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Abstract

The determination of the absolute configuration (AC) of an organic molecule

is still a challenging task for which the combination of spectroscopic with

quantum-mechanical methods has become a promising approach. In this

study, we investigated the accuracy of DFT methods (480 overall combinations

of 15 functionals, 16 basis sets, and 2 solvation models) to calculate the VCD

spectra of six chiral organic molecules in order to benchmark their capability

to facilitate the determination of the AC.
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1 | INTRODUCTION

In 1874, van't Hoff included the spatial configuration of
aliphatic carbon atoms into organic structural formulae.1

The first experiments to determine the absolute configu-
ration (AC) of an organic molecule were reported by
Bijvoet et al. not earlier than 1951. These authors used X-
rays, more precisely zirconium Kα radiation, to assign the
configuration of sodium rubidium tartrate using anoma-
lous dispersion. Thereby, they confirmed Fischer's
convention, who had previously ascribed the correct AC
to L-(+)-tartaric acid.2

The correct determination of the AC of organic mole-
cules is crucial to many areas such as asymmetric cataly-
sis, natural product total synthesis, or pharmaceutical
applications. Circular dichroism (CD) is one of the
chirality-sensitive optical properties of molecules and can

be exploited in combination with quantum-mechanical
calculations for the assignment of the AC while no chem-
ical derivatization or reference system is needed.3,4 This
phenomenon is based on the differential absorption of
left- and right-circularly polarized light by a given mole-
cule, resulting in mirror image CD spectra of a pair of
enantiomers.5 The visible–ultraviolet spectral region is
used for electronic CD (ECD) as higher energy photons
cause electronic excitations (e.g., n ! π* or π ! π*)
whereas irradiation in the infrared (IR) region leads to
vibrational excitations, enabling the measurement of
vibrational CD (VCD) spectra.6

An ECD spectrum in liquid phase was first recorded
by Cotton in 1895, while it took almost a further century
until the first VCD measurements were reported.7,8 The
latter was measured by Holzwarth et al. in 1974 and a
year later was confirmed independently by Nafie et al.9,10

For these measurements, crystallization of the sample
and the presence of heavy atoms was not requiredJ. Groß and Dr. J. Kühlborn contributed equally.

Received: 30 January 2023 Revised: 2 May 2023 Accepted: 3 May 2023

DOI: 10.1002/chir.23580

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided

the original work is properly cited.

© 2023 The Authors. Chirality published by Wiley Periodicals LLC.

Chirality. 2023;35:753–765. wileyonlinelibrary.com/journal/chir 753

https://orcid.org/0000-0002-3266-4050
mailto:opatz@uni-mainz.de
https://doi.org/10.1002/chir.23580
http://creativecommons.org/licenses/by/4.0/
http://wileyonlinelibrary.com/journal/chir
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fchir.23580&domain=pdf&date_stamp=2023-05-25


anymore. VCD is normally measured for neat liquid or
solution samples but can also be measured in the gas
phase and in the solid phase.6

While the sensitivity of ECD is two orders of magni-
tude higher compared with VCD (resulting in a smaller
amount of the sample being required), the compound of
interest needs to have a chromophore close to a stereo-
genic center or another stereogenic element so that ECD
spectroscopy can safely be applied. In contrast, VCD is
even suitable for saturated hydrocarbons. In combination
with Raman optical activity spectroscopy, these three
chiroptical spectroscopies can usefully complement each
other and offer specific advantages in the investigation of
various stereochemical aspects.3,6,11–16

The simulation of VCD spectra requires suitable
quantum-mechanical methods to calculate the vibra-
tional rotational strengths. While the magnetic dipole
transition moments contribute to them, the calculation is
not possible within the Born–Oppenheimer
(BO) approximation.17 In the late 20th century, several
ad hoc approaches were proposed (e.g., the fixed partial
charge model,18 a coupled oscillator model,19 or a local-
ized molecular orbital model20) but none of these proved
to be generally useful.21 Stephens reported in 1985 a solu-
tion for the calculation of magnetic dipole transition
moments of vibrational transitions and subsequently, the
first predicted VCD spectra at DFT level in 1994.17,22

Until today, analytical derivative methods23,24 in combi-
nation with gauge-invariant atomic orbital (GIAO) basis
sets are applied for the prediction of vibrational rota-
tional strengths by the calculation of the harmonic force
field (HFF), the atomic polar tensors (APTs), and the
atomic axial tensors (AATs) in a cost-efficient and accu-
rate manner using DFT.25–27

Although visual comparison of measured and calcu-
lated VCD curves is often sufficient to decide on the cor-
rect AC, a quantitative comparison relies on the use of
algorithms and computer programs.28,29 In 2010, one of
the first methods was published by Shen et al.
(SimVCD),30 followed by the freely available software
CDSpecTech by Covington and Polavarapu29 and SpecDis
by Bruhn et al.3,31 The latter was developed initially for
the comparison of experimental and calculated UV and
ECD curves but was then extended to cover IR and VCD
as well. The similarity factors f and f* (enantiomeric f )
were introduced to quantify the degree of matching of
two curves (in this case experimental and calculated
IR/VCD spectra) within a given range of wavelengths.
Their values reach from 0 to 1, with 1 representing an
ideal match. The absolute value of their difference
(jf � f*j) of the similarity factors of both enantiomers
is called the Δ-value or enantiomeric similarity index
(ESI), introduced by Bultinck et al.,3,32–34 and serves

as a useful measure to differentiate between two
enantiomers.

The calculation of a sufficient number of excited
states is necessary for ECD prediction of the whole range
of the experimental spectrum,3 for which the time-
dependent density functional theory (TD-DFT) method
may be very cost effective.35 A computational flowchart
was presented by Bruhn et al. for the AC determination
by ECD including conformational analysis, optimization
of the geometries, solvent effects and Boltzmann weight-
ing.36 This general procedure can also be adapted to
VCD, where the DFT level of theory is sufficient for the
calculation of vibrational rotational strengths to simulate
the spectra (see the Supporting Information).25 To
achieve more accurate predictions and avoid arbitrary
wavenumber shifts, anharmonic corrections at the
second-order level of vibrational perturbation theory
(VPT2)37 can be applied, which have been successfully
demonstrated for small molecules in recent years.38,39 By
applying the generalized VPT2 approach, Fusè et al.
were able to compare experimental IR and VCD spectra
with predicted spectra in the range of 900–9000 cm�1

including the fundamental and overtone CH-stretching
regions and the mid-IR region.40 Despite the increased
computational costs, a perfect match has not yet
been accomplished, and most AC determinations of
flexible or larger molecules still rely on the calculation of
harmonic spectra. Suitable programs for quantum-
mechanical calculations are, among others, the
Amsterdam Modeling Suite,41 Dalton,42 Gaussian,43 and
TURBOMOLE.44

The reader should bear in mind that AC determina-
tion is still not a black-box method and every computa-
tional method is prone to error.45 For detailed
information about the various methods of VCD spectra
calculation, the quantum-mechanical theory behind
them, MD simulations for the explicit description of sol-
vent effects, and the transfer to machine learning
methods, the reader shall be referred to the existing liter-
ature.17,21,25,46–54

2 | AIM OF THE CONDUCTED
RESEARCH

The proposed procedure is analogous to that published
by Pescitelli and Bruhn (summarized in Figure 1).36

1. A conformational search needs to be performed, ide-
ally on a low-cost computational level (e.g., MMFF55

or AM156/PM6).57 The main goal in this step is to
obtain as many conformers as possible for a precise
description of the conformational ensemble.
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2. A geometry optimization for each molecule from the
obtained ensemble at DFT level with a given combina-
tion of functional/basis set/solvation model is the sec-
ond step. Depending on the computational resources
available, either a threshold can be applied to restrict
the low-energy conformers, or every conformer can be
kept until the Boltzmann weighting (Step 4).

3. Subsequently, an energy and frequency calculation
must be performed for the optimized structures with
the same method used for the geometry optimization.
With the latter, true energy minima for each con-
former can be confirmed by frequency analysis. Also,
the desired vibrational rotational strengths for the pre-
diction of the spectra are calculated in this step.

4. A Boltzmann weighting based on the calculated ener-
gies needs to be performed for the conformer ensem-
ble. This can be either done manually or with suitable
programs (e.g., SpecDis).

5. Now, the theoretical spectra can be plotted by convert-
ing the calculated vibrational frequencies, dipole
strengths and rotational strengths into Lorentzian line
shape functions.11,58 Together with the previously
obtained population-weighting factors, an averaged
and Boltzmann-weighted IR and VCD spectrum can
be generated.

6. In the last step, the obtained spectra are compared
with the experimental spectra in a given wavelength
region. For the best overlap, the scaling factor
(to compensate a general frequency shift of the calcu-
lated spectra)58,59 and the band width γ of the Lorentz
curves need to be optimized. For both parameters, a
range can be set to limit the employed cross-section
algorithm (see the Supporting Information for the
herein applied settings).3 To prevent confirmation

bias, as the AC is still unknown at this point, these
values should be generated based on the comparison
of IR-spectra alone and subsequently be applied to the
predicted VCD spectrum to quantify the AC determi-
nation (e.g., using the ESI value).

7. If insufficient values are obtained, one should choose
a different combination of functional and basis set
and start over from Step 2 with a new geometry
optimization.

In this benchmark analysis, calculations were solely
conducted at the DFT level of theory. This approach has
the advantage of low computational cost compared with
more sophisticated post-HF ab initio approaches. Several
classes of functionals, basis sets (Table 1) and two solva-
tion models (IEFPCM46,60,61 and SMD)62 were compared
to each other (see the Supporting Information for the
respective xyz files). To cover a broad range of func-
tionals, hybrid functionals, long-range-corrected func-
tionals, and pure exchange–correlation functionals were
taken into account, both with and without dispersion cor-
rection. These functionals were combined with several
standard Dunning, Pople, and Karlsruhe basis sets
(Table 1). For further insights, the reader is kindly
referred to existing literature.63–68

With this paper, we intend to recommend a general
approach on how to determine the AC of a chiral mole-
cule by VCD using the free software SpecDis and without
having to use too cost-intensive methods.

3 | THE APPROACH

The investigated molecules were selected to ensure clar-
ity and comparability of the results. For the benchmark-
ing analysis, fewer complex structures were chosen to
keep the computational cost at a reasonable level. Fur-
thermore, the molecules should have as few conformers
as possible (ideally just a single one), contributing to
cost-efficiency and reducing potential errors due to miss-
ing conformers in this benchmark approach. The solubil-
ity in carbon tetrachloride was the topmost criterion for
the experimental spectroscopic part because it is a pre-
ferred solvent for VCD spectroscopy. Furthermore, car-
boxylic acids were excluded because they can form
dimers in solution which are challenging to incorporate
in the theoretical part.107 Based on these criteria, we
chose (1R,4R)-camphor (1), (20R,30R)-caripyrin (2), (R)-
propylene oxide (3), (S)-1-phenethylamine (4), (R)-methyl
p-tolyl sulfoxide (5), and (1R,4R)-thiocamphor (6)
(Figure 2). Except for the sulfoxide 5, which was prepared
synthetically, all compounds were purchased from com-
mercial sources.

FIGURE 1 Flowchart for the general procedure to enable AC

determination by VCD calculations.
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The results were evaluated including all compounds
and additionally without the sulfur-containing com-
pounds 5 and 6 because they were expected to behave dif-
ferently due the presence of a polarizable third-row
element. Technical, experimental, and computational
details are specified in the Supporting Information, the
coordinate files are in an additional zip file and the ESI
value was used as the major evaluation criterion. The
reader should keep in mind that a low ESI value does not
necessarily correspond to a poor qualitative description
of the experimental spectrum but can also result from
poorly determined fitting parameters (see the Supporting
Information). The quality of VCD spectra of flexible

molecules also depends on the adequate description of
the conformer ensemble in solution and another combi-
nation of functional/basis set/solvation model may be bet-
ter suited for the correct description of equilibrium
geometries and conformational populations.14,15

4 | RESULTS AND DISCUSSION

Sorting the respective levels of theory for the single mole-
cules based on the ESI revealed that there are combina-
tions that produce values higher than 80% for every
molecule except for sulfoxide 5. In those cases, the deter-
mination of the AC can be regarded as certain. For sulf-
oxide 5, values of higher than 60% were obtained while
values higher than 70% were not. This might be due to
the aforementioned considerations regarding sulfur com-
bined with the fact that the sulfur itself is the stereocen-
ter of this compound.

5 | EVALUATION OF MEAN
VALUES AND STANDARD
DEVIATION

The calculation and plot of the mean values and standard
deviations of the respective ESI values for every combina-
tion of functional/basis set/solvation model examined dis-
plays a common issue of DFT methods (Figure 3). About

TABLE 1 Chosen functionals and basis sets for the theoretical prediction of IR- and VCD spectra.

Functional Basis set

Hybrid mPW1PW9169–74 6-31G75 Pople

B3LYP22,76–78 6-31G(d)75,79,80

PW6B9581 6-31G(d,p)75,79,80

M06-2X74 6-31+G(d,p)75,79,80,82

PBE070,83,84 6-31++G(d,p)75,79,80,82

B3P8676,85 6-311G86,87

B3PW9171,72,74,76,88,89 6-311G(d)79,80,86,87

TPSSh89,90 6-311G(d,p)79,80,86,87

Long-range-corrected CAM-B3LYP91 6-311+G(d,p)79,80,82,86,87

LC-ωPBE71–73 6-311++G(d,p)79,80,82,86,87

ωB97X-D92,93 def2-SVP94–98 Karlsruhe

Exchange–correlation (GGA and meta-GGA) TPSS99 def2-TZVP94–98

PBE83,84 def2-TZVPP94–98

BP8685 cc-pVDZ100,101 Dunning

B97-D3102–105 cc-pVTZ100,101

aug-cc-pVTZ106

Note: Thus, a total number of 480 combinations were calculated and checked for similarity for each molecule.

FIGURE 2 Molecular structures and absolute configurations of

the examined compounds.
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50% of them produces quite high averaged ESI values of
around 50% or higher but the deviation is also relatively
high, especially in the case where all molecules were
included (blue data set). An overall higher averaged ESI
is achieved when only the molecules devoid of sulfur
were evaluated (red data set), indicating a higher accu-
racy for light atom structures. The highest average values
for a single combination reached in this work were above
70% (see the Supporting Information). In detail, there are
14 combinations that are above this threshold and it is
striking that among these, the only basis sets represented

are Dunning's correlation consistent (cc) triple zeta basis
sets cc-pVTZ and aug-cc-pVTZ.100,101,106 The most fre-
quently occurring functionals were either hybrid (seven
times) or long-range corrected functionals (six times), but
there is no trend regarding the solvation model observ-
able. When the sulfur-containing compounds 5 and 6 are
not considered, the top 13 combinations reach averaged
ESI values above 75%, this time including Pople, rede-
fined Karlsruhe and Dunning basis sets, four, four, and
five times, respectively. Among these 13, there is four
times the B3LYP,22,76–78 three times the Coulomb-

FIGURE 3 Averaged ESI values

and standard deviations for all

compounds (blue) and excluding the

sulfur-containing compounds (red),

sorted by mean values in descending

order. For the sake of clarity, the

standard deviation is only printed in one

direction.

FIGURE 4 The averaged ESI values

sorted by the difference of the mean

value and the respective standard

deviation in descending order, for all

compounds (blue) and molecule 1–4.
The standard deviation is only printed

in one direction to indicate the lower

limitation.
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attenuated extended CAM-B3LYP,91 and six times the
ωB97X-D92,93 functional. This supports the finding of the
overall good performance of hybrid and long-range cor-
rected functionals. A similar effect has been observed by
Tsuneda and Hirao for the reproducibility of van der
Waals bonds and the calculation of oscillator strengths in
time-dependent DFT calculations using the latter class of
functionals.108

When computing and plotting the difference between
mean values and standard deviation (Figure 4), the lower
limitations of the combinations are revealed (blue: all
molecules, red: excluding sulfur). If the sulfur-containing
molecules are excluded, a higher precision of the aver-
aged ESI values is observable. In general, the plotted
lower limitation lines show a relatively flat trend until
reaching the negative spikes on the right edge of the
graph. This again shows that DFT methods have a rea-
sonable performance on average. Notably, those negative
spikes (blue and red) almost exclusively contain the
widely applicated Pople basis sets (without any additional
polarization or diffuse functions)75,86,87 which is also true
for the graph in Figure 3, albeit to a lesser extent (see the
Supporting Information).

It is noteworthy that one of the most frequently used
combinations (B3LYP/6-311G(d,p)/SMD)22,62,76–80,86,87

ranks second in this evaluation (just first and second row
elements).

6 | EVALUATION OF THE 100 TOP
AND BOTTOM COMBINATIONS

Extending this statistical approach to the top 100 and bot-
tom 100 combinations sorted by the mean values of the
ESI and the difference between them and the standard
deviation (Figure 5) gives a more general trend of how
these perform in VCD calculation (the bottom 100 combi-
nations are displayed in the Supporting Information).

7 | FUNCTIONALS

Regarding the functionals (Figure 5, top), the first thing
to notice is that they appear similarly often in the same
plotted categories, regardless of whether sulfur is
included or not. The combinations using B3P86,76,85

FIGURE 5 Occurrence of the

respective examined functionals (top)

and basis sets (bottom) among the top

100 combinations sorted by mean values

and difference between mean value and

standard deviation. The results were

evaluated with and without the sulfur-

containing compounds.
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B3PW91,71,72,74,76,88,89 and ωB97X-D92,93 are the most fre-
quent among the top 100 combinations and in the case
where the difference between the mean value and the
standard deviation is investigated (blue and orange bar).
For the previous two functionals, this finding is in accor-
dance with the studies of Ravichandran and Banik, who
obtained similar results by benchmarking the potential of
DFT methods to calculated vibrational frequencies (just
IR), but it should be noted that the authors did not inves-
tigate the influence of different basis sets or a solvation
model.109 Barone et al. also reported on the good results
that can be obtained with ωB97X-D functional in con-
junction with double-ζ basis sets, after the authors bench-
marked, among others, the equilibrium geometry and
harmonic vibrational properties of 10 organic molecules
of atmospheric and astrochemical relevance and com-
pared the results with experimental values or high-level
CCSD(T) computations.110

In the hybrid functional class, mPW1PW9169–74 is the
next most frequent among the top 100 combinations,
while TPSSh57,58 is the least. The other functionals are
represented more or less equally in the top 100 and
bottom 100 combinations. These results align with
the extensive investigations of Goerigk and Grimme,
who studied the performance of DFT methods
regarding the calculation of thermochemistry, kinetics,
and noncovalent interactions and came to the
conclusion that hybrid functionals only had a medium
performance.111

The range-separated functional CAM-B3LYP91 per-
forms quite well, whereas the remaining investigated
functional from this class (LC-ωPBE71–73) is the most fre-
quent among the bottom 100 combinations. Regarding
the class of GGA and mGGA functionals, PBE57,58 and
BP8685 appear quite often in the top 100, B97-D3102–105

shows a balanced performance, and TPSS99 appears the
second most frequent among the bottom 100.

8 | BASIS SETS

In terms of the basis sets examined (Figure 5, bottom),
the large Dunning basis sets perform quite well and occur
the most amidst the top 100. The Karlsruhe basis sets
(def2-TZVP and def2-TZVPP)94–98 behave similarly. The
smaller basis sets of the two previous classes, cc-
pVDZ74,75 and def2-SVP,94–98 as well as the Pople basis
sets 6-31G75 and 6-311G86,87 are found most often among
the bottom 100 in both cases. This might be due to the
fact that these basis sets consist of too few basis functions
to describe the system sufficiently.

Regarding the other Pople basis sets, 6-311G
(d,p)79,80,86,87 performs quite well when all molecules are

taken into account (blue bars). If sulfur is excluded,
6-311+G(d,p) and 6-311++G(d,p)79,80,82,86,87 have the
highest share among the top 100 combinations
(black bars).

9 | SOLVATION MODELS

In terms of the solvation model, it does not seem to make
a difference whether the model based on density (SMD)62

or the integral equation formalism model polarizable
continuum model (IEFPCM)46,60,61 is used (see the Sup-
porting Information).

10 | EVALUATION OF THE BEST
PERFORMING COMBINATIONS FOR
SINGLE COMPOUNDS

As already mentioned, there are several combinations
that reached ESI values higher than 80% for every com-
pound except for the sulfoxide (5). Only two combina-
tions could exceed the aforementioned barrier for three
molecules, each time using the ωB97X-D92,93 functional
and the SMD62 solvation model, in conjunction with the
6-311+G(d,p)79,80,82,86,87 and the aug-cc-pVTZ basis
set.106 The occurrence of a single combination (blue bars)
and when a combination achieved for two molecules an
ESI higher than 80% (orange bars), as well as the corre-
sponding evaluation where the sulfur-containing com-
pound 6 was excluded, were plotted (grey and yellow
bars). Regarding the distribution of functionals and basis
sets among these combinations (Figure 6), there are simi-
larities and differences compared with the previous
considerations.

11 | FUNCTIONALS

The functionals that reached >80% ESI for one com-
pound (blue and grey bars) are more or less equally dis-
tributed (Figure 6, top), while mPW1PW91,69–74

PBE0,70,83,84 and ωB97X-D92,93 being most frequent.
Regarding the occurrence for two molecules, M06-2X,74

B3P86,76,85 and ωB97X-D92,93 perform the best when all
molecules are considered (orange bars), whereas
B3LYP22,76–78 and ωB97X-D92,93 stand out when thiocam-
phor (6) is excluded (yellow bars). These findings are in
accordance with the previously made observations that
hybrid and long-range-corrected functionals can show a
good performance, whereas the hybrid version
(TPSSh89,90) and the meta-GGA functional TPSS99 are
again among the least frequent.
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Nevertheless, the subpar performance of LC-
ωPBE71–73 on the other hand is rather surprising, but it
was also among the less frequent functionals in the previ-
ous evaluation (vide supra).

12 | BASIS SETS

In terms of the basis sets (Figure 6, bottom), the occur-
rence in a single combination is almost independent on
whether sulfur is included or not (blue and grey bars),
comparable to the behavior of the functionals. Again, the
Dunning (cc-pVTZ and aug-cc-pVTZ)100,101,106 and
Karlsruhe basis sets (def2-TZVP and def2-TZVPP)94–98 are
well represented but once more without cc-pVDZ100,101

and def2-SVP.94–98 The four basis sets mentioned foremost
are also the most frequent amidst those combinations that
reached at least 80% ESI for two compounds (orange bar).
If sulfur is excluded, the Pople basis sets 6-311+G(d,p)
and 6-311++G(d,p)79,80,82,86,87 show the highest
occurrence (yellow bar). The overall outstanding perfor-
mance of the two triple zeta Dunning basis sets in combi-
nation with DFT functionals should be emphasized
because these basis sets were originally developed using
configuration interaction (CI) methods.100 Nevertheless,

this indicates that moving from double zeta (in the case
of the Dunning basis sets) and split valence (in the
case of the Ahlrichs basis sets) to the respective triple
zeta basis sets gives a significant improvement of the
results.

Regarding the Pople basis sets, there is a similar trend
observable as previously, where smaller basis sets are less
frequent among the high ESI values, especially when the
occurrence for two molecules of the test set is investi-
gated. In fact, it is clearly indicated that going from split
valence double to triple zeta and adding diffuse functions
gradually increases the accuracy because these basis sets
become more frequent (blue and grey bars).

13 | SOLVATION MODELS

Again, the choice of the solvation model does not seem to
make a crucial difference (a graphical representation can
be found in the Supporting Information). Continuum
models consider isotropic solvents, to which carbon tetra-
chloride approximately belongs, whereas SMD is a more
universal solvation model and offers specifically parame-
terized radii to construct the solute cavity. Ultimately,
both SMD62 and IEFPCM46,60,61 solve the Poisson–
Boltzmann equation similarly.62

14 | EVALUATION BY SINGLE
COMPOUNDS

Unsurprisingly, the methods that performed well for cari-
pyrin (2) and propylene oxide (3) are very similar. Among
these two, there is a high share of the B3LYP22,76–78 func-
tional with triple zeta basis sets (Pople, Karlsruhe, and
Dunning equally distributed). Surprisingly, there is exclu-
sively the SMD62 solvation model being present.

The combinations that worked well on camphor (1)
and thiocamphor (6) are almost identical but they differ
completely from the ones of caripyrin (2) and propylene
oxide (3). Interestingly, some of these methods
(M06-2X,74 PBE0,70,83,84 and ωB97X-D92,93) in conjunc-
tion with larger Pople basis sets also performed well for
phenethylamine (4), although these compounds differ
significantly in their structure. In this case, almost only
the IEFPCM46,60,61 solvation model was present. More-
over, camphor (1), thiocamphor (6), and phenethylamine
(4) were the only molecules where the two combinations
already mentioned could achieve ESI values above 80%
for all three molecules (vide supra).

After filtering these methods by their computational
requirements to single out accurate but also cost-efficient
methods which can also be applied to larger molecules,

FIGURE 6 Occurrence of the respective examined functionals

(top) and basis sets (bottom) among the combinations that reached

over 80% ESI for at least one specific compound.
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we obtain the following list which could serve as starting
point for the elucidation of the AC applying VCD
spectroscopy:

• Chiral epoxides: B3LYP/6-311+G(d,p)/SMD.
• Bicyclic (thio)ketone or chiral amine: M06-2X/6-311

+G(d,p)/IEFPCM, PBE0/6-311G(d)/IEFPCM, and
ωB97X-D/6-311+G(d,p)/IEFPCM.

If sulfur-containing molecules give insufficient
results, higher order polarization functions may be neces-
sary, as described by Scholten et al.112 The good perfor-
mance of the PBE0 functional70,83,84 is surprising because
it is one of the few parameter-free functionals. Despite
the overall good performance of the triple zeta Dunning
and Ahlrichs basis sets, they are not included in the fore-
going list due to their reduced cost-efficiency.

15 | CONCLUSION

The present work shows that there is no single combina-
tion to recommend in terms of the calculation of VCD
spectra which is a common phenomenon of DFT
methods. This leads to the outcome that there is no “one
size fits all” multi-purpose method. However, based on
the results of this study combined with our experience in
successful calculation of VCD spectra and AC determina-
tion, some general advice can be given. In any case, it is
always recommended to validate the results by simulat-
ing the VCD spectra with a different combination of func-
tional/basis set/solvation model to exclude
misassignments. Additional chiroptical methods, X-ray
crystallography, or further measures, such as the confi-
dence level, statistical robustness, or the vibrational dis-
symmetry factor, can also be applied to support the
reliability of the AC assignment.34,113,114

• For the conformer distribution of larger molecules,
force field, semi-empiric, or cost-efficient DFT methods
are advised. Subsequent confinement of the conformer
ensemble based on the relative energy might be useful.

• GGA and meta-GGA functionals are disadvantageous
while hybrid and range-separated functionals are
favored.

• Combinations worth trying are:
� B3LYP/6-311G(d,p)/SMD
� ωB97X-D/6-311+G(d,p)/SMD
� M06-2X/6-311+G(d,p)/IEFPCM
� PBE0/6-311G(d)/IEFPCM.

The Opatz group has particularly good experience
with the hybrid density functionals B3LYP22,76–78 and

B3PW9171,72,74,76,88,89 combined with the Pople basis set
6-311G(d,p)79,80,86,87 and the IEFPCM46,60,61 solvation
model in the determination of the AC of natural products
(e.g., dioxolanones,115 hymenosetin,116 caripyrin,117 and
oxalicumone C118), pesticides (imazalil),119 synthetic can-
nabinoids (MDMB-CHMCZCA),120 and synthetic prod-
ucts (e.g., 2,3-dihydro-1H,5H-pyrazolo[1,2-a]pyrazoles,121

an oxazinone derivative,122 and cyclopenta[b]
benzofurans123).
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