 90 100

 Hits of Events at PMTst1

1

10

210

N
u

m
b

er
 o

f 
P

M
T

s

Data without PMT deselection

Data with PMT deselection

Normalised MC expectation

 Hits of Events
st

Phase 1 Distribution of PMTs with a Number of 1

(a)

10 20 30 40 50 60 70 80 90 100

 Hits of Events at PMTst1

1

10

210

N
u

m
b

er
 o

f 
P

M
T

s

Data without PMT deselection

Data with PMT deselection

Normalised MC expectation

 Hits of Events
st

Phase 3 Distribution of PMTs with a Number of 1

(b)

FIGURE C.2: Distribution of the number of first hits of the events on the PMTs for the 7Be-ν region.
The data without a PMT deselection (black) is compared with the data after the PMT deselection (red)

and the expected distribution from MC (blue). (a) For Phase 1. (b) For Phase 3.

C.3 Measurement of NCNO+pep without systematic uncertainties
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FIGURE C.3: (a) Resulting ∆χ2(gvch) profile of Phase 1, with χ2/ndf = 868.3/897, p-value = 0.75
for a binning of 60 and χ2/ndf = 277.2/297, p-value = 0.79 for a reduced binning of 20 using the
same best fit parameters. The best fit value is gvch = (0.138±0.028)nsm−1. (b) The χ2 corresponding
p-values of each individual Nth-Hit cosα histogram between data and MC. The MC histograms are
not fitted individually on data, but use the best fit results of the full Nth-Hit(max) = 15 analysis. The
p-values are calculated for a number of bins of 60 (black) and 20 (red). The dotted lines correspond to

p-value < 0.32 andp-value < 0.05.
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FIGURE C.4: Summed cosα histograms of the Phase 1 7Be region used for the gvch calibration.
data is shown in black, pure 210Bi background MC in blue and in red the best fit MC histogram with
gvch = 0.138nsm−1 and Nν = 9400 fitted signal events, 10504 fitted background events out of 19904
events in total. (a) The sum of the first to fourth Nth-Hits. The peak of direct Cherenkov hits is visible
around cosα ∼ 0.7. (b) The sum of the fifth to 15th Nth-Hits. The negative cosα slope of neutrino
events due to ∆rdir = 1.90cm is visible in data. The cosα shape of the MC background comes from

the run dependent distribution of live PMTs and the PMT selection.
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FIGURE C.5: (a) Resulting ∆χ2(NCNO+pep) profile of Phase 1, with χ2/ndf = 886.9/897,
p-value = 0.59 for a binning of 60 and χ2/ndf = 284.3/297, p-value = 0.69 for a reduced binning
of 20 using the same best fit parameters. The best fit value is NCNO+pep = 676+235

−224 out of 2990 total
events. The red and blue bands represents the 68.3% CI of the SSM expectations of HZ and LZ,
respectively. (b) The χ2 corresponding p-values of each individual Nth-Hit cosα histogram between
data and MC. The MC histograms are not fitted individually on data, but use the best fit results of the
full Nth-Hit(max) = 15 analysis. The p-values are calculated for a number of bins of 60 (black) and 20

(red). The dotted lines correspond to p-value < 0.32 and p-value < 0.05.
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FIGURE C.6: (a) Summed cosα histograms of the Phase 1 CNO+pep region. data is shown in black,
pure MC background in blue and in red the best fit MC histogram with Nν = 676 fitted signal events,
2309 fitted background events out of 2990 events in total and gvch = 0.143nsm−1. (a) The sum of
the first to fourth Nth-Hits. The peak of direct Cherenkov hits is visible around cosα ∼ 0.7. (b) The
sum of the fifth to 15th Nth-Hits. The negative cosα slope of neutrino events due to ∆rdir = 3.20cm is
visible in data. The cosα shape of MC background comes from the run dependent distribution of live

PMTs and the PMT selection.
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FIGURE C.7: (a) Results of the data gvch calibration at the 7Be edge region of Phase 1 for the nominal
and stricter selection of PMTs to use in the CID analysis. (b) Difference between the gvch results of
the nominal PMT selection and the stricter PMT selections in units of the expected standard deviation,

which is estimated through a toy-MC study.
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FIGURE C.8: ]
(a) Results of the data NCNO+pep measurement of Phase 1 for the nominal and stricter

selections of PMTs to use in the CID analysis. (b) Difference between the NCNO+pep results of
the nominal PMT selection and the stricter PMT selections in units of the expected standard

deviation, which is estimated through a toy-MC study.
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FIGURE C.9: (a) Results of data gvch calibration at the 7Be-ν edge region, for Phase 1. Top (black): a
range of Nth-Hit(max) values around the nominal Nth-Hit(max) = 15, with 60 bins. Bottom (red): a
range binning around the nominal 60 bins, with Nth-Hit(max) = 15. (b) Difference between the gvch

results and the nominal result gvch = 0.138nsm−1 in units of the expected statistical uncertainty.
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FIGURE C.10: (a) Results of data NCNO+pep measurement, for Phase 1. Top (black): a range of
Nth-Hit(max) values around the nominal Nth-Hit(max) = 15, with 60 bins. Bottom (red): a range
of number of bins around the nominal 60 bins, with Nth-Hit(max) = 15. (b) Difference between the

NCNO+pep results and the nominal NCNO+pep = 676 in units of the expected statistical uncertainty.
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(a) For the gvch calibration at the 7Be edge region. (b) For the measurement of NCNO+pep.
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FIGURE C.12: (a) The selected Ngeo
h region for the TFC-tagged 11C (red) and external γ (blue)

data events of Phase 1. The γ events are neither TFC-cut nor TFC-tagged. The events numbers are
N11C = 9318 and Nγ = 3840. (b) The corresponding distribution of the reconstructed event radius,
in a log-scale. 11C follows a third order polynomial distribution, as expected from a uniform event
distribution plotted against the radius. Likewise, the external γ’s show the expected exponential increase

for larger radii.
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FIGURE C.13: Comparison of the cosα histograms summed over the 1st to 15th hits of events, for
data and MC background of Phase 1. The histograms are normalised to the same integral, as to allow
for an easier comparison between the figures. (a) TFC-tagged 11C data compared to MC background
with a χ2/ndf = 48.6/59, p-value = 0.83. (b) External γ data compared to MC background with a

χ2/ndf = 62.8/59, p-value = 0.34.
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FIGURE C.14: The χ2/ndf corresponding p-values between data and MC background of Phase 1, as a
function of the individual Nth-Hit cosα histograms. The dotted lines correspond to p-value = 0.32 and
p-value = 0.05. (a) TFC-tagged 11C data compared to MC background for a binning of 60 (black) and
20 (red). (b) External γ data compared to MC background for a binning of 60 (black) and 20 (blue).
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C.5 Fit bias and Bayesian interpretation of the CID results

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

]1 [ns m
ch

ToyMC Best Fit gv

0

50

100

150

200

D
is

tr
ib

u
ti

o
n

 [
ar

b
. 

u
n

it
s] no nuisance par.

1m ns  = 0.044
ch

gv

dir
r∆, 

ν
with N

1m ns  = 0.044
ch

gv

no nuisance par.

1m ns  = 0.172
ch

gv

dir
r∆, 

ν
with N

1m ns  = 0.172
ch

gv

 Fit Bias
ch

BeRegion gv
7

Phase 1 

(a)

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

]1 [ns m
ch

Simulated gv

0.8−

0.6−

0.4−

0.2−

0

0.2

0.4

0.6

0.8
3−

10×

]
1

 [
n
s 

m
ch

g
v

∆

ch
Phase 1 Be7Region Fit Bias vs. gv

no nuisance par.

dirr∆, 
ν

with N

(b)

FIGURE C.15: (a) Distribution of the fit results for 10k toy-MC analyses, where the simulated gvch
value is set to gvch = 0.044nsm−1 (black, red) and gvch = 0.172nsm−1 (blue, yellow). The analyses
are performed including the two nuisance parameters of the fit (red, yellow) and and for comparison
with fixed values of the nuisance parameters and only gvch as a free parameter (black, blue). (b)
Difference between the mean value of the best fit distribution and the simulated gvch. The mean value

is estimated with a Gaussian fit.
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FIGURE C.16: (a) Distribution of the fit results for 10k toy-MC analyses, where the simulated NCNO+pep
value was set to NCNO+pep = 0 (black, red) and NCNO+pep = 5974 (blue, yellow). The analyses are
performed including the two nuisance parameters of the fit (red, yellow) and for comparison only
with NCNO+pep as a free parameter (black, blue). The fit is not constrained to the physical limits
(0 ≤ NCNO+pep ≤ 5974) to illustrate the impact of the nuisance parameters better gvch, ∆rdir. (b)
Relative offset between the mean value of the best fit distribution and the simulated NCNO+pep. The

mean value is estimated with a Gaussian fit performed within the physical limits of NCNO+pep.
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FIGURE C.17: Final results of the gvch calibration for Phase 1. (a) Resulting ∆χ2(gvch) profile
including the systematic uncertainties (red), with χ2/ndf = 874.9/897, p = 0.70. The best fit value is
gvch = 0.140±0.029 ns m−1. (b) The ASU distribution of gvch (black) for 4000 toy-analyses compared
to the likelihood distribution (red) of the ∆χ2 profiles. The difference between the mean values is in

agreement with zero: ∆〈gvch〉= (−0.0001±0.0004)nsm−1.
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FIGURE C.18: Final results of the NCNO+pep measurement for Phase 1. (a) The ASU distribu-
tion of NCNO+pep with 20k toy-analyses in black, compared to the nominal likelihood distribution
exp(− 1

2 ∆χ2(NCNO+pep)) in blue and the fit response bias corrected distribution in red. The latter is
the posterior distribution P(NCNO+pep | CID data) for the probability of the true, underlying number of
neutrino events. The 68.3% CI for the LZ-SSM and HZ-SSM is shown as a cyan and magenta band,
respectively. They include the systematic uncertainties of FV, Eeff. (b) The equal-tail credible intervals
of NCNO+pep, represented in a Gaussian equivalent ∆χ2 profile (solid line). The corresponding 68.3%
CI NET

CNO+pep = 626+239
−226 is shown as a grey band. For comparison the ∆χ2 profile without systematics
and with fixed nuisance parameters is also shown (dotted line).
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FIGURE C.19: Final results of the NCNO measurement for Phase 1. (a) The ASU distribution of NCNO
with 20k toy-analyses in black and the corresponding posterior distribution P(NCNO | CID data). The
68.3% CI for the LZ-SSM and HZ-SSM is shown as a cyan and magenta band, respectively. (b) The
highest-density CI of the CNO-ν rate RCNO, represented in a Gaussian equivalent ∆χ2 profile. For Phase
1 (red) and Phase 2+3 (blue), with the corresponding 68.3% CI RCNO(Phase 1) = 4.9+4.5

−4.3 (cpd / 100 t),
RCNO(Phase 2+3) = 7.0+2.8

−2.7 (cpd / 100 t).
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