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Kurzzusammenfassung

Das Studium der Materialien und der Weichen Materie war und ist noch im-
mer von großer Wichtigkeit sowohl für die moderne Forschung als auch für
unser alltägliches Leben. Vor allem das Aufkommen von Computern und folg-
lich der Etablierung von Computersimulationen hat diese Forschungsgebiete
sogar noch mehr an Dynamik gewinnen lassen und zu großen Fortschritten
und Errungenschaften geführt. Selbst mit modernen Rechenkapazitäten und
Algorithmen bestehen jedoch weiterhin signifikante Herausforderungen bei der
Untersuchung großer Systeme, bei denen mikroskopische Details das makro-
skopische Verhalten bedingen. Während Methoden wie ab-initio-Simulationen
gut geeignet sind, um kleine Systeme in quantenmechanischem Detail zu be-
handeln, vermögen es andere Methoden wie Finite-Element-Methoden, das
makroskopische Verhalten im Kontinuumslimit darzustellen. Die dazwischen-
liegende Skalen zeigen für sich ebenfalls interessante Phänomene, dienen aber
auch dem Überbrücken der anderen Regime mittels der Methode der “gezielten
Vergröberung”. In den vergangenen Jahren, haben sich durch die Verbreitung
und das Studium von Maschinellem Lernen neue, datengetriebene Zugänge zur
statistischen Physik und Computersimulationen eröffnet. Dieses junge Feld hat
schon früh zu beeindruckenden Resultaten geführt und sich damit schnell als
eine neue Säule der Natur- und Ingenieurswissenschaften etablieren können.

Diese Arbeit zielt darauf ab, einen Beitrag sowohl zum Feld der gezielten Ver-
gröberung als auch des Maschinellen Lernens zu leisten, und ist in zwei Teile
unterteilt:

Im ersten Beitrag haben wir neuronale Netze im Bereich des direkten De-
signs und des inversen Designs angewendet, im Speziellen auf die Aufgaben,
eine Abbildung zwischen Paarpotentialen und der resultierenden Zustands-
gleichung sowie zwischen der radialen Paarverteilungsfunktion und dem zu-
grundeliegenden effektiven Paarpotential zu approximieren. Diese Aufgaben
sind besonders interessant, da es die erste Abbildung ermöglicht, bei der Suche
nach Materialien mit gewünschter Ziel-Zustandsgleichung schneller Prototy-
pen entwickeln zu können, während die zweite Abbildung geeignet ist, etablier-
te, iterative Vergröberungsmethoden zu verbessern. In beiden Unteraufgaben
lag der Fokus besonders auf dem Einfluss der Darstellung der jeweiligen Ein-
und Ausgaben, um trotz der geringen Menge an verfügbaren Trainingsdaten
eine gute Generalisierung zu erzielen.
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Der zweite Beitrag ist ein Bottom-Up Vergröberungsschema für inhomogene
Systeme, in denen ganze Polymerketten in einzelnen Kugeln zusammengefasst
sind. In unserer Parametrisierung wechselwirken die vergröberten Kugeln mit-
tels eines Paarpotentials und zusätzlich entweder mittels eines drei-Körper
Stillinger-Weber-Potentials oder eines Potentials, das von der lokalen Dichte ab-
hängt. Es zeigt sich, dass die Kombination des Paarpotentials und des Stillinger-
Weber-Potentials nicht geeignet ist, um die Eigenschaft des Referenzsystems,
dünne Filme zu bilden, reproduzieren zu können. Dagegen vermögen die Sy-
steme mit lokal-Dichte-abhängigen Wechselwirkungen, diese Eigenschaft zu
erhalten und zeigen dabei sogar quantitative Übereinstimmung bei der Breite
der resultierenden Filme. Bei der weiteren Untersuchung stellt sich heraus, dass
es keine eindeutige Korrespondenz zwischen der Verteilung der lokalen Dichte,
bezüglich der unsere Modelle optimiert sind, und den Dichteprofilen zu geben
scheint. Diese Nichtkorrespondenz wird für steigende Polymerisierungsgrade
und folglich zunehmende Interpenetrierung von Polymeren stärker, was dazu
führt, dass unser Ansatz bisher lediglich für kleinere Moleküle geeignet ist. In
den entsprechenden Kapiteln gehen wir auch auf mögliche Lösungsstrategien
für dieses Defizit ein.
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Abstract

The fields of material sciences and soft matter have been and continue to be of
great importance for both modern research as well as our everyday life. Espe-
cially the advent of computers and consecutively the establishment of computer
simulations caused these research areas to gain even more momentum and
led to great improvements and achievements. However, even with modern
computing resources and algorithms, there remain significant challenges when
considering systems where microscopic details are important for the macro-
scopic behavior. While methods like ab-initio-simulations are fairly capable
of treating small systems with quantum-mechanical detail, other techniques
like finite-element-methods are able to capture macroscopic behavior in the
continuous limit. Besides exhibiting interesting phenomena on their own, the
intermediate scales are dedicated to bridging these regimes via the methodol-
ogy of coarse-graining. In recent years, by virtue of machine learning becoming
broadly available and a thoroughly studied field, there has been another ad-
vancement, that has opened up new, data-driven approaches to statistical
physics and computer simulations. This young field has soon led to impressive
results, hence establishing itself rapidly as a new pillar of sciences and engi-
neering.

This work aims at making a contribution to both the field of coarse-graining as
well as machine learning and is split in two main parts:

In the first contribution we apply neural networks for forward and inverse
design, specifically to the tasks of approximating mappings from pair potentials
to the resulting equation of state as well as from the radial distribution function
to the effective pair potential leading to it. These tasks are very interesting as the
first mapping allows for rapid prototyping when searching for materials with a
desired equation of state, while the second can be used to improve established,
iterative coarse-graining techniques. In both tasks, we focused mainly on the
impact of the representation of the respective inputs and outputs, in order to
yield good generalization capabilities despite the small number of available
training examples.

The second contribution is a bottom-up coarse-graining scheme for inho-
mogeneous systems where whole polymer chains are mapped to single beads.
In our parametrization scheme, the coarse-grained beads interact via a pair
potential as well as either a three-body Stillinger-Weber potential or a local
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density-dependent potential. We find that the combination of pair potential
and three-body potential fails to reproduce the film-forming properties of our
reference system. The systems interacting via local density-dependent poten-
tials on the other hand are able to do so and even show quantitative agreement
with regards to the width of the films. On further investigation, we find that
there seems to be no unique correspondence between the distribution of the
local density, which was optimized in our work, and the density profiles. This
non-correspondence becomes stronger for increasing degrees of polymeriza-
tion and hence increasing interpenetration of the polymer chains, which is
why our approach is for now only applicable to smaller molecules. In the corre-
sponding chapters we also elaborate on possible mitigation strategies for this
shortcoming.
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CHAPTER1 Introduction

The evolution of the human species has been heavily linked to the development
of materials since the earliest days of humankind. This can be seen from the fact,
that even some eras are named after the material that had the most prominent
impact on the progress of society, i.e. the Stone Age, the Copper Age, the Bronze
Age and the Iron Age. Besides these early contributions from metallurgy as well
as other crafts working with materials like wood, bones and ceramics, countless
other more recent advancements with regards to materials further shaped and
improved our lives. The field of soft matter in particular has received a lot of
attention in the recent centuries, due to its various contributions to agriculture,
cosmetics, fuels, plastics and electronics but also fundamental research, to
name just a few examples.

One milestone that heralded the age of soft matter research was the discov-
ery of the irregular, sudden movements of particles in fluids and gases made
by Scottish botanist Robert Brown in 1827, known as Brownian motion.1 This
observation, that had in part been made even earlier dating back even to Lu-
cretius around 60 BC,2 laid the foundation for a molecular theory of heat. Other
advancements in the field of thermodynamics, mainly in the 19th and early
20th century, done by great researchers like James Clerk Maxwell, Josiah Willard
Gibbs, Max Planck and Ludwig Boltzmann, led to the far-reaching successes of
early thermodynamics and statistical physics, which extend beyond the field
of thermodynamics to other fields like quantum mechanics, particle physics,
cosmology and machine learning.

While past research on soft matter systems has led to numerous successes
from theoretical and experimental physics already, it has gained even more mo-
mentum with the advent of powerful computers and efficient algorithms. The
field of computer simulations that has become feasible due to this development,
offers not only new insights into the behavior of the matter surrounding us but
also allows for studies of unique systems, which cannot be solved analytically
and where experiments still lack accuracy on the considered time and length
scales. By comparing the results from simulations of computer models to the
predictions from theory or experiments, it becomes possible to identify funda-
mental mechanisms governing certain behaviors. This in turn facilitates the
development of materials exhibiting a desired behavior with a more structured
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Chapter 1. Introduction

approach than plain trial and error. Hence, the field of computer simulations
can be considered a third paradigm in research, complementing both theory as
well as experiments. Typical approaches in this field are the so-called forward
design where one wants to predict the properties of a given system via models
and inverse design where one wants to find a model reproducing given quan-
tities, both of which will be introduced in more depth in Chapter 2. Both of
these applications heavily rely on the methods developed in the field of coarse-
graining, i.e. the study of the systematic reduction of degrees of freedom. One
of the main goals of coarse-graining is to reduce the computational complexity
of a simulation in order to allow for larger systems as well as longer time scales
while simultaneously reproducing qualitatively and quantitatively the actual
behavior of the underlying reference system. This thesis makes a contribution
in this regard by presenting results on ultra-coarse-graining of inhomogeneous
systems of homopolymers using local density-dependent potentials. Further-
more, in this thesis we present work on both forward and inverse design of
systems interacting via pair potentials using neural networks.

One field of research in soft matter that has been especially fascinating and
successful is the study of polymers. What makes polymers so interesting to
study is not only the various applications in which polymers are used but also
the high intrinsic repetitiveness of their constituents, rendering them perfect
systems to study using statistical methods. Due to their repetitive nature, they
typically show approximately universal behaviors, which allows for studying
significantly simpler, coarse-grained systems and making predictions for large
systems of more realistic polymers. Besides that, polymers are ubiquitous in
our world, with them being present in biological systems, like lipid bilayers and
DNA, and chemical systems like plastics, so that humanity has started using
polymers ever since harvesting and processing rubber from trees around 1600
BC in Mesoamerica. Since then, we have begun studying polymers more me-
thodically in the 19th century, with early pioneering work by Henri Braconnot3

and Christian Schönbein4 in the 1830s when they created celluloid and cellulose
acetate, which are derivatives of the natural polymer cellulose. Even though
scientist have thus been working on polymer research for almost 200 years,
there are still many aspects not completely understood and there is still plenty
of room for development of new polymeric systems for the ever-increasing de-
mand of innovations, which is why this field is still very active and continuously
making novel contributions.

In the last century, besides the field of computer simulations there has been
another addition to research paradigms, caused by the advent of machine learn-
ing methods. In its core, machine learning is the study of finding mappings
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between given inputs and outputs by fitting typically high dimensional func-
tions using large amounts of data. It is therefore heavily linked to data science
and statistics with a lot of connections to the modeling aspects of statistical
physics. The aforementioned fitting of the desired mapping can be done in a
variety of different ways which is why there is a plethora of different approaches,
models and problem definitions, with each having their own advantages an
disadvantages for solving the countless problems machine learning has been
applied to. So, instead of trying to find an analytical approximation of the de-
sired mapping, in machine learning one is often more interested in obtaining a
heuristic model derived from fitting large data sets, frequently outperforming
established, classical approaches. However, this does not keep the study of
machine learning from both making use of as well as contributing to a more
fundamental understanding of the subject at hand. Amongst many others, one
example for this can be found in this thesis, where we study not only the effect
of different hyperparameters but most importantly, how transformations of the
input and the target output motivated by our domain knowledge impact the
performance of the employed neural networks in the specific tasks.

This rest of this thesis is structured as follows:

In Chapter 2 the theoretical foundation of this work is introduced. This
chapter covers the fundamentals of statistical physics as well as computer sim-
ulations and machine learning used in the chapters going forward and begins
with an overview of statistical physics and thermodynamics, followed by a short
description of polymer physics. Afterwards, there is an introduction to the
methodologies of computer simulations and coarse-graining. Finally, there is a
short discussion of machine learning with a focus on neural networks.

In Chapter 3 we develop a machine learning method working on the prob-
lem of coarse-graining, with both an application to forward design as well as
inverse design. We show that neural networks are capable of learning good
approximations to equations of states for a variety of pair potentials as well
as learning mappings from the radial distribution function, i.e. structural in-
formation, to effective pair potentials. These networks can be combined in
order to predict the equation of state from a single measurement of the radial
distribution function allowing for a very fast determination of macroscopic
properties of a given system.

In Chapter 4 we investigate the application of local density-dependent po-
tentials to the ultra-coarse-graining of homopolymers into single beads. While
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Chapter 1. Introduction

the parametrization of inhomogeneous systems consisting of homopolymers
via pair potentials exclusively is insufficient for reproducing the film-forming
behavior, we find that including higher order correlations by supplementing
the pair potential with an additional local density-dependent potential not only
leads to stable films but is transferable for different systems as well.

In Chapter 5 we analyze extensions and limitations of the previously derived
model when applied to real-world systems. We observe that for larger polymers,
the model is not able to reproduce the target quantity of the reference system.
We attribute this to the colloidal spheres, into which the polymers are effec-
tively coarse-grained, becoming to soft leading to more overlap, which worsens
the resolution of the structural information necessary for our coarse-graining
procedure.

4



CHAPTER2 Theoretical Founda-
tions

The following chapter contains a discussion of the theoretical foundation neces-
sary to understand the work described in Chapters 3 to 5. First, in Sec. 2.1 there
is a short introduction to statistical physics and thermodynamics, followed by a
description of polymer physics and its basic properties and results in Sec. 2.2.
Then, we discuss the methodology of computer simulations in Sec. 2.3 and
establish important terms and concepts of coarse-graining in Sec. 2.4. Finally,
Sec. 2.5 gives an overview of machine learning with a particular focus on neural
networks.

2.1 Statistical Physics and Thermodynamics

Statistical physics is a branch of physics, which aims at describing systems with
very large numbers of particles using methods from statistics and probability
theory. Due to the large number of particles, it is typically not possible to de-
scribe the system’s evolution of microstates, i.e. the evolution of the microscopic
configuration C = {p,q} containing all the particles’ positions p and momenta
q. However, the large number of particles allows to define macrostates, which
are given by the macroscopic properties of the system, namely its tempera-
ture T , energyE, entropy S, pressure P , volume V , chemical potential µ and
number of particlesN .

2.1.1 Ensembles and Conjugated Pairs of Variables

These macroscopic quantities are divided into intensive and extensive variables.5

For the definition of those terms, consider a system S characterized by variable
X , which is divided into subsystems S1 and S2 characterized by X1 and X2

respectively. If X = X1 = X2 then X is an intensive quantity, while in the
case ofX = X1 +X2 the variableX is extensive. The macroscopic quantities
mentioned above come in conjugated pairs of intensive and extensive variables,
as shown in Table 2.1.

For pairs (xj, ωj) which are conjugated with regards to function F with the
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Chapter 2. Theoretical Foundations

Intensive variable Extensive variable

T S

P V

µ N

Table 2.1: Conjugated pairs of intensive and extensive variables.

exact differential dF , i.e. a differential for which all closed path integrals vanish,

dF =
∑
j

ωjdxj, ωj =
∂F

∂xj
(2.1.1.)

holds true. The thermodynamic variables being conjugated in combination
with the fundamental thermodynamic relation

dE(S, V,N ) = TdS − PdV + µdN (2.1.1.2)

allows one to change the ensemble of independent state variables describing
the system by applying Legendre transformations, which corresponds to trans-
forming between the different thermodynamic potentials. This is useful and
necessary as in thermodynamics one is typically interested in open systems,
viz. systems which exchange heat, mass or work with their surroundings, in
contrast to classical mechanics and quantum mechanics, where one typically
considers isolated systems.

In this thesis, however, we consider systems in the canonical orNV T en-
semble, i.e. systems in thermal equilibrium with a heat bath at fixed temper-
ature without the transfer of mass or work. For the canonical ensemble with
interactions specified by the HamiltonianH(·), the governing thermodynamic
potential is given by the free energy

F = E − ST = −PV + µN (2.1.1.3)

and the probability of a configuration C = {p,q} is given by

P(C) =
1

Z(β)
e−βH(C) (2.1.1.4)

with β = kBT , Boltzmann constant kB, and the partition function

Z(β) =

∫
e−βH(C)dC (2.1.1.5)
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2.1. Statistical Physics and Thermodynamics

=

∫
e−βH({p,q})dpdq. (2.1.1.6)

Furthermore, it follows from the canonical probabilities in Eq. (2.1.1.4) that
the expectation value of an observableA(·) in the canonical ensemble is given
by

〈A〉 =

∫
P(C)A(C)dC (2.1.1.7)

=
1

Z(β)

∫
e−βH(C)A(C)dC. (2.1.1.8)

For a denumerable number of configurations, for example in the case of a
discretized system with particles being positioned on lattice sites, the integra-
tion in Eqs. (2.1.1.6) and (2.1.1.8) have to be replaced by sums, yielding

〈A〉 =
∑
C

P(C)A(C) (2.1.1.9)

=

∑
C e
−βH(C)A(C)∑
C e
−βH(C) . (2.1.1.10)

When assuming that the Hamiltonian can be split into the kinetic energy
KN (q), the interatomic potential energy VN (p) and the external potential
ΦN (p), i.e.

H({p,q}) = KN (q) + VN (p) + ΦN (p) (2.1.1.11)

one can define the configurational integral ZN , which is given by the integral of
the Boltzmann factor of the interatomic interactions over all positions,

ZN (β) =

∫
e−βVN (p)dp. (2.1.1.12)

The assumption expressed in Eq. (2.1.1.11) is a very common and useful one,
but it is not always fulfilled, e.g. in the case of electrically charged particles
in a spatially varying external magnetic field, where ΦN becomes a function
of the particles velocities. In the following we will use the assumption from
Eq. (2.1.1.11) if not stated otherwise explicitly.
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Chapter 2. Theoretical Foundations

2.1.2 n-Particle Densities and n-Particle Distribution
Functions

By calculating so-called n-particle densities one can obtain insights into the
microscopic structure of the system at hand with varying degree of complexity.
In general, n-particle densities express the probabilities of finding sets of par-
ticles like triplets, quadruplets, etc. at given positions r = {r1, r2, . . . , rn} and
are defined as

ρ
(n)
N (r) =

〈
N∑
i1=1

N∑
i2 6=i1

· · ·
N∑

in 6∈{i1,i2,···in−1}

n∏
j=1

δ(rj − pij)

〉
(2.1.2.1)

=
N !

(N − n)!

1

ZN (β)

∫ N∑
i1=1

N∑
i2 6=i1

· · ·
N∑

in 6∈{i1,i2,···in−1}

n∏
j=1

δ(rj − pij)e−βVN (p)dp

(2.1.2.2)

=
N !

(N − n)!

1

ZN (β)

∫
e−βVN ({r1,...rn,pn+1,pN})dpn+1 . . . dpN (2.1.2.3)

where the combinatorial prefactor of N !
(N−n)!

comes from the interchangeability
of the particles. From Eq. (2.1.2.1) it becomes clear that ρ(n)

N (r)dr yields the
probability of finding n particles in the volume element dr.

For the case of two particles, as is often used due to its simplicity, Eq. (2.1.2.1)
reduces to

ρ
(2)
N ({r1, r2}) =

〈
N∑
i=1

N∑
j 6=i

δ(r1 − pi)δ(r2 − pj)

〉
(2.1.2.4)

while the 1-particle density on the other hand of course reads

ρ
(1)
N ({r1}) =

〈
N∑
i=1

δ(r1 − pi)

〉
(2.1.2.5)

and hence describes the expected number of particles located at r1.

Using Eqs. (2.1.2.1) and (2.1.2.5) one can define the so-called n-particle
distribution functions

gnN ({r1, r2, . . . , rn}) =
ρ

(n)
N ({r1, r2, . . . , rn})∏n

i=1 ρ
(1)
N ({ri})

. (2.1.2.6)

8



2.1. Statistical Physics and Thermodynamics

These n-particle distribution functions effectively describe how correlated the
particle positions are and hence, how much the structure deviates from com-
plete randomness, i.e. the structure of an ideal gas. For a homogeneous system,
the 1-particle density function is equal to the global density ρ(1)

N (r) = ρ = N
V

and the n-particle distribution functions reduce to

gnN ({r1, r2, . . . , rn}) = ρ(−n)ρ
(n)
N ({r1, r2, . . . , rn}). (2.1.2.7)

While the n-particle densities as well as the n-particle distribution functions
provide a complete description of the structure of a system, it is often sufficient
to know the low-order particle densities or distribution functions in order to
calculate good approximations for thermodynamic properties. Furthermore,
these functions can be used to describe the number of particle pairs displaced
by a vector d as follows:〈

1

N

N∑
i=1

N∑
j 6=i

δ(d− (ri − rj))

〉
=

〈
1

N

N∑
i=1

N∑
j 6=i

δ(d− ri + rj)

〉
(2.1.2.8)

=

〈
1

N

∫ N∑
i=1

N∑
j 6=i

δ(d + r′ − ri)δ(r′ − rj)dr′

〉
(2.1.2.9)

=
1

N

∫
ρ

(2)
N (r′ + d, r′)dr′. (2.1.2.10)

For an isotropic and homogeneous system, the distribution function be-
comes a function of the absolute value of the displacement d = |d|. Besides
that, Eq. (2.1.2.7) can be used to simplify the above expression even further,
yielding 〈

1

N

N∑
i=1

N∑
j 6=i

δ(d− (ri − rj))

〉
=
ρ2

N

∫
g2
N (d, r′)dr′ (2.1.2.11)

=
ρ

V

∫
g(d)dr′ (2.1.2.12)

= ρg(d) (2.1.2.13)

such that

g(d) =
V

N 2

〈
N∑
i=1

N∑
j 6=i

δ(d−
∣∣ri − rj

∣∣)〉 (2.1.2.14)

9



Chapter 2. Theoretical Foundations

where g(d) is the radial distribution function, also known as “RDF” or “g(r)”.
From an expansion of the n-particle distribution function of a homogeneous
system as a power series of the activity, one can derive the low-density approxi-
mation of the RDF, which reads

lim
ρ→0

g(r) = e−βU(r) (2.1.2.15)

where U(r) denotes the pair interaction between particles at distance r.

The radial distribution function can be obtained experimentally via scat-
tering experiments. In these experiments, the so-called structure factor can
be measured, which is closely related to the radial distribution function via a
Fourier transformation. For a homogeneous and isotropic system the structure
factor does not depend on the scattering vector k but on its absolute magnitude
k = |k| and can be expressed as

S(k) = 1 +
1

N

〈∑
i 6=j

e−ik(ri−rj)

〉
(2.1.2.16)

= 1 + ρ

∫
e−ikrg(|r|) dr. (2.1.2.17)

2.1.3 Equations of State
An equation relating the aforementioned state variables in a given system is
called the system’s equation of state. Typically but not necessarily these equa-
tions express the pressure as a functionG of the other macroscopic quantities,
i.e.

P = G(T, V,N ). (2.1.3.1)
A special form of equation of state is given by the virial expansion, which ex-
presses the pressure as a power series of the density:6

βP = ρ+
∞∑
i=2

Bi(T )ρi (2.1.3.2)

where ρ = N /V is the density and the temperature dependent coefficientsBi

denote the so-called virial coefficients, which are determined by the interactions
in the system. For homogeneous systems with isotropic pairwise interactions,
the first two virial coefficients are given by

B2(T ) = −1

2

∫
f(|r| , T )dr (2.1.3.3)

10



2.1. Statistical Physics and Thermodynamics

B3(T ) = −1

3

∫ ∫
f(|r| , T )f(|r′| , T )f(|r− r′| , T )drdr′ (2.1.3.4)

where we use the Mayer-f-functions defined via
f(r, T ) = e−βU(r) − 1 (2.1.3.5)

with the pair potential U(r) and β as before. Higher order virial coefficients
can for example be obtained via diagrammatic methods and become increas-
ingly more complicated as they incorporate more and more correlations via
combinations of Mayer-f-functions. Note that for non-interacting systems, i.e.
U(r) = 0, f(r, T ) vanishes, f(r, T ) = 0, and therefore all the virial coefficients
vanish as well,Bi(T ) = 0 ∀i, such that Eq. (2.1.3.2) becomes

βP = ρ =
N
V

(2.1.3.6)

which is the ideal gas equation. Hence, the virial coefficients can be seen as a
measure of the deviation from ideal gas behavior.

For isotropic potentials and homogeneous systems, as assumed above, the
second virial coefficient can easily be calculated from an integral in spherical
coordinates:

B2 = −1

2

∫
f(|r| , T )dr (2.1.3.7)

= −1

2

∫ ∞
0

∫ 2

0

π

∫ π

0

r2 sin(θ)f(r, T )dθdφdr (2.1.3.8)

= −2π

∫ ∞
0

r2f(r, T )dr (2.1.3.9)

In the case of infinite dilution, so for ρ → 0, higher orders of the density
approximately vanish, which is why one can consider only the second virial
coefficient, yielding

βP ≈ ρ− 2πρ2

∫ ∞
0

r2f(r, T )dr. (2.1.3.10)

Using the low density approximation of the radial distribution function g(r),
Eq. (2.1.2.15) one can rewrite Eq. 2.1.3.10 as

βP ≈ ρ− 2πρ2

∫ ∞
0

r2(g(r)− 1)dr. (2.1.3.11)

This means, that in the low density limit, it is sufficient to determine the struc-
tural composition or the interaction Hamiltonian of such a system in order to
approximate its equation of state.

11



Chapter 2. Theoretical Foundations

2.1.4 Ergodic Hypothesis
A very important and fundamental assumption in statistical physics is the
ergodic hypothesis, which states that for sufficiently long times, the time average
A of a measured quantityA equals its ensemble expectation value 〈A〉,

A = lim
t→∞

1

t

∫ t

0

A(C(t′))dt′ =
∫
P(C)A(C)dC = 〈A〉 , (2.1.4.1)

where C(t) denotes the microstate at time t. The underlying assumption is that
every state can be reached from every other state in a finite number of steps.
This means that the phase space, that is the space of all possible microscopic
configurations, is connected, i.e. there are no disjoint part of the phase space so
that there is at least one state which is not reachable from another state. This is
equivalent to the statement that for finite times the trajectory of a dynamical
system comes arbitrarily close to any point in the phase space.

For denumerable many configurations, the integration on the right hand
side of Eq. (2.1.4.1) has to be replaced by a sum over all possible configurations,
cf. the discussion in Sec. 2.1.1 and Eq. (2.1.1.9) in particular. This observation is
crucial especially for the field of computer simulations, as it implies that molec-
ular dynamics and Monte-Carlo simulations, both of which will be discussed
in more details in Sec. 2.3, yield the same results for the expectation values of
observables. On occurrence of spontaneous symmetry breaking, for example
in the case of phase transitions the ergodic hypothesis can be violated, which is
called ergodicity breaking. In these cases, the phase space becomes disjointed
such that the trajectory of the system will only cover part of the whole phase
space in finite times.

2.1.5 Phase Transitions and Critical Points
In physics a phase corresponds to a region of a system in which all physical
properties are essentially equal. Besides the common distinction into solid,
liquid and gas phases, physical phases are not limited to just these three cat-
egories. For instance, a system in a solid state might even exhibit multiple
different structures under different conditions, which is the case for example
for the 19 different known solid crystalline phases of water. Hence, there can be
numerous different phases for systems consisting of only one type of molecule
but the number of possible phases typically further increases for mixtures of
components, e.g. hydrogels, i.e. mixtures of water and hydrophilic polymers
which do not dissolve in water.

12



2.2. Polymer Physics

A phase transition occurs, when the systems transitions from one phase to
another, where the phases are distinguished by an order parameter. This order
parameter is a function describing the order, where in one phase the order pa-
rameter typically equals zero and in the other phase it is non-zero. An example
for such an order parameter is the magnetization of a ferromagnetic system
which is subject to an external field: below the critical temperature Tc the system
has a net magnetization, while above this temperature the magnetization is
zero. In this example, the temperature functions as the control parameter of
this transition, i.e. the temperature is the parameter that is varied such that the
system transitions between the two phases.

Besides that, the system can not only transition between phases, but ex-
hibit multiple phases at the same time, which is called phase coexistence. At
phase coexistence, multiple phases occur in the system simultaneously with
the molecules in the system being able to cross the phase boundaries freely,
i.e. not inhibited by any external constraint like a wall. In this case, the order
parameter has to be a local quantity in order for it to distinguish the phases. A
typical case for phase coexistence is a closed system in which water is boiled,
which leads to the coexistence of a fluid phase and a gas phase.

By plotting the different phases as a function of the thermodynamic vari-
ables, one obtains a phase diagram. Hence, a phase diagram is a visualization
of the phase behavior of a system given the thermodynamic conditions, with
the lines drawn in these diagrams denoting the conditions for the emergence
of phase coexistence. In Fig. 2.1 there is a schematic example of a typical phase
diagram for a monoatomic system interacting via the Lennard-Jones potential,
cf. Eq. (2.2.1.3), in the ρ− T -plane.

In this diagram, both the triple point as well as the critical point are marked
with red symbols. The triple point describes the conditions under which there
is a phase coexistence of three phases, solid, liquid and gas. The critical point
denotes the point in the phase diagram above which the gas and liquid phase
are not distinct anymore as long as the pressure is not high enough to compact
it to a solid. This supercritical phase shows characteristics of both gas, like a
viscosity typical for gases, and liquids, like a density typical for liquids.

2.2 Polymer Physics

Polymers are macromolecules consisting of a large number of chemically bonded,
identical repeating subunits, so-called monomers. As the term “monomer” may
refer to any repeat unit along the chain, it is ambiguous by definition and one
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Chapter 2. Theoretical Foundations

Figure 2.1: Schematic phase diagram of a monoatomic Lennard-Jones system
in the ρ − T -plane, cf. Eq. (2.2.1.3). “G” denotes “gas”, “L” denotes “liquid”,
“S” denotes “solid”. “SC” denotes “supercritical”. The triple point is located at
(ρt, Tt) and the critical point at (ρc, Tc).

should always state a monomer’s composition explicitly. The chemical monomer
is given by the (typically small) repeat units that were linked together via cova-
lent bonds to make the chain. For example, the most common plastic in use
today, polyethylene, is made up of chemical monomers of (C2H4), while the
chemical monomer of polystyrene comprises of (C8H8).

On the other hand, when modeling macromolecules as polymers, one may
define the monomers differently from the chemical one, so that a monomer
can in principle be arbitrarily large, with a special choice of monomer being
the Kuhn monomer discussed in Sec. 2.2.2.2. For instance, in the case of DNA,
typical choices of monomers can contain a few thousand base-pairs instead of
just a few atoms, as would be the case for its chemical monomer.

The number of monomers in a single polymer, also called degree of polymer-
ization, is typically very large and can even reach numbers of 1010, depending on
the definition of the monomers. Polymers are often treated using bead-spring-
models, i.e. the monomers are considered as beads connected by springs, which
behave as effective bonds of the monomers.

Figure 2.2 shows a simulation snapshot of polystyrene, with aromatic carbon
atoms shown in red and non-aromatic ones in green. The monomeric repeat
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units (C8H8) are indicated by grey beads located at the corresponding centers
of masses and connected by grey bonds.

Figure 2.2: Schematic of polystyrene and its representation as a bead-spring
model. The red color indicates aromatic carbon atoms and green color indicates
non-aromatic ones. The grey beads represent the (C8H8)-monomers and are
located at the corresponding centers of mass. The grey bonds connecting these
beads are effective bonds and are typically treated as springs.

The large size of the polymers as well as the identical composition of the
monomers typically make it feasible to treat polymers using statistical methods
as they approximately exhibit a universality in their behavior for sufficiently
large molecules. Polymers offer a vast chemical configuration space, as they
can come in a variety of possible shapes, such as linear polymers, branched
polymers and star-polymers, and can consist of different monomer types or
even combinations of two or more different monomer types, forming so-called
copolymers. The molecular weight of a copolymer is then given by

M =
∑
α∈T

mαNα, (2.2.0.1)

whereT denotes the set of occurring monomer types,mα the mass of monomers
of type α and Nα the number of monomers of type α. Besides the variety of
possible compositions and structures of single polymers, one can investigate
mixtures of multiple polymers, which makes this chemical configuration space
and the number of possible applications even more intractable.

While there are many different shapes for polymers, this thesis will treat
only linear chains and the introduction provided below always refers to this
type of polymer, if not stated otherwise explicitly.

There exists a plethora of different models for polymers which vary in their
complexity and the atomistic properties they retain. Typically, models which
include interactions between the monomers are very hard to treat analytically,
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which is why one often resorts to models without explicit interactions, so called
ideal polymer models. Even though this simplification is a very strong one, ideal
polymer models are oftentimes very successful in capturing the qualitative and
quantitative behavior of polymers, leading to a wide range of physical insight
especially for studying conformations of single chains. In the following section
we will present some of the ideal models of polymers as well as the Kremer-Grest
model,7,8 a simple but effective model containing explicit interactions which
was used in a modified version in Chapters 4 and 5.

2.2.1 Polymer Models

The simplest polymer model is that of a freely jointed chain. In this model there
are no interactions between monomers as well as no restrictions on the flexibil-
ity of the chain. The only constraint in this model is given by the bonds having
a fixed length. Hence, the statistics follows that of a random walk with equal
step size in all dimensions.1 Quantities derived for this model will be denoted
with a superscript “fj”.

The freely rotating chain is similar to the freely jointed chain in that it re-
stricts the bonds to a fixed length. Furthermore, it has the additional constraint
that all pairs of neighboring bonds make a fixed angle. This effectively poses a
constraint on the flexibility of the chain and therefore incorporates stiffness in
the polymer model. Quantities derived for this model will be denoted with a
superscript “fr”.

The gaussian chain model relaxes the constraint of fixed bond lengths by
modeling the components of the bond vector b by normal distributions around
0, (b)k = N (µ = 0, σ2 = b2

3
), where, as one can calculate from the probability

distribution of the length of b, b is the mean bond length. This is a more realistic
assumption than stiff bonds, as in real world systems bonds are not exactly
stiff as well, while still allowing for tuning of the expectation value of the bond
length via the standard deviation of the normal distribution.

In the worm-like chain model, one introduces a persistence lengthP , which
limits the chain flexibility by adding an energy term to the Hamiltonian de-
scribing the energy needed for bending, Ebend[R(·)] = kBT

2

∫ L
0
P
(
∂2R(s)
∂s2

)
ds,

where L is the polymers length and the integral is a contour integral, with the

1Throughout this introduction we will assume three spatial dimensions, if not stated other-
wise explicitly.
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polymer’s contour given by R(·).

While the ideal polymer models described above do not incorporate interac-
tions between monomers, the Kremer-Grest model as described in Ref. [7] and [8]
does include both bonded as well as non-bonded interactions. The bonded
interactions are given by a FENE potential,9 which stands for “finitely extensible
nonlinear elastic”,

UFENE(rij) =

{
−1

2
kr2

0 ln
[
1− (rij/r0)2] , rij < r0

∞, rij ≥ r0

(2.2.1.1)

with spring constant k = 30 kBT/σ
2, maximum bond extension r0 = 1.5σ and

the distance rij between bonded particles i and j.
The non-bonded interactions, i.e. those that apply to all pairs of monomers,

regardless of bonds, are given by a Week-Chandler-Andersen potential10, also
known as WCA potential, which reads

UWCA(rij) =

4ε

[(
σ
rij

)12

−
(
σ
rij

)6

+ 1
4

]
, rij < 21/6σ

0, rij ≥ 21/6σ.
(2.2.1.2)

Here ε determines the interaction strength, while σ is the size parameter, mod-
eling the excluded volume of the monomers, viz. the volume, that is occupied by
a monomer such that no other monomer can intrude this volume. The constant
shift in the potential for distances smaller than 21/6σ is included to ensure the
smoothness of the potential and avoid an unphysical potential jump, which
would cause an infinitely large force peak at rij = 21/6σ.

The WCA potential is a special case of the Lennard-Jones potential11–13 or LJ
potential, where the attractive part of the potential is not discarded like in the
case of the WCA potential but replaced by a cutoff at rc:

ULJ(rij) =

4ε

[(
σ
rij

)12

−
(
σ
rij

)6
]
, rij < rc

0, rij ≥ rc.
(2.2.1.3)

By inclusion of an attraction, the model is capable of capturing the film forming
properties of polymers, which would not be reproduced by purely repulsive
interactions.

The shift of the potential has been dismissed in Eq. (2.2.1.3) and can be re-
placed by other means of dealing with discontinuities at the cutoff. In this work,
we used a version of the LJ potential, where the potential is simply truncated at
the cutoff as well as one, where a smoothing function is applied.
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2.2.2 Structural Properties of Polymers

In this section, we will define and explain some of the structural properties of
polymers that are important for this work.

2.2.2.1 End-To-End Distance

Some of the structural properties of polymers can be calculated and investigated
analytically for ideal chain models. One example for such a property is the
end-to-end-distance Ree which is given by the vector between the first and
the last monomer. So, for a polymer consisting of N monomers at positions
R = {ri|i ∈ {1, . . . , N}}, the end-to-end distance reads

Ree(R) =
N−1∑
i=1

(ri+1 − ri) (2.2.2.1)

= rN − r1 (2.2.2.2)

where the second equality stems from all other terms canceling out. For infinite
times,2 the expectation value of Ree is of course zero for homogeneous and
isotropic systems, as the polymers orientations during the course of this time
will average out. Hence, it is useful, to determine instead the average squared
end-to-end distance 〈R2

ee〉. The average squared end-to-end distance provides
information about the polymers extent and is defined straight-forward from〈

R2
ee

〉
=
∑
R∈R

P(R)(Ree(R))2 (2.2.2.3)

withR = {R} denoting the set of all polymer configurations and P(R) the
corresponding probabilities of said configurations. The square of Ree(R) refers
to the squared absolute value of the respective vector as calculated using the
standard scalar product “·”, i.e.

(Ree(R))2 = Ree(R) ·Ree(R) (2.2.2.4)
= |Ree(R)|2 (2.2.2.5)
= (Ree(R))2

x + (Ree(R))2
y + (Ree(R))2

z. (2.2.2.6)

For ideal chains this quantity can easily be calculated analytically, as will be
shown for the example of a freely jointed chain.

2or equivalently for an infinite number of configurations, as stated by the ergodicity theorem
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For the freely jointed chain the distance between neighboring monomers i
and i+ 1 can be expressed as

ri+1 − ri = bi = bêi (2.2.2.7)

with b denoting the constant bond length and êi being the unit vector pointing
from ri to ri+1. As there are no constraints imposed in the freely jointed chain
model besides the constant bond lengths, there are no restrictions to êi so that
its orientation is randomly distributed. This implies in particular, that

〈êi · êj〉 = δi,j. (2.2.2.8)

where δi,j refers to the Kronecker-delta, which equals one for i = j and zero
otherwise.

Hence, using Eq. (2.2.2.1) the average squared end-to-end distance for this
model, indicated by a superscript “fj”, can be calculated as〈(

Rfj
ee

)2
〉

=
〈
Rfj
ee ·Rfj

ee

〉
(2.2.2.9)

=

〈(
N−1∑
i=1

bi

)
·

(
N−1∑
j=1

bj

)〉
(2.2.2.10)

=

〈
N−1∑
i=1

N−1∑
j=1

(bi · bj)

〉
(2.2.2.11)

=
N−1∑
i=1

N−1∑
j=1

〈bi · bj〉 (2.2.2.12)

= b2

N−1∑
i=1

N−1∑
j=1

〈êi · êj〉 (2.2.2.13)

= b2

N−1∑
i=1

N−1∑
j=1

〈cos(Θij)〉 (2.2.2.14)

= b2

N−1∑
i=1

N−1∑
j=1

δi,j (2.2.2.15)

= b2

N−1∑
i=1

1 (2.2.2.16)

= b2(N − 1) (2.2.2.17)

where Θij denotes the angle between bond vectors bi and bj .
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While fairly simple in its derivation and its statement, Equation (2.2.2.17) is
a fundamentally important result in that it shows, that the size of the polymer
grows not with the number of monomers, but with its square root. Furthermore,
this equation is used for the definition of the so-called Kuhn length14 bk. In the
Kuhn segmentation, see Sec. 2.2.2.2, the polymer is mapped to an equivalent
freely jointed chain with the same mean squared end-to-end distance and max-
imum end-to-end distance, with the resulting segment length denoted by bk.
This quantity defines a relevant length scale of the system and describes how
strongly correlated neighboring monomer positions are, viz. the length along
the chain after which the bond vectors are approximately uncorrelated. This
becomes more clear when considering the mean squared end-to-end distance
of the freely rotating chain, denoted with a subscript “fr”.

For the freely rotating chain, both the bond length b and the angle θ between
two adjacent bond vectors are fixed, i.e.

ri+1 − ri = bi = b êi (2.2.2.18)
êi · êi+1 = cos(θ). (2.2.2.19)

Furthermore, the expectation value of a bond vector can be expressed in terms
of its average projection on its predecessor, which can then be done repeatedly:

〈bi〉 =
〈bi · bi−1〉bi−1

|bi−1|2
(2.2.2.20)

=
〈bi · bi−1〉 〈bi−1 · bi−2〉bi−2

|bi−1|2|bi−2|2
(2.2.2.21)

. . . (2.2.2.22)

=
〈bi · bi−1〉 〈bi−1 · bi−2〉 . . . 〈bi−j+1 · bi−j〉bi−j

|bi−1|2|bi−2|2 . . . |bi−j|2
(2.2.2.23)

=

(
j∏

k=1

〈bi−k · bi−k−1〉
|bi−k−1|2

)
bi−j (2.2.2.24)

As the bonds have constant length b and with the scalar product of adjacent
bond orientation vectors as given by Eq. (2.2.2.19), this expression simplifies to

〈bi〉 =

(
j∏

k=1

b2 cos(θ)

b2

)
bi−j (2.2.2.25)

=
b2j cos(θ)j

b2j
bi−j (2.2.2.26)

= cos(θ)j bi−j. (2.2.2.27)
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This reasoning also holds for the expectation value of a bond vector expressed
in terms of its successor, yielding

〈bi〉 = cos(θ)j bi+j (2.2.2.28)

so in general,
〈bi〉 = cos(θ)|j| bi+j (2.2.2.29)

holds for all j such that 1 ≤ i+ j ≤ N . From Eq. (2.2.2.29) and the linearity of
the average it follows that

〈bi · bj〉 =
〈
cos(θ)|i−j| bj · bj

〉
(2.2.2.30)

=
〈
cos(θ)|i−j| b2

〉
(2.2.2.31)

= b2 cos(θ)|i−j|. (2.2.2.32)

Using Eq. (2.2.2.32) in the definition of the average squared end-to-end distance
yields〈(

Rfr
ee

)2
〉

=
〈
Rfr
ee ·Rfr

ee

〉
(2.2.2.33)

=

〈(
N−1∑
i=1

bi

)
·

(
N−1∑
j=1

bj

)〉
(2.2.2.34)

=

〈
N−1∑
i=1

N−1∑
j=1

bi · bj

〉
(2.2.2.35)

=
N−1∑
i=1

N−1∑
j=1

〈bi · bj〉 (2.2.2.36)

= b2

N−1∑
i=1

N−1∑
j=1

〈cos(Θij)〉 (2.2.2.37)

= b2

N−1∑
i=1

N−1∑
j=1

cos(θ)|i−j| (2.2.2.38)

= b2

N−1∑
i=1

(
1 +

i−1∑
j=1

cos(θ)|i−j| +
N−1∑
j=i+1

cos(θ)|i−j|

)
(2.2.2.39)

= b2(N − 1) + b2

N−1∑
i=1

(
i−1∑
j=1

cos(θ)|i−j| +
N−1∑
j=i+1

cos(θ)|i−j|

)
(2.2.2.40)
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with Θij being the angle between bi and bj as before. As | cos(θ)| < 1 for
all values except for multiples of π, which would correspond to a chain that
continuously maps back to itself or a straight line, and using the fact thatN is
large,N � 1, one can use the following approximation including the geometric
series:

N−1∑
i=1

(
i−1∑
j=1

cos(θ)|i−j| +
N−1∑
j=i+1

cos(θ)|i−j|

)
≈ 2

N−1∑
i=1

∞∑
j=1

cos(θ)j (2.2.2.41)

= 2
N−1∑
i=1

cos(θ)

1− cos(θ)
(2.2.2.42)

= 2(N − 1)
cos(θ)

1− cos(θ)
. (2.2.2.43)

Employing this expression in Eq. (2.2.2.40) leads to〈(
Rfr
ee

)2
〉

= b2(N − 1) + 2b2(N − 1)
cos(θ)

1− cos(θ)
(2.2.2.44)

= b2(N − 1)
1 + cos(θ)

1− cos(θ)
. (2.2.2.45)

Eqs. (2.2.2.14) and (2.2.2.37) hold for all ideal chains with constant bond
length. Furthermore, for these models the correlations between bond vectors
bi and bj vanish if i and j are far away along the chain, due to the absence of
interactions between monomers, implying

lim
|i−j|→∞

〈cos(Θij)〉 = 0. (2.2.2.46)

It can be shown that the sum over all bond vectors bj given any bond vector bi
converges, so that one can define

C ′i =
N−1∑
j=1

〈cos(Θij)〉 . (2.2.2.47)

Using Eq. (2.2.2.47) one can express the mean squared end-to-end distance for
ideal chains as

〈
(Ree)

2〉 = b2

N−1∑
i=1

N−1∑
j=1

〈cos(Θij)〉 (2.2.2.48)

22



2.2. Polymer Physics

= b2

N−1∑
i=1

C ′i (2.2.2.49)

= CN(N − 1)b2 (2.2.2.50)

where

CN =
1

N − 1

N−1∑
i=1

C ′i (2.2.2.51)

is the average of all the coefficientsC ′i and is called Flory’s characteristic ratio.
For long chains, N →∞, this ratio CN converges to a finite value C∞ so that
the mean squared end-to-end distance can be approximated as〈

(Ree)
2〉 = C∞(N − 1)b2. (2.2.2.52)

For example, comparing Eqs. (2.2.2.45) and (2.2.2.52) yields

C∞ =
1 + cos(θ)

1− cos(θ)
(2.2.2.53)

for Flory’s characteristic ratio of the freely rotating chain.

In general, Flory’s characteristic ratio describes the change in a polymer’s
size compared to the size of a freely jointed chain with equal number of monomers
and bond length due to the additional interactions or applied constraints. As
the constraints might influence the enlargement or shrinking of the polymer
differently, the characteristic ratio typically varies from model to model and
does not need to be a constant.

2.2.2.2 Kuhn Segmentation

The segmentation of a chain into Kuhn segments14 is defined by mapping a
polymer chain to an equivalent freely jointed chain withNk Kuhn monomers
and Kuhn length bk such that both the maximum end-to-end distance,Rmax,
also known as the contour length, as well as the mean squared end-to-end
distance,

〈
(Ree)

2〉, coincide. Therefore, the defining relations of the Kuhn
segmentation of an ideal chain with bond length b and number of monomers
N are given by

bk (Nk − 1)
!

= Rmax (2.2.2.54)
b2
k (Nk − 1)

!
=
〈
R2
ee

〉
(2.2.2.55)

= bkRmax (2.2.2.56)
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= b2 (N − 1)C∞ (2.2.2.57)

where the last relation holds approximately for large ideal chains, i.e.N →∞.
The above equations imply that the Kuhn segmentation is a form of coarse-

graining in that it maps a finely resolved chain into a coarser one with multiple
monomers combined into effective beads, the Kuhn monomers, such that two
properties of the chain are retained, namely the maximum extension of the
chains and its mean squared end-to-end distance.

From Eqs. (2.2.2.54) to (2.2.2.57), the number of Kuhn segmentsNk − 1, i.e.
the number of bonds in the equivalent freely jointed chain, can be calculated as

Nk − 1

R2
max

=
Nk − 1

(Nk − 1)2b2
k

(2.2.2.58)

=
1

(Nk − 1)b2
k

(2.2.2.59)

=
1

b2 (N − 1)C∞
(2.2.2.60)

⇔ Nk − 1 =
R2

max

b2 (N − 1)C∞
(2.2.2.61)

and the Kuhn length is given by

bk =
〈R2

ee〉
Rmax

(2.2.2.62)

=
b2 (N − 1)C∞

Rmax

. (2.2.2.63)

In the case of a freely jointed chain the maximum extension of the chain
is given by a fully stretched chain,Rmax = (N − 1)b and Flory’s characteristic
ratio is equal to unity, C∞ = 1, so the mapping is trivial:

Nk − 1 =
R2

max

b2 (N − 1)C∞
(2.2.2.64)

=
(N − 1)2b2

b2 (N − 1)
(2.2.2.65)

= N − 1 (2.2.2.66)

bk =
b2 (N − 1)C∞

Rmax

(2.2.2.67)
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=
b2 (N − 1)

(N − 1)b
(2.2.2.68)

= b (2.2.2.69)

Hence, in this case the coarse-graining procedure is an identity mapping, which
is what one would expect.

For a freely rotation chain, the maximum extension of the chain is obtained
when the bonds are arranged in a rod-like zig-zag formation, i.e. the bonds are
all in a plane and the angles between them are alternating, which is commonly
known as the trans state. The maximum end-to-end distance can then be
calculated as (N − 1) times the length of a bond projected along the contour,
b cos

(
θ
2

)
, yielding

Rmax = (N − 1)b cos

(
θ

2

)
. (2.2.2.70)

Therefore, with Flory’s characteristic ratio taken from Eq. (2.2.2.53), an equiva-
lent freely jointed chain for this polymer model has

Nk − 1 =
R2

max

b2 (N − 1)C∞
(2.2.2.71)

=
(N − 1)2b2 cos2

(
θ
2

)
b2 (N − 1)1+cos(θ)

1−cos(θ)

(2.2.2.72)

= (N − 1) cos2

(
θ

2

)
1− cos(θ)

1 + cos(θ)
(2.2.2.73)

= (N − 1)
1

2
(1 + cos (θ))

1− cos(θ)

1 + cos(θ)
(2.2.2.74)

= (N − 1)
1− cos(θ)

2
(2.2.2.75)

Kuhn segments each with a Kuhn length of

bk =
b2 (N − 1)C∞

Rmax

(2.2.2.76)

=
b2 (N − 1)1+cos(θ)

1−cos(θ)

(N − 1)b cos
(
θ
2

) (2.2.2.77)

= b
1 + cos(θ)

(1− cos(θ)) cos
(
θ
2

) (2.2.2.78)

= b
2 cos

(
θ
2

)
1− cos(θ)

. (2.2.2.79)
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2.2.2.3 Radius of Gyration

Besides the average squared end-to-end distance one often resorts to the squared
radius of gyration, orR2

g in order to describe a polymers size. The squared ra-
dius of gyration describes the polymers extent by the variance of its monomer
positions around its center of mass weighted by their masses:

R2
g(R) =

1

M

N∑
i=1

mi(ri −Rcom(R))2 (2.2.2.80)

where R = {ri|i ∈ {1, . . . , N}} is the set of monomer positions ri, mi the
monomers’ masses andN the number of monomers. Furthermore, Rcom de-
notes the position of the center of mass, i.e.

Rcom(R) =
1

M

N∑
i=1

miri (2.2.2.81)

In the case of monomers with equal mass, in particular for polymers consisting
of a single type of monomers, Eq. (2.2.2.80) simplifies to

R2
g(R) =

1

N

N∑
i=1

(ri −Rcom(R))2 (2.2.2.82)

For ideal chains one finds that the average squared end-to-end distance and
the squared radius of gyration are related via

R2
g =

1

6

〈
R2
ee

〉
(2.2.2.83)

2.2.2.4 Gyration Tensor

The squared radius of gyration can furthermore be generalized to the gyration
tensor G,15 which is defined as

G =
1

N

N∑
i=1

∆di ⊗∆di (2.2.2.84)

=
1

N

N∑
i=1

(ri −Rcom(R))⊗ (ri −Rcom(R)) (2.2.2.85)
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where ∆di = ri − Rcom(R) is the vector from the center or mass to the po-
sition of monomer i and “⊗” denotes the dyadic product. Hence, for the αβ
component with α, β ∈ {x, y, z} of the gyration tensor, one has

(G)αβ =

(
1

N

N∑
i=1

(ri −Rcom(R))⊗ (ri −Rcom(R))

)
αβ

(2.2.2.86)

=
1

N

N∑
i=1

((ri −Rcom(R))⊗ (ri −Rcom(R)))αβ (2.2.2.87)

=
1

N

N∑
i=1

(ri −Rcom(R))α (ri −Rcom(R))β (2.2.2.88)

From Eqs. (2.2.2.82) and (2.2.2.88), one can calculate the radius of gyration from
the gyration tensor

Rg =
√

Gxx + Gyy + Gzz. (2.2.2.89)

Apart from the information about the average space occupied by a chain, the
gyration tensor further conveys insights about the orientation of the polymer
and its deviations from a spherical shape. Cases, in which the components
of the gyration tensor averaged over all configurations of a single chain fulfill
〈G〉xx ≈ 〈G〉yy ≈ 〈G〉zz, indicate that the system is isotropic, i.e. the chain does
not have a preferred direction along which it expands. On the other hand, cases
in which these components differ significantly, e.g. 〈G〉xx 6= 〈G〉yy ≈ 〈G〉zz,
indicate a preferred orientation of the chain along a certain axis. Furthermore,
by looking at the averages of the eigenvalues of the gyration tensor, one can
draw conclusions on the average shape of the polymer, with similar eigenval-
ues suggesting a more spherical shape and differing eigenvalues suggesting an
elongation of the polymer. This is especially useful in anisotropic systems with
many chains, where there is a preferred orientation of the chains, or inhomoge-
neous systems, where the shapes of the spheres will change depending on their
position, both of which manifest themselves in the components of 〈G〉 or its
eigenvalues respectively.

2.2.3 Scaling Behavior and Theta Temperature

The ideal polymer models discussed above give valuable qualitative and often-
times quantitative insights into the properties of polymers, yet are very easy to
treat analytically. In reality however, the interactions between monomers are
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not negligible so that real chains exhibit far more complex behaviors. Further-
more, taking into consideration interactions between monomers introduces a
temperature dependence to the static properties of polymers that is not present
with ideal chains.

2.2.3.1 Monomer Interactions and Excluded Volume

One key difference between ideal chains and real polymers is the emergence of
excluded volume, that changes the statistics of the chain from a random walk to
a self-avoiding walk. In ideal chains the monomers that are far apart along the
chain do not interact and therefore do not influence each other, so that multiple
monomers can occupy the same volume simultaneously. In real chains, the
interactions between the monomers alter this behavior and typically result in an
effective volume for every monomer, that is inaccessible to all other monomers.
A typical approximation for the interaction between the monomers is a homoge-
neous, additive pair potential, that effectively takes into account both the energy
cost of steric repulsion between two overlapping monomers as well as other
energetic contributions coming from the monomer-monomer interactions and
monomer-solvent interactions. Due to this, this effective interaction typically
has a repulsive hard-core barrier combined with either an attractive well if
it is energetically favorable for monomers to be close to monomers instead
of -possibly implicit- solvent particles or with an extra repulsion if monomer-
solvent contacts are more favorable than monomer-monomer contacts. If the
solvent particles are chemically identical to the monomers, there is no differ-
ence in the energy between the different species and the effective potential
often only consists of the repulsive hard-core barrier exclusively. The Lennard-
Jones potential in Eq. (2.2.1.3) is an example for a combination of a hard-core
repulsion with an attractive well.

The probability of finding two monomers at a certain distance is approx-
imately3 proportional to the Boltzmann factor associated with this pairwise
interaction.
For such a commonly assumed homogeneous, pairwise potentialU(r) the prob-
ability of finding those two particles at a distance r is therefore proportional
to e−βU(r), with β = 1

kBT
. The case of non-interacting particles is a special case

of this with U(r) = 0 ∀r, yielding a Boltzmann factor of e−βU(r) = 1 for all
distances, indicating an uniform probability distribution, as one would expect.

3This approximation takes into account only pairwise correlations and neglects contribu-
tions due to all the other surrounding monomers.
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This motivates the definition of the Mayer-f-function, which reads

f(r) = e−βU(r) − 1. (2.2.3.1)

The Mayer-f-function can be interpreted as the excess probability weight of
two non-interacting monomers being separated by a distance r compared to
the non-interacting case. By integrating the Mayer-f-function over the whole
space, i.e.

v = −
∫
f(r)d3r (2.2.3.2)

=

∫
1− e−βU(r)d3r (2.2.3.3)

one obtains the net two-body interaction between the monomers. The param-
eter v is called the excluded volume of the monomers and its sign indicates
whether there is a net attraction (v < 0) or a net repulsion (v > 0) between the
particles. If the potential U is radially symmetric, the excluded volume can be
obtained as

v = −4π

∫ ∞
0

f(r)dr (2.2.3.4)

= 4π

∫ ∞
0

1− e−βU(r)dr. (2.2.3.5)

This expression is related to the Barker-Henderson diameter,16 which is defined
as

dBH =

∫ σ0

0

1− e−βU(r)dr (2.2.3.6)

with σ0 being the distance for which the potential vanishes, U(σ0) = 0. From
comparison it becomes clear that the Barker-Henderson diameter is a truncated
version of the integral in Eq. (2.2.3.5), measuring the size of the hard-core of the
particles.

2.2.3.2 Solvent Qualities and Theta Temperature

As alluded to in the previous section, the pair interaction between monomers
is both a consequence of the interactions between the monomers themselves
as well as that between the -again possibly implicit- solvent particles. Hence,
the excluded volume, that summarizes the net two-body interactions, can be
used to distinguish five different types of solvent qualities:4

4Here we assume spherical Kuhn monomers with Kuhn length bk.
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1. For interactions that solely consist of hard-core repulsion, e.g. when
the solvent particles and the monomers are chemically identical, the
excluded volume becomes independent of the temperature, which is
why the solvent is called athermal. In this case, v ≥ b3

k and the statistics
of the chains are that of a self-avoiding walk, i.e. a random walk where
monomers are not allowed to overlap.

2. For good solvents there is a comparably small attractive contribution to the
potential energy, leading to 0 < v < b3

k. In this case, the chain behaves like
a random walk on scales smaller than a certain length determined by the
Kuhn length of the monomers and the excluded volume, cf. Sec. 2.2.3.3.
On larger length scales, the chain is swollen, due to the net repulsion
between monomers, following the statistics of a self-avoiding walk.

3. For a theta solvent the attractive and repulsive contributions of the po-
tential cancel each other out, yielding an excluded volume of v = 0. Due
to this cancellation, there is no net two-body interaction, leading to the
statistics of the chain to be approximately that of an ideal chain. Hence, a
polymer in a theta solvent follows the statistics of a random walk.

4. For Polymers in a poor solvent the attraction of the pair interaction domi-
nates the repulsion, resulting in a net attraction between monomers with
the excluded volume being −b3

k < v < 0. Under these conditions the
polymer again shows ideal behavior below the same length scale as for
the good solvent, but collapses rather than swells beyond this length scale.
On these larger length scales, the chain becomes a densely packed sphere
of blobs, while on the smaller length scales the statistics again follows
that of a random walk.

5. For non-solvents where v ≤ −b3
k the attraction between monomers is so

strong that the solvent is effectively excluded from the volume occupied
by the chain. In this case, the chain is totally collapsed on all length scales,
with the monomers densely filling the chain’s volume.

As can be seen from Eqs. (2.2.3.1) and (2.2.3.2), in general the excluded
volume depends on the temperature, which is why the solvent quality depends
on the temperature as well. One distinguished temperature, called the theta
temperature or θ-temperature is the temperature at which the excluded volume
is exactly zero, v = 0. At the theta temperature, the monomers experience
no net two-body interaction as measured by v and the corresponding chain
consequently has nearly ideal conformations, leading to random walk statistics.
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2.2.3.3 Scaling Behavior and Temperature Dependence

This section will provide a very concise introduction into the scaling behavior
of chains in different solvent conditions. As the derivations would exceed the
scope of this thesis, it will only sketch the principal ideas without going into
further detail. Additional information can be found in the relevant literature,
for example Ref. [17].

LetR denote the square root of the mean squared end-to-end distance,

R ≡
√〈

(Rideal
ee )2

〉
, (2.2.3.7)

thenR is a measure for the typical size of the given polymer.
As derived in Sec. 2.2.2.1 and expressed explicitly in Eq. (2.2.2.52) the exten-

sion of an ideal chain as measured by the mean squared end-to-end distance
is proportional to the number of segments. Hence, R is proportional to the
square root of the number of segments.

R = b C
1
2∞(N − 1)

1
2 (2.2.3.8)

∝ b(N − 1)
1
2 . (2.2.3.9)

One consequence from Flory theory, a theory approximating the free energy of
a polymer in a solvent, is that the size of a chain generally follows a power law,

R ∝ b(N − 1)ν , (2.2.3.10)

where the exponent ν depends on the quality of the solvent and is equal to the
reciprocal value of the fractal dimension. For a chain following random walk
statistics, i.e. an ideal chain or a chain in a theta solvent, this exponent becomes
ν = 1

2
. A self-avoiding walk has an observed scaling exponent of ν ≈ 0.588,

while Flory theory predicts a value of ν = 3
5

, which is surprisingly accurate
given that it contains cancellations of errors stemming from the assumptions
made for the entropy of an ideal chain and the interaction energy of an isolated
real chain. Finally, a collapsed, i.e. closely packed, configuration has a scaling
exponent of ν = 1

3
.

In order to understand the temperature dependence of the scaling behavior
of real chains, one typically divides the polymer into thermal blobs, each con-
taining nT monomers. Inside a thermal blob the energy contribution from all
the excluded volume interactions is considered to be smaller than the thermal
energy kBT , so that the monomers inside this thermal blob behave like an ideal
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chain with random walk statistics. The behavior of the collection of thermal
blobs then depends on the excluded volume interactions. Hence, the size of the
thermal blob, here denoted as ξT , defines a relevant length scale of the system.
From the description above it becomes clear that the size of the thermal blobs
depends on the excluded volume, which in turn depends on the temperature.

Let nT denote the number of monomers in a thermal blob and ξT the size
of the thermal blob. In Flory theory the average number of monomers being
located in the excluded volume of a given monomer in a thermal blob is equal
to the number of monomers times the ratio of the excluded volume and the
pervaded volume, nT |v|ξ3

T
.5 For each overlap of monomers, an energetic penalty

of kBT is assumed. As the expression above holds true for all nT monomers in
the blob, the cumulative interaction energy equals n2

T
|v|
ξ3
T
kBT .

As alluded to above, the cumulative interaction energy of a thermal blob
is approximately equal to the thermal energy kBT and the chain inside of the
thermal blob follows ideal random walk statistics, as the thermal energy is
sufficient to make the effects from interactions between monomers negligible
on scales smaller than the thermal blob. Hence, the governing equations of the
size of a thermal blob and the number of monomers contained in it read

ξT ≈ bkn
1
2
T (2.2.3.11)

n2
T

|v|
ξ3
T

kBT ≈ kBT (2.2.3.12)

⇔ n2
T

|v|
ξ3
T

≈ 1. (2.2.3.13)

By inserting Eq. (2.2.3.11) into Eq. (2.2.3.13) and solving for nT , one finds

n2
T

|v|
ξ3
T

≈ 1 (2.2.3.14)

⇔ n2
T

|v|

b3
kn

3
2
T

≈ 1 (2.2.3.15)

⇔ n
1
2
T

|v|
b3
k

≈ 1 (2.2.3.16)

⇔ nT ≈
b6
k

|v|2
. (2.2.3.17)

5This approximation assumes that the positions of monomers are uncorrelated and that the
monomers are evenly distributed in the pervaded volume of the chain, both of which are not
the case in reality.
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From the expression for nT , Eq. (2.2.3.17), and the ideal statistics inside the
thermal blob, Eq. (2.2.3.11), one can determine the blob’s size,

ξT ≈
b4
k

|v|
. (2.2.3.18)

From Eqs. (2.2.3.17) and (2.2.3.18) one can see that both nT and ξT diverge
for v → 0, so that for polymers in a theta solvent, the thermal blob size becomes
infinite. This makes sense, as the chain shows ideal behavior on all length scales,
whereby a thermal blob would comprise of all the monomers of the chain. If on
the other hand |v| ≥ b3

k, then nT ≤ 1 and ξ ≤ bk, i.e. a thermal blob consists of
only a single monomer and the thermal length scale is smaller or equal to the
Kuhn length. This implies that for athermal solvents (v ≥ b3

k) and non-solvents
(v ≤ −b3

k) there is no transition of the scaling behavior but they exhibit their
respective scaling regardless of the number of segments they consist of.

The scaling behavior of real chains resulting from the considerations above
is schematically summarized in Fig. 2.3 with both scales being logarithmic.
In reality, the scaling behavior is more complex, in particular the transition
from ideal random walk statistics below the thermal length scale ξT to self-
avoiding walk statistics or collapsed chains is of course not as sharp as depicted
in general.

2.3 Computer Simulations

Computer simulations in soft matter physics are a means of gaining insights
into physical systems not via analytical calculations as in theory or by observing
and measuring a real world system as in experiments but by numerically solving
time or ensemble integrals. This is valuable due to fact that the properties one is
interested in often involve very large systems and very complicated interactions
which are far beyond what can be calculated analytically. On the other hand,
experiments are limited by the technical practicability of the synthesis of the
system as well as the necessary measurements, while computer simulations
allow the study of arbitrary models and measurements. However, computer
simulations do not yield analytical expressions but only expectation values
of observables and are further limited by the computational resources and
the need for efficient algorithms, which is why it replaces neither theoretical
calculations nor experiments. Instead, these approaches compliment each
other, with computer simulations being a connective link in between theory
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Figure 2.3: Log-log schematic of the scaling behavior of the size R of real poly-
mers in different solvents as a function of the number of segments (N − 1). For
the self-avoiding walk statistics, the scaling exponent of ν = 3

5
from Flory theory

was assumed. nT and ξT denote the thermal length scale and the number of
segments per thermal blob respectively. In reality, the scaling of the size of
polymers with the number of segments is more complex, as the transition at
(nT , ξT ) is not as sharp as depicted but typically smoother.
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and experiments and hence representing a third paradigm of research in soft
matter research.

In general, one distinguishes two types of computer simulations, Monte
Carlo (MC) simulations and molecular dynamics (MD) simulations.

2.3.1 Monte Carlo Simulations

The principle idea behind MC has originally been proposed in 1777 by Georges-
Louis Leclerc, Comte de Buffon in the famous “Buffon’s needle problem”,18 which
can be used as a method to approximate π via a a series of experiments. The
method was then further developed and employed by different scientists un-
til its modern version, the Metropolis Monte Carlo method, was published by
Stanislaw Ulam et al.19 in 1949 as part of research aimed at the development of
the nuclear bomb at Los Alamos National Laboratory. In the following, we will
refer to the special case of the Metropolis Monte Carlo simply as “Monte Carlo”
or “MC” if not stated otherwise explicitly.

In MC simulations, one aims at approximating ensemble averages of target
quantities by conducting a large set of experiments and computing the corre-
sponding expectation values. In the case of soft matter systems this corresponds
to generating a substantial number of configurations of the system and calcu-
lating the expectation value of the observableA(·) as the weighted average of
the realizations of A(·), cf. Eq. (2.1.1.9). While this would, in principle, yield
accurate results for an infinite number of samples, it is infeasible due to the
intractable number of computations that would have to be done. Thus, it is
significantly more efficient to sample the configurations with a stronger focus
on those examples with a higher statistical weight. Let PB(·) denote the true
underlying probability distribution of configurations as given by the canonical
probabilities, Eq. (2.1.1.4), and PS(·) the probability distribution describing the
sampling routine of the MC method, then one finds

〈A〉 =
∑
C

PB(C)A(C) (2.3.1.1)

=
∑
C

PB(C)PS(C)
PS(C)

A(C) (2.3.1.2)

=
∑
C

PS(C)PB(C)
PS(C)

A(C) (2.3.1.3)

≈ 1

|S|
∑
C∼PS

PB(C)
PS(C)

A(C) (2.3.1.4)

35



Chapter 2. Theoretical Foundations

as long as
∀C ′ ∈ {C ∈ P|PB(C) > 0} : PS(C ′) > 0. (2.3.1.5)

Here, P stands for the phase space, i.e. the space of all possible microscopic
configurations, and C ∼ PS signifies that the configurations C are sampled
according to probability distribution PS. Furthermore, S ⊂ P denotes the set
of samples and |S| its cardinality, viz. the number of samples. The expression in
Eq. (2.3.1.4) holds true approximately for a large but finite number of configura-
tions so that by sampling and reweighting a subset of configurations according
to the sampling probability distribution PS(·) one can approximate the expec-
tation value of the physically correct probability distribution PB(·). In the case
of these probability distributions being identical, i.e. PB(C) = PS(C) ∀C ∈ P,
the expectation value becomes

〈A〉 ≈ 1

|S|
∑
C∼PS

PB(C)
PS(C)

A(C) (2.3.1.6)

=
1

|S|
∑
C∼PB

A(C), (2.3.1.7)

so in the case of sampling according to the physically correct probability dis-
tribution, the expectation value is obtained by an unweighted average of the
observed realizations. The advantage of this lies in a more efficient way of sam-
pling, as by sampling according to the physical distribution those examples
with higher statistical weight will occur more frequently, while those which do
not contribute as strongly to the expectation values will be sampled less often.

Metropolis Monte Carlo makes use of this observation by starting with a
configuration and evolving it with trial moves, i.e. statistical modifications to the
current configuration, and accepting the modification according to a chosen
acceptance criterion. Here, the modifications can be chosen arbitrarily and do
not have to follow any physical law. For example one might choose to move
or rotate whole sets of particles like polymers or add or remove particles. This
allows for exploring the phase space more efficiently, while other methods that
are limited to physically feasible modifications tend to get stuck in local optima.
The acceptance criterion has to be chosen in such a way, that the resulting
transitions between configurations fulfill the criterion of detailed balance, which
states, that the probability of being in state Si, P(Si), and transitioning to a
state Sj is equal to the probability of being in state Sj , P(Sj), and transitioning
to state Si,

P(Si) (ω)ij = P(Sj) (ω)ji (2.3.1.8)
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where ω is the transition matrix with its components (ω)αβ describing the
probabilities of transitioning from state α to state β. The detailed balance
condition implies the global balance condition,

P(Si)
∑
j 6=i

(ω)ij =
∑
j 6=i

P(Sj) (ω)ji (2.3.1.9)

which is a necessary and sufficient criterion for a stationary probability dis-
tribution of the states.20 Furthermore, the detailed balance condition is often
easier to prove than the global balance condition, while still being a sufficient
condition.

A typical choice for the acceptance criterion that fulfills the detailed balance
condition is the Metropolis acceptance ratio, where a trial move from state Si to
state Sj is accepted with probability

Acc(Si, Sj) = min(1, exp[−β(H(Sj)−H(Si))]). (2.3.1.10)

Besides having to fulfill the global balance condition, the trial moves and associ-
ated acceptance probabilities have to be chosen such that the system is ergodic,
as otherwise the configurational integral is effectively “truncated”, meaning
not all possible states of the system are accounted for when calculating the
expectation values of observables, possibly leading to incorrect results.

Despite standard MC methods not reproducing physical trajectories and
therefore being incapable of predicting values of dynamical properties such
as viscosities or diffusion coefficients, they are very efficient in calculating ex-
pectation values for static properties, like n-particle distribution functions and
density profiles to name but a few examples. Due to the missing restrictions of
the trial moves, it is possible to reduce the risk of getting stuck in local optima
of the free energy landscape while exploring the phase space and it is straight-
forward to switch to different ensembles by adding corresponding trial moves
and adjusting the acceptance probability. This is why even with increasing
availability of high-performance computers and the advent of molecular dy-
namics simulations, new MC methods are still developed and frequently used
in modern research.

2.3.2 Molecular Dynamics Simulations
While MC methods are designed to calculate the ensemble average of a prop-
erty, with molecular dynamics (MD) simulations one obtains the time average
of said property. Under the assumption of ergodicity, these two approaches
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yield equal results for expectation values, according to Eq. (2.1.4.1). Hence, in
these cases both methods can be used to calculate these values, depending on
whichever is more suited for the system at hand. The idea behind molecular
dynamics simulations is to evolve a system according to its equations of motion,
i.e. by applying time-discretized versions of Newton’s equation, F = ma, to the
particles in the system as specified by the interaction HamiltonianH. MD sim-
ulations were devised in the 1950s with pioneering work such as that by Alder
and Wainwright in 1957 when they published results of simulations with several
hundred hard spheres.21 With many early successes in the application of MD
simulations to more realistic systems like the calculation of the self-diffusion
coefficient of liquid argon using a Lennard-Jones potential,22 cf. Eq. (2.2.1.3),
this technique quickly became popular and established itself as an important
tool for studying soft matter and for solid state research. Especially the inherent
idea of mimicking the dynamics of the system as closely as possible proves very
useful, as this allows for the calculation of dynamic properties like viscosities or
diffusion coefficients.

2.3.2.1 Integrators in MD Simulations

Typically, the time evolution in MD simulations is done by alternately calculat-
ing the forces acting on the particles at the current time t and updating their
velocities and positions accordingly using a timestep ∆t, which is then done
iteratively for a set number of cycles. While the interaction HamiltonianH is de-
termined by the interactions of the particles in the system and hence can not be
changed without skewing its properties, the choice of the update scheme, also
known as integrator, is in principle arbitrary as long as it discretizes Newton’s
equations of motion. As it turns out, fulfilling Newton’s equations of motion
is not a sufficient criterion for the conservation of energy, momentum and
angular momentum due to the discretization error, which is why the simplest
integration scheme, the Euler scheme, is not an advisable integrator. The Euler
scheme is defined as the truncated Taylor expansion of the current position of
particle i, ri(t), up to second order

ri(t+ ∆t) = ri(t) + vi(t)∆t+
Fi(t)

2mi

(∆t)2 (2.3.2.1)

with particle velocity vi(t), massmi and Fi(t) = −∂H(r(t))
∂ri(t)

being the force acting
on particle i, where r(t) is the set of all positions at time t. Here, we have as-
sumed that the interaction Hamiltonian does not depend on the set of current
velocities, v(t). The Euler scheme has a local truncation error of the order of
O((∆t)2) and can be numerically unstable, viz. the deviation from the exact so-
lution of the equations of motion can grow very large, which leads to violations
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of the aforementioned conservation laws.

A sufficient criterion for the approximate conservation of said properties is
the symplecticity of the integrator. A symplectic mapping is a linear transforma-
tion A : R2n → R2n, with corresponding matrix A, such that for every pair of
vectors z1, z2 ∈ R2n

zT1 J2n×2nz2 = (A(z1))T J2n×2nA(z2) (2.3.2.2)
= (Az1)T J2n×2n (Az2) (2.3.2.3)
= zT1 A

TJ2n×2nAz2 (2.3.2.4)
= zT1

(
ATJ2n×2nA

)
z2 (2.3.2.5)

⇔ ATJ2n×2nA = J2n×2n (2.3.2.6)

where the superscript T denotes transposition and J2n×2n is the (2n × 2n)-
dimensional symplectic unit matrix,

J2n×2n =

(
0n×n 1n×n

−1n×n 0n×n

)
. (2.3.2.7)

The mappings that fulfill Eq. (2.3.2.6) form the so-called symplectic group of
dimension 2n. Nonlinear differentiable mappings are also called symplectic, if
their Jacobian matrix fulfills Eq. (2.3.2.6).

The symplectic structure is exactly that of Hamilton’s equations,

dp

dt
=
∂H({p,q})

∂q
,

dq

dt
= −∂H({p,q})

∂p
(2.3.2.8)

with the vectors of all particle positions p ∈ RN and particle momenta q ∈ RN ,
whereN denotes the number of particles, as it can be written as( dp

dt
dq
dt

)
= J2N×2N∇2NH({p,q}) = J2N×2N

(
∂H({p,q})

∂p
∂H({p,q})

∂q

)
(2.3.2.9)

with the 2N -dimensional gradient∇2N .
Hence, integrator schemes have to be symplectic so that Eq. (2.3.2.9) is invari-

ant under the associated transformation in order for them to fulfill Hamilton’s
equations. By virtue of Liouville’s theorem23–25 fulfillment of these equations im-
plies conservation of phase space volume and thus of energy and momentum.

39



Chapter 2. Theoretical Foundations

One simple and often used scheme that is symplectic is the Velocity Verlet
scheme26 which reads

ri(t+ ∆t) = ri(t) + vi(t)∆t+
Fi(t)

2mi

(∆t)2 (2.3.2.10)

vi(t+ ∆t) = vi(t) +
Fi(t) + Fi(t+ ∆t)

2mi

∆t (2.3.2.11)

where it is assumed again, that the force Fi(t) = −∂H(r(t))
∂ri(t)

is independent of the
set of particle velocities v(t). This integrator has a local truncation error of the
order ofO((∆t)4), which is significantly better than that of the Euler scheme,
which is why in the work presented in this thesis, we used this integration
scheme.

2.3.2.2 Thermostats in MD Simulations

In order to transform the microcanonical NV E ensemble to the canonical
NV T ensemble in MD simulations, there exist multiple variations of ther-
mostats. These thermostats mimic the exchange of heat with an external bath,
typically by modifying the particle velocities or the equations of motion. The eas-
iest example of such a thermostat is the Berendsen thermostat,27 which rescales
the velocities of all particles, such that the equipartition theorem

N∑
i=1

1

2
miv

2
i =

3N
2
kBT (2.3.2.12)

is fulfilled. The Berendsen thermostat does not produce the correct Maxwell-
Boltzmann distribution of velocities and therefore leads to incorrect results
for static and dynamic properties, but is useful especially for equilibration of
systems due to its simplicity.

A very commonly used thermostat that leads to the velocities being dis-
tributed according to the Maxwell-Boltzmann distribution is the Langevin
thermostat,28,29 which was devised by Paul Langevin in order to qualitatively
describe the Brownian motion of particles. In the Langevin equation, Newton’s
equations of motion is modified in such a way, that the exchange with the heat
bath is implemented via random collisions and friction. Here, the collisions are
modeled via an uniform random force ηi(t) with mean zero 〈ηi(t)〉 = 0, while
the friction Ffrict

i is given by a friction coefficient γ multiplied by the current
velocity yielding,

mi
dvi
dt

= Fi(t) + ηi(t)− γvi(t). (2.3.2.13)

40



2.3. Computer Simulations

The autocorrelation of the random force reads〈
(ηi(t))α

(
ηj(τ)

)
β

〉
= 2γkBTδijδαβδ(t− τ) (2.3.2.14)

with α and β denoting the spatial dimension. The prefactor in Eq. (2.3.2.14) is
chosen in such a way that the fluctuation dissipation theorem is fulfilled.

From the above description and Eq. (2.3.2.13) one can see, that Langevin’s
equations of motion are a stochastic partial differential equation instead of a
deterministic partial differential equation like Newton’s equations of motion.

In the case of the generalized Langevin equation,30,31 the friction term Ffrict
i

is described by a convolution of a memory kernel M(·) with the history of
previous velocities,

Ffrict
i (t) =

∫ t

0

M(t− t′)v(t′) dt′. (2.3.2.15)

accounting for effects like backflow.
While the generalized Langevin equation is subject of ongoing research,32,33

in most cases one assumes that the movement of the particles in the system is
on a much larger timescale than the movement of the particles from the implicit
heat bath. In this case the memory kernel and consequently the friction term
approximately become δ-correlated and therefore independent of the history
of velocities as well as other particles’ velocities,

Ffrict
i (t) = −γ

∫ t

0

δ(t− t′)vi(t′) dt′ (2.3.2.16)

= −γvi(t) (2.3.2.17)

resulting in the expression in Eq. (2.3.2.13). The simulations in theNV T en-
semble in this thesis were conducted using the Langevin equation with such a
δ-correlated friction term as described in Eq. (2.3.2.13).

2.3.3 Periodic Boundary Conditions

Typically, the number of particles that can realistically be simulated in MD
for sufficient times is strongly limited by the complexity of the interaction
Hamiltonian and the computational resources. Even with large computational
resources it is often not possible to analyze the behavior of bulk systems, i.e.
systems where the surface area of the phases is negligible compared to the
volume of the phases. This is why in computer simulations one often employs a
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technique called periodic boundary conditions (PBC), where particles are placed
in a -often cubic- box with volume

V = (Lx × Ly × LZ) (2.3.3.1)

with Lα denoting the size of the box in the direction α ∈ {x, y, z}. The particles
can interact with mirror particles outside the simulation box as if the mirror
particles were independent of the particles inside the simulation box. In Fig. 2.4
we illustrate this by an example of two interacting particles in a two dimensional
box.

Figure 2.4: Illustration of two particles in a two dimensional simulation box with
periodic boundary conditions. The images I of the simulation box (solid line)
and the mirror boxes (dashed line) can be found at the top of the corresponding
boxes. Filled circles denote the absolute positions ri and rj , the empty circle
with dashed contour corresponds to the position inside the box ri and the empty
circle with solid contour indicates the virtual position of j for the calculation of
the minimal distance dij between particles i and j, cf. Eq. (2.3.3.3).

In PBC, it makes sense to express the absolute position of a particle, ri, in
terms of its position inside the box, ri, and multiples of the box dimensions,
called the image Ii ∈ N3,

ri = ri +

 (Ii)x Lx
(Ii)y Ly
(Ii)z Lz

 . (2.3.3.2)

Furthermore, the corresponding calculation of distances between particles iand
j in a box is then modified from a regular euclidean distance to the minimum
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distance convention,

dij = min
∆I∈N3

ri − rj +

 (∆I)x Lx
(∆I)y Ly
(∆I)z Lz


 (2.3.3.3)

≡ min
∆I∈N3

ri − rj +

 (∆I)x Lx
(∆I)y Ly
(∆I)z Lz


 (2.3.3.4)

where the minimum over ∆I leads to the calculation of the distance of particle
i with the closest mirror particle of particle j. Thus, the interactions between
particles can cross the boundaries given by the simulation box, so that the
simulation is effectively conducted on a higher dimensional torus.

2.3.4 Local Density-Dependent Potentials
In this thesis we employ a type of potential, which is not yet commonly used
in soft matter research, the local density-dependent potential (LDP). The idea
behind LDPs originates from the embedded atom method in solid state physics
devised by Daw and Baskes.34,35 In their work, they derived a model of metals
and impurities, where the interaction energy at impurities is not given by addi-
tive contributions but by an embedding energy that depends on the electron
density at the corresponding positions.

Due to reasons of simplicity and because it is typically a valid assumption,
the interaction HamiltonianH is often assumed to be a sum of additive n-body
potentials,

H(r) =
1

2!

∑
i

∑
j 6=i

U2b(ri, rj) +
1

3!

∑
i

∑
j 6=i

∑
k 6∈{i,j}

U3b(ri, rj, rk) + . . . (2.3.4.1)

≡
∑
i

Ui(r) (2.3.4.2)

where the superscript of U denotes the number of particles participating in
the corresponding interaction. Here, the potential energy Unb

i1
(r) of a particle

i1 due to the conventional n-body potential Unb(r) given the set of positions r
can therefore be expressed as

Unb
i1

(r) =
1

n!

∑
i2 6=i1

· · ·
∑

in 6∈{i1,i2,...,in−1}

Unb(ri1 , . . . , rin). (2.3.4.3)
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The prefactors of 1
n!

correct for counting sets of particles multiple times and
assume that the potential functions are symmetric with regards to permutations
of the corresponding particles.

In contrast, in the case of the local density-dependent approach a possibly
nonlinear function, the embedding function Gnb, is applied to some additive
tuple-wise weight functions ωnb(ri1 , . . . , rin). Thus the n-body local density-
dependent potential of particle i1 can be written as

Unb−LDP
i1

= Gnb

 1

n!

∑
i2 6=i1

· · ·
∑

in 6∈{i1,i2,...,in−1}

ωnb(ri1 , . . . , rin)

 (2.3.4.4)

= Gnb
(
ϕnb
i1

(r)
)
. (2.3.4.5)

where we have defined the n-body local density of particle i1, ϕnb
i1

(r), as

ϕnb
i1

(r) =
1

n!

∑
i2 6=i1

· · ·
∑

in 6∈{i1,i2,...,in−1}

ωnb(ri1 , . . . , rin) (2.3.4.6)

and the total energy due to the local density-dependent interactions reads

ULDP =
∑
i

Unb−LDP
i (2.3.4.7)

=
∑
i

Gnb
(
ϕnb
i (r)

)
. (2.3.4.8)

Hence, from comparing Eq. (2.3.4.3) to Eq. (2.3.4.4) it becomes clear that the
n-body LDP is a straight generalization of the conventional n-body potential,
with the latter recovered from the former by choosing for example ωnb = Unb

andGnb as identity. Furthermore, as the number of applications of the embed-
ding functionG is negligible compared to the number of operations in the sums
of additive terms, the computational complexity of the n-body LDP is the same
as that of the conventional n-body potential.

However, while computationally equally demanding as its conventional
counterpart, the n-body LDP can incorporate multi-body contributions to the
potential energy of particle i, as it does not only depend linearly on the posi-
tions of other particles, but on all positions simultaneously, which define the
aforementioned n-body local density ϕnb

i (r). Thus, the particle’s interaction is
sensitive to its local environment, which is why it is especially useful in the ap-
plication in inhomogeneous systems, as will be shown for the case of two-body
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LDPs in Ch. 4.

In previous works, for example by the group of Scott Shell,36,37 the local
density ϕi is typically defined such that it effectively counts the number of
particles in the vicinity of a particle i, e.g. using a smoothened Heaviside func-
tion. Therefore, the corresponding LDP effectively introduces an additional
cohesion between particles. The work presented in Ch. 4 and Ch. 5 differs from
that in that the definition of the local density is instead given by a structural
quantity obtained from microscopic references and is supposed to allow for a
continuous transition from an effective pair potential at low density to one at
the bulk density via inclusion of multibody effects.

2.3.5 Reduced Units

In computer simulations it is quite common to use reduced units rather than
real units to express physical quantities like temperatures, energies, densities,
pressures, etc. As the parameters of simulations and physical quantities can be
quantified in arbitrary systems of units, one typically chooses a convenient set
of basic units, in which these variables are expressed. From these basic units,
other units may then be derived. The choice of these basic units is obviously
not unique, as one may use different reference scales. In the case of a system of
particles of massm interacting via a Lennard-Jones potential (cf. Eq. (2.2.1.3)) it
often makes sense to use its parameters as reference scale,

• σ as unit of length

• ε as unit of energy

• m as unit of mass.

From this choice of reference scales, one can derive other quantities, e.g.
the unit of time as

[t] = σ
√
m/ε (2.3.5.1)

while the temperature is expressed in terms of the interaction strength,

[T ] = ε/kB. (2.3.5.2)

Quantities given in reduced units are then dimensionless and often denoted by
a superscript “ * ”, for example

t∗ = t/
(
σ
√
m/ε

)
and T ∗ = T/ (ε/kB) = kBT/ε. (2.3.5.3)
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Symbol Parameter description Unit

l Length σ

E Energy ε

M Mass m

T Temperature ε/kB

t time σ
√
m/ε

ρ Density 1/σ3

ρ Force ε/σ

k Spring constant ε/σ2

γ Surface tension ε/σ2

P Pressure ε/σ3

Table 2.2: Overview of basic reduced units and units derived from these.

In Tab. (2.2) we summarize the basic units and some derived units used in this
thesis.

Besides providing a more convenient unit system, this convention also
allows for easier mapping of one system in reduced units to infinitely many
systems in real units, also known as law of corresponding states.38,39 For example,
one simulation of a Lennard-Jones model in reduced units might be mapped to
a system consisting of Argon at T = 60K and a density of ρ = 840 kg

m3 as well as
to a system consisting of Xenon at T = 112K and a density of ρ = 1617 kg

m3 , both
of which correspond to a simulation at ρ∗ = 0.5 and T ∗ = 0.5.40 In the first case,
the energy scale would then for example be given as ε ≈ 0.499 kJ

mol
and in the

second as ε ≈ 0.931 kJ
mol

.

Additionally, using reduced units has the advantage of many quantities be-
ing expressible at the order of about 1, which is advantageous in numerical
simulations, as operations using quantities differing by multiple orders of mag-
nitude might introduce numerical inaccuracies due to the finite precision of
numbers on computers.

Typically, one omits the superscript “ * ” for variables in reduced units and
implicitly expresses all quantities in reduced units. This thesis follows this
convention if not stated otherwise explicitly.
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2.4 Coarse-Graining

While in principle one could simulate all systems with great detail by numeri-
cally solving the quantum mechanical equations such as the Schrödinger equa-
tion with the corresponding time-dependent Hamiltonian, this is prohibitively
time consuming, limiting the applicability of this approach to very small time
and length scales with system sizes of the order of a few hundred to a few thou-
sand particles. For simulations of larger systems, like in the case of protein
simulations, the computational effort therefore has to be reduced systemati-
cally in such a way, that the relevant properties of the system remain as close as
possible to the underlying system. As different properties are subject to different
time and length scales, one needs modeling techniques covering and bridging
multiple scales, which is why these techniques are referred to as multiscale mod-
eling. Generally, one distinguishes two types of multiscale modeling techniques,
namely bottom-up and top-down approaches. In bottom-up approaches, one
reduces the level of detail of a more complex system and tries to reproduce
the microscopic features, while in top-down approaches, one introduces some
level of detail to a less complex system in order to reproduce the features on
a larger scale. The different time and length scales as well as corresponding
systems in multiscale modeling are depicted in Fig. 2.5.

Figure 2.5: Illustration of multiscale modeling with different time and length
scales and corresponding systems. Picture taken from Ref. [41].

One specific field of study in multiscale modeling is called coarse-graining,
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which aims at the reduction of a model’s complexity by reducing the degrees of
freedoms such as the number of particles and by simplifying the interaction
Hamiltonian. Coarse-graining is typically associated with a time and length
scale inbetween atomistic systems, where every single atom is treated as a sepa-
rate particle, and mesoscale systems, where mesoscopic structures are studied.
Hence, on the scale of coarse-grained simulations usually multiple atoms are
combined into single beads with effective interactions such that chosen prop-
erties of the microscopically resolved system are reproduced. In principle, the
ideal model would reproduce all of these properties on the associated scales
simultaneously, however, as the reduction of the model complexity is equivalent
to a loss of information, which is irreversible, this is intrinsically not possible.
In the following, there will be a discussion of three coarse-graining techniques
used in this thesis, which aim at reproducing different features of the reference
systems. While these techniques differ in the formulation of their correspond-
ing optimization problem, they are intrinsically related as was discussed by
Rudzinski and Noid.42

2.4.1 Iterative Boltzmann Inversion

The technique called Iterative Boltzmann Inversion43,44 (IBI) is an example of
structure-based coarse-graining as its objective is to obtain a pair potential
which gives rise to the same radial distribution function, g(r), cf. Sec. 2.1.2, as
the reference system. The underlying idea of this approach is the Henderson
theorem45 which states that in systems with pairwise interactions the pair po-
tential which gives rise to a certain RDF is unique up to a constant. This implies
that if the RDF is matched perfectly, the pair potential is matched perfectly as
well.

As the name suggests, IBI is an iterative method which alternates between
conducting coarse-grained simulations and updating the pair potential U(r)
according to the difference of the RDF observed in iteration j, gj(r), and the ref-
erence one gref(r). The update rule makes use of the low density approximation
of g(r), Eq. (2.1.2.15), and reads

U j+1(r) = U j(r)− αkBT ln

(
gj(r)

gref(r)

)
(2.4.1.1)

whereα is a scaling factor to prevent large fluctuations in the update. The initial
guess of the pair potential, U0(r), is given by Eq. (2.1.2.15) as well and reads

U0(r) = −kBT ln(gref(r)). (2.4.1.2)
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While there exist multiple similar but more sophisticated methods like the
Inverse Monte Carlo46 or the hypernetted-chain method47,48 this approach is still
frequently used due to its simplicity and because it often yields good results.
However, the method is limited by the locality of its update, as it does not
consider the potential at distance r1 potentially having an effect on the RDF
at distance r2 6= r1 in the update rule. Furthermore, it is very time consuming
due to the need for simulations at every step in this iterative scheme, which
is why in this thesis, we aim to make a contribution to faster structure-based
coarse-graining using neural networks, cf. Ch. 3.

2.4.2 Force Matching

The force matching 49–51 method aims at matching the multibody potential of
mean force (PMF) instead of reproducing a distribution function. The Boltz-
mann factor for a configuration ofnCG coarse-grained beadsR = {R1, . . . ,RnCG

}
is given by the Boltzmann weight as determined by the coarse-grained inter-
action potential VCG(R). Simultaneously, it is given by the Boltzmann factors
of the microscopic configurations r = {r1, . . . , rn} of n atomistic particles that
map to R according to the mapping M, such that

e−βV
CG(R) =

∫
e−βH(r)δ(M(r)−R) dr. (2.4.2.1)

A typical choice of the mapping M is to combine multiple particles into an
effective bead located at the center of mass.

From Eq. (2.4.2.1) one immediately has an expression for the potential of
mean force,

VCG(R) = −kBT ln

(∫
e−βH(r)δ(M(r)−R) dr

)
. (2.4.2.2)

However, as it requires the calculation of an integral over all microscopic config-
urations it is not feasible to compute the PMF using Eq. (2.4.2.2). Besides that,
solving this integral to obtain the PMF would defeat the purpose of computer
simulations as according to Eq. (2.1.1.8) the expectation values of all observ-
ables could be calculated directly instead of conducting simulations.

Instead, one resorts to approximately solving the least-squares problem to
which the PMF is the analytical solution. This least-squares problem, also called
multiscale coarse-graining (MS-CG) residual, consists of finding the coarse-
grained forces FCG given a set of atomistic configurations C and corresponding
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atomistic forces F(r)) such that the MS-CG residual

χ2 =
1

dim(FCG) |C|
∑
r∈C

nCG∑
i=1

∣∣M(F(r))i − FCG(M(r))i
∣∣ (2.4.2.3)

is minimized. Here, M is again the mapping from atomistic to coarse-grained
configurations and the subscript i denotes the force acting on the i-th CG bead.
The dimensionality of the coarse-grained forces is then given by dim(FCG) =
3nCG for a three dimensional system. In force matching the MS-CG residual in
Eq. (2.4.2.3) is minimized numerically, typically by solving a system of linear
equations, yielding an approximate PMF. In this thesis, we employed force
matching to obtain an effective pair potential for two polymers in an empty box
with the polymers being mapped to their respective centers of mass.

2.4.3 Relative Entropy Minimization

In relative entropy minimization36,37,52 (REM) the quantity to minimize is the
relative entropy or Kullback-Leibler divergence53,54 between the atomistic and
the coarse-grained probability distributions of configurations. LetQ denote the
probability distribution of configurations in the coarse-grained systems with
the mapping function M. Then one can define a corresponding probability
function for configurations of the atomistic referenceQ′ by accounting for the
degeneracy of mapping an atomistic configuration to the CG configuration,

Q′(r) =
Q(M(r))

Ω (M (r))
(2.4.3.1)

where the degeneracy Ω counts, how many atomistic configurations are mapped
to the given CG configuration,

Ω(R) =
∑
r∈C

δR,M(r). (2.4.3.2)

Let further P denote the probability distribution of the configurations in the
atomistic reference system, then the relative entropy of these probability distri-
butions is given as

Srel =
∑
r∈C

P(r) ln

(
P(r)

Q′(r)

)
(2.4.3.3)

=
∑
r∈C

P(r) ln

(
P(r)

Q(M(r))

)
+
∑
r∈C

P(r) ln(Ω(M(r))). (2.4.3.4)
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The last term depends only on the mapping function and can therefore not be
optimized when parametrizing the interaction potentials. Hence, minimizing
the relative entropy corresponds to minimizing

S ′rel =
∑
r∈C

P(r) ln

(
P(r)

Q(M(r))

)
. (2.4.3.5)

For the canonical ensemble, one can use the canonical probabilities from
Eq. (2.1.1.4) in Eq. (2.4.3.5) to derive

S ′rel = β 〈U − UCG〉 − β (A− ACG) (2.4.3.6)
where the average is taken in the atomistic system,U andUCG denote the energy
and A and ACG the configurational part of the Helmholtz free energy in the
microscopically resolved and the coarse-grained system respectively.

The residual defined in Eq. (2.4.3.6) can then be minimized by applying root-
finding methods to its derivative. The method proposed by Scott Shell36 and
used in this thesis is the Newton-Raphson method, which yields the following
update rule for the i-th parameterλi of the CG potentialUCG in the j-th iteration:
λj+1
i = λji − (∂S ′rel/∂λi) /

(
∂2S ′rel/∂λ

2
i

)
(2.4.3.7)

= λji −∆λji (2.4.3.8)

∆λji =

[〈
∂UCG

∂λi

〉
MR

−
〈
∂UCG

∂λi

〉
CG

]
[〈

∂2UCG

∂ (λi)
2

〉
MR

−
〈
∂2UCG

∂ (λi)
2

〉
CG

+ β

〈(
∂UCG

∂λi

)2
〉

CG

− β
〈
∂UCG

∂λi

〉2

CG

]−1

(2.4.3.9)
where 〈·〉MR corresponds to an average in the microscopically resolved simula-
tion and 〈·〉CG to an average in the coarse-grained system.

In Ch. 4 we used a modified version of this update rule with a step size
parameter α = 0.01 and a truncation at±kBT , in order to ensure more stable
updates, such that the modified update ∆λji reads

∆λji = min
(
−1,max

(
1, α∆λji

))
. (2.4.3.10)

Furthermore, in our work we used cardinal B-splines,55 which are linear in the
amplitude of their nodes, which yields a simplified update,

∆λji = kBT

[〈
UCG

λi

〉
MR

−
〈
UCG

λi

〉
CG

][〈
UCG

(λi)
2

〉
MR

−
〈
UCG

(λi)
2

〉
CG

]−1

(2.4.3.11)
with our modified version ∆λji as before.
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2.5 Machine Learning and Neural Networks

In this section, we will give a short introduction to the principle idea of machine
learning as well as introduce the concepts used in the scope of this thesis, which
includes a description of neural networks and their training procedure. As
a more thorough and detailed introduction to machine learning in general
is beyond the scope of this thesis, we refer to the relevant literature in this
regard.56–58

2.5.1 Machine Learning

Machine learning (ML) is an emergent field of study, that has had a lot of ground-
breaking successes especially in the last decade. It has been applied to a huge
variety of different problems, including everything ranging from computer vi-
sion and fraud detection to natural language processing and recommender
systems, and is ubiquitous by now in our everyday life.

The central idea of machine learning is very well captured by a definition
provided by Tom Mitchell,56 which states:

A computer program is said to learn from experience E with respect to
some class of tasks T and performance measure P , if its performance at
tasks in T , as measured by P , improves with experience E.

This means that machine learning is the study of solving problems by mak-
ing use of large quantities of examples or interactions and optimizing the
performance according to a chosen metric. One typically distinguishes three
main types of machine learning, which differ in the variables mentioned above,
namely the tasks T , the performance measure P and the experienceE.

2.5.1.1 Categories of Machine Learning

In supervised learning, the task for the ML algorithm is to approximate a map-
ping Ω : X 7→ Y from some input properties X to some corresponding target
properties Y, also known as ground truth or target, with the experience pro-
vided by a set of N examples, E = {(Xi,Yi)|i ∈ {1, . . . N}}. If Θ denotes the
parametrization of the ML model and ΩΘ : X 7→ ΩΘ(X) the corresponding
mapping, then the performance P on example (X,Y) is measured by applying
a distance metricM to the output of the ML algorithm and the ground truth,

PΘ(X) = M(Y,ΩΘ(X)). (2.5.1.1)
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The chosen metric typically depends on the desired mapping, with typical ex-
amples being regression tasks, where the target Y is a real-valued vector, or
classification tasks, where the target Y corresponds to a vector of (possibly
one-hot-encoded) labels. However, also other tasks and combinations of said
tasks can occur, e.g. in object detection with bounding boxes, where the input
X comprises of image data or a map of pixel-wise distances and the desired
output is a set of anchors, widths and heights describing boxes around different
objects in the input.

In unsupervised learning the task for the machine learning algorithm is
to approximate an identity mapping, Ω : X 7→ X with X providing both
the input as well as the target, such that the experience is a set consisting of
E = {Xi|i ∈ {1, . . . N}}. The performance on these tasks for a specific example
X is measured by a metricM between the input and the output,

PΘ(X) = M(X,ΩΘ(X)). (2.5.1.2)

By choosing the specifics of the algorithm in certain limiting ways, one can
force the ML model to learn a lower dimensional intermediate representation
of the data in the so-called latent space. This can be used for identifying and
calculating order parameters or collective variables, as a low-dimensional rep-
resentation of an input property, which carries sufficient information to be
approximately invertible, must capture the essential abstract features of the
input. Furthermore, a typical application of unsupervised learning is clustering
analysis, where the goal is to find the underlying structure of data and cluster
the data into distinct groups in the latent space depending on their abstract
similarity.

Reinforcement learning is conceptually very different from supervised and
unsupervised learning, as it does not necessarily rely on a given set of examples,
but rather on the interaction with an environment, where in response to the
interaction, the model obtains an immediate reward. Instead of predicting a
certain target property provided by the training examples, the ML model is
supposed to choose the best action a given a certain state S, i.e. Ω : S 7→ a,
where the best choice is often not known and depends i.a. on the transition
in states that the chosen action causes. The performance of a model with
parameters Θ in state S is then typically measured by the expected discounted
return 〈G〉Θ it obtains when following its policy, viz. for each state Si taking the
action as proposed by the model ai = ΩΘ(Si) and obtaining rewards according
to a reward functionR : (Si, ai) 7→ ri,

PΘ(S) = 〈G〉Θ (2.5.1.3)
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=

〈 ∑
Si∈SΘ

γR(Si, ai)

〉
(2.5.1.4)

with SΘ being the set of states visited by the model when following its policy.
Hence, the experienceE typically consists of examples seen during the interac-
tion with the environment and therefore comprises of a history thereof, such
thatE = {(Si, ai, R(Si, ai)}.

The above descriptions are of course far from complete and do not cover a
lot of important aspects and techniques but rather give a rough outline of these
categories. For example, in the case of unsupervised learning, one might skew
the performance measure by enforcing some structure to the latent space, or
in the case of reinforcement learning one might look at non-deterministic but
statistical policies, rewards and transitions between states, as well as different
notions of reinforcement learning like on-policy vs. off-policy learning or value-
based vs. policy-based methods.

While the categories mentioned above differ in their targets, caveats and
technicalities, what unites these methods is that the respective goal is obtained
by learning from examples and parametrizing the model in such a way, that the
target is fulfilled as much as is feasible. Furthermore, all of these techniques
have in common, that they approximate some - possibly abstract - function
either implicitly or explicitly.

There is a plethora of different types of models being applied in machine
learning, ranging from very simple ones like logistic regressions or k-nearest
neighbor algorithms to more complicated ones like genetic algorithms or graph
models. Another model, that is commonly used and has been applied very
successfully especially in the past decade, is that of artificial neural networks, or
neural networks for short, which will be discussed in more details in Sec. 2.5.2.
In Fig. 2.6 we provide a Venn diagram illustrating the relations between some
of the different terminologies used in artificial intelligence research.

We will restrict the discussion in Sec. 2.5.2 to a short introduction of the fun-
damental building blocks of the feed-forward neural networks used in this work,
namely fully-connected layers as well as convolutional layers, and will briefly
summarize the training procedure. For more detailed insights and an overview
as well as the mathematical foundations of the numerous different architec-
tures of neural networks employed today, we refer to the relevant literature, for
example Ref. [57].
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Figure 2.6: Venn diagram of terminologies in artificial intelligence research.
Common names of fields are shown in white boxes, and typical examples of
techniques in circles.
The abbreviations of fields for stand for: “AI” = “Artificial Intelligence”,
“ML” = “Machine Learning”, “NN” = “Neural Networks”, , “CNN” = “Convo-
lutional Neural Networks”, “DS” = “Data Science”, “CV” = “Computer Vision”.
The abbreviations of examples for stand for: “CLS” = “Closed Loop System”,
“RBES” = “Rule Based Expert System”, “KB” = “Knowledge Base”, , “DT” = “De-
cision Tree”, “RF” = “Random Forest”, “SVM” = “Support Vector Machine”,
“KNN” = “k-Nearest Neighbor”, “GK” = “Gaussian Kernel”, “LR” = “Linear Regres-
sion”, “UN” = “U-Net”.
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2.5.1.2 Training, Validation and Testing

A very important concept that further unites all machine learning methods is
the need to train, validate and test all models before deploying them, so that it
is common to divide the available data into different sets for these purposes.
While the training data is used to adjust the model parameters in order to opti-
mize the objective, the validation data is used to detect possible overfitting of
the ML model during training, cf. Sec. 2.5.3, and to serve as a first indication of
the model’s generalization capabilities. After training multiple ML models, one
chooses a final model according to the performance on both the training set as
well as the validation set. The test data is then used for a final benchmark of this
model in order to get a realistic estimate of the generalization of the model’s
performance on previously unseen data. Ideally, the distributions in all data sets
is similar and do not suffer from a data shift, as otherwise the aforementioned
estimates are skewed. Furthermore, the data should of course be representative
for the inputs the model will be confronted with in the real world, as otherwise
the model’s performance will almost certainly decrease and the model might
even behave unpredictably.

While the separation between training data and validation data does not
have to be very strict, for example in cross-validation, where the same set of
training examples is used in different splits into training and validation sets, it
is of utmost importance according to best machine learning practices to have a
designated test set, that is only used for a final benchmark once. This is to avoid
overfitting on the test set, which occurs when the model is chosen or adjusted
according to the performance on this data set. Hence, it is crucial to keep this
data set separate from the training and validation set and only use it in the final
benchmark. We stress that in this work we followed the aforementioned best
practices in machine learning.

2.5.2 Neural Networks

Neural networks (NNs) are inspired by the human brain in that the calculations
in neural networks mimic the processing of signals in our neurons in a simplistic
manner. Schematically, the signals in our body are passed from neuron to
neuron, with all signals coming into a neuron being combined using weights
according to the physical strength of the connection between the corresponding
neurons and then passed on, if a certain threshold is exceeded. The weights of
the connections, i.e. their conductivity, changes over time, with the connection
being strengthened, if in retrospective the respective input proves relevant for a
given task, and weakened otherwise. In our current understanding, this process
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is deemed to be the underlying mechanism of learning, and is captured in the
Hebbian theory in neuroscience, stating59

Let us assume that the persistence or repetition of a reverberatory activity
(or "trace") tends to induce lasting cellular changes that add to its stability.
[...] When an axon of cell A is near enough to excite a cell B and repeatedly
or persistently takes part in firing it, some growth process or metabolic
change takes place in one or both cells such that A’s efficiency, as one of
the cells firing B, is increased.

often summarized as60

Neurons wire together if they fire together.

This simplified description of the biological process is depicted on the left
side of Fig. 2.7.

2.5.2.1 Artificial Neurons and Fully-Connected Layers

Mathematically, the accumulation of signals is realized as a weighted sum of the
signals where the weights are adjustable parameters and the threshold in general
is implemented via a nonlinear activation function. Hence, the activation of a
neuron z(X) given anm-dimensional input X ∈ Rm can be written as

z(X) = a

(
m∑
i=1

[(ω)i(X)i] + b

)
(2.5.2.1)

= a (ω ·X + b) (2.5.2.2)

whereω ∈ Rm is the so-called weight vector, and a : R→ R is the nonlinear
activation function, or activation function for short. Furthermore, the param-
eter b is called bias and serves as a shift of the scalar product of the weight
vector and the input vector, and thus functions akin to a learnable threshold
parameter. This artificial neuron can be generalized to a higher dimensional
output z(X) ∈ Rn, so a set of n artificial neurons, by transforming ω to a
weight matrix instead of a weight vector and the bias b to a bias vector b ∈ Rn.
Furthermore, the activation function a : R→ R is applied component-wise, so
that Eq. (2.5.2.1) becomes

(z(X))i = a

(
m∑
j=1

(ω)ij(X)j + bi

)
(2.5.2.3)
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= a (ωi ·X) . (2.5.2.4)

One typically does not mention that a is applied component-wise explicitly and
just writes

z(X) = a (ω ·X + b) . (2.5.2.5)

This can of course be generalized to the case where both the input X and con-
sequently the weights ω and biases b are multi-dimensional tensors. In the
following, we will restrict the discussion to the case presented in Eq. (2.5.2.5)
for the sake of simplicity and because this covers the cases used in this thesis,
cf. Ch. 3.

Hence, the so-called layer defined in Eq. (2.5.2.5), viz. the usage of multiple
neurons to process signals from incoming neurons to a multi-dimensional out-
put, can be summarized as a nonlinear activation function applied component-
wise to the sum of a matrix-vector-multiplication and a bias vector, where the
weight matrix ω and the bias vector b are trainable parameters of each layer
separately. The activation function a on the other hand is a hyperparameter
chosen arbitrarily but fixed before the training process described in Sec. 2.5.2.3.
This fundamental building block of neural networks, also called a dense layer
or fully-connected layer due to the fact that every input neuron is connected to
every output neuron, is therefore equivalent to a linear regression with a nonlin-
ear activation function. On the right hand side of Fig. 2.7 the calculations done
in Eq. (2.5.2.5) are depicted diagrammatically with the biological counterpart
on the left hand side for illustration of the analogy between both.

Besides allowing for the application of a single linear regression to a nonlin-
ear problem, the activation function also facilitates stacking multiple layers by
using the output of one layer as the input to the next and therefore increasing
the number of functions the neural network is able to approximate. The layers
inbetween the input layer and the output layer are called hidden layers. Let
X denote the input to a network consisting of two stacked layers, where the
variables in the i-th layer are denoted using a superscript (i), then the output
O(X) of this 2-layer neural network reads

O(X) = z(2)
(
z(1)(X)

)
(2.5.2.6)

= z(2)
(
a(1)

(
ω(1) ·X + b(1)

))
(2.5.2.7)

= a(2)
(
ω(2) · a(1)

(
ω(1) ·X + b(1)

)
+ b(2)

)
(2.5.2.8)

The number of neurons in each layer, also known as the size of the correspond-
ing layer, defines the dimensions of the weight matrix and the bias vector and
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Axon

Post-Synaptic Neurons

Nucleus

Dendrites

Synapse

Figure 2.7: Schematic of a biological neuron (left side) and the correspondence
to artificial neurons (right side), with the similarities indicated via dotted arrows.
The dendrites correspond to the connections between incoming information
X and the current neuron i, with the strength of the dendrites modeled by the
weights (ω)ij . The incoming signals are then gathered and processed in the
nucleus or in the calculation of the activation (z(X))i respectively. The output
from neuron i is then passed to the post-synaptic neurons, i.e. its successors,
which in the case of artificial neural networks would be the subsequent hidden
or output layer.

can of course be varied. Furthermore, it is a hyperparameter, which is chosen
before training the weights of the neural network and stays constant throughout
the training procedure.

If a linear function would be chosen as activation, then the introduction
of additional layers does not change the class of functions the neural network
can represent, as a composition of linear functions is still a linear function. For
example, if in Eq. (2.5.2.8) one chose a(1) to be the identity, a(1)(x) = x, then
Eq. (2.5.2.8) could be written as

O(X) = a(2)
(
ω(2) · a(1)

(
ω(1) ·X + b(1)

)
+ b(2)

)
(2.5.2.9)

= a(2)
(
ω(2) ·

(
ω(1) ·X + b(1)

)
+ b(2)

)
(2.5.2.10)

= a(2)
(
ω(2) ·

(
ω(1) ·X

)
+ ω(2) · b(1) + b(2)

)
(2.5.2.11)

= a(2)
((
ω(2) · ω(1)

)
·X +

(
ω(2) · b(1) + b(2)

))
(2.5.2.12)

= a(1)
(
ω(1) ·X + b

(1)
)

(2.5.2.13)

such that the same function implemented by the 2-layer neural network with
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linear activation a(1) could be represented by a 1-layer neural network with

a(1) = a(2) (2.5.2.14)
ω(1) = ω(2) · ω(1) (2.5.2.15)
b

(1)
= ω(2) · b(1) + b(2). (2.5.2.16)

Hence, in order to increase the range of functions with an increase in the num-
ber of layers, the corresponding activation functions have to be nonlinear. If
the neural network consists of a large number of these non-linearly activated
layers, it is called deep, lending its name to the field of deep learning.

While the fully-connected layer as defined in Eq. (2.5.2.5) is the fundamental
building block of most neural networks, there is of course an abundance of
similar building blocks, like long short-term memory (LSTM) layers61 or self-
attention layers62 which exceed the scope of this thesis. In the following subsec-
tion we will introduce another concept, that was used in this thesis, namely the
convolutional layer.

2.5.2.2 Convolutional Layers

As training neural networks is akin to fitting a very high dimensional function
to the available set of data, it is prone to overfitting the data, i.e. the network
learns to perfectly reproduce the data available during training but fails to gen-
eralize to previously unseen examples, cf. Sec. 2.5.3. Furthermore, the sheer
number of parameters makes both the evaluation of the neural network given
an input as well as its training very time consuming, as the space of possible
parametrizations becomes huge. While the training process will be discussed in
more details in Sec. 2.5.2.3, it is obvious from the argument above, that reducing
the number of trainable parameters is one way to alleviate this problem. For
data points with spatial correlations, e.g. for images, where pixels close to each
other are correlated and a permutation of pixels would destroy the image’s
interpretability, there is a common technique called convolutional layers.

In the following, we will restrict this discussion to the one dimensional case,
i.e. the input to the neural network is am-dimensional vector X ∈ Rm where
dimensions close to each other are correlated in general. Here, we will only
cover this special case as the convolutional layers used in this thesis fall into
this category exclusively, cf. Ch. 3. The spatial correlations in the applications
discussed in Ch. 3 stem from the fact, that the data presented to the neural
network are discretized representations of radial distribution functions and
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pair potentials, which are spatially correlated for obvious reasons.

Instead of connecting every input neuron to every output neuron with
weights for every single connection, as is done in the fully-connected layer,
the convolutional layer comprises of a so-called kernel of trainable weights,
which is applied in a convolutional manner multiple times to different parts of
the input. This approach is inspired by the receptive field in the visual cortex,
where incoming photons are not processed by all neurons but only by neurons
which are close to the visual stimulus. The operation of the i-th neuron in a
convolutional layer for the one dimensional case then reads

(z(X))i =
k∑
j=1

(X)i+j−1−b k2c (K)j + (b)i (2.5.2.17)

where the dimensionality of the trainable kernelK, also called the kernel size
k = dim(K), is a hyperparameter that is chosen before the training procedure.
As becomes clear from Eq. (2.5.2.17), the kernel is the same for all output neu-
rons, which means the learned weights contained in it are shared. This reduces
the number of learnable parameters drastically and, by virtue of the sum only
covering surrounding entries of the input vector, introduces a local dependence
of the output neurons on a subset of the input neurons rather than a global
dependence. Actually, the operation described above is not a convolution but
rather a cross-correlation, which is why the term “convolutional layer” is in fact
a misnomer. However, both of these mathematical operations are related via

(f(t) ? g(t)) (τ) =

∫ ∞
−∞

f ∗(t)g(τ + t)dt (2.5.2.18)

= −
∫ −∞
∞

f ∗(t)g(τ + t)dt (2.5.2.19)

=

∫ −∞
∞

f ∗(−t)g(τ − t)dt (2.5.2.20)

= (f ∗(−t) ∗ g(t)) (τ) (2.5.2.21)

wheref and g are two functions. The symbols?and∗denote the cross-correlation
and the convolution respectively. In the discretized case and for real numbers
as in Eq. (2.5.2.17), Eq. (2.5.2.21) implies that a proper convolution is obtained
by flipping the kernel before performing the cross-correlation in Eq. (2.5.2.17).
As the parameters in the kernel of the convolutional layer are a result of the
training process anyways, this does not have any effect as long as one follows a
consistent convention. In the following, we will keep the standard convention
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of using Eq. (2.5.2.17) and calling the corresponding operation a “convolution”.

There are different ways of dealing with the edge cases of the sum in Eq. (2.5.2.17),
where the corresponding index of the component of X is not in the range of
[1, dim(X)]. In the so-called valid mode, one chooses to ignore the indices i for
which this is the case, resulting in a smaller number of output neurons. In the
same mode, the vectorX is first padded with values, typically but not necessarily
zero, filling the “missing” indices, before applying Eq. (2.5.2.17). Finally, in the
circular mode, the index of X in Eq. (2.5.2.17) is subject to a modulo-operation
so that the operation is performed on a ring and becomes akin to periodic
boundary conditions.

2.5.2.3 Backpropagation in Neural Networks

While there exist methods to train neural networks without the calculations
of gradients, so-called derivative-free optimization algorithms, like simulated
annealing or genetic algorithms, state-of-the-art models are almost exclusively
trained by gradient-based methods, as they are found to perform better for larger
problems.63 Gradient-based methods are iterative procedures, which consist of
alternately calculating updates of the weights of the neural network and adjust-
ing the weights accordingly. The most common gradient-based algorithm for
training neural networks is backpropagation, an algorithm devised by Stuart
Dreyfuss in 197364 and then adapted to neural networks by Paul Werbos in his
dissertation65 as well as by Rumelhart, Hinton and Williams.66

In backpropagation, the changes of the weights of the neural network are
calculated using the gradient of a loss function L, which measures the perfor-
mance of the neural network given a set of examples. This loss function can but
need not be equal to the performance measure P described in Sec. 2.5.1, yet a
low value of the loss function should ideally imply a better performance with
regards to P . An example for typical deviations of the loss function from P are
regularizing terms, which will be discussed in Sec. 2.5.3.

In principle, the calculations of gradients can be done straight-forward us-
ing the chain rule of differentiation. In practice however, this is computationally
not feasible for neural networks comprised of many large layers, as the error
calculation includes computing all derivatives inbetween the corresponding
layer and the output, which becomes intractable quite fast. Backpropagation in
principle does apply the chain rule as well, but it reuses the error of the previous
layer when doing so, making it an example of dynamic programming. Besides
this dynamic programming approach the usage of automatic differentiation or
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autodiff facilitates these gradient-based optimization schemes, as they allow to
calculate the derivative of a function accurate to numerical precision without
having to use any symbolic or numerical differentiation.

While the backpropagation algorithm provides a rule for how to calculate
the gradient of the loss function with respect to the weights of the neural net-
work given an example, there is some freedom in the choice of how to proceed
with a set of examples and how to update the weights. Here, we will only shortly
mention some popular choices and refer to the relevant literature for more
information, e.g. to Ref. [57].

For the number of training examples in each update step, one might choose
to calculate the average of the gradients over all available training examples
as is done in batch gradient descent. This approach yields stable updates and
therefore a more robust training procedure, but it is also very inefficient as for
every single update, all training examples have to be fed through the network.
In stochastic gradient descent the update is applied after every training example,
which results in very frequent updates yet tends to be rather unstable, as it is
subject to a lot of noise in the updates due to the small sample size and hence
strongly fluctuating gradients. The mini-batch gradient descent methods lies in
between these extremes by calculating the gradients on a subset of all training
examples, with the corresponding batch size k being a hyperparameter of the
training procedure, and can therefore be adjusted to mitigate the disadvantages
of the other methods. By choosing the batch size as k = 1 one recovers stochas-
tic gradient descent and by setting it to the number of all available training
examples one recovers batch gradient descent.

In the aforementioned batch gradient descent methods, the update rule for
a weight ω(l)

ij of a neural network O given a set of examples Ek = {Xi,Yi ∈
E|i ∈ {1, . . . , k}} reads

ω
(l)
ij ← ω

(l)
ij − α

1

k

∑
(Xh,Yh)∈Ek

∂L(O(Xh),Yh)

∂ω
(l)
ij

(2.5.2.22)

with α denoting the learning rate, i.e. a scaling factor for the update.

There exist multiple variations of this update rule, like choosing examples
with or without replacement or not weighting the gradients from different exam-
ples uniformly. Besides that, there exist more sophisticated update algorithms
like ADAM,67 which exceed the scope of this thesis.
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2.5.3 Bias-Variance Tradeoff and Regularization

In machine learning, one mainly distinguishes two types of errors, namely bias
and variance.

The bias refers to the error that stems from wrong assumptions of the ML
algorithm, i.e. its inability of fully finding the underlying correlations between
input and output. Hence, if a models has a high bias, it means it is not able
to accurately predict the target even on previously seen examples, which is re-
ferred to as underfitting, as the model does not fit the target mapping properly.
Typically, a model suffers from high bias if the target mapping is not part of the
class of functions covered by the chosen model architecture or if its complexity
is not sufficient to represent the target mapping. This is why often the bias can
be reduced by either choosing a different model architecture or by increasing
the models complexity, e.g. by introducing more or larger layers in the case of
neural networks. The name “bias” comes from the fact, that the model has an
overall tendency of falsely or inaccurately predicting the target, regardless of
the source of the data.

The variance on the other hand describes the generalization error of the
model, i.e. the error caused by the model being trained to reproduce the train-
ing examples so closely, that a small change in input examples might lead to
vastly different results. This is called overfitting, as the model is typically able to
reproduce the target mapping very closely on training examples but is not able
to return accurate predictions on previously unseen examples, in particular
examples which slightly lie outside the training distribution. This often occurs,
when the model complexity is too large so that it can distinguish training exam-
ples by tiny differences, which is why a high variance can often be reduced by
decreasing the class of functions representable by the model, i.e. by reducing
its complexity. Furthermore, one might introduce additional constraints to
the training object to avoid overfitting the training data, as will be discussed
in this section. The term “variance” refers to the model’s predictions varying
significantly with only slight changes in the input.

While it is fairly easy to detect a high bias by analyzing the performance of a
model on the training set and comparing it to the performance requirements
or baselines like human level performance, detecting a high variance typically
requires the usage of a validation data set, whose purpose is to determine the
model’s capabilities of generalizing to data, that is not used in the tuning of the
model parameters, cf. Sec. 2.5.1.2.
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As mentioned before, a high bias can typically be reduced by either choosing
a different type of ML algorithm or architecture or by increasing the correspond-
ing model complexity. A high variance on the other hand can often be reduced
by reducing the model’s complexity in order to limit the classes of functions,
which can be represented by these models. As these mitigation strategies are
opposing, i.e. a reduction of the bias often leads to an increase in variance and
vice versa, one often speaks of the bias-variance tradeoff.

Even though there exists a multitude of alternative approaches to reduce
said errors, the above tradeoff is still encountered in almost all cases. However,
they might differ in the effect they have on these errors and hence their extent
and severity of this tradeoff. One of the approaches that has proven to be fruitful
is the usage of regularization terms, in which additional terms are incorporated
into the loss functions, which are supposed to reduce range of values of the the
model’s weights to in turn limit the model’s capabilities of overfitting. Typical
regularization methods, which were also used in Ch. 3, are the L1- and L2-
regularization, which read

L1(Θ) =
∑
l,i,j

|ω(l)
ij |+

∑
l,i

|b(l)
i | (2.5.3.1)

L2(Θ) =
∑
l,i,j

|ω(l)
ij |2 +

∑
l,i

|b(l)
i |2 (2.5.3.2)

whereω(l)
ij are the model’s weights andb

(l)
i its biases. By supplementing this loss

term to the original loss function weighted by a hyperparameter, the model has
to optimize the previous objective while additionally limiting the the size of its
weights and biases, such that Eqs. (2.5.3.1) and (2.5.3.2) serve as soft Lagrange
multipliers. By limiting the size of the weights and biases, the model cannot
focus too strongly on single features but has to accurately predict the target
using different, less strongly weighted features which encourages abstraction.

Another tried and tested method for reducing variance also used in this the-
sis is dropout regularization or simply dropout. Dropout regularization means
that during training some of the weights of the neural network will be multiplied
by zero randomly, i.e. the corresponding inputs to the neuron are effectively
discarded. This forces the model to again not focus too much on single weights
but distribute the information to multiple weights in the corresponding layer,
as the model is regularly trained with these heavily-focused-on weights deac-
tivated, such that other weights have to still be able to propagate the relevant
information. The effect of this is again an encouragement of abstraction and
therefore better generalization capabilities.
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Besides these methods there is a plethora of other effective techniques
reducing overfitting, which exceed the scope of this thesis and can be found in
the relevant literature, such as Ref. [57].
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Chapter 3. BoltzmaNN

Abstract

Neural networks (NNs) are employed to predict equations of state
from a given isotropic pair potential using the virial expansion of the
pressure. The NNs are trained with data from molecular dynamics
simulations of monoatomic gases and liquids, sampled in theNV T
ensemble at various densities. We find that the NNs provide much
more accurate results compared to the analytic low-density limit
estimate of the second virial coefficient and the Carnahan-Starling
equation of state for hard sphere liquids. Further, we design and
train NNs for computing (effective) pair potentials from radial pair
distribution functions, g(r), a task which is often performed for
inverse design and coarse-graining. Providing the NNs with addi-
tional information on the forces greatly improves the accuracy of
the predictions, since more correlations are taken into account; the
predicted potentials become smoother, are significantly closer to
the target potentials, and are more transferable as a result.

3.1 Introduction

Understanding and predicting the relationship between the (macroscopic)
properties of a material and its (microscopic) building blocks is one of the key
challenges in materials research and physics. One important goal in statistical
physics is the accurate prediction of the phase behavior on the basis of the
(effective) pair potential U(r) acting between the particles. According to van
der Waals’ theorem of corresponding states, all simple fluids obey the same
reduced equation of state (EOS), if the thermodynamic variables are rescaled
by their value at the critical point. However, this law only applies for systems
with conformal pair potentials, i.e., when the potentials can be fully superim-
posed by adjusting the interaction strength and particle diameter which is rarely
the case in practice. Noro and Frenkel extended this principle by including
the reduced second virial coefficient for quantifying the effective range of the
attraction.39 This extended approach can provide accurate predictions for pair
potentials which are characterized by attractive interactions with ranges much
smaller than the particle size,39,70 but it is expected to fail for more complex pair
potentials which, e.g., include a repulsive barrier. Thus, alternative prediction
tools are highly desirable, especially given that a large number of (effective) pair
potentials in soft matter are bounded or have repulsive barriers.71–75

Progress in this field has wide implications, not just in terms of our funda-
mental understanding, but also due to the large number of potential technologi-
cal applications. Various mechanical, optical, and electronic material properties
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critically depend on the degree of ordering of their atomic or (macro)molecular
constituents. In the conventional forward design approach, the development of
new materials typically begins with designing candidate building blocks that are
expected to lead to the desired properties. Then these candidates are created,
tested, and, if necessary, modified, until the compound with the wanted prop-
erties has been identified. However, such iterative optimization procedures
are often rather time- and resource consuming. Therefore, good initial candi-
dates are required to achieve convergence in a reasonable time frame. Due to
these inherent issues, there has been a recent paradigm shift towards inverse
design processes, where the building blocks are inferred from the desired target
properties. This pathway has been explored for a range of soft materials,76,77

including athermal granular media,78 colloids,79,80 and block copolymers.81,82

In recent years, informatics-driven approaches have gained popularity that
utilize machine learning algorithms on large databases to identify previously
unrecognized patterns and to predict new candidate materials.83–90

This inverse design process is strongly related to the task of top-down coarse-
graining, where the goal is to derive effective (pair) potentials for a system with
a reduced number of degrees of freedom, while preserving selected target prop-
erties of the original fine-grained representation. Several methods have been
developed for this task, including Reverse Monte Carlo (RMC),46,91,92 Iterative
Boltzmann Inversion (IBI),93 and simulated annealing-based optimization.94

These techniques have been employed successfully for, e.g., developing effec-
tive pairwise potentials from experimental structure measurements95–97 and for
coarse-graining atomistic simulations.93,98–100 Achieving transferability and rep-
resentability of such coarse-grained models is, however, a key challenge,101,102

given that the multi-body potential of mean force is usually approximated by an
effective pair potential.36,46,91–94,101,102 Further, although the IBI scheme should in
principle provide a unique solution for a given radial pair distribution function
g(r),45 convergence of this iterative procedure is not guaranteed in practice.102

Various strategies have been devised for improving these and other aspects of
coarse-graining, such as the addition of thermodynamic constraints,93,103,104

and the development of improved methods is an active field of research.105–109

In this work, we employ artificial neural networks (NNs) for predicting the
EOS from a given isotropic pair potential U(r) using the virial expansion of
the pressure. Further, we design and train NNs for computing (effective) pair
potentials from a given g(r). The training and test data for the NNs are generated
from Molecular Dynamics (MD) simulations of monoatomic gases and liquids
in the canonical ensemble. The NNs developed in this work as well as example
scripts are available online.110 The rest of this manuscript is organized as follows.
In Sec. 3.2, we provide a brief summary of the numerical methods we used
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as well as how the data were generated. In Sec. 3.3, we present our results,
where Sec. 3.3.1 focuses on using NNs for determining the EOS from a given
pair potential, and Sec. 3.3.2 discusses how NNs can be used for computing
(effective) pair potentials from the radial pair distribution function. In Sec. 3.3.3
we present typical use case scenarios for our approach. Section 3.4 contains
our conclusions and a brief outlook

3.2 Methodology

3.2.1 Design of Neural Networks

We used three different NN architectures in this work, i.e., fully connected dense
NNs (DN), convolutional NNs (CN), and U-Nets111 (UN). The DNs consist of
layers of neurons, where all neurons between two subsequent layers are con-
nected to each other. Operations in DNs are limited to simple matrix-matrix and
matrix-vector multiplications, combined with (nonlinear) activation functions
to break linearity. The CNs use convolutional operations which, compared to a
DN, drastically reduce the number of parameters necessary by considering only
local correlations between points. Therefore, CNs are useful for strongly corre-
lated data, as is typically the case in image processing but also in our problem.
In UNs, the input is first processed using convolutional layers then upsampled
again and concatenated to a former stage of the processing, hence extracting
features and combining them with the original input for further processing.

The accuracy of an NN depends strongly on the information that is provided
to it, e.g., the average particle number density and/or the force. Also, the format
in which this information is represented plays an important role. For instance,
one could use exp [−βU(r)] rather thanβU(r) [with inverse thermal energyβ ≡
1/(kBT )], which may be favorable for pair potentials with a strong repulsion
combined with an attraction of significantly smaller strength. A detailed study
on the effect of these parameters is provided in Sec. 3.3.

Another key aspect of the NNs is the loss function, which essentially controls
the properties that should be optimized by the NN. The loss functions used in
this work were combinations of the squared error (SE), the absolute error (AE),
and the logcosh error (LE). For a given pair of target and prediction, (y, ŷ), the
basic losses are

lSE(y, ŷ) = (y − ŷ)2 , (3.2.1.1)
lAE(y, ŷ) = |y − ŷ| , (3.2.1.2)
lLE(y, ŷ) = ln [cosh (y − ŷ)] . (3.2.1.3)

70



3.2. Methodology

The loss of the entire output vector is then determined as the mean over the
losses of the individual nodes. For instance, the mean squared error (MSE) is
given by

LMSE(y, ŷ) =
1

d

d∑
i=1

lSE(yi, ŷi), (3.2.1.4)

withy, ŷ ∈ Rd and dimensionalitydof the vectors (e.g. d = 50 for predicting pair
potentials). Analogous expressions are used for LMAE and LMLE. We indicate
the average loss taken over multiple output vectors through angular brackets,
〈. . .〉.

Expressions like Eq. (3.2.1.4) measure the difference between two single
points of y and ŷ, but do not capture the correlations between neighboring
points. To ensure that the predicted potentials vary smoothly with r, it is there-
fore helpful to include a Laplace-like term as well as loss terms correlating the
differences of the potential at different distances

LU = LMLE + α∆L∆ +
4∑

k=1

Lkα
k (3.2.1.5)

with weightα∆ = 2. The termsLk can optionally be multiplied by a factorα ≤ 1
to reduce their contribution with increasing distance (α = 1 was used in this
work). The term L∆ is the discretized Laplace term, which in the case of lSE

reads

L∆ =
1

d− 2

d−2∑
i=1

lSE (yi+2 − 2yi+1 + yi, ŷi+2 − 2ŷi+1 + ŷi) . (3.2.1.6)

The loss terms Lk in Eq. (3.2.1.5) are given by the loss function applied to
the difference of potential values being k indices apart. For example, with lSE

this term reads

Lk =
1

d− k

d−k∑
i=1

lSE (yi+k − yi, ŷi+k − ŷi) . (3.2.1.7)

To see how this definition naturally introduces spatial correlations, one can
rewrite Lk from Eq. (3.2.1.7) as follows

Lk =
1

d− k

d−k∑
i=1

[
lSE (yi+k, ŷi+k) + lSE (yi, ŷi) (3.2.1.8)

− 2 (yi+k − ŷi+k) (yi − ŷi)
]
.
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In this representation ofLk, it is clear that the last term in Eq. (3.2.1.8) introduces
correlations between values at different distances.

All NNs have been constructed and trained using Tensorflow v. 1.13.1.112 The
networks were trained using an Adam (adaptive moment estimation) optimizer67

with a learning rate of 0.001. In order to find a suitable NN topology, an exten-
sive grid search was conducted for the three network architectures, where we
systematically studied the influence of the loss function as well as the number
and shape of the layers, i.e., the width or number of filters and kernel size. Dur-
ing this grid search, the NNs were trained for 104 epochs without any optional
parameters (see Sec. 3.3 below). For each architecture, we chose the NN with
the lowest 〈LMSE〉 and 〈LMAE〉 evaluated through 4-fold cross-validation, and
trained these NNs then for 2× 105 epochs with optional parameters. For the
final benchmarks, the selected NNs were trained for 5× 105 epochs using all
data from the training and validation sets.

3.2.2 Generation of data

In order to generate training and test data for the NNs, we performed a series of
MD simulations of monoatomic gases and liquids in the canonical ensemble,
and determined the resulting pressures P and radial pair distribution functions
g(r). Model parameters and physical quantities are expressed in fundamental
units of σ, ε, m, and τ =

√
mσ2/ε for length, energy, mass, and time, respec-

tively. Pair potentials U(r) were generated as spline functions with cutoff dis-
tances rcut ∈ (0, 5σ]. The number of base points was chosen randomly in the
range n ∈ [6, 10], and the base points were distributed randomly at distances
in the range [0, rcut] with magnitudes in the interval [0, 15 ε]. Then a smoothing
spline function was applied to connect these points. The degree of the spline
function was randomly drawn between k = 2 and k = 5 to allow for a large
variety of shapes [note that k ≥ 2 is required to guarantee differentiability of
U(r)]. To ensure physically meaningful pair potentials, the splines were fitted
with the constraint F (rcut) = − ∂

∂r
U(r)|rcut = 0. Further, the potentials were

shifted so that U(rcut) = 0. Hard-core interactions were included in selected
pair potentials by adding the Weeks-Chandler-Andersen (WCA) potential10 with
diameter σ and interaction strength ε.

Using this procedure, 657 potentials were generated, with 344 of them hav-
ing an additional hard-core contribution. For the MD simulations, tabulated
potentials were created with 200 evenly distributed points in the range [0, rcut].
For the optimization of the NNs, these tables were then further downsampled
to 50 points, evenly distributed in the interval [0, 5σ]. Figure 3.1(a) shows a
selection of potentials which were generated using our procedure, while the
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resulting radial pair distribution functions are plotted in Fig. 3.1(b,c).
The MD simulations were conducted in a cubic simulation box with edge

length L = 40σ and periodic boundary conditions in all directions. The tem-
perature was fixed at kBT = ε using a Langevin thermostat, and the equations
of motions were solved using the standard Velocity-Verlet algorithm with a time
step of ∆t = 0.005τ . Simulations were conducted at four different particle
number densities, i.e., ρ = 0.125σ−3 (N = 8000), ρ = 0.244σ−3 (N = 15625),
ρ = 0.512σ−3 (N = 32768), and ρ = 1.0σ−3 (N = 64000). Each simulation
was first run for 5 × 106 MD steps for equilibration, and then for additional
5 × 106 MD steps to sample P and g(r) [see Fig. 3.1(b,c) for examples]. For
the discretization of the calculated g(r) we chose 200 points that were evenly
distributed in the interval [0, L/2]. In total, 1678 simulations were conducted,
with 529 containing potentials with hard-core repulsion. Simulations were dis-
carded from our analysis, which did not reach equilibrium in the allotted time
or formed heterogeneous structures (see ESI for more information), leading to
a final number of 891 valid simulations. Of those, 790 simulations were used as
training and validation sets, while the remaining 101 were reserved for testing
only. All simulations were performed on GPUs using the HOOMD-blue software
package (v. 2.4.2).113

3.3 Results

3.3.1 Predicting the equation of state

We applied NNs for predicting the pressureP at a given particle number density
ρ and temperature T from the employed pair potential U(r) via three different
strategies:

1. The pair potential is directly mapped to the pressure, βU(r), ρ 7→ βP ;

2. The pair potential is first mapped to an effective, density-dependent
second virial coefficient βU(r), ρ 7→ B∗2 and then to the pressure, βP =
ρ+ ρ2B∗2 ;

3. The pair potential is first mapped to a set of n virial coefficients βU(r) 7→
Bn := {Bi | 2 ≤ i ≤ 5} and then to the pressure, βP = ρ+

∑
Bi∈Bn Biρ

i.

Figure 3.2 shows schematic representations of the NNs used for predict-
ing βP from a given pair potential βU(r) and density ρ. For the strategies
βU(r), ρ 7→ βP and βU(r), ρ 7→ B∗2 , the density was included as an additional
input after convolutional operations, so that the density-dependence is learned
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Figure 3.1: (a) Three selected pair potentials U(r) used in this work, and (b)
corresponding radial pair distribution functions, g(r), recorded at particle num-
ber density ρ = 0.125σ−3. (c) g(r) for UI at three investigated values of ρ, as
indicated.
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by the NN. The calculation of βP for the network calculating Bn is achieved
via layers calculating the scalar product or sum as indicated in the schematic.
These layers do not contain any adjustable parameters, so that the learned virial
coefficientsBn are density independent, while still allowing for the loss function
to be applied to the density-dependent pressure βP .

“is fed into” Input / Output

“is optionally 
fed into”

Convolutional block
or U-Net block

Concatenation

Dense block

(a)

(b)

Scalar product
Sum

Figure 3.2: Schematic representation of the NNs used for computing the pres-
sure βP (a) directly or via the effective second virial coefficient, B∗2 , and (b)
through a set of n = 5 density-independent virial coefficients Bn = {Bi}. The
dotted box in (b) indicates the central part of the NN, while the operations
outside of this box do not contain learnable parameters and are only used to
calculate βP .

The only required input parameters of our NNs are βU(r) and ρ. The tem-
perature dependence of the pressure is included through the prefactor β in the
input and the output (β = 1/ε by default). In principle, one could directly use
the tabulated pair potentials βU(r) as the input of the NNs. In practice, how-
ever, this might cause numerical issues for strongly repulsive potentials, since a
further increase of the interaction strength beyond a certain threshold has little
or no effect. Therefore, it is sensible to reduce the search space and minimize
the risk of overfitting by limiting the maximum repulsion of βU(r) during the
optimization of the NNs. The range of the pair potential βU(r) was optionally
constrained either by representing it in exponential space, i.e., exp [−βU(r)], or
by using a clipped potential, βŪ(r) = max [βU(r), βUcut]∀r with βUcut = 20.
The choice ofUcut is somewhat arbitrary but our tests indicated that the specific
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value does not significantly alter the outcome as long as Ucut separates soft and
hard potentials.

Furthermore, we tested how additional information can improve the pre-
diction accuracy. The force F (r) = − ∂

∂r
βU(r) was optionally included in the

NNs, by applying the same operations as for βU(r) and then concatenating the
outputs for further processing in fully dense layers (see Fig. 3.2). If βŪ(r) was
used as the input, then the force was calculated before clipping to avoid unphys-
ical discontinuities. If the input was exp [−βU(r)], then− ∂

∂r
exp [−βU(r)] was

used as the force input. Note that including the derivative almost doubles the
number of nodes in the network. For the NNs learning B∗2 or βP , we optionally
provided also a pressure estimate βP0, calculated using the analytic second
virial coefficientB2. In a homogeneous system with isotropic interactions, B2

is readily available from U(r)114

B2(T ) ≈ −2π

∫ ∞
0

f(r, T )r2 dr, (3.3.1.1)

with Mayer f-function

f(r, T ) = exp [−βU(r)]− 1. (3.3.1.2)

Thus for ρ → 0, the pressure βP0 can be directly computed from the pair
potential U(r)

βP0 = ρ− 2πρ2

∫ ∞
0

f(r, T )r2 dr. (3.3.1.3)

In what follows, we will use the following naming convention for the NNs:
For a given architecture X and given options y, we name the network X/y, e.g., for
a UN with force information we use UN/f. The abbreviations for the different
combinations are summarized in Table 3.1. Hence, we investigated 90 different
combinations of network architectures and optional parameters. It is clear
that optimizing the hyperparameters (see Sec. 3.2.1) for each individual case is
computationally infeasible, and therefore we optimized only the DN/x, CN/x,
and UN/x networks. Then, those optimized hyperparameters are used for all
other networks of the same architecture to systematically investigate the effect
of the additional information provided to the NN as well as the representation of
the input and output data. In most cases, the variation of the hyperparameters
resulted in changes of the prediction accuracy on the order of the variation
between the folds, thus typically less than the effect of the parameters listed
in Table 3.1. Only in selected cases, we found that the NNs were too small to
capture the relevant details or too large to cause overfitting.

Figure 3.3 shows the mean relative absolute error between the predicted and
target pressures, 〈LMRAE〉 =

〈∣∣∣P − P̂ ∣∣∣ /P〉, for all investigated NNs at kBT = ε.
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Abbreviation βŪ(r) exp[−βU(r)] F (r) P0

x 7 7 7 7

c 3 7 7 7

e 7 3 7 7

f 7 7 3 7

i 7 7 7 3

cf 3 7 3 7

ci 3 7 7 3

ef 7 3 3 7

ei 7 3 7 3

fi 7 7 3 3

cfi 3 7 3 3

efi 7 3 3 3

Table 3.1: List of abbreviations for the optional parameters of the networks.

The errorbars in Fig. 3.3 were calculated as the standard error of the mean over
all four folds. For comparison, the mean relative absolute error between the
target pressure P and the pressure P0 estimated viaB2 was 〈LMRAE〉 ≈ 1.4. In
most cases, the NNs provide significantly more accurate predictions compared
toP0, which is reasonable given that Eq. (3.3.1.3) is strictly valid only in the limit
ρ→ 0. Further, the NNs that directly map βU(r), ρ 7→ βP perform worse than
the NNs which first predictB∗2 or Bn and then compute βP .

Using either the clipped potential βŪ(r) or exp[−βU(r)] as the input in-
stead of βU(r) typically led to better results and reduced overfitting in most of
the cases. In contrast, including the forces did not improve the performance
notably, but was even detrimental in some cases, as can be seen, for example,
by comparing the performance of CN/fi and CN/i predictingB∗2 [see Fig. 3.3(e)].
We surmise that this behavior occurs because including the force does not pro-
vide any crucial additional information compared to the pair potential, while
increasing the complexity of the network architecture and thus increasing the
risk of overfitting. Providing βP0 sometimes improved performance, but the
effect was not as pronounced compared to the other parameters. For the UNs
predicting B∗2 [Fig. 3.3(h)], including βP0 resulted in a consistently lower ac-
curacy on the validation data, which was likely due to overfitting as indicated
by the small loss on the training set compared to the loss in the validation set
throughout.

Based on the comparison shown in Fig. 3.3, we chose UN/c predicting Bn
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Figure 3.3: Mean relative absolute error 〈LMRAE〉 between predicted pressures
P̂ and target pressures P for different NN architectures and options at kBT = ε.
The panels are ordered from top to bottom as DN, CN and UN and from left to
right as mapping to P , mapping toB∗2 and mapping to Bn.

as the final network because of the following reasons: The pressures predicted
by this NN were among the most accurate with small mean relative absolute
errors 〈LMRAE〉 ≈ 0.06 ± 0.01 and ≈ 0.11 ± 0.01 for the training and test
set, respectively. Further, the mapping βU(r) 7→ Bn should also generalize
better to densities which were not part of the training set, as the predicted Bn
are explicitly density independent, with the only density dependence of βP̂
coming from the virial expansion. Further, we used clipped potentials βŪ(r),
which guaranteed that the values provided to the NN are bounded, leading to
better generalizability and less overfitting. Forces were not included in the final
network, because they did not always improve the prediction accuracy, but
increased the model complexity and the risk of overfitting.

For the final benchmark, all data (except those in the test set) were used
for training the NN. Figure 3.4 shows the pressure P̂ predicted by the UN/c
network vs. the target pressure P at kBT = ε. Here, we have also included the
low-density estimate P0 [see Eq. (3.3.1.3)]. The predicted pressures P̂ are very
close to the target values P , with coefficients of determination R2 ≈ 1.00 for
both the training and test set. In contrast,P0 deviated strongly fromP , especially
for the systems at high density and/or with P < 0. This rather poor agreement
with the target pressure is reflected in the coefficients of determination, which
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wasR2 ≈ 0.172.
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Figure 3.4: Predicted pressure P̂ from UN/c (red and orange symbols) and P0

estimated from Eq. (3.3.1.3) (blue and cyan symbols) vs. the target pressure P
at kBT = ε. Open and filled symbols show results from the training and test set,
respectively.

3.3.2 Potential prediction from pair distribution function

In this section we will construct NNs (see Fig. 3.5) for predicting (effective) pair
potentials U(r) from radial pair distribution functions g(r) at a given, known
particle number density ρ. We used either g(r) as the input, or the (effective)
pair potential in the low density limit

βU0(r) := − ln [g(r)] . (3.3.2.1)

The reasoning behind the latter approach is to provide the NNs with a physically
informed estimate which is valid for ρ → 0, so that the NNs only need to
learn perturbations to this solution at higher densities. Networks using βU0(r)
as input are indicated with a “b” for Boltzmann inversion. Optionally, the
NNs could optimize and output exp[−βU(r)] instead of βU(r) (indicated by
“e”), and/or include the force (indicated by “f”) in the loss function through
Eq. (3.2.1.7).

The loss was always computed between the predicted, βÛ(r), and target
pair potential, βU(r), with β = 1/ε. To reduce the search space and avoid
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Figure 3.5: Schematic representation of the NNs used for predicting (effective)
pair potentials βU(r) from a radial pair distribution function g(r).

overfitting, we disregarded parts of βU(r) that exceeded βUcut = 20, effectively
yielding a sliced loss function. Hence, the predicted βU(r) were not optimized
in regions where βU(r) > βUcut, allowing the NNs to set arbitrary values for
the corresponding ranges.

Methods such as RMC or IBI instead optimize ĝ(r) against the reference
g(r) by iteratively performing MD simulations with the predicted potential
Û(r) (see ESI for more details). Such an approach is, however, prohibitively
time consuming as it would require additional MD simulations at each step
of the optimization procedure. Further, minimizing the loss between ĝ(r) and
g(r) is infeasible from a technical point of view, because the training of the
NNs is based on gradient descent, which requires the (unknown) mapping
βU(r) 7→ g(r). Thus, the difference between g(r) and ĝ(r) is not a viable
input for the loss function for training the NNs, but it can be used as a final
performance benchmark in selected instances (see Fig. 3.10 below).

Abbreviation βU0(r) input force in loss exp[−βÛ(r)] output

x 7 7 7

b 3 7 7

e 7 7 3

f 7 3 7

be 3 7 3

bf 3 3 7

ef 7 3 3

bef 3 3 3

Table 3.2: List of abbreviations for the optional parameters of the networks.

Again, we tested the DN, CN and UN architectures, and systematically an-
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alyzed the influence of providing additional information and different repre-
sentations of the input and output data. Figure 3.6 shows 〈LMSE〉 and 〈LMAE〉
between the predicted and the target potentials at kBT = ε for all investigated
NNs and parameter combinations listed in Table 3.2. The errorbars were ob-
tained through a 4-fold cross validation. The dotted lines correspond to the
MSE (blue) and MAE (green) between U(r) and U0(r) [note that we employed
here the same clipping as for Û(r)].

As can be seen from Fig. 3.6, almost all investigated NNs provide more accu-
rate predictions compared toU0(r). The predicted potentials Û(r) from the NNs
optimizing exp[−βÛ(r)] have consistently larger 〈LMSE〉 and 〈LMAE〉 compared
to the NNs which directly output βÛ(r). This discrepancy likely originates from
the non-linearity of the transformation, which effectively modifies the impor-
tance of different regions of the potential. Figure 3.6 also shows that including
the force in the loss function during the training stage improves the accuracy
of the NNs (see Sec. 3.2.1). Further, the predicted potentials were significantly
smoother when the force was included, as shown for one selected example in
Fig. 3.7. Finally, we find that inputting βU0(r) instead of g(r) did not improve
the prediction significantly. Comparing the average losses 〈LMSE〉 and 〈LMAE〉
of the different network architectures for a given parameter set, we see that the
CNs were most accurate in most cases for both the training and validation sets.
In particular, the CN/f network had the smallest average losses and also small
variations between the different folds. For final benchmarking, we therefore
focuses on the CN/f network, which was trained again with all data except those
in the test set.

To evaluate the accuracy of this NN in more detail, we analyzed the prob-
ability density function of LMAE for the training and test set, p(LMAE), and
compared it with p(LMAE) obtained from using U0(r) (see Fig. 3.8). In both
cases, p(LMAE) can be fitted by an exponential decay∝ exp−(LMAE/δ), with δ
quantifying the width of the distribution. For the CN/f network, p(LMAE) had a
rather narrow distribution with δ = 0.02 ε and δ = 0.03 ε for the training and
test set, respectively, whereas p(LMAE) was considerably wider for U0(r) with
δ = 0.5 ε (the asymptotic standard error of the fits was about 10 % in all cases).
It should also be noted that the estimated U0(r) had several outliers with very
large deviations up to LMAE ≈ 8 ε.

At this point, we also want to discuss the transferability of the predicted
potentials βÛ(r). Given that g(r) can vary significantly for the same βU(r) at
different particle number densities ρ, it is important to check whether βÛ(r)
remains independent of ρ. Figure 3.9 shows a selected target potentialU(r) from
the test set and the resulting g(r) at four different ρ (kBT = ε fixed), highlighting
the increasing deviations from ideal-like behavior [g(r) = 1] with increasing
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Figure 3.6: Comparison of 〈LMSE〉 (left axis) and 〈LMAE〉 (right axis) between the
predicted, Û(r), and target pair potential,U(r), for (a) DNs, (B) CNs, and (c) UNs
with different options (see Table 3.2). The dashed lines indicate 〈LMSE〉 (blue)
and 〈LMAE〉 (green) between U(r) and U0(r). Temperature fixed at kBT = ε in
all cases.
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Figure 3.7: Selected target pair potentialU(r) from the validation set and predic-
tions Û(r) from CN/x and CN/f atkBT = ε. The estimated potentialU0(r) is also
shown for comparison. The inset shows the corresponding radial distribution
function g(r) at the employed density ρ = 0.125σ−3.
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density. We have also included in Fig. 3.9(a) the predictions of Û(r) from the
CN/f network as well as U0(r) at different ρ. Indeed, the predictions Û(r) are
rather close to U(r), and show only minor variations with ρ (as should be the
case). In contrast, the estimate U0(r) provides a passable approximation of
Û(r) only at the lowest density ρ = 0.125σ−3, and the agreement withU(r) gets
significantly worse with increasing ρ.
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Figure 3.9: (a) Target potential U(r) and predicted potentials Û(r) from CN/f at
four different particle number densities ρ, as indicated. The dashed lines show
U0(r) at the same densities. (b) Radial pair distribution functions g(r) from
simulations with U(r) at various ρ, as indicated. Temperature fixed at kBT = ε
in all cases.

To check whether the predicted βÛ(r) lead to similar pair distribution func-
tions ĝ(r) as the original g(r), we ran MD simulations with Û(r) (at temper-
ature kBT = ε) for selected cases from the training and test set. To test the
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performance of simple Boltzmann inversion, we also ran MD simulations with
U0(r) and calculated the corresponding g0(r). Figure 3.10 shows the compari-
son between g(r), ĝ(r) and g0(r), where we have also included the employed
pair potentials U(r), Û(r), and U0(r) as insets of the corresponding plots. In
all considered cases, ĝ(r) is much closer to g(r) than g0(r), especially for dis-
tances r & σ. The systems shown in Fig. (3.10)(a,b) have been run with pair
potentials from the training set at densities ρ = 0.244σ−3 and 0.512σ−3, re-
spectively. These cases are rather interesting, because U(r) and Û(r) look al-
most identical, but the resulting g(r) and ĝ(r) show some deviations for r . σ.
The estimated potentials U0(r) differ drastically from U(r), but the resulting
g0(r) for ρ = 0.244σ−3 is relatively close to the target one. At higher density
ρ = 0.512σ−3, however, the simulations performed withU0(r) lead to a distinct
clustering of particles, while the simulations with U(r) and Û(r) lead to an
almost flat, gas-like g(r) with weak oscillations. Thus, in this case, U0(r) is not
even a good starting point for iterative optimization methods like IBI, as demon-
strated in Figs. S1 and S3 of the ESI, where we performed 200 optimization
iterations115 starting from U0(r). Even when initializing the IBI procedure with
Û(r), which is rather close to U(r), IBI pushes the prediction away from U(r).

Figure (3.10)(c,d) shows results for cases from the test set (same systems as in
Fig. 3.7) at two different densities. At low density ρ = 0.244σ−3, the agreement
between g(r) and ĝ(r) is almost perfect, while g0(r) replicates the qualitative
correct trends. For the denser systems ρ = 0.512σ−3, both ĝ(r) and g0(r) exhibit
a qualitatively similar deviation from the target radial distribution function, but
the predicted Û(r) is much closer to the target pair potential U(r) compared to
U0(r). The IBI procedure converges if eitherU0(r) or Û(r) is used as the starting
point, but convergence is achieved much faster for Û(r) (after 2 iterations) than
for U0(r) (after roughly 20 iterations), as shown in Fig. S3.

As a final test of our methodology, we used the predicted pair potentials
Û(r) from the CN/f networks as an input of the UN/c networks developed in
Sec. 3.3.1 to calculate the pressure P̂ from the radial pair distribution function
g(r). Figure 3.11 shows P̂ vs. P at kBT = ε, demonstrating rather good agree-
ment for the training set (R2 ≈ 0.971). The predictions for the test set have a
significantly lower accuracy (R2 ≈ 0.461), but the overall trends are captured
in most cases (excluding the outlier at P ≈ 80 ε/σ3 from the test set leads to
R2 ≈ 0.802). For comparison, we have also included the pressure P0, which we
estimated by computing U0(r) from g(r). These pressures are almost always
much smaller than the target pressure, leading toR2 ≈ 0.0192.
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Figure 3.10: Comparison between radial pair distribution functions g(r), ĝ(r),
and g0(r) computed from MD simulations performed with U(r), Û(r) and
U0(r), respectively. The corresponding potentials have been plotted in the
insets. Temperature fixed at kBT = ε in all simulations. Cases (a,b) are from
the training set with (a) ρ = 0.244σ−3 and (b) ρ = 0.512σ−3, while cases (c,d)
are from the test set with (c) ρ = 0.244σ−3 and (d) ρ = 0.512σ−3. The LMSE

between the original g(r) and ĝ(r) are (a) 1.4× 10−4 (5.1× 10−3), (b) 5.0× 10−4

(5.7 × 103), (c) 2.9 × 10−5 (2.3 × 10−3), and (d) 5.0 × 10−4 (2.4 × 10−3). The
numbers in parentheses indicate LMSE between g(r) and g0(r).

86



3.3. Results

50 0 50 100 150 200
P [ 3]

50

0

50

100

150

200

P
[

3 ]

P (Train)
P0 (Train)
P (Test)
P0 (Test)

Figure 3.11: Predicted pressure P̂ from UN/c (red and orange symbols) and P0

estimated from Eq. (3.3.1.3) (blue and cyan symbols) vs. the target pressure, P ,
using the potentials Û(r) andU0(r), respectively. Open and filled symbols show
results from the training and testing set, respectively. The outlier in the test set
for the calculation of P̂ has been indicated with an arrow. Temperature fixed at
kBT = ε in all cases.
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3.3.3 Use case examples

Prediction of the EOS for Lennard-Jones and Gaussian particles

To further test the applicability of our approach, we employed the UN/c to
predict the EOS of Lennard-Jones particles at temperatures below and above
the critical temperature kBT ≈ 1.31 ε.116 The pressures have been predicted
from a truncated (rcut = 4.0σ) and shifted Lennard-Jones potential ULJ. The
resulting P̂ are plotted in Fig. 3.12(a) together with the pressure P from the
modified Benedict-Webb-Rubin (MBWR) EOS determined by Johnson et al.117

At kBT = 1.4 ε, P̂ match the reference data almost perfectly, except for some
deviations at high densities ρ ≈ 1.0σ−3 near the liquid-solid coexistence line.
The deviations between P̂ and P become more pronounced with decreasing
temperature, with P̂ being systematically aboveP , but remaining well below the
Carnahan-Starling EOS for the fluid phase of hard spheres.118 We quantified the
accuracy of the NN by computing the MAE between P̂ and P , finding that the
error increased from LMAE = 0.098 ε/σ3 at kBT = 1.4 ε to LMAE = 0.75 ε/σ3

at kBT = 0.8 ε. Despite the differences at lower temperatures, the accuracy
of the predicted pressures P̂ is still satisfactory, considering that we did not
explicitly include ULJ in our training set. Instead, our procedure for generating
pair potentials U(r) (see Sec. 3.2.2) produced only few U(r) that were similar to
ULJ. The inset of Fig. 3.12(a) shows three selected potentials from our training
set that are close to ULJ with εLJ = 0.8 ε, εLJ = 0.92 ε, and εLJ = ε (σLJ = σ in
all cases). Further, training data were generated only at few densities, which
cover a small portion of the density range that was sampled for the EOS plotted
in Fig. 3.12(a).

To improve the accuracy of our NN for this use case, we performed 28 MD
simulations of particles interacting via ULJ, covering the range 0.6 ε ≤ kBT ≤
1.4 ε and 0.05σ−3 ≤ ρ ≤ 1.0σ−3, and included the additional data in our
training set. We stress that, in accordance with good machine learning practices,
we did not evaluate our model on the test set again to avoid leakage. The newly
predicted pressures P̂ from the expanded UN/c are much closer to the reference
pressures P from the MBWR EOS than our initial predictions, with MAE values
ranging between LMAE = 0.16 ε/σ3 and 0.24 ε/σ3. Given the small number
of simulations with ULJ in this new training set, this improvement is rather
remarkable, indicating that even a small number of examples from a new class of
potentials can lead to a better generalization of our machine learning approach.
As a comparison, Johnson et al. used data from 182 different simulations (80 in
the considered temperature and density range) to parameterize their EOS.117

If we include all their data in the training set, then the predicted pressures
further approach the target values (MAE ranging between LMAE = 0.082 ε/σ3
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and 0.19 ε/σ3), as shown in Fig. 3.12(b).
As a second test, we predicted the EOS for a system of particles interacting via

the purely repulsive Gaussian pair potentialU(r) = ε exp [−(r/σ)2]. Figure 3.13
shows both the predicted pressures P̂ and reference pressures P from MD
simulations as functions of ρ for three selected temperatures. In all cases, P̂
and P are in excellent agreement over the entire investigated density regime.
In contrast, the pressure estimates P0 based on the second virial coefficient
[see Eq. (3.3.1.3)] are systematically smaller than P (not shown here), and the
deviations between P and P0 grow with increasing density.

Determining effective potentials in bulk polymer melts

As a second use case example, we employed the CN/f networks developed in
Sec. 3.3.2 to determine the effective pair interactions between coarse-grained
polymers in a melt. The microscopically resolved (MR) reference system con-
sisted of Np = 2000 homopolymer chains with N = 20 monomers each. The
monomer-monomer interactions were given by a truncated (rcut = 5.0σ) and
shifted Lennard-Jones potential, while bonded interactions were included via
the finitely extensible nonlinear elastic (FENE) potential9 with spring constant
k = 30 ε/σ2 and maximum bond extension r0 = 1.5σ.8 The MR simulations
have been conducted at kBT = ε in a cubic simulation box with an edge length
of L = 35.15σ and periodic boundary conditions applied to all Cartesian direc-
tions. In the coarse-grained simulations, each polymer should be represented
by a single spherical particle located at the polymer’s center of mass.

To determine the effective potential between these coarse-grained particles,
we computed the radial pair distribution function g(r) from the MR simulations
and fed it into our NN with polymer density Np/L

3 ≈ 0.046σ−3. Figure 3.14
shows g(r) from the MR simulations as well as ĝ(r) from the coarse-grained
simulations with the effective pair potential Û(r) from the CN/f network. These
structural data are in rather good agreement, except for a slightly more pro-
nounced overlap of polymers at short distances in the coarse-grained simu-
lations. We quantified the difference between g(r) and ĝ(r) through the the
mean squared error, LMSE = 0.0138. We then optimized the effective pair po-
tential using IBI, with 200 iterations of 106 timesteps each (∆t = 0.001 τ ). The
difference between g(r) and ĝi(r), with superscript i denoting the iteration of
the IBI procedure, decreased to LMSE = 0.00261 and 0.00249 after 10 and 200
iterations, respectively. As can be seen in the inset of Fig. 3.14, the effective
pair potential became more repulsive during the iterative optimization, which
reduced the overlap of coarse-grained particles. This example demonstrates
how our machine learning approach can be used to quickly generate accurate
coarse-grained representations, which then can be further optimized using
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Figure 3.12: (a) Pressure P vs. particle number density ρ for LJ particles at
four different temperatures, as indicated. Solid lines show the predictions from
UN/c, while dotted lines show the reference from the MBWR EOS.117 The dashed
black line corresponds to the Carnahan-Starling EOS. Inset: Three selected pair
potentials from the training set (symbols) and the corresponding LJ potentials
with strength εLJ (lines). (b) Same as (a) but for an updated UN/c that contains
additional data obtained from Ref. [117] in the training set. Inset: Pressure
difference P̂ − P vs. ρ for the curves shown in the main panel.
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Figure 3.13: P vs. ρ for particles interacting through U(r) = ε exp [−(r/σ)2]
at three different temperatures, as indicated. Solid lines show the predicted
pressures P̂ from UN/c, while symbols connected by dotted lines show the
reference pressure P from MD simulations. Inset: Pressure difference P̂ − P vs.
ρ for the curves shown in the main panel.

traditional (iterative) techniques.

3.4 Conclusions

Artificial neural networks (NNs) were developed for predicting the equation
of state for a given pair potential U(r) at density ρ and temperature T , and for
predicting (effective) pair potentials from structural information based on the
radial distribution function g(r). We investigated how the representation of
the input and output data as well as additional information (e.g., the forces)
influence the prediction accuracy. For both tasks, a key preprocessing step was
to limit the input and/or output range by capping the pair potential βU(r) so
that it could not reach arbitrarily large values. For predicting the pressure P ,
NNs were tested that directly map the input pair potential βU(r) to βP , and
NNs that first predict (effective) virial coefficients from βU(r) which are then
used to compute βP . The latter strategies resulted in rather accurate predic-
tions, which were much closer to the target pressure (R2 ≈ 1.00) compared to
the virial expansion derived in the low-density limit. For predicting (effective)
pair potentials, the accuracy of the predictions improved significantly when
also the derivatives of the potentials were provided in the loss, since more cor-
relations were taken into account. As a result, the predicted potentials became
smoother and were significantly closer to the target potentials compared to
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Figure 3.14: Radial pair distribution function between the centers of mass
of polymers from microscopically resolved [g(r)] and coarse-grained [ĝ(r)]
simulations. The data for ĝ0(r) are from MD simulations using Û0(r) predicted
by the CN/f, while ĝ10(r) are from MD simulations with Û10(r) after 10 iterations
of Boltzmann inversion. The inset shows Û0(r) and Û10(r).

results obtained through simple Boltzmann inversion. To test the viability of
our approach for practical applications, we employed the NNs to predict the
equation of state of Lennard-Jones particles, achieving good agreement with
literature data after expanding the training set. Further, we successfully ap-
plied our NNs to determine the effective pair interactions for coarse-graining
polymers in a melt.

Our NN approach produced reasonably accurate predictions, which could
be used as a starting point for further optimizations via other (iterative) meth-
ods until the desired accuracy is achieved. Such a combined approach could
drastically cut down the computational cost and development time for coarse-
graining applications, and it could also be a useful tool for inverse problems in
materials discovery. There is, of course, still room for future improvements: The
training data used in this work covered only a subset of all conceivable systems,
and adding more data could significantly improve the prediction accuracy, es-
pecially if the additional data covers new classes of potentials. Further, using
a diverse set of training data will naturally reduce the risk of overfitting, and
also expand the applicability of our approach to a wider range of systems. The
employed machine learning strategy can also be extended beyond pressure
prediction in the canonical ensemble and structure-based coarse-graining. For
example, the same strategies and existing data could be used to train NNs for
predicting the density and total energy from the pair potential in the isothermal-
isobaric ensemble, or new data from simulations in the grand canonical ensem-
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ble could be included to predict the chemical potential of a system. One could
also include the pressure in the coarse-graining procedure to generate models
that reproduce the pressure and compressibility of the target systems more
accurately.103,119–121 Improving these aspects of our machine learning approach
is an ongoing effort, and we welcome the help of the scientific community to
reach these goals.

Supporting Material

Plots of all potentials and radial distribution functions used for training and
testing; Additional information on theoretical background; Schematics of final
network architectures
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Abstract

We develop coarse-grained (CG) models for simulating homopoly-
mers in inhomogeneous systems, focusing on polymer films and
droplets. If the CG polymers interact solely through two-body po-
tentials, then the films and droplets either dissolve or collapse
into small aggregates, depending on whether the effective polymer-
polymer interactions have been determined from reference simula-
tions in the bulk or at infinite dilution. To address this shortcoming,
we include higher order interactions either through an additional
three-body potential or a local density-dependent potential. We pa-
rameterize the two- and three-body potentials via force matching,
and the local density-dependent potential through relative entropy
minimization. While the CG models with three-body interactions
fail at reproducing stable polymer films and droplets, CG simula-
tions with a local density-dependent potential are able to do so.
Minor quantitative differences between the reference and the CG
simulations, namely a slight broadening of interfaces accompanied
by a smaller surface tension in the CG simulations, can be attributed
to the deformation of polymers near the interfaces, which cannot be
resolved in the CG representation, where the polymers are mapped
to spherical beads.

4.1 Introduction

Coarse-graining is a systematic approach to reduce the number of degrees
of freedom for building a simplified model of a system which reproduces its
essential physical properties. The major advantage of coarse-grained (CG)
models is that they provide access to longer simulation time- and length-scales,
by reducing the number of interaction sites and introducing softer interaction
potentials which accelerate the dynamics. Numerous CG models have been
developed for simulating, e.g., polymer melts,72,123,124 organic solvents,125–127

lipid membranes,128,129 conjugated polymers,130–135 peptides,136 surfactants,137

and proteins.138
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CG potentials can be viewed as a projection of a many-body potential of
mean force onto a CG force field.42,139 This projection is, however, not unique,
as it depends on the thermodynamic or structural properties which should
be preserved. Coarse-graining based on, e.g., reproducing entropy,36,52,140,141

forces,42,50,139,142 or structure46,143 usually leads to distinct CG models of the
system as the projection to a CG potential is in general not unique. In the limit
of a complete set of CG basis functions, the different techniques will indeed
lead to the same true many-body CG potential of mean force. However, this
equivalency does not apply to practical cases of relevance with a limited CG basis
set, as structure- and relative entropy-based CG methods minimize a different
functional than force matching methods.42,52 Further, although there is a one-
to-one relation between the pair structure and two-body potentials,45 such
associations generally do not hold for higher order structural correlations and
potentials. As a result, different parametrization schemes can lead to different
CG potentials,144 and therefore CG models cannot represent all features of
the original reference systems (representability problem). Further, CG models
are typically optimized at one specific state point, e.g., a certain temperature
and/or pressure, and are therefore not necessarily suited for studying the same
system at a different state point (transferability problem).101,145 Finally, the CG
force fields should be computationally efficient to compensate for the loss in
molecular details.

While a fairly coherent understanding of bottom-up coarse-graining based
on structural correlations or inter-atomic forces has been established for ho-
mogeneous liquids in the bulk,42 one is often interested in phenomena taking
place at interfaces, which are much less understood. Typical examples are wet-
ting films or droplets and aqueous/organic interfaces in biological cells.146,147

These systems are intrinsically inhomogeneous, either in density or other local
descriptors. Apart from these examples, CG models are particularly sensitive
to local density fluctuations, even in bulk systems, due to their softer interac-
tion potentials and smaller number of particles.148–150 Local inhomogeneity
imposes extra demands on the CG model, in particular its tolerance to density
variations.151–153 Higher-order many-body expansions107,154–158 and an explicit
density dependence of interaction potentials101,153,159–162 are two straightforward
approaches that can improve transferability of CG models. These improvements
have, however, different accuracy and computational overhead.

The aim of this work is to compare the accuracy and efficiency of two CG
models for simulating homopolymers in inhomogeneous systems, such as thin
films or droplets. These systems are characterized by large surface-to-volume
ratios and strong density variations near the polymer-solvent interface. The
first model incorporates three-body Stillinger-Weber basis functions, while the
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second has an explicit local density dependence. We show that the three-body
expansion is computationally demanding and does not lead to stable interfaces.
In contrast, the local density potential is capable of reproducing properties of
inhomogeneous systems without a significant computational overhead.

The remainder of this manuscript is organized as follows: In Sec. 4.2.1 we
present our reference systems, while we have summarized the employed coarse-
graining methods in Sec. 4.2.2. The resulting two- and many-body interactions
of the CG models are discussed in Secs. 4.3.1-4.3.3, and the properties of the CG
simulations is analyzed and compared to the reference simulations in Sec. 4.3.4.
Section 4.4 provides a brief summary of our main findings and an outlook on
planned extensions of our model.

4.2 Methods

4.2.1 Microscopically resolved reference systems

The microscopically resolved (MR) reference systems consisted ofNp homopoly-
mers dispersed in an implicit solvent. Polymers were represented by a generic
bead-spring model with N = 20 monomers per chain. Non-bonded inter-
actions between the monomers were modeled using the Lennard-Jones (LJ)
potential:

ULJ(rij) =

4ε

[(
σ
rij

)12

−
(
σ
rij

)6
]
, rij < rc

0, rij ≥ rc

(4.2.1.1)

with radial distance rij between particles i and j, interaction strength ε = kBT ,
and bead diameter σ. The potential was truncated at the cutoff radius of rc =
5σ.

Polymer bonds were modeled through the finitely extensible nonlinear
elastic (FENE) potential:9

UFENE(rij) =

{
−1

2
kr2

0 ln
[
1− (rij/r0)2] , rij < r0

∞, rij ≥ r0

(4.2.1.2)

with spring constant k = 30 kBT/σ
2 and maximum bond extension r0 = 1.5σ.8

All MD simulations were conducted in theNV T ensemble (unless stated
otherwise explicitly),N = NpN being the total number of monomers in the
system. The temperature was kept constant at T = 1.0 ε/kB through a Langevin
thermostat with friction coefficient ξ = 1.0m/τ , where m is the monomer
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mass, and τ =
√
mσ2/(kBT ) is the unit of time. The equations of motion were

integrated using a Verlet scheme with time step ∆t = 0.001 τ . All simulations
were conducted in cubic simulation boxes with edge length L and periodic
boundary conditions in all three Cartesian directions.

To characterize the polymer properties in homogeneous systems, we simu-
lated a bulk polymer melt withNp = 2000 chains. The melt was first equilibrated
in theNPT ensemble at a pressure of P = 0 kBT/σ

3, resulting in an average
monomer number density of ρb = 0.921σ−3 (all quantities extracted from bulk
simulations will be denoted by a subscript “b”, while the subscript “0” marks
quantities obtained or parameterized at infinite dilution). Once the system
reached equilibrium, we switched to the NV T ensemble using a cubic sim-
ulation box with L = 35.15σ, and simulated for 2 × 107 time steps, saving
configurations and taking measurements every 1000 time steps. We character-
ized the conformation of the polymers through the average radius of gyration
tensor:

G =
1

N

N∑
i=1

〈∆ri ⊗∆ri〉 (4.2.1.3)

where ∆ri is the vector from the polymer center of mass to monomer i, and⊗ in-
dicates the dyadic product. The radius of gyration is thenRg =

√
Gxx +Gyy +Gzz,

withRg,b ≈ 2.2σ in the bulk simulations.
Thin films were constructed by initially placing the polymers in a slab at

the center of the simulation box, so that the normal vectors of the polymer-
solvent interfaces lied parallel to the z-axis. The polymer droplets were created
similarly by initializing the polymers close to each other in the box center. The
size of the simulation boxes was chosen sufficiently large to prevent nonphysical
self-interactions and the coalescence of the films/droplets with their periodic
images (see Table 4.2). Simulations were then performed in theNV T ensemble
atT = 1.0 ε/kB. This state point falls inside the two-phase coexistence region of
the system,163 so that the polymers separated into a high and low density phase
that coexisted in the same simulation box. Simulation snapshots of typical films
and droplets from the MR simulations are shown in Fig. 4.1. We determined
the film thicknesses H and droplet diameters 2R from the full width at half
maximum of the monomer density profiles [see Fig. 4.2(a)]. The resultingH and
R values are summarized in Table 4.2, and they are in good agreement with the
estimatesH = N /(L2ρb) andR = [3N /(4πρb)]1/3, respectively, which assume
a homogeneous monomer density inside the films/droplets and a perfectly
sharp polymer-solvent interface.

Figure 4.2(a) shows the monomers number density along the film normal,
ρ(z), for the system containingNp = 1245 homopolymers (the data for the thin-
ner films look qualitatively similar and have been omitted for brevity). Since
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Figure 4.1: Simulation snapshots of (a) a thin film with thickness H = 8Rg,b,
and (b) a droplet with radius R = 4Rg,b from the MR reference simulations.
The chains are colored differently for better distinction. Snapshots have been
rendered using Visual Molecular Dynamics v.1.9.3.164

System Np L [σ] H orR [σ]
Film 365 28.8 9.6
Film 728 33.2 14.4
Film 1245 37.6 19.2

Droplet 143 31.6 8.5
Droplet 482 40.4 13.0
Droplet 1142 49.2 17.6

Table 4.2: Number of homopolymers Np in polymer films and droplets, with
measured thicknessH and radiusR, respectively.

the simulated temperature was far below the critical temperature of this system
(Tc ≈ 2.65 ε/kB

163), all polymers were part of the thin film (the density in the
“vapor” phase was strictly zero in our simulations). The density profile has a flat
plateau with density ρ = 0.922σ−3, which is in excellent agreement with the
value measured in the bulk systems (ρb = 0.921σ−3). Measurement uncertain-
ties of the density profiles were estimated from the standard error of the mean
between ten subdivided blocks of the data. Note that we did not determine
the (apparent) width of the polymer-solvent interfaces, as this measurement
would only be meaningful when the dependence on the lateral box dimensions
is analyzed to account for the broadening due to capillary waves.165

The density profile of the polymer centers of mass, ρp(z), is also flat in the
bulk-like interior of the film, but has two distinct peaks at z = ±8σ, indicating
a distinct surplus of polymers near the polymer-solvent interfaces [Fig. 4.2(a)].
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Figure 4.2: (a) Number density profiles of monomers (ρ, left axis) and polymer
centers of mass (ρp, right axis) as functions of z. The horizontal dashed line
indicates the monomer number density in the bulk system. The vertical dashed
lines indicate the positions where ρ(z) drops to half of its maximum value. (b)
Diagonal components of the radius of gyration tensor,Gαα, as functions of z.
The horizontal dashed line indicates the value of Gαα in the bulk simulation.
Data shown for a film with thickness H ≈ 8Rg,b, consisting of Np = 1245
homopolymers.
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This local excess of polymers can be rationalized by considering the confor-
mation of the individual chains, which we have characterized via the diagonal
components of the radius of gyration tensor [Fig. 4.2(b)]. The polymers are
essentially isotropic in the central region of the film, but they assume an oblate
ellipsoidal shape near the edges of the film, with Gzz < Gyy = Gxx and a
maximum aspect ratio of aboutGxx/Gzz ≈ 4.

Finally, we determined the surface tension of the thin films from the anisotropy
of the pressure tensor:

γ =
Lz
2

〈
Pzz −

Pxx + Pyy
2

〉
(4.2.1.4)

where Pαα denotes the diagonal components of the instantaneous pressure
tensor, which was computed from the Clausius virial equation. The factor of
1/2 in Eq. (4.2.1.4) is due to the presence of two interfaces [see Fig. 4.1(a)]. Here,
we find a value of γ = 1.42 kBT/σ

2 for all three investigated film thicknesses.

4.2.2 Coarse-graining procedure

In our CG model, an entire homopolymer chain is represented by a single
spherical particle, as depicted in Fig. 4.3. We tested three different approaches,
using (i) only two-body interactions, (ii) a combination of two-body and three-
body interactions, and (iii) a combination of two-body and (mean-field) many-
body interactions. In the following, we briefly discuss these interactions and how
they have been parameterized. The resulting CG potentials are then presented
in Sec. 4.3.

⨉ ⨉

(a) (b)

Figure 4.3: Schematic representation of (a) a microscopically resolved polymer
chain with N = 20 monomers, and (b) the coarse-grained representation of
that chain. In both panels, the cross indicates the center of mass of the polymer.
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4.2.2.1 Two-body interaction

In all models, the pairwise interactions were determined using force matching
(FM),50,139,142 where the force on each CG bead is calculated as the sum of the
forces on the monomers of the corresponding polymer. We determined the
two-body interaction potentials between the CG polymers using FM from bulk
simulations, U2b

b , as well as from simulations containing two isolated polymers,
U2b

0 . The first approach results in a pair potential that (implicitly) includes
many-body effects due to the surrounding polymers, while the second approach
provides the pairwise interaction of only two polymer chains.

We introduced a cutoff radius, r2b
c , beyond which the CG particles do not

interact with each other. The two-body forces in the CG model, f 2b, were
parameterized using cubic splines with a uniform grid spacing ∆r2b. Thus,
there areK ≡ r2b

c /∆r
2b grid points and basis functions which depend linearly

on 2K spline coefficients λi. Imposing continuity and smoothness conditions,
reduces the number of free coefficients to K. These coefficients were then
determined by matching the forces in the CG representation to the ones from
the MR simulations. To determine theK coefficients, we first divided the MR
trajectory in blocks containing eachNs snapshots, and then solved the resulting
set ofNsNp linear equations with a constrained least-squares algorithm for each
block. Finally, we tabulated f 2b with a grid spacing of ∆r2b

tab = 0.01σ, averaging
over the blockwise results. To ensure a smooth decay to zero at r2b

c , we multiplied
the tabulated forces with a smoothing function f sm for all distances r > rsm:

f sm (r) = cos

(
π

2

r − rsm

r2b
c − rsm

)
. (4.2.2.1)

The CG pair potential U2b was then obtained by numerical integration of f 2b.
This coarse-graining procedure is implemented in the VOTCA-CSG package.115

The pair potential U2b
b was determined from the MR melt simulations (see

Sec. 4.2.1) using a cutoff distance of r2b
c = 8σ and a grid spacing of ∆r2b = 0.1σ.

Each block contained 300 frames, and the final potential was computed by
taking the average of the 67 blocks. For computing U2b

0 , we performed 64
independent simulations of two isolated polymers in a large simulation box
(L = 60 σ), so that they did not interact with their periodic images. The poly-
mers were initialized at large distances and then approached each other due
to the monomer-monomer attraction (see Sec. 4.2.1). By evaluating the trajec-
tories of these multiple runs, there were enough data for capturing the forces
at all relevant distances. For the FM procedure for calculating U2b

0 , we used
r2b

c = 8σ and ∆r2b = 0.2σ, averaging over 14 blocks each containing 750000
frames. In both cases, we chose rsm = 7.5σ.
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4.2.2.2 Three-body interaction

Three-body interactions were taken into account using the Stillinger-Weber
(SW) potential with flexible angular dependence, as implemented in the VOTCA-
CSG package144

USW(rIJ , rIK , θIJK) = fSW (θIJK) exp

(
η

rIJ − rSW
c

)
exp

(
η

rIK − rSW
c

)
,

(4.2.2.2)

with angle θIJK between the three particles (I being the central one), and angu-
lar interaction term fSW(θIJK). The cutoff distance rSW

c determines how many
triplets are included into the local environment of each CG polymer, and USW

smoothly decays to zero when one of the two inter-particle distances rIJ and
rIK reaches rSW

c . The parameter η controls the steepness of this decay with
small η corresponding to a steeper transition.

The angular dependence of USW allows for capturing anisotropic interac-
tions, which occur near the polymer-solvent interfaces in the MR simulations
(see Fig. 4.2). The angular interaction term fSW (θIJK) was fitted to the residual
forces of the MR simulations ∆f via the FM procedure.144 We determined ∆f
acting on each CG polymer chain by subtracting the CG two-body force from
the total reference force from the MR simulations, fMR:

∆f = fMR − f2b. (4.2.2.3)

In practice, we determined ∆f by recomputing the forces acting on the cen-
ters of mass of the polymers in the MR trajectories using the pairwise forces
f2b. For f2b, we either used the forces due to U2b

b or U2b
0 (see Sec. 4.2.2.1). To

distinguish the resulting three-body potentials, we will refer to them as USW
∆b

and USW
∆0 , respectively. The subscript “∆” indicates that the SW potential was

parameterized using the residual forces ∆f [Eq. (4.2.2.3)]. Parameterization of
USW according to ∆f ensures the orthogonality of the two-body and three-body
terms.144 The fit parameters then depend on the choice of the pair potential,
so that the additional three-body contribution can be regarded as a correction
term to either U2b

b or U2b
0 .

All trajectory reruns with pair potentials were carried out with the GROMACS
simulation package.166 All reruns with three-body potentials were carried out
with the LAMMPS simulation package167 with the user pair style sw/table144 as
available under
https://gitlab.mpcdf.mpg.de/votca/lammps.

We used a cubic spline representation for fSW (θijk) with KSW = 31 grid
points and a linear dependence on the 2KSW spline coefficients. Treating the
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two exponential terms in Eq. (4.2.2.2) as prefactors led to a linear set of equations
which was solved by a constrained least-squares solver. For the thinnest films
with H ≈ 4Rg,b, we averaged over 200 blocks containing each 200 frames,
while for the remaining systems we averaged over 800 blocks each containing
50 frames. We systematically varied the cutoff radius of USW

∆b and USW
∆0 from

rSW
c = 4σ to rSW

c = 10σ, and the parameter η from η = σ to η = 4σ.

4.2.2.3 Local density-dependent interaction

Alternatively, many-body interactions were included in our CG simulations
by supplementing the two-body pair potential with a local density-dependent
potential (LDP). In this representation, each CG polymer carries a cloud, which
effectively describes its monomers that were integrated out during the coarse-
graining procedure (see Fig. 4.3). For simplicity, we assumed that these clouds
can be described by radial weight functions ω(rIJ), which only depend on the
distance rIJ between the CG particles I and J . In this work, we constructed
the weight function ω(rIJ) by computing the pairwise overlap integral between
the average monomer density clouds around the polymers centers of mass,
ρcloud(r). To determine ω(rIJ), we first computed ρcloud(r) from the MR bulk
simulations:

ρcloud(r) =

〈
1

N4πr2

N∑
i=1

δ (|ri − rcom| − r)

〉
, (4.2.2.4)

where rcom is the center of mass position of the polymer. Assuming a pairwise
overlap of the density clouds, the weight function ω(rIJ) is then given by:

ω(rIJ) =

∫
V

ρcloud(
∣∣rIcom − r

∣∣)ρcloud(
∣∣rJcom − r

∣∣) d3r. (4.2.2.5)

Thus, ω(rIJ) can be interpreted as the number density of monomer pairs be-
tween a pair of (CG) polymers at center-to-center distance rIJ . Figure 4.4 shows
ρcloud(r) as well as ω(r), which are both bounded and monotonically decrease
with increasing r. The monomer density decays almost completely at r ≈ Rg,b

while ω(r) vanishes almost entirely at r ≈ 2Rg,b, as expected.
The potential energy of CG particle I due to the LDP is then:

ULDP
I = G (ϕI) (4.2.2.6)

where G is an embedding function, and ϕI is the local density of (fictitious)
monomer pairs at the position of CG particle I due to the other CG particles.
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Figure 4.4: Weight function ω(r) (left axis) and monomer density around the
polymer center of mass ρcloud(r) (right axis) as functions of radial distance r.

We posit that ϕI can be expressed as the linear superposition of the pair density
clouds of the other particles, that is:

ϕI =
∑
J 6=I

ω(rIJ). (4.2.2.7)

In this context, the embedding function G is a mean-field representation of
many-body effects,168 and local density gradients enter the force calculation via
the gradient of the embedding function. Thus, many-body effects are related to
the curvature ofG: IfG is a linear function ofϕI , then the total potential reduces
to a two-body pair potential. If G has a positive curvature, i.e., d2G/dϕ2 > 0,
then the LDP becomes more repulsive as the local density increases. Due to
the assumed pairwise additivity of the weight functions ω(rIJ), the LDP can be
interpreted as a generalized pair potential, which is why in practice LDPs are
typically implemented as pair potentials.113,169,170 Hence, the pressure tensor
can be calculated as usual via the standard Clausius virial equation.40

The embedding function was implemented as a cardinal B-spline function,
with equally spaced nodes λi at a distance of ∆ϕ = 0.5. This representation has
the advantage that the derivatives with respect to the amplitude of the nodes,
∂ULDP/∂λi, are linear, which facilitates the calculation in the update step [see
Eq. (4.2.2.11)]. The number of nodes was adapted during the coarse-graining
procedure to cover the required density range. We determined the embed-
ding function G from our MR simulations using relative entropy minimization
(REM).36,37 The goal of this technique is to optimize the CG potential in such
a way that the difference between the probability distribution of the MR con-
figurations in the CG and the MR representation is minimized. This difference
can be measured by the relative entropy, also known as the Kullback-Leibler
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divergence,53 which can be interpreted as the difference in information con-
veyed by the probability distributions. So in contrast to other coarse-graining
methods like FM or IBI, which are designed to reproduce the potential of mean
force or the radial distribution function, respectively, REM aims to minimize the
difference in the configurational probability distributions. As a consequence,
the resulting CG potentials will differ, because there is in general no unique
parameterization which optimizes all quantities of the target system.

In the canonical ensemble, the relative entropy can be written as:

Srel = β 〈UCG − UMR〉MR − β (ACG − AMR) + 〈Smap〉MR (4.2.2.8)

where UMR and UCG denote the potential functions, and AMR and ACG the
configurational parts of the Helmholtz free energy for the MR and CG system,
respectively. The term 〈Smap〉MR is the (unavoidable) contribution to the rel-
ative entropy due to the mapping. The relative entropy Srel can be optimized
using approximate and/or iterative methods to find a (locally) optimal set of
parameters of the potential. In this work, we used a Newton-Raphson update
rule to find the root of ∂Srel/∂λ, that is

λj+1 = λj −
(
∂Srel

∂λ

)
/

(
∂2Srel

∂λ2

)
(4.2.2.9)

where j denotes the iteration. Here, the parameters to be optimized are the
amplitudes of the nodes λi of the cardinal B-spline representation of the embed-
ding functionG. To improve the stability of the updates and the convergence
of the optimization, we multiplied the change of the parameter ∆λi with a
constant factor α = 0.01 and clipped it at±1kBT . The resulting update rule for
the coefficients is then:

λj+1
i = λji −∆λji (4.2.2.10)

∆λji = min

(
−1,max

(
1, α

[〈
∂ULDP

∂λi

〉
MR

−
〈
∂ULDP

∂λi

〉
CG

]
[〈

∂2ULDP

∂ (λi)
2

〉
MR

−
〈
∂2ULDP

∂ (λi)
2

〉
CG

+ β

〈(
∂ULDP

∂λi

)2
〉

CG

− β
〈
∂ULDP

∂λi

〉2

CG

]−1


(4.2.2.11)

where 〈·〉MR and 〈·〉CG indicate averaging in the mapped MR and CG repre-
sentation, respectively. For all investigated systems, we used 500 iterations
with 200000 simulation timesteps per iteration. All simulations with LDPs were
carried out on graphics processing units with the HOOMD-blue simulation
package (v. 2.4.2).113,169,170
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4.3 Results

4.3.1 Two-body interactions

In a bulk polymer melt, every monomer is isotropically surrounded by other
monomers, both from the same chain as from the other ones. Consequently, the
intra- and inter-chain interactions compensate each other, and the polymers
behave as dispersed in a Θ-solvent.17,72,1711 This does, however, not mean that
the effective polymer-polymer interactions vanish, but that they are purely
entropic instead. Figure 4.5 shows the effective pair potential between CG
polymers in a melt, U2b

b , which is repulsive and bounded, allowing a partial
overlap of the CG polymers. This behavior is due to the fractal and open nature of
the polymer coils, which lets the centers of mass of two coils be at the same place
while each chain can fluctuate without intersecting the other [see Fig. 4.3(a)].

Previous consideration within renormalization-group theory175 predicted
that the effective potential can be approximated rather accurately by a Gaus-
sian function U2b

b ∝ exp [−(rIJ/σp)2], with characteristic length-scale of the
interaction σp. Our simulation data can be fitted perfectly to this functional
form with σp = 3.4σ. Such Gaussian polymer-polymer interactions have also
been reported in previous lattice176 and off-lattice123,175 simulations of athermal
polymer solutions. In particular, Louis et al. varied the polymer concentration
over a wide range, from dilute solutions up to almost five times the overlap
concentration, finding that U2b

b barely changed.123 Further, they showed that
U2b

b reproduces rather accurately the equation of state of a polymer solution.
However, a CG description of the polymers only in terms of U2b

b is insufficient
for modeling polymer films and droplets, as the CG polymers will repel each
other rather than form a stable film, unless additional external constraints are
applied.

The pair potential between two isolated polymers, U2b
0 , is attractive (see

Fig. 4.5), resembling a soft square-well potential with a well depth of about
−13 kBT and a well width of roughly 2σ. This strong polymer-polymer attrac-
tion is due to the attractive tail of the LJ interaction between the monomers in
the MR model [see Eq. (4.2.1.1)]. At such low polymer concentrations, the em-
ployed MR model effectively describes polymers in a poor (implicit) solvent,163,177,178

which have collapsed into compact globules with a distinctly smaller radius
of gyration compared to their coil-like analogs in the melt, i.e.,Rg,0 ≈ 1.5σ vs.
Rg,b ≈ 2.2σ. Once two (or more) of these globules approach each other in the
MR simulations, they coalesce into a small polymer droplet that remains stable

1The Flory ideality theorem should be considered with care, however, as there are subtle
differences in the static172,173 and dynamic174 properties of ideal and real polymers.
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Figure 4.5: Pair potential acting between two coarse-grained polymers, com-
puted from bulk melt simulations (U2b

b , blue) and from simulations containing
two isolated polymers (U2b

0 , red). The corresponding diameters of the polymers,
2Rg, from the microscopically resolved simulations are indicated by a black
and red vertical line, respectively.

over the investigated simulation time. However, simulations containing many
CG polymers interacting only through U2b

0 behave in a nonphysical manner:
Due to the strong attraction for r . 5σ and the lack of repulsive excluded
volume interactions at short distances, the CG polymers merge into a single
small aggregate, with a diameter that even decreases with increasing aggregation
number. Alternatively, one could try to parameterize the pair potential at the
Θ-temperature, where the solvent quality is exactly poor enough to cancel the
polymer-swelling due to excluded volume effects, so that the polymer scales
like an ideal chain. However, the resulting pair potential between two isolated
polymers will be zero (apart from statistical fluctuations), leading to incorrect
thermodynamic properties in the bulk and confined systems.

4.3.2 Three-body SW interactions

We determined the SW three-body potentials for the three different film systems,
as well as for the droplet with radiusR ≈ 6Rg,b. For all investigated systems, the
forces of the reference systems, fMR, were reproduced most faithfully when the
residual forces ∆f were fitted usingU2b

0 with a cutoff distance of rSW
c = 10σ. The

dependence on ηwas weak and we chose η = σ (see the supporting information
for a comparison of all different parameter combinations, as well as the results
when fitting to the residual forces using U2b

b ).
Figure 4.6(a) shows the average force on the CG polymers perpendicular to

109



Chapter 4. Ultra-Coarse-Graining

the film surface, Fz(z), in the film withH ≈ 8Rg,b, where measurements were
taken every 100 τ . (The results for the other systems are qualitatively similar
and are included in the supporting information.) In the MR simulations, the
average net force on the center of mass of the polymers vanishes in the central
bulk-like region of the film, |z| < 6σ due to the film’s symmetry along the z-axis.
Further away from the film center, the net force on the polymers points inwards
with its magnitude increasing the further the chain is located away from the film
center. This net attraction reflects the cohesive forces between the monomers
in the MR simulations.

Using the particle positions from the MR trajectories (see Sec. 4.2.2.2 for
details), we computed the force profiles in the CG model and show the resulting
profiles also in Fig. 4.6(a). The resulting net force has a similar shape as the
reference force, although the flat plateau in the film center is replaced by a weak
oscillation. The contribution from the two-body potential U2b

0 leads to a strong
net attraction between the CG polymers, which is especially pronounced near
the film surfaces because of the inhomogeneous polymer density distribution
(see Fig. 4.2). The pairwise attraction in the CG model extends deep into the bulk
region of the film, which is (partially) compensated by the repulsive three-body
SW interactions. It should be noted, that these force profiles have been created
using the CG model in trajectories from the MR reference simulations, and not
from dedicated simulations using the CG model. Thus, the good agreement
of the force profiles shown in Fig. 4.6(a) does not guarantee the stability of the
films and droplets in the CG representation, which we will test in Sec. 4.3.4.

In Fig. 4.6(b), we plot the angular part of the SW potential fSW(θIJK) for the
three different films as well as for the droplet with radius R ≈ 6Rg,b. The fitted
functions fSW(θIJK) have similar shapes in all investigated cases, indicating a
good transferability of the three-body potential. As the two exponential terms
of the SW potential are strictly positive [see Eq. (4.2.2.2)], a positive (negative)
sign of fSW(θ) results in a net repulsion (attraction) between the central CG
particle I of a triplet configuration and the two CG particles J andK. The SW
potential is purely repulsive for small angles θIJK < 30◦, where the three CG
polymers I , J , andK are lined up with J at a smaller distance andK at a larger
distance behind chain J [see Fig. 4.6(c)]. For larger angles θIJK > 30◦, fSW(θ)
oscillates around zero with a rather small amplitude.

4.3.3 Local density-dependent potentials

Using U2b
0 as the two-body potential between the CG polymers, we determined

ULDP
0 for all films and droplets via REM, as described in Sec. 4.2.2.3. To verify

that the coarse-graining procedure converged, we computed the probability
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Figure 4.6: (a) Forces acting on the center of mass of the polymers perpendicular
to the film surface, Fz(z), as functions of z. Data shown for a film with thickness
H ≈ 8Rg,b. The blue curve corresponds to the net force in the MR simulation,
while the red curve shows the net force using the CG potential. The green
and orange curves show the two- and three-body contributions, U2b

0 and USW
∆0 ,

respectively. The shaded regions correspond to the measurement uncertainty
determined from the standard error of the mean. (b) Angular part fSW(θIJK) of
USW

∆0 for films with different thicknesses H as indicated and droplet with radius
R ≈ 6Rg,b.
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density function of the local density, P (ϕ), in both the mapped MR reference
simulations as well as in the CG simulations. Figure 4.7(a) shows the corre-
sponding results for the film with thickness H ≈ 8Rg,b and the droplet with
radiusR ≈ 4Rg,b. The data for the CG and MR simulations are in perfect agree-
ment, which indicates that the LDPs have been parameterized accurately. Small
ϕ values correspond to polymers located near the polymer-solvent interface,
while large ϕ values are associated to polymers in the central bulk-like region of
the systems. All P (ϕ) have a maximum near ϕ ≈ 15, which indicates that there
are more polymers in the bulk-like region than at the surfaces. This maximum
becomes more pronounced as the film thicknessH (droplet radiusR) increases,
because the surface-to-volume ratio decreases as 2/H (3/R). Note also, that a
droplet with diameter 2R = H has a larger surface-to-volume ratio than a film
with the same thickness, which is reflected by the larger P (ϕ) values at small ϕ
for droplets compared to films [see Fig. 4.7(a)].

Figure 4.7(b) shows the fitted embedding functionsG(ϕ) for all CG systems,
which look nearly identical except for a slight vertical shift in the region ϕ & 4.
This good agreement indicates that the obtained LDPs are transferable across
the different systems, that is, the embedding functionG(ϕ) parameterized for
a small droplet is also applicable to a thick film. G(ϕ) increases linearly with
ϕ for 5 ≤ ϕ ≤ 22, which corresponds to the range of local densities typically
observed in the films and droplets [see Fig. 4.7(a)]. For such linear embedding
functionsG(ϕ) = kϕ+C, the potential energy of particle I due to the LDP can
be written as:

ULDP
I = C + kϕI = C +

∑
I 6=J

kω(rIJ) = C +
∑
I 6=J

ULDP,2b(rIJ). (4.3.3.1)

Hence, in this case, the LDP behaves like an additive pair potential ULDP,2b(r),
which restores the excluded volume interactions between the CG polymers.
Figure 4.7(c) shows the resulting effective pair interaction between CG particles
in the bulk-like region of the films and droplets,U2b

0 +ULDP,2b, which is repulsive
at short distances to prevent the CG particles from collapsing onto each other,
and has a minimum at r ≈ Rg,b = 2.2σ to achieve the desired inter-particle
spacing in the bulk-like region. Outside the density region 5 ≤ ϕ ≤ 22, the
derivative d2G/dϕ2 is nonzero [see inset of Fig. 4.7(b)], so that many-body
effects become relevant. For smaller ϕ < 5, the derivative d2G/dϕ2 is negative,
so that ULDP

0 becomes less repulsive as the local density increases. In contrast,
d2G/dϕ2 > 0 for ϕ > 22, which ensures the incompressibility of the polymer
film.

To assess the computational performance of the CG model, we performed
bulk simulations with Np = 2000 polymers in a cubic box with edge length
L = 35.15σ. Here, we found that the CG simulations using only the two-body
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interactions U2b
b achieved about 40 times more timesteps per second than the

MR simulations, while the CG simulations with both U2b
0 and ULDP

0 achieved
about 10 times more timesteps per second than the MR simulations. The actual
speedup with respect to the physical timescales is likely even higher due to the
accelerated dynamics in the soft CG models.

4.3.4 Stability of Simulations

To investigate whether the CG representations using the SW potential or the LDP
are able to reproduce stable films and droplets, we performed MD simulations
using the CG models starting from the final snapshots of the MR reference
simulations. Figure 4.8 shows typical snapshots of the CG simulations of the
films with thickness H ≈ 8Rg,b at different simulation times. The starting
configuration is shown in Fig. 4.8(a), while the results from the runs with the
SW potential and LDP are shown in Figs. 4.8(b,c) and 4.8(d,e), respectively.

The films in the CG simulations with U2b
0 and USW

∆0 start to become unsta-
ble already after about 2 τ , as the CG polymers collapse into small spherical
aggregates, which are stabilized by a long range repulsion between them. The
inability of this combination of two- and three-body interactions to reproduce
the MR simulations even qualitatively stems likely from the restricted functional
form of USW

∆0 . The residual force fit of the SW potential (see Sec. 4.2.2.2) most
probably only captures a local minimum of the potential of mean force, whereas
the global minimum of the fitted CG model corresponds to this collapsed state.
This transition can be better understood by considering the strong attraction of
U2b

0 at short distances (see Fig. 4.5), whereas the three-body contribution USW
∆0

is repulsive only for small angles θIJK < 30◦, where three CG beads are lined up
as shown in Fig. 4.6(b). Thus, small deviations in θIJK are already sufficient to
overcome the repulsive barrier between neighboring particles. This interpreta-
tion is corroborated by the distribution of angles θIJK in the collapsed droplets,
where we find almost no triplets with angles in the range of θIJK < 30◦. CG
simulations with U2b

b and USW
∆b do not reproduce stable films or droplets either,

as in these cases the (attractive) three-body contribution USW
∆b is not sufficient

to compensate the repulsive pair potentialU2b
b (see the supporting information

for the fitting results of USW
∆b ). In addition, including SW interactions with a

relatively large cutoff (rSW
c = 10σ) significantly slows down the CG simulations

due to the large number of triplets included into the force calculation. In fact,
the CG simulations became less efficient than the original MR ones.

In contrast, the CG simulations with the pair potential U2b
0 and LDP ULDP

0

lead to stable film and droplet configurations, even after long simulation times
(see Fig. 4.8). (Note that simulations using the effective pair interactions U2b

0
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Figure 4.8: Snapshots of the CG simulations of the films with thickness H ≈
8Rg,b. (a) Starting configuration. (b,c) CG simulations with U2b

0 and USW
∆0 at

t = 2 τ and 4 τ , respectively. (d,e) CG simulations with U2b
0 and ULDP

0 at t = 2 τ
and 40000 τ , respectively.

and ULDP,2b, see Sec. 4.3.3, exhibit a similar instability as the simulations with
U2b

0 and USW
∆0 .) To investigate the resulting configurations in more detail, we

computed the density profiles along the z-axis for the films and in the radial
direction for the droplets. The corresponding results for the film with thickness
H ≈ 8Rg,b and the droplet with radius R ≈ 4Rg,b are plotted in Fig. 4.9. Again
the measurement uncertainties of the density profiles are estimated from the
standard error of the mean between ten subdivided blocks of the data. Overall,
the density profiles in the CG simulations are reasonably close to the ones from
the MR simulations, with relative deviations ofH and R below 4 %, and similar
polymer densities in the central region of the films and droplets. However, the
polymer-solvent interfaces are slightly broader in the CG simulations, which is
also reflected by the smaller surface tension measured in the CG simulations,
that is γ = 0.31± 0.01 kBT/σ

2 vs. γ = 1.42 kBT/σ
2 for the planar films. Further,

the peaks in the density profiles near the polymer-solvent interfaces are slightly
more pronounced and more narrow in the MR simulations compared to the
CG simulations. This difference can be understood if one considers the oblate
ellipsoidal shape of the polymers at the interfaces in the MR simulations [see
Fig. 4.2(b)]. This shape anisotropy near the polymer-solvent interface can,
however, not be captured by our CG model, where the polymers are modeled
as soft spheres.

In addition, we computed the force profiles along the z-axis in the films and
in the radial direction r for the droplets (see Fig. 4.10). The force profiles were
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Figure 4.9: Number density profiles of polymer centers of mass of the mapped
MR reference (ρp) and CG simulations (ρCG

p ) for (a) a film with thicknessH ≈
8Rg,b, and (b) a droplet with radius R ≈ 4Rg,b. The horizontal dashed line
indicates the polymer number density in the bulk system. In both panels, the
shaded regions correspond to the measurement uncertainty determined from
the standard error of the mean.
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calculated as the mean forces of particles at the given z or r position with data
taken every 100 τ . In both the MR and CG simulations, the net force is essentially
zero in the central region of the film and droplet, due to the symmetry of the
systems. Polymers near the surface of the film/droplet experience attractive
forces toward the center of the film/droplet. These cohesive forces are stronger
and act on a much narrower region in the MR simulations compared to the CG
simulations. If one decomposes the net force into the contributions from the
two- and many-body interactions, one sees that U2b

0 and ULDP
0 have opposite

signs and are each significantly larger than the resulting net force. Both forces
also extend much further into the central region of the films and droplets than
expected from the width of the bumps at the extremities of the force profiles.
Evidently, the stability of the films and droplets is the result of a delicate balance
between two- and many-body interactions in our CG model.

4.4 Conclusions

We developed coarse-grained (CG) models of homopolymers, where each poly-
mer was represented by a single (soft) spherical particle and the solvent was
included implicitly. We focused on simulations of thin films and droplets with
strong density inhomogeneities near the polymer-solvent interfaces. In CG sim-
ulations where the polymers interacted only through two-body potentials, the
films and droplets either dissolved or collapsed into small aggregates, depend-
ing on whether the effective polymer-polymer interactions were parameterized
in reference simulations in the bulk or at infinite dilution. These CG representa-
tions failed at capturing (even qualitatively) the main physical characteristics
of the reference systems, because they did not correctly reproduce the cohesive
forces and the compressibility of the polymers, respectively.

To address these inherent issues, we supplemented the two-body potentials
by additional three-body or many-body interactions, which were parameterized
in the inhomogeneous systems. The three-body interactions were represented
by a Stillinger-Weber potential which was fitted to the residual forces of the
microscopically resolved reference simulations. Many-body interactions were
included in a mean-field way via local density-dependent interactions, which
were optimized using the relative entropy minimization technique. The CG
models with three-body interactions failed at maintaining stable polymer films
or droplets, and the CG particles collapsed into small spherical aggregates
instead. In contrast, the CG simulations with local density-dependent interac-
tions reproduced stable films and droplets with linear dimensions close to the
reference simulations, except that the polymer-solvent interfaces were slightly
sharper and the accompanied surface tension was higher in the reference sim-
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Figure 4.10: Force profiles for (a) a film with thickness H ≈ 8Rg,b and (b) a
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ulations. We attributed these differences to the deformation of polymers near
the interfaces, which could not be resolved in the CG representation, where the
polymers were mapped to spherical beads. In future work, we plan to enhance
our model to capture such effects. Further, we want to develop analytic expres-
sions for the pair- and many-body interactions to avoid (or at least minimize)
running miscroscopically resolved reference simulations for parameterizing
the CG model.
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CHAPTER5 Limitations of the Ultra-
Coarse-Grained Model

In this chapter, we will apply the parametrization scheme used in Ch. 4 to
chemically more specific systems and discuss its generalization to longer poly-
mer chains. This chapter is structured as follows: In Sec. 5.1 we will present
the reference simulations and methods used in this chapter. In Sec. 5.2 we
show, how some of the properties needed for our coarse-graining procedure
can be obtained from analytical expressions, which can reduce the amount
of costly reference simulations. In Sec. 5.3 we will analyze the transferability
of our ultra-coarse-graining procedure as well as its limitations and the rea-
sons thereof. Finally, in Sec. 5.4 we will conclude and give an outlook about
possible applications and mitigation strategies to improve our coarse-graining
procedure.

5.1 Reference Simulations and Coarse-Graining
Procedure

5.1.1 Microscopically Resolved Reference Systems

In this chapter we use two different models to which our coarse-graining proce-
dure is applied.

One of these is the same Kremer-Grest (KG) model as discussed in Sec. 4.2.1
with different numbers of monomers per polymer, N = 40 and N = 100 in-
stead ofN = 20. As the parametrization of the KG model is the same as the one
used previously, we will not repeat the specifics and refer to the corresponding
section for a detailed description.

The other model is a bead-spring model of polyethylene (PE) with the force
field chosen according to a modified TraPPE-united-atom (TraPPE-UA) model
of alkanes.179 In this parametrization the chain consists mostly of beads com-
bining (CH2), with beads of (CH3) located at both ends of the chain. The
non-bonded interactions between all particles in the system are given by a
Lennard-Jones potential, generalized to different types of atoms and smoothed
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at the cutoff via a smoothing function S(rij),

ULJ(rij) =

4εtitj

[(
σtitj
rij

)12

−
(
σtitj
rij

)6
]
S(rij), rij < rc

0, rij ≥ rc

(5.1.1.1)

where ti, tj ∈ {A,B} denotes the type of particle i and j respectively and the
cutoff is chosen as rc = 14Å. The smoothing function S(rij) is given by

S(rij) =


1, rij < ron

(r2
c−r2

ij)
2
(r2

c +2rij−3r2
on)

(r2
c−r2

on)3 , ron ≤ rij ≤ rc

0, rij ≥ rc

(5.1.1.2)

with the onset radius ron = 13Å. This modification to the original TraPPE-UA
model ensures that both the LJ potential as well as its derivative, i.e. the force,
vanish at the cutoff.

The corresponding strength and length parameters are summarized in
Tab. 5.1. The inter-species parameters were calculated using the Lorentz-Berthelot
rules,180,181

εtitj =
√
εtitiεtjtj (5.1.1.3)

σtitj =
σtiti + σtjtj

2
. (5.1.1.4)

Bead Atoms LJ strength ε/kB [K] LJ size σ
[
Å
]

Massm [u]

A (CH3) εAA = 98 σAA = 3.75 mA = 15.0345

B (CH2) εBB = 46 σBB = 3.95 mB = 14.0266

Table 5.1: Parameters for non-bonded LJ-interaction in PE model. The inter-
species parameters were computed using the Lorentz-Berthelot rules, cf.
Eqs. (5.1.1.3) and (5.1.1.4). The unit of mass, u, denotes the atomic mass unit.

The polymer bonds, which in the original TraPPE-UA model are modeled as
stiff bonds, are implemented using harmonic potentials between neighboring
particles in our case,

Ubond(rij) =
1

2
k (rij − r0)2 (5.1.1.5)

with the bond rest length r0 = 1.54 Å chosen like in the original model. The
spring constant was chosen relatively high as k = 105kBTÅ−2 so that the bonds
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are very strong, mimicking the perfectly stiff bonds.

Furthermore, the model incorporates angle and dihedral potentials via a
harmonic angle potential and an optimized potential for liquid simulation
(OPLS)182 dihedral force:

Uang(θijk) =
1

2
ka (θijk − θ0)2 (5.1.1.6)

Udih(φijkl) =
1

2
C1 (1 + cos (φijkl)) +

1

2
C2 (1− cos (2φijkl))

+
1

2
C3 (1 + cos (3φijkl)) (5.1.1.7)

where θijk denotes the angle of neighboring particles i, j and k and φijkl denotes
the dihedral angle of neighboring particles i, j, k and l. The angle potential
strength is given as ka = 62500kBKrad−2 and the rest angle as θ0 = 114◦.
The coefficients in the OPLS potential described in Eq. (5.1.1.7) are set to
C1 = 355.03 kBK, C2 = −68.19 kBK and C3 = 791.32 kBK in accordance
with the TraPPE-UA model.

As we already established the transferability of our approach between droplets
and thin films of different radii and thicknesses, we focused on thin films exclu-
sively in this part of the analysis of the coarse-grained model.

All MD simulations were conducted in the canonicalNV T ensemble unless
stated otherwise explicitly. In both cases, the number of particles is given by
the number of polymers Np times the number of monomers N per polymer,
N = NpN , with N ∈ {40, 100} for the KG model and N = 200 for the PE
model. In the case of the KG model, the simulation parameters were chosen
consistent with the simulations in Ch. 4, with the only difference being the
aforementioned degree of polymerization, i.e. the number of monomers per
chain, and the number of polymers in the corresponding simulation boxes.

For the simulations of PE on the other hand we chose a temperature of
T = 800K, which is rather high in order to have a higher chance of a non-
vanishing density in the gas phase, using a Langevin thermostat with a friction
coefficient of ξ = 1m

τ
with a mass scale ofm = 1u, where u denotes the atomic

mass unit. For the length scale we chose σ = 1Å and for the energy scale we
chose ε = 1kBT such that the derived unit of time is τ = σ

√
m/ε ≈ 38.77fs.

The timestep of the Velocity Verlet scheme used to integrate the equations of mo-
tion was set to ∆t = 0.003τ . In the case of the bulk systems, we hadNp = 1473
polymers for the KG model withN = 40,Np = 589 polymers for the one with
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N = 100, and Np = 400 polymers for the PE model. The simulations of thin
films consisted ofNp = 656,Np = 724, andNp = 400 polymers respectively.

While all simulations of the KG model were conducted in cubic boxes as
before, the simulations of the PE model used cubic boxes for the bulk simulation
and the simulation at infinite dilution and an elongated rectangular box for the
simulation of the film.

As was done previously, we first simulated the bulk polymer melt in the
NPT ensemble at zero pressure for the sake of equilibration, followed by a
NV T simulation to obtain the equilibrium properties in this ensemble.

The creation of the thin film proceeded analogously to the description in
Sec. 4.2.1, so we refer to this section for more detailed information.

Figure 5.1 illustrates the monomer densities ρ(z) and the polymer COM
densities ρp(z) for all systems. Furthermore, in both cases, the bulk density ρb

is given as a reference. We continue using the convention from Ch. 4, where a
subscript “b” stands for properties obtained from bulk simulations and subscript
“0” denotes those obtained at infinite solution.

As one can see in this picture, the density profiles of the reference simu-
lations of the KG model qualitatively match those from Ch. 4 with the same
excess regions of ρCG

p at the surface and the same monomer density in the cen-
ter of the films. Besides that, the monomer density obtained from the bulk
simulations matches the previous results as well, as is expected. The density
profiles for PE do not exhibit such distinct peaks, with the excess at the surface
less pronounced compared to the KG model. The bulk monomer density of
ρb = 0.0355 nm−3 corresponds to a specific mass of ρb =̂ 0.82745 g/cm3 which
is slightly below typical specific masses of 0.857 g/cm3 to 0.967 g/cm3,183 which
can be attributed to the high temperature of 800 K.

The density profiles of the coarse-grained systems however, differ signifi-
cantly from the reference and show an almost even distribution of CG beads in
the box. We will discuss the reason for this in more detail in Sec. 5.3.

5.1.2 Coarse-Graining Procedure

In this analysis, we did not change the coarse-graining procedure for the systems
interacting via a two-body interaction and a local density-dependent interaction
but omitted the coarse-graining procedure with interactions comprised of a
two-body potential and a three-body Stillinger-Weber potential, as we already
established how and why this approach fails in Sec. 4.3.2 and Sec. 4.3.4. Hence,
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Figure 5.1: Comparison of density profiles for (a) the KG model with N = 40,
(b) the KG model withN = 100 and (c) the polyethylene model withN = 200.
The legend in panel (a) is valid for panel (b) and panel (c) as well. In all panels,
the shaded regions correspond to the measurement uncertainty determined
from the standard error of the mean.
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the coarse-grained beads of the PE polymers were again located at the center of
mass, i.e. at

rcom =
1

M

N∑
i=1

miri (5.1.2.1)

whereM =
∑N

i=1 mi denotes the total mass of a polymer.

We parametrized the two-body interaction using force matching at infinite
dilution as before. More information on the general procedure for determining
the pair potential can be found in Sec.4.2.2. For the KG systems, we used a
total of 400 (/800) simulations at infinite dilution and chose the size of the box
such that the polymers were far enough away to not interact with their periodic
images.

For the local density-dependent potential, we continued using the relative
entropy minimization to parametrize the embedding functionG, which is still
represented using cardinal B-splines. The spacing of the splines was adapted
to the systems in such a way, that the local density distribution is covered by
the same number of nodes as in Ch. 4.

The definition of the local density was again chosen as before, see Eqs. (4.2.2.4)
and (4.2.2.5). The corresponding results are depicted and discussed in Sec. 5.2,
where we also compare the results with analytical considerations.

5.2 Analytical Expressions for Reference Properties

As the microscopically resolved reference simulations are very costly, it is de-
sirable to reduce the number of these simulations and obtain the properties
necessary for our procedure from analytical expressions. While the simulations
at infinite dilution are computationally not very intense, the simulations of thin
films and the bulk simulations are computationally expensive.

Nevertheless, as can be seen from Fig. 4.7(a), the probability density func-
tions of the local density that are extracted from the simulations of the inho-
mogeneous systems and needed for the relative entropy minimization strongly
depend on the system. Because the local density intrinsically incorporates
many-body contributions it is not possible to obtain or approximate these prob-
ability density functions without the knowledge of the n-particle distribution
functions of higher order. Obtaining these distribution functions, however,
would require atomistic simulations again, which defeats the purpose of the
current considerations. Nonetheless, as the highest values of the local density
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are obtained under bulk conditions, which are universal for all systems of the
same model provided the systems are large enough, all corresponding proba-
bility density functions of the local density show a peak at the same value; in
Fig. 4.7 this peak is located at aboutϕ = 15. By using the bulk radial distribution
function of the center of masses gb(r) one can determine the location of this
peak ϕpeak approximately by computing

ϕpeak = 〈ϕ〉b (5.2.0.1)

≈
∫ ∞

0

(4πρbgb(r)) r2ω(r)dr (5.2.0.2)

= 4πρb

∫ ∞
0

gb(r)r2ω(r)dr (5.2.0.3)

where ρb is the global density of polymers. The approximation used to arrive at
Eq. (5.2.0.3) assumes a low density, such that contributions from higher order
correlations can be neglected. The radial distribution function in the bulk can
easily be obtained from scaling considerations, so that the location of the local
density peak can be approximated quite easily.

The most expensive simulations are the bulk simulations which are con-
ducted to obtain the monomer densities around the centers of mass in particular.
This quantity can be obtained from fundamental considerations and has been
derived previously by Yamakawa,184 based on work by Debye and Bueche.185

They showed that the probability P (r) of finding a segment of an ideal chain
consisting of N segments with a bond length of b at a displacement r from the
center of mass is given by

P (r) =
1

N

N∑
i=1

(
3

2π 〈S2
i 〉

)3/2

exp

(
− 3 |r|2

2 〈S2
i 〉

)
(5.2.0.4)

where 〈
S2
i

〉
=

1

3
Nb2

[
1− 3i(N − i)

N2

]
. (5.2.0.5)

As discussed in Sec. 2.2.2.2, the segmentation of a chain into Kuhn segments
yields a polymer with the statistics of an ideal chain, in particular with regards
to the contour length and the radius of gyration. Hence, by inserting the Kuhn
length as bond length and the number of Kuhn segments in Eq. 5.2.0.4, this
expression is applicable also for non-ideal chains. In principle, one would have
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to determine the Kuhn length from simulations, in our application from bulk
simulations. However, the Kuhn length has often been studied previously and is
therefore a readily available property, in contrast to the n-particle distribution
functions of higher order needed for the probability distribution function of
the local density.
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Figure 5.2: Comparison of scaled monomer densities around center of mass
and resulting weight functions used in our coarse-graining procedure.

In Fig. 5.2 we compare the scaled distributions of monomers around the
polymer center of mass as well as the resulting weight functions for our coarse-
graining procedure. As can be seen, the curves coincide for r > 0.75Rg with
significant deviations for smaller values of r < 0.5Rg. We attribute this deviation
to poor statistics for small distances as well as excluded volume effects and
chain stiffness. In practice these discrepancies do not have a significant effect as
they are very local and can partly be accounted for in the embedding function
during the optimization routine.

Therefore, the expression in Eq. (5.2.0.4) can be calculated and scaled to
obtain an approximation for the monomer density around the center of mass
without conducting any bulk simulations, provided the Kuhn length is known.

5.3 Analysis of Transferability and Limitations of
Coarse-Grained Model

In Fig. 5.3 we provide a plot of the potentials resulting from the force matching
procedure at infinite dilution described in Secs. 4.2.2.1 and 5.1.2. The x-axis in
this plot is rescaled using the corresponding mean value of the radius of gyration
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in the bulk to make them comparable. Furthermore, the energy is given in terms
of the respective thermal energy. As one can see, the shapes of the potentials are
very similar, with the onset of the potentials at approximately the same distance
of about 1.7− 2Rg. The depth of the potential on the other hand differs in all
plots and does not follow an obvious rule. This is to be expected, as this value
depends on both the interaction strength ε and the potential cutoff rc as well
as the degree of polymerization N and the typical inter-molecular distances
between those monomers. The latter is not necessarily calculable, as the surface
of two polymers close-by is not negligible compared to the volume occupied by
them, such that one can not simply use the radial distribution function in the
bulk to calculate the potential depth as the mean inter-molecular energy of all
monomers of the polymers.
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Figure 5.3: Comparison of pair potentials obtained from force matching at
infinite dilution for different systems.

When using the vacuum potential obtained for the PE model in our coarse-
graining procedure, it turns out that the relative entropy minimization does not
give rise to an embedding function that reproduces the local density distribution
even after careful tuning. The procedure instead leads to a parametrization
that yields a local density distribution with very distinct peaks within the local
density region dictated by the reference local density distribution, as can be
seen in Fig. 5.4.

This observation indicates, that the coarse-grained system is dominated by
many small clusters with different numbers of associated CG beads. This con-
clusion is reinforced by the fact that the distance between the observed peaks
〈∆ϕ〉 = 0.32 is relatively close to the maximum value of the weight function
max(ω(r)) = 0.45 and the peaks are approximately located at multiples of this
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Figure 5.4: Comparison of the reference local density distribution of the
polyethylene model and the one obtained via the coarse-graining procedure.
The green line indicates the distance between the sharp peaks.

maximum value. While this is not exactly the case, 〈∆ϕ〉 is close to values of
the ω(r) for small r, so that the particles do not have to be located strictly at
the same position but rather in each other’s vicinity. Hence, we deduce that
these peaks correspond to isolated clusters consisting of a certain number of
CG beads, which is in fact confirmed by a visualization of some simulation
snapshots provided in Fig. 5.5, where multiple distinct clusters can be found.

Figure 5.5: Snapshot of coarse-grained polyethylene system. The beads are
not drawn to scale of their pair potential to make the clusters more visible.
To further increase the distinguishability the beads are colored by their index
despite representing identical chemical compositions.

We surmise that this failing of the coarse-graining procedure is due to the size
of the polymers which allows for more interpenetration of the polymers and con-
sequently to shorter distances of the centers of mass relative to the radius of gy-
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ration of the chains. This leads to an increase of the ratioR = ϕpeak/max(ω(r))
of the mean value of the local density under bulk conditions ϕpeak and the max-
imum value of the weight function ω. While this value is

RKG,20 ≈ 3.14 (5.3.0.1)
RKG,40 ≈ 5.03 (5.3.0.2)
RKG,100 ≈ 24.67 (5.3.0.3)

for the KG models with different degrees of polymerization it reads

RPE,200 =≈ 9.3 (5.3.0.4)

for the PE system. We assume, that for larger values of this ratio it is more
favorable for more particles to be close-by, which leads to local optima which
the relative entropy minimization is trapped in.

To test this hypothesis, we compared the local density distribution and the
density profiles of our coarse-grainined KG models consisting of different num-
bers of monomers per chain with their corresponding reference simulations.
While our coarse-grained models are capable of approximately reproducing
the local density distribution for both case, see Fig. 5.6, the density profiles in
Fig. 5.1 and a visual inspection reveal that the CG beads are more or less evenly
distributed in the box and do not form a stable thin film.

The fact that the CG models have the same distribution of the local density
as the reference but the resulting density profiles differ significantly from the
corresponding references implies, that there is no unique solution to the relative
entropy minimization in the above cases, which causes the parametrized model
to not form stable films.

Despite the lack of the distinct peaks seen in Fig. 5.4, we see this as a confir-
mation of our hypothesis and assume that the ratioR is an indicator for how
much the polymers interpenetrate. As stated before, this interpenetration leads
to a good matching of the local density distribution not implying a matching of
the density profiles, as with increasingR there are more and more local optima
to be expected.

This is supported by the density profiles in Fig. 5.1 where the CG bead density
ρCG

p for the KG model withN = 100 shows more variance than that withN = 40,
hinting at smaller local clusters, as well as by the snapshots provided in Fig. 5.7
where one can see more narrower clusters in the case ofN = 100 and broader
ones in the case ofN = 40.
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Figure 5.6: Comparison of the reference local density distribution of the KG
model for (a)N = 40 and (b) N = 100 with the corresponding results from the
coarse-graining procedure.
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Figure 5.7: Snapshot of coarse-grained KG systems withN = 40 (upper panel)
and N = 100 (lower panel) monomers per chain. The beads are not drawn
to scale of their pair potential to make the clusters more visible. To further
increase the distinguishability the beads are colored by their index despite
representing identical chemical compositions. The clusters formed forN = 40
are significantly broader than those for N = 100, where the CG beads are
overlapping significantly, similar to the case of the PE system.

133



Chapter 5. Limitiations of UCG Model

5.4 Conclusions and Outlook

In this chapter, we investigated the capability of generalization of our ultra-
coarse-grained model as well as its limitations. We found that when the poly-
mers in the reference system become too large and the corresponding coarse-
grained beads too soft as a consequence, our coarse-graining procedure does
not yield the correct structural properties of the reference system even when
approximately reproducing the target distribution of the local density.

We surmise that in this case the polymers can interpenetrate more, so that
our approach of using a two-body local density leads to local optima of the
relative entropy, where the system forms multiple small clusters. This is con-
firmed by our results for KG chains of lengthN = 40, where the local density
distribution is matched quite well by the CG model, but instead of forming very
distinct thin films the CG beads exhibit a non-vanishing density throughout
the box.

To mitigate this problem, one might introduce a three-body local density-
dependent potential - possibly additionally - in order to better resolve and
distinguish the local density of many small clusters compared to an almost ho-
mogeneous thin film. Furthermore, this would address the previously discussed
issues of the anisotropy of the polymers at the surfaces of the inhomogeneous
systems, indicated by the excess of polymer centers of mass there.

Despite the aforementioned limitations, it is worthwhile continuing to study
our coarse-graining procedure as it might be improved in order to be applicable
also to larger polymers. Furthermore it can be applied already to systems with
smaller molecules, as the correlation between agreement in the local density
distribution and the density profiles seems to increase for smaller systems. Also,
one has to bear in mind that by mapping whole chains into single beads one
loses a lot of information, which might not be retrievable with such a simple
parametrization as described in this thesis. Finally, we want to conclude by
stating that the approach of using local density-dependent properties might
be extended also to other use cases, e.g. to local density-dependent friction
coefficients.
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In this thesis we first gave a short introduction to statistical physics, polymer
physics, coarse-graining and machine learning followed by a presentation of
two contributions to the field of coarse-graining in soft matter research.

The first contribution consisted of forward and inverse design using ma-
chine learning methods, in particular neural networks. In the corresponding
work, we trained neural networks to learn mappings from pair potentials to
the resulting equation of state as well as from the radial distribution function
to the effective pair potential leading to it. The first task is interesting when
trying to approximately determine the behavior of a certain system at different
state points, allowing for rapid prototyping when searching for materials with
a desired equation of state. The neural networks solving the second task on
the other hand can be used for improving current coarse-graining techniques.
Most established coarse-graining techniques are iterative methods, i.e. they
consist of running multiple simulations, and depend on a good starting point to
minimize the number of said simulations required for convergence. Our neural
network can in principle be used to provide an accurate first approximation
of the effective pair potential, hence reducing the computation time of the
established methods applied afterwards.

In both tasks, we focused mostly on the representation of the input and
output of the neural network in order to gain insight about the information
conveyed by the respective representation. We found that by including our prior
knowledge about statistical physics, we were able to improve the performance
of our machine learning models significantly, particularly their capabilities for
generalization. This is especially important as every single data point used for
training stems from expensive molecular dynamics simulations, so that the
number of training examples was very limited which made data efficiency im-
perative. This small number of training examples is typically quite problematic
for machine learning methods, as they often rely on large amounts of data.

The second contribution is an ultra-coarse-graining procedure where whole
polymer chains are mapped into single beads. As a parametrization using pair
potentials exclusively is not sufficient for the coarse-grained system to form
stable films or droplets like the reference systems do, we tried supplementing
either a three-body Stillinger-Weber potential or a local density-dependent po-

135



Chapter 6. Conclusion and Outlook

tential. While the three-body potential does not lead to stable films or droplets,
the coarse-grained model using the local-density dependent potential is able to
do so. Furthermore, we find that applying this procedure to films with different
thicknesses or droplets with different radii results in the same parametrization.
This indicates that our coarse-graining procedure yields parametrizations that
are transferable across different systems consisting of the same polymers with
different sizes and shapes of the phases. We further investigated the gener-
alization capabilities of the coarse-graining procedure to different polymers
with different degrees of polymerization. As it turns out, there seems to be no
unique correspondence between the distribution of the local density, which was
optimized in our work, and the density profiles. This leads to coarse-grained
representations that reproduce the local density distribution but do not form
stable films for larger polymers, which we attribute to their increasing interpen-
etration. Finally, we pointed out some mitigation strategies to overcome this
issue as well as possible extensions of the local density-dependent approach to
other physical quantities.

In conclusion, both approaches presented here are pioneering works aimed
at making a contribution to statistical physics and coarse-graining. They are
both promising in their own regards and are but first steps to improved forward
and inverse design as well as more transferable coarse-graining techniques.
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CHAPTERA BoltzmaNN: Supple-
mentary Information

A.1 Filtering of data

In order to identify simulations that formed heterogeneous structures, the
simulation box was divided into 64 subboxes of equal size for every snapshot
of the simulation. Then the number density of particles was calculated for
each subbox, followed by a calculation of the standard deviation between these
subbox densities. Heterogeneous structures could then be identified by a large
ratio between the standard deviation and the average density ρ. In cases where
this analysis was inconclusive, we visually checked the simulation snapshots.

A.2 Virial Expansion

One typically used extension of the ideal gas law to real gases is the virial expan-
sion

βP = ρ+
∞∑
i=2

Bi(T )ρi (A.2.0.1)

with virial coefficients Bi(T ). For example, the analytical expressions for the
second and third virial coefficient of a homogeneous fluid are given by114

B2(T ) = −1

2

∫
V

f(r, T ) dr (A.2.0.2)

B3(T ) = −1

3

∫
V

∫
V

f(r, T )f(r′, T )f(|r− r′| , T ) drdr′ (A.2.0.3)

with the Mayer f-function

f(r, T ) = exp [−βU(r)]− 1. (A.2.0.4)

The second virial coefficientB2 depends only on the pair interaction between
the particles, whileB3 depends on two- and non-additive three-body interac-
tions. In principle, these coefficients can be derived from the grand canonical
partition function or from diagrammatic methods.114 In practice, however, it is
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rather challenging to determine these coefficients, especially when multi-body
interactions are involved. In the low-density limit ρ→ 0, the equation of state
is dominated by pairwise terms so that the sum in Eq. (A.2.0.1) can be truncated
at i = 2. In isotropic systems, one can solve the integral in Eq. (A.2.0.2) in polar
coordinates, yielding

B2(T ) ≈ −2π

∫ ∞
0

f(r, T )r2 dr. (A.2.0.5)

Thus for ρ→ 0, the EOS can be directly computed from the pair potential U(r)

βP ≈ ρ− 2πρ2

∫ ∞
0

f(r, T )r2 dr. (A.2.0.6)

To improve the prediction accuracy at higher densities, one can either con-
sider higher order virial coefficients B3, B4, etc. [see Eq. (A.2.0.1)], or introduce
an effective second virial coefficient, B∗2(T, ρ), which implicitly contains the
higher order terms in the form of an explicit density dependence

βP ≈ ρ+ ρ2B∗2(T, ρ). (A.2.0.7)

This term cannot be computed analytically anymore, but it can be readily ex-
tracted from computer simulations, e.g., by measuring the pressure P in sim-
ulations in the canonical ensemble at various temperatures T and densities
ρ.

A.3 Potential prediction from pair distribution
function

For a homogeneous and isotropic system, the low-density limit of the radial
pair distribution function g(r) is equal to the Boltzmann factor of the pair
potential114

g0(r) := lim
ρ→0

g(r) = exp [−βU(r)] . (A.3.0.1)

Thus, if g(r) is known, one can invert this relation to determine an expression
for the pair potential for ρ→ 0

U0(r) := −kBT ln [g(r)] . (A.3.0.2)

Note, that we replacedU(r) withU0(r) in Eq. (A.3.0.2), as the resulting potential
U0(r) is not necessarily the same as U(r) anymore when ρ� 0. This procedure
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for computing an approximate pair potential is often referred to as Boltzmann
inversion, and it can be refined using techniques like RMC91 or IBI,93 where the
interaction potential is iteratively optimized until it reproduces the target radial
pair distribution function g(r) with sufficient accuracy. In RMC, an adjustment
of the potential is accepted with a probability of

p = min
[
1, exp(−∆χ2

i /2)
]

(A.3.0.3)

where the measure for the agreement between target and calculated gi(r) of
the i-th iteration, χ2

i , is given by

χ2
i =

∑
[g(r)− gi(r)]2 /α2. (A.3.0.4)

The parameter α adjusts the sensitivity of χ2
i to deviations in the radial distribu-

tion functions. In IBI, an adjustment of the potential is done via

U i+1(r) = U i(r)− kBT ln

[
gi(r)

g(r)

]
(A.3.0.5)

As a starting point, one typically uses U0(r) from Eq. (A.3.0.2).
Figures A.1 and A.2 show the effective potentials U i(r) and corresponding

radial pair distribution functions gi(r) that we obtained after performing the
IBI procedure on the training and test systems presented in Fig. 3.10(b) and
Fig. 3.10(d) of the main manuscript, respectively. To expedite the iterative
optimization, we ran the simulations in a smaller box with L = 10σ (instead of
L = 40σ). We performed 200 iterations of 106 timesteps each (∆t = 0.001 τ ),
starting from either the prediction from our NN, Û(r), or the (effective) pair
potential in the low density limit, U0(r). The mean squared error between the
reference radial pair distribution function g(r) and the ones obtained from
either Û i(r) or U i

0(r) are shown in Fig. A.3 for the first 25 iterations.
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Figure A.1: (a) Comparison between the effective pair potentials for the system
shown in Fig. 3.10(b) of the main manuscript. The black solid line shows the
target potential U(r), while the red and blue solid lines correspond to the pre-
diction from our NN, Û(r), and the (effective) pair potential in the low density
limit, U0(r), respectively. The dashed lines show both potentials after 200 IBI
steps. (b) Corresponding radial pair distribution functions.
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Figure A.2: Same as Fig. A.1, but for the system shown in Fig. 3.10(d) of the main
manuscript.
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Figure A.3: Mean squared error between the reference radial pair distribution
function g(r) and either ĝi(r) (red line) or gi0(r) (blue line). Results shown for
the systems shown in (a) Fig. A.1 and (b) Fig. A.2.
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A.4 Schematics of network architectures

Figure A.4: Schematic representation of the final CN/f network for predicting
the (effective) pair potentials.
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A.4. Schematics of network architectures

Figure A.5: Schematic representation of the final UN/c network for predicting
the pressure.
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Figure B.1: Diagonal components of the gyration tensor as functions of z for a
film with thickness (a)H ≈ 4Rg,b, (b)H ≈ 6Rg,b, and (c)H ≈ 8Rg,b.
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Figure B.2: Force profiles along the z-axis as functions of z for a film with thick-
ness (a) H ≈ 4Rg,b, (b) H ≈ 6Rg,b, and (c) H ≈ 8Rg,b. Residual force pa-
rameterization with pair potential U2b

b at η = σ and different cutoffs rSW
c , as

indicated. In all panels, the shaded regions correspond to the measurement
uncertainty determined from the standard error of the mean.
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Figure B.3: Force profiles along the z-axis as functions of z for a film with thick-
ness (a)H = 4Rg,b, (b)H ≈ 6Rg,b, and (c)H ≈ 8Rg,b. Residual force parame-
terization with pair potential U2b

b at rSW
c = 10.0σ and η = σ. In all panels, the

shaded regions correspond to the measurement uncertainty determined from
the standard error of the mean.
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Figure B.4: Force profiles along the z-axis as functions of z for a film with thick-
ness (a)H = 4Rg,b, (b)H ≈ 6Rg,b, and (c)H ≈ 8Rg,b. Residual force parame-
terization with pair potential U2b

0 at rSW
c = 10.0σ and different parameters η,

as indicated. In all panels, the shaded regions correspond to the measurement
uncertainty determined from the standard error of the mean.
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Figure B.5: Force profiles along the z-axis as functions of z for a film with thick-
ness (a) H = 4Rg,b, (b) H ≈ 6Rg,b, and (c) H ≈ 8Rg,b. Residual force pa-
rameterization with pair potential U2b

0 at η = σ and different cutoffs rSW
c , as

indicated.
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Figure B.6: Force profiles along the z-axis as functions of z for a film with thick-
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terization with pair potential U2b

0 at rSW
c = 10.0σ and η = σ. In all panels, the

shaded regions correspond to the measurement uncertainty determined from
the standard error of the mean.
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Figure B.7: Radial force profiles along the radial direction r for a droplet with
radiusR = 6Rg,b. Residual force parameterization with pair potential U2b

0 . (a)
CG Forces at rSW

c = 10.0σ and different parameters η, as indicated. (b) CG
Forces at η = σ and different cutoffs rSW

c , as indicated. (c) Two- and three-body
contribution of total CG force at rSW
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shaded regions correspond to the measurement uncertainty determined from
the standard error of the mean.
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results were taken from simulations using U2b
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Figure B.12: Density profiles along the z-axis as functions of z for a film with
thickness (a) H ≈ 4Rg,b, (b) H ≈ 6Rg,b, and (c) H ≈ 8Rg,b. CG results were
taken from simulations using U2b

0 and ULDP
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correspond to the measurement uncertainty determined from the standard
error of the mean.
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Figure B.13: Radial density profiles as functions of r for a droplet with radius
(a) R ≈ 4Rg,b, (b) R ≈ 6Rg,b, and (c) R ≈ 8Rg,b. CG results were taken from
simulations using U2b

0 and ULDP
0 . In all panels, the shaded regions correspond

to the measurement uncertainty determined from the standard error of the
mean.
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Figure B.14: Force profiles along the z-axis as functions of z for a film with
thickness (a) H ≈ 4Rg,b, (b) H ≈ 6Rg,b, and (c) H ≈ 8Rg,b. CG results were
taken from simulations using U2b
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correspond to the measurement uncertainty determined from the standard
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Figure B.15: Radial force profiles as functions of r for a droplet with radius (a)
R ≈ 4Rg,b, (b) R ≈ 6Rg,b and (c) R ≈ 8Rg,b. CG results were taken from
simulations using U2b
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CHAPTERC Glossary

Glossary for Chap. 2

Symbol Meaning First occurrence

Section 2.1
C Microscopic configuration Sec. 2.1
p Vector containing all the particles’ positions Sec. 2.1
q Vector containing all the particles’ momenta Sec. 2.1
T Temperature Sec. 2.1
E Energy Sec. 2.1
S Entropy Sec. 2.1
P Pressure Sec. 2.1
V Volume Sec. 2.1
µ Chemical potential Sec. 2.1
N Number of particles Sec. 2.1
H(·) Hamiltonian function Sec. 2.1.1
P(·) Probability function Eq. (2.1.1.4)
β Thermodynamic beta Eq. (2.1.1.4)
kB Boltzmann constant Sec. 2.1.1
Z(·) Partition function Eq. (2.1.1.6)
〈A〉 Ensemble average of observableA Eq. (2.1.1.8)
KN (·) Kinetic energy Sec. 2.1.1
VN (·) Interatomic potential energy Sec. 2.1.1
ΦN (·) External potential Sec. 2.1.1
ZN (·) Configurational integral Eq. (2.1.1.12)
r Set of positions Sec. 2.1.2

ρ
(n)
N (·) n-particle density Eq. (2.1.2.1)
δ(·) Dirac delta distribution Eq. (2.1.2.1)
gnN (·) n-particle distribution function Eq. (2.1.2.6)
ρ Global density Sec. 2.1.2
d Displacement vector Sec. 2.1.2
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g(·) Radial distribution function Eq. (2.1.2.12)
U(·) Pair interaction Sec. 2.1.2
S(·) Structure factor Sec. 2.1.2
k Scattering vector Sec. 2.1.2
Bi i-th virial coefficient Sec. 2.1.3
f(·) Mayer-f-function Eq. (2.1.3.3)
A Time average of observableA Eq. (2.1.4.1)
t Time Eq. (2.1.4.1)

Section 2.2
M Molecuar weight Eq. (2.2.0.1)
T Set of monomer types Eq. (2.2.0.1)
mα Mass of monomers of type α Eq. (2.2.0.1)
Nα Number of monomers of type α Eq. (2.2.0.1)
b Bond vector Sec. 2.2
b Bond length Sec. 2.2
P Persistence length Sec. 2.2

R(·) Polymer contour Sec. 2.2
L Polymer length Sec. 2.2
k Spring constant Eq. (2.2.1.1)
rij Distance between particles i and j Eq. (2.2.1.1)
r0 Maximum bond extension Eq. (2.2.1.1)
ε Interaction strength Eq. (2.2.1.2)
σ Size parameter Eq. (2.2.1.2)
Ree End-to-end distance Sec. 2.2.2.1
N Number of monomers in a polymer Sec. 2.2.2.1
R Polymer configuration Sec. 2.2.2.1
ri Position of monomer i Sec. 2.2.2.1
R Set of all polymer configurations Eq. (2.2.2.3)
· Standard scalar product Sec. 2.2.2.1
δij Kronecker delta of i and j Eq. (2.2.2.8)
Θij Angle between bond vectors bi and bj Eq. (2.2.2.14)
bk Kuhn length Sec. 2.2.2.1
C ′i Flory coefficient Eq. (2.2.2.47)
CN Flory’s characteristic ratio for chain of lengthN Eq. (2.2.2.47)
Nk Number of Kuhn segments Sec. 2.2.2.2
Rmax Maximum end-to-end distance Sec. 2.2.2.2
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R2
g Squared radius of gyration Sec. 2.2.2.3

Rcom Center of mass position Eq. (2.2.2.80)
G Gyration tensor Eq. (2.2.2.84)
⊗ Dyadic product Eq. (2.2.2.84)

∆di Displacement of monomer i from polymer COM Eq. (2.2.2.84)
U(·) Pair potential between monomers Sec. 2.2.3.1
r Distance vector between monomers Sec. 2.2.3.1
f(·) Mayer-f-function Eq. (2.2.3.1)
v Excluded volume Eq. (2.2.3.2)
dBH Barker-Henderson diameter Eq. (2.2.3.6)
σ0 Distance at which the pair potential vanishes Eq. (2.2.3.6)
R Square root of the mean squared end-to-end distance Eq. (2.2.3.7)
ν Scaling exponent of size of chains with (N − 1) Eq. (2.2.3.10)
nT Number of monomers contained in a thermal blob Eq. (2.2.3.17)
ξT Size of a thermal blob Eq. (2.2.3.18)

Section 2.3
PB(·) Canonical probability distribution of configurations Sec. 2.3.1
PS(·) Sampled probability distribution of configurations Sec. 2.3.1
C ∼ PS Configurations C are sampled according to PS Eq. (2.3.1.4)

P Phase space Eq. (2.3.1.5)
Si State i Sec. 2.3.1
ω Transition matrix Eq. (2.3.1.8)

Acc(·, ·) Metropolis acceptance ratio Eq. (2.3.1.10)
F Force Sec. 2.3.2
a Acceleration Sec. 2.3.2

∆t Timestep Sec. 2.3.2.1
J2n×2n (2n× 2n)-dimensional symplectic unit matrix Eq. (2.3.2.2)
∇2N 2N -dimensional gradient Eq. (2.3.2.9)
ηi(t) Uniform random force acting on particle i Sec. 2.3.2.2
Ffrict
i Friction force acting on particle i Sec. 2.3.2.2
γ Friction coefficient Sec. 2.3.2.2

M(·) Memory kernel Sec. 2.3.2.2
Lα Size of simulation box in direction α ∈ {x, y, z} Sec. 2.3.3
Ii Periodic image indices of particle i Sec. 2.3.3
ri Absolute position of particle i Fig. 2.4
ri Relative position inside the box of particle i Fig. 2.4
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dij Minimal distance between particles i and j Fig. 2.4
Unb(·) n-body potential energy function Sec. 2.3.4
Gnb(·) n-body embedding function Sec. 2.3.4
ωnb(·) n-body weight function Sec. 2.3.4

Unb−LDP(·) n-body LDP function Eq. (2.3.4.4)
ϕnb(·) n-body local density Eq. (2.3.4.4)
σ Unit of length Sec. 2.3.5
ε Unit of energy/interaction strength Sec. 2.3.5
m Unit of mass Sec. 2.3.5

Section 2.4
gj(r) Radial distribution function in j-th iteration Sec. 2.4.1
gref(r) Reference radial distribution function Sec. 2.4.1
U j(·) Potential energy function in j-th iteration Eq. (2.4.1.1)
α Scaling factor in update rule Eq. (2.4.1.1)
nCG Number of coarse-grained beads Sec. 2.4.2
R CG configuration Sec. 2.4.2

VCG(·) Coarse-grained interaction function Sec. 2.4.2
r Atomistic reference configuration Sec. 2.4.2
n Number of atomistic particles Sec. 2.4.2

M(·) Mapping function from atomistic to CG configurations Sec. 2.4.2
FCG Coarse-grained forces Sec. 2.4.2
χ2 MS-CG residual Eq. (2.4.2.3)
Q(·) Prob. distribution of CG config. Sec. 2.4.3
Q′(·) Prob. distribution of atom. config. with CG Hamiltonian Sec. 2.4.3
Ω(·) Degeneracy of CG config. Eq. (2.4.3.1)
P(·) Probability distribution of atomistic config. Sec. 2.4.3
Srel(·) Relative entropy Eq. (2.4.3.3)
A Helmholtz free energy Eq. (2.4.3.6)
λji i-th parameter of the potential in the j-th iteration Sec. 2.4.3

Section 2.5
E Experience Sec. 2.5.1
T Task Sec. 2.5.1
P Performance measure Sec. 2.5.1
Ω Mapping function Sec. 2.5.1.1
X Input (/target) properties Sec. 2.5.1.1
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Y Target properties Sec. 2.5.1.1
N Number of examples Sec. 2.5.1.1
Θ Parametrization of ML model Sec. 2.5.1.1
M Performance metric Sec. 2.5.1.1
S State Sec. 2.5.1.1
a Action Sec. 2.5.1.1
〈G〉Θ Expected discounted return of policy Θ Sec. 2.5.1.1
R(·) Reward function Sec. 2.5.1.1
r Reward Sec. 2.5.1.1
SΘ Set of states observed under policy Θ Eq. (2.5.1.4)
γ Discount factor Eq. (2.5.1.4)
z(·) Activation of a neuron Sec. 2.5.2.1
ω Weight vector/matrix Eq. (2.5.2.1)
a(·) Nonlinear activation function Eq. (2.5.2.1)
b Bias Eq. (2.5.2.1)

z(·) Activation of a layer of neurons Sec. 2.5.2.1
b Bias vector Sec. 2.5.2.1

O(·) Output of a neural network Sec. 2.5.2.1
k Kernel size Eq. (2.5.2.17)
K Convolutional kernel with learnable weights Eq. (2.5.2.17)
? Cross-correlation Eq. (2.5.2.18)
∗ Convolution Eq. (2.5.2.21)
L(·) Loss function Sec. 2.5.2.3
α Learning rate Eq. (2.5.2.22)

L1(·) L1-regularization function Eq. (2.5.3.1)
L2(·) L2-regularization function Eq. (2.5.3.2)

Glossary for Chap. 3

Symbol Meaning First occurrence

Section 3.1
U(·) Pair potential Sec. 3.1
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g(·) Radial pair distribution function Sec. 3.1

Section 3.2
β Thermodynamic beta Sec. 3.2
kB Boltzmann constant Sec. 3.2
T Temperature Sec. 3.2
y Target Sec. 3.2
ŷ Prediction Sec. 3.2
l(·) Basic loss function Eq. (3.2.1.1)
L(·) Loss of entire output vector Eq. (3.2.1.4)
d Dimensionality of target and prediction vector Eq. (3.2.1.4)
〈·〉 Average over multiple output vectors Sec. 3.2
α Weight factor Eq. (3.2.1.5)
L∆ Discretized Laplace loss Eq. (3.2.1.5)
Lk k-distance correlation loss Eq. (3.2.1.5)
P (Target) Pressure Sec. 3.2.2
σ Reduced unit of length Sec. 3.2.2
ε Reduced unit of energy Sec. 3.2.2
m Reduced unit of mass Sec. 3.2.2
τ Reduced unit of time Sec. 3.2.2
rcut Cutoff radius Sec. 3.2.2
n Number of base points of spline functions Sec. 3.2.2
F (·) Pair force function Sec. 3.2.2
∆t Timestep Sec. 3.2.2
ρ Particle number density Sec. 3.2.2
N Number of particles Sec. 3.2.2
B∗2 Effective second virial coefficient Sec. 3.3.1
Bn Set of virial coefficients up to order n Sec. 3.3.1
Bi i-th virial coefficient Sec. 3.3.1
Ū(·) Clipped pair potential Sec. 3.3.1
Ucut(·) Cutoff value for pair potential Sec. 3.3.1
P0 Pressure estimate using second virial coefficient Sec. 3.3.1
f Mayer-f-function Sec. 3.3.1
P̂ Predicted pressure Sec. 3.3.1
R2 Coefficient of determination Sec. 3.3.1
U0(·) Low density approximation of pair potential Eq. (3.3.2.1)
Û(·) Predicted pair potential Eq. (3.3.2.1)
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ĝ(·) Radial distribution function resulting from prediction Sec. 3.3.2
p(·) Probability density function of losses Sec. 3.3.2
δ Width of distribution Sec. 3.3.2

g0(·) Radial distribution function resulting from U0(·) Sec. 3.3.2

Section 3.3.3
ULJ(·) Lennard-Jones potential Sec. 3.3.3
εLJ Lennard-Jones interaction strength Sec. 3.3.3
σLJ Lennard-Jones size parameter Sec. 3.3.3
Np Number of polymers Sec. 3.3.3
N Degree of polymerization Sec. 3.3.3
k FENE bond strength Sec. 3.3.3
r0 Maximum bond extension Sec. 3.3.3
ĝi(r) Radial distribution function in i-th iteration of IBI Sec. 3.3.3

Glossary for Chap. 4

Symbol Meaning First occurrence

Section 4.2
Np Number of polymers Sec. 4.2.1
N Degree of polymerization Sec. 4.2.1

ULJ(·) Lennard-Jones potential Eq. (4.2.1.1)
rij Distance between monomers i and j Eq. (4.2.1.1)
ε Lennard-Jones interaction strength Eq. (4.2.1.1)
kB Boltzmann constant Sec. 4.2.1
T Temperature Sec. 4.2.1
σ Lennard-Jones size parameter Eq. (4.2.1.1)
rc Cutoff radius Eq. (4.2.1.1)

UFENE(·) FENE potential Eq. (4.2.1.2)
k FENE bond strength Eq. (4.2.1.2)
r0 Maximum bond extension Eq. (4.2.1.1)
N Number of particles Sec. 4.2.1
ξ Langevin friction coefficient Sec. 4.2.1
m Monomer mass Sec. 4.2.1
τ Unit of time Sec. 4.2.1

∆t Timestep Sec. 4.2.1
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L Size of simulation box Sec. 4.2.1
P Pressure Sec. 4.2.1
ρb Average monomer number density in bulk Sec. 4.2.1
G Average radius of gyration tensor Eq. (4.2.1.3)

∆ri Vector from polymer center of mass to monomer i Eq. (4.2.1.3)
⊗ Dyadic product Eq. (4.2.1.3)
Rg Radius of gyration Sec. 4.2.1
H Thickness of film Sec. 4.2.1
R Radius of droplet Sec. 4.2.1
ρ(·) Monomer number density profile Sec. 4.2.1
Tc Critical temperature Sec. 4.2.1
ρp(·) Number density profile of polymer centers of mass Sec. 4.2.1
γ Surface tension Sec. 4.2.1
U2b

b Two-body CG interactions from bulk Sec. 4.2.2.1
U2b

0 Two-body CG interactions from infinite dilution Sec. 4.2.2.1
r2b

c Cutoff radius of two-body CG interactions Sec. 4.2.2.1
f 2b(·) Two-body CG force Sec. 4.2.2.1
∆r2b Grid spacing of CG forces Sec. 4.2.2.1
K Number of coefficients of CG forces Sec. 4.2.2.1
λi i-th spline coefficient Sec. 4.2.2.1
Ns Number of snapshots Sec. 4.2.2.1

∆r2b
tab Grid spacing of tabulated interactions Sec. 4.2.2.1

f sm(·) Smoothing function Sec. 4.2.2.1
rsm Smoothing distance Sec. 4.2.2.1

USW(·) Three-body Stillinger-Weber potential Eq. (4.2.2.2)
rIJ Distance between CG beads I and J Eq. (4.2.2.2)

fSW(·) Angular interaction term Eq. (4.2.2.2)
θIJK Angle between CG beads I , J andK Eq. (4.2.2.2)
η Control parameter for steepness of potential Eq. (4.2.2.2)
rSW

c Stillinger-Weber cutoff radius Eq. (4.2.2.2)
∆f Residual forces of the MR simulations Eq. (4.2.2.2)

f2b(·) Pairwise CG force Sec. 4.2.2.2
fMR(·) Pairwise MR force Sec. 4.2.2.2
USW

∆b (·) Three-body CG interaction from bulk Sec. 4.2.2.2
USW

∆0 (·) Three-body CG interaction from infinite dilution Sec. 4.2.2.2
ω(·) Radial weight function of LDP Sec. 4.2.2.3

ρcloud(·) Monomer cloud density around polymer COM Sec. 4.2.2.3
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δ(·) Dirac delta distribution Eq. (4.2.2.4)
rcom Polymer COM position Eq. (4.2.2.4)
ULDP
I Potential energy of CG particle I due to LDP Eq. (4.2.2.6)
G(·) Embedding function Eq. (4.2.2.6)
ϕ Local density of (fictitious) monomer pairs Eq. (4.2.2.6)
λi i-th node of cardinal B-spline function Sec. 4.2.2.3

∆ϕ Grid spacing of cardinal B-spline function Sec. 4.2.2.3
Srel Relative entropy Eq. (4.2.2.8)
〈·〉CG (·) Ensemble average in CG system Eq. (4.2.2.8)
〈·〉MR (·) Ensemble average in MR system Eq. (4.2.2.8)
UCG(·) CG potential function Eq. (4.2.2.8)
UMR(·) CG potential function Eq. (4.2.2.8)
ACG(·) CG Helmholtz free energy Eq. (4.2.2.8)
AMR(·) CG Helmholtz free energy Eq. (4.2.2.8)
Smap Relative entropy contribution from mapping Eq. (4.2.2.8)
α Scaling factor in update rule Sec. 4.2.2.3

∆λji Change of i-th parameter in j-th iteration Sec. 4.2.2.3

Section 4.3
σp Characteristic length scale of interaction Sec. 4.3.3
P (·) Probability density function of local density Sec. 4.3.3

ULDP,2b(·) Additive pair potential from linear regime of LDP Sec. 4.3.3
ρCG

p (·) Number density profile of CG beads Fig. 4.9

Glossary for Chap. 5

Symbol Meaning First occurrence

Section 5.1
N Degree of polymerization Sec. 5.1.1
S(·) Smoothing function Sec. 5.1.1
ULJ(·) Lennard-Jones potential Eq. (5.1.1.1)
rij Distance between particles i and j Eq. (5.1.1.1)
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ti Type of particle i Eq. (5.1.1.1)
εαβ LJ interaction strength between types α and β Eq. (5.1.1.1)
σαβ LJ size parameter between types α and β Eq. (5.1.1.1)
rc Cutoff radius Eq. (5.1.1.1)
ron Onset radius of smoothing Eq. (5.1.1.2)
kB Boltzmann constant Tab. 5.1
m Mass/mass scale Tab. 5.1
u Atomic mass unit Tab. 5.1

Ubond(·) Harmonic bond potential Eq. (5.1.1.5)
k Spring constant Eq. (5.1.1.5)
r0 Bond rest length Eq. (5.1.1.5)
T Temperature Sec. 5.1.1

Uang(·) Harmonic angle potential Eq. (5.1.1.6)
θijk Angle between neighboring particles i, j and k Eq. (5.1.1.6)
ka Angle potential strength Eq. (5.1.1.6)
θ0 Rest angle Eq. (5.1.1.6)

Udih(·) Dihedral OPLS potential Eq. (5.1.1.7)
φijkl Dihedral angle of neighboring particles i, j, k and l Eq. (5.1.1.7)

C1, C2, C3 OPLS coefficients Eq. (5.1.1.7)
N Number of particles Sec. 5.1.1
Np Number of polymers Sec. 5.1.1
ξ Langevin friction coefficient Sec. 5.1.1
σ Length scale Sec. 5.1.1
ε Energy scale Sec. 5.1.1
τ Time scale Sec. 5.1.1

∆t Timestep Sec. 5.1.1
P Pressure Sec. 5.1.1
ρ(·) Monomer number density profile Sec. 5.1.1
ρp(·) Number density profile of polymer centers of mass Sec. 5.1.1
ρb(·) Monomer number density in bulk Sec. 5.1.1
rcom Center of mass position Eq. (5.1.2.1)
M Total polymer mass Eq. (5.1.2.1)
mi Mass of monomer i Eq. (5.1.2.1)
ri Position of monomer i Eq. (5.1.2.1)
G(·) Embedding function Sec. 5.1.2
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Section 5.2
ϕ Local density of (fictitious) monomer pairs Sec. 5.2

gb(·) Radial distribution function in bulk Sec. 5.2
〈·〉b Ensemble average in bulk Sec. 5.2
ω(·) Radial weight function of LDP Eq. (5.2.0.2)
P (·) Probability of segment displacement from COM Sec. 5.2
r Segment displacement from COM Sec. 5.2
b Bond length Sec. 5.2

ρcloud(·) Monomer cloud density around polymer COM Fig. 5.2

Section 5.3
〈∆ϕ〉 Spacing of observed peaks of local density distribution Sec. 5.3
R Ratio of peak spacing and maximum of weight function Sec. 5.3
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CHAPTERD Revisions and Improve-
ments

After receiving feedback and evaluation on the initial submission of this disserta-
tion, the following revisions have been made to further enhance the theoretical
discussions in this work:

• The general description of polymers in Sec. 2.2 has been refined to clarify
the distinction between chemical monomers and monomers of polymer
models.

• The discussion of Flory’s characteristic ratio in Sec. 2.2.2.1 has been ex-
panded to cover the general case for ideal models, and an example for the
freely jointed chain has been included.

• The description of the theta temperature at the end of Sec. 2.2.2.1 has
been omitted.

• The treatment of the Kuhn segmentation in Sec. 2.2.2.2 has been gen-
eralized to apply to all ideal polymer models, and an example has been
provided for the freely jointed chain.

• Section 2.2.3 has been newly added, encompassing a detailed description
of the scaling behavior of polymer chains, the concept of excluded volume,
and an explanation of the theta temperature.

• The requirements for trial moves in Monte Carlo Simulations in Sec. 2.3.1
have been stated with greater precision.

• The wording of the statement about Hamilton’s equations in Sec. 2.3.2.1
below Eq. (2.3.2.9) has been rephrased for improved clarity.

• The table of contents, the glossary and the bibliography have been ex-
panded in accordance to the added section mentioned above.

Additionally, minor editorial changes have been applied to enhance the overall
readability and cohesiveness of the dissertation.
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