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Abstract
At present, various blood-based biomarkers have found their applications in the field of sports medicine. This current 
opinion addresses biomarkers that warrant consideration in future research for monitoring the athlete training load. In this 
regard, we identified a variety of emerging load-sensitive biomarkers, e.g., cytokines (such as IL-6), chaperones (such as 
heat shock proteins) or enzymes (such as myeloperoxidase) that could improve future athlete load monitoring as they have 
shown meaningful increases in acute and chronic exercise settings. In some cases, they have even been linked to training 
status or performance characteristics. However, many of these markers have not been extensively studied and the cost and 
effort of measuring these parameters are still high, making them inconvenient for practitioners so far. We therefore outline 
strategies to improve knowledge of acute and chronic biomarker responses, including ideas for standardized study settings. 
In addition, we emphasize the need for methodological advances such as the development of minimally invasive point-of-
care devices as well as statistical aspects related to the evaluation of these monitoring tools to make biomarkers suitable for 
regular load monitoring.

Key Points 

A variety of novel blood-based biomarkers such as 
cytokines, chaperones, enzymes and other inflammatory 
signaling molecules are sensitive to acute and chronic 
exercise load and potentially useful for the monitoring of 
athlete training load.

Omics, RNA and DNA approaches as well as genetic 
testing could further improve athlete workload manage-
ment.

Longitudinal study designs will shed light on acute and 
chronic training load responses to assess the suitability 
of emerging biomarkers for regular load monitoring. 
Methodological advances such as the development of 
point-of-care devices, as well as overcoming statistical 
challenges, are critical for the further progress of load 
monitoring with biomarkers.
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1 Introduction

Biomarkers (i.e., “indicators of normal biological pro-
cesses, pathogenic processes, or responses to an exposure” 
[1]) have seen an upsurge in so-called personalized medi-
cine, that is, procedures individually tailored to patients. 
They have great potential to be an objective complement 
to other screening methods in the diagnosis and prognosis 
of diseases, therapeutic decisions, as well as in the assess-
ment of therapeutic success. For instance, concentrations 
of biomarkers have been shown to predict mortality or 
diagnose disease severity in certain conditions [2, 3]. 
Recent developments are moving from single biomarker 
measurement to multiple marker approaches to determine 
a whole range of biological measures. Artificial intelli-
gence (AI) could be utilized to help analyze this data and 
assist physicians to make informed decisions about treat-
ment options [4].

Transferring this perspective to the field of elite sports, 
‘treatment options’ could be interpreted as the prescrip-
tion of personalized training load and recovery. Blood-
based biomarkers, which in principle are able to objec-
tively reflect training load, fatigue, and recovery needs, are 
already being applied by practitioners to facilitate decision 
making and to ensure an individualized load management 
(i.e., prescription, monitoring, and adjustment of work-
load [5]) aimed at optimizing performance and avoiding 
injury [6, 7]. However, established biomarkers such as 
creatine kinase (CK) or lactate, while sensitive to train-
ing load and both convenient and quick to measure with 
point-of-care (POC) devices, primarily capture a specific 
physiological domain when measured solely in the absence 
of other markers. This means that practitioners in profes-
sional sports settings need to capture multiple markers to 
holistically assess the training response and consequently 
manage athlete workloads. High chronic training loads, 
body composition, as well as delayed peaks in concentra-
tions may further lead to misinterpretations [8–10]. In the 
search for other reliable alternatives, a variety of novel 
biomarkers (e.g., CD163, heat shock proteins [HSP], cell-
free DNA [cfDNA], blood cell ratios) have shown marked 
increases after standardized exercise settings [11–14], pro-
viding potential added value for load management.

To date, the cost and effort of measuring innovative 
parameters, such as cfDNA, HSP or cytokines, on a reg-
ular basis are still high, making them inconvenient for 
monitoring purposes. Due to evolving technology, these 
biomarkers may soon become relevant to sports medi-
cine practitioners through POC devices. Many studies in 
this area also aim to determine a generalizable resilience 
or trainability profile of an athlete that may be relevant 
throughout their career, e.g., genetic markers for ligament 

injury [15]. Underlying all of these approaches in sports 
is a similar rationale to the clinical setting, which is the 
assessment of biomarkers to individualize treatment.

This current opinion article discusses innovative and 
load-sensitive biomarkers followed by advances in biotech-
nology, such as omics approaches, that enable the assess-
ment of a variety of biomarkers and biosignatures. The sec-
tion on practical applications focuses on methodological and 
statistical considerations, and ideas for future study designs 
to establish emerging biomarkers for load management in 
sports science.

2  Evidence and Usefulness of Emerging 
Biomarkers for Workload Management

Many researchers have increased their efforts to identify new 
robust surrogate biomarkers to help in the management of 
training load [16, 17]. The goal is to identify biomarkers that 
represent appropriate and reliable responses to training load, 
reflect recovery cycles and regeneration processes, and thus 
are expected to make an important contribution to the field 
of load management in professional sports settings.

A frequently used starting point in recent years has been 
the immune system. Physical activity induces a systemic 
immune response manifested by leukocytosis, a shift in the 
proportion of leukocyte subpopulations, and the release of 
numerous pro- and anti-inflammatory cytokines [18]. Some 
of these molecules have a close relationship to metabolic 
changes during exercise or belong to the class of myokines, 
which act at the immunological level in addition to meta-
bolic signaling pathways [19]. These immunological mark-
ers are very sensitive to acute exercise, depending, among 
other factors, on the duration and intensity of the load, with 
partial regulation also observed depending on the type of 
exercise [20, 21]. Some of these markers are classified as 
chemokines, such as chemokine-ligands, while others are 
classified as enzymes, such as myeloperoxidase [22]. The 
potential use of these proteins as biomarkers in exercise set-
tings would also be of interest, as immunological markers 
indicate differential disturbances in physiological homoeo-
stasis or tissue integrity. For example, some markers are 
regulated depending on the level of muscle damage, while 
others have dependencies on, for example, neuroimmunolog-
ical processes, energetic deficit, or heat production [21, 22].

We understand that blood reflects only a small fraction of 
immunological processes, but these are quite well studied. 
Accordingly, immunological markers can provide an estima-
tion of the internal load at different physiological levels and 
indicate regeneration processes. Markers of oxidative stress 
show a close connection to the immune response. Physi-
cal activity induces an increased level of reactive oxygen 
species (ROS). Accordingly, more products of oxidative 
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stress are released, which can also be detected directly or 
indirectly in the blood [23]. Here, some markers are cur-
rently in focus that reflect the level of oxidative stress in 
the context of athletic exertion and the subsequent recovery 
cycles. Markers of the stress proteome, such as HSP, have a 
relationship to both immune changes and oxidative stress. 
For example, blood levels of HSP70/72 and HSP90 respond 
very sensitively to physiological stressors, such as endurance 
exercise, and are also quickly regulated back after the end of 
the exercise. Interestingly, HSP70 increases were shown to 
depend on intensity and duration with evidence of changes 
in resting concentrations after intensified training periods 
[14]. In line with these findings, recent studies have dem-
onstrated the importance of  Ca2+-binding proteins of the 
S100 group as possibly useful biomarkers in sports. S100 
proteins represent a class of calcium-binding proteins that 
are sensitively released depending on the exercise load [24], 
showing increases after long-lasting endurance exercise with 
S100 Calcium Binding Protein B increasing mainly after 
running but not cycling exercise [25, 26]. In addition, Irisin 
is released in response to exercise as a result of proteolytic 
cleavage of FNDC5 protein present in the membrane of 
myocytes. The exact physiological mechanism of release is 
not yet completely understood [27], however, chronic train-
ing may lead to decreased levels of circulating irisin [28]. 
Another important category represents the field of adenosine 
triphosphate (ATP) metabolism catabolites, such as ammo-
nia, hypoxanthine, or xanthine. In this respect, the combined 
measurement of lactate, ammonium, and hypoxanthine was 
shown to indirectly reflect changes in energy status dur-
ing exercise [29]. In addition, hypoxanthine is discussed as 
being a promising marker for training status and a predictor 
of sport performance in athletes [30].

Of note, there are many other metabolites being discussed 
as suitable biomarkers in sports. The significant strain on 
the metabolism during exercise induces significant blood 
concentration changes after exercise in the composition of 
the plasma metabolome. For example, lipids and lipid-like 
substances are mobilized into the blood during long-last-
ing endurance exercise [31]. Metabolites can also provide 
information about the training status, as the metabolome of 
trained athletes changes according to the training adapta-
tion at the metabolic level. Accordingly, some metabolites 
associated with cardiopulmonary fitness have already been 
identified, such as several acyl-alkyl-phosphatidylcholine 
species [32], while others are more prevalent in strength 
athletes, such as phosphatidylcholines [33]. Table 1 outlines 
relevant exercise response biomarkers that could potentially 
help practitioners monitor and manage athlete loads in the 
future.

These markers were selected as they exhibit clear regula-
tion from homeostasis by acute exercise and/or regular train-
ing, as well as a re-regulation to baseline during recovery. 

Initial conclusions about their usefulness are thus already 
possible, as temporal changes in the course of acute load-
recovery cycles and also short-term cumulative training 
cycles have been shown (e.g., [11, 12, 20]). In the long term, 
the extent to which such markers reflect adaptive processes, 
for example by being associated with changes in cardiopul-
monary fitness, is of particular interest [81]. Furthermore, 
for some markers, it is not understood to what extent these 
markers are differentially regulated during different types of 
exercise, such as strength or endurance training. Knowledge 
of sex-specific characteristics or classifications relevant to 
training status is not yet available and points to further limi-
tations that need to be explored in the validation phases.

Most studies in this area were conducted in the context of 
acute exercise (Table 1), suggesting the use of biomarkers 
immediately after cessation of exercise to assess the acute 
physiological response in combination with parameters of 
external workload. In addition to evaluating training load, 
biomarker responses can provide additional insight, such as 
an estimation of the athlete's risk of disease as indicated 
by various cytokine responses after exercise (e.g., in IL1-
Ra, IL-10) [82]. However, there is a need for easy-to-use 
instruments, such as POC devices, that allow practitioners to 
measure these biomarkers in a timely and simple manner. In 
addition, marker-specific obstacles need to be considered or 
overcome (e.g., low specificity, venous blood needed) before 
they can be regularly used for load monitoring. Section 4 
will therefore address methodological aspects of biomarker 
development.

It should be noted that there are other physiological 
domains that we have thoroughly investigated. For exam-
ple, proteomics approaches have identified fitness- or body 
fat-associated biomarkers such as leptin [83]. However, our 
focus has been on load-sensitive biomarkers of immunol-
ogy rather than fitness or anthropometry, as we consider 
the latter to be less relevant for load management. Another 
interesting area of research could be cardiac biomarkers 
such as NT-proBNP or cardiac troponin, which have shown 
load-dependent patterns during exercise [84, 85]. As new 
biomarkers are identified, bioanalytical methods for measur-
ing biomarkers continue to evolve, as discussed in Sect. 3.

3  Bioanalytical Approaches with a Focus 
on Protein, Free‑Circulating Nucleic Acids 
and Genetic Biosignatures

3.1  Omics—Deciphering Bio‑Signatures 
with a Multiple Marker Approach

Exercise induces a multilevel and complex physiological 
stimulus that is reflected at the level of gene expression, 
epigenetic processes, protein synthesis, energy metabolism, 
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and the associated metabolome [86]. Sophisticated large-
scale analytical methods to quantify gene expression (tran-
scriptomics), proteins (proteomics), lipids (lipidomics) and 
metabolites (metabolomics) in different organs and tissues, 
in the context of exercise mainly in the muscle and blood, 
are now available to identify biomarkers that define different 
status of stress and recovery cycles or physiological adapta-
tion processes. The so-called multi-omics profiling can even 
couple such technologies to analyze the interrelationships of 
the individual levels. Such technologies have also been used 
in sports and have significantly developed the choreographic 
interaction of different physiological levels [87].

Omics technologies need to be coupled with appropri-
ate bioinformatic methods so that the truly relevant ones 
can be identified from the multitude of possible targets. 
Pathway and network analyses are an essential part of the 
bioinformatics analysis, which can strengthen the basic sci-
entific understanding of the regulation of the markers. Such 
approaches have evolved in recent years to pathway and 
network-based biomarker analysis, which has a particular 
focus on discovering panels of markers that can serve as 
a biosignature rather than singular biomarkers. Bioinfor-
matic databases have supported the functional analysis and 
interpretation of results [88]. Accordingly, today’s omics 
technologies can be valuable contributors to the identifica-
tion of biomarkers, or biosignatures, and their physiological 
classification in the context of sports.

However, this approach should be understood as the first 
step in the complex process of biomarker research. Multi-
omics profiling can, as a first step in identifying biomarkers, 
highlight those candidates within a network that have the 
greatest potential to be more robust to individual differences 
or to environmental factors other than training load. This 
idea can be illustrated by a study from Nieman et al. [57], 
who attempted to identify candidate biomarkers through a 
proteomics approach for functional overreaching over 3 days 
of extreme stress. Of nearly 600 proteins, over 70 proteins 
were identified that increased during the following recovery 
period at rest. Finally, the authors suggested the application 
of the identified biomarker panel in a more sophisticated 
training study with additional monitoring tools to examine 
the potential of these markers for predicting overtraining in 
athletes.

3.2  Specific Approaches for Protein and Free 
Nucleic Acid Detection

Proteins are considered key biomarkers that allow monitor-
ing of the training process. Due to their multiple functional 
roles as enzymes, cellular signaling molecules, co-factors, 
and neurotransmitters, many of these factors reflect load and 
recovery as well as adaptation processes. High-throughput 
analyses, such as those possible using multiplex assays or 

mass spectrometry, can provide indications for the identifica-
tion of potential candidate proteins as a first step [16, 89].

In analogy to proteins, DNA or RNA are complex mac-
romolecules that can be studied inside or out of cells as 
cfDNA [90] or circulating RNA (cirRNA). As for protein 
analysis, mass spectrometry gains importance in DNA and 
RNA analysis since it is not only capable of identifying post-
translational protein modifications [91] but also nucleotide 
modifications of functional and physiological relevance. 
For proteins in fluids, enzyme-linked immunosorbent assay 
(ELISA) are used in laboratories, while derived from this 
principle, lateral flow immunoassays are used at POC. Lat-
eral flow assays can nowadays also be used to analyze DNA 
or RNA at POC and techniques were developed during the 
COVID-19 pandemic to do this semi-quantitatively using 
the cell phone [92]. For high-throughput medical diagnostics 
of several different proteins or nucleic acids to be analyzed 
simultaneously in one sample, the principles of ELISA have 
been combined with flow cytometry.

Together with proteins, nucleic acids belong to a group 
of circulating macromolecules that can be subjected to 
covalent modifications in addition to their amino acid or 
base sequence and can therefore contain essential qualita-
tive information in addition to their quantity. In analogy to 
typical glycosylation, phosphorylation, or citrullination of 
amino acids, DNA-bases can be methylated carrying epige-
netic information [93]. While amino acid modifications are 
mostly indicators of a different conformational state, func-
tional status, or stability, methylation of DNA can for certain 
sequence parts be cell-type specific and may therefore reveal 
the origin of DNA [93]. At present, there is a rapidly evolv-
ing field of so-called liquid biopsy by analyzing circulating 
nucleic acids in blood [94].

At the DNA level, quantification of cfDNA is a putative 
forward approach for monitoring acute [11, 79] and chronic 
[78, 80] exercise load. Quantitative analysis in combination 
with qualitative information has just been able to confirm 
the origin of cfDNA from cells of the hematopoietic line-
age [95]. Cell-type specific epigenetic analysis of cfDNA 
has revealed that most of the DNA released during exercise is 
released within minutes from neutrophils [77]. Thus, unlike 
versatile cirRNA, cfDNA is the lead molecule for a specific 
process that is initially triggered with the onset of movement, 
that is, neutrophil activation. Increases of cfDNA, therefore, 
fall into the category of markers attributed to neutrophil 
activation that have been described as a prominent pathway 
affected during acute exercise in several omics approaches 
and a recent multi-omics approach [87]. Analysis of DNA 
by a highly sensitive detection technology has furthermore 
confirmed that the majority of DNA released by neutrophils 
is indeed free-floating in the bloodstream and not associ-
ated with or incorporated in extracellular vesicles [96, 97], 
while the full complexity of mRNA, long non-coding RNA, 
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or microRNA analysis is not yet well investigated or even 
understood. Of note, in the field of cirRNA analysis, small 
differences in the analytical procedures can lead to unpredict-
ably different outcomes. CirRNA can be protected from rapid 
decay by extracellular vesicles, which in turn are subject to 
significant change upon the onset of exercise [97, 98].

3.3  Genetic Testing—The Promise of Once 
in a Lifetime Individualization

In contrast to previous approaches, genetic testing already 
plays a prominent role in load management, whereby a one-
time measurement can already be relevant for the entire 
career. The determination of, for example, injury propensity 
[15, 99, 100] could be used to identify at-risk individuals 
and prescribe individualized exercise programs to counteract 
this injury propensity.

In recent years, the Genome-Wide Association Study 
approach has enabled a detailed understanding of the impor-
tance of specific genetic polymorphisms for sport-specific 
performance [101]. Basic research on gene polymorphisms 
and their association with phenotypic traits relevant in sports 
has generated evidence that specific genetic polymorphisms 
can affect training responses, the ability to regenerate, and 
the susceptibility to injury [99]. For example, IGF-1R 
275124 A>C rs1464430 polymorphism was shown to be 
represented in endurance athletes and PPARGC1A polymor-
phism was also shown to be related to endurance perfor-
mance. Furthermore, the RR genotype of ACTN3 R577X 
polymorphism, the C allele of IGF-1R polymorphism and 
the gene variant FTO T>A rs9939609 and/or their AA 
genotype showed a relation to muscle strength while gene 
variants of the MMP group (rs591058 and rs679620) and 
the COL5A1 rs13946 polymorphisms are associated with 
increased susceptibility to injury in athletes [99]. However, 
most of these studies are associative studies, which limits 
their practical value for designing training programs.

Thus, it seems particularly reasonable to proceed to 
interventional studies using genetic information. One of 
the first studies that used genetic testing to differentiate a 
training program was conducted by Jones et al. [102]. In 
this study, an algorithm of 15 different single nucleotide 
polymorphisms (SNPs) was developed to determine a power/
endurance score ratio. The SNPs used included variants of 
the genes ACE, ACTN3, ADRB2, AGT , BDKRB2, COL5A1, 
CRP, GABPB1, IL6, PPARA , PPARGC1A, TRHR, VDR, 
and VEGFA. One group of athletes performed an 8-week 
strength training program aligned by genetic profile to be 
either more intense or of greater volume, while the control 
group performed exactly the training that did not match their 
genotype. Although the study can be critiqued methodologi-
cally in some aspects, the initial evidence generated showed 
that pre-intervention genetic profiling and assignment to a 

training program leads to a favorable outcome in terms of 
explosive power and aerobic fitness.

In relation to the release of circulating markers, genetic 
testing has a potentially growing importance. For some 
circulating markers, such as CK, there are high respond-
ers and low responders, which is most likely due to genetic 
polymorphisms. Accordingly, testing of such SNPs prior to 
the actual measurement of the markers may help to classify 
athletes with respect to their responder assignment in the 
future. For this purpose, causal links between the presence 
of individual or multiple SNPs still need to be established 
in future studies [103].

However, the extent to which genetic testing is finding 
its way into sports could also be a cause for concern. There 
has been a recent surge in commercial direct-to-consumer 
genetic testing without the involvement of a physician. Ath-
letes and coaches are naturally focused on implementing, 
for example, effective training strategies to optimize perfor-
mance, which may make this cohort particularly susceptible 
to such testing, believing that those results will contribute 
to improved performance outcomes [104]. Pickering and 
Kiely [105] found in 110 athletes and 133 practitioners that 
about 10% of both groups had already made use of such 
tests. However, when genetic testing is not conducted by 
experienced personnel, this may lead to misinterpretation 
and potentially serious data security issues and raise ques-
tions about whether athletes undergoing such procedures are 
actually fully informed in terms of purpose, possible results, 
and ramifications [104, 106]. In comparison with other tests, 
genetic testing may accidentally deliver an outcome that is as 
a stand-alone not valid enough for diagnostics but provides 
an outcome that should prompt further medical diagnostics. 
If the tests are not initiated by the athletes themselves, but 
by a sports authority, and are thus not exclusively voluntary, 
they could undoubtedly be classified as unethical [104, 107]. 
The fact that most genetic studies have been conducted in 
people of European ancestry [108] also appears to be prob-
lematic as the predictive performance may not be relevant 
for people of other ancestries.

In summary, genetic testing in sports has yielded interest-
ing findings but, unlike disease-related genetic testing, it is 
still in its infancy. To date, neither tests for talent identifica-
tion [107, 109] nor tests for exercise prescription or injury 
prevention [106] seem to have sufficient predictive value.

4  Considerations for Researchers 
in Upcoming Studies

In this section, we highlight topics to further develop load 
management: (i) biomarker development, (ii) methodologi-
cal advances, and (iii) statistical considerations.
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4.1  Biomarker Development

Biomarker development typically proceeds in three phases, 
that is, discovery, verification, and validation [110]. Bio-
marker discovery phase is primarily concerned with identi-
fying a set of potential marker candidates in a given experi-
mental design, using approaches such as omics as described 
above [40, 111, 112] to select potentially suitable load-sen-
sitive markers for future studies. Verification is regularly 
performed by repeated measurements. In proteomics, for 
example, candidate biomarkers are subjected to additional 
analysis to verify their identity and expression in the same 
samples. The remaining identified markers can then be 
tested for sensitivity, specificity, and repeatability in a man-
ner similar to the discovery phase (analytical validation). 
Finally, in the clinical validation (i.e., ‘qualification’ [110]), 
the identified reliable and robust markers [12] can be applied 
to similar interventions [110]. At each stage, the markers of 
interest are further narrowed, leading to an intensified testing 
of biomarker performance for clinical use [110].

The potential for biomarker discovery also arises from 
the primary use of markers in clinical settings and their 
transfer to sports. Historically, cfDNA has been introduced 
as a marker for cancer screening [113] but also showed a 
pronounced acute response after strenuous exercise [11] and 
first evidence of indicating overtraining status [78]. In addi-
tion, well-known ratios such as the neutrophil-to-lymphocyte 
or testosterone-to-cortisol ratios were also introduced as 
promising tools for load monitoring. In this respect, asso-
ciations with overtraining or anabolic adaptation to training 
have already been observed [13, 114, 115].

Regarding further evaluation of biomarkers, standard-
ized test–retest settings seem reasonable for assessing the 
reliability of a biomarker and its response to an acute load 
[12]. An adequate post-exercise observation period pro-
vides information on the reregulation to baseline and the 
biological half-life time of these biomarkers. Amateur ath-
letes or youth squads of elite teams [7] can be used as a 
study population, with a subsequent transfer to the domain 
of professional athletes. Accurate characterization of par-
ticipants taking into account high and low responders, the 
documentation of potential confounding variables due to the 
effects of environmental factors, and the determination of 
the external load can provide insights into dose–response 
patterns [14, 116, 117].

Finally, longitudinal study designs are efficient in observ-
ing the potential of biomarkers to ‘forecast’ an event such 
as an injury or illness, as well as to reveal the acute and 
chronic response to an unusual intervention, such as training 
camps. Repeated blood sampling at rest and post-exercise—
in combination with established monitoring tools—can help 
to assess the training load and the corresponding biomarker 

responses while establishing individualized reference val-
ues [118] with a conclusion on the principal suitability of 
the biomarker (panel) (Fig. 1). Furthermore, insights can be 
gained about gender specifics, and effects of training volume 
and training status [119].

4.2  Methodological Considerations

Since repeated blood sampling is necessary to generate reli-
able data, the development of convenient and efficient meas-
urement methods is important to avoid excessive burden 
on athletes and to keep the amount of blood collected low 
[120]. Various cytokines in capillary blood from the finger 
are regulated similarly to those in venous blood. Regarding 
blood plasma from the earlobe, there is less data on bio-
marker regulation [121, 122] although the measurement is 
possible in principle [123], which would greatly improve the 
accessibility of the biomarker and would not require special-
ized personnel. Such a continuous transition to capillary or 
even noninvasive saliva or urine collection has also been 
demonstrated for other markers such as cfDNA [124–126]. 
Concurrently, the development and establishment of meas-
urement methods is challenging, as concentrations in differ-
ent fluids are usually difficult to compare.

Another methodological aspect is that results of bio-
marker analyses are often available only with a delay due 
to the sophisticated technology involved. This provides 
only a retrospective view of the training session, which 
limits the possibilities of load management for practition-
ers [127]. To fulfill the requirement for rapidly available 
results, POC devices, mobile tools, or microarray-based 
screenings are necessary but may have limitations in terms 
of limit of detection and sensitivity. Therefore, it is of great 
importance to introduce innovative technologies with higher 
sensitivity and in miniaturized form to the market, such as 
the already presented protein microarrays for evaluation on 
a picogram level [128] for validated, reliable, load-, injury-, 
or overtraining-associated marker panels. Currently, various 
manufacturers are developing POC devices that can meas-
ure biomarkers, such as HSP, or various cytokines, such as 
IL-6, IL-8 or IL-10, highly efficiently in small amounts of 
plasma [129–131]. They work in the form of miniaturized 
protein microarray-based assays or as molecular processors 
and have made technological progress, particularly because 
of the COVID-19 pandemic [132].

4.3  Data Processing and Statistical Concerns

To obtain a comprehensive picture of the athlete, a holis-
tic marker panel that covers various aspects of perfor-
mance, muscle status, and even nutritional aspects is 
recommended [16], with the downside of large data sets 
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occurring for monitoring purposes. Biomarker, perfor-
mance, and questionnaire data lead to myriad ways to ana-
lyze these data. In the case of biomarkers, the literature 
has shown that the simple cause-effect model is not suf-
ficient to understand the biology of an athlete [133]. The 
response after exercise is complex and vast, with intercon-
nected processes and pathways.

It is generally recognized that AI, and especially machine 
learning (ML), can supplement basic statistical approaches 
when it comes to (i) data processing and visualization but 
also for (ii) planning and decision making [134]. ML algo-
rithms can make predictive capability both more accessible 
and more accurate using existing registries and big databases 
together with new variables. These algorithms increase the 
prediction power by calibrating the equations from the dif-
ferent distributions of the analyzed variables, which hold 
the potential to change decision making dramatically and 
optimize individual outcomes [135, 136]. These approaches 
are making great progress in personalized medicine, where 
computer-aided analysis of biomarker data and/or imag-
ing techniques are used to improve, for instance, a cancer 
patient's therapy [137]. Biomarker data have proven help-
ful, although decision making is still delayed due to the 
increasing complexity of novel biomarkers [138]. Thus, high 
throughput computational approaches are fundamental to 

create accurate prediction tools with clinical applicability 
and translation that hold highly impactful potential.

ML is expected to be increasingly used in professional 
sport settings in the future [134], with the aim that ‘arti-
ficial trainers’ will support coaches in their decision mak-
ing in workload management. This is already common in 
the automated analysis of tools such as wearable heart rate 
monitors, which record daily activity, visualize data, and 
provide personalized training recommendations [134]. In the 
case of athlete monitoring, first steps to predict injuries have 
been taken in both individual [139] and team sports [140]. 
ML approaches were shown to be principally capable of pre-
dicting the internal load (RPE) in Australian Football play-
ers with an artificial-neural-network analysis (ANN) with 
session distance as a predictor [141]. Furthermore, ANN 
and least absolute shrinkage and selection operator revealed 
decelerations as an important variable to predict the RPE in 
soccer players [142]. A meta-analysis on ML approaches for 
injury prediction showed that research has already identi-
fied several predictor variables ranging from sleep quality 
and genetic variables to external load variables, such as the 
distance covered [143]. However, the quality of the included 
studies was moderate to low.

Accurate prediction of athlete responses to a planned 
training session and knowledge of injury risk factors allows 

Fig. 1  Phases of biomarker development. Ideally, the identification phase (through omics approaches or transferred from clinical settings) is fol-
lowed by an assessment using standardized exercise settings. Finally, the biomarker is then applied in longitudinal study designs
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practitioners to effectively prescribe individualized training 
loads [141]. There has been a focus on external load vari-
ables, which have been integrated into the ML models as 
predictor variables. The integration of biomarker data could 
further improve models, such as for injury prediction [144]. 
Finally, the use of multi-marker approaches and their evalu-
ation with ML can also help to identify the suitability of 
biomarkers [145] for load management, as large data sets 
and aggregation of biomarkers with all other data can reveal 
previously unrecognized patterns.

Finally, the use of additional monitoring tools not only 
results in additional data, but also requires financial and 
human resources that must be carefully weighed against 
the associated benefits of a serially measured biomarker to 
ultimately decide on its use [127]. If a sports organization 
is able to perform, analyze, and interpret the biomarker in a 
nonobstructive and frequent manner, this may represent an 
additional benefit. If these additional resources are not avail-
able, organizations and practitioners are well advised to use 
easy-to-use tools such as questionnaires for the determina-
tion of the psychophysiological exercise response.

5  Conclusion and Outlook

Promising methodological approaches could soon transfer 
robust and valid biomarkers from the medical field to prac-
tical application in sports science. Many biomarkers have 
been shown to be capable of reflecting different aspects of 
exercise load (Table 1). Ideally, these biomarkers will be 
accessible in a short time using minimally invasive blood 
collection methods and a miniaturized POC device, although 
this is still in the future for some of the mentioned biomark-
ers. In addition, several markers have yet to prove their full 
potential compared with established markers such as CK or 
urea, for which POC devices are already available.

The collected biomarker data should be analyzed in 
combination with athlete characteristics, training data, 
and further monitoring tools using appropriate statistical 
approaches, to create a personalized athlete profile or at least 
an athlete cluster leading to individualized load management 
approaches. Ideally, these approaches may help to estimate 
the individual training responses, adverse events such as 
injuries, and resilience factors in athletes. Algorithms that 
incorporate training load recommendations can serve as a 
solid foundation for practitioner decision making. The ulti-
mate goal is to combine ML with practitioner expertise to 
take load management to a new level [142].
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