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1.1 Scope of this work

1.1.1 Aims

By de�nition, research aims to expand the previous knowledge. A common approach is

the statement of a hypothesis, repeated experimental cycles and �nally a conclusion, that

validates or rejects the hypothesis. Another approach is the development of and elabo-

ration on enabling techniques. The question here is, how can we make our techniques

better? More precise? More informative? This thesis combined both approaches: Three

di�erent scienti�c problems with each their own hypothesis were solved by optimizing

the enabling technique. This way, the added value of this research is double: Advancing

enabling techniques and expanding knowledge in biological questions. In the following

sections each scienti�c question is presented separately. But although the used techniques

vary, the analytical aim and technology is common in all three problems: Proteome

and phosphopeptide analysis using liquid chromatography coupled to mass spectrometry

(LC-MS/MS). This work aims to �nd solutions for two prominent problems in phospho-

proteomics: challenging samples such as tough cell wall structures of Magnaporthe oryzae

and low sample amounts from very slowly growing cells in-vitro and from clinical samples

as well as minute and precious sample amounts from animal experiments.

The problem of challenging sample types should be addressed by optimizing the lysis

procedure and applying a data acquisition strategy that has not been widely applied yet

for phosphopeptide analysis, i.e. data independent acquisition (DIA). In addition to that,

novel data analysis strategies for the identi�cation of relevant statistically signi�cantly

changing phosphopeptides should be characterized, i.e. linear models and missing value

imputation strategies. This way, an optimized pipeline for challenging sample types should

be developed.

Minute sample amounts have been addressed in the past and sample preparation tech-

niques for phosphopeptide analysis have been developed to decrease the amount of re-

quired starting material to approximately 200µg. Still, some sample types will require

either a long time period to generate that much protein, such as human osteosarcoma

cells (HOS), or will require pooling of biological replicates, such as sorted immune cells

extracted from mice. This way, the biological information gets convoluted and more bi-
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ological replicates are required. Therefore, a phosphopeptide enrichment method based

on magnetic beads should be developed to decrease the required amount to 25µg. In

combination with DIA, the resulting biological outcomes and novel technical aspects that

have recently been introduced, such as trapped ion mobility separation (TIMS), should

be evaluated.

These challenges were addressed in three di�erent biological projects and the main focus

lays on the technical progress for the �eld, rather the biological outcome. Nevertheless,

the results will be made available online and serve as potential resource for future in-depth

bioinformatic analysis to gain even deeper insight into the underlying biological processes

in the three presented projects.

1.1.2 Rapid evolutionary events in the model organism

Magnaporthe oryzae

The �rst main scienti�c question of this research deals with a fundamental question in

biology: How can organisms e�ectively adapt to new environmental conditions? In this

case, the �lamentous rice plant pathogen Magnaporthe oryzae serves as model organism

to study a rapid adaptation phenomenon.

M. oryzae is one of the biological threads for rice crop production worldwide. When

infected, the rice plants develop the rice blast disease which then accounts for typically 10

to 30 % of crop loss and regional epidemics can be devastating [1]. This makes M.oryzae

a major risk for food supply and economy, as rice serves as main source of food for

approximately half of the world population [2]. In order to prevent crop loss and maintain

food supply, extensive scienti�c research to understand the plant-pathogen interaction as

well as the biochemistry ofM.oryzae had been necessary during the last decades. The high

importance for nutrition and economy, an early availability and possibility of manipulation

of the M. oryzae genome as well as its pathogenicity make it suitable and desirable as

model organism for research purposes [3].

The fungus shows an interesting and mechanistically not yet understood adaptation be-

havior: When generating genetically modi�ed phenotypes of M.oryzae that lack the func-

tion for osmostress regulation, these mutants will not grow on highly osmolarity media,
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e.g. high concentrations of salt or sugar. After at least eight weeks of cultivating the loss-

of-function (lof) phenotype on high osmolarity medium, it reproducibly regains the ability

to respond appropriately to osmostress and begins to grow again. Instead of accumulat-

ing arabitol as intramolecular compensation of the osmotic gradient between medium and

cytosole, the adapted lof phenotypes accumulate glycerol [4]. Thus, the mechanism of

response must have changed in a rapid time frame (on an evolutionary scale), without

mutations in the genome [4].

The high osmolarity glycerol (HOG) pathway is responsible for the regulation and re-

sponse to osmotic stress. This pathway has been extensively studied in yeast and many

insights seem to be transferable to M.oryzae and other fungi [5]. The molecular mecha-

nism of action involves environmental sensing by a hybrid histidine sensor kinase (HIK),

which is autophosphorylated at a conserved histidine residue upon normal environmental

conditions. The phosphoryl group is transferred to an aspartic acid residue within the

same protein and then subsequently transported via a his-phosphorylated phosphotrans-

fer protein to a asp-phosphorylated response regulator protein [6]. Osmostress sensing

initiates the dephosphorylation of a conserved histidine amino acid residue of the HIK,

which in turn activates a MAPK cascade. In consequence, the mitogen activated protein

(MAP) Kinase Hog1 is phosphorylated and translocates into the nucleus, where it acts as

transcriptional response regulator [7]. Interestingly, the cited study [4] also shows, that no

matter which protein of the signaling cascade is defective, all mutants are able to regain

osmoregulation ability.

The mechanism and cause for the ability to regain functions is yet unknown. The current

hypothesis is, that signaling pathways are rewired so that other HIKs or other sensor

proteins can take over the role of stress sensors while redirecting the response to the

accumulation of a di�erent intracellular solute. In contrast to the very well studied model

organism Saccharomyces cerevisiae, where only Sln1 as HIK is known, the genome of

M.oryzae contains 10 putative HIK coding sequences of which many maybe take over the

role of MoSln1 as osmostress sensor [7]. The main questions addressed this study were:

1. What is the proteomic response in wild type and adapted mutant?

2. Which pathways are involved in each genotype and phenotype?

4



1.1.3 Phosphoproteomic pro�ling of human osteosarcoma cells

Osteosarcoma is the most frequently occurring form of malignant sarcoma in children

and young adults between 5 and 20 years and is associated with very poor long term

prognosis of 20% survivors [8]. The �rst line treatment is a combination of chemotherapy

and surgery, but the recurrence intervals are comparably short and often metastasis in

other soft tissue, in most cases the lung, become dominant [9]. Although the molecular

mechanisms leading to aberrant cell proliferation and enhanced cell motility have been

addressed by genetics and transcriptomics, options for potential therapeutic targets are

limited [10]. Most commonly, the tumor suppressor gene TP53 shows genetic rearrange-

ments leading to inactivation of p53 [11]. Furthermore, fusion genes of LRP1-SNRNP25

and KCNMB4-CCND3 were found to promote osteosarcoma cell motility [12]. Recent

studies show the involvement of intracellular anaplastic lymphoma kinase (ALK) and the

insuline-like growth factor 1 receptor (IGF1R) in sarcoma, regulating cellular growth,

proliferation, and survival [13, 14]. Inhibition of these proteins have been proposed as

promising pharmaceutical targets in cancer therapy [15, 16, 17]. This opens the possi-

bility for therapeutic agents such as Ceritinib and Dasartinib. Ceritinib was originally

FDA approved in 2014 for the treatment of non-small cell lung cancer (NSCLC) and was

proposed to be an ALK inhibitor [18]. Nevertheless, it has been shown that Ceritinib

also displays inhibitory e�ects on IGF1R [19]. In-vitro and in-vivo clinical observations

suggest that inhibitory e�ect of the monotherapy with Ceritinib leads to a bypass Src ac-

tivity counteracting the IGF1R inhibition e�ect [20]. As higher Src activity is associated

with cancer progression [21], a combination treatment with Src inhibitory agents, such as

Dasartinib, have proven very e�ective in treating in-vitro cell culture of primary tumor

cells and experimental therapy for very few patients [22].

One of the patients was a 16 years old girl, that already received all conventional ther-

apy options and agreed to participate in this experimental study where she was treated

with the combination of Ceritinib and Dasartinib. Her disease progression was closely

monitored and biopsy samples were taken from the lung metastasis before treatment and

after treatment, to monitor intra-tissue drug concentration. On this occasion, primary

tumor cells of the biopsy samples were taken into cell culture to grow enough cells to

perform phosphoproteomic analysis for the elucidation of the current (aberrant) cellular
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signaling status. At this point of time, roughly 1000µg protein material was required to

perform a successful phosphoproteomics experiment using TiO2 spin tips. As the primary

lung metastasis cells were growing at a very slow rate, it took several weeks to meet the

necessary amount of protein.

Therefore, a method was urgently needed for robust and comprehensive phosphoproteomic

analysis, that requires much less amount of input material, in order to overcome issues

with unnecessary delay times for clinical samples in the future. Nevertheless, phospho-

proteomics in general and especially with low amount of starting material is still very

challenging [23]. Recent publications showed promising results in terms of downscaling of

phosphoproteomics experiments [24, 25]. In the cited studies, the authors have already

achieved the identi�cation of 3000 to 4000 phosphopeptides from as little as 25µg protein

material, which is 40-fold less than required by most common phosphoproteomics work-

�ows [26]. In addition to that, recently developed Zirconium based immobilized metal

ion a�nity chromatography (Zr-IMAC) magnetic beads promise to increase the quality of

the analysis while being excellently scalable at the same time [27]. This served as starting

point for the development of a downscaled phosphoproteomics work�ow in our laboratory.

For this, a low cell number of cell culture samples of a commercially available human os-

teosarcoma (HOS) cell line were treated with Ceritinib and 25µg of the resulting protein

amount after cell lysis was used for phosphopeptide enrichment using a newly developed

Zr-IMAC method. This way we could benchmark the new phosphopeptide enrichment

work�ow with the literature values and validate the biological �ndings, as we expected to

identify the e�ects of ALK / IGF1R inhibition on PTM level.

In addition to the validation of pinpointing the expected biological processes despite mas-

sive downscaling, we demonstrate with this dataset a novel technical approach for the

elucidation of coeluting and isobaric phosphoisomer pairs. Roughly 20 % of all detected

phosphopeptides share the same amino acid sequence with one or more phosphopeptides,

that di�ers in the identi�ed position of the phosphosites. By nature, they have the same

molecular weight and thus display the same m/z values in mass spectrometry, they are

isobaric. Nearly half of those isobaric positional isomers can not be resolved by chro-

matography, they elute at the very same time from the analytical column. Thus, their

m/z signal intensities are convoluted and also fragments supporting both positional iso-
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forms are present in the resulting MS2 spectra. In consequence, the site localization

con�dence is decreased and a proper quanti�cation and identi�cation is impossible. Ad-

ditional measures have to be utilized to properly resolve coleluting isomer peptides and

in the past, ion mobility spectrometry (IMS) had been demonstrated as possible solution

for this separation problem [28]. The recently introduced Bruker timsTOF Pro 2 o�ers

an integrated IMS solution for molecule separation based on their ion mobility after elu-

tion from the analytical column and ionization, before analysis in the mass spectrometer.

Thus, this instrument has the potential to increase the identi�cation and site localization

con�dence and make the separate quanti�cation of both ionspecies even possible. Here,

we examine the dataset for such cases and evaluate the outcome in comparison to tra-

ditional LC-MS/MS without the possibility for ion mobility separation, i.e. the Thermo

Fisher Orbitrap Exploris 480.

In summary, the adressed questions in this study were:

1. Can we achieve a competitive identi�cation rate compared to the recently published

numbers?

2. Can we validate the expected biological responses of the results?

3. Is it possible to resolve coeluting and isobaric phosphopeptide isomers?

4. Does the con�dence in identi�cation and site localization increase due to the use of

IMS?

1.1.4 Isolated Th17 cells from mice

For the successful defense of invading pathogens and disease prevention in any living

organism, a complex interplay of specialized functions is required. In the human body, a

multitude of di�erent specialized cells take over those functions and serve together as the

immune system. One part of the immune system is already present at birth, the innate

immune system. The whole innate immune system serves as �rst line defense against

pathogens and is unspeci�c. In order to increase speci�city, a second system exists that

develops during lifetime and adapts towards more speci�c targets - the adaptive immune

system.
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The adative immune system orchestrates a plethora of specialized cells, such as T cells, B

cells and Antigen presenting cells. Usually, an invading pathogen is processed by antigen

presenting cells, where its proteins undergo proteolysis into peptides (i.e. antigens) that

are presented at the surface of these cells. T cells are able to recognize the antigen as non-

endogenous and start secreting signaling molecules (e.g. cytokines such as interleukins

and interferons) to attract and/or di�erentiate additional T cells, in order to start the

pathogen defense. Therefore, the naïve T cells di�erentiate into more polarized T cell

subtypes, such as T helper cells (TH1, TH2, TH17 and many more), cytotoxic T cells

(TC) or regulatory T cells (Treg). T cells can have pro-in�ammatory e�ects, which are

necessary during infection to neutralize the pathogen, or anti-in�ammatory e�ects, to

regulate the in�ammatory state. The mechanisms to regulate pro- and anti-in�ammatory

processes are well balanced and highly complex. A perturbation of this sensitive system

has devastating consequences.

Roughly up to 8 % of the world population su�ers from some kind of such perturbations of

the immune system [29]. Id est that the acquired immune system recognizes endogenous

cells, tissues or molecules as hostile pathogens and consequently maintain an in�ammatory

state at the a�ected areas. In severe cases, multiple organs can be a�ected simultaneously

and are impaired in their function, which can be life threatening and hospitalization of

the patients is often required. Anti-in�ammatory or immunosuppressive medication is

needed to control the patients immune system and prevent auto-immune reactions. In

consequence, typically mild infections can be a major threat to the patients health and

triggers the need for more specialized immunoregulatory therapy to maintain the patients

resistance towards pathogens while minimizing auto-in�ammatory reactions.

In the presented study, a Casein Kinase II (CKII) inhibitory agent is tested on isolated

naïve T cells from mice, that are treated with di�erentiating agents. The hypothesis here

is, that the inhibition of CKII leads to di�erentiation to a T cell with anti-in�ammatory

phenotype or regulatory T cell. To study the consequences and draw conclusions about

the phenotype of the resulting T cell, phosphoproteomic analysis is required. Typically

1000µg of peptides are necessary for a successful phosphopeptide enrichment using TiO2

spin tips. To obtain su�cient amounts of protein, di�erentiated T cells from multiple mice

have to be pooled, which causes an increased demand of animal resources and information
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convolution of the mouse speci�c phenotype. Recently developed enrichment strategies

allow the use of up to 40-fold less peptide consumption and still obtain a high number

of phosphopeptides. Nevertheless, the more peptide is available for the enrichment, the

more phosphopeptides will be identi�ed. Most importantly, the biological conclusions

from the reduced number of phosphopeptides should be similar. For the validation of this

approach, a comparison of both phosphopeptide enrichment methods has been done and

the following questions have been addressed:

1. Can we achieve a competitive identi�cation number

comparing 25µg and 1000µg starting material?

2. Is the nature of the identi�ed phosphopeptide dependent on the enrichment type?

3. Is the biological conclusion the same for both enrichment types?
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1.2 Techniques in bottom-up proteome analysis

1.2.1 Introduction to the analysis of the proteome by

LC-MS/MS

Parts of this chapter have been published in [26]

For a comprehensive understanding of complex biological processes, it is necessary to

link information of multiple levels, such as transcriptome, proteome, metabolome and

Post-Translations-Modi�cations (PTMs) [30]. Especially the analysis of protein phospho-

rylation is key to understand cellular signaling [31]. Nowadays, LC-MS/MS approaches

allow the identi�cation and quanti�cation of thousands of peptides in a single analysis,

but until a decade ago, the science of proteomics was very tedious and rather insensitive:

For protein identi�cation it was necessary to prepare two-dimensional gels (2D-GE) that

were di�cult to handle, time consuming, low resolution and di�cult to reproduce. Iden-

ti�cation and quanti�cation of single proteins could be done using more or less speci�c

antibodies or other techniques that came either with safety issues or error prone and thus

far from robust [32]. The formerly relatively expensive mass-spectrometric (MS)-based

identi�cation su�ered from high instrument cycle times and was only operable by highly

specialized sta�. Nevertheless, during the last years the instrument prices went down

and the operability was simpli�ed, making MS-based proteomics the method of choice

for global, comprehensive protein analysis. Current generation instruments reproducibly

quantify thousands of proteins with high sensitivity, throughput and robustness, rendering

them superior to classical 2D gel approaches in most aspects [33].

The protein analysis by MS became more and more popular, but the basic principle of the

strategy remained the same: Proteins undergo digestion by proteases like trypsin and Lys-

C yielding smaller peptides. Following separation by reversed-phase liquid chromatogra-

phy (RP-LC) and electrospray ionization (ESI), the peptide mixtures are analyzed online

by the mass spectrometer. In nanoscale ultra-high-performance liquid chromatography

(nanoUPLC) systems, peptides are separated by gradients (typically between 30 and 180

min length) and elute over a short time of 5�30 s into the MS. In data-dependent acqui-

sition (DDA), the mass over charge ratios (m/z) and intensities of the eluting peptides

are measured �rst. Subsequently, the most intense signals are selected for fragmenta-
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tion in the collision cell. Bioinformatic tools allow to reconstruct the underlying peptide

sequences from the obtained intact and fragment m/z values. Finally, proteins can be

identi�ed by mapping the peptide sequence to entries from protein databases. In label-

free quanti�cation, intensity information or spectral counts of the peptides are used for

peptide and protein quanti�cation [34, 35].

With transcriptional and translational changes of protein expression many functions of

living organisms can be steered, but this process is time and resource intensive. Another

level of information adds up by the use of PTMs, which enables rapid and resource

saving regulation of cellular processes. While the generation of a new protein would take

minutes to hours to react to a certain stimulus, a phosphorylation event can be rapidly

catalyzed by specialized proteins (i.e. kinases) and is reversible by other enzymes (i.e.

phosphatases). Structural changes of the substrate can lead to activation, deactivation

or aggregation and stabilization of proteins, that serve the cells as response [36]. The

phosphorylation event is an esteri�cation with phosphorous acid or phosphate (typically

in form of adenosine-triphosphate) with a hydroxy-, amide-group or even thiol-groups

of the amino acids serine, threonine and tyrosine (S/T/Y) or arginine, lysine, aspartic

acid, glutamic acid and cysteine (R/K/D/E/C). Phosphorylation on serine, threonine

and tyrosine are the most abundant and studied phosphorylated sites in eukaryotes while

phosphorylated histidines have traditionally rather been recognized in prokaryotes and

plants, but recent research has proven that phosphorylated histidines are equally common

in eukaryotes [37, 38].

The analysis of phosphorylated peptides is essential for the elucidation of signal transduc-

tion pathways, but remains challenging. Due to their low abundance in the peptidome,

phosphopeptides will be di�cult to detect in the presence of the signals that derive from

non-phosphorylated species. Additionally, during electrospray ionization, phosphopep-

tides ionize less e�ciently, which causes low e�ciency in simultaneous identi�cation of

non- and phosphorylated peptides. Last but not least, the neutral loss of the phospho-

group during peptide fragmentation process makes the correct identi�cation of the phos-

phorylation site di�cult [39, 23].

Thus, for the comprehensive analysis of the phosphoproteome, additional sample prepa-

ration steps for phosphopeptide enrichment are necessary. These include immunoprecipi-
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tation (IP), metal oxide/immobilized metal ion a�nity chromatography (MOAC/IMAC),

and fractionation strategies such as high-pH reversed-phase chromatography (high pH

RP), strong cation exchange (SCX), or electrostatic repulsion hydrophilic interaction chro-

matography (ERLIC) [40, 41].

Other methods than LC-MS/MS for the elucidation of cellular signaling through protein

phosphorylation are available, such as western blot or kinase arrays. Those techniques are

biased and require previous knowledge of the underlying mechanisms. Which antibody

and which phosphosite have to be addressed in the western blot? How quantitative is

the staining? Such typical questions can be solved using an unbiased and discovery like

approach: bottom-up phosphoproteomics by LC-MS/MS. With this analytical strategy,

not only very speci�c and targeted questions can be addressed, but also previously un-

known phosphosites might be discovered, that might have been missed with western blot

analysis or other analytical strategies.

The general approach in bottom-up proteomics by LC-MS/MS requires the proteolytic

digest of the proteome into smaller peptides, where their mass and the mass of the amino

acid fragments can be accurately measured by high accuracy and high resolution mass

spectrometers. Bioinformatic search engines analyze the resulting spectra, compare to

known databases and allow the identi�cation and quanti�cation of the proteins in shot-

gun style [42]. Although recent initiatives promote the analysis of intact proteins (top-

down strategy), the resulting spectra are unequally complex and are - up to this date

- extraordinary challenging to interprete [43, 44]. Especially when the research aims to

identify speci�c sites and forms of post-translational modi�cations, such as protein phos-

phorylation, bottom-up peptide analysis serves as more applicable approach. However, the

analysis of phosphorylated peptides remains challenging, as the number of phosphorylated

peptides as subpopulation within a digested whole proteome samples is small compared

to the number of unphosphorylated peptides. In addition to that, their physicochemical

properties prevent e�cient ionization and fragmentation in the LC-MS/MS analysis [45].

Furthermore, phosphopeptide analysis was traditionally very sample consuming, but re-

cent developments allow the analysis with much less peptide material. This opens the

door to multiple sample preparation strategies, such as �lter aided sample preparation

(FASP) or single pot solid phase sample preparation (SP3) that require much less peptide
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material and yield peptides with high purity. In addition to that, alternative enrichment

strategies - each with their own bene�ts - can be applied depending on the analytical

need. Serine and Threonine phosphopeptide analysis for example can be done using TiO2

spin tips, while the analysis of Tyrosine phosphosites requires Immunoprecipitation (IP).

Next, the phosphopeptide separation parameters and mass spectrometry data acquisition

strategy heavily in�uence the result, but are also demanding by chromatography and

computational means.

In summary, a plethora of methods, parameters and challenges have to be taken into

account for the successful analysis of phosphorylated peptides, which will be introduced

in the following chapters.
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1.2.2 Cell lysis and protein digest

For proteome analysis by LC-MS/MS, the proteins have to be isolated from their biological

surrounding, being tissue, a cell or any other (bio)�uid / solid. Typically, aqueous bu�ers

in combination with chemical and/or physical treatment are used to facilitate the cell /

tissue lysis and protein release. In order to enable an e�cient protein digest, all disul�de

bonds of the cysteine residues within/between the proteins have to be reduced and re-

stabilization by oxidation has to be prevented by chemical modi�cation. Subsequently,

the denatured and modi�ed proteins are subjected to proteolytic digest using a protease.

A widely applied approach is the addition of aqueous solutions of chaotropic agents to

denature the proteins and keep them in solution. Urea and Thiourea are commonly

used as chaotropic agents, where Urea is known to denature the proteins preferrably

by intercalating into the hydrophobic parts of the proteins, thus interrupt tertiary and

secondary structures [46]. Although heat is also known to promote protein denaturation,

high temperature is unfavourable in lysis conditions involving the chaotropic agent Urea

as it will lead to partial carbamylation of the proteins on their Lysine (K) and Arginine

(R) residues. Ultimately, this prevents the proteolysis with the protease trypsin, that

relies on accesible and unmodi�ed K and R residues for an e�cient cleavage. If elevated

temperature is desired or not avoidable during sample preparation, a possible solution to

this issue is the use of guanidine hydrochloride as chaotropic agent, which comes with the

downside of less e�ective protein denaturation and solubilization [47, 48]. In general, less

stable protein/peptide modi�cations, such as phosphorylation on histidine and arginine

residues, will be lost during treatment with elevated temperature due to the higher energy

intake and the temperature dependency of chemical reactions according to the Van't Ho�

equation [49].

The second important chemical lysis strategy includes the use of detergents like sodium

dodecylsulfate (SDS), sodium deoxycholate (NaDOC) or the zwitterionic CHAPS (a tau-

rin derivate) are used solely or in combination with chaotropic agents to increase the

denaturation of proteins and promote their solubilization. Detergents typically consist of

two distinct structural parts, that vary by a certain degree in their hydrophobicity. The

hydrophobic part interrupts intra-protein hydrophobic interactions, usually in the inner

core of the protein in case of cytosolic/secreted proteins or the transmembrane domains of
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membrane bound proteins. Thus, the proteins are unfolded and the hydrophobic sections

are covered by the hydrophobic part of the detergent. The hydrophilic part of the deter-

gent then facilitates the solubilization in aqueous lysis bu�ers [50]. In addition to that,

detergents are able to penetrate and solubilize the lipid layer of the cell wall and thus un-

dermining the membrane integrity. This aids the thorough lysis of the cell, increasing the

protein release from the cells and increases the solubilization of membrane bound proteins

[51]. When combining the detergent based lysis bu�er with reducing agents like dithio-

threitol (DTT) and heating up to 95 ◦C the lysis e�ciency can be signi�cantly increased

as demonstrated in later chapters. Although the solubilization e�ciency of boiling SDS

in combination with DTT serve as excellent denaturating and solubilizing conditions, the

detergent is incompatible with the downstream analysis. When SDS is not removed from

the peptides before LC-MS/MS analysis, SDS acts as ion-pairing reagent [52]. This alters

the retention mechanism of the stationary phase, converting the chromatographic mode to

a cation exchange condition. Consequently, the analytes can not be su�ciently separated

for the subsequent MS analysis. This e�ect is irreversible, due to the strong a�nity of the

hydrophobic part of the detergent to the stationary phase and a new analytical column

is required for furher analysis, which is costly and ine�cient. Furthermore, detergents

often cause ion suppression that reduces the ionization e�ciency of the analytes and thus

decreases the sensitivity to a great extent[53]. Contamination of the analytes with deter-

gents are critical and have to be avoided, so additional sample preparation steps have to

be implemented to separate the detergent from the analytes.

Suitable strategies to separate the detergent and the analyte are a) precipitation of the

proteins, b) precipitation of the detergent and c) solid-phase extraction (SPE) in combi-

nation with molecular weight cut-o� (MWCO) �lters. The precipitation of the proteins

is one of the oldest and simplest and thus most commonly used techniques for protein

clean up. As many (cytosolic) proteins display a minute solubility in organic solvents,

such is added to the lysis bu�er until the maximum solubility of the proteins is exceeded.

The proteins thus precipitate while the detergent remains in solution, which can easily

be removed. Commonly used are cold acetonitrile (ACN) with over night incubation in

the freezer or methanol/chloroform (MeOH/CHCl3 ) mixtures for e�cient precipitation.

If NaDOC is used as detergent, it can be precipitated by lowering the pH. Last but

not least, either commercially available SPE products like S-trap or alternative digestion
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strategies like �lter-aided sample preparation can be used for detergent separation prior

to LC-MS/MS analysis [54].

Especially for challenging sample types, the combination of chemical treatment with phys-

ical treatment has proven very e�ective. Depending on the analytical aim, di�erent types

of forces can be applied for the disruption of cellular components, thus releasing more

proteins and/or increasing the robustness of the work�ow. For instance, the French pres-

sure cell can be used for the disruption of biological membranes from suspension cells,

that are more or less homogeneous. In order to homogenize tissues and disrupt the cells

in one step, bead beating devices served best. An alternative strategy is the use of ultra-

sound, introducing shearing forces through pressure waves and strong focused forces via

cavitation [55]. Especially ultrasound has proven bene�cial for phosphopeptide analysis,

because typically interfering substances in the enrichment step such as chromatin and

DNA is sheared during this process and thus less likely to interfere with the phosphopep-

tide enrichment and analysis. The downside of using physical treatment as part of the

sample preparation process is the possibility of heat dissipation into the lysis bu�er. If

heating of the lysis bu�er can not be prevented, e.g. with active cooling, aforementioned

issues and solutions have to be considered for lysis bu�er design.

Following the successful release and denaturation of the proteins, their status has to be

stabilized for the proteolytic digest. The �rst step is the reduction of existing intra- and

intermolecular disul�de bonds between cysteine (C) residues of the proteins. By cleav-

ing the disul�de bonds, larger areas become accessible for the protease and increase the

digestion e�ciency and protein coverage. Commonly used agents for the reduction are

Mercaptoethanol and DTT, which typically are incubated with the proteins of interest

for a period of 30 to 60 min under elevated temperature like 30 ◦C to 60 ◦C. More re-

cent approaches use Tris(2-carboxyethyl)phosphine (TCEP) that o�ers a faster reaction

at room temperature conditions [56]. As the reduced cysteins tend to re-oxidize to disul-

�de bonds, those have to be chemically modi�ed to prevent this reaction. Typically, an

alkylating agent like iodoacetamide (IAA) or chloracetamide (CAA) are used to introduce

carbamidomethylation to the sulfur group of the cysteines as �xed arti�cial modi�cation

to the protein / peptide [56].

The proteolytic digest is performed by a protease, in most cases trypsin. Trypsin has the
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advantage to cleave the amino acid sequences after each appearing lysine and arginine,

unless it is followed by a proline (which sterically hinders the cleavage [57]). This creates

peptides of managable length for the MS analysis and additionally ensures that at least

one basic amino acid residue (i.e. K and R) is present in the resulting peptide, which

increases the probability for e�cient ionization during electrospray-ionization before MS

analysis signi�cantly. Typically, the digest is very e�cient and does not yield many

cases of missed cleavages. An increased number of missed cleavage serves an indicator

for ine�cient sample preparation beforehand (denaturation or reduction/alkylation), as

those possible cleavage sites are believed to be less accessible for cleavage. It has been

shown, that the presence of organic solvents increase the e�ciency of the proteolytic

digest [58] and meanwhile specialized products are commercially available that minimize

the autolysis products [59] and thus creating less peptide artifacts with non-sample origin

in the LC-MS/MS analysis.
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1.2.3 Phosphopeptide enrichment

When analysing the resulting peptides from the proteolytic digest directly using LC-

MS/MS, very few phoshopeptides can be found. The reason for this �nding is mainly

the low ionization e�ciency of phosphorylated peptides in general, especially in presence

of non-phosphorylated peptide species [23]. Due to the acidic nature of the additional

phosphate group, the likelihood for attracting and stably harbouring additional positive

charges in positive ionization mode is decreased compared to unmodi�ed peptides. A

very simple solution would be to switch the polarity to negative mode, but in general the

ionization e�ciency is even less and has proven to be not useful for phosphopeptide anal-

ysis [60]. In addition to that, the relative abundance of phosphorylated peptide species

is signi�cantly lower than unmodi�ed peptides. Thus, their low signal intensity and also

lower number in relation to signals from unmodi�ed species make the e�ective selection

for MS/MS identi�cation in the mass spectrometer very challenging. Therefore, a di�er-

ent solution is commonly applied: the separation (i.e. chromatography) or enrichment

of phosphopeptides from unmodi�ed peptides before the analysis with LC-MS/MS. The

physicochemical properties that can be used with current techniques for this chromato-

graphic procedure are either the acidic nature / negative charge of the phosphorylated

amino acid or the 3-dimensional structure.

It has been shown that phosphorylated peptides selectively bind to metal ions by estab-

lishing a bidentate bridging between two oxides of the phosphate group and the metal ion

[61]. When utilizing this a�nity mechanism, the pH of the chromatographic condition

should be adjusted so that the phosphate group harbours a negative charge. The iso-

electric point (pI) of the phosphopeptides is dependent on the neighbouring amino acid

composition and is usually around 2.5 to 3.5, so an optimal pH value for an e�cient chro-

matography should be bu�ered one pH unit higher than the phosphopeptide pI values

to preserve the deprotonated state. The negative charge and polarity of the phosphate

group shows naturally a high a�nity to positively charged or uncharged polar ion species

and molecules. The functional material can be bound to chromatographic resin �lled in

HPLC columns, Spin-tips or simply centrifugable slurry or magnetic beads. Either way,

phosphorylated peptides can bind to the functional material while the unmodi�ed species

can be washed away (�ow through). As functional material, metal ions such as Fe3+,
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Ti4+ or Zr4+ are immobilized by chelation within a nitrilotriacetic acid (NTA) matrix

(immobilized metal ion a�nity chromatography - IMAC) or metal oxides such as TiO2 or

ZrO2 as chromatograpic resin (metal oxide a�nity chromatography - MOAC) are used for

the a�nity chromatography of phosphopeptides [62]. All of the proposed materials show

high a�nity towards phosphopeptides in general, but the di�er in their exact speci�city.

Therefore, a sequential combination of di�erent enrichment techniques, e.g. �rst enrich-

ment using TiO2 MOAC followed by a second enrichment using the �ow-through with

Zr4+ IMAC, have proven to yield a more comprehensive picture of the phosphoproteome

[63, 64].

Naturally, not only phosphorylated peptides show a�nity towards this functional material,

but any other molecule harboring certain groups that introduce acidity. This includes

peptides containing acidic amino acid residues such as aspartic or glutamic acid, but also

DNA strands that are build around a heavily phosphorylated backbone. Two strategies

are applied to prevent unspeci�c binding towards the metal oxides. First, competitive

agents like small organic acids (citric, lactic, oxalic or dihydroxybenzoic acid and others)

will reduce the binding of acidic peptides while leaving the binding of phosphopeptides

una�ected. The reason for this is a minor di�erence in the mode of binding towards

the metal ion between organic acids and phosphogroups. While organic acids tend to

form bidentate chelates, the phosphogroup forms bidentate bridges [65]. Also, the 3-

dimensional structure of the complexes are slightly di�erent (e.g. because of the di�erent

angles of the binding dentates towards the metal) and organic acids mimic the structure

for acidic amino acid residues in greater conformance. Second, to aviod the coverage

of binding sites with contaminants such as DNA, they have to be removed before the

phosphopeptide enrichment. Usually, digesting enzymes such as DNAse I or nuclease A

(commercialized as benzonase) can be incubated with the sample before tryptic digest

of the sample, but in this case the used nuclease concentration has to be monitored and

optimized, as this will create artifact peptides with non sample origin in the analysis.

The aforementioned methods are well established, widely used and comparably easy to

implement while requiring a high, but reasonable amount of protein as starting mate-

rial. On the other hand, this analysis will lead to the identi�cation of mostly serine,

followed by threonine and very few tyrosine phosphosites, due to the naturally occurring
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abundances and to some extent also the enrichment bias of the selected method [66]. In

many research areas, such as cancer signaling, tyrosine kinases play a crucial role and

the information about the a�ected phosphosites will not be re�ected by MOAC or IMAC

approaches. A solution to this problem is the use of phosphotyrosine targeting antibody

based immunoprecipitation (IP) enrichment. In this case, the relatively large and feature

rich 3-dimensional structure of the phosphorylated phenolic side chain serves as suitable

target for speci�c antibodies [67]. In this approach, the pY-harbouring phosphopeptides

are precipitated and eluted separately while the �ow through can be used for sequential

enrichment with MOAC or IMAC. Typically, for such IP pull down experiments as much

as 10mg of peptides are required to obtain a resonable number of tyrosine-phosphosites.

Often this is a major limitation for clinical studies, where e.g. needle biopsies deliver only

few milligrams of samples, of which most has to undergo traditional di�erential diagnos-

tic procedures. An other considerable downside of currently widespread MOAC/IMAC

approaches is the incompatibility to preserve fragile phosphorylation related PTMs such

as phosphorylations on histidines, arginines and lysines, aspartic and glutamic acid and

even cystein. Recent research could achieve a proteolytic digest and phosphopeptide en-

richment with very mild conditions, that preserve fragile phosphosites, demonstrated on

phospho-histidines of Escherichia coli [68]. Speci�cally in M.oryzae, a two component

system harboring phospho-histidines is known to regulate the functions studied in one

of the featured research questions, which can not be addresses with the used analytical

methods.

For the successful and comprehensive elucidation of the phosphoproteome, many factors

have to be considered. Similar to the proteolytic digest, one single method is not su�cient

and has to be adapted to speci�cally answer the scienti�c question of interest. Ultimately,

the method of choice is also mainly driven by the availability of protein and consequently

peptide amount. Therefore, downscaling of the required material while maintaining in-

formation depth is one of the major challenges in the �eld of phosphoproteomics in the

near future, especially in respect to single cell and spatial proteomics. Consequently, this

issue was also addressed in this featured research and validated with a biological question,

where we were able to obtain the same biological deduction while reducing the required

starting material 40-fold.
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1.2.4 Peptide analysis by liquid chromatography and mass

spectrometry

Proteolytic digests of whole proteome samples are highly complex and have to be simpli�ed

before analysis which can be achieved e.g. by electrophoresis or liquid chromatography.

Dduring the laste decades, peptide separation by ultra high performance liquid chromatog-

raphy (UPLC) became increasingly popular due to increased robustness and throughput.

Furthermore, downscaling of the analytical conditions have proven to increase sensitivity,

thus currently microliter- and even nanoliter per minute �owrate instruments (µUPLC

and nUPLC) are commonly used for peptide separation in proteomics. The principle of

separation of based on the hydrophobicity of the analytes. In nUPLC systems, the sep-

aration takes place in a column, that is �lled with functional material. In most cases,

silicagel particels of around 1.8 µm in size, that are modi�ed with C18 alkyl chains on

the surface, are used as functional material. The peptides from the sample are loaded

onto the column using aqueous solvents. In consequence, the partly hydrophobic pep-

tides tend to interact with the C18 side chains and are rather retained on the column,

then eluted together with the aqueous solvent. When gradually increasing the amount of

organic solvent, the peptides elute in dependency of their hydrophobicity. Controlled by

the steepness of the gradient (i.e. change in % organic solvent per time), the number of

coeulting peptides that leave the separating column is reduced to a manageable number

[69].

As the total number and diversity of the analytes is quite high, a chromatographic sep-

aration before mass analysis is always a trade o� between generic and easy applicability,

speed and accuracy. But especially when analyzing sub-populations of peptides, such as

phosphopeptides, the chromatographic procedure has to be thoroughly evaluated. The

additional phosphogroup within the analytes introduces an additional hydrophilic com-

ponent, thus the retention of the phosphopeptides is reduced compared the unmodi�ed

peptides. On the other hand, the complexity of the sample is reduced and thus the

gradient steepness and time might be adjusted for optimal analyte distribution over the

gradient time.

After successful separation, the analysis of the peptides is performed by mass spectrom-

etry. The development of the soft ionization technique electrospray ionization (ESI) and
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increased operability / accessibility of mass spectrometers made it possible to identify the

mass-to-charge ratios (m/z) of intact proteins and peptides as well as their amino acid

fragments in a large scale [70]. However, the technical principles of analyte separation

by m/z and ion detection are diverse and each technique serves certain applications. In

most proteomics applications, three types of mass separators and analyzators are used:

quadrupole, time-of-�ight and orbitraps. The separation and measurement principles are

often integrated into one hybrid instrument such as triple-quadrupole or quadrupole and

TOF and many more combinations to meet complex analytical requirements in proteomics

as summarised in �gure 1.1.

Quadrupole instruments are typically cost e�ective, highly sensitive and robust but on

the other hand o�er a limited m/z separation power. They consist of at least four metal

rods, that create en electrical �eld by superposition of a constant direct voltage (DC) and

a alternating current voltage (AC). When positively or negatively charged ions enter the

quadrupole from one side, the design of the prevalent electrical �eld causes the ions to

follow certain paths that guides only ions of a certain m/z ratio stably to the other side of

the quadrupole. The �ight path is dependent on the applied ratio between DC and AC,

thus quadrupoles act as m/z �lters, which can easily be calibrated. In order to detect the

number of ions that successfuly pass the quadrupole a detector has to be placed at the

outlet of the quadrupole, usually an electron multiplier tube [71]. The �ltering ability of

quadrupole allows three operation modes, as described in table 1.1.

A commonly used sequential combination of three quadrupoles (�gure 1.1 D) is often

used in targeted proteomics, where the analytes are already known and characterized and

specially targeted within all present peptides. For this, the �rst quadrupole is used in SRM

mode for a previously selected peptide m/z of interest. Consequently, only that speci�c

peptide and other analytes with the same m/z ratio can pass through the quadrupol

and serve as precursor for the following fragmentation. The second quadrupole serves as

collision cell, it is �lled with gas molecules and set to RF mode. While passing through

the second quadrupole, the precursor collides with gas molecules. This collision induced

fragmentation (CID) generates amino acid oligomer fragments of various length. The

third quadrupole can be operated in Scan mode, to obtain information about all generated

fragments (to con�rm identity by sequencing the amino acid fragments) or in SRM mode,
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for the accurate, robust and most sensitive quanti�cation by a selected fragment only [72].

The disadvantage of QqQ instruments is a low m/z resolution compared to TOF and

Orbitrap instuments. It is calculated by dividing the observed m/z value by the full

width of the peak at half maximum (FWHM) [73]. Typically, quadrupoles can reach a

resolution ranging from 500 to 5000, which is not enough to calculate the theoretical sum

formulas or match peptide masses from databases with adequate probability. Therefore,

the main use of these instruments is the robust and sensitive quanti�cation of known and

characterized substances, e.g. the monitoring of known biomarker peptides/proteins of

patient serum samples in the clinic.

For the unbiased discovery of proteome wide changes, a considerably fast and accurate

measurement of peptide m/z values with higher resolution is required. Time-of-�ight

mass spectrometers �t for this purpose, as their measurement principle provides typically

a resolution in the range of 10 000 up to 50 000 [74], in some instruments also up to 300

000. The obtained m/z values for peptide precursors are usually within the range of ±15

ppm, which adds the required con�dence to the correct database search of the theoretical

peptide mass compared to the measured m/z values. Furthermore, TOF instruments

typically are able to measure mass spectra very fast with a frequency of up to 120Hz.

The measurement principle is quite simple: charged ions are accelerated into a drift tube

and the time the ions need to reach the end of the tube is measured. As the kinetic energy

Mode Description

SRM/MRM Single/Multiple reaction monitoring. A single or multiple �xed AC/DC
(i.e. m/z value) are set up and solely measured.

Scan The continuous �ow will pass through the quadrupole while the
AC/DC ratios (calibrated to known m/z values) are ramped. Thus,
unknown m/z can be identi�ed.

RF Radiofrequency only mode. The quadrupole is set in a way, that all
ions will be transmitted, independent on their m/z ratio.

Table 1.1: Measurement modes of quadrupole mass analyzers. Typically, three di�erent
modes can be used: SRM, Scan and RF. Within a quadrupole, only one of the modes can
be present. Depending on the application, multiple quadrupoles have to be combined to
make use of using multiple measurement modes sequentially.
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is the same for each charge state, the �ight time is solely dependent on the analyte mass.

As depicted in �gure 1.1 B, some instrument types include additionally re�ectrons into

the �ight path to increase the length and thus the resolution. In general, the resolution is

constant over the whole m/z range in contrast to quadrupole and orbitrap instruments and

there is no theoretical upper limit for the measurement of m/z simultaneously. Having

the �ight path length as main driver for the resolution and m/z, it is crucial that it

remains constant after calibration. Even small temperature changes or movements of

the instrument make a new calibration necessary. A possible strategy to overcome such

robustness issues is the use of an internal calibrant, that is spiked in during the data

acquisition. Data processing software can then use the known m/z information of the

calibrant to correct all acquired mass spectra if needed. This strategy requires additional

measurement time, that is therefore not available for the analytes. Other instruments

make use of temperature control and heavy insulation, but still calibration is frequently

required. Often, quadrupol separators are installed before TOFs (�gure 1.1 F). This allows

the high resolution precursor m/z measurement while the quadrupol is in RF mode, but

also allow the preselection using SIM mode with subsequent fragementation to obtain

high resolution m/z values of the resulting fragments.

In summary, time-of-�ight instruments serve as excellent trade o� between low cycle time

(high scan frequency), sensitivity and also �exibility for combination with other separation

techniques such as ion mobility. On the other hand, they su�er from susceptibility to

environmental changes and thus require frequent calibration. In addition to that, the

space requirements are comparably large, as the �ight tube requires large physical space.

The third commonly used type of mass analyzer is the Orbitrap exclusively distributed

by Thermo Fisher Scienti�c. The Orbitrap consists of an inner core and two shells, that

are isolated against each other (�gure 1.1 C). Between core and shell an electrical �eld is

applied, that causes the injected ions to circulate around the core while oscillating along

the core axis at the same time. The oscillation frequency is dependent on the m/z ratio of

the analyte and causes a measureable potential di�erence between the isolated outer shells.

As all frequencies are superimposed in the transient diagram, fourier-transformation has

to be applied to obtain the raw frequencies, that can be calibrated with known m/z ions

[75]. It allows the acquisition of high resolution mass spectra with adjustable resolution,
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that is dependent on the m/z value. The higher the measured m/z value, the worse the

resolution. Resolutions up to 480 000 are possible, but are unpracticable in proteomics,

as a higher resolution requires substantially higher measurement time. Still, typically

applied resolutions range from 15 000 to 60 000 while operating at a slightly lower m/z

scan frequency than TOF instruments. In general, Orbitraps are always coupled to ion

routing systems, traps and quadrupoles (�gure 1.2). After ionization, the ions are guided

trough a separating or RF mode quadrupole, after which the charge counter leads a

prede�ned amount of charges into a trapping chamber. For the measurement of precursor

m/z, the ions are routed to the Orbitrap device and measured. For the measurement of

peptide fragments, the peptide m/z of interest is already separated in the quadrupole,

guided through the charge counter into the trap, where the fragmentation takes place. In

this case, higher energy collision induced dissociation (HCD) is applied to generate the

peptide fragments [76]. Afer that, all ions are measured in high resolution in the orbitrap.

An Orbitrap mass spectrometer o�ers a very high resolution while being robust to envi-

ronmental changes. In addition, they cover a broad dynamic range [77] and are able to

resolve reporter ions for labelled peptide quanti�cation, such as tandem mass tags (TMT,

branded by Thermo Fisher). On the other hand, the cycle time per each scan is increased

and the instruments are solely available from one manufacturer.

1.2.5 Ion mobility spectrometry

Due to the fast m/z scan time of TOF instruments, additional separation techniques that

require separation times that are between liquid chromatography (several seconds for one

peptide) and mass spectrometry (1/120 s for one spectrum) can be interposed. Typically,

ion mobility separation (IMS, �gure 1.3) �ts that spot. IMS enables the measurement

of an additional feature for each peptide (retention time, ion mobility and m/z values)

within milliseconds, which increases the con�dence in identi�cation and opens the door for

substances that coeulte from the column (equal retention time) and are isobaric (equal

m/z) and would thus not be identi�ed separately without the additional IMS feature.

An important example are phosphopeptide isomers, that di�er by the position of the

phosphate group within the amino acid sequence. Several principles of ion mobility have

been used together with mass spectrometry in the past years [80]. The recently developed
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Figure 1.1: Overview of di�erent mass spectrometer types. A) Single quadrupol MS. B)
Time-of-�ight MS. C) Orbitrap MS. D) Triple quadrupol MS. E) Quadrupol coupled to
time-of-�ight MS (qTOF). F) Tandem ion mobility separation coupled to qTOF. Images
adapted from [78, 79]

Figure 1.2: Operating principle of the Thermo Fisher Exploris 480 exemplary for Orbitrap
Mass Analyzers as shown in [78]. The ionized molecules can be separated by the integrated
quadrupol �rst, before fragmentation. After back-transfer of the ions from the collision
cell, the ions enter an electric �eld inside the orbitrap, that causes a circular and oscillating
movement of the ions along and around the inner core rod. By measuring the frequency
of the voltage di�erences between two isolated outer shells caused by the oscillation of the
ions, the m/z ratio can be determined after Fourier-Transformation and calibration.
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trapped ion mobility spectrometry coupled to a TOF instrument (timsTOF from Bruker

Daltonics) enables the trapping of ions in the IMS device before measurement, which

increases sensitivity. The principle is simple: charged ions are pushed by a constant gas

stream into the IMS tube, while a counter directional electric �eld with increasing �eld

strength is applied along the IMS path. Thus, ions are trapped at the position where

the counter directed electric force equals the pushing force caused by the constant gas

�ow. The greater the collisional cross section (CCS) of the molecule is, the greater is the

pushing force and the greater the counter directed electric �eld has to be. In plain words,

the bigger the molecule, the further it can move along the IMS tube. By lowering the

potential from the proximal end of the IMS tube sequentially, the ions are released into

the qTOF instument for measurement. This feature has proven to increase the sensitivity

and number of identi�able analytes in proteomics samples, but has also proven bene�ts

in lipidomics or metabolomics [81].

Figure 1.3: Scheme of a trapped ion mobility spectrometer (tims) adapted from [82].
Ionized molecules enter from left and are pushed by gas �ow into the tims device. There,
a counter directed electric �eld traps ions at the position where the counter directed force
by the electric �eld equals the forward directed force on the ions caused by the pushing
gas �ow. The molecule geometry in the gas phase determines the area that is a�ected by
the gas �ow. Thus, larger molecule geometry, i.e. cross collisional section (CCS), causes
greater forces acting on the ions, the ion mobility is increased. In consequence, a gradient
electric �eld along the tims device is applied to trap ions at di�erent positions along the
tube, separated by their ion mobility.

1.2.6 Visualization of mass spectrometry data

The visualization principles for LC-MS/MS raw data is similar for all MS types. The most

basic type of chromatogram is the total ion count (TIC). For this visualization, the sum

of each signal in every acquired MS scan (typically MS1 level only) is calculated and this
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value is plotted against the time point it was acquired (i.e. retention time) as depicted in

�gure 1.4 A. This way, a general overview is given and can be compared in each sample.

Also, it quickly answers technical questions, such as ESI spray stability and ionization

e�ciency as shown in �gure 1.4 B. Often, MS1 spectra are dominated by one very high

intensity precursor, the so-called base peak. When extracting not the sum of all intensities,

but solely from the base peak, we can obtain chromatographic information on precursor

information, as can be seen in �gure 1.5. In more detail, a base peak chromatogram

(BPC) shape that follows nearly Gaussian distribution is desirable, but can also show

tailing or fronting. This often indicates a void volume within the system that causes

this peak broadening or fouling of the analytical column. In consequence, all connections

have to the re-�tted and column aging and performance has to be monitored closely.

A third very important visualization principle is the extraction of signal intensities for

distinct masses only throughout every MS1 spectrum. This principle is called extracted

ion chromatogram (XIC) and helps to identify single precursors, such as known analytes

and contaminants with known m/z ratios from the raw �le directly.

Figure 1.4: Examples of a typical proteomics peptide chromatography run with A) TIC
of technically successful raw data B) spray instability during data acquisition

1.2.7 Data dependent versus data independent acquisition mode

Typically, the full m/z spectrum for any time point during chromatography is measured,

harboring the information about the ion intensities and m/z ratios for all coeluting pep-

tides at this speci�c retention time, which is called MS1 scan. But for the successful

identi�cation of the eluting peptides, the precursor m/z is not su�cient. Rather, amino

acid composition by analysis of the contained peptide fragments by processing software or

manually gives satisfactory con�dence and proof for the correct identi�cation. This can be

achieved using the CID or HCD capabilities in modern mass spectrometers, the peptides
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Figure 1.5: Example for a base peak chromatogram of a typical proteomics peptide chro-
matography. The most intense signal in each MS1 is displayed, in proteomics experiments
these are typically peptides.

are fragmented and yield fragments of various length as described in �gure 1.6 A, which

is called MS2 scan. This is also the rationale behind the abbreviation LC-MS/MS, as

two di�erent kinds of mass spectra are collected after LC separation. For the acquisition

of fragment spectra, currently two strategies are employed: data dependent acquisition

(DDA) or data independent acquisition (DIA) as described in �gure 1.6.

In data dependent acquisition, the top N most intensive m/z ions are identi�ed from the

MS1 scan (precursor spectrum, in proteomics typically precursors are peptides) by the

operating software of the mass spectrometer and sequentially selected with very narrow

window (e.g. ±0.5 Thompson) by the quadrupole for fragmentation, so their MS2 spectra

(fragment spectra) can be collected. The selected number N of most intense ions is

typically between 10 to 25 and can be chosen depending on the instrument speed and

on the analytical need. When short LC gradients and highly complex MS1 spectra are

present, a high N is needed for deep peptide coverage. On the other hand, a high N costs

measurement time and MS1 quanti�cation accuracy. In general, the DDA strategy decides

depending on the MS1 information, which precursors are selected for fragmentation. It

provides clean and high quality spectra, that can also be used for denovo sequencing. In

addition to that, the data processing is not computationally intensive and implements

easy and straight forward algorithms that are accessible to a broad community.

In contrast to that, in data independent acquisition strategy, no preselection of the pre-

cursors is performed. The fragmentation is independent of any MS1 information present.

Instead of choosing a very narrow window for selecting the precursors for fragmentation,
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a wider window of precursor m/z are allowed to pass through the quadrupole. This way,

multiple precursor cofragment and create chimeric MS2 spectra, where the assignment of

precursor and their corresponding fragments is not easily possible. More complex bioin-

formatic algorithms have to be applied to elucidate the amino acid evidence for each

precursor [83]. This also includes the use of spectral libraries, that contain a set of pre-

aquired high quality spectra of already assgined peptide annotations. Spectral libraries

are either labor intensive or computationally intensive to create. Recent developments

in the proteomics community show improvements in algorithms and software to actually

process DIA generated rawdata in a comprehensive and user friendly way [84] as well as

the accessibility to high performing computer systems have paved the way for increasing

use of DIA. The major advantage of DIA is a robust and accurate quanti�cation as well as

the decrease of missing values, due to the fact that no selection of precursors is performed

and instead also borderline signal intensities are fragmented and have the chance to be

identi�ed and quanti�ed.

Figure 1.6: Principles of data acquisition. A) In data dependent acquisition (DDA)
mode, single precursors are selected and fragmented for identi�cation. This mode yields
comparably clean spectra, but with limited capacity. B) In data independent acquisition
(DIA) mode, prede�ned m/z ranges are fragmented simultaneously. Thus, the resulting
MS spectra are more complex compared to DDA, but all peptides within this m/z range
can possibly be detected. Figure adapted from [83]
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1.3 Peptide identi�cation, quanti�cation and

bioinformatics

Ultimately, proteomics research aims to gain unbiased insight into biological systems. The

path towards this insight includes the correct identi�cation of measured peptides, com-

bining this information on proteome level or PTM level and quantify the results. This

way, the protein and PTM quantities can be used to identify relevant changes by using

simple statistical methods including t-test, linear models and multivariate statistics such

as principal component analysis (PCA), Uniform Manifold Approximation and Projec-

tion for Dimension Reduction (UMAP), t-Distributed Stochastic Neighbor Embedding

(t-SNE) and other unsupervised machine learning algorithms like hierarchical clustering,

clustering by k-nearest neighbors, dbscan and random forest. Databases with previously

collected knowledge are then necessary to conclude what those changes and relationships

actually mean and to combine the �ndings with the observed biology. A plethora of

methods and tools are available, but most often share the same principles.

The following sections want to introduce the used tools and the principles behind them

as well as promising advancements and limitations.

1.3.1 Processing of DDA data

With a protein database at hand, e.g. from Uniprot [85], the protein sequences can be

digested in-silico according to the sample preparation protocol, the user de�nes search

parameters e.g. as noted in table 1.2. The exact settings are variable and depending

on the experimental designs, the question at hand and also the used software, but in

general these are the most important and usually the minimum required input from the

user. The in-silico digest provides a list of possible, expectable peptide masses that

are consequently compared to the measured intact peptide masses (i.e. precursor mass

before fragmentation). Usually, multiple candidates will �t to the measured peptide mass

which makes additional features for the correct identi�cation necessary. Fragmentation

of the intact peptides delivers possible combinations of amino acids from the peptide

sequence. The DDA strategy ideally provides clean MS2 spectra deriving from only one

selected precursor after fragmentation. The mass di�erences between adjacent fragment
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m/z values can only meet the mass of one naturally occurring amino acid or a multitude

and combinations of those. The fragmentation patterns are often not complete, fragments

are missing or types of ions are favored in certain fragmentation techniques. Therefore,

scoring approaches are necessary to evaluate the probability of correct identi�cation.

Proprietary as well as open source software is commonly used in the proteomics commu-

nity. Each software regardless the respective publication status has its own strengths,

although they serve the same purpose. The most commonly used open source software is

MaxQuant developed by the Cox group [86], which accepts most mass spectrometer raw

�le formats with and without ion mobility information available. Especially the label free

quanti�cation (LFQ) strategy MaxLFQ [87] is known to be very strict on one hand, but

also very accurate on the other [88] and is also used in other software for quanti�cation.

Another commonly used open source search engine is MSFragger by the Nesvizhskii group

[89]. It is known to provide search results very fast and is compatible with many other

Parameter Typical value

Digestion enzyme Trypsin

Allowed missed cleavages 1

Fixed modi�cations Carbamidomethylation
(i.e. alkylation on cystein)

Variable modi�cations Oxidation on methionines
N-terminal acetylation
Phosphorylation on S/T/Y

Max. no. of variable modi�cations 4

Database FASTA �le
e.g. Homo sapiens, downloaded on 24.04.2022
from Uniprot reference proteomes
(UP000005640) containing 20 577 protein
sequences and including 172 most common
contaminants

Table 1.2: Typical search parameters for database search always include a type of prote-
olysis (or no proteolysis, if no enzyme was used for digestion), an acceptable number of
missed cleavage, biochemical modi�cations to the peptides (�xed or variable) as well as a
source of protein sequences (typically a FASTA database)

32



proteomics tools that can be incorporated in the FragPipe software suite. In addition

to that, by using FragPipe for the library generation for DIA experiments it has been

shown to boost the performance of DIA identi�cations signi�cantly [90]. A very popular

proprietary software for the comprehensive analysis of DDA data is PEAKS by Bioin-

formatic Solutions Inc. [91]. PEAKS is able to perform and provide DeNovo sequencing

information together with the database search which aids con�dent identi�cation and to

answer discovery related questions such as novel identi�cations of mutation or isoform

discovery. PEAKS has also been shown to perform well with unspeci�c searches such as

required by immunopeptidomics [92].

1.3.2 Processing of DIA data

In contrast to the straight forward identi�cation procedure using DDA data, DIA requires

sophisticated algorithms to perform the identi�cation. Two di�erent strategies are applied

for the processing of DIA data: Spectrum centric and peptide centric approach [93].

The spectrum centric approach is similar to the analysis of DDA data. During the analysis,

peptides typically elute over a time frame of several seconds and follow ideally a gaussian

curve. Consequently, also their fragment ions follow this pattern. When comparing the

overlay of fragment spectra with the precursor elution pro�les, pseudo-spectra can be

extracted that look similar to DDA like data [94]. This way, the resulting pseudo-MS2

spectra can be searched either via database search or can be compared to previously

generated (by DDA measurements) spectral libraries. In contrast to this approach, the

peptide centric approach assumes all theoretical peptides of a digest can be found in the

raw data [95]. Therefore, peptide centric algorithms search for evidence (e.g. retention

time, ion mobility, fragments present ...) of the peptides of interest and reports scoring

values.

Peptide centric approaches work best using a spectral library. The generation of such

a spectral library requires the acquisition of high quality MS2 spectra for every possible

peptide for the particular species, cell line or project. Peptide spectra that are not present

in the library, can not be identi�ed in the samples of interest. Therefore, much e�ort is

required to provide a broad coverage of the proteome. Usually, a pool of all samples is

fractionated by strong-cation exchange (SCX) or high-pH reversed phase fractionation
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(hpH-RP) [83], and the fractions are measured in DDA mode to obtain su�cient quality.

By distributing the number of peptides through the fractions while measuring each frac-

tion in DDA with high peptide capacity (Top N) and long gradients, the total number of

identi�able peptides is increased. The downside is the time intensive measurement and

data processing, that has to be done before the �rst sample of interest can be measured.

But once this library is generated, it can be used for many consecutive analysis, as long

as the sample type remains the same. Therefore this approach is a valuable alternative

when large scale studies are of interest. To reduce the required wet lab work and mea-

surement time, e�ort has been made to predict spectra in-silico from FASTA �les [96].

This way, also smaller projects can pro�t from the bene�ts of DIA, without the need for

intensive preliminary work. It has been shown, that although wet-lab generated spec-

tral libraries still achieve the highest numbers, in-silico predicted spectral libraries have

increased in performance over the past years. Very recent research has proven that the

neuronal-network assisted library-free analysis of DIA data can even exceed the identi-

�cation performance of wet-lab libraries [84]. Still, the generation of predicted spectral

libraries requires exceptional computational performance and thus very long analysis run-

times. Especially, when adding PTM level information to the library entries, the number

of possible precursors to predict grows exponentially. The generation of a predicted li-

brary including up to four phosphosites requires roughly one week on a computer with

128x cores of 2.9 GHz and 256 GB of RAM with DDR4 technology, but once it is generated

it can be used for many follow-up studies.

The complexity of the chimeric spectra is already very high when analyzing unmodi�ed

peptides which is even increased in the presence of modi�ed peptides. Especially phos-

phoproteomics DIA experiments create supercomplex MS2 spectra that were unsearchable

few years ago without wet-lab spectral library, as the required computational resources for

the prediction were not a�ordable. But the generation of a spectral library requires high

amounts of sample material, that often is not available in phosphoproteomics experiments.

Very recent software improvements and the availability of a�ordable computational re-

sources made it possible to investigate the broader use of DIA for phosphoproteomics.

Few publications are published up to date addressing the issues and give guidance with

DIA in phosphoproteomics [97, 98], so this featured work is one of the few DIA phospho-

proteomics datasets available that shed light on remaining questions with this.
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In general, the processing of DIA data requires either a laborious library generation or

sophisticated computing resources. In addition to that, software requirements for the

actual identi�cation and visualization of the results are not as trivial as for DDA data.

In exchange for that, the number of missing values is reduced and the robustness of the

dataset is increased, which is especially relevant for large scale and long term studies.

Common software for DIA data processing include the open-source Skyline and DIA-NN

[84, 99]. A widely applied proprietary software is Spectronaut from Biognosis.

1.3.3 Quanti�cation strategies

For identi�cation and quanti�cation, usually a feature is constructed that includes all

possible information about the precursor such as retention time, m/z, isotope pattern, ion

mobility, peptide sequence and signal intensity. First, the identi�cation of features can be

transferred between runs (i.e. match between runs - MBR), where the feature is identi�ed

con�dently but no MS2 spectrum proves the identi�cation. This way, the number of

missing values is reduced, but no direct prove for the peptide can be provided in some

samples. Next, all features of each sample can be used to normalize their intensity values,

if required. The assumption behind this is, that no major changes happen to the majorities

of peptides. One strategy for this uses the sum of signal intensities (total ion count - TIC)

for a given MS1 spectrum (i.e. retention time) for normalization. Others implement

internal standard peptides, that assign a �xed normalization factor for the whole sample.

Sophisticated normalization using variance stability normalization or cyclic loess [100]

can also be applied after data processing, before statistical analysis. In the last step,

peptides are selected for calculation of protein abundance in each sample. Each software

has own featured quanti�cation algorithms as described in table 1.3. Other quanti�cation

strategies involve the chemical or metabolic isotopic labeling of peptides and combination

of samples (multiplexing) before analysis, but this strategy is not applied here and can be

reviewed in [101]. Advantage of such labeled quanti�cation is a reduced number of missing

values. On the other hand, the reagents are cost intensive and multiplexing is limited to

a maximum of 18 samples [102]. Furthermore, very high resolution in low mass regions

(typically the mass range for the reporter ions of the labels) is required where TOF

instruments perform less e�ective than Orbitrap instruments, thus the e�cient use of

instrument time is reduced as Orbitrap instruments typically require longer measurement
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times. Therefore, a label-free quanti�cation strategy was applied to the featured sample

sets.

1.3.4 Preprocessing, missing values and statistical testing

In proteomics, often perturbation experiments are conducted to elucidate the proteomic

and PTM response of a biological system to a stimulus. In the most simple case, a con-

trol group of samples is compared to a sample group including perturbations e.g. drug

treatment or loss-of-function, each with adequate number of replicates. For proteomics

experiments, often three replicates are su�cient to gain statistical con�dence, as such

work�ows have proven very robust especially using the DIA strategy. The analysis of

PTMs such as phosphorylation requires the data anlysis on peptide level, thus a higher

variability in the raw data values is expected. In addition to that, especially phosphopep-

tide enrichment introduces an additional source for variability, that has to be accounted

for. In these cases at least four, preferably �ve biological replicates are required to achieve

su�cient con�dence.

Algorithm Description

Top N Takes the average or sum of the N top intensity peptides as protein
quantity. The advantage is an easy implementation but the approach
can not cover broad dynamic ranges, low intensity signals are often
neglected. Therefore, some peptides might provide intensities outside
the linear range of the instrument.

MaxLFQ Compares the fold-changes of each peptide individually per sample and
selects those peptides, that follow similar patterns. [87]

iBAQ Intensity based absolute quanti�cation. The sum of all observed
peptides is normalized to the number of theoretically identi�able
peptides, which approximates the absolute protein abundance. [103]

Table 1.3: A selection of quanti�cation algorithms. Although this is not an exhaustive list,
Top N, MaxLFQ and iBAQ are the most commonly used aglorithms. All algorithms have
in common to take into account a sub-population of the identi�ed peptides per protein.
They di�er mainly in the strategy how to select the peptides, based on their intensity
(Top N), peptides changing in comparable manner (MaxLFQ) or normalization per pro-
tein length (iBAQ). Depending on the analytical need, the selection of the appropriate
quanti�cation strategy is key.
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Many statistical methods are similar in -omics sciences and can be transferred from

broadly applied and well known technologies, such as transcriptomics and genomics. Be-

fore identi�cation of the statistically signi�cantly changing events, data preprocessing is

sometimes necessary to reduce batch e�ects or compensate for �uctuating values through-

out time (e.g. temperature changes caused by day and night might in�uence the �ight

path of TOF instruments and thus in�uence the measured values, clogging or fouling of

the analytical chromatography column or the ESI emitter and many more). An overview

of possible measures to account for systematic but compensateable changes can be found

in table 1.4. A comprehensive review for protein level data can be found in [100].

Another critical and controversial discussed strategy is the compensation for missing val-

ues. The question is in this case: Is data completeness required for the successful analysis

of the dataset? The answer to this is not trivial and strongly dependent on analytical aim

of the study. While statistical testing such as t-test or linear models are to some extent

robust to missing values, advanced multivariate statistical analysis such as unsupervised

clustering, PCA et al. require data completeness. In these cases, either very stringent

�ltering and/or the arti�cial calculation of replacement values (imputation) has to be

done before further analysis.

Whereas in other -omics technologies missing value imputation plays a minor role, it be-

comes relevant in proteomics. Even when applying the DIA strategy, missing values per

sample of up to 10 % are common. In most cases, proteins with a high number of missing

values across the dataset typically are either very small and thus yield less detectable

peptides or are expressed in comparably low abundance and thus yield signal intensities

below the lower limit of quanti�cation/detection (LLOQ/LLOD) which is strongly depen-

dent on the dynamic range of the sample, the data set can be described as left-censored.

Both scenarios create missing not at random values (MNAR) and for their missing value

imputation multiple robust methods are available, as summarized in table 1.5.

A typical phosphoproteomics dataset measured in DDA comprises about 75 % missing

values. The reason for the comparably high number of values is on one side the fact that

missing value information is counted on peptide level, instead of protein level. On protein

level, missing peptides can be compensated, as multiple peptides can be considered for

protein identi�cation and quanti�cation whereas on peptide level no other source of infor-
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Strategy Type Description

Pre-
measurements

Acquisition The sample small quantity is analyzed in ad-
vance to the main measurements, the resulting
total ion counts (TIC) are compared normal-
ized and the normalization factors are used to
adjust the injection volume for the main mea-
surements, so an equal amount of analytes in
injected in each run.

Randomization Acquisition Randomized injection of samles distributes pos-
sible batch e�ects across the whole dataset, ro-
bustness is increased.

Internal stan-
dards

Acquisition Addition of internal standards e.g. in the �-
nal resuspension solution to compensate for
changes in ESI e�ciency and mass spectrom-
eter di�erences.

Sample pool QC Acquisition Pool small quantity of each sample and in-
ject every N sample aqcuisition. By monitor-
ing the intensities of the pool peptides over the
whole dataset, a normalization factor can be es-
timated if necessary.

Variance stabil-
ity
(VSN)

In-silico Transformation of the intensity values to mini-
mize di�erences in variance. [104]

Local regression
(loess)

In-silico Linear regression for distinct intensity regions,
as it is assumed that the bias to be corrected is
di�erent for each local intensity range. [105]

Table 1.4: A selection of strategies for reducing batch e�ects and increasing robustness
of statistical testing. Depending on the analytical aim, more than one strategy can be
applied. Generally, normalization can be applied already during the acquisition or in-silico
during analysis

mation is available than the peptide itself, this source of missingness can be regarded as

MNAR. On the other hand, the phosphopeptide enrichment sample preparation step not

only introduces an additional source of variability, but also a random selection of peptides

to be enriched. The nature of the enriched phosphopeptides is also strongly dependent

on the present contamination such as salts or detergents [23]. Therefore, missing values

in phosphopeptides analysis is regarded as missing at random (MAR) and the imputation
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is not trivial. A selection of methods for imputation of MAR values is described in 1.5.

Strategy Type Description

Filtering all Remove observations with missing values from
the data matrix.

Minimum value MNAR The minimum value of the dataset is used to
replace missing values.

Stochastic mini-
mal value

MNAR A Gaussian distribution based on a given min-
imal value as average is created, random values
from this distributions are used to replace the
missing values.

k-nearest neigh-
bors based
(kNN)

MAR Observations with missing values in sample A,
that have at least a prede�ned number of sam-
ples B (C, D, ...) with measured values, can
be estimated by identifying k similarly (near-
est) behaving entities with existing values in A
as well as B (C, D, ...). Based on the existing
values, the missing value is replaced. [106]

Singular value
decomposition
based (SVD)

MAR In the �rst step, all missing values are substi-
tuted by the row mean followed by SVD anal-
ysis, which similarly to principal component
analysis, creates eigenvectors to describe the
dataset. Missing values are then imputed by
calculation from the eigenvectors. Repeated un-
til the change in the matrix falls below a thresh-
old of 0.01. [106]

Table 1.5: A selection of strategies for reducing the number of missing values. The cause
for missing values is key to choose the appripriate strategy. Two types of missing values
can be di�erentiated, missing at random (MAR) and missing not at random (MNAR).
Replacing MNAR values is generally more robust, as a rationale for their missingness
is usually present. E.g. missing values due to low intensity. In this case a minimum
value approach might aid to gain the correct conclusions from the dataset. On the other
hand, replacing MAR values require more sophisticated approaches. More information
have to be taken into account to increase the propability for correct replacement of the
missing values. Often, phosphoproteomics experiments su�er from MAR values, as the
sample preparation procedure is very sensitive towards slight changes in the experimental
conditions.

For the statistical testing of signi�cantly changing observations, missing value imputation

is facultatory, as long as a su�cient number of measured values is present. Two major

approaches are dominating the statistical tests in -omics sciences: t-test and linear models.
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In general, the statistical tests provide a p-value for each peptide/protein by calculating

a test-statistic from parameters of the data sets. Depending on the desired stringency,

observations with a p-value below 0.05 can be considered as statistically signi�cant, as

commonly accepted in many scienti�c disciplines [107].

A very easy and straight forward method to identify if peptides or proteins are di�erent

in two conditions is the well known Student's t-test. By comparing average and standard

deviation of two independent data sets, a probability is calculated whether both data sets

belong to the same distribution (i.e. no e�ect of the condition) or belong to two di�erent

distributions (i.e. the condition has an e�ect on the peptide/protein). Prerequisite is that

the measured values of both conditions follow the Gaussian distribution, which has to be

veri�ed before. Furthermore, the classical t-test has been proven to work best when the

variances are equal in both conditions, whereas alternatives such as Welch test recently

were discussed to have general superior power compared to t-test and should be used

instead [108]. In case of t-test, the required parameters for the test statistics to calculate

the p-value is the average value in each group, the average of all observations, the number

of observations and the standard deviation [109]. The hypothesis to be tested is usually

two-sided, i.e. `the average of both data sets is equal` is the null hypothesis and that `they

are not equal` is the alternative hypothesis, as it is not known a priori which peptide or

protein is up- or downregulated. A special case to be considered is sample pairs e.g. when

the same individual sample is used as control (before treatment) and as condition (after

treatment). In this case, a paired t-test can be performed which increases the statistical

power of the resulting p-value by de-noising the datasets [110]. The statistical power of

the t-test is tied to the number of missing values. In theory, if enough values are present

over all data sets, and equal variance is assumed, this is su�cient to perform the test.

Practically, it is not always obvious that equal variances are present. In consequence, at

least three values in each condition are mandatory.

In contrast to the straight forward t-test or Welch test, more sophisticated statistical

methods have been evaluated in -omics sciences. Decades ago, linear models have been

identi�ed as superior method in transcriptomics and algorithms have been implemented

in R packages that are available from Bioconductor [111]. Here, linear regression is used

to build a linear model between the data sets. The statistical test is performed with the
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hypothesis that the slope, which is the coe�cient of the linear model, is not zero and

requires the slope and the residual error calculated from the regression as input values.

One advantage of linear models over classical t-test is the robustness of the resulting p-

value towards missing values. This approach is able to identify potential changes with

more accuracy, with decreased sensitivity towards a high number of missing values. Well

renown R packages include linnomr, edgeR, DSeq2 and limma, while all of them are

widely applied in transcriptomics already, only the latter became increasingly popular in

proteomics [112].

Disregarding the missing value problem, a general strategy about the acceptance criteria

for signi�cantly changing peptide/proteins has to be evaluated for the scienti�c question

at hand. Usually, the ratio of average value or median values for each sample group is

calculated (fold change - FC) and only 2-fold and 0.5-fold changes are accepted, i.e. a

factor of two. This is an arbitrary value that was historically estimated to re�ect the

maximum variability introduced by sample preparation and measurement. But with in-

creasingly robust methods, this dogma begins to change and with consequent validation

of the analytical method also other FC thresholds can be accepted. In addition to that,

a minimum number of measured values (or maximum number of missing values) can be

evaluated, which is well feasible with proteomics data, but becomes problematic for phos-

phopeptide data, as the number of missing values is usually much higher. For proteomics

datasets, usually at least 60 % of the measurements of sample condition (or even of one

single sample in case of technical replicates) should be present, whereas in phosphopep-

tide datasets 50 % across all measured data serves as acceptable trade o� between data

completeness and statistical analysis.

Another important consideration is the number of false positive identi�cations. When

applying a signi�cance threshold of p-value < 0.05, it is known that by chance 5 % of

all null hypothesis rejections is wrong, i.e. a false positive. When testing thousands of

proteins, the number of false positives is signi�cant, but strategies to adjust p-values for

adjusting the p-value are available [113]. The aim of all strategies is the elevation of all

p-values to a certain degree, so the number of signi�cant instances and subsequently also

the number of false positives is reduced. A widely applied strategy for p-value adjustment

is the Benjamini-Hochberg method, also known as FDR correction. For this, all p-values
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are ranked and multiplied by the ratio between the total number of tests and the p-value

rank [114]. An adjusted p-value calculated this way is abbreviated as q-value in the

following.

1.3.5 Data visualization and result analysis

After performing the statistical test, several data visualization tools help to get an overview

of the conducted experiment, serve as quality control for the applied statistical strategy

and allow biological conclusions. Basic tools for typical perturbation experiments include

correlation and volcano plots, data reduction strategies such as principal component anal-

ysis (PCA), clustering as well as protein-protein interaction networks (PPI) and gene

ontology enrichment (GO) or gene set enrichment analysis (GSEA).

Apart from the number of identi�ed peptide and proteins, their correlation in abundance

or rank is a most basic visualization for a quick evaluation of the data quality. Further-

more, it is possible to identify outliner samples or unravel unexpected patterns. For this,

either the Pearson (correlation of absolute values) or Spearman (correlation of ranks)

correlation between all sample pairs is calculated and visualized in a grid-like manner

where the color corresponds to the respective value. Commonly accepted is the Pearson

correlation, as it proves more robust for small absolute quantitative di�erences between

the protein abundances. As visible in �gure 1.7 A, a good correlation within one sam-

ple condition is desired and ideally, this di�ers from the other conditions. In general,

a strategy has to be identi�ed how to deal with missing values. Either, only complete

observations can be chosen for the correlation, which reduced the informative value of the

visualization, or missing values are imputed or replaced by 0's. In any case, this serves as

one diagnostic tool for missing value imputation assessment.

For the overview of the statistical testing, a volcano plot is widely applied. A volcano plot

as shown in �gure 1.7 B shows the log2 of the fold-change on the abszissa and the negative

decadic logarithm of the adjusted p-value e.g. q-value on the ordinate. Ideally a shape

from an erupting volcano is generated, thus the naming. The plot provides information

about the general distribution of the data, how much peptide/proteins are changing in

total? Is there a bias towards down or upregulated or is the distribution skewed, which

hints towards a normalization problem? In a more advanced step, the datapoints can be
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colored or labeled according to previous or generated knowledge to further understand

the data.

Proteomics datasets consist of typically thousands of descripting observations covering a

large dynamic range. Consequently, observations with high quantitative values usually

impact the follow-up analysis more compared to low quantity values. To reduce this bias,

the data is often log transformed (typically log10 or log2) and normalized (i.e. centered).

In addition to that, a row-wise normalization can be applied, such as the z-score, where

the absolute intensity value is normalized by the standard deviation and the mean of the

dataset. Thus, e.g. z-score allows a better visualization on heatmaps, as the di�erences

are more visible and independent of the absolute value. The following techniques are

usually used with transformed and normalized values, but in general, the raw data should

also be evaluated.

Multivariate statistics data reduction techniques aid the identi�cation of di�erent and

equal behaving data sets and classi�cation to certain groups based on all descriptors.

A commonly used approach is the principal component analysis (PCA), where the de-

scriptors are condensed to few principal components, each with certain loading of the

descriptors, that can be used for data visualization as shown in �gure 1.7 C [115]. This

way, the principal components aim to depict the variance in the dataset and usually a

very high percentage (more than 90 %) of explained variance is desired using just two

components. Prerequisite for the application of PCA and other multivariate data reduc-

tion techniques is a complete dataset. Missing values are not tolerated and have to be

imputed in any case. Thus, when a large number of missing values is present, the de-

scriptive power of the PCA is limited. Nevertheless, a successful separation of the sample

conditions using principal components is a promising indication of strong evidence for

meaningful proteome changes, whereas failing to achieve a separation does not allow to

draw any conclusions about the data quality. More recent approaches include Uniform

Manifold Approximation and Projection for Dimension Reduction (UMAP), t-Distributed

Stochastic Neighbor Embedding (t-SNE), that are already widely used in other -omics dis-

ciplines and gained more attention in proteomics lately. The aim of such techniques is

the same, but the reduction principle varies and can be reviewed in [116, 117].

An additional approach to identify similarities between samples and proteins/peptides is
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given by unsupervised clustering algorithms, such as k-means, dbscan and hierarchical

clustering [118]. Figure 1.7 D shows an exemplary heatmap with clustered rows. A

good indication for a successful experiment is the clustering of the distinct perturbation

groups, but similarly to PCA results, failing to achieve a reasonable clustering does not

allow conclusions about the quality of the dataset. The clustering of peptides and proteins

often aids the identi�cation of functional groups, especially in time series experiments.

The optimal clustering strategy has to be tested and evaluated, especially because data

completeness is a prerequisite for most clustering algorithms.

The functional analysis of signi�cantly di�erentially abundant peptides and proteins re-

quires previous knowledge and a hypothesis with reduced number of involved proteins. In

some cases, discovery like experiments do not have such knowledge at hand, thus tech-

niques are required to extract previously unknown knowledge from the dataset. Typically,

protein-protein networks already give the �rst insight into the underlying biology. A com-

monly used database for this analysis is STRING-DB [119]. There, a list of potentially

interesting proteins (in most cases the signi�cantly changing proteins) can be searched for

annotated experimental or predicted evidence of interaction with each other or with other

proteins. This way, a network of interaction is created, that potentially hints towards

heavily involved proteins in the dataset, as shown in �gure 1.7 E. An other important and

widely used strategy for the biological interpretation of the dataset is the gene ontology

(GO) enrichment analysis. For most proteins, annotations of information is available in

databases such as their biological function, the cellular component, molecular function or

involved pathways. When comparing the number of identi�ed GO terms associated with

the proteins that are signi�cantly changing to the number that we would expect based on

the whole proteome, enrichment of certain ontologies can be identi�ed. To validate the

�ndings, statistical testing ist performed and adjusted p-values are reported. STRING-

DB o�ers GO enrichment functions with limited features, alternatives such as PANTHER

[120] or the Cytoscape Plugin ClueGO [121] o�er �exible and feature rich analysis options.

Especially ClueGO o�ers the possibility to extract information from di�erent database

sources such as Reactome, WikiPathways and many more simultaneously and cluster the

resulting terms by their functional meaning. The resulting GO cluster are combined into

a network with overlapping genes / functions as shown in �gure 1.7 F. Often already at

�rst sight of the GO terms biological insights can be concluded and the corresponding
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proteins can be extracted and validated in the processed data.

PTMs add extra level of information, that can be analyzed in specialized tools to gain

insight about the identi�ed modi�cation. In case of phosphorylation, databases with pre-

vious knowledge aid the interpretation. Phosphositeplus [122] serves as curated database

with detailed information about discovered phosphosites for human, mouse and rat (to

some extend also cow, rabbit, chicken, hamster et al. ). Identi�ed phosphosites can be

found in the database and downstream and upstream e�ects can be investigated along

with the respective publication. Nevertheless, this is tedious work to do for all identi�ed

phosphosites and requires previous knowledge about the underlying biology by the ana-

lyst. A more unbiased and discovery approach is kinase and substrate enrichment analysis

(KSEA). Similar to gene ontology enrichment analysis, databases are inquired to gain in-

formation about how many phosphosites would be expected and compared to the dataset

at hand. Especially in the case of tyrosine kinases, often immediate downstream phospho-

sites can not be identi�ed in the dataset. But an enrichment of further downside serine or

threonine phosphosites can still indicate hyperactivity of the respective upstream or down-

stream kinase. A very simple and powerful KSEA tool is KSEA App [123], that can be

accessed online and programmatic in R, which investigates the phosphositeplus database

as well as NetworKIN, a database containing also predicted kinase-substrate relationships.

A more advanced alternative is the integrative inferred kinase activity score (INKA score)

[124], which takes more information into account such as information about kinase acti-

vating phosphorylation loops, downstream and upstream evidence and calculates a score,

which indicates the kinase activity. This tool is especially suitable for clinical phospho-

proteomics study, as it provides a scoring based on one sample only, whereas KSEA App

requires calculated fold changes. The disadvantage of INKA score is the limited input for-

mats, as it only accepts MaxQuant output as input. In addition to that, we found that it

is not robust towards small changes from newer MaxQuant versions and does not provide

proper error feedback. Additionally, the integration of proteomic change (as response to

phosphorylation governed stimulus) and the phosphorylation status in the cell is key to

understand causal relationships. A recently developed tool, CausalPath [125], allows to

interrogate the dataset about causal and also con�icting relationships that are explained

with the presented dataset. Unfortunately, so far this tool is only available for human

-omics datasets. CausalPath accepts tailored input from various sources, takes the exact
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phosphosite/protein relationship into account and the resulting causal pathways can be

easily visualized and customized in Cytoscape. This makes it the ideal tool for discovery

phosphoproteomics analysis from human proteome data.

Figure 1.7: Overview of possible data visualization strategies A) correlation plot B) vol-
cano plot C) principal component analysis D) clustered heatmap E) Protein-protein in-
teraction network F) Gene ontology clustering by Cytoscape/ClueGO
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2 Materials and methods
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2.1 Sample overview

Table 2.1: Proteomics samples M.oryzae 1/2. Each sample type was measured in qua-
druplicates at 5 time points in DIA mode.

Table 2.2: Proteomics samples M.oryzae 2/2. Each sample type was measured in qua-
druplicates at 5 time points in DIA mode.
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Table 2.3: Phosphoproteomics samples M.oryzae 1/2. Each sample type was measured
in quadruplicates at 5 time points in DIA mode.

Table 2.4: Phosphoproteomics samples M.oryzae 2/2. Each sample type was measured
in quadruplicates at 5 time points in DIA mode.
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Table 2.5: Phosphoproteomics samples human osteosarcoma cells. Control and Ceritinib
treated cells were measured in triplicates in DIA mode.

Table 2.6: Phosphoproteomics samples murine Th17 cells. Control and treated cells were
measured in triplicates in DIA mode.
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2.2 Sample preparation

2.2.1 Cell lysis and protein digest

If not stated otherwise, all reagents were used in LC-MS/MS grade from common vendors,

such as Carl Roth, Merck et cetera.

The sample preparation for all Magnaporthe oryzae samples has been performed as de-

scribed in [26]. A sample aliquot of 200mg lyophilized and grinded mycelium was sus-

pended in 2500µL boiling lysis bu�er (5 % SDS / 5 mM DTT / 100 mM Tris�HCl adjusted

to pH 8.5) , incubation at 90◦C for 30 min (5 min heating / 5 min cooling at room temper-

ature, vortexed samples in between). 160µL alkylation reagent (200 mM iodoacetamide)

and incubated with the sample for 30 min in the dark at room temperature. Afterwards,

the samples were treatment with ultrasound (30 s on / 30s o� cycles, high power mode)

for 15 min in the Bioruptor (Diagenode, Belgium). After centrifugation of the samples,

the supernatant was transferred to a 50mL Eppendorf Protein LoBind conical tube where

proteins were precipitated by addition of 10 mL methanol and 2.5 mL chloroform. The

samples were vortexted, 7.5 mL of water was added, vortexed and the samples were cen-

tifuged at 4◦C at 4600 rpm for one minute. The upper phase was discarded and 10 mL

methanol was added. After vortexing and centrifugation with same conditions as be-

fore, the remaining liquid above the formed precipitate was discarded. The precipitated

proteins were resuspended in 2500µL urea bu�er (7M urea / 2M thiourea / 100 mM

ammonium bicarbonate) and an 10µL aliquot was taken for protein quanti�cation by

Pierce 660 nm assay (Thermo Fisher, USA) according to the manufacturers instructions.

The samples were diluted 1:4.44 with bu�er (50 mM ammonium bicarbonate), remaning

DNA/RNA was removed by addition 500 units benzonase and tryptic digest was per-

formed over night at room temperature by addition TPCK-treated trypsin with an 1:25

ratio of trypsin to protein, according to the previously determined protein concentration.

The next day, the digest was acidi�ed by addition of tri�uoroacetic acid (TFA) to a �nal

concentration of 0.5% TFA.

For the following desalting procedure, always 2/3 of the cartridge volume available (4mL)

were applied. Waters Sep-Pak tC18 500 mg sorbent/6mL volume were used. First, the

cartridges were �ushed with methanol, conditioned with 50 % ACN / 0.1% TFA and
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equilibrated with 0.1% TFA in water. The samples were loaded as slowly as possible.

After binding of the samples, the cartridges were washed �ve times with 0.1% TFA in

water. The samples were eluted by addition of 4mL 50 % ACN / 0.1% TFA. Taking into

account the previously determinde protein amount in the samples, aliquots of the eluate

were taken a) 20µg for proteome analysis and b) 1000µg for phosphopeptide enrichment.

Both aliquots were lyophilized. The remaining aliquot has been stored at −80◦C for later

usage as back-up.

The whole proteome analysis aliquot of 20µg was resuspended in 40µL of 0.1 % FA and

the phosphopeptide aliquot was resuspended in 20µL of 0.1 % FA for LC-MS analysis.

Human osteosarcoma cells and murine Th17 cells (both of various and unknown cell count)

were lyzed in 50µL boiling 1% SDS and the samples were treated with ultrasound with the

same conditions as M. oryzae samples. Reduction and acetylation of free cysteines was

performed by addition of DTT (�nal concentration of DTT in the sample: 10 mM) and

incubation at 45◦C for 30 min, followed by addition of IAA (�nal concentration of IAA in

the sample: 40 mM) , DNA/RNA was digested by addition of 600 Units benzonase. After

protein quanti�cation by Pierce 660 nm Assay according to manufacturers instructions,

an aliquot of 30µg was subjected to an on-bead precipitation based tryptic digest (single

pot solid phase sample preparation - SP3). For this, sample was added to 250µg of 1:1

mixture magnetic beads with functional surface (Sera-Mag carboxylate-modi�ed magnetic

particles, hydrophobic and hydrophilic obtained from GE Healthcare, USA). Proteins were

precipitated on beads by addition of acetonitrile (ACN) to achieve a �nal concentration

of 80 % ACN. After 20 min incubation at room temperature while shaking at 800 rpm,

the supernatant was removed and the precipitated proteins were washed two times with

200µL of 80 % ACN and one time with pure ACN. The proteins were digested over night

at 32◦C by addition and incubation with 20µL 50 mM ammonium bicarbonate bu�er

containing 1 µg trypsin. After digest, the supernatant was collected in a new tube and

tri�uoroacetic acid (TFA) was added to a �nal concentration of 1 % before desalting using

SepPak tC18 µElution plate (Waters, USA). After desalting, an aliquot of 5µg for later

whole proteome analysis and 25µg for later phosphopeptide enrichment were separated

and lyophilized.
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2.2.2 Phosphopeptide enrichment

Phosphopeptide enrichment forMagnaporthe oryzae samples was performed using 1000µg

peptide and commercially available spin-tips Titansphere Phos-TiO with 1mg sorbent

bed (GL Sciences, Japan) following the manufacturers instructions. Clean-up of the

enriched phosphopeptides was performed using Pierce Graphite Spin Tips (Thermo Fisher

Scienti�c, Waltham, MA USA) following the manufacturers instructions.

Phosphopeptide enrichment for Human osteosarcoma cells and murine Th17 cells was

performed using Zr-IMAC high performance beads (MagReSyn, SA). As described in

the following Results and Discussion, method parameters were optimized for low amount

phosphopeptide enrichment, resulting in the following procedure.

25µg lyophilized peptides were resuspended in 100µL Loading Bu�er (80 % ACN, 5 %

TFA, 0.5 M glycolic acid) in a 2mL Eppendorf tube. 62.5 µg Zr-IMAC beads (i.e. ratio

1:2.5 peptide:beads) were prepared by binding the beads on a magnet rack, discarding

the supernatant. The beads were then washed with 100µL Loading Bu�er, collection on

magnet, discarding the supernatant. Resuspended peptides were added to the washed

beads and incubated at 40◦C for 30 min while shaking at 800 rpm. After incubation and

bead capture on magnets, the supernatant can be collected for proteome measurement.

The bound phosphopeptides on the magnetic beads are further washed with 50µL Wash

Bu�er 1 (80 % ACN, 1 % TFA) andWash Bu�er 2 (10 % ACN, 0.2 % TFA) at 40◦C for 10

min each, shaking at 800 rpm and combining the supernatant with previous supernatant

for proteome analysis. The bound phosphopeptides are eluted by incubation with 25µL

Elution Bu�er (1 % NH4OH) at room temperature for 15 min, which is repeated to

obtain a �nal elution volume of 50µL. The high pH of the eluted phosphopeptides are

immediately neutralized by adding the elution directly into previously prepared 15µL of

10 % formic acid (FA). After lyophilization, the phosphopeptides are resuspended in 25µL

of 0.1 % FA for subsequent LC-MS/MS analysis.
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2.2.3 ERLIC chromatography parameters

The used chromatographic parameters were �rst published in [126] and modi�ed as indi-

cated in the following. In this example, 2mg of lyophilized mousebrain tryptic peptides

were prepared following the same protocol as for the Magnaporthe oryzae samples de-

scribed earlier. The peptides were resuspended in 1mL of Eluent A (20 mM Na−MePO4,

pH 2.0, 70 % ACN). 0.45µm syringe �lters were conditioned by �ushing with at least 1mL

of Eluent A. The sample was completely �ltered through the preconditioned syringe �lters

and an appropriate volume of Eluent A was applied after the sample to reach 1mL �nal

syringe eluate volume. The �ltered sample was applied with a sample loop to an Äkta

pure 20 HPLC system (GE Healthcare, Chicago, USA). The peptides were separated at

16 ◦C and fractions of 1mL were collected over a gradient of 30 min starting with 100 %

Eluent A to 100 % Eluent B (200 mM triethylammonium phosphate, pH 2.0, 60 % ACN),

followed by 15 min of equilibration with Eluent A, that was not part of the collected

fractions. The collected fractions were lyophilized and each desalted using Waters Sep-

Pak tC18 500 mg sorbent cartridges with the procedurce described earlier. The desalted

peptides were lyophilized again and resuspended in 20µL of 0.1 % FA for LC-MS analysis.

The �rst variation of the chromatographic conditions was the use of magnesium hydroxide

solution instead of the usually used sodium hydroxide solutions for the pH adjustment

of each Eluent, o�ering a di�erent counter-cation for the chromatography mode. For the

second variation, in addition to the changes from the �rst variation, was the use of a

convex gradient. The gradient was designed as shown in 2.7.
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Time [min] % Eluent A

0 100
5 80
10 60
15 40
20 30
25 20
30 10
35 0
35 0
36 100
50 100

Table 2.7: Gradient conditions for a convex gradient in ERLIC in contrast to the linear
gradient used in previous publications such as [126]

2.3 Peptide identi�cation

2.3.1 LC-MS/MS of M.oryzae as resource for osmostress

signaling research

0.5µL of the reconstituted peptides for whole proteome analysis or 2 µL of the reconsti-

tuted phosphopeptides were separated on an Ultimate 3000 nanoUPLC (Thermo Scien-

ti�c, Waltham, USA) with 300 nL/min by a reversed phase C18 column (HSS-T3 C18

1.8 µm, 75 µm Ö 250 mm, Waters Corporation) at 55◦C using a 45 min linear gradient

from 95 % Eluent A (0.1 % TFA, 3 % DMSO in water) to 35 % Eluent B (0.1 % TFA,

3 % DMSO in ACN) followed by ionization in positive mode using a Nanospray Flex

electrospray ionization source (Thermo Scienti�c). Mass-to-charge analysis of the eluting

peptides was performed using an Orbitrap Exploris 480 (Thermo Scienti�c) in data inde-

pendent acquisition (DIA) mode. MS1 scans were acquired with a resolution of 120 000

@ 200 m/z in for a range of 345 - 1250 m/z. RF lens was set to 40 % and AGC target

to 300 % (i.e. corresponding to 3x 106 charges). DIA MS2 scans were acquired with a

resolution of 30 000 @ 200 m/z with a variable window scheme as shown in supplementary

table 6.1. The normalized collision energy was set to 27 %, RF lens to 40 % and AGC

target to 1000 % (i.e. corresponding to 10x 106 charges).

55



2.3.2 LC-MS/MS of M.oryzae in DDA for comparison to DIA

2 µL of the reconstituted phosphopeptides were separated on an Ultimate 3000 nanoUPLC

(Thermo Scienti�c) with 300 nL/min by a reversed phase C18 column (HSS-T3 C18 1.8

µm, 75 µm Ö 250 mm, Waters Corporation) at 55◦C using a 45 min linear gradient

from 95 % Eluent A (0.1 % TFA / 3 % DMSO / Water) to 35 % Eluent B (0.1 %

TFA / 3 % DMSO / ACN) followed by ionization using a Nanospray Flex electrospray

ionization source (Thermo Scienti�c). All samples were measured in triplicates. Mass-to-

charge analysis of the eluting peptides was performed using an Orbitrap Exploris 480

(Thermo Scienti�c) in data dependent acquisition (DDA) mode. Full scan MS1 spectra

were collected over a range of 350 - 1600 m/z with a mass resolution of 60 000 @ 200

m/z using an automatic gain control (AGC) target of 100 %, maximum injection time

was set to �Auto� and RF lens to 40 %. Within a �xed cycle time of 1.5 s the most

intense peaks (number of peaks selected is automatically determined by the instrument)

above the signal threshold of 2 x104 , harboring a charge of 2 - 6, were selected within an

isolation window of 1.4 Da as precursors for fragmentation using higher energy collisional

dissociation (HCD) with normalized collision energy of 30. The resulting fragment ion

m/z ratios were measured as MS2 spectra over a automatically selected m/z range with

a mass resolution of 15 000 @ 200 m/z, AGC target was set to �Standard� and maximum

injection time to �Auto�.

2.3.3 LC-MS/MS of M.oryzae in DIA for comparison to DDA

3 µL of the reconstituted phosphopeptides were separated on a nanoElute LC system

(Bruker Corporation, USA) at 400 nL/min using a reversed phase C18 column (Aurora

UHPLC emitter column, 25 cm x 75 µm 1.6 µm, IonOpticks) which was heated to 50◦C.

Peptides were loaded onto the column in direct injection mode at 600 bar. Mobile phase

A was 0.1 % FA (v/v) in water and mobile phase B 0.1 % FA (v/v) in ACN. Peptides

were separated running a linear gradient from 2 % to 37 % mobile phase B over 39 min.

Eluting peptides were analyzed in positive mode ESI-MS using parallel accumulation

serial fragmentation (PASEF) enhanced data-independent acquisition mode (DIA) on a

timsTOF Pro 2 mass spectrometer (Bruker Corporation). The dual tims was operated

at a �xed duty cycle close to 100 % using equal accumulation and ramp times of 100 ms

each spanning a mobility range from 1/K0 = 0.6 Vs cm−2 to 1.6 Vs cm−2. We de�ned 36Ö
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25 Th isolation windows from m/z 300 to 1165 resulting in �fteen diaPASEF scans per

acquisition cycle. The collision energy was ramped linearly as a function of the mobility

from 59 eV at 1/K0 = 1.3 Vs cm−2 to 20 eV at 1/K0 = 0.85 Vs cm−2

2.3.4 LC-MS/MS of HOS / Th17

3 µL of the reconstituted phosphopeptides were separated on a nanoElute LC system

(Bruker Corporation, USA) at 400 nL/min using a reversed phase C18 column (Aurora

UHPLC emitter column, 25 cm x 75 µm 1.6 µm, IonOpticks) which was heated to 50◦C.

Peptides were loaded onto the column in direct injection mode at 600 bar. Mobile phase

A was 0.1 % FA (v/v) in water and mobile phase B 0.1 % FA (v/v) in ACN. Peptides

were separated running a linear gradient from 2 % to 37 % mobile phase B over 39 min.

Eluting peptides were analyzed in positive mode ESI-MS using parallel accumulation

serial fragmentation (PASEF) enhanced data-independent acquisition mode (DIA) on a

timsTOF SCP mass spectrometer (Bruker Corporation). The dual tims was operated at

a �xed duty cycle close to 100 % using equal accumulation and ramp times of 166 ms

each spanning a mobility range from 1/K0 = 0.7 Vs cm−2 to 1.3 Vs cm−2. We de�ned

29Ö 25 Th isolation windows from m/z 280 to 990 resulting in ten diaPASEF scans per

acquisition cycle. The collision energy was ramped linearly as a function of the mobility

from 59 eV at 1/K0 = 1.6 Vs cm−2 to 20 eV at 1/K0 = 0.6 Vs cm−2.

2.3.5 Data processing parameters

Peptides measured in DIA mode were identi�ed and label-free quanti�cation (LFQ) of

proteins was performed using DIA-NN (v1.8).

Full proteome samples from M.oryzae were processed using library free mode with stan-

dard parameters, except for tryptic cleavage sites considering no cleavage before proline.

The FASTA protein database contained 12 790 protein entries of the M.oryzae reference

proteome and 172 common contaminant proteins and was obtained on 01st September

2021 from Uniprot.

For phosphopeptide analysis of either species, M.oryzae, mouse and human, a phospho-

peptide spectral library was predicted in-silico using the built-in library free prediction

algorithm provided by DIA-NN. For M.oryzae, the aforementioned FASTA database was
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used as basis, for mouse a FASTA database was downloaded from uniprot.org on 09th

November 2021 containing 17 082 reviewed proteins to which 172 common contaminant

proteins were added. The human FASTA database was downloaded on 03rd March 2021

and included 20 365 reviewed protein entries to which the 172 common contaminant pro-

teins were added. The spectra libraries were predicted with the precursor charge range

set between 1 - 4 and the range for fragment ions and precursor mass to charge ratio

was limited to 250 - 1250 m/z. The peptide length was set to 7 - 30. Tryptic cleavage

considering no cleavage after the lysine or arginine is followed by proline, maximum one

missed cleavage was allowed. N-terminal methionine excision was enabled and cysteine

carbamidomethylation was set as �xed modi�cation. The maximum number of variable

modi�cations was set to 3, allowing only UniMod:21 modi�cations, i.e. mass delta of

79.9663 corresponding to phosphorylation at serine, threonine and tyrosine. The gener-

ated spectral libraries were used for follow up identi�cation and quanti�cation in DIA-NN

using the standard settings.

The DDA raw�les were processed by PEAKS X Pro (BSI, Canada) using the FASTA

�le described above, precursor tolerance and fragment ion tolerance were set to 15 ppm

and 0.03 Da respectively, two missed cleavages were allowed, carbamidomethylation at

cysteins was set as �xed modi�cation while oxidation on methionine and phosphorylation

on serine, threonine and tyrosine were set as variable modi�cations with a maximum of 4

variable modi�cations per peptide
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2.3.6 Availability of raw �les and R code

All raw �les, DIA-NN settings and output �les as well as R codes have been uploaded via

JPOST [127] to be retrievable at proteomeXchange [128].

Data for the M.oryzae osmostress resource are available via the identi�er PXD034481.

The dataset can be accessed via

https://repository.jpostdb.org/preview/179221543262a4a1ccb2393

using the access key 3542.

Data for the DDA/DIA comparison are available via the identi�er PXD038605 The dataset

can be accessed via

https://repository.jpostdb.org/preview/13118931046394b6ae69c06

using the access key 9526.
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3 Results and discussion
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3.1 Improved sample preparation and measurement

3.1.1 Optimized cell lysis

In large scale experiments such as required for the adaption investigation in M.oryzae,

reproducibility is key to ensure the correct identi�cation over a large sample batch and

over time inter-experiment, but also intra-experiment caused by time intensive data ac-

quisition. Mainly, the robustness if governed by the variability introduced during sample

handling, where working with small quantities or large volumes is undesirable due to

unspeci�c binding to plasticware et al. Therefore, an e�cient lysis and protein stabiliza-

tion/solubilization strategy for M.oryzae is of utmost importance. In contrast to tissues

or mammalian cell culture samples, where cells are fragile and easily lysable by chemical

and gentle physical treatment (if at all), fungi and plants often need harsh lysis conditions

to access the proteins from the cells, due to their tough cell wall structre [129]. Three

parameters were investigated experimentally: 1) The protein yield after lysis, assessed

by relating the measured protein amount, after lysis and clean up, to the crude sam-

ple weight. 2) The lysis volume and relation to the crude weight and 3) Inhibition of

unspeci�c proteolysis.

The assessment of protein yield in dependence of the chemical (chaotropic and denatu-

rating agents) and physical (sonication, bead beating and heat) treatment is summarized

in �gure 3.1. A) shows the protein yield from mouse brain tissue as control example. The

mouse brains were homogenized under liquid nitrogen before weight into tubes for lysis.

The combination of Urea/Thiourea containing lysis bu�er with ultrasound treatment in

the Diagenode Bioruptor yields 5.5 % median protein relative to the crude weight, that

increases in presence of SDS as detergent to a median of 8.5 %, although due to the

need to remove the detergent precipitation by CHCl3/MeOH is required. When changing

from Urea/Thiourea to DTT as chemical treatment, the yield is around 12 %. In con-

trast to that, a simple Urea/Thiourea treatment yields only a median of 0.5 % protein

yield in M.oryzae as shown in �gure 3.1 B . Bead beating as physical treatment yields

a slightly higher protein yield of 0.75 %, but this treatment is known to introduce un-

desirable heat to the sample, which can cause carbamidomethylation. Although bead

beating systems are available with cooling option, the marginal increase in yield is in

no relation to the potential increase in chemical variability that is further propagated in
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downstream phosphopeptide enrichment. Nevertheless, as cell wall disruption is believed

to be a major issue preventing higher protein yield, bead beating as most harsh physical

treatment yielding more protein underlines this hypothesis. The use of an alternative

chaotropic agent, guanidine hydrochloride (GuHCl), did yield a even less protein lysis

e�ciency with a yield of around 0.25 % with apparently higher reproducibility. The lower

denaturation strength is in line with previously published results [130], and the use of

higher lysis temperature of 95 ◦C could not compensate for this e�ect. By introducing

SDS to the Urea/Thiourea bu�er, no increase could be observed, which is also true for

the use of NaDoc alone in combination with heat. Interestingly, either the combination

of Urea/Thiourea and CHAPS as detergent as well as the combination of DTT, SDS and

heating lead to a signi�cant increase in yield to a median of around 1 %. The hypoth-

esis is, that Urea/Thiourea and SDS act in similar way as solubilizing and denaturating

agents and thus do not show synergetic e�ects. In contrast to SDS, CHAPS is known

as non-denaturating has a substantially di�erent three-dimensional structure and being

zwitterionic also physicochemical character [130]. Thus, the a�ected solubilized area while

using CHAPS is di�erent, while at the same time having a sti� structure which makes

the kinetics of lysis and solubilzation putatively slower compared to the �exible dodecyl-

chain of SDS. In addition to that, heat can not be applied due to the side reactions of

Urea/Thiourea and the use of Urea/Thiourea with CHAPS seems to provide higher CVs,

although this �nding might be intrigued by the higher number of experiments (N=12)

compared to DTT/SDS (N=6). DTT and SDS consequently show a similar disruptive

denturating strength. Presumably the kinetics of both, the reduction of disul�de bonds

by DTT and the solubilization and denaturation by SDS, are more similar than the com-

bination of Urea/Thiourea and SDS and thus yield higher e�cient lysis, especially as high

temperature is possible with this lysis bu�er type.

It is known, that fungi often display a high unspeci�c proteolytic activity [131]. As the

downstream bioinformatic analysis requires peptides to be from tryptic digest origin (N-

terminal R and K) for systematic in-silico digest or spectra prediction with successful

and e�cient database search, a unspeci�c proteolytic activity before tryptic digest will

decrease reproducibility and identi�cation e�ciency dramatically. Consequently, inhibi-

tion of such activity is required. While in western blotting the chemical inhibition by

commercially available reagent cocktails is commonly applied, this is contraproductive in
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Figure 3.1: Overview of di�erent lysis bu�er strategies for A) mouse brain as control and
B) Magnaporthe oryzae. The yield was calculated by measurement of protein content in
the lysate by Pierce 660nm Assay compared to the crude sample weight that was used
for lysis. While the least e�ecitve lysis strategy for the mouse brain samples still yields
around 6 % protein amount of the used crude sample, the most e�ective lysis strategy for
the fungal samples never exceeds 2 % protein amount of the sample weight.

proteomics research, as tryptic digest still has to be possible. For this analytical problem,

specially developed cocktails (e.g. without EDTA) can be used, but do not provide full

protection against unspeci�c proteolysis. On the other hand, heat as a simple denatu-

rating technique can serve as inhibitor of proteolytic enzymes right from the beginning

of the sample preparation. A measure of proteolytic activity is the unspeci�c search of

peptides from DDA experiments. By calculating the ratio of tryptic peptides to the total

number of identi�ed peptides (including those from unspeci�c cleavage) an estimation of

pre-tryptic unspeci�c proteolytic acivity can be made. From �gure 3.2 A is obvious, that

mouse brain tissue samples that are not expected to display high proteolytic activity do

accordingly show a similar ratio of tryptic peptides when either using inhibitory cocktail

or heat. Thus, in this case the treatment inhibits this activity ito a similar degree. In case

of S.bayanus, a yeast strain that is available in out laboratory, shows a better inhibitory

e�ect of heat compared the inhibitor cocktail. The reason for this can be explained by

the partial activity of metal-proteases that usually are inhibited by the contained EDTA,
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Figure 3.2: A) E�ects of heat treatment to unspeci�c protease activity (MO: Magna-
porthe oryzae in green / SB: Saccharomyces bayanus in orange / MB: Mouse brain from
Mus musculus in blue). Fungal and murine samples were lysed according to the named
treatment, tryptically digested and peptides mesaured by LC-MS. The mass spectra were
serched with unspeci�c cleavage allowed. A high number of unspeci�cally cleaved pep-
tides indicates a high protease activity before sample preparation. Based on the observed
results, heat treatment serves as e�ective measure to inhibit unspeci�c protease activity
B) The e�ect of the ratio between sample weight and lysis volume on protein yield of
Magnaporthe oryzae. Samples were weight with very variable amounts, due to the inho-
mogeneous nature of the grinded mycellium. A very weak correlation could be observed,
with no clear conclusion possible. An arbitraty ratio of sample weight to lysis bu�er vol-
ume of 1:4 has been used for further experiments.

which can not be used in classical bottom-up proteomics. Interestingly, the use of inhibitor

cocktails seems to have an even deceasing e�ect for the e�ciency of the tryptic digest in

M.oryzae, as the ratio of tryptic peptides is even lower compared to a lysis bu�er without

inhibitor cocktail. This e�ect can be explained by the lower concentration of trypsin that

is used during the digest compared to mouse brain. Presumably, the inhibitory e�ect is

also governed by a inhibiton kinetic on trypsin, that is not metal related. Therefore, a

much higher relative activity in the mouse brain samples lead to an e�cient digest before

it is inhibited while the kinetics of the tryptic digest are not fast enough to compensate

the inhibitory e�ect of the cocktail in the M.oryzae samples. Strikingly, by using heat we

could achieve a similar e�ciency ratio of tryptic peptides compared to the other sample

types. Consequently, a lysis bu�er that is compatible with heat is most desirable and

with the previous results the combination of heated DTT and SDS provide a satisfactory

solution to this problem, although the required protein precipitation as clean up intro-
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duces a new source of variability. In respect of the used lysis volume, we obeserved a very

weak correlation of the ratio between sample weight and lysis volume versus the measured

protein yield as shown in �gure 3.2 B. Thus, no clear conclusion could be drawn and a

ratio of sample weight to lysis bu�er of at least 1:4 has been used.

Protease and phosphatase inhibitors are widely applied in proteomics to preserve the

status quo during sample preparation. Not only we demonstrate in our dataset a negative

e�ect of protease inhibitiors on the proteolytic digest, but both phosphatase and protease

inhibitors have been shown to lead to ine�cient phosphopeptide enrichment or total

depletion of phosphopeptides [62]. The reason for this is yet unknown and elucidation

of mechanisms will require extensive work due to the vast number of inhibitory reagents.

Furthermore, the sole use of phosphatase inhibitors without applying kinase inhibitors

at the same time might lead to false positive hits, but kinase inhibitors are less common

to be applied during cell lysis. Thus, enzyme denaturation by using heat is an excellent

solution to circumvent proteolysis and enrichment issues right from the beginning.

In conclusion, cell wall disruption does not seem to be a problem with M.oryzae, rather

protein solubilization (or protein content in crude weight) and protease activity, where a

combination of DTT / SDS and heat treatment provide a satisfactory solution. Neverthe-

less, ultrasound is a valuable element during sample preparation as it potentially disrupts

chromatin proteins which are critical contaminants in phosphopeptide enrichment. Here,

optimization potential is given with newer instruments that work in high-throughput 96-

well format. The issue hereby is the minimal sample volumes of less than 200µL. Due

to the low protein concentrations at hand, additional preparation steps such as bu�er

reduction by MWCO �lters are required, that potentially loose a low mass subproteome

and might be time intensive due to the complex matrix, if it is possible at all. Further-

more, due to the large lysis volume and low protein concentrations, unspeci�c binding to

plasticware might become an issue.

3.1.2 Advancements in phosphopeptide enrichment methods

Two major challenges of phosphopeptide enrichment are a) the large amount of starting

material required and b) low reproducibility and bias towards phosphopeptide subpopula-

tions introduced by the enrichment step. Therefore, alternative strategies for a) downscal-
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ing the phosphopeptide enrichment by using magnetic beads have been evaluated and b)

a feasibility study for an alternative chromatography mechanism for potentially replacing

the reversed phase chromatography was conducted.

For the successful downscaling of the phosphopeptide enrichment the most essential pa-

rameter is the ratio of functional groups per peptides. When the number of potential

binding sites exceeds the number of phosphopeptides present in the sample, the remaining

sites are consequently occupied by unspeci�cally binding peptides and thus, the enrich-

ment e�ciency and subsequently ionization e�ciency decreases. On the other hand, less

binding sites than phosphopeptides will lead to incomplete and unreproducible enrich-

ment. Although strategies have been developed to adjust the amount of TiO2 material

onto tips (i.e. STAGE tips [132]), the manual assembly of such tips su�ers from high

variability and low shelf-life, as TiO2 is hygroscopic. Recently, magnetic beads became

popular as they o�er a better and more reproducible scalability, fast and easy handling

also in high throughput format (which is not easily feasible with tips) and provide better

intermediary and inter-laboratory reproducibility due to their prolonged shelf-life [24].

Figure 3.3 A shows an overview of tested bead types with the respective peptide loading

amount compared to the common TiO2 spin tip performance. All samples were brain

tissue from mouse, after digest and enrichment resuspended in 20µL, 2 µL injected for

120 min LC runtime (90 min gradient) measured on the Orbitrap Exploris 480 in DDA

mode. The TiO2 and Ti4+-IMAC beads show similar or moderately better performance

in number of identi�ed phosphopeptides compared to the TiO2 spin tips, while reducing

the peptide amount to 500µg. In the case of TiO2 beads, the handling of the beads stock

solution was impaired due to beads aggregation and clogging. Thus, also one replicate

did not show any peptides identi�ed, which can be explained by inhomogeneous bead

distribution during sample preparation. Interestingly, the enrichment e�ciency is worse

in bead type enrichment compared to tip type enrichment. A possible reason or this might

be di�erences in the particulate structure and non-functional surfaces on both materials.

While the spin tips are �lled with pure TiO2 particles of inhomogeneous and uncontrolled

particle sizes, magnetic beads bind the functional groups on their surface (either covalently

for MOAC or as complex for IMAC). Therefore, matrix structures or incomplete loading

onto the beads surface might enable interactions of the sample matrix (salts, detergents,
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lipids, bu�er et cetera) with the surface and/or the phosphopeptides.

Even when decreasing the starting amount to 250µg, a competitive performance of Ti-

4+IMAC beads compared to TiO2 spin tips has been observed, although with consequently

lower enrichment e�ciency. Interestingly, Zr4+-IMAC beads provide superior performance

compared to Ti4+-IMAC beads using equal starting amount and superior performance

compared to the TiO2 spin tips while using just 1/4 of peptide amount required. In addition

to that, an increased enrichment e�ciency has been observed for Zr4+-IMAC beads. The

reason for this observation is yet unclear: Is the superior identi�cation performance due to

reduced ionization suppression or is the total number of enriched peptides increased? The

�rst would mean that Ti4+-IMAC beads might provide a similar enrichment performance,

that is suppressed by a greater extend of unspeci�c co-enrichment, while the latter would

indicate a true performance di�erence, possibly caused by stronger a�nity or altered re-

tention mechanism. A possible way to address this question would be the enrichment of

an arti�cial peptidome that consists of a su�cient number of known amounts of peptides,

that have to be enriched without possible contaminants and with certain spike-in levels

of contaminants. Supposedly high impact contaminants are detergents that are not com-

pletely cleaned up from the sample lysis such as SDS and CHAPS that have the potential

to decrease the surface load of functional material on the beads or shield the surface of

the beads towards the sample matrix. Second, salts with higher oxidative state such as

magnesia might compete with the chelated metal ions, which in turn also would decrease

the functional load on the magnetic beads. This way, the source of such di�erence can be

evaluated, but has not been done yet due to time and resource constraints.

A possible reason for the di�erence in performance is an increased stability of the Zr4+

ion and bead matrix complex. It has been shown, that the cation-dipole interaction of

complexes is a variant of the ion-ion attraction force which can be described with the

Coulomb equation [133]. In both cases, the strength of the force is antiproportional to

the square of the distance between ion/dipol and the other ion. As Zr4+ has a greater

atom size compared to Ti4+, the three-dimensional space within the binding site of the

bead matrix is occupied to a greater extend and thus the distance between the Zr4+-

Ion and the chelating sites must be decreased. In consequence, the attraction force is

increased and Zr4+-Ions form a more stable complex. This way, the functional surface
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remains una�ected with higher contaminant load of either source (detergent or salts). To

our knowledge, this hypothesis has not been veri�ed yet experimentally. Furthermore,

it is known that the strength of a covalent (and non-covalent) bond is dependent on the

overlap and the resulting hybridization in covalent binding [134]. Due to its atom size, the

Zr4+-Ion o�ers larger and more �exible orbitals for overlap with either the immobilization

matrix or the phosphopeptide. In consequence the chances fot overlap and the overlap size

is increased with Zr4+-Ions in comparison to Ti4+-Ions. These hypotheses are in line with

the observation, that Zr4+-IMAC beads o�er a higher shelf-life compared to Ti4+-IMAC.

Thus, in all optimization experiments, Zr4+-IMAC were used unless stated otherwise.

Benchmarking the downscaling of peptide amount was performed using the Ti4+-IMAC

beads in triplicates with equal conditions as the previous enrichment of 250µg and is

shown in �gure 3.3 B. Interestingly, down to 100µg the decrease in phosphopeptide IDs is

still not signi�cant, whereas a major decrease of phosphopeptides can be observed below

100µg. But even with as low as 25µg of starting peptide amount a reasonable number

of phosphopeptides could be measured. Therefore, 25µg were set as target amount for

the downscaling optimization. Figure 3.4 shows an overview of the seven parameters that

were addressed in the optimization. The resulting number of identi�ed phosphopeptides,

enrichment e�ciency and reproducibility were selected as performance indicators of each

optimization step.

The sample sets were analyzed on di�erent LC-MS/MS, based on the availability to en-

sure short turn-over time. Thus, the absolute numbers of peptides can not be compared

directly, but rather within the experiments only. Nevertheless, the bioinformatic process-

ing and downstream analysis of the raw �les was performed in FragPipe and R, equal

for all samples. In general, except for the �rst experiment, the identi�ed numbers of

peptides are consistently low and su�er from high variance. This e�ect correlates with

the amount of previously measured plasma samples. Contaminating agents from the

plasma sample preparation or carry-over of peptides from previous runs might alter the

retention behavior of phosphopeptides by shielding the chromatographic surface for the

anyway weak interaction with phosphopeptides. In addition to that, carry-over unmodi-

�ed peptides will reduce the ionization e�ciency of phosphopeptides. Furthermore, such

peptides can also enhance the solubility of trace metals in the chromatographic system
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Figure 3.3: Overview of phosphopeptide enrichment of indicated amount of mouse brain
peptides performed with magnetic beads measured on an Orbitrap Exploris 480 in DDA
mode. A) Performance of di�erent functional material and starting amount compared
to TiO2. B) Titration of starting amount down to 25µg (N=3) still yields satisfactory
number phosphopeptide IDs

Figure 3.4: Parameters selected for initial phosphopeptide enrichment optimization
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[135]. An increased concentration of such metal ions will consequently form complexes

with phosphopeptides which subsequently will not be available for ionization. A possible

solution for this problem might be a dedicated LC-MS/MS systems for plasma samples,

so that as few LC-systems as possible are potentially in�uenced by plasma sample related

LC-MS/MS issues. Furthermore, it has been shown that adding scavenging (chelating)

reagents such as citric or medronic acid to the eluent improves ionization e�ciency and

chromatographic separation of phosphopeptides [136, 137]. To our knowledge it is un-

known how a chelating additive a�ects a complex phosphopeptidome and unmodi�ed

peptidome chromatography performance, yet the long time impact of using a non-volatile

additive, although in minute concentration. For such LC-MS/MS systems an increased

maintenance e�ort might be necessary, charging of entrance plates and ion optics (incl.

quadrupoles) have to be closely monitored and frequently cleaned.

Figure 3.5 shows an overview of the identi�ed phosphorylated and unmodi�ed peptides

for each optimization parameter. Based on the �rst experiments, SP3 digest was selected

as digest before phosphopeptide enrichment, as it yields twice as many phosphopeptides

than the FASP digest while the enrichment e�ciency is equally worse in both digest types

compared to TiO2 spin tips. Presumably, the SP3 digest is more e�ective in removing rele-

vant contamination that interfere with successful phosphopeptide enrichment as discussed

above. Next, the necessity of desalting after phosphopeptide enrichment was assessed by

compared crude samples with desalted samples by a) SepPak tC18 an b) Oasis HLB. The

hypothesis is, that desalting lead to increased ionization e�ciency due to reduced ion sup-

pression. Furthermore, it has been shown that the polarity of the SPE sorbent strongly

a�ects the phosphopeptide recovery [138]. Thus, in addition to the widely applied C18

sorbent a more polar mixed-phase alternative, Oasis HLB, was assessed. The peptide

recovery after desalting shows poor performance of both desalting strategies, nearly no

phosphopeptides were identi�ed in the desalted samples compared to non desalted sam-

ples. This �nding can be explained by unspeci�c binding of the peptides to plasticware

and containers which is of course more pronounced with minute sample amounts. Any-

way, a solution to this is already provided in many LC systems: Loading of the sample

onto pre-columns and subsequent elution by the gradient before the analytical column.

Nevertheless, not all LC systems are equipped with this possibility and currently, only

C18 material is used due to its broad speci�city, thus the e�ciency of on-line pre-column
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based desalting is questionable. Other pre-column types might improve the phosphopep-

tide recovery. In addition to that, supplementary �gure 6.1 shows appearing peaks in

the desalted samples only. As the ordinate is equally scaled in all chromatogramms, it

is obvious that the relative amount of additional peaks is high compared to the analytes

in �gure 6.1 A (no desalting). The base peak m/z is denoted on each peak and reveal

the typical chromatographic pattern of Polyethylene glycol (PEG), which is a common

contaminant leaching from plasticware and/or from cosmetic products. As two di�erent

elution plates after desalting and the same batch of eppendorf tubes and pipette tips

were used for processing of the non-desalted samples, the origin of the contamination is

unlikely to be derived from cosmetic product residuals e.g. from touching plasticware

with bare hands after hand care or similar. More likely, the desalting plate material or

the �lter device of the desalting sorbents in the carrier plate serve as source of this con-

tamination. Interestingly, the Oasis HLB sorbens was able to reduce the amount of a

contaminating substance with m/z 1082.52 at RT 30.84 min that is also present in the

non-desalted sample and thus is not caused by the additional sample preparation step. In

all future assay, no desalting was applied to ensure maximum recovery of peptides after

enrichment and preferably, a LC-MS/MS system with pre-columns enabled are preferred.

The optimal concentration of glycolic acid as competing agent was assessed next. Here, a

concentration of 0.5 M showed peak performance compared to lower and higher concen-

trations, which is plausible as very low concentrations should lead to increased unspeci�c

binding and high concentrations might prevent optimal phosphopeptide binding by occu-

pying binding capacities. In agreement with this, the enrichment e�ciency increases from

around 20 % in low competitor concentration to around 50 % in high competitor concen-

tration. The investigation of optimal bead to peptide ratio is ambigous, as the number

of phosphopeptides to compare is too low. This experiment has to be repeted for proper

evaluation of the parameter, but it serves as another excellent example for the importance

of clean LC systems. Shortly before measurement of those samples, a valve was changed

during maintenance of the LC. The hypothesis is there, that the metal surfaces have

not been passivated yet or due to the maintenance trace metal leaching occurred, which

consequently leads to decreased phosphopeptide identi�cation performance. Notably, the

second replicate of each condition always shows much worse peptide IDs compared to

replicates 1 and 3. When considering only replicates 1 and 3, a lower bead ratio of 1:5
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or 1:2.5 seem to perform better, while the reproducibility was higher for the 1:2.5 ratio.

Prolonged incubation times in all sample preparation steps have also shown to increase

the phosphopeptide yield. A very crucial incubation time is the elution time, as the pH

is increased and consequently alkaline hydrolysis of the phosphopeptides is possible, and

has to be followed very accurately. The result for the optimization of incubation volumes

is ambiguous, as medium and low volume incubation are improved compared to high vol-

umes, but not clearly distinguishable. In favor of homogenization, medium incubation

volumes o�er a better performance (also regarding the median of phosphopeptide IDs),

due to the round bottom shape of the used 2 mL incubation tubes. This geometry favors

a homogeneous distribution of the beads in the solution while shaking. In contrast to

that, low volume incubation on 0.5 mL tubes o�er less surface contact and presumably

less unspeci�c binding which results in an increased reproducibility for these samples.

A potential improvement would be the combination of small volumes in 0.5 mL tubes

while ensuring proper homogenization, which has to be tested separately. Furthermore, a

higher temperature has been identi�ed as bene�cial for phosphopeptide identi�cation with

moderately higher enrichment e�ciency. This �nding is contrary to the hypothesis that

the retention of phosphosites is thermodynamically favored compared to the unspeci�c

retention of unmodi�ed peptides, which is believed to be governed by acidic amino acid

residues that mimic the binding of the phosphogroup. Apparently, the binding a�nity

is not solely governed by the acidic functional groups of the phospho- and unmodi�ed

peptides, but rather by the microenvironment of the whole peptide. If this is the case,

the assumptions for unspeci�c enrichment becomes questionable. A possible explanation

would be a HILIC-like retention mechanism, where an enrichment of an aqueous layer

around the beads would lead to a liquid-liquid extraction superimposed to the phospho-

peptide (and acidic residue) a�nity towards the metal cation. To test this hypothesis, a

very narrow titration of organic solvent in the loading bu�er might reveal a dependence

of the amino acid sequence of the unspeci�cally enriched peptides. If this behavior is

true, the ratio of acidic amino acids will decrease with increasing acetonitrile content as

the retention mechanism is more and more determined by the peptide-metal ion a�nity

rather than the HILIC retention.

Table 3.1 summarizes the outcome of the method optimization. Further validation of the

method can be performed using synthetic, heavy and light labeled phosphopeptides that
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Figure 3.5: Peptide IDs of 25µgmouse brain samples for the selected parameters measured
on Orbitrap Exploris 480, except for experiment number 2 and 4, that were measured on
the timsTOF Pro2. Both instruments were operated in DDA mode. Phosphopeptides in
blue and unmodi�ed peptides in red.
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are commercially available. Di�erent amounts of either labeled phosphopeptides can be

spiked into sample matrix and the recovery can be calculated by spike-in of the comple-

mentary labeled peptide after enrichment. Furthermore, when adding both peptides in

di�erent ratios, the in�uence of internal standards on the linearity of the quanti�cation

can be assessed. The hypothesis is that the ratios become skewed at borderline ratios,

but actually it is not known if that ratio is not linear at all. This would implicate that

the use of internal standards during phosphopeptide enrichment will never yield exact ab-

solute quantitative information, but rather qualitative, as lower endogenous peptide level

will be reported as even lower as they actually are and higher values will be arti�cially

increased. In extreme cases, this can lead to unwanted false positive identi�cations. To

our knowledge, this kind of investigation has not been done before and opens the door for

further investigation. Additional potential for improvement arises in the use of TRIS as

bu�er substance during digest as unpublished research suggests [139]. This assumption

is reasonable, as TRIS provides an increased long term stability of the bu�er compared

to the volatile AMBIC. During over night digest, solvent evaporation and degradation of

AMBIC into carbon dioxide, water and ammonia lead to a change in bu�er capacity and

would eventually result in alkaline conditions, that possibly hydrolyze phosphopeptides

and thus result in reduced number of identi�cations and further decreased reproducibility.

Parameter Optimized value Parameter Optimized value

Digest SP3 Incubation times long

Clean up No desalting Volumes medium

Additive 0.5 M Temperature 40 ◦C

Peptide:Beads ratio 1:2.5

Table 3.1: Identi�ed optimal values for phosphopeptide enrichment using Zr4+-IMAC
magnetic beads. SP3, yielding comparably clean peptide samples, served as optimal
digestion protocol before phosphopeptide enrichment. Moderate amount of additive and
a lowered peptide to beads ratio did show the optimal balance for low amount enrichment.
Surprisingly, the phosphopeptide loss during desalting outweighted the positive e�ect
during chromatography, thus no deslating after enrichment is advised.

Phosphopeptide enrichment as separate sample preparation step will always introduce

not only variability but is also always biased towards certain phosphopeptide subpopula-
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tions. A possible solution to this problem would be a selective chromatographic method,

that separates the excess of unmodi�ed peptides con�dently from the desired phospho-

peptides, so they can be immediately measured by the MS while eluting from the column

without previous enrichment step. Electrostatic repulsion hydrophilic interaction liquid

chromatography (ERLIC) serves as alternative separation mode to the classical C18 re-

versed phase separation [126]. Although not classi�ed as selective enrichment method,

reasonable separation of multi-phosphorylated peptide species has been achieved [140].

This method suits well for the fractionation of previously labeled peptide samples, that

can be enriched either before or after ERLIC fractionation [40]. Nevertheless, HILIC

method development is unconventional and not straight forward compared to reversed

phase methods, as the retention mechanism and the parameters in�uencing the retention

are not fully understood [141]. It is believed, that in HILIC multiple retention mecha-

nisms are superimposed such as mass transfer, liquid-solid interaction with the stationary

phase and liquid-liquid interaction with a aqueous rich layer around the functional groups

of the stationary phase. When using a charged stationary phase, such as a weak an-

ion exchanger phase, yet another retention (or repulsion) force is superimposed to the

other HILIC mechanisms when separating charged analytes. ERLIC for phosphopep-

tides is always run under conditions where the phosphogroup retains the negative charge,

while acidic amino acid residues and peptide termini are protonated and thus neutral or

positively charged. This increases repulsion of unmodi�ed peptides and thus aids selectiv-

ity. However, the electrostatic attraction of the negatively charged phosphogroup is not

su�cient to counteract the repulsion of the positive charges with singly phosphorylated

peptides and only becomes reasonable when two or more phosphogroups are present in

the peptide. Ultimately, the selectivity of unmodi�ed peptides and singly phosphorylated

peptides is driven by the thermodynamics and kinetics of the liquid-liquid interaction

and the repulsion from the stationary phase. Phosphopeptides experience an additional

attraction force which presumably leads to a 'desorption' kinetic that is driven rather by

the electrostatic force than the liquid-liquid extraction. Recent research has shown, that

the retention of analytes can be in�uenced by the choice of a suitable counter ion in the

elution bu�er [142]. The hypothesis is that counter ions with higher capacity of water

molecules in their hydration shell, such as magnesia compared to sodium, will lead to a

size increase of the aqueous rich layer on the surface of the stationary phase and thus
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increase the signi�cance of the liquid-liquid interaction for the selectivity. in combina-

tion with a convex gradient, that utilizes the presumably faster liquid-liquid interaction

desorption kinetics, the selectivity should be improved. Figure 3.6 shows the summary

of the resulting phosphopeptide separations. For this, each 2000µg of mouse brain tissue

tryptic peptides were injected into an Äkta Pure 20 equipped with a weak anion exchange

column operated at 16 ◦C separated using the stated conditions. The eluate was collected

in 1mL fractions, each desalted and analyzed with LC-MS/MS separately. As discussed

before, the published original method by Alpert (2008) provides a good selectivity towards

multiply phosphorylated peptides, whereas monophosphorylated peptides mostly coelute

with the unmodi�ed peptides. When changing the counter cation to Mg2+, a broader dis-

tribution of all analytes over the chromatographic range is observed. In combination with

a convex gradient a reasonable selectivity could be achieved. This feasibility study intro-

duces the possibility to perform simultaneous enrichment and chromatographic separation

of phosphopeptides, which has not been described in the �eld before. Nevertheless, further

method development is necessary to replace the non-volatile reagents that are currently

used with MS compatible additives. This method development was not pursued further,

as the required peptide amount is larger than what can be routinely obtained, especially

in large scale studies as required for the featured rapid adaptation study. Furthermore, a

dedicated MS has to be reserved for a comparably long time, which is resource intensive.

In conclusion, phosphopeptide enrichment is still a challenging task and o�ers the potential

for further improvement. A recently recognized capability of phosphopeptide enrichment

is the co-enrichment of glycosilated peptides [143, 144, 145]. On the other hand, this

circumstance can be used to further optimize the enrichment e�ciency by investigating

the impact of additional enzymatic deglycolization by PNGase F or similar, to remove

such 'contamination' prior to the enrichment. Furthermore, no solution for the e�cient

enrichment of pY peptides is available. The enrichment is resource intensive (high amount

of sample and costly antibodies for the enrichment are required). A�nity puri�cation

columns are not available and o�er the possibility for investigation. So far, only polymer

imprinted stationary phases have been developed as promising alternative for antibody

based methods.
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Figure 3.6: Optimization of ERLIC phosphopeptide selectivity of 2000µg mouse brain
peptides by alternative counterion and convex gradient. Peptide counts per collected
fractions for unmodi�ed peptide (red), singly phosphorylated (blue), double phosphory-
lated (yellow), triply phosphorylated (green) and four phosphosites per peptide (purple).
While the original method published by Alpert in 2008 shows a high overlap of unmod-
i�ed and phosphorylated peptides in the middle frations, using a Mg2+ counter ion and
a convex gradient show a very low number of unmodi�ed peptides was present while still
containing a high number of phosphorylated peptides.

3.1.3 Comparison of DDA vs. DIA approach for

phosphopeptide identi�cation

A promising approach to gain more con�dence in phosphopeptide data is the data inde-

pendent acquisition (DIA) approach. Per de�nition, DIA generates MS2 spectra of higher

complexity compared to DDA. Especially the identi�cation of the phosphosites requires

sophisticated bioinformatic methods that had not been available in the past. Recent

implementations in proprietary software such as Spectronaut [97] and developments of

open source software such as DIA-NN [84] in combination with a�ordable high perfor-

mance computing resources made the analysis of phosphopeptides in DIA possible with

su�cient con�dence within a reasonable time frame. There are only few publications de-
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scribing the use of DIA for phosphopeptides [97, 146, 98] and thus the knowledge about

the di�erences in the data quality have not been reviewed yet, especially in the context

of predicted spectral libraries. Furthermore, recent developments in coupling tandem ion

mobility spectrometry to high resolution TOF instruments, leading to the commercializa-

tion of the timsTOF by Bruker Daltonics, promise a deeper understanding of proteomics

datasets by adding an addi-tional identi�cation feature and more con�dent identi�cation

by less complex MS spectra. To investigate the use of DIA for phosphoproteomics in

general and especially the use of the Bruker timsTOF Pro 2, we took the opportunity

of available measurement time and measured a dataset of three biological replicates of

1000µg wildtype M. oryzae was measured in DDA with an Orbitrap Exploris 480 and in

DIA with a Bruker nanoElute coupled to a timsTOF Pro 2, processed with PEAKS and

DIA-NN, respectively and the results summarized in �gure 3.7.

The number of identi�ed phosphopeptides is very similar, while the number of unmodi�ed

peptides in the DIA samples is signi�cantly higher. Consequently, the apparent enrich-

ment e�ciency decreases from around 80 % in DDA to 50 % in DIA as shown in �gure 3.7

A. This observation is explained by the DIA scheme, as no criterion for fragmentation is

applied, also unmodi�ed peptides with low signal intensity are selected for fragmentation.

Interestingly, all unique phosphopeptide identi�cations of the three replicates combined

is roughly 10 % higher in DDA (7663 peptides) compared to DIA (7076 peptides) and

the overlap of peptide IDs is small (23 %) as shown in �gure 3.7 B. The overlap of pep-

tide sequences without considering the phosphosite was slightly increased with 44 %, so

roughly 20 % di�er in the assigned phosphosite. It has also not been shown yet, to which

extend the software DIA-NN actually provides false positive identi�cations. To exclude a

higher false positive rate as reason for the low number of overlapping identi�cations, both

datasets (DDA and DIA) were searched in either PEAKS or DIA-NN against a concate-

nated database of Mus musculus and Magnaporthe oryzae proteome. As the sample was

generated from M.oryzae, the number of identi�ed Mus musculus proteins is expected to

be not more than the previously set up false-discovery rate of 1 %. For the DDA dataset,

from 36006 total identi�cations were 112 peptides identi�ed from Mus musculus (i.e. 0.3

%) and in the DIA dataset, from 40817 total identi�cations were only 65 identi�ed from

Mus musculus (i.e. 0.2 %). In conclusion, as the false identi�cation rate can be excluded

as a reason for the low overlap between the data acquisition strategies.
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Figure 3.7: Performance comparison of three M.oryzae biological replicates, each 1000µg,
enriched for phosphopeptides measured in DDA (Orbitrap Exploris 480) and DIA (tim-
sTOF Pro 2) regarding A) peptide counts B) overlap of identi�ed phosphopeptides C)
overlap withing DDA and DIA replicates D) precursor quantity reproducibility and E)
phosphosite identi�cation con�dence
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Comparing the intra-sample group overlap of the identi�cations within the replicate mea-

surements in �gure 3.7 C, reveal another possible reason for the di�erence in peptide

numbers. DIA provides consistently more reproducible identi�cations, while the overlap

for DDA measurements is much less. When accepting only peptides with at least two out

of three identi�cations, the number of quanti�able peptides is 35 % higher in DIA (6461

peptides) compared to DDA (4798 peptides), while the number of complete peptide data

(three out of three) is also increased in DIA measurement. Thus, not only the number of

quanti�able peptides but also data completeness is increased.

For correctly picturing the biology in the samples, not only the number of quanti�able

peptides is important, but also the reproducibility and quality. Therefore, the coe�cients

of variation (CVs) for every quanti�able peptide (at least two out of three replicates) have

been calculated from the replicate measurements and plotted as histogram in �gure 3.7

D. The di�erence between both datasets is not signi�cant with median CVs around 25 %,

which is reasonable due to technical variability in LC-MS/MS measurement. A bene�cial

e�ect of DIA on data quality has been shown on proteome level [147], which results from

the higher number of peptides that are available for quanti�cation.

A second important aspect in phosphopeptide identi�cation is the correct localization of

the phosphosite. Both approaches, DDA and DIA o�er a con�dence measure for the cor-

rect site. Nevertheless, even when no evidence for the correct phosphosite is present in the

spectrum, the peptide still harbours a phosphogroup at some amino acid, otherwise the

peptide precursor mass would not be correct. Thus, we can be con�dent due to common

quality control measures (e.g. false discovery rate calculation at peptide level) that there

is a phosphogroup somewhere in the peptide present, but the correct phosphosite identi�-

cation can remain ambigous. Therefore, DIA-NN calculates a site localization probability

and PEAKS provides the Ascore, which is calculated by multiplying the negative decadic

logarithm of the p-value for incorrect identi�cation by 10. Consequently, the higher the

AScore the more con�dent is the identi�cation with a maximum possible value of 1000.

Typically, a con�dence of at least 75 % (for calculation of AScore: 25 % probability of

false localization) is desired [148]. Therefore, a common cut of value for the AScore is

a value of 6, corresponding to 25 % false localization probability. In �gure 3.7 E, the

distribution of AScores obtained from both acquisition strategies is shown. It is obvious,
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that DDA AScores peak around an value of 10, whereas DIA data seems to provide two

di�erent peaks, the �rst peaks with an AScore below 6 and the second peak with an AS-

core around 30, which equals a site con�dence of 99.9 %. Thus, the median site con�dence

is roughly the same, due to the inhomogenious distribution of the DIA-NN con�dences.

The reason for this di�erence is presumably the higher complexity on MS2 in DIA data.

There, con�dence is only achieved in presence of strong fragment evidence, whereas the

algorithm of PEAKS for processing DDA MS2 spectra seems to have a more re�ned al-

gorithm to assign also calculate variances in probability with high sensitivity. Therefore,

the assumption that DDA data provides more con�dence in the site localization by higher

quality spectra is only partly true. Nevertheless, in discovery phosphoproteomics, the

correct phosphorylation site is anyway of less importance. More importantly, both algo-

rithms provide equally high con�dence that these peptides are phosphorylated (regardless

the phosphosite). Conclusions about active/inactive pathways or protein phosphorylation

with approximate protein sites can be drawn anyway.

In conclusion, the application of DIA is a promising strategy for the comprehensive de-

scription of a phosphoproteomics dataset. We have shown, that data completeness in-

creases while the data quality remains at least equal. The downside of the DIA applica-

tion are a resource intensive and time consuming bioinformatic processing and the lack for

intuitive spectra visualization. A possible solution to this is provided by the proprietary

software Spectronaut, that is able to vizualize XICs of precursors and fragments in a user

friendly way [97]. Nevertheless, DIA-NN has been shown to provide superior identi�ca-

tion performance utilizing neuronal networks while being open source at the same time.

A direct benchmark of both software has not been described in the literature yet and

would serve as interesting starting point for further bioinformatics research.
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3.2 Rapid evolutionary events in M.oryzae

3.2.1 Proteome results

All samples as named in 2.1 were prepared as described in 2.2 and [26]. After raw�le

processing in DIA-NN, an average protein number of around 5500 was identi�ed in each

sample across the dataset, as shown in �gure 3.8. Across all measured samples, 6813

unique proteins could be identi�ed, which equals 53 % of all 12 890 known M.oryzae

proteins up to this date (16.05.2022). Although the proteomics quality and quantity of

previously publishedM.oryzae proteomes show a large variety, with protein identi�cations

ranging from 1600 to 4432 proteins [149, 150], this level of completeness has not been

described before. A reason for the excellent coverage of the known proteome is the use of

DIA in combination with a large number of samples. In consequence, this analysis bene�ts

from higher chances of �nding a good scoring peptide-spectrum match for re�ned analysis

of the whole dataset with an experimental spectral library using the neuronal network

strategy. Except wild type, all other samples are deletion mutants for the Hog1 MAP

kinase genotype, but show di�erent phenotypes. While wild type, reversibly adapted

and irreversibly adapted (WT, REV and IRREV) show an excellent reproducibility in

protein counts, the non adapted loss-of-function (LOF) phenotype shows a signi�cant

decrease of protein IDs in function of time, with the lowest protein counts reproducibly

found in the 24 h samples. This observation reinforces the hypothesis stated before,

that unspeci�c proteolysis occurs upon cell lysis (upon apoptosis in this case, or while

sample preparation). This hypothesis could be further veri�ed by creating an in-silico

library including also unspeci�cally cleaved peptides, which is computationally intensive,

due to the extremely long running times. In addition to that, the resulting predicted

spectral library would contain a high number of precursors to potentially identify, which

will lead to a drastic decrease in identi�cations due to the increased ambiguity of peptide-

spectrum matches. A less resource intensive solution would be the re-measurement of the

whole dataset in DDA and perform unspeci�c search on the resulting raw�les. This way,

data completeness and quanti�cation performance will be reduced, but the number of

identi�cations should be more equal between the sample types. Nevertheless, the Pearson

correlation coe�cient across all samples is excellent, though samples taken at 24 h seem to

di�er from the other time points. Apart from this observation, the correlation coe�cient
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is consistent within all sample types and di�er between the sample types. In addition

to that, the other sample types were prepared in parallel and if errors or deviations in

sample preparation had occurred as well as an unsuitable (unrobust) sample preparation

work�ow was used, the irregularities would be randomly distributed across all sample

groups. But good intra-sample group correlation and reproducible proteome results in

other sample groups both indicate a good data quality within the sample types with

apparent di�erences between them.

To further judge the data quality, the protein identi�cation overlap of all biological sam-

ples from the wild type sample of the 24 h time point is shown in �gure 3.9 A. 5380

proteins (86 %) have been found in all four replicates while 96 % where identi�ed in two

out of four measurements. Across the whole sample set, around 2800 proteins do not have

a single missing value as shown in the data completeness plot in �gure 3.9 B. The number

of proteins increases over proportionally to the in�ection point at around 5 missing values

(out of 80 samples) with 4200 proteins. With increasing number of missing values from

5 to 79, the number of proteins increases steadily. To our knowledge, this is the most

comprehensive proteomics dataset of M.oryzae that has been measured so far. In addi-

tion to that, not only on qualitative level (how many di�erent proteins do we identify)

but also quantitative level (variability in the dataset) we have an excellent dataset at

hand, as shown in �gure 3.9 C. The main assumption in many proteomics applications

(except for e.g. pull down experiments) is, that the average level of most proteins does

not change upon perturbation. Thus, either the sum of all raw peptide signal intensities

(total ion current - TIC) or the sum of all calculated protein abundances (obtained from

the processing software) should be within a reasonable range. Due to the large number of

samples, no premeasurement was performed to adjust the �nal injection volume for min-

imal variance in TIC. Thus, the variability of the TIC is higher compared to the quality

control HeLa, that were measured before, during and after the sample sets. Nevertheless,

the wild type samples show a similar coe�cient of variation of all 20 measured TICs (14.5

%) compared to the 12 measured QC HeLas (12.1 %). The absolute di�erence in TIC of

HeLa compared to the samples is expected, as typically the sample load on column for the

QC samples is only 50 ng, whereas all samples were loaded with approximately 100 ng.

Thus, the observed di�erence �ts to the expected values. In line with the observations

in protein count, the not-adapted LOF phenotype shows the highest variation of around
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Figure 3.8: Protein identi�cations and pearson correlation of their quantitative abundance
of each 1000µg M.oryzae tryptic digest, measured on Orbitrap Exploris 480 in DIA mode.
Each color represents one sample type of the following: irreversibly adapted (red), loss-of-
function (green), reversibly adapted (blue) and wild type (purple). Each bar represents
one measured sample of the biological quadruplicates side by side, increasing time points
from left to right (0 min - control, 10 min, 60 min, 4 h, 24 h)
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37 %. Interestingly, the TICs of all three pheotypes with Hog1 LOF genotype do show

a signi�cantly higher TIC compared to the wild type. A possible reason for this might

be an occurring unspeci�c cleavage for these samples before protein digest during sample

preparation. It is not known, how a high number of small peptides will in�uence the quan-

ti�cation result, but might falsify the outcome of the result which is used for concentration

adjustment before LC-MS/MS measurement. If this is the case, the concentration of the

LOF genotypes is higher than expected and would explain this discrepancy. On the other

hand, consequently the not-adapted LOF phenotype should have higher TICs, which is

not the case (although the CV ranks the highest). Therefore, other di�erences might also

play a role such as batch e�ects from LC or MS/MS measurement. In general, for all

samples the observed CVs are in a very reasonable range with only few highly di�ering

samples. After processing including in-silico normalization in DIA-NN, the sum of pro-

tein abundances for each sample is calculated and the CVs within one sample group has

been calculated. The observed di�erences and variability in TIC become less prominent

when comparing the sum of protein abundances, with CVs ranging from 1.8 % to 13.4 %

where the highest CV is consequently observed with the not-adapted LOF phenotype. In

conclusion, the assumption could be supported with this results and a high data quality

can be expected with a high number of valid protein quanti�cation.

In order to identify signi�cant changing proteins in the dataset, statistical methods such

as t-test and linear models proved helpful in the past. While the gold standard in pro-

teomics science is still the well known and easily applicable t-test in Excel or Graphpad

Prism, more and more applications appear using linear models. Linear models have been

demonstrated to perform superior to t-test in terms of sensitivity and accuracy as early

as 2013 on proteome level [151], but recently similar advantages have been reported on

peptide level [112]. In addition to that, handling of missing values and small datasets

are improved [151]. The popular package limma (Linear Models for MicroArray data)

was originally developed in 2005 by Smyth et al. [152] for comprehensive di�erential

expression analysis of RNA microarray data. It also includes streamlined functions for

common problems such as missing value imputation and data normalization and has a

broad and active community available for help and advise on statistical problems. Other

packages such as DSeq2 o�er in principle the same capabilities for statistical testing, but

limma has more features implemented and o�ers increased �exibility and is consequently
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Figure 3.9: Measures of data quality from the data set presented in �gure 3.8. A) Overlap
of the four biological replicates from WT 1440 min time point B) data completeness and
C) variability of TIC and sum of protein intensities (=value)
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more popular and frequently used. Still, up to this date, the proteomics community is

mostly relying on t-test and similar straight forward principles but is currently transition-

ing towards linear models. Not surprisingly, this is one of the very few published datasets

reported that utilizes linear models for the analysis of the phosphoproteome [97, 153,

154, 155]. Thus, basic considerations for the statistical analysis are discussed for both,

proteome and phosphopeptides, in the following.

A Gaussian distribution of the data population is a prerequisite for most statistical tests,

including t-test as well as limma. Figure 3.10 shows exemplary the log2 transformed

protein abundances of the wild type protein abundances of proteins with at least two

identi�ed peptides from DIA-NN. The processing software already applies a normalization

strategy for precursors and proteins, consequently the transformed values of the raw

protein abundances already satisfy the prerequisite for the statistical test. Therefore

VSN, a commonly applied normalization strategy in proteomics, that has been proven

superior for small datasets [100], does not in�uence the appearance of the abundance

distribution. On proteome level, the number of missing values is low, nevertheless the

following distributions show the in�uence of common imputation strategies in the data

distribution. The single value decomposition method provides already a small skew of the

distribution towards right, whereas k-nearest neighbors or limma built-in voom strategy

replace the missing values with supposedly too high values, as it does not complement

the assumed Gaussian distribution of the transformed protein abundances. The reason

for that might be that proteome missing values are in many cases regarded as missing

not at random (MNAR), and kNN as well as voom have been proven powerful to replace

missing value of random origin (missing at random - MAR) [156]. Therefore, no missing

value imputation for proteome data is applied before statistical test in the following to

avoid a potential skew in protein abundances.

For the application of t-test, proteins with missing values of more than 40 % in both

conditions have been �ltered out while con�dently appearing or disappearing proteins in

one condition (all values NA in one condition, more than 60 % quanti�cations in the

other condition) were assigned an arbitrary p-value of 0.0001 and fold change (FC) of

100 or 0.01 for appearing and disappearing respectively. The dataset was tested with

two-sided hypothesis with assuming an equal variance in both conditions. Each sample
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Figure 3.10: Evaluation of di�erent normalization and missing value imputation strategies
for protein level of the dataset presented in �gure 3.8. All observed protein quantitative
values were subjected to the stated normalization strategy and the resulting measured
and imputed value are shown as histogram of the log transformed quantitative values.
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was cultivated separately, thus increasing of statistical power by taking paired samples

into account was not possible, the t-test was conducted as unpaired. Linear modelling

using limma was performed using the standard parameters. The resulting p-values for the

signi�cance of a protein change were adjusted for multiple testing using the Benjamini-

Hochberg False Discovery Rate (FDR) correction, which is called q-value in the following.

An arbitrary fold change value of at least 2-fold or 0.5-fold and an adjusted p-value

below 0.05 were de�ned as criteria for statistical signi�cantly changing instances. Those

threshold values have been de�ned arbitrary in the past and have historically been proven

as good trade o� values to identfy true positive changes from highly variable datasets,

that introduce a variability due to sample preparation and measurement stability that

was below a factor of 2 (i.e. 2-fold and 0.5-fold changes). This procedure was applied

to compare each time point to the control. The results of the 24 h versus control time

point from both statistical tests are shown in �gure 3.11 A and B. In the depicted volcano

plots, the negative decadic logarithm of the q-value is placed on the ordinate while the log2

transformed fold change is placed on the abscissae. This way, higher signi�cant instances

are found higher in the plot and fold changes are equidistant re�ecting the factor of change.

While the t-test provides a higher number of statistically signi�cant changing instances,

the distribution of the q-value and fold-change pairs is more condensed compared to the

limma results. Presumably, the statistical power of the test is weaker due to considering

only the standard deviations and means of the protein abundances between conditions

instead of the quality parameters for linear models (residual sum of squares) and the

assignment of an arbitrary p-value, which might skew the p-value adjustment towards

more statistically signi�cant q-values. Although the di�erence in shape is minimal, the

shape of the limma volcano plot follows the expected distribution, as higher fold changes

are more likely to re�ect a true positive change while the t-test provides a volcano plot

where also in less signi�cant q-values higher fold-changes can be found. for the comparison

of the biological outcome of the statistical test, all signi�cant instances from t-test and

limma across all time points were collected and the overlap was calculated as shown in

�gure 3.11 C. In general, the overlap is reasonably high with over 41 % of all signi�cant

instances. Interestingly, the number of exclusively identi�ed instances is almost equal

between t-test and limma. Following current opinions and own conclusions, limma has

been used for the whole project to identify signi�cant changes.
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Figure 3.11: Comparison of statistical testing for the wild type proteome results presented
in �gure 3.8. For this comparison, all replicate samples from time point 24 h versus control
time point were subjected to statistical testing. A) Student's t-test B) limma and C) the
overlap of signi�cantly changing instances from each test

Further ways for quality control and biological insight into the dataset is provided by prin-

cipal component analysis and hierarchical clustering in sample level. For both approaches,

a complete dataset is required without missing values. According to the previously con-

ducted analysis taking various imputation strategies into account, SVD imputation has

been applied, as the in�uence on the dataset is minimal compared all tested strategies.

Figure 3.12 shows the result of these multivariate statistical methods. The principal com-

ponent analysis explains with the �rst two principal components already 98 % of the

observed variance in the dataset. Timepoints 0 min to 240 min cluster together, while

the clustering of the biological replicates are mediocre but existing. Separated by princi-

pal component 2 that accounts for only 18 % of the variance is only the 1440 min time

point, suggesting that the singi�cant instances from that time point are more likely to
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drive the cellular response to osmostress compared to the other time points. Neverthe-

less, all biological replicates are separated by PC2 which adds con�dence in the technical

reproducibility of the dataset. The hierarchical clustering of proteins (rows) and sam-

ples (columns) is illustrated by z-score of the log transformed protein abundances in the

heatmap. The dendogram for the hierarchical clustering of the samples is shown on top,

while the clustering of the proteins is not shown as the resulting dendogram is too dense

and crowded to extract meaningful information. The most valuable information from this

heatmap is the good alignment of the biological replicates into the same clusters. Only

one replicate from time point 60 min is switched with one replicate from the control (time

point 0 min). In respect of the general quality attributes and the good alignment of the

really di�ering samples, a technical cause for this discrepancy in similarity is unlikely (i.e.

a wrong sample and raw�le mapping, accidentally switching samples during processing

and testing et cetera ).

3.2.2 Proteomic response in wild type upon KCl stress

To prove the applicability of the approach to identify meaningful biological processes,

the proteome and phosphoproteome response of the wild type upon KCl osmotic stress

are analyzed in detail without prior targeted data review. It is expected to identify the

previously described osmostress response of yeast [157], which should be MAP Kinase

signaling by HOG that will be validated by speci�cally interrogating the dataset about

involved proteins in this pathway. Figure 3.13 shows the volcano plots for the protein

abundances of each time point compared to the control of the wild type. After 10 min of

KCl stress situation, no signi�cant changes were observed, while the number only slightly

increases after 60 min. This observation is expected and additionally underlines the data

quality, as the environmental sensing as well as the transcription and translation of genes

to proteins requires time in the range of hours rather than minutes. Consequently, the

number of changing proteins increases signi�cantly after 4 h of treatment and peaks for the

24 h osmostress samples, while the increase between 60 min and 4 h is more pronounced

than the increase between during the next 20 h on KCl stress medium. Interestingly,

some of the proteins that are di�erentially expressed after 4 h revert back to their control

level expression, which indicates a regulatoray role while proteins exclusively di�erentially

expressed after 24 h rather ful�ll a homeostasis related role. In addition to the explainable
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Figure 3.12: Multivariate statistical analysis of the dataset presented in �gure 3.8. A)
Principal component analysis B) heatmap for sample clustering as quality control of all
wild type proteome results combined
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(expected) number of signi�cantly di�erentially expressed proteins, no skew or bias in

fold changes or adjusted p-values could be observed which indicates the validity of this

approach.

Figure 3.13: Volcano plots of changing protein levels for the dataset presented in �gure
3.8 as fold changes and q-values for each time point compared to the control of M.oryzae
wild type samples upon osmotic stress.

Gene ontology clustering analysis in Cytoscape ClueGO with standard parameters is

shown in �gure 3.14. Already this simple analysis reveals osmoregulation associated terms

such as carbohydrate metabolic process. As complementary method for gene ontology en-

richment also STRING-DB was used and the obtained signi�cant GO terms are shown an

negative decadic logarithm of the adjusted p-value. In agreement with the ClueGO anal-

ysis, KEGG pathway enrichment indicates the expected proteomic response as Metabolic
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pathways and Biosynthesis of secondary metabolites. Nevertheless, the full potential of

the dataset in not yet used, as temporal resolution of the proteome response is given.

Figure 3.14: Gene ontology analysis of all signi�antly changing proteins of M.oryzae of
the dataset presented in �gure 3.8 upon osmotic stress during 24 h. A) in ClueGO and
B) from STRING-DB

Time course experiments enable conclusions about temporal regulatory roles of proteins,

but the identi�cation of such is not straight forward and resource intensive. Furthermore,

the large number of over 600 di�erentially abundant proteins could be identi�ed across all

time points. This large number might obscure underlying e�ects and hinder the e�ective

and precise identi�cation of relevant biological meanings. Thus, data reduction is key
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to understand the responses in more detail. In order to do so, clustering of protomic

changes should be applied to the calculated fold-changes to reduce the number of intersting

proteins that might follow a similar temporal response pattern. As data completeness is

required for clustering in general, it was intentionally not performed using the raw protein

abundances, as it is likely that missing value imputation will have a larger impact on

the outcome compared to the use of fold-changes (i.e. the number of missing values is

higher). For this dataset, clustering by k-means, dbscan and hierarchical clustering have

been evaluated and the results of the diagnostic analysis is shown in �gure 3.15 to 3.17

respectively.

For k-means clustering, a number of clusters has to be de�ned as parameter for the

clustering [158]. The within-ness plot and the shilouette plot serve as indicators for the

number of clusters k to choose. As shown in �gure 3.15, both diagnostic plots suggest

the use of k=2. This number is obvious by visual inspection of the principal component

analysis of the proteins, where two explicit clusters are visible. Not surprisingly, the

corresponding spaghetti plot in �gure 3.18 reveals the nature of these clusters increasing

and decreasing in fold changes over time.

The dbscan clustering algorithm requires a distance ϵ and the minimum number of entries

as input parameters [159]. The used R package provides the 5-Nearest-Neigbour plot as

diagnostic for the identi�cation of a senseful ϵ, which is shown in �gure 3.16. Based

on this, an epsilon of 1 was chosen for the �rst analysis and in accordance with the k-

means clustering diagnostics, the same two clusters are identi�ed by the dbscan algorithm,

but also excluding potential outliners from the analysis (because they do not match the

clustering criteria such as minimum number of neighbors within the chosen ϵ) as shown in

the PCA plot. Not surprisingly, independent from the chosen distance and the minimum

number of neighbors, the number of clusters remained two, di�ering only in the number

and position of outliners. This underlines the robustness of the algorithm for unsupervised

learning, but also shows its limitation as in this case a higher �exibility is required.

Consequently, the desired aim to reduce the complexity of the results can not be e�ciently

realized using dbscan.

Hierarchical clustering requires a starting point and the desired tree-height cut-o� value as

parameters [160]. The algorithm yields very inhomogeneous distribution of entries, with
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Figure 3.15: Diagnostics for clustering according to the k-means clustering algorithm
applied on observed proteome quantities of M.oryzae of the dataset presented in �gure
3.8 upon osmotic stress in the time course of 24 h. A) Silhouette plot B) Withinness plot
C) PCA with color code of the two suggested groups in red and turquoise
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Figure 3.16: Diagnostics for clustering according to the dbscan clustering algorithm ap-
plied on observed proteome quantities of M.oryzae of the dataset presented in �gure 3.8
upon osmotic stress in the time course of 24 h. A) Distance plot B) PCA with color code
of the two suggested groups in red and turquoise. Black dots represent outlines, that were
excluded by the algorithm and not assigned to one of the groups
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Figure 3.17: Diagnostics for clustering according to the hierarchical clustering algorithm
applied on observed proteome quantities of M.oryzae of the dataset presented in �gure
3.8 upon osmotic stress in the time course of 24 h.

most entries distributing always between two clusters as shown in the histogram in �gure

3.17. Here, an exemplary number of 15 clusters were chosen as cut-o�, but choosing a

higher or lower number of cluster cut-o� does not yield in a more homogeneous distribution

of entries. Thus, also with hierarchical clustering, the aim can not be met.

In conclusion, k-means clustering is the only strategy o�ering the required �exibility to

divide the dataset into the desired smaller parts, that can be analyzed in the required

detail with reasonable use of resources. For this, arbitrary values for k were tested and

visually inspected in order to balance between the number of proteins in each cluster and

the biological meaning as summarized in �gure 3.18. With k=5, a reasonable number of

clusters could be identi�ed, while already with k=10 the redundancy of similarly chang-

ing proteins is increased. Naturally, when dividing the dataset into k=15 clusters, the

redundancy is even more increased, with no obvious bene�t in di�erentiating between bi-

ologically di�erent temporal responses. Based on these observations, clustering with k=5

was used for further analysis. The results of the clustering and the corresponding ClueGO
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Figure 3.18: Empirical clustering by k-means with k = 2 / 5 / 10 / 15 applied on observed
proteome quantities of M.oryzae of the dataset presented in �gure 3.8 upon osmotic
stress in the time course of 24 h. The commonly used threshold for signifcantly changing
instances log2(fold change) = 1 and -1 are marked with blue horizontal lines for better
identifcation of signifcant response clusters.
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gene ontology enrichment / clustering analysis is shown in supplementary �gure 6.2 in

su�cient detail. In these cases, ClueGO analysis was performed with relaxed settings,

collecting all GO terms regardless their statistical signi�cance. This way, a very detailed

functional analysis can be conducted that is not convoluted by the reduced number of

proteins. In cluster 1, that represents proteins that become signi�cant only at the 24

h time point, terms that realize homeostasis could be identi�ed, which includes sugar

metabolism, glucosidase activity and active transmembrane transporter activity. This is

in line with previously uncovered �ndings that transporters such as Stl1 play a role in

osmostress or as general stress response. In the second cluster, proteins are included that

are upregulated short term after stress (60 min and 240 min) and tend to fall back to

their control level or stay upregulated in homeostasis at 24 h. Frequent terms related to

phosphotidylinositol also in combination with Torc2 signaling have been observed. Torc2

inhibition has ben shown in yeast to inhibit glyercol e�ux by closing the aquaporin Fps1

and thus aid the accumulation of glycerol as intracellular osmolyte, which is completely in-

dependent by Hog1 activation [161, 162]. This observation is surprising, as evidence exists

that Hog1 de�cient yeast in general is sensitive towards hyperosmotic conditions. Thus,

such an HOG independent alternative osmostress response would have been expected in

the adapted Hog1 lof mutants to compensate the missing Hog1 functionality. Neverthe-

less, intracellular glycerol accumulation has also been observed in wild type upon osmotic

stress, but to a much lesser extend than the accumulation of arabitol [4]. The role of Hog1

in the accumulation of arabitol as main osmolyte is still unclear and thus, Torc2 signaling

might be key for the adaptation process in the adapted Hog1 deletion mutants. In cluster

three, mainly downregulated proteins can be found, that recover their level from the con-

trol samples in homeostasis at 24 h. Most of the identi�ed GO terms involve the regulation

of transcription of cell cycle related proteins. This is in line with the observation, that

the wild type M.oryzae is downregulating the cell cycle process to focus the resources

on establishing a stable response to the osmotic stress. Interestingly, sphingolipid and

glycerolipid metabolism is also present in this cluster, which might be connected to the

previously identi�ed Torc2 signaling. It has been described that sphingolipid metabolism

is involved in cell wall remodelling as response to environmental changes [163]. In cluster

4 , proteins are included that show a very strongly upregulated response in early time

points that decrease in intensity at homeostasis. Gene ontology terms of this cluster in-
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clude pentose phosphate pathway and pentose / glucuronate interconversions which both

have been shown to be involved in the production of the pentose arabitol [164]. This

explains the observed phenotype of M.oryzae wild type that accumulates arabitol as in-

tracellular osmolyte upon hyperosmotic stress. The last cluster contains proteins with

steadily decreasing abundance. Most obtained gene ontology terms are related to either

rRNA metabolic process, ribosomal activity and small molecule biosynthetic process. In

contrast to upregulated transcriptional activity in cluster 3 (i.e. decrease of negative tran-

scriptional regulation) during earlier time points, proteins in cluster 5 seem to regulate

this process and decrease and counteract this activity after 24 h.

In conclusion, we would show that the developed approach is capable of deciphering the

proteomic response in previously unreached detail and can in principle be used for the

detailed analysis of the following scienti�c questions regarding the wild type phosphopro-

teome and especially for the elucidation of the response in the adapted phenotype of the

Hog1 lof mutants.

3.2.3 Phosphopeptide results

From the proteolytic digest that was used for proteome analysis, an aliquot was used for

phosphopeptide analysis as described in [26]. As shown in �gure 3.19, on average a high

number of phosphopeptides of over 10 000 in most samples could be identi�ed. Across

all samples, 29 494 unique phosphopeptides could be identi�ed. Similar to the proteome

results, the reproducibility of the phosphopeptide counts is reduced for the not adapted

LOF Hog1 deletion mutant. It also underlines, that this observation was not a technical

issue, but rather sample related. The Pearson correlation of the phosphopeptides only

show a generally lower value compared to proteome, as on protein level multiple peptide

level information is merged and abundance values are leveled out across the samples.

Thus, on peptide level the variability is increased. Still, the correlation within the sample

groups is high with obvious di�erences to the other sample groups. In the most recent

phosphoproteomics study of M.oryzae from 2015 by W.L. Franck et al. in the group

of R.A. Dean [165], the number of phosphopeptide was not reported but the number

of phosphosites identi�ed was 4894. In our dataset, we were able to identify 45 291

phosphorylated sites. In addition to that, the gradient length for the LC-MS/MS analysis
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was 3 h long compared to 1 h in our study. Although our work�ow requires 4-fold more

protein material for the enrichment, the overall data completeness is presumably higher

as DIA instead of DDA was used for data acquisition. In conclusion, although no further

quality measures were reposted in the study of 2015, the presented data in our study is

not only competitive to the published results but exceed the information wealth by far.

For in depth assessment of the quality attributes of the phosphopeptide results the overlap,

data completeness as well as the TIC reproducibility have been calculated as shown in

�gure 3.20 A, B and C respectively. Exemplary for the WT sample at 1440 min, the

overlap for all four biological replicates was around 40 %. Considering also peptides that

were identi�ed at least twice (i.e. in 50 % of the samples), the overlap increases up to

78 %. The data completeness plot in �gure 3.20 B con�rms this observation on precursor

level, also including non-modi�ed peptides. Compared to the proteome data completeness

plot, where protein level is shown, the slope of the missing value / identi�cation relation

is increased, indicating a larger number of missing values. The reproducibility of the

data is thus of greater importance. A measure to describe the reproducibility of the

sample sets, is the observed variance of the TIC, which is shown in �gure 3.20 C. While

the quality control HeLa runs show a CV of 12 % on the calculated TIC Areas from

Skyline, the samples sets show a very similar range of CV such as 15 % to 21 % for WT,

irreverisbly adapted and reversibly adapted while the loss of function mutant su�ers from

high variability of around 40 %. As discussed before, this variability is likely caused by the

unspeci�c protease activity upon cell death. In general, the values are in good agreement

compared to the QC runs, which re�ects the technical variability to be expected. As no

injection volume adjustment has been done, the expexted addition to this variability is

nearly indistinguishable from the technical variability, which underlines the robustness of

the developed sample preparation procedure in general.

Nevertheless, missing values still cause problems in further statistical testing, thus two

strategies have been evaluated to reduce their in�uence on the result. As a prerequisite, it

is expected that on average the overall peptide abundance does not change, thus the sum

of all peptide abundances should be constant throughout all samples. Their variability

serves as second measure in addition to the TIC area for the evaluation, as summarized

in �gure 3.21. While in the �rst step, all appearing phosphopeptide abundances (regard-
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Figure 3.19: Phosphopeptide identi�cations and Pearson correlation of their quantitative
abundance of M.oryzae of the sample set presented in �gure 3.8. The number of phospho-
pepties are shown in blue, not modi�ed peptides in red. Each color code at the bottom
represents one sample type of the following: irreversibly adapted (red), loss-of-function
(green), reversibly adapted (blue) and wild type (purple). Each bar represents one mea-
sured sample of the biological quadruplicates side by side, increasing time points from left
to right (0 min - control, 10 min, 60 min, 4 h, 24 h)
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Figure 3.20: Measures of data quality of the sample set presented in �gure 3.19. A) Over-
lap of the four biological replicates from WT 1440 min time point B) data completeness
and C) variability of TIC
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less their number of appearance wihtin the four biological replicates) were summed for

each sample and the CV for each sample group was calculated. Then, the e�ect of VSN

normalization and the combination of kNN imputation and VSN normalization was cal-

culated. Compared to the raw values, VSN normalization reduces the variability by a

factor of around 1.5 for the irreversibly adapted type up to 6 for the reversibly adapted

type. The absolute value decreases by a factor of 105, as VSN normalization introduces a

log2 transformation, that is anyway advised for statistical analysis by limma. with kNN

imputation before normalization, this value can be further reduced to 1 % and less, but

the absolute value increases by 2-fold. That indicates a relevant impact of the high num-

ber of missing values, as the imputed values contribute to 50 % of the evaluated values.

As they are chosen by similarity, which is reduced in such a highly incomplete dataset,

they will get imputed as very similar values. Thus, the observed variation in indeed a

arti�cially introduced equalness of the data. Therefore, no missing value imputation is

used before further statistical testing with. Accepting only peptides that appreared at

least two times out of four biological replicates, surprisingly the obtained measures for

the reproducibility are similar to the un�ltered dataset. But, as the number of missing

values is decreased, the impact on the absolute sum of abundances of kNN imputation is

reduced. The in�uence of missing value imputation on the CV is still high. Thus, the risk

of arti�cially skewing the dataset is increased and therefore kNN imputation will not be

used before statistical analysis. Nevertheless, the e�ect of kNN after VSN normalization

is not shown here, as it is expected to introduce more noise and will skew the statistical

testing with even increased impact.

For the subset of the wild type samples, the impact of missing value imputation on the

abundance values has been investigated. For this, all peptides with at least 12 out of

20 identi�cations were selected which represents 60 % of all measurements. This way,

the number of missing values is reduced and a possible bias in missing value imputation

is potentially reduced. Indeed, the results in �gure 3.22 show that the impact of the

missing value imputation on the distribution of the peptide intensities is minimal. Two

conclusions can be drawn here: First, the normalization of the processing software DIA-

NN works already well, therefore VSN normalization does not change the distribution. It

remains questionable, if this normalization provided by software is the optimal approach.

But the likelihood that this approach is valid is high, as previous analysis (collaboration
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Figure 3.21: The sum of all phosphopeptide quanti�cation values of the sample set pre-
sented in �gure 3.19 is calculated for each phenotype dataset. Di�erent data preprocessing
strategies, such as VSN and the combination of kNN imputation and VSN are able to
reduce the intra- and inter-dataset variability. On the left, the results for all observed
values are included (All), no the right only peptide that were present in two out of four
replicates (Filtered).
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projects - data not shown) and the results from this study suggest the correct biological

outcome, in case what has been published in the literature previously is correct. Second,

the missing value imputation by SVD and kNN yields a similar shape for peptide intensity

distribution. Thus, based solely on the shape of the distributions both methods are likely

to be suitable for missing value imputation in this dataset.

Figure 3.22: Histogram of phosphopeptide intensity values within the wild type samples
only of the sample set presented in �gure ??. Evaluation of VSN, SVD, kNN and voom
normalization and missing value imputation strategies do not signi�cantly change the
distribution of the intensity values compared to the raw intensities.

We could show here, that although the impact of missing value imputation on the peptide
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intensity distribution is very low, the in�uence on the inter-sample variability is high

shown by the CVs of sample speci�c sum of peptide intensities. Therefore, a high risk of

arti�cially biasing the underlying dataset is still given and based on this the statistical

testing is performed on a not imputed dataset. Nevertheless, many advanced multivariate

statistical methods require data completeness and in case of phosphopeptides this has to

be considered in the result interpretation and the value of the interpretation has to be

veri�ed by other means.

For the homogeneous proteome dataset, statistical testing by linear models using limma

has been used. For phosphopeptide datasets, limma is only evaluated in one review

publication [151]. Therefore, t-test and limma as described for the proteome data were

both evaluated for statistical testing of the wild type 24 h samples compared to the

control samples on phosphopeptide level and the results are shown in �gure 3.23 A and

B. The number of identi�ed signi�cant di�erentially abundant phosphopeptides de�ned

by a fold-change of more than 2 or less than 0.5 in combination with an adjusted p-value

of lower than 0.05 is lower in t-test (1312) compared to limma (1978). Interestingly, the

calculated fold-changes do not seem to correlate well with the obtained adjusted p-value

in case of t-test. The reason for this might be related to the assumption of equal variances

in combination with a higher number of missing values, which in�uences p-value and fold-

change respectively. In contrast to that, limma shows a typical volcano plot shape where

a fold -changes and adjusted p-values show a correlation. This observation is in agreement

with the aforementioned review [151], as the authors have shown that especially with a

low number of replicates (or high number of missing values) linear models provide a better

understanding of the dataset. In consequence, the overlap of signi�cant instances is only

around 37 %, but including already 70 % of all identi�cations from t-test. Considering

these observations, limma was also selected for statistical testing of phosphopeptides.

PCA and hierarchical clustering was performed with equal conditions as for the proteome

dataset, the results are shown in �gure 3.24. Similar to the proteome samples, samples

of time point 1440 min are fairly separated by principal component 1, whereas all other

time points are homogeneously distributed. Furthermore, both principal components

contribute to 50 % of the variability in the dataset, but also in combination with PC3

in two- and three-dimensional representation, no reasonable clustering of the samples can
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Figure 3.23: Comparison of statistical testing for the wild type phosphopeptide results
24h versus control time point of the sample set presented in �gure 3.19. A) Student's
t-test B) limma and C) the overlap of signi�cantly changing instances from each test

be achieved. On the other hand, unsupervised hierarchical clustering indicates a good

degree of similarity between the 240 min and 1440 min can be observed, although one

replicate of the 1440 min sample group seems to su�er from a systematic deviation of all

values. No technical reason could be identi�ed, to exclude this sample from the analysis,

thus it remained included in the analysis. In the earlier time point samples, three out

of four replicates cluster well and one replicate respectively is clustered in the wrong

sample group. Across the whole dataset, the clustering works reasonable and no obvious

justi�cation could be concluded to exclude samples from the analysis. Although single

samples seem to correlate less with the sample groups, it is expected that the statistical

testing using linear models is able to compensate such deviating abundance levels.
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Figure 3.24: Multivariate statistical analysis of the sample set presented in �gure 3.19.
A) Principal component analysis B) heatmap for sample clustering as quality control of
all wild type proteome results combined
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3.2.4 Phosphosignaling in wild type upon KCl stress

The results of the statistical test is summarized in �gure 3.25. Surprisingly, the change

in signi�cant phosphopeptides remains moderate for the �rst two timepoints, 10 min and

60min, and becomes reasonable for the later time points, 240 min and 1440 min. A rapid

signaling response by phosphorylation has been shown by numerous publications [166,

167]. Therefore, most signi�cant changes were expected in the early time points. As we

can exclude mix up of samples for reasons already discussed, the cause for this observa-

tion is apparently a high variability between the reported phosphopeptide abundances,

although normalization by VSN has been performed. As an example for such a case

serves the phosphorylation of Hog1, shown in �gure 3.26. Visual inspection would obvi-

ously identify a signi�cant increase in signal intensity at 10 min, that is rapidly decreasing

already at 60 min and nerly neglegible after several hours, which is in agreement with the

commonly expected phosphorylation signaling patterns. limma suggests a fold change of

2.7 and p-value of 0.099 and adjusted p-value of 0.17, while the t-test provides 2.9, 0.011

and 0.26 respectively. Both results are very similar, which strengthens the hypothesis that

both methods are suitable for the robust identi�cation of unambiguous changing events.

In both approaches, when considering only the p-value for identi�cation of statistical rel-

evance, this phosphorylation event would have been included in the positive hit list. Due

to the FDR adjustment, it will not be considered at the �rst time point as signi�cant,

but for 240 min and 1440 min the results become statistically signi�cant in both cases. In

consequence, especially for small phosphoproteomics datasets, it remains questionable if

FDR adjustment is bene�cial. In the featured M.oryzae dataset, the absolute number of

identi�cations across all samples is high, thus an FDR adjustment is required to prevent a

substantial identi�cation of false positives. This would lead to misleading results in down-

stream analysis, such as gene ontology enrichment. Based on this observation, for small

datasets we recommend to consider the p-value and accept a possible increase in false

positives, especially in discovery settings. In these cases, quality control and downstream

analysis ensure to �lter for less likely signi�cant instances. In contrast to that, any case of

proteomics experiments are typically more reproducible and robust as multiple peptides

can be considered for abundance calculation. Thus, the distribution of p-values will be

more precise and FDR adjustment clearly aids to prevent false positive identi�cations

while maintaining a reasonable number of signi�cant hits.
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Figure 3.25: Volcano plots of changing phosphopeptide levels of M.oryzae during 24 h
after osmotic stress of the sample set presented in �gure 3.19 as obtained fold changes
and q-values for each time point compared to the control

For an overview of signaling processes regardless their temporal role, all signi�cant in-

stances across all samples were submitted in ClueGO with standard settings considering

the databases GO biological processes and KEGG for gene ontology enrichment and clus-

tering resulting in a GO network shown in �gure 3.27. Not suprisingly, protein phospho-

rylation is among the enriched GO terms, indicating that this approach yields reasonable

terms. The GO term network reveals, that a large number of terms are related to cell cycle

and its regulation which is re�ected by the reduced growth of the fungus upon osmotic

stress. Furthermore, the GO terms phosphorelay signal transduction, the large cluster of

signal transduction and regulation of cellular process pinpoint to the well known MAP-
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Figure 3.26: Temporal change of the dual phosphosites pY, pT and pY+pT of MoHog1 in
four biological replicates upon salt stress of the sample set presented in �gure 3.19 con�rms
the immediate response of the dual phosphorylation pY+pT. The pY only phosphosite
also shows an upregulation, but with lower fold-change as the dual phosphosite pY+pT.
The phosphosite pT does not show any immediate response, but decreases with low fold
change at alter time points of more than 240 min.

Kinase pathways that are orchestrating cellular responses to extracellular stress, including

the HOG pathway with proteins like MoSln1 (MGG_07312) and MoHIK1 (MGG_11174).

To validate these �ndings, gene ontology enrichment analysis using STRING DB has been

performed, that provided six KEGG pathways shown in �gure 3.28 including also MAPK

signaling pathway. As osmsostress response by MAPK kinase signaling has been identi�ed

in both approaches, the analytical approach has proven a suitable tool to identify/validate

results from literature regarding osmostress response in M.oryzae.

3.2.5 Temporal changes in wild type upon KCl stress

Unsupervised clustering of the fold-changes has been applied to the dataset to obtain

functional groups with temporal resolution. The use of di�erent clustering algorithms

has been already discussed for the proteome dataset, therefore k-means with an arbitrary

value for has been applied to the phosphopeptide dataset. By visual inspection a k =

10 was identi�ed to provide a reasonable trade-o� between similar temporal shapes and

the number of protein accessions for the phosphopeptides within the groups, as shown in

�gure 3.29. For each cluster, GO term enrichment with ClueGO has been analyzed and

the GO network results are shown in supplementary �gure 6.8 and following. The �rst
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Figure 3.27: ClueGO network for all signi�cantly changing phosphopeptide instances in
wild type M.oryzae upon salt stress of the sample set presented in �gure 3.19. Predomi-
nant processes include cell cycle, protein phosphorylation and signal transduction.
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Figure 3.28: STRING DB GO term enrichment of KEGG pathways for all signi�cantly
changing phosphopeptide instances in wild type M.oryzae upon salt stress of the sample
set presented in �gure 3.19. Among the signi�cantly enriched terms, MAPK signaling
pathway is present, also including the HOG pathway. This �nding validates our �ndings
in general as they are in line with previously published and con�rmed data.

cluster, with moderately upregulated entries, consists of phosphopeptides from proteins

mainly involved in the cell cycle, also negative regulation of cellular process, which is in

agreement with the observed phenotype. Also, proteins involved in polyol biosynthetic

process in combination with negative regulation of lipid biosynthetic process can be found

in this cluster. In addition to that, increased positive regulation of hydrolase activity is ob-

served. Cluster two and three follow a similar temporal shape of proteins only upregulated

in the last two time points 240 min and 1440 min. Most promising GO terms to explain

the observed phenotype include intracellular signal transduction and cellular carbohydrate

biosynthetic process. Interestingly, lipid metabolic processes is among the terms, which is

in contrast to the observation in the �rst cluster. Also, Ras protein signal transduction

appears in cluster three with three uncharacterized proteins (MGG_00928, MGG_03048,

MGG_07310). Although it is known, that Ras signaling is coordinating stress response

in yeast [168], so far it has been only descibed in the context of appressorium formation

and plant infection in M.oryzae [169]. Thus, the role of these uncharacterized proteins in

late osmostress signaling and response remains unclear. Ras signling reappears with three

GO terms also in cluster four, where initial signaling is represented. This is also re�ected

by the identi�cation of the term intracellular signal transduction which includes HOG

pathway proteins such as Hik1 (MGG_11174) but also Ras signaling related proteins

(MGG_09531, MGG_11425). Cluster �ve consists of phosphoproteins that are involved

in ion transmembrane transport, that remain active compared to the control over all time
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points. In cluster six only two proteins with no functional relation are clustered. The �rst

is Glycogen synthase kinase 1 (Gsk1, MGG_12122) that is involved downstream of the

MAP kinase Mps1 in the regulation of growth among others [170]. Its downregulation

indicates, together with the enriched GO terms in the �rst cluster, a reduced growth agree-

ing with the observed phenotype. The second protein in this cluster is NADP-dependent

malic enzyme (MGG_08173), which is presumably involved in the peroxisomal fatty acid

metabolism. This observation is somewhat surprising, as fatty acid metabolism has been

identi�ed in previous clusters as upregulated over time. Cluster seven is the complemen-

tary part to cluster two and three, consisting of downregulated phosphoproteins only in

the 1440 min time point. three major types of GO terms are clustered, �rst regulation of

GTPase activity which includes Rho- and Ras protein signal transduction, second organic

substance biosynthetic process and third cell wall organization or biogenesis, which is over-

lapping to a large degree with the results from cluster 4. Cluster �ve includes protein

with an interesting temporal shape, they show a downregulation mainly at time point

240 min, which indicates a regulatory role. An indeed, proteins involved in regulation of

cell cycle, positive regulation of cellular process and positive regulation of GTPase activity

have been identi�ed. In cluster nine, the temporal shape is increasing at �rst, but con-

tinuously decreasing over time. This indicates a role in immediate stress response, which

is validated by the identi�cation of HOG related proteins (MAPK signaling pathway),

but also interestingly Ras protein signal transduction is also included. The last cluster

is comprised of constantly downregulated phosphoproteins and include the well known

regulation of cell cycle from previous cluster, but also interestingly regulation of catalytic

activity that is in the same network with Rho- and Ras protein signal transduction.

In conclusion, the presented approach for proteome and phosphoproteome analysis has

proven suitable for the identi�cation of underlying processes in osmotic stress response. In

proteome response, signi�cant changes in pentose catabolic processes could be identi�ed

that explain the observed phenotype. In contrast to the well known and described HOG

pathway in other yeast, such as S.cerevisiae, the accumulated osmolyte is arabitol instead

of glycerol in M.oryzae. To our knowledge, this relation has not been shown in literature

yet and might open the door for further upstream investigations for regulators and/or

transcription factors that in�uence the expression of the proteins involved in pentose

catabolic processes. Furthermore, it has been show many times that the HOG pathway
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Figure 3.29: Temporal changes of phosphopeptide intensities of wild type M.oryzae of
the sample set presented in �gure 3.19 clustered by k-means clustering algorithm with
arbitrary chosen k-cluster, displayed in k groups as spaghetti plot. On the y-axis the
log2(fold change) is shown, while the x-axis shows each of the four time points as vertical
lines. The commonly used threshold for signi�cantly changing instances log2(fold change)
= 1 and -1 are marked with blue horizontal lines for better identi�cation of signi�cant
response clusters. Immediate responding phosphosites can be found in clusters 4 and
9, putatively regulating phosphosites in cluster 5 and phosphosites with functions in
maintaining homeostatsis can maybe found in cluster 2 and 3.
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is active during osmostress, but how this is connected to the production of arabitol is not

comprehensively understood. The adaptability of HOG defective mutants suggest alter-

native pathways targeting the accumulation of glycerol might be present as alternative

osmostress sensors/signaling. Interestingly, Rho- and Ras related signaling appears in

many GO term enrichment analysis as up- and downregulated in several instances. To

our knowledge, a contribution of such environmental signaling pathways have not been

described in M.oryzae yet, but are known in other fungi to play roles in environmental

sensing [171]. Thus, our phosphoproteomic study did not only validate the suitability of

our approach, but also pinpoints to other active signaling pathways, that might be worth

investigating with molecular biology strategies such as loss of function mutants and phe-

notype screening. In addition to that, previously undescribed lipid metabolism apprears

to play a role in osmostress. Putatively, either as alternative source of energy as sugar

components are required for osmolyte catabolism as has been shown in [172, 173], or as

source itself for the catabolism of osmolytes. It has been reported in C.albicans, that Hog1

de�cient mutants lead to an accumulation of lipid droplets under hyperosmotic stress, and

with further experiments the authors concluded a crucial role of Hog1 in lipid homeosta-

sis during salt stress [174]. In this publication, the authors also show that osmotic stress

triggers the accumulation of peroxisomes in a Hog1 independent manner, namely through

the GTPases Dnm1 and Vps1. This is well in agreement with our observation of Rho-

and Ras dependent signaling. Having a comprehensive dataset at hand for the cellular

response of M.oryzae to osmotic stress, di�erential analysis with Hog1 de�cient genotypes

is facilitated.

3.2.6 Altered protein and phosphopeptide response of wild type

versus adapted Hog1 deletion mutants

The most interesting question in this study is related to the irreversibly (i.e. stable)

adapted phenotype of the Hog1 loss-of-function genotype. What is general osmostress

response in comparison with the wild type? And how does signaling change in comparison

to the wild type?

The general response is represented by changes in the proteome. To validate the geno-

type, evidence for Hog1 could not be identi�ed in this dataset, which indicates a successful
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deletion of the gene from the genome. The proteomics results were analyzed using the

same strategy as for the wild type samples and the results can be inspected in supple-

mentary �gures 6.5 and following. Similar to the wild type, proteome response is minimal

until the last time point at 1440 min, where statistical testing by limma identi�ed 399

downregulated and 475 upregulated proteins. The following k-means clustering and GO

term enrichment analysis revealed similar terms, such as glycan degradation including

carbohydrate catabolic process and also Fatty acid degradation in the network with Per-

oxisome. Furthermore, Glycerolipid metabolism appears, which has not been observed in

the wild type. Interestingly, involved proteins in the GO term Carbohydrate metabolic

process are related to enzymatic reactions with glycerol, which is the observed osmolyte

in the irreversibly adapted phenotype. Foremost, the identi�ed upregulated Dihydroxy-

acetone kinase (MGG_04014) is a promising candidate to link the observed phenotype

to the proteome results.

On phosphopeptide level, a reasonable singi�cant change is observed already after 60 min,

with no evidence of any phosphorylated Hog1 present. The same clustering procedure as

for the wild type phosphopeptides has been applied. With this, in the �rst cluster that

represents downregulated phosphoproteins over time, the GO term phosphorelay signal

transduction is observed, which is representing the typical sensing of the osmotic stress.

Interestingly, MAPK signaling and carbohydrate metabolic process are also found in this

cluster. The involved proteins for MAPK signaling include �bA (MGG_14517) and Pmp1

(MGG_15140), which is a phosphatase that is known to play a role in appressorium for-

mation through regulation of Pmk1 [175]. Pmk1 controls the glycerol accumulation for

turgor generation to penetrate the plant surface during invasion. In this study, Thines

et al. could also show that this process is Hog1 independent. Thus, an activation of this

pathway serves as possible explanation of the phenotype through a possible downregula-

tion of the phosphatase Pmp1. FlbA has also been shown to play a role in regulation of G

protein coupled signaling during conidiation and appressorium formation [176, 13]. Based

on this, a possibly involved Ras GTPase activating protein Smo1 might play a signi�cant

role, as it has been shown that it is essential for appressoria formation [177] through ac-

tivation of the Ras2 protein. In addition to that, the deubiquitinase Ubp3 has also been

shown to be crucial for appressoria formation [178]. In cluster three, comprising imme-

diately and constantly upregulated phosphoproteins, ontologies involved in regulation of
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hydrolase activity are found, but interestingly also histone modi�cation, which includes

the transcription initiation factor TFIID subunit 1 (MGG_01207). This transcription

factor has been shown in S.cerevisiae to orchestrate cellular responses with identi�ed in-

teractors, which also include Ubp3 [179]. Remarkably, it has been shown that Ubp3 is a

substrate for Hog1 and is essential for osmostress response [180]. Completing this picture,

in cluster four to eight, that cover various diverse temporal pro�les, two GO terms are

prominently found in each cluster: Ras protein signal transduction and GTPase activity.

Among many uncharacterized proteins assigned to the GO terms, Arf GTPase-activating

protein (MGG_01472) serves as potential indicator towards involved pathways. In this

protein familiy, Arl1, Cin4 and Gga1 have been shown to be involved in regulation of

host penetration and invasive growth, which presumably requires glycerol as intracellular

osmolyte [181].

Comparing all possible obtainable gene ontology terms of wild type osmostress response

and irreversibly adapted Hog1 defective mutant, with no restriction in regard to statistical

enrichment, the overlap is olny around 44 %. Interestingly, many GO terms that have been

described in more detail, are overlapping between the wild type and adapted mutant, but

in more detail they di�er by their assigned protein entries. Thus, although Ras protein

and GTPase activity related signaling is found in both genotypes, the identi�ed proteins

for the adapted mutant are more elusive to explain the phenotype.

3.2.7 Proteome and phosphoproteome analysis of not adapted

Hog1 deletion mutants

It is known, that MoHog1 deletion mutants are sensitive to osmotic stress and are not able

to grow under these conditions. Due to the high extracellular osmolarity, we hypothesize

that intracellular water will eventually permeate the cell membrane or will be actively

transported through it to establish osmotic homeostasis. Thus, the cells dry out and

undergo any form of cell death. Eventually, intracellular proteins will be released, such

as proteases, that alter the correct identi�cation and quanti�cation of proteins using LC-

MS/MS based proteomics. In this dataset we could observe that the number of identi�ed

proteins signi�cantly decreases in later time points, although very harsh lysis conditions

were applied. This observation is in agreement with the aforementioned hypothesis.
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Nevertheless, it is not known how Hog1 defectiveM.oryzae responds on cellular level upon

this stress. Therefore, the proteomic analysis for the measured samples was performed ans

summarized in supplementary �gure 6.10 and following. The volcano plots show already

a very di�erent picture compared to all other sample types. The majority of signi�cant

changes is already observed at the 10 min time point, whereas the time points 60 min and

240 min do not shown a reasonable number of changes ( < 100). The last time point again

shows a very high number of signi�cantly changing proteins. This observation is not in

line with the expected time frame of proteomic response, that usually requires more than

10 min for transcription and translation. Thus, a possible mislabeling or misassignment of

the samples has been checked and can be excluded as the reason for the unusual identi�ed

response. In addition to that, all other sample types show a reasonable and expected

response on proteome and phosphoproteome level, which makes a sample mix-up more

unlikely. Consequently, a similar result is observed for the phosphopeptide response.

Gene ontology enrichment analysis reveals Peroxisome as one of the major GO terms on

proteome level. This agrees very much with previously described metabolic response in

this dataset for both, wild type and adapted mutant, and in the literature. Consequently,

no processes related to carbohydrate metabolism or pentose phosphate pathways could be

identi�ed. On phosphopeptide level, GO terms related to Cell cycle and MAPK signaling

were identi�ed. In total, 21 phosphoproteins were included in theMAPK term, of which 14

phosphoproteins have also been found in the wild type samples as signi�cantly changing.

The remaining 7 proteins are comprised from two uncharacterized proteins, Sho1 and Its3,

which haven been shown related to osmotic stress [182], and three proteins not obviously

related to osmostress ( MGG_01816, MGG_05207 and MGG_04325 ).

In conclusion, our data suggest that Hog1 defective not adapted M.oryzae mutants un-

dergo cell death and release unspeci�c proteases to the extracellular matrix. Furthermore,

no reasonable proteomic response could be identi�ed, as the identi�cations are superim-

posed to the e�ects of cell and proteolysis. Nevertheless, peroxisome activity could also

been shown in these samples, which is in line with previously descibed results. In ad-

dition to that, phosphoproteomics overlays very well with the response observed in the

wild type. Interestingly, no gene ontology term speci�cally related to the induction of

apoptosis could be found, rather the broad term Cell cycle. Still, apoptotic processes

might be included in this term, but they do not appear signi�cant among other cell cycle
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related processes. But as the wild type response also includes cell cycle related processes,

it seems unlikely that M.oryzae actively undergoes apoptosis.

The third observed phenotype for the Hog1 defective genotype has been demonstrated

to regain osmostress regulation and e�ectively grow on stress medium, similar to the ir-

reversibly and stably adapted phenotype, but looses this capability when re-cultivating

it on stress medium after a cultivation period in unstressed condition. Interestingly, on

proteome level no obvious protease activity could be observed, as shown in �gure 3.8.

This observation suggests, that the reversible adapted phenotype is more successful in

preserving cellular integrity. In contrast to that, the response on proteome and phospho-

proteome level is similar to the not adapted phenotype, as shown in supplementary �gures

6.14. Although the gene ontology terms for proteome also include carbohydrate metabolic

process and glycan degradation, which is rather similar to the wild type, the phospho-

proteomic response is untypical and also the gene ontology terms are not informative, as

shown in supplementary �gure 6.16 and following. As well as for the not adapted phe-

notype, MAPK signaling is among the enriched gene ontology terms. For the reversibly

adapted phenotype, this term is comprised of 20 proteins in total, of which all have also

been identi�ed in the not adapted phenotype.

Comparing both osmostress sensitive phenotypes, not adapted and reversibly adapted,

the main di�erence seems to be the maintained cell integrity in the reversibly adapted

phenotype. While the cellular proteome response of the reversibly adapted phenotype is

similar to the wild type response, it seems to be mostly random in the not adapted pheno-

type. Interestingly, the phosphopeptide response is similar in numbers and gene ontology

enrichment for both osmosensitive phenotypes. Although MAPK signaling has been iden-

ti�ed, it does not show the characteristics of the adapted phenotype. Presumably, the

presented proteomics data is not well suitable for the elucidation of ongoing processes, due

to ongoing unspeci�c protease activity and unknown cellular processes caused by osmotic

stress which might convolute the actual relevant response, especially in the reversibly

adapted phenotype. Therefore, the reason why and how the adaptation processes can

be reversed, remains unclear. In this case, shotgun proteomics might not be the optimal

method to shed light on these questions. Apart from protein phosphorylation, numerous

PTMs can govern cellular processes. As possible solution we suggest the investigation of
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epigenetic processes in the nucleus, such as the analysis of histone modi�cations.
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3.3 Phosphoproteomic pro�ling of HOS cell culture

and clinical samples

3.3.1 Statistical analysis of the phosphoproteome

In the past, the separation of isobaric positional phosphoisomers by ion mobility spec-

trometry has been demonstrated [28]. To our knowledge, a comprehensive analysis of the

relevance of ion mobility separation for phosphopeptides in a challenging dataset has not

been shown so far. Therefore, a osteosarcoma sample set was measured with trapped

ion mobility spectrometry separation before MS analysis, which is both included in the

Bruker timsTOF Pro 2. Three osteosarcoma cell culture samples treated with Ceritinib

were compared to three control samples, phosphopeptides enriched from 25µg peptides

by the optimized Zr4+-IMAC protocol and measured in triplicate LC-MS/MS runs in

DIA. Figure 3.30 shows the reproducible identi�cation of around 4500 phosphopeptides

while reaching an enrichment e�ciency of around 50 %. The excellent reproducibility is

also underlined by the phosphopeptide correlation as shown. The subsequent statistical

testing revealed 30 upregulated and 69 downregulated phosphopeptides upon treatment

identi�ed by t-test with FDR adjusted p-value of below 0.05 and a log2 fold change of the

median peptide quantities of less than -1 or at least 1. The following principal component

analysis using SVD missing value imputation, centering and log10 transformation reveals

a separation of the Ceritinib treated group compared to the control group with higher im-

portance of PC1 (93 % variance explained) and minor, but complementing importance of

PC2 (5 % variance explained) as shown in �gure 3.31 A. This observation is exceptional,

as phosphoproteomics datasets usualy su�er from high variabilities and high number of

missing values (typically around 70 %), which both have been successfuly addressed in

this dataset by an optimized phosphopeptide enrichment procedure and the use of DIA.

Presumably, SVD based imputations seems to work well, although it has been reported

to tolerate only up to 10 % missing values [183]. As principal component 1 provides

reasonable explanation of the dataset, the top 10 absolute loadings from PC1 and 2 were

extracted and summarized in table 3.3. StringDB protein-protein interaction analysis of

these 10 top loading phosphoproteins allowing 1st and 2nd shell interactors as shown in

�gure 3.31 B) reveal an interconnection of many proteins through 2nd shell interactors.

Gene ontology analysis in StringDB of these proteins and their interactors reveal the en-
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richment of a potential role of TGFb signaling via the proteins NUP214, UBE2I, PIAS1

and SPTBN1, of which SPTBN is identi�ed as signi�cantly downregulated in our dataset

which indicates a possible downregulation of immunosuppressive functions of the tumor

cell. Furthermore, the top 10 loading proteins are involved in SUMOlyation processes

as well as translocation, transcription and translation which indicates upregulation of

apoptotic processes and cellular stress response.

Figure 3.30: Three biological replicates of control group and Ceritinib treated cultured
HOS cells. Phosphopeptides enriched from 25µg trypsin digested protein. Each sample
measured in triplicates on timsTOF Pro 2 in DIA mode. The number of identi�ed phos-
phopeptides in blue and non phosphorylated peptides in red show at least 4500 identi�ed
phosphopeptides with a enrichment e�ciency of around 50 %. The pearson correlation
of phosphopeptide abundance is shown right, with good intra-sample reproducibility and
no obvious outliner sample.
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Phosphoprotein Loading

PC1

Uniprot description (excerpt)

NCBP1_HUMAN -0.8315 Nuclear cap-binding protein subunit 1. Component of the cap-
binding complex (CBC). NCBP1/CBP80 is required for cell growth
and viability

UB2J1_HUMAN 0.5276 Ubiquitin-conjugating enzyme E2 J1. Catalyzes the covalent at-
tachment of ubiquitin to other proteins. Part of recovery from ER
stress. Plays a role in MAPKAPK2 dependent translational control
of TNF-alpha synthesis.

RBP2_HUMAN 0.1637 E3 SUMO-protein ligase RanBP2. Recruits BICD2 to the nuclear
envelope and cytoplasmic stacks of nuclear pore complex known as
annulate lamellae during G2 phase of cell cycle.

SPTB2_HUMAN -0.0434 Spectrin beta chain, non-erythrocytic 1. Candidate for the calcium-
dependent movement of the cytoskeleton at the membrane.

HJURP_HUMAN -0.0347 Holliday junction recognition protein. Incorporation and mainte-
nance of histone H3-like variant CENPA at centromeres.

MILK1_HUMAN -0.00901 MICAL-like protein 1. May be involved in a late step of receptor-
mediated endocytosis regulating for instance endocytosed-EGF re-
ceptor tra�cking.

SLIRP_HUMAN -0.0064 SRA stem-loop-interacting RNA-binding protein, mitochondrial.
RNA-binding protein that acts as a nuclear receptor co-repressor.
Also able to repress glucocorticoid (GR), androgen (AR), thyroid
(TR) and VDR-mediated transactivation.

LS14A_HUMAN 0.0061 Protein LSM14 homolog A. Essential for formation of P-bodies, cy-
toplasmic structures that provide storage sites for translationally
inactive mRNAs and protect them from degradation. Acts as a
repressor of mRNA translation.

BEND3_HUMAN 0.0043 BEN domain-containing protein 3. Transcriptional repressor which
associates with the NoRC (nucleolar remodeling complex) complex
and plays a key role in repressing rDNA transcription. The sumoy-
lated form modulates the stability of the NoRC complex component
BAZ2A/TIP5.

TGON2_HUMAN 0.0037 Trans-Golgi network integral membrane protein 2. May be involved
in regulating membrane tra�c to and from trans-Golgi network.

Table 3.3: Summary of top 10 absolute PC1 loadings in HOS cells treated with ceritinib.
Proteins involved in TNFa sysnthesis, RNA processing and EGF receptor tra�cking anre
included in the list, indicating changes in relevant cancer related processes.
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Figure 3.31: Analysis of phosphopeptides from Ceritinib treated versus control HOS cell
culture samples of the sample set presented in �gure 3.30: A) Multivariate analysis by
principal components. Control samples and treated samples cluster together, separated
over a combination of PC1 and PC2, which together account for 98 % of the observed
variances. B) STRING protein interaction analysis of the top 10 loadings of PC1 and
PC2 including �rst and second shell interactors shows not only separated proteins, but
also proteins with known interaction. This indicates a functional relationship of those
caused by the treatement.
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It has been shown that Ceritinib acts (o�-target) through inhibition of the insulin growth

factor receptor (IGF1R) [184]. Indirect evidence for the inhibitory e�ect is provided by the

signi�cant downregulation of the phosphoprotein insulin receptor substrate 2 (IRS2). Irs2

is known to interact with p85 [185], that is also involved in the aforementioned TGFb sig-

naling [186]. Thus, both pathways together might orchestrate the cellular response, a fact

that, to our knowledge, has not been described before as identi�ed per literature review

and StringDB textmining, which opens the door for further hypotheses and research.

Gene ontology enrichment analysis of the protein accessions for the signi�cantly dif-

ferential phosphopeptides was performed including the GO databases Reactome [187],

Wikipathways [188] and KEGG [189] and the results are summarized in �gure 3.32 A.

The Cytoscape plugin ClueGO with standard settings has been used for the enrichment

analysis. Top terms include apoptotic processes and Rho GTPase cycle, with phospho-

peptides involved in RhoB and RhoC GTPase cycle are mostly downregulated whereas

phosphopeptides involved in RhoBTB are exclusively upregulated upon Ceritinib treat-

ment. It has been demonstrated that identi�ed proteins involved in RhoB and C GTPase

cycle such as TJP1 and TJP2 are required for successful regulation of cell migration [190].

The upregulated RhoBTB proteins such as ACTN1, RBBP6 and RBMX have been shown

to regulate cell motility [191], play a role as negative regulators of cell growth and are

involved in apoptosis [192] and act as tumor suppressor by promoting the expression of

TXNIP [193].

Furthermore, kinase and substrate enrichment analysis (KSEA) was perfomed using KSEApp.

In principle, evidence for phosphorylated instances downstream and upstream of a speci�c

kinase is collected and compared to the statistically expected number of evidence. Thus a

p-value and q-value can be provided for hypo- and hyperactivity of these kinases, described

by a z-score as shown in �gure 3.32 B. As background sources for this analysis either cu-

rated entries only (from PhosphositePlus) or including also predicted kinase/substrate

relations (NetworKIN) can be used. Here, both curated and predicted kinase-substrate

relations were used as background for the knowledge extraction and statistical test with a

q-value cut o� of 0.05. Strong evidence could be identi�ed for hyperactivity of CLK1 upon

Ceritinib treatment, whereas six kinases show string evidence for hypoacitivity including

cancer relevant kinases such as AKT1 and GSK3A and B. The downregulated activity of
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Figure 3.32: A) ClueGO analysis of all signi�cantly changing phosphoproteins after Ceri-
tinib treatment in HOS cell culture compared to not treated control samples of the sample
set presented in �gure 3.30. B) Kinase substrate enrichment analysis
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AKT and subsequently the downstream GSKs has been described and discussed already

in the literature [194], which validates our proteomics approach and KSEA as powerful

tool for the correct identi�cation of biological e�ects. On the contrary, CLK1 has been

described in a review analysis to be e�ectively inhibited by Ceritinib treatment [195].

Although referring to secondary literature [196], there and in the featured review no ev-

idence for this statement is given and further literature research did not provide more

reliable information about the inhibition or activation of CLK1. Thus, their �nding re-

mains questionable. It has been shown, that CLK1 activity is required for the activation

of PTP-1B [197] which itself is known to activate SRC induced oncogenic phenotype [198].

This is in line with the observed clinical phenotype at the Children's Hospital at the Uni-

versity Medical Center in Mainz, where a combination treatment of Ceritinib (as IGF1R

inhibitor) and Dasartinib (as SRC inhibitor) proved a valid concept in the successful

treatment of osteosarcoma in cell culture and in the clinic [22].

3.3.2 Successful validation of Ceritinib e�ects from low amount

phosphoproteomics

The aim of Ceritinib treatment is the induction of apoptosis and the suppression of a

migratory phenotype of the osteosarcoma cell. The featured phosphoproteomic analysis

from as low as 25µg starting material proves that both desired responses are achieved

upon treatment. Although PCA analysis is often performed in proteomic studies, its

capabilities are often not fully utilized. Here, we could show that the main loadings of the

PC1 in this datasets aid the actualy discovery purpose of proteomics experiments. We

identi�ed TGFb signaling as putatively involved pathway, that shares components (p85)

with the previously described o�-target use for Ceritinib by inhibition of the IGF1R

signaling. Thus, the use of the PCA loadings proved as another useful tool in the toolbox

of bioinformatic analysis that is not widely used in the �eld. Further validation with small

controlled experiments (i.e. known outcomes) have to be conducted to proof accuracy and

sensitivity of this approach, such as stimulation of cancer cell lines with growth factors. In

addition to that, we could validate our approach by con�rming already described cellular

responses of Ceritinib treatment. Therefore, we are con�dent to use this approach for

pro�ling of individual clinical samples to characterize the responses to drug treatment

and counteract bypass mechanisms (such as Src activation through CLK1 hyperactivity),
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which serves as a step further in personalized cancer medicine.

3.3.3 Characerization of isobaric phosphopeptide separation by

IMS

It has been shown in the past, that isobaric phosphopeptide isomers can be separated ion

mobility due to conformational changes in the gas phase introduced by the di�erent phos-

phorylated sites [199]. So far, a large scale evaluation of the bene�cial e�ect for separation

of isobaric has not been discussed in the �eld. Therefore, all identi�ed phosphopeptide

pairs of the osteosarcoma dataset were �ltered and chromatographic resolution was calcu-

lated for the ion mobility separation. DIA-NN unfortunately does not provide the actual

IMS peak width, so that an average ion mobility peak width of 0.2 1/k0 was assumed,

based on previous DDA runs from unambiguously identi�ed phosphopeptides and used

for the calculation of resolution. Out of 5909 identi�ed phosphopeptides across all sam-

ples, 2936 unique phosphopeptide sequences were found to form 1639 co-eluting positional

isomer pairs, de�ned as a di�erence in retention time less than the average peak width of

30 s. In separation sciences in general , a resolution of at least 1.5 is considered as base-

line separated. But even with resolution below 1.5 a reasonable separation is provided,

that is su�cient for the deconvolution and identi�cation of positional phosphoisomers.

Therefore, a arbitrary value of 0.5 as minimum resolution was used for �ltering. In total,

316 co-eluting isomer pairs were successfuly separated by ion mobility, the relation sum-

marized in �gure 3.33 A, an example of the separation power is shown in �gure 3.33 B.

As obvious from the XIC, no separation of the phosphoisomer pair was achieved, while

the ion mobility provides two distinct isobaric peaks, that have been identi�ed as two

phosphopeptide isomers.

Ogata et al. have claimed, that the conformational changes in gas phase in�uencing

the ion mobility is caused by intramolecular interactions between the phosphogroup and

amino acid with basic or acidic character [200]. In order to validate their observations and

transfer it to the problem of isobaric co-eluting phosphopeptide isomers, peptide properties

of all phosphoisomer pairs, regardless their chromatographic elution, were calculated using

the Peptide package in R. In supplementary �gure 6.18 the relative amount of amino

acids with certain character (tiny, aromatic, basic, acidic et cetera) in the plain sequence
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of the phosphopeptide pair is plotted as histogram for all co-eluting pairs with overlaid

histograms for IMS separated and not separated pairs. Statistical signi�cant correlations

could not be observed for any peptide property, but a general trend is visible for some

peptide properties. Taking all trends into account, a higher probability for su�cient IMS

separation is given with a peptide of following amino acid properties: 10 % basic / low

number of acidic residues / 15 % charged / 60 % polar / 40 % non-polar / no aromatic

residues / high number of small residues / GRAVY index around -1. These �ndings would

underline the hypothesis stated by Ogata et al., but the correlations in the osteosarcoma

dataset appears not to be signi�cant. In fact, Ogata et al. also investigate the relative

position of the phosphopeptide and proximity of the phosphogroup towards basic and

acidic residues but the e�ect on ion mobility is rather marginal in their case and also, no

statistical signi�cance is provided. A similar analysis on the osteosarcoma dataset is not

expected to provide deep insight into the underlying reasons for conformational changes

of phosphopeptide isomers.

Rather, as possible outlook we suggest to also include a larger dataset for this analysis

and calculate a model, that also takes the combinatorial e�ect of peptide properties into

account. This way, robust statistical signi�cance of the in�uence of peptide properties on

the collisional cross section can be provided. Some properties, such as amino acid size

(small/aromatic) have not been described yet to have an in�uence on the collisional cross

section of phosphopeptides. Presumably, the relative in�uence of the phosphogroups on

ion mobility is increased in presence of small amino acid residues. Consequently, in pres-

ence of bulky amino acid residues (e.g. aromatic residues) the resolution decreases as the

collisional cross section might be mainly in�uenced by the size of the amino acids rather

than the conformational changes by the phosphosite. With similar absolute e�ect of the

phosphosite to the CCS, the relative di�erence decreases with increasing molecule size.

Furthermore, the degrees of freedom for intramolecular movements will be decreased with

an increased number of large amino acids in the peptide sequence. In addition to that,

further improvements of data acquisition such as longer ramp time during the ion mobility

separation will lead to increased sensitivity and resolution. This way, number of identi�-

cations and their con�dence can be possibly boosted and serve as optimal acquisition for

further low amount osteosarcoma studies also with clinical samples.
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Figure 3.33: IMS enables separation on co-elution isobaric phosphopeptides of the sample
set presented in �gure 3.30 A) Number of identi�ed co-eluting and ion mobilty separated
isobaric phosphopeptide isomers with B) example of a chromatogram and corresponding
ion mobilogram
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3.4 Downscaling of mouse Th17 phosphoproteomics

3.4.1 Statistical analysis of the phosphoproteome

Downscaling of phospoproteomics work�ows enables sample speci�c analysis of samples

with very low amount of sample material available, such as tissues and sorted cells. Typi-

cally, phosphoproteomic analysis from in-vivo experiments (e.g. from mouse), does require

to pool several biological replicates. This way, the desired protein and phosphoprotein

abundances are homogenized and due to a expected high biological variability the desired

e�ects become ambiguous. With the presented work�ow it is now possible to analyze the

phosphoproteomic response mouse speci�c, without pooling the samples prior to phos-

phopeptide enrichment. Nevertheless, it has not been shown so far in the literature, that

the use of low input amount would lead to the very same biological conclusion as a typ-

ical phosphoproteomics experiment. Thus, isolated naïve T cells from mice with either

Casein Kinase II (CKII) knock-out or wild type (WT) were di�erentiated into Th17 cells.

The cells were cultivated to obtain at least 1000µg protein and were enriched by TiO2.

Sample preparation, raw data acquisition and processing as well as statistical testing was

performed as part of the core-facility work, that will not be discussed here. Result ta-

bles with fold-changes and FDR adjusted p-values were provided for comparison in this

analysis.

In the context of low amount phosphopeptide enrichment optimization, supernatant of

the cell lysate corresponding to 25µg were used for tryptic digest and subsequent phos-

phopeptide enrichment with the presented protocol. The three biological replicates were

measured in triplicates applying DIA mode and around 6500 phosphopeptides were identi-

�ed per sample with an average enrichment e�ciency of around 50 % for the entire sample

set, while the treated samples consistently showed a sligthly higher phosphopeptide count,

as shown in 3.34. This low enrichment e�ciency is related to the use of DIA, as discussed

before. The phosphopeptide correlation revealed a deviation of one biological replicate of

the control group, compared to all other samples. A technical reason for this observation

can be excluded, as the replicate measurements are consistent for each sample and the

phosphopeptide identi�cations are reproducible for each sample, thus the reason might

be either sample or sample preparation related. the fact, that all other samples show a

good correlation, makes a failed sample preparation rather unlikely. Still, the number of
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phosphopeptides is lower for all technical replicates of that speci�c control sample. The

low correlation might also indicate a di�erence in cell di�erentiation, as no correlation

could be observed with neither control nor treated sample group. Nevertheless, no obvi-

ous reason could be identi�ed to exclude this sample from the analysis, thus it was still

included in the dataset for statistical testing. Using t-test for the identi�cation of statis-

tically signi�cant changes in phosphopeptide abundance, 137 up- and 193 downregulated

instances could be identi�ed, illustrated in �gure 3.35 A. Surprisingly, also this dataset

did show a reasonable clustering of the treated sample group separated to the control

sample group based on principal component 1, accounting with 89 % to a high degree to

the variability in the dataset, as shown in �gure 3.35 B. The low level biological conclusion

of the experiment is currently in peer review publication process and will be exhaustively

discussed in the published literature. Here, only the high level outcome of the 1000µg

experiment is compared to the results from 25µg.

3.4.2 Overlap with standard phosphoproteomics work�ows

The overlap of the identi�ed peptides (including modi�cations, i.e. phosphosite position)

that were selected for statistical testing is 2185 peptides (14 %) while 6081 peptides (40

%) uniquely identi�ed from 1000µg and 6910 peptides (46 %) uniquely identi�ed from

25µg. The low overlap of peptide sequences has already been discussed in a previous

dataset and the reason for this is the di�erence in acquisition method. Furthermore,

the number of relevant phosphopeptides for statistical testing seems to be lower for the

1000µg sample set, but the reason is simply a di�erent �ltering strategy that has been

applied before testing. Still, the low overlap is not unexpected, as TiO2 and Zr4+-IMAC

can have di�erent phosphopeptide species a�nities, so both methods preferably enrich

peptides with di�ering physicochemical properties. Gene ontology enrichment of statisti-

cally signi�cant changing phosphoproteins obtained from both enrichment strategies has

been performed by ClueGO and summarized in �gure 3.36. Gene ontology terms with

no relevant clustering were di�ering for both enrichment strategies, GO terms related to

SUMOylation. The main clusters in both experiments is related to cell cycle, which is in

line with the expected biological outcome of the treatment. This underlines that although

the nature of enriched phosphopeptides is di�erent, changing phosphopeptides from the

same related proteins can be enriched. The biological conclusion was identical in both
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Figure 3.34: Three biological replicates of control group and treated cultured murine
Th17 cells. Phosphopeptides enriched from 25µg trypsin digested protein. Each sample
measured in triplicates on timsTOF SCP in DIA mode. The number of identi�ed phos-
phopeptides in blue and non phosphorylated peptides in red show at least 6500 identi�ed
phosphopeptides with a enrichment e�ciency of around 50 %. The pearson correlation of
phosphopeptide abundance is shown right, with good intra-sample reproducibility, except
for sample 3 of the control group.
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Figure 3.35: A) Results from statistical testing (t-test) as volcano plot from treated versus
control murine Th17 cells of the sample set presented in �gure 3.34. B) Multivariate
analysis by principal components. Control samples and treated samples cluster together,
separated over a of PC1, which accounts for 89 % of the observed variances
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Figure 3.36: ClueGO network from signi�cantly enriched GO terms of phosphopeptides
signi�cantly changing in murine Th17 cells after treatment of the sample set presented in
�gure 3.34 A) from 25µg. B) from 1000µg.
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enrichment strategies, although 40-fold less protein material was required for the result.

In summary, with this experiment we could not only demonstrate a exceptional phospho-

peptide data quality by reproducible number of identi�cations, excellent correlation in

abundance and meaningful identi�cation of di�erences in principal component analysis,

but also validate the accuracy of the presented low amount phosphoproteomics work�ow

on a biological level.
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4 Summary

In this work, novel strategies for phosphoproteomic analysis for sample preparation, data

acquisition and statistical analysis were presented. The advantages achieved on three

di�erent biological questions were demonstrated:

1. Rapid evolutionary adaptation of osmoregulatory pathways in Magnaporthe oryzae

2. Phosphoproteomic response of a novel therapeutic strategy against human osteosar-

coma

3. Phosphoproteomic response of treated murine T-Cells

For elucidating rapid evolutionary adaptation in M.oryzae, a highly robust phosphopro-

teomitcs work�ow suitable for high-throughput is required. Using conventional lysis and

sample preparation strategies, low protein yield due to comparably resistant cell wall and

high protease activity leading to an increased number of unspeci�cally cleaved peptides,

is observed. Common strategies, such as the addition of protease inhibitors, could not be

applied as this would either decrease tryptic digest, necessary for proteome analysis, or

even make it impossible. Therefore, a sample preparation strategy has been developed and

successfully published as book chapter [26], that involves heat inactivation of degrading

enzymes in combination with harsh cell wall lysis conditions by high concentrations of de-

naturating agents such as SDS and DTT. In addition to that, phosphoproteomics has been

su�ering from a high number of missing values due to either a random phosphopeptide

enrichment selectivity or borderline signal intensities, which causes the exclusion for frag-

mentation using the commonly applied data dependent acquisition mode. Consequently,

an incomplete dataset reduces con�dence in the subsequent statistical testing. We suc-

cessfully applied data independent acquisition, to include such cases and could prove that

while maintaining data quality (such as phosphosite and peptide sequence con�dence),
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the data completeness increases. To further increase the con�dence in the results, we ap-

plied a already widely applied statistical analysis from transcriptome analysis, i.e. linear

models instead of t-test. This approach has proven in literature to be more sensitive on

proteome and peptide level, but has no evidence for superior performance demonstrated

on phosphopeptide level. Here, we could prove the suitability of the analytical stragety

with comparing osmoregulatory response of wild type samples with previously acquired

knowledge from literature.

The developed strategy was applied to a time-course experiment of osmosregulatory de-

�cient sample set comprised from MoHog1 deleted mutants (osmosensitive) that show a)

no adaptation and are osmosensitive b) reversible adaptation that lose osmoregulatory

phenotype and c) irreversibly and stable adapted, that regains osmsoregulatory capabil-

ities. Empirically determined settings for k-means clustering were applied to cluster the

temporal pro�les of proteome and phosphoproteome response to understand the biological

relevance of each functional cluster in more detail. We present this dataset as resource

for further investigation of underlying biological processes to understand the adaptation

process in more detail.

In addition to that, a phosphopeptide enrichment method has been developed to meet the

needs of clinical proteomics and in-vivo animal experiments, that in most cases only yield

very minute protein amounts which is not su�cient for TiO2 phosphopeptide enrichment

in spin-tips. We could demonstrate the accuracy and reproducibility of the developed

work�ow using Zr-IMAC magnetic beads in combination with the previously described

data independent acqusition by analysis of treated versus control of as low as 25µg of

human osteosarcoma and murine T-Cells. For the human osteosarcoma dataset we also

investigated the impact of ion mobility separation for the elucidation of co-eluting and

isobaric phosphopeptide isomers, that di�er in phosphosite position. The Bruker tim-

sTOF Pro 2 o�ers an integrated trapped ion mobility separation (tims) before actual

mass spectrometry measurement and the the bene�t of this procedure on such phos-

phopeptide isomers has never been demonstrated. We could show that the accuracy of

identi�cation increases and the tims based ion mobility separation adds con�dence and

comprehensiveness to phosphoproteomic studies.

The presented strategies for phosphoproteomic analysis for sample preparation, data ac-
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quisition and statistical analysis proved as valid and useful alternative to conventional

phosphoproteomics studies and open the door for further investigations. Especially cur-

rent developments in the �eld aiming at single cell analysis and high throughput pinpoint

the demand for further miniaturized methods. For example, one-pot or in-situ on tissue

sample preparation including phosphopeptide enrichment could resolve spatial di�erences

in proteomics and phosphoproteomics in tissues. This would aid to identify and decon-

volute tissue speci�c responses or drug resistance mechanisms, e.g. from cancer FFPE

tissues or fresh biopsies. In general, the use of DIA and linear models for data acquisition

and statistical analysis will improve the data completeness and support comprehensive

knowledge extraction and reduce the impact of intriguing missing value imputation. The

added value of this work is double: We pushed phosphoproteomics techniques beyond it's

current limits and could provide a comprehensive resource for investigation of phospho-

proteomics in Magnaporthe oryzae.

143





5 References

[1] Ralph Dean et al. �The Top 10 fungal pathogens in molecular plant pathology�.

In: Molecular plant pathology 13 (4 May 2012), pp. 414�430. issn: 1364-3703. doi:

10.1111/J.1364-3703.2011.00783.X.

[2] Naomi K. Fukagawa and Lewis H. Ziska. �Rice: Importance for Global Nutrition�.

In: Journal of nutritional science and vitaminology 65 (Supplement 2019), S2�S3.

issn: 1881-7742. doi: 10.3177/JNSV.65.S2.

[3] Ralph A. Dean et al. �The genome sequence of the rice blast fungus Magnaporthe

grisea�. In: Nature 2005 434:7036 434 (7036 Apr. 2005), pp. 980�986. issn: 1476-

4687. doi: 10.1038/nature03449.

[4] Stefan Bohnert et al. �Rapid adaptation of signaling networks in the fungal pathogen

Magnaporthe oryzae�. In: BMC Genomics 20 (1 Oct. 2019), pp. 1�16. issn: 14712164.

doi: 10.1186/S12864-019-6113-3/FIGURES/9.

[5] Hajar Yaakoub et al. �The high osmolarity glycerol (HOG) pathway in fungi-�.

In: https://doi.org/10.1080/1040841X.2021.2011834 (2021). issn: 15497828. doi:

10.1080/1040841X.2021.2011834.

[6] Natalie L. Catlett, Olen C. Yoder, and B. Gillian Turgeon. �Whole-Genome Anal-

ysis of Two-Component Signal Transduction Genes in Fungal Pathogens�. In: Eu-

karyotic Cell 2 (6 Dec. 2003), p. 1151. issn: 15359778. doi: 10.1128/EC.2.6.

1151-1161.2003.

[7] Stefan Jacob et al. �Histidine kinases mediate di�erentiation, stress response, and

pathogenicity in Magnaporthe oryzae�. In: MicrobiologyOpen 3 (5 Oct. 2014),

pp. 668�687. issn: 2045-8827. doi: 10.1002/MBO3.197.

[8] Stefan S. Bielack et al. �Second and subsequent recurrences of osteosarcoma: Pre-

sentation, treatment, and outcomes of 249 consecutive cooperative osteosarcoma

study group patients�. In: Journal of Clinical Oncology 27 (4 Feb. 2009), pp. 557�

565. issn: 0732183X. doi: 10.1200/JCO.2008.16.2305.

145



[9] Cristina Meazza and Paolo Scanagatta. �Metastatic osteosarcoma: a challenging

multidisciplinary treatment�. In: Expert review of anticancer therapy 16 (5 May

2016), pp. 543�556. issn: 1744-8328. doi: 10.1586/14737140.2016.1168697.

[10] Yu Hsuan Lin et al. �Osteosarcoma: Molecular Pathogenesis and iPSC Modeling�.

In: Trends in molecular medicine 23 (8 Aug. 2017), p. 737. issn: 1471499X. doi:

10.1016/J.MOLMED.2017.06.004.

[11] Susanne Lorenz et al. �Unscrambling the genomic chaos of osteosarcoma reveals

extensive transcript fusion, recurrent rearrangements and frequent novel TP53

aberrations�. In: Oncotarget 7 (5 2016), pp. 5273�5288. issn: 1949-2553. doi:

10.18632/ONCOTARGET.6567.

[12] Jilong Yang et al. �Recurrent LRP1-SNRNP25 and KCNMB4-CCND3 fusion genes

promote tumor cell motility in human osteosarcoma�. In: Journal of hematology &

oncology 7 (1 Oct. 2014). issn: 1756-8722. doi: 10.1186/S13045-014-0076-2.

[13] Su Young Kim et al. �The role of IGF-1R in pediatric malignancies�. In: The oncol-

ogist 14 (1 Jan. 2009), pp. 83�91. issn: 1549-490X. doi: 10.1634/THEONCOLOGIST.

2008-0189.

[14] Junko Takita. �The role of anaplastic lymphoma kinase in pediatric cancers�. In:

Cancer Science 108 (10 Oct. 2017), p. 1913. issn: 13497006. doi: 10.1111/CAS.

13333.

[15] Anton Wellstein. �ALK receptor activation, ligands and therapeutic targeting in

glioblastoma and in other cancers�. In: Frontiers in Oncology 0 (2012), p. 192. issn:

2234-943X. doi: 10.3389/FONC.2012.00192.

[16] Fang Wang et al. �Inhibition of insulin-like growth factor 1 receptor enhances

the e�cacy of sorafenib in inhibiting hepatocellular carcinoma cell growth and

survival�. In: Hepatology Communications 2 (6 June 2018), pp. 732�746. issn:

2471254X. doi: 10.1002/HEP4.1181/FULL.

[17] Nadine Vewinger et al. �IGF1R Is a Potential New Therapeutic Target for HGNET-

BCOR Brain Tumor Patients�. In: International journal of molecular sciences 20

(12 June 2019). issn: 1422-0067. doi: 10.3390/IJMS20123027.

146



[18] Emma D. Deeks. �Ceritinib: a Review in ALK-Positive Advanced NSCLC�. In:

Targeted oncology 11 (5 Oct. 2016), pp. 693�700. issn: 1776-260X. doi: 10.1007/

S11523-016-0460-7.

[19] Thomas H. Marsilje et al. �Synthesis, structure-activity relationships, and in vivo

e�cacy of the novel potent and selective anaplastic lymphoma kinase (ALK) in-

hibitor 5-chloro-N2-(2-isopropoxy-5-methyl-4-(piperidin-4-yl)phenyl)-N4-(2-(isopropylsulfonyl)phenyl)pyrimidine-

2,4-diamine (LDK378) currently in phase 1 and phase 2 clinical trials�. In: Journal

of medicinal chemistry 56 (14 July 2013), pp. 5675�5690. issn: 1520-4804. doi:

10.1021/JM400402Q.

[20] Anke E.M. van Erp et al. �Targeting Anaplastic Lymphoma Kinase (ALK) in

Rhabdomyosarcoma (RMS) with the Second-Generation ALK Inhibitor Ceritinib�.

In: Targeted oncology 12 (6 Dec. 2017), pp. 815�826. issn: 1776-260X. doi: 10.

1007/S11523-017-0528-Z.

[21] Deric L. Wheeler, Mari Iida, and Emily F. Dunn. �The Role of Src in Solid Tumors�.

In: The Oncologist 14 (7 July 2009), pp. 667�678. issn: 1083-7159. doi: 10.1634/

THEONCOLOGIST.2009-0009.

[22] Olaf Beck et al. �Safety and Activity of the Combination of Ceritinib and Dasatinib

in Osteosarcoma�. In: Cancers 12 (4 Apr. 2020). issn: 20726694. doi: 10.3390/

CANCERS12040793.

[23] Fiorella A. Solari et al. �Why phosphoproteomics is still a challenge�. In: Molecular

BioSystems 11 (6 May 2015), pp. 1487�1493. issn: 1742-206X. doi: 10.1039/

C5MB00024F.

[24] Sean J. Humphrey et al. �High-throughput and high-sensitivity phosphoproteomics

with the EasyPhos platform�. In: Nature protocols 13 (9 Sept. 2018), pp. 1897�1916.

issn: 1750-2799. doi: 10.1038/S41596-018-0014-9.

[25] Harm Post et al. �Robust, Sensitive, and Automated Phosphopeptide Enrichment

Optimized for Low Sample Amounts Applied to Primary Hippocampal Neurons�.

In: Journal of proteome research 16 (2 Feb. 2017), pp. 728�737. issn: 1535-3907.

doi: 10.1021/ACS.JPROTEOME.6B00753.

147



[26] Thomas Michna and Stefan Tenzer. �Quantitative Proteome and Phosphoproteome

Pro�ling in Magnaporthe oryzae�. In: Methods in molecular biology (Clifton, N.J.)

2356 (2021), pp. 109�119. issn: 1940-6029. doi: 10.1007/978-1-0716-1613-0_9.

[27] Ignacio Arribas Diez et al. �Zirconium(IV)-IMAC Revisited: Improved Performance

and Phosphoproteome Coverage by Magnetic Microparticles for Phosphopeptide

A�nity Enrichment�. In: Journal of proteome research 20 (1 Jan. 2021), pp. 453�

462. issn: 1535-3907. doi: 10.1021/ACS.JPROTEOME.0C00508.

[28] Matthew S. Glover et al. �Examining the In�uence of Phosphorylation on Peptide

Ion Structure by Ion Mobility Spectrometry-Mass Spectrometry�. In: Journal of

the American Society for Mass Spectrometry 27 (5 May 2016), pp. 786�794. issn:

1879-1123. doi: 10.1007/S13361-016-1343-Y.

[29] Lars Fugger, Lise Torp Jensen, and Jamie Rossjohn. �Challenges, Progress, and

Prospects of Developing Therapies to Treat Autoimmune Diseases�. In: Cell 181

(1 Apr. 2020), pp. 63�80. issn: 0092-8674. doi: 10.1016/J.CELL.2020.03.007.

[30] A. F. Maarten Altelaar, Javier Munoz, and Albert J. R. Heck. �Next-generation

proteomics: towards an integrative view of proteome dynamics�. In: Nature Reviews

Genetics 14 (1 Jan. 2013), pp. 35�48. issn: 1471-0056. doi: 10.1038/nrg3356.

[31] Philip Cohen. �The regulation of protein function by multisite phosphorylation�a

25 year update�. In: Trends in biochemical sciences 25 (12 Dec. 2000), pp. 596�601.

issn: 0968-0004. doi: 10.1016/S0968-0004(00)01712-6.

[32] James I. Garrels. �Quantitative two-dimensional gel electrophoresis of proteins�.

In: Methods in Enzymology 100 (Jan. 1983), pp. 411�423. issn: 0076-6879. doi:

10.1016/0076-6879(83)00070-1.

[33] Cosette Abdallah et al. �Gel-based and gel-free quantitative proteomics approaches

at a glance.� In: International journal of plant genomics 2012 (Nov. 2012), p. 494572.

issn: 1687-5389. doi: 10.1155/2012/494572.

[34] Ute Distler et al. �Label-free quanti�cation in ion mobility-enhanced data-independent

acquisition proteomics�. In: Nature Protocols 11 (4 Apr. 2016), pp. 795�812. issn:

1754-2189. doi: 10.1038/nprot.2016.042.

[35] Liisa Arike and Lauri Peil. Spectral Counting Label-Free Proteomics. 2014. doi:

10.1007/978-1-4939-0685-7_14.

148



[36] Fatima Ardito et al. �The crucial role of protein phosphorylation in cell signalin-

gand its use as targeted therapy (Review)�. In: International Journal of Molecular

Medicine 40 (2 Aug. 2017), pp. 271�280. issn: 1791244X. doi: 10.3892/IJMM.

2017.3036/HTML.

[37] Cheryl L. Mathis and Amy M. Barrios. �Histidine phosphorylation in metallopro-

tein binding sites�. In: Journal of inorganic biochemistry 225 (Dec. 2021). issn:

1873-3344. doi: 10.1016/J.JINORGBIO.2021.111606.

[38] Ao Zhang, Fr-d-rique Pompeo, and Anne Galinier. �Overview of protein phos-

phorylation in bacteria with a main focus on unusual protein kinases in Bacillus

subtilis�. In: Research in microbiology 172 (7-8 Nov. 2021). issn: 1769-7123. doi:

10.1016/J.RESMIC.2021.103871.

[39] Matthias Mann et al. �Analysis of protein phosphorylation using mass spectrom-

etry: deciphering the phosphoproteome�. In: Trends in Biotechnology 20 (6 June

2002), pp. 261�268. issn: 0167-7799. doi: 10.1016/S0167-7799(02)01944-3.

[40] Mostafa Zarei et al. �Comparison of ERLIC-TiO2, HILIC-TiO2, and SCX-TiO2

for global phosphoproteomics approaches.� In: Journal of proteome research 10 (8

Aug. 2011), pp. 3474�83. issn: 1535-3907. doi: 10.1021/pr200092z.

[41] Maria Stella Ritorto et al. �Hydrophilic Strong Anion Exchange (hSAX) Chro-

matography for Highly Orthogonal Peptide Separation of Complex Proteomes�.

In: Journal of Proteome Research 12 (6 June 2013), pp. 2449�2457. issn: 1535-

3893. doi: 10.1021/pr301011r.

[42] Wan Mohd Aizat and Maizom Hassan. �Proteomics in systems biology�. In: Ad-

vances in Experimental Medicine and Biology 1102 (2018), pp. 31�49. issn: 22148019.

doi: 10.1007/978-3-319-98758-3_3/COVER/.

[43] Daniel P. Donnelly et al. �Best practices and benchmarks for intact protein analysis

for top-down mass spectrometry�. In: Nature Methods 2019 16:7 16 (7 June 2019),

pp. 587�594. issn: 1548-7105. doi: 10.1038/s41592-019-0457-0.

[44] Neil L. Kelleher. �Peer Reviewed: Top-Down Proteomics�. In: Analytical Chemistry

76 (11 June 2004), 196 A�203 A. issn: 0003-2700. doi: 10.1021/AC0415657.

149



[45] Philip R. Gafken. �An overview of the qualitative analysis of phosphoproteins by

mass spectrometry.� In: Methods in molecular biology (Clifton, N.J.) 527 (2009),

pp. 159�172. issn: 10643745. doi: 10.1007/978-1-60327-834-8_12/FIGURES/4_

12.

[46] Martin C. Stumpe and Helmut Grubm-ller. �Interaction of urea with amino acids:

Implications for urea-induced protein denaturation�. In: Journal of the American

Chemical Society 129 (51 Dec. 2007), pp. 16126�16131. issn: 00027863. doi: 10.

1021/JA076216J/SUPPL_FILE/JA076216JSI20071004_081248.PDF.

[47] A. Wallqvist, D. G. Covell, and D. Thirumalai. �Hydrophobic interactions in aque-

ous urea solutions with implications for the mechanism of protein denaturation�.

In: Journal of the American Chemical Society 120 (2 Jan. 1998), pp. 427�428. issn:

00027863. doi: 10.1021/JA972053V/ASSET/IMAGES/LARGE/JA972053VF00003.

JPEG.

[48] Giovanni Salvi, Paolo De Los Rios, and Michele Vendruscolo. �E�ective interactions

between chaotropic agents and proteins�. In: Proteins: Structure, Function, and

Bioinformatics 61 (3 Nov. 2005), pp. 492�499. issn: 1097-0134. doi: 10.1002/

PROT.20626.

[49] Mark P. Kamps and Bartholomew M. Sefton. �Acid and base hydrolysis of phos-

phoproteins bound to Immobilon facilitates analysis of phosphoamino acids in gel-

fractionated proteins�. In: Analytical Biochemistry 176.1 (1989), pp. 22�27. issn:

0003-2697.

[50] Benjamin Schlager, Anna Straessle, and Ernst Hafen. �Use of anionic denaturing

detergents to purify insoluble proteins after overexpression�. In: BMC Biotechnol-

ogy 12 (1 Dec. 2012), pp. 1�7. issn: 14726750. doi: 10.1186/1472-6750-12-

95/TABLES/2.

[51] Giedre Ratkeviciute, Benjamin F. Cooper, and Timothy J. Knowles. �Methods for

the solubilisation of membrane proteins: the micelle-aneous world of membrane

protein solubilisation�. In: Biochemical Society Transactions 49 (4 Aug. 2021),

p. 1763. issn: 14708752. doi: 10.1042/BST20210181.

150



[52] M. J. Ruiz-Angel et al. �Performance of di�erent C18 columns in reversed-phase

liquid chromatography with hydro-organic and micellar-organic mobile phases�. In:

Journal of chromatography. A 1344 (May 2014), pp. 76�82. issn: 1873-3778. doi:

10.1016/J.CHROMA.2014.04.011.

[53] Joselito P. Quirino. �Sodium dodecyl sulfate removal during electrospray ionization

using cyclodextrins as simple sample solution additive for improved mass spectro-

metric detection of peptides�. In: Analytica chimica acta 1005 (Apr. 2018), pp. 54�

60. issn: 1873-4324. doi: 10.1016/J.ACA.2017.12.012.

[54] Malte Siela� et al. �Evaluation of FASP, SP3, and iST Protocols for Proteomic

Sample Preparation in the Low Microgram Range�. In: Journal of proteome re-

search 16 (11 Nov. 2017), pp. 4060�4072. issn: 1535-3907. doi: 10.1021/ACS.

JPROTEOME.7B00433.

[55] Jure Zevnik and Matev- Dular. �Cavitation bubble interaction with compliant

structures on a microscale: A contribution to the understanding of bacterial cell ly-

sis by cavitation treatment�. In: Ultrasonics sonochemistry 87 (June 2022), p. 106053.

issn: 1873-2828. doi: 10.1016/J.ULTSONCH.2022.106053.

[56] Torsten M-ller and Dominic Winter. �Systematic Evaluation of Protein Reduc-

tion and Alkylation Reveals Massive Unspeci�c Side E�ects by Iodine-containing

Reagents�. In: Molecular & Cellular Proteomics : MCP 16 (7 July 2017), p. 1173.

issn: 15359484. doi: 10.1074/MCP.M116.064048.

[57] Yvonne Markert et al. �Proline versus charge concept for protein stabilization

against proteolytic attack�. In: Protein Engineering, Design and Selection 16 (12

Dec. 2003), pp. 1041�1046. issn: 1741-0126. doi: 10.1093/PROTEIN/GZG136.

[58] Mark J. Wall et al. �Implications of partial tryptic digestion in organic-aqueous

solvent systems for bottom-up proteome analysis�. In: Analytica chimica acta 703

(2 Oct. 2011), pp. 194�203. issn: 1873-4324. doi: 10.1016/J.ACA.2011.07.025.

[59] Marek -ebela et al. �Thermostable trypsin conjugates for high-throughput pro-

teomics: synthesis and performance evaluation�. In: Proteomics 6 (10 May 2006),

pp. 2959�2963. issn: 1615-9853. doi: 10.1002/PMIC.200500576.

151



[60] Harsha P. Gunawardena, Joshua F. Emory, and Scott A. McLuckey. �Phosphopep-

tide Anion Characterization via Sequential Charge Inversion and Electron Transfer

Dissociation�. In: Analytical chemistry 78 (11 June 2006), p. 3788. issn: 00032700.

doi: 10.1021/AC060164J.

[61] Martin R. Larsen et al. �Highly Selective Enrichment of Phosphorylated Peptides

from Peptide Mixtures Using Titanium Dioxide Microcolumns�. In: Molecular &

Cellular Proteomics 4 (7 July 2005), pp. 873�886. issn: 1535-9476. doi: 10.1074/

MCP.T500007-MCP200.

[62] Uma K. Aryal and Andrew R.S. Ross. �Enrichment and analysis of phosphopep-

tides under di�erent experimental conditions using titanium dioxide a�nity chro-

matography and mass spectrometry�. In: Rapid communications in mass spectrom-

etry : RCM 24 (2 Jan. 2010), pp. 219�231. issn: 1097-0231. doi: 10.1002/RCM.

4377.

[63] Tine E Thingholm et al. �SIMAC (Sequential Elution from IMAC), a Phosphopro-

teomics Strategy for the Rapid Separation of Monophosphorylated from Multiply

Phosphorylated Peptides* - S�. In: Molecular and Cellular Proteomics 7 (2008),

pp. 661�671. doi: 10.1074/mcp.M700362-MCP200.

[64] Yeonyee Oh, William L. Franck, and Ralph A. Dean. Sequential Phosphopeptide

Enrichment for Phosphoproteome Analysis of Filamentous Fungi: A Test Case

Using Magnaporthe oryzae. 2018. doi: 10.1007/978-1-4939-8724-5_7.

[65] P. A. Connor and A. J. McQuillan. �Phosphate adsorption onto TiO2 from aqueous

solutions: an in situ internal re�ection infrared spectroscopic study�. In: Langmuir

15 (8 Apr. 1999), pp. 2916�2921. issn: 07437463. doi: 10 . 1021 / LA980894P /

ASSET/IMAGES/LARGE/LA980894PF00008.JPEG.

[66] Lucrece Matheron et al. �Characterization of biases in phosphopeptide enrichment

by Ti 4+-immobilized metal a�nity chromatography and TiO2 using a massive

synthetic library and human cell digests�. In: Analytical Chemistry 86 (16 Aug.

2014), pp. 8312�8320. issn: 15206882. doi: 10.1021/AC501803Z/SUPPL_FILE/

AC501803Z_SI_003.XLSX.

152



[67] Arthur R. Salomon et al. �Pro�ling of tyrosine phosphorylation pathways in hu-

man cells using mass spectrometry�. In: Proceedings of the National Academy of

Sciences of the United States of America 100 (2 Jan. 2003), pp. 443�448. issn:

00278424. doi: 10.1073/PNAS.2436191100/ASSET/B241601E-13E6-46CC-9A60-

4EADB69EEF6D/ASSETS/GRAPHIC/PQ2426191003.JPEG.

[68] Clement M. Potel et al. �Widespread bacterial protein histidine phosphorylation

revealed by mass spectrometry-based proteomics�. In: Nature methods 15 (3 Mar.

2018), pp. 187�190. issn: 1548-7105. doi: 10.1038/NMETH.4580.

[69] Haixing Wang et al. �Development and evaluation of a micro- and nanoscale pro-

teomic sample preparation method�. In: Journal of Proteome Research 4 (6 Nov.

2005), pp. 2397�2403. issn: 15353893. doi: 10.1021/PR050160F/ASSET/IMAGES/

LARGE/PR050160FF00002.JPEG.

[70] Wiebke Maria Nadler et al. �MALDI versus ESI: The Impact of the Ion Source

on Peptide Identi�cation�. In: Journal of Proteome Research 16 (3 Mar. 2017),

pp. 1207�1215. issn: 15353907. doi: 10.1021/ACS.JPROTEOME.6B00805/ASSET/

IMAGES/MEDIUM/PR-2016-008057_0006.GIF.

[71] D. J. Douglas. �Linear quadrupoles in mass spectrometry�. In: Mass spectrometry

reviews 28 (6 Nov. 2009), pp. 937�960. issn: 1098-2787. doi: 10.1002/MAS.20249.

[72] Enrique Calvo et al. �Applying selected reaction monitoring to targeted proteomics�.

In: Expert review of proteomics 8 (2 Apr. 2011), pp. 165�173. issn: 1744-8387. doi:

10.1586/EPR.11.11.

[73] a. D. Mc Naught and a Wilkinson. �Compendium of Chemical Terminology-Gold

Book�. In: Iupac (2012), p. 1670. issn: 0033-4545. doi: 10.1351/goldbook.

[74] Igor V. Chernushevich, Alexander V. Loboda, and Bruce A. Thomson. �An intro-

duction to quadrupole-time-of-�ight mass spectrometry�. In: Journal of mass spec-

trometry : JMS 36 (8 2001), pp. 849�865. issn: 1076-5174. doi: 10.1002/JMS.207.

[75] Roman A. Zubarev and Alexander Makarov. �Orbitrap mass spectrometry�. In:

Analytical Chemistry 85 (11 June 2013), pp. 5288�5296. issn: 00032700. doi: 10.

1021/AC4001223/ASSET/IMAGES/LARGE/AC-2013-001223_0006.JPEG.

153



[76] Adrian Guthals and Nuno Bandeira. �Peptide Identi�cation by Tandem Mass Spec-

trometry with Alternate Fragmentation Modes�. In: Molecular & Cellular Pro-

teomics : MCP 11 (9 Sept. 2012), p. 550. issn: 15359476. doi: 10.1074/MCP.

R112.018556.

[77] Alexander Makarov et al. �Dynamic range of mass accuracy in LTQ Orbitrap hy-

brid mass spectrometer�. In: Journal of the American Society for Mass Spectrom-

etry 17 (7 2006), pp. 977�982. issn: 1044-0305. doi: 10.1016/J.JASMS.2006.03.

006.

[78] Helmut E. Meyer et al. �Massenspektrometrie�. In: Bioanalytik (2022), pp. 359�

414. doi: 10.1007/978-3-662-61707-6_16.

[79] Karsten Michelmann et al. �Fundamentals of trapped ion mobility spectrometry�.

In: Journal of the American Society for Mass Spectrometry 26 (1 2014), pp. 14�24.

issn: 18791123. doi: 10.1007/S13361-014-0999-4/SUPPL_FILE/JS8B04886_SI_

001.DOCX.

[80] James N. Dodds and Erin S. Baker. �Ion Mobility Spectrometry: Fundamental

Concepts, Instrumentation, Applications, and the Road Ahead�. In: Journal of

the American Society for Mass Spectrometry 30 (11 Nov. 2019), p. 2185. issn:

18791123. doi: 10.1007/S13361-019-02288-2.

[81] Catherine G. Vasilopoulou et al. �Trapped ion mobility spectrometry and PASEF

enable in-depth lipidomics from minimal sample amounts�. In: Nature Communica-

tions 2020 11:1 11 (1 Jan. 2020), pp. 1�11. issn: 2041-1723. doi: 10.1038/s41467-

019-14044-x.

[82] Joshua A. Silveira et al. �Parallel accumulation for 100% duty cycle trapped ion

mobility-mass spectrometry�. In: International Journal of Mass Spectrometry 413

(Feb. 2017), pp. 168�175. issn: 1387-3806. doi: 10.1016/J.IJMS.2016.03.004.

[83] Lukas Krasny and Paul H. Huang. �Data-independent acquisition mass spectrom-

etry (DIA-MS) for proteomic applications in oncology�. In: Molecular Omics 17 (1

Feb. 2021), pp. 29�42. issn: 2515-4184. doi: 10.1039/D0MO00072H.

[84] Vadim Demichev et al. �DIA-NN: neural networks and interference correction en-

able deep proteome coverage in high throughput�. In: Nature methods 17 (1 Jan.

2020), pp. 41�44. issn: 1548-7105. doi: 10.1038/S41592-019-0638-X.

154



[85] Alex Bateman et al. �UniProt: the universal protein knowledgebase in 2021�. In:

Nucleic Acids Research 49 (D1 Jan. 2021), pp. D480�D489. issn: 0305-1048. doi:

10.1093/NAR/GKAA1100.

[86] Jürgen Cox and Matthias Mann. �MaxQuant enables high peptide identi�cation

rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quan-

ti�cation�. In: Nature biotechnology 26 (12 Dec. 2008), pp. 1367�1372. issn: 1546-

1696. doi: 10.1038/NBT.1511.

[87] J-rgen Cox et al. �Accurate proteome-wide label-free quanti�cation by delayed nor-

malization and maximal peptide ratio extraction, termed MaxLFQ�. In: Molecular

& cellular proteomics : MCP 13 (9 Sept. 2014), pp. 2513�2526. issn: 1535-9484.

doi: 10.1074/MCP.M113.031591.

[88] Jeremy D. O'Connell et al. �Proteome-Wide Evaluation of Two Common Pro-

tein Quanti�cation Methods�. In: Journal of proteome research 17 (5 May 2018),

p. 1934. issn: 15353907. doi: 10.1021/ACS.JPROTEOME.8B00016.

[89] Andy T. Kong et al. �MSFragger: ultrafast and comprehensive peptide identi�ca-

tion in shotgun proteomics�. In: Nature methods 14 (5 Apr. 2017), p. 513. issn:

15487105. doi: 10.1038/NMETH.4256.

[90] Vadim Demichev et al. �High sensitivity dia-PASEF proteomics with DIA-NN and

FragPipe�. In: bioRxiv (Mar. 2021), p. 2021.03.08.434385. doi: 10.1101/2021.03.

08.434385.

[91] Jing Zhang et al. �PEAKS DB: De Novo Sequencing Assisted Database Search for

Sensitive and Accurate Peptide Identi�cation�. In:Molecular & Cellular Proteomics

: MCP 11 (4 Apr. 2012). issn: 15359476. doi: 10.1074/MCP.M111.010587.

[92] Ana Marcu et al. �Original research: HLA Ligand Atlas: a benign reference of HLA-

presented peptides to improve T-cell-based cancer immunotherapy�. In: Journal for

Immunotherapy of Cancer 9 (4 Apr. 2021), p. 2071. issn: 20511426. doi: 10.1136/

JITC-2020-002071.

[93] Aivett Bilbao et al. �Processing strategies and software solutions for data-independent

acquisition in mass spectrometry�. In: Proteomics 15 (5-6 Mar. 2015), pp. 964�980.

issn: 1615-9861. doi: 10.1002/PMIC.201400323.

155



[94] George Rosenberger et al. �Statistical control of peptide and protein error rates

in large-scale targeted data-independent acquisition analyses�. In: Nature Methods

2017 14:9 14 (9 Aug. 2017), pp. 921�927. issn: 1548-7105. doi: 10.1038/nmeth.

4398.

[95] Ying S. Ting et al. �Peptide-Centric Proteome Analysis: An Alternative Strategy

for the Analysis of Tandem Mass Spectrometry Data�. In: Molecular & Cellular

Proteomics : MCP 14 (9 Sept. 2015), p. 2301. issn: 15359484. doi: 10.1074/MCP.

O114.047035.

[96] Siegfried Gessulat et al. �Prosit: proteome-wide prediction of peptide tandem mass

spectra by deep learning�. In: Nature methods 16 (6 June 2019), pp. 509�518. issn:

1548-7105. doi: 10.1038/S41592-019-0426-7.

[97] Dorte B. Bekker-Jensen et al. �Rapid and site-speci�c deep phosphoproteome pro-

�ling by data-independent acquisition without the need for spectral libraries�. In:

Nature Communications 2020 11:1 11 (1 Feb. 2020), pp. 1�12. issn: 2041-1723.

doi: 10.1038/s41467-020-14609-1.

[98] Ana Martinez-Val et al. �Data Processing and Analysis for DIA-Based Phospho-

proteomics Using Spectronaut�. In: Methods in molecular biology (Clifton, N.J.)

2361 (2021), pp. 95�107. issn: 1940-6029. doi: 10.1007/978-1-0716-1641-3_6.

[99] Brendan MacLean et al. �Skyline: an open source document editor for creating and

analyzing targeted proteomics experiments�. In: Bioinformatics (Oxford, England)

26 (7 Feb. 2010), pp. 966�968. issn: 1367-4811. doi: 10.1093/BIOINFORMATICS/

BTQ054.

[100] Tommi V-likangas, Tomi Suomi, and Laura L. Elo. �A systematic evaluation of nor-

malization methods in quantitative label-free proteomics�. In: Brie�ngs in Bioin-

formatics 19 (1 Jan. 2018), p. 1. issn: 14774054. doi: 10.1093/BIB/BBW095.

[101] Sushma Anand et al. �Label-based and label-free strategies for protein quantita-

tion�. In: Methods in Molecular Biology 1549 (2017), pp. 31�43. issn: 10643745.

doi: 10.1007/978-1-4939-6740-7_4/FIGURES/1.

[102] Jiaming Li et al. �TMTpro-18plex: The Expanded and Complete Set of TMTpro

Reagents for Sample Multiplexing�. In: Journal of Proteome Research 20 (5 May

156



2021), pp. 2964�2972. issn: 15353907. doi: 10.1021/ACS.JPROTEOME.1C00168/

SUPPL_FILE/PR1C00168_SI_005.XLSX.

[103] Bj-rn Schwanhausser et al. �Global quanti�cation of mammalian gene expression

control�. In: Nature 473 (7347 May 2011), pp. 337�342. issn: 1476-4687. doi: 10.

1038/NATURE10098.

[104] Wolfgang Huber et al. �Variance stabilization applied to microarray data cali-

bration and to the quanti�cation of di�erential expression�. In: Bioinformatics

(Oxford, England) 18 Suppl 1 (SUPPL. 1 2002). issn: 1367-4803. doi: 10.1093/

BIOINFORMATICS/18.SUPPL_1.S96.

[105] Stephen J. Callister et al. �Normalization approaches for removing systematic bi-

ases associated with mass spectrometry and label-free proteomics�. In: Journal of

proteome research 5 (2 Feb. 2006), pp. 277�286. issn: 1535-3893. doi: 10.1021/

PR050300L.

[106] Olga Troyanskaya et al. �Missing value estimation methods for DNA microarrays�.

In: Bioinformatics (Oxford, England) 17 (6 2001), pp. 520�525. issn: 1367-4803.

doi: 10.1093/BIOINFORMATICS/17.6.520.

[107] P. Gri�ths and Jack Needleman. �Statistical signi�cance testing and p-values:

Defending the indefensible? A discussion paper and position statement�. In: In-

ternational journal of nursing studies 99 (Nov. 2019). issn: 1873-491X. doi: 10.

1016/J.IJNURSTU.2019.07.001.

[108] Dieter Rasch, Klaus D. Kubinger, and Karl Moder. �The two-sample t test: pre-

testing its assumptions does not pay o��. In: Statistical Papers 2009 52:1 52 (1

Apr. 2009), pp. 219�231. issn: 1613-9798. doi: 10.1007/S00362-009-0224-X.

[109] Prabhaker Mishra et al. �Application of student's t-test, analysis of variance, and

covariance�. In: Annals of cardiac anaesthesia 22 (4 2019), p. 407. issn: 0974-5181.

doi: 10.4103/ACA.ACA_94_19.

[110] Manfei Xu et al. �The Di�erences and Similarities Between Two-Sample T-Test

and Paired T-Test�. In: Shanghai archives of psychiatry 29 (3 June 2017), pp. 184�

188. issn: 1002-0829. doi: 10.11919/J.ISSN.1002-0829.217070.

157



[111] Wolfgang Huber et al. �Orchestrating high-throughput genomic analysis with Bio-

conductor�. In: Nature Methods 2015 12:2 12 (2 Jan. 2015), pp. 115�121. issn:

1548-7105. doi: 10.1038/nmeth.3252.

[112] Michiel P. van Ooijen et al. �Identi�cation of di�erentially expressed peptides

in high-throughput proteomics data�. In: Brie�ngs in Bioinformatics 19 (5 Sept.

2018), pp. 971�981. issn: 1467-5463. doi: 10.1093/BIB/BBX031.

[113] Shi Yi Chen, Zhe Feng, and Xiaolian Yi. �A general introduction to adjustment for

multiple comparisons�. In: Journal of Thoracic Disease 9 (6 June 2017), p. 1725.

issn: 20776624. doi: 10.21037/JTD.2017.05.34.

[114] Yoav Benjamini and Yosef Hochberg. �Controlling the False Discovery Rate: A

Practical and Powerful Approach to Multiple Testing�. In: Journal of the Royal

Statistical Society: Series B (Methodological) 57 (1 Jan. 1995), pp. 289�300. issn:

2517-6161. doi: 10.1111/J.2517-6161.1995.TB02031.X.

[115] Detlef Groth et al. �Principal components analysis�. In: Methods in molecular biol-

ogy (Clifton, N.J.) 930 (2013), pp. 527�547. issn: 1940-6029. doi: 10.1007/978-

1-62703-059-5_22.

[116] Leland McInnes et al. �UMAP: Uniform Manifold Approximation and Projection�.

In: Journal of Open Source Software 3 (29 Sept. 2018), p. 861. issn: 2475-9066.

doi: 10.21105/JOSS.00861.

[117] Laurens Van Der Maaten and Geo�rey Hinton. �Visualizing Data using t-SNE�.

In: Journal of Machine Learning Research 9 (2008), pp. 2579�2605.

[118] Bill Andreopoulos et al. �A roadmap of clustering algorithms: �nding a match for

a biomedical application�. In: Brie�ngs in bioinformatics 10 (3 2009), pp. 297�314.

issn: 1477-4054. doi: 10.1093/BIB/BBN058.

[119] Damian Szklarczyk et al. �The STRING database in 2021: customizable protein-

protein networks, and functional characterization of user-uploaded gene/measurement

sets�. In: Nucleic acids research 49 (D1 Jan. 2021), pp. D605�D612. issn: 1362-

4962. doi: 10.1093/NAR/GKAA1074.

158



[120] Huaiyu Mi, Anushya Muruganujan, and Paul D. Thomas. �PANTHER in 2013:

modeling the evolution of gene function, and other gene attributes, in the context

of phylogenetic trees�. In: Nucleic acids research 41 (Database issue Jan. 2013).

issn: 1362-4962. doi: 10.1093/NAR/GKS1118.

[121] Gabriela Bindea et al. �ClueGO: a Cytoscape plug-in to decipher functionally

grouped gene ontology and pathway annotation networks�. In: Bioinformatics (Ox-

ford, England) 25 (8 2009), pp. 1091�1093. issn: 1367-4811. doi: 10.1093/BIOINFORMATICS/

BTP101.

[122] Peter V. Hornbeck et al. �PhosphoSitePlus, 2014: mutations, PTMs and recalibra-

tions�. In: Nucleic acids research 43 (Database issue Jan. 2015), pp. D512�D520.

issn: 1362-4962. doi: 10.1093/NAR/GKU1267.

[123] Danica D. Wiredja, Mehmet Koyut-rk, and Mark R. Chance. �The KSEA App: a

web-based tool for kinase activity inference from quantitative phosphoproteomics�.

In: Bioinformatics 33 (21 Nov. 2017), pp. 3489�3491. issn: 1367-4803. doi: 10.

1093/BIOINFORMATICS/BTX415.

[124] Robin Beekhof et al. �INKA, an integrative data analysis pipeline for phospho-

proteomic inference of active kinases�. In: Molecular Systems Biology 15 (4 Apr.

2019), e8250. issn: 1744-4292. doi: 10.15252/MSB.20188250.

[125] -zg-n Babur et al. �Causal interactions from proteomic pro�les: Molecular data

meet pathway knowledge�. In: Patterns 2 (6 June 2021), p. 100257. issn: 26663899.

doi: 10.1016/J.PATTER.2021.100257/ATTACHMENT/BA851778- 043C- 4584-

A133-AA7E8DB52474/MMC4.XLSX.

[126] Andrew J. Alpert. �Electrostatic repulsion hydrophilic interaction chromatography

for isocratic separation of charged solutes and selective isolation of phosphopep-

tides�. In: Analytical Chemistry 80 (1 Jan. 2008), pp. 62�76. issn: 00032700. doi:

10.1021/AC070997P/ASSET/IMAGES/LARGE/AC070997PF00021.JPEG.

[127] Shujiro Okuda et al. �jPOSTrepo: an international standard data repository for

proteomes�. In: Nucleic acids research 45 (D1 Jan. 2017), pp. D1107�D1111. issn:

1362-4962. doi: 10.1093/NAR/GKW1080.

159



[128] Juan A. Vizca-no et al. �ProteomeXchange provides globally coordinated pro-

teomics data submission and dissemination�. In: Nature Biotechnology 2014 32:3

32 (3 Mar. 2014), pp. 223�226. issn: 1546-1696. doi: 10.1038/nbt.2839.

[129] Carol A. Munro. �Chitin and Glucan, the Yin and Yang of the Fungal Cell Wall,

Implications for Antifungal Drug Discovery and Therapy�. In: Advances in Applied

Microbiology 83 (Jan. 2013), pp. 145�172. issn: 0065-2164. doi: 10.1016/B978-

0-12-407678-5.00004-0.

[130] Jennifer L. Proc et al. �A quantitative study of the e�ects of chaotropic agents,

surfactants, and solvents on the digestion e�ciency of human plasma proteins by

trypsin�. In: Journal of proteome research 9 (10 Oct. 2010), pp. 5422�5437. issn:

1535-3907. doi: 10.1021/PR100656U.

[131] Paula Monteiro de Souza et al. �A biotechnology perspective of fungal proteases�.

In: Brazilian Journal of Microbiology 46 (2 June 2015), p. 337. issn: 16784405.

doi: 10.1590/S1517-838246220140359.

[132] Juri Rappsilber, Matthias Mann, and Yasushi Ishihama. �Protocol for micro-puri�cation,

enrichment, pre-fractionation and storage of peptides for proteomics using StageTips�.

In: Nature protocols 2 (8 Aug. 2007), pp. 1896�1906. issn: 1750-2799. doi: 10.

1038/NPROT.2007.261.

[133] Dennis A Dougherty. �The Cation� Interaction�. In: Acc Chem Res 46 (4 2013),

pp. 885�893. doi: 10.1021/ar300265y.

[134] Eric D. Glendening and Frank Weinhold. �Pauling-s Conceptions of Hybridiza-

tion and Resonance in Modern Quantum Chemistry�. In: Molecules 2021, Vol.

26, Page 4110 26 (14 July 2021), p. 4110. issn: 1420-3049. doi: 10 . 3390 /

MOLECULES26144110.

[135] Ewelina Eckert, Fatemeh Bamdad, and Lingyun Chen. �Metal solubility enhanc-

ing peptides derived from barley protein�. In: Food Chemistry 159 (Sept. 2014),

pp. 498�506. issn: 0308-8146. doi: 10.1016/J.FOODCHEM.2014.03.061.

[136] Jordy J. Hsiao et al. �Improved LC/MSMethods for the Analysis of Metal-Sensitive

Analytes Using Medronic Acid as a Mobile Phase Additive�. In: Analytical chem-

istry 90 (15 Aug. 2018), pp. 9457�9464. issn: 1520-6882. doi: 10.1021/ACS.

ANALCHEM.8B02100.

160



[137] Robert E. Birdsall et al. �Application of mobile phase additives to reduce metal-ion

mediated adsorption of non-phosphorylated peptides in RPLC/MS-based assays�.

In: Journal of chromatography. B, Analytical technologies in the biomedical and

life sciences 1126-1127 (Sept. 2019). issn: 1873-376X. doi: 10.1016/J.JCHROMB.

2019.121773.

[138] Martin R. Larsen et al. �Improved detection of hydrophilic phosphopeptides using

graphite powder microcolumns and mass spectrometry: evidence for in vivo doubly

phosphorylated dynamin I and dynamin III�. In: Molecular & cellular proteomics :

MCP 3 (5 May 2004), pp. 456�465. issn: 1535-9476. doi: 10.1074/MCP.M300105-

MCP200.

[139] Stoyan Stoychev. Magnetic HILIC: An enabling & versatile tool for robust auto-

mated MS sample preparation work. 2018.

[140] Andrew J. Alpert, Otto Hudecz, and Karl Mechtler. �Anion-exchange chromatog-

raphy of phosphopeptides: Weak anion exchange versus strong anion exchange and

anion-exchange chromatography versus electrostatic repulsion-hydrophilic interac-

tion chromatography�. In: Analytical Chemistry 87 (9 May 2015), pp. 4704�4711.

issn: 15206882. doi: 10.1021/AC504420C/ASSET/IMAGES/LARGE/AC- 2014-

04420C_0008.JPEG.

[141] Mark A. Strege. �Hydrophilic interaction chromatography-electrospray mass spec-

trometry analysis of polar compounds for natural product drug discovery�. In:

Analytical chemistry 70 (13 July 1998), pp. 2439�2445. issn: 0003-2700. doi:

10.1021/AC9802271.

[142] Yusi Cui et al. �Counterion Optimization Dramatically Improves Selectivity for

Phosphopeptides and Glycopeptides in Electrostatic Repulsion-Hydrophilic Inter-

action Chromatography�. In: Analytical Chemistry 93 (22 June 2021), pp. 7908�

7916. issn: 15206882. doi: 10.1021/ACS.ANALCHEM.1C00615/ASSET/IMAGES/

LARGE/AC1C00615_0007.JPEG.

[143] Kyung Cho Cho et al. �Developing Work�ow for Simultaneous Analyses of Phos-

phopeptides and Glycopeptides�. In: ACS Chemical Biology 14 (1 Jan. 2019),

pp. 58�66. issn: 15548937. doi: 10.1021/ACSCHEMBIO.8B00902/SUPPL_FILE/

CB8B00902_SI_004.XLSX.

161



[144] Qi Lu et al. �High-E�ciency Phosphopeptide and Glycopeptide Simultaneous En-

richment by Hydrogen Bond-based Bifunctional Smart Polymer�. In: Analytical

chemistry 92 (9 May 2020), pp. 6269�6277. issn: 1520-6882. doi: 10.1021/ACS.

ANALCHEM.9B02643.

[145] Yusi Cui et al. �Finding the Sweet Spot in ERLIC Mobile Phase for Simultaneous

Enrichment of N-Glyco and Phosphopeptides�. In: Journal of the American Society

for Mass Spectrometry 30 (12 Dec. 2019), pp. 2491�2501. issn: 18791123. doi:

10.1007/S13361-019-02230-6/FIGURES/4.

[146] Reta Birhanu Kitata et al. �A data-independent acquisition-based global phospho-

proteomics system enables deep pro�ling�. In: Nature Communications 2021 12:1

12 (1 May 2021), pp. 1�14. issn: 2041-1723. doi: 10.1038/s41467-021-22759-z.

[147] Roland Bruderer et al. �Optimization of Experimental Parameters in Data-Independent

Mass Spectrometry Signi�cantly Increases Depth and Reproducibility of Results�.

In: Molecular & cellular proteomics : MCP 16 (12 Dec. 2017), pp. 2296�2309. issn:

1535-9484. doi: 10.1074/MCP.RA117.000314.

[148] Jesper V. Olsen et al. �Global, In Vivo, and Site-Speci�c Phosphorylation Dynam-

ics in Signaling Networks�. In: Cell 127 (3 Nov. 2006), pp. 635�648. issn: 00928674.

doi: 10.1016/J.CELL.2006.09.026/ATTACHMENT/5BA60E23-CFB8-4412-A1A4-

891107A3D788/MMC2.XLS.

[149] Qijun Zhao et al. �Proteomic analysis reveals that naturally produced citral can

signi�cantly disturb physiological and metabolic processes in the rice blast fungus

Magnaporthe oryzae�. In: Pesticide Biochemistry and Physiology 175 (June 2021),

p. 104835. issn: 0048-3575. doi: 10.1016/J.PESTBP.2021.104835.

[150] Jaclyn Gowen Kalmar et al. �Comparative Proteomic Analysis of Wild Type and

Mutant Lacking an SCF E3 Ligase F-Box Protein in Magnaporthe oryzae�. In:

Journal of proteome research 19 (9 Sept. 2020), pp. 3761�3768. issn: 1535-3907.

doi: 10.1021/ACS.JPROTEOME.0C00294.

[151] Veit Schw-mmle, Ileana Rodr-guez Le-n, and Ole N-rregaard Jensen. �Assessment

and improvement of statistical tools for comparative proteomics analysis of sparse

data sets with few experimental replicates�. In: Journal of proteome research 12 (9

Sept. 2013), pp. 3874�3883. issn: 1535-3907. doi: 10.1021/PR400045U.

162



[152] Gordon K. Smyth, Jo-lle Michaud, and Hamish S. Scott. �Use of within-array

replicate spots for assessing di�erential expression in microarray experiments�. In:

Bioinformatics (Oxford, England) 21 (9 May 2005), pp. 2067�2075. issn: 1367-

4803. doi: 10.1093/BIOINFORMATICS/BTI270.

[153] Giulia Mantini et al. �Computational Analysis of Phosphoproteomics Data in

Multi-Omics Cancer Studies�. In: PROTEOMICS 21 (3-4 Feb. 2021), p. 1900312.

issn: 1615-9861. doi: 10.1002/PMIC.201900312.

[154] Scott P. Lyons et al. �Proteomics and phosphoproteomics datasets of a muscle-

speci�c STIM1 loss-of-function mouse model�. In: Data in Brief 42 (June 2022),

p. 108051. issn: 2352-3409. doi: 10.1016/J.DIB.2022.108051.

[155] Aaron J. Storey et al. �ProteoViz: a tool for the analysis and interactive visualiza-

tion of phosphoproteomics data�. In: Molecular Omics 16 (4 Aug. 2020), pp. 316�

326. issn: 25154184. doi: 10.1039/C9MO00149B.

[156] Mingyi Liu and Ashok Dongre. �Proper imputation of missing values in proteomics

datasets for di�erential expression analysis�. In: Brie�ngs in bioinformatics 22 (3

May 2021). issn: 1477-4054. doi: 10.1093/BIB/BBAA112.

[157] Hassan Dihazi, Renate Kessler, and Klaus Eschrich. �High osmolarity glycerol

(HOG) pathway-induced phosphorylation and activation of 6-phosphofructo-2-kinase

are essential for glycerol accumulation and yeast cell proliferation under hyperos-

motic stress�. In: The Journal of biological chemistry 279 (23 June 2004), pp. 23961�

23968. issn: 0021-9258. doi: 10.1074/JBC.M312974200.

[158] Douglas Steinley. �K-means clustering: a half-century synthesis�. In: The British

journal of mathematical and statistical psychology 59 (Pt 1 May 2006), pp. 1�34.

issn: 0007-1102. doi: 10.1348/000711005X48266.

[159] Martin Ester et al. �A Density-Based Algorithm for Discovering Clusters in Large

Spatial Databases with Noise�. In: (1996).

[160] Natalia A. Petushkova et al. �Applying of hierarchical clustering to analysis of

protein patterns in the human cancer-associated liver�. In: PloS one 9 (8 Aug.

2014). issn: 1932-6203. doi: 10.1371/JOURNAL.PONE.0103950.

163



[161] Alexander Muir et al. �Down-regulation of TORC2-Ypk1 signaling promotes MAPK-

independent survival under hyperosmotic stress�. In: eLife 4 (AUGUST2015 Aug.

2015). issn: 2050084X. doi: 10.7554/ELIFE.09336.

[162] Susumu Morigasaki et al. �Modulation of TOR complex 2 signaling by the stress-

activated MAPK pathway in �ssion yeast�. In: Journal of cell science 132 (19 Oct.

2019). issn: 1477-9137. doi: 10.1242/JCS.236133.

[163] Alexander Muir et al. �TORC2-dependent protein kinase Ypk1 phosphorylates

ceramide synthase to stimulate synthesis of complex sphingolipids�. In: eLife 3

(2014). issn: 2050-084X. doi: 10.7554/ELIFE.03779.

[164] Mervi H. Toivari et al. �Metabolic engineering of Saccharomyces cerevisiae for

conversion of D-glucose to xylitol and other �ve-carbon sugars and sugar alcohols�.

In: Applied and environmental microbiology 73 (17 Sept. 2007), pp. 5471�5476.

issn: 0099-2240. doi: 10.1128/AEM.02707-06.

[165] William L. Franck et al. �Phosphoproteome Analysis Links Protein Phosphoryla-

tion to Cellular Remodeling and Metabolic Adaptation during Magnaporthe oryzae

Appressorium Development�. In: Journal of proteome research 14 (6 June 2015),

pp. 2408�2424. issn: 1535-3907. doi: 10.1021/PR501064Q.

[166] Mark O. Collins, Lu Yu, and Jyoti S. Choudhary. �Analysis of protein phosphory-

lation on a proteome-scale�. In: PROTEOMICS 7 (16 Aug. 2007), pp. 2751�2768.

issn: 1615-9861. doi: 10.1002/PMIC.200700145.

[167] Matthias Blazek et al. �Analysis of fast protein phosphorylation kinetics in single

cells on a micro�uidic chip�. In: Lab on a chip 15 (3 Feb. 2015), pp. 726�734. issn:

1473-0189. doi: 10.1039/C4LC00797B.

[168] Daniel R. Pentland et al. �Ras signalling in pathogenic yeasts�. In: Microbial Cell

5 (2 Feb. 2017), p. 63. issn: 23112638. doi: 10.15698/MIC2018.02.612.

[169] Xia Yan and Nicholas J. Talbot. �Investigating the cell biology of plant infection

by the rice blast fungus Magnaporthe oryzae�. In: Current opinion in microbiology

34 (Dec. 2016), pp. 147�153. issn: 1879-0364. doi: 10.1016/J.MIB.2016.10.001.

164



[170] Tengsheng Zhou et al. �The glycogen synthase kinase MoGsk1, regulated by Mps1

MAP kinase, is required for fungal development and pathogenicity in Magnaporthe

oryzae�. In: Scienti�c reports 7 (1 Dec. 2017). issn: 2045-2322. doi: 10.1038/

S41598-017-01006-W.

[171] Diane O. Inglis and Gavin Sherlock. �Ras Signaling Gets Fine-Tuned: Regulation

of Multiple Pathogenic Traits of Candida albicans�. In: Eukaryotic Cell 12 (10 Oct.

2013), p. 1316. issn: 15359778. doi: 10.1128/EC.00094-13.

[172] Sara Manzanares-Estreder et al. �Multilayered control of peroxisomal activity upon

salt stress in Saccharomyces cerevisiae�. In: Molecular microbiology 104 (5 June

2017), pp. 851�868. issn: 1365-2958. doi: 10.1111/MMI.13669.

[173] Amparo Pascual-Ahuir et al. �Ask yeast how to burn your fats: lessons learned

from the metabolic adaptation to salt stress�. In: Current genetics 64 (1 Feb.

2018), pp. 63�69. issn: 1432-0983. doi: 10.1007/S00294-017-0724-5.

[174] Carmen Herrero-de-dios et al. �Hog1 Controls Lipids Homeostasis Upon Osmotic

Stress in Candida albicans�. In: Journal of fungi (Basel, Switzerland) 6 (4 Dec.

2020), pp. 1�13. issn: 2309-608X. doi: 10.3390/JOF6040355.

[175] E. Thines, R. W.S. Weber, and N. J. Talbot. �MAP kinase and protein kinase A-

dependent mobilization of triacylglycerol and glycogen during appressorium turgor

generation by Magnaporthe grisea�. In: The Plant cell 12 (9 2000), pp. 1703�1718.

issn: 1040-4651. doi: 10.1105/TPC.12.9.1703.

[176] Yeonyee Oh et al. �Transcriptome analysis reveals new insight into appressorium

formation and function in the rice blast fungus Magnaporthe oryzae�. In: Genome

biology 9 (5 May 2008). issn: 1474-760X. doi: 10.1186/GB-2008-9-5-R85.

[177] Michael J. Kershaw et al. �Conidial Morphogenesis and Septin-Mediated Plant

Infection Require Smo1, a Ras GTPase-Activating Protein in Magnaporthe oryzae�.

In: Genetics 211 (1 Jan. 2019), pp. 151�167. issn: 1943-2631. doi: 10.1534/

GENETICS.118.301490.

[178] Xuan Cai et al. �Deubiquitinase Ubp3 regulates ribophagy and deubiquitinates

Smo1 for appressorium-mediated infection by Magnaporthe oryzae�. In: Molecular

plant pathology 23 (6 June 2022), pp. 832�844. issn: 1364-3703. doi: 10.1111/

MPP.13196.

165



[179] Roy Auty et al. �Puri�cation of active TFIID from Saccharomyces cerevisiae. Ex-

tensive promoter contacts and co-activator function�. In: The Journal of biological

chemistry 279 (48 Nov. 2004), pp. 49973�49981. issn: 0021-9258. doi: 10.1074/

JBC.M409849200.

[180] Carme Sol- et al. �Control of Ubp3 ubiquitin protease activity by the Hog1 SAPK

modulates transcription upon osmostress�. In: The EMBO journal 30 (16 Aug.

2011), pp. 3274�3284. issn: 1460-2075. doi: 10.1038/EMBOJ.2011.227.

[181] Shengpei Zhang et al. �System-Wide Characterization of MoArf GTPase Family

Proteins and Adaptor Protein MoGga1 Involved in the Development and Pathogenic-

ity of Magnaporthe oryzae�. In: mBio 10 (5 2019). issn: 2150-7511. doi: 10.1128/

MBIO.02398-19.

[182] Ruth Kabeche et al. �Eisosomes Regulate Phosphatidylinositol 4,5-Bisphosphate

(PI(4,5)P2) Cortical Clusters and Mitogen-activated Protein (MAP) Kinase Sig-

naling upon Osmotic Stress�. In: The Journal of biological chemistry 290 (43 Oct.

2015), pp. 25960�25973. issn: 1083-351X. doi: 10.1074/JBC.M115.674192.

[183] Runmin Wei et al. �Missing Value Imputation Approach for Mass Spectrometry-

based Metabolomics Data�. In: Scienti�c reports 8 (1 Dec. 2018). issn: 2045-2322.

doi: 10.1038/S41598-017-19120-0.

[184] Gouji Toyokawa and Takashi Seto. �Updated Evidence on the Mechanisms of Resis-

tance to ALK Inhibitors and Strategies to Overcome Such Resistance: Clinical and

Preclinical Data�. In: Oncology research and treatment 38 (6 June 2015), pp. 291�

298. issn: 2296-5262. doi: 10.1159/000430852.

[185] Leonidas C. Platanias et al. �The type I interferon receptor mediates tyrosine phos-

phorylation of insulin receptor substrate 2�. In: The Journal of biological chemistry

271 (1 Jan. 1996), pp. 278�282. issn: 0021-9258. doi: 10.1074/JBC.271.1.278.

[186] Ruey Hwa Chen et al. �Interleukin-6 inhibits transforming growth factor-beta-

induced apoptosis through the phosphatidylinositol 3-kinase/Akt and signal trans-

ducers and activators of transcription 3 pathways�. In: The Journal of biological

chemistry 274 (33 Aug. 1999), pp. 23013�23019. issn: 0021-9258. doi: 10.1074/

JBC.274.33.23013.

166



[187] G. Joshi-Tope et al. �Reactome: a knowledgebase of biological pathways�. In: Nu-

cleic acids research 33 (Database issue Jan. 2005). issn: 1362-4962. doi: 10.1093/

NAR/GKI072.

[188] Thomas Kelder et al. �Mining biological pathways using WikiPathways web ser-

vices�. In: PloS one 4 (7 July 2009). issn: 1932-6203. doi: 10.1371/JOURNAL.

PONE.0006447.

[189] Hiroyuki Ogata et al. �Computation with the KEGG pathway database�. In: Bio

Systems 47 (1-2 June 1998), pp. 119�128. issn: 0303-2647. doi: 10.1016/S0303-

2647(98)00017-3.

[190] Matteo Parri and Paola Chiarugi. �Rac and Rho GTPases in cancer cell motility

control�. In: Cell Communication and Signaling 2010 8:1 8 (1 Sept. 2010), pp. 1�

14. issn: 1478-811X. doi: 10.1186/1478-811X-8-23.

[191] Yingyue Lou et al. �Role of RhoC in cancer cell migration�. In: Cancer Cell In-

ternational 2021 21:1 21 (1 Oct. 2021), pp. 1�16. issn: 1475-2867. doi: 10.1186/

S12935-021-02234-X.

[192] Moredreck Chibi et al. �RBBP6 Interacts with Multifunctional Protein YB-1 through

Its RING Finger Domain, Leading to Ubiquitination and Proteosomal Degradation

of YB-1�. In: Journal of Molecular Biology 384 (4 Dec. 2008), pp. 908�916. issn:

0022-2836. doi: 10.1016/J.JMB.2008.09.060.

[193] Ki Hyuk Shin et al. �Heterogeneous nuclear ribonucleoprotein G shows tumor

suppressive e�ect against oral squamous cell carcinoma cells�. In: Clinical cancer

research : an o�cial journal of the American Association for Cancer Research 12

(10 May 2006), pp. 3222�3228. issn: 1078-0432. doi: 10.1158/1078-0432.CCR-

05-2656.

[194] Dong Wan Kim et al. �Intracranial and whole-body response of ceritinib in ALK

inhibitor-na-ve and previously ALK inhibitor-treated patients with ALK-rearranged

non-small-cell lung cancer (NSCLC): updated results from the phase 1, multicentre,

open-label ASCEND-1 trial�. In: The Lancet. Oncology 17 (4 Apr. 2016), p. 452.

issn: 14745488. doi: 10.1016/S1470-2045(15)00614-2.

167



[195] Joost C.M. Uitdehaag et al. �Combined cellular and biochemical pro�ling to iden-

tify predictive drug response biomarkers for kinase inhibitors approved for clinical

use between 2013 and 2017�. In: Molecular Cancer Therapeutics 18 (2 Feb. 2019),

pp. 470�481. issn: 15388514. doi: 10.1158/1535-7163.MCT-18-0877/87367/AM/

COMBINED-CELLULAR-AND-BIOCHEMICAL-PROFILING-TO.

[196] Yukiya Sako et al. �Development of an orally available inhibitor of CLK1 for

skipping a mutated dystrophin exon in Duchenne muscular dystrophy�. In: Sci-

enti�c Reports 2017 7:1 7 (1 May 2017), pp. 1�9. issn: 2045-2322. doi: 10.1038/

srep46126.

[197] Fred M. Moeslein, Michael P. Myers, and Gary E. Landreth. �The CLK family

kinases, CLK1 and CLK2, phosphorylate and activate the tyrosine phosphatase,

PTP-1B�. In: The Journal of biological chemistry 274 (38 Sept. 1999), pp. 26697�

26704. issn: 0021-9258. doi: 10.1074/JBC.274.38.26697.

[198] Luis E. Arias-Romero et al. �Activation of Src by Protein Tyrosine Phosphatase-1B

is required for ErbB2 transformation of human breast epithelial cells�. In: Cancer

research 69 (11 June 2009), p. 4582. issn: 00085472. doi: 10.1158/0008-5472.

CAN-08-4001.

[199] Christopher D. Chouinard et al. �Improved Sensitivity and Separations for Phos-

phopeptides using Online Liquid Chromotography Coupled with Structures for

Lossless Ion Manipulations Ion Mobility-Mass Spectrometry�. In: Analytical Chem-

istry 90 (18 Sept. 2018), pp. 10889�10896. issn: 15206882. doi: 10.1021/ACS.

ANALCHEM.8B02397/ASSET/IMAGES/LARGE/AC-2018-023979_0005.JPEG.

[200] Kosuke Ogata, Chih Hsiang Chang, and Yasushi Ishihama. �E�ect of Phosphory-

lation on the Collision Cross Sections of Peptide Ions in Ion Mobility Spectrome-

try�. In: Mass Spectrometry 10 (1 2021), pp. 1�8. issn: 21865116. doi: 10.5702/

MASSSPECTROMETRY.A0093.

168



6 Supplementary data

Table 6.1: Variable window sizes for DIA acquisition with Orbitrap Exploris 480. Applied
for the DIA data acquisition of the M.oryzae osmostress resource
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Figure 6.1: Example chromatograms of 25µg mouse brain phosphopeptides after enrich-
ment A) without desalting B) after SePak tC18 desalting C) after Oasis HLB desalting
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Figure 6.2: Gene ontology enrichment networks for each cluster of temporal proteome
response of wild type M.oryzae during the time course of 24h after osmotic stress.
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Figure 6.3: Gene ontology enrichment networks for each cluster of temporal phosphopep-
tide response (1/2) of wild type M.oryzae during the time course of 24h after osmotic
stress.
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Figure 6.4: Gene ontology enrichment networks for each cluster of temporal phosphopep-
tide response (2/2) of wild type M.oryzae during the time course of 24h after osmotic
stress.
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Figure 6.5: Volcano plots of temporal changes in proteome of the irreversibly adapted
Hog1 deletion mutant during the time course of 24h after osmotic stress.
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Figure 6.6: Gene ontology enrichment networks for each cluster of temporal proteome
response in the adapted Hog1 deletion mutant during the time course of 24h after osmotic
stress.
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Figure 6.7: Volcano plots of temporal changes in phosphopeptides of the irreversibly
adapted Hog1 deletion mutant during the time course of 24h after osmotic stress.
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Figure 6.8: Gene ontology enrichment networks for each cluster of temporal phosphopep-
tide response in the adapted Hog1 deletion mutant (1/2) during the time course of 24h
after osmotic stress.
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Figure 6.9: Gene ontology enrichment networks for each cluster of temporal phosphopep-
tide response in the adapted Hog1 deletion mutant (2/2) during the time course of 24h
after osmotic stress.
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Figure 6.10: Volcano plots of temporal changes in proteome of the Hog1 deletion mutant
(not adapted) during the time course of 24h after osmotic stress.
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Figure 6.11: GO enrichment of proteome changes of the Hog1 deletion mutant (not
adapted) during the time course of 24h after osmotic stress.
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Figure 6.12: Volcano plots of temporal changes in phosphoprotein of the Hog1 deletion
mutant (not adapted) during the time course of 24h after osmotic stress.

Figure 6.13: GO enrichment of phosphoprotein changes of the Hog1 deletion mutant (not
adapted) during the time course of 24h after osmotic stress.
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Figure 6.14: Volcano plots of temporal changes in proteome of the Hog1 deletion mutant
(reversibly adapted) during the time course of 24h after osmotic stress.
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Figure 6.15: GO enrichment of proteome changes of the Hog1 deletion mutant (reversibly
adapted) during the time course of 24h after osmotic stress.
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Figure 6.16: Volcano plots of temporal changes in phosphoprotein of the Hog1 deletion
mutant (reversibly adapted) during the time course of 24h after osmotic stress.
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Figure 6.17: GO enrichment of phosphoprotein changes of the Hog1 deletion mutant
(reversibly adapted) during the time course of 24h after osmotic stress.
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Figure 6.18: Normalized histograms of co-eluting isobaric phosphopeptide isomers en-
riched from 24µg human osteosarcoma cells with co-elution (red) and separated (blue) in
ion mobility.
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