
The VLDB Journal
https://doi.org/10.1007/s00778-023-00798-w

REGULAR PAPER

HINT: a hierarchical interval index for Allen relationships

George Christodoulou1 · Panagiotis Bouros2 · Nikos Mamoulis1

Received: 24 June 2022 / Revised: 25 January 2023 / Accepted: 25 April 2023
© The Author(s) 2023

Abstract
Indexing intervals is a fundamental problem, finding a wide range of applications, most notably in temporal and uncertain
databases.We proposeHINT, a novel and efficient in-memory index for range selection queries over interval collections. HINT
applies a hierarchical partitioning approach, which assigns each interval to at most two partitions per level and has controlled
space requirements. We reduce the information stored at each partition to the absolutely necessary by dividing the intervals in
it, based on whether they begin inside or before the partition boundaries. In addition, our index includes storage optimization
techniques for the effective handling of data sparsity and skewness. We show how HINT can be used to efficiently process
queries based on Allen’s relationships. Experiments on real and synthetic interval sets of different characteristics show that
HINT is typically one order of magnitude faster than existing interval indexing methods.

Keywords Interval data · Query processing · Indexing · Main memory · Allen’s algebra

1 Introduction

A wide range of applications require managing large col-
lections of intervals. In temporal databases [6, 37], each
tuple has a validity interval, which captures the period of
time that the tuple is valid. In statistics and probabilistic
databases [14], uncertain values are often approximated by
(confidence or uncertainty) intervals. In data anonymization
[36], attribute values are often generalized to value ranges.
XML data indexing techniques [27] encode label paths as
intervals and evaluate path expressions using containment
relationships between the intervals. Several computational
geometry problems [5] (e.g., windowing) use interval search
as a module. The internal states of window queries in Stream
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processors (e.g., Flink/Kafka) can be modeled and managed
as intervals [2]. Event detection systems [12] represent the
time periodswhere events are active as time intervals.Match-
ing of event patterns as relationships between intervals is
studied in [23].

We study the classic problem of indexing a large collec-
tion S of objects (or records), based on an interval attribute
that characterizes each object. Hence, we model each object
s ∈ S as a triple 〈s.id, s.st, s.end〉, where s.id is the object’s
identifier (which can be used to access any other attribute
of the object), and [s.st, s.end] is the interval associated
to s. Our focus is on selection queries, the most funda-
mental query type over intervals. Given a query interval
q = [q.st, q.end], the objective is to find the ids of all
objects s ∈ S, whose intervals overlap with q, i.e., they
satisfy a generalized OVERLAPS (G-OVERLAPS) relation-
ship. In addition, we study the retrieval of data intervals that
satisfy one of Allen’s interval algebra relationships [1] with
q. Allen’s algebra is used for describing precise relation-
ships between intervals. Modeling the relative positions of
temporal data finds many applications, from manufacturing
processes and machine faults to business processes in gen-
eral [20]. Selection queries are also known as time travel
or timeslice queries in temporal databases [35]. Stabbing
queries (pure-timeslice queries in temporal databases) are
a special class of selection queries for which q.st = q.end
and the predicate is CONTAINED_BY. Without loss of gen-
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erality, we assume that the intervals and queries are closed at
both ends. 1

Examples of selection queries include the following:

– on a relation storing employment periods: find all
employees who were employed sometime inside the
[1/1/2021, 2/28/2021] range (G-OVERLAPS); find all
employees who started working for a company at
1/1/2021 and stopped before 2/28/2021 (STARTS).

– on uncertain temperatures: find all stations having tem-
perature between 6 and 8 degrees with a nonzero
probability (G-OVERLAPS);findall stations having tem-
peratures, which are definitely lower/higher than 25
degrees (BEFORE/AFTER).

For efficient selection queries over collections of intervals,
classic data structures formanaging intervals, like the interval
tree [18], are typically used. Competitive indexing methods
include the timeline index [21], 1D-grids and the period index
[4]. All these methods, which we review in detail in Sect. 2,
were not optimized for handling very large collections of
intervals in main memory. Hence, there is room for new data
structures, which exploit the characteristics and capabilities
of modern machines that have large enough memory capac-
ities for the scale of data found in most applications.

1.1 Contributions

In this paper, we propose a novel and general-purposeHierar-
chical index for INTervals (HINT), suitable for applications
that manage large collections of intervals. HINT defines a
hierarchical decomposition of the domain and assigns each
interval in S to at most two partitions per level. If the
domain is relatively small and discrete, our index can evalu-
ate G-OVERLAPS queries, requiring no comparisons at all.
For the general case where the domain is large and/or con-
tinuous, we propose a version of HINT, denoted by HINTm ,
which limits the number of levels tom+1 and greatly reduces
the space requirements. HINTm conducts comparisons only
for the intervals in the first and last accessed partitions at the
bottom levels of the index. Some of the unique and novel
characteristics of our index include:

– The intervals in each partition are further divided into
groups, based on whether they begin inside or before the
partition. This division (1) cancels the need for detecting
and eliminating duplicate query results, (2) reduces the
data accesses to the absolutely necessary, and (3) min-

1 Our index can easily be adapted to manage intervals and/or pro-
cess selection queries, which are open at either or both sides, i.e.,
[o.st, o.end), (o.st, o.end] or (o.st, o.end).

imizes the space needed for storing the objects into the
partitions.

– We theoretically prove that the expected number of
HINTm partitions for which comparisons are necessary
is at most four. This guarantees fast retrieval times, inde-
pendently of the query extent and position.

– The optimized version of our index stores the intervals in
all partitions at each level sequentially and uses a dedi-
cated array with just the ids of intervals there, as well as
links between non-empty partitions at each level. These
optimizations facilitate sequential access to the query
results at each level, while avoiding accessing unneces-
sary data.

– We show the necessary additional comparisons and
accesses on HINTm for each relationship in Allen’s
algebra. In addition, we show that HINTm without the
storage optimization is directly suitable for processing
queries using all Allen’s relationships, while maintaining
the excellent performance of HINTm for G-OVERLAPS
queries.

– We show how an index-based nested-loops approach
for G-OVERLAPS interval joins that uses HINTm on
the inner join input outperforms the state-of-the-art join
method when the outer input is relatively small.

Table 1 compares HINT to previous work, based on our
experiments on real and synthetic datasets. Our index is typ-
ically one order of magnitude faster than the competition.
As we explain in Sect. 2, existing indices typically require
at least one comparison for each query result (interval tree,
1D-grid) or may access and compare more data than nec-
essary (timeline index, 1D-grid). Further, the 1D-grid, the
timeline and the period index need more space than HINT
in the presence of long intervals in the data due to excessive
replication either in their partitions (1D-grid, period index) or
their checkpoints (timeline index). HINT gracefully supports
updates, as each partition (or division within a partition) is
independent from others. The building cost of HINT is also
low, asweverify experimentally.Overall, HINT is superior in
all aspects to the state-of-the-art and constitutes an important
contribution, given the fact that selection queries over large
interval collections is a fundamental problemwith numerous
applications.

Table 1 Comparison of interval indices

Index Query cost Space Updates

Interval tree [18] Medium Low Slow

Timeline index [21] Medium Medium Slow

1D-grid Medium Medium Fast

Period index [4] Medium Medium Fast

HINT/HINTm (our work) Low Low Fast
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1.2 Comparison to our previous work

This article extends our previous work [13] in three direc-
tions. First, we elaborate on the model for tuning the value
of the parameter m for HINTm . Specifically, we include a
new experiment which confirms the intuition behind our pro-
posed model. Second, we study HINTm performance for
G-OVERLAPS interval joins. Finally, we study the evalu-
ation of selection queries under all relationships in Allen’s
algebra; [13] considered only the G-OVERLAPS relation-
ship. We show that HINTm achieves excellent performance,
independently of the query predicate.

1.3 Outline

Section2 reviews relatedwork and presents in detail the char-
acteristics and weaknesses of existing interval indices. In
Sect. 3, we present HINT and its generalized HINTm ver-
sion, and analyze their complexity. Focusing primarily on
the G-OVERLAPS relationship, optimizations that boost the
performance of HINTm are presented in Sect. 4, and the
first part of our experimental analysis on real and synthetic
data against the state-of-the-art is presented in Sect. 5. Then,
Sect. 6 discusses necessary changes to HINTm for efficiently
evaluating selection queries under the Allen’s algebra rela-
tionships, and Sect. 7 follows up with the second part of our
experiments. Finally, Sect. 8 concludes the paper with a dis-
cussion about future work.

2 Related work

In this section, we present in detail the state-of-the-art main-
memory indices for intervals, to which we experimentally
compareHINT inSect. 5. In addition,we briefly discuss other
relevant data structures and previous work on other queries
over interval data.

2.1 Interval tree

One of the most popular data structures for intervals is Edels-
brunner’s interval tree [18], a binary search tree, which takes
O(n) space and answers queries in O(log n + K ) time (K
is the number of query results). The tree divides the domain
hierarchically by placing all intervals strictly before (after)
the domain’s center to the left (right) subtree and all inter-
vals that overlap with the domain’s center at the root. This
process is repeated recursively for the left and right sub-
trees using the centers of the corresponding sub-domains.
The intervals assigned to each tree node are sorted in two
lists based on their starting and ending values, respectively.
Interval trees are used to answer selection (i.e., stabbing and
range) queries. For example, Fig. 1 shows a set of 14 inter-

Fig. 1 Example of an interval tree

vals s1, . . . , s14, which are assigned to 7 interval tree nodes
and a query interval q = [q.st, q, end]. The domain point
c corresponding to the tree’s root is contained in the query
interval; hence, all intervals in the root are reported and both
the left and right children of the root have to be visited recur-
sively. Since the left child’s point cL is before q.st , we access
the END list from the end and report results until we find an
interval s for which s.end < q.st ; thenwe access recursively
the right child of cL . This process is repeated symmetrically
for the root’s right child cR . The main drawback of the inter-
val tree is that we need to perform comparisons for most of
the intervals in the query result. In addition, updates on the
tree can be slow because the lists at each node should be kept
sorted. A relational interval tree for disk-resident data was
proposed in [24].

2.2 Timeline index

The timeline index [21] is a general-purpose access method
for temporal (versioned) data, in SAP-HANA. It keeps the
endpoints of all intervals in an event list, which is a table of
〈t ime, id, isStart〉 triples, where t ime is the value of the
start or end point of the interval, id is the identifier of the
interval, and isStart 1 or 0, depending on whether time
corresponds to the start or end of the interval, respectively.
The event list is sorted primarily by t ime and secondarily
by isStart (descending). In addition, at certain timestamps,
called checkpoints, the entire set of active object-ids is mate-
rialized, that is the intervals that contain the checkpoint. For
each checkpoint, there is a link to the first triple in the event
list for which isStart=0 and t ime is greater than or equal to
the checkpoint, Fig. 2a shows a set of five intervals s1, . . . , s5
and Fig. 2b exemplifies a timeline index for them.

To evaluate a selection query (called time travel query in
[21]), we first find the largest checkpoint which is smaller
than or equal to q.st (e.g., c2 in Fig. 2) and initialize R as the
active interval set at the checkpoint (e.g., R = {s1, s3, s5}).
Then, we scan the event list from the position pointed by
the checkpoint, until the first triple for which t ime ≥ q.st ,
and update R by inserting to it intervals corresponding to
an isStart = 1 event and deleting the ones corresponding
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Fig. 2 Example of a timeline index

Fig. 3 Example of a 1D-grid

to a isStart = 0 triple (e.g., R becomes {s3, s5}). When we
reach q.st , all intervals in R are guaranteed query results and
they are reported. We continue scanning the event list until
the first triple after q.end and we add to the result the ids of
all intervals corresponding to triples with isStart = 1 (e.g.,
s2 and s4).

The timeline index accesses more data and performsmore
comparisons than necessary, during query evaluation. In the
worst-case scenario, where almost all intervals span almost
the entire domain, all checkpoints will include almost all
intervals, so the space complexity is O(n ·C), whereC is the
number of checkpoints. Each query costs O(n) time as O(n)

active intervals from a checkpoint will be read and processed.
The timeline index is suitable for transaction-time tempo-
ral databases, where individual updates cost O(1); however,
even in this case, the amortized update cost can be as high as
O(C/n), if we include the construction of checkpoints.

2.3 1D-grid

A simple and practical data structure for intervals is a 1D-
grid,whichdivides thedomain into p partitions P1, P2, . . . , Pp.
The partitions are pairwise disjoint in terms of their interval
span and collectively cover the entire data domain D. Each
interval is assigned to all partitions that it overlaps with. Fig-
ure3 shows 5 intervals assigned to p = 4 partitions; s1 goes

to P1 only, while s5 goes to all four partitions. Given a query
q, the results can be obtained by accessing each partition Pi
that overlaps with q. For each Pi which is contained in q (i.e.,
q.st ≤ Pi .st ∧ Pi .end ≤ q.end), all intervals in Pi are guar-
anteed to overlap with q. For each Pi , which overlaps with
q, but is not contained in q, we should compare each si ∈ Pi
with q to determine whether si is a query result. If the inter-
val of a query q overlaps with multiple partitions, duplicate
results may be produced. An efficient approach for handling
duplicates is the reference value method [17], which was
originally proposed for rectangles but can be directly applied
for 1D intervals. For each interval s found to overlapwith q in
a partition Pi , we compute v = max{s.st, q.st} as the refer-
ence value and report s only if v ∈ [Pi .st, Pi .end]. Since v is
unique, s is reported only in one partition. In Fig. 3, interval s4
is reported only in P2 which contains value max{s4.st, q.st}.

The1D-grid has twodrawbacks. First, the duplicate results
should be computed and checked before being eliminated
by the reference value. Second, if the collection contains
many long intervals, the index may grow large in size due to
excessive replication which increases the number of dupli-
cate results to be eliminated. In theworst-case scenario, space
complexity is O(n · C), where C is the number of partitions
and each update costs O(C) time. Worst-case query cost is
O(n), excluding deduplication, since a query may access a
partition, which includes all intervals.

2.4 Period index

The period index [4] is a self-adaptive structure based
on domain partitioning, specialized for G-OVERLAPS and
duration queries. The time domain is split into coarse par-
titions as in a 1D-grid and then each partition is divided
hierarchically, in order to organize the intervals assigned to
the partition based on their positions and durations. Figure4
shows a set of intervals and how they are partitioned in a
period index. There are two primary partitions P1 and P2,
and each of them is divided hierarchically to three levels.
Each level corresponds to a duration length, and each inter-
val is assigned to the level corresponding to its duration. The
top level stores intervals shorter than the length of a division
there, the second level stores longer intervals but shorter than
a division there, and so on. Hence, each interval is assigned to
at most two divisions, except for intervals which are assigned
to the bottom-most level, which can go to an arbitrary num-

Fig. 4 Example of a period index
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ber of divisions. During query evaluation, only the divisions
that overlap with the query interval are accessed; if the query
carries a duration predicate, the divisions that are shorter than
the query duration are skipped. For G-OVERLAPS queries,
the period index performs in par with the interval tree and the
1D-grid [4], so we also compare against this index in Sect. 5.
In the worst case, space complexity is O(n · C), where C is
the number of coarse partitions and each query and update
costs O(C) time (i.e., same as the 1D-grid).

2.5 Other indexing works

Another classic data structure for intervals is the segment
tree [5], a binary search tree with O(n log n) space com-
plexity that answers stabbing queries in O(log n + K ) time.
The segment tree is not designed for G-OVERLAPS queries,
for which it requires a duplicate result elimination mecha-
nism. In computational geometry [5], indexing intervals was
studied as a subproblem within orthogonal 2D range search;
typically, the worst-case optimal interval tree is used. Index-
ing intervals re-gained interest with the advent of temporal
databases [6]. For temporal data, a number of indices are pro-
posed for secondarymemory, mainly for effective versioning
and compression [3, 26]. Such indices are tailored for histor-
ical versioned data, while we focus on arbitrary interval sets,
queries, and updates.

2.6 Interval joins and aggregation

Additional research on indexing intervals does not address
selection queries, but other operations such as temporal
aggregation [21, 22, 29] and interval joins [7, 8, 10–12, 15,
16, 33, 34, 38]. The timeline index [21] can be directly used
for temporal aggregation. Piatov et al. [32] presented plane-
sweep algorithms that extend the timeline index to support
aggregation over fixed intervals, sliding window aggregates,
and MIN/ MAX aggregates. Timeline was later adapted for
interval overlap joins [33, 34]. In Sect. 5.4.1, we consider our
proposed indexing for join computation in an index-based
nested-loops fashion, and compare it against the state-of-
the-art algorithm optFS from [10]. Similar to previous work,
optFS builds on a highly optimized variant of plane-sweep
to join un-indexed collections of intervals. A domain parti-
tioning technique for parallel processing of interval joins was
proposed in [7, 8, 10]. Alternative partitioning techniques for
interval joins were proposed in [11, 15]. Partitioning tech-
niques for interval joins cannot replace interval indices as
they are not designed for selection queries. Temporal joins
on Allen’s algebra relationships for RDF data were studied
in [12]. Multi-way interval joins in the context of temporal
k-clique enumeration were studied in [38]. Awad et al. [2]
define interval events of the same or different types that are
observed in succession in data streams. Analytical operations

Table 2 Table of notation

Notation Description

s.id, s.st, s.end Identifier, start, end point of interval s

q = [q.st, q.end] Query interval

pre f i x(k, x) k-Bit prefix of integer x

P�,i i-th Partition at level � of HINT/HINTm

P�, f (P�,l ) First (last) partition at level � overlapping with q

PO
�,i (P

R
�,i ) Sub-partition of P�,i with originals (replicas)

POin
�,i (P

Oaf t
�,i ) Intervals in PO

�,i i ending inside (after) P�,i

P Rin
�,i (P

Ra f t
�,i ) Intervals in PR

�,i i ending inside (after) P�,i

based on aggregation or reasoning can be used to formulate
composite interval events.

3 HINT

In this section, we propose the Hierarchical index for
INTervals or HINT, which defines a hierarchical domain
decomposition and assigns each interval to at most two parti-
tions per level. The primary goal of the index is to minimize
the number of comparisons during query evaluation, while
keeping the space requirements relatively low, even when
there are long intervals in the collection.HINTapplies a smart
division of intervals in each partition into two groups, which
avoids the production and handling of duplicate query results
and minimizes the number of accessed intervals. In Sect. 3.1,
we present a version of HINT, which avoids comparisons
overall duringquery evaluation, but it is not always applicable
and may have high space requirements. Section3.2 presents
HINTm , the general version of our index, used for intervals
in arbitrary domains. Last, Sect. 3.3 describes our analyti-
cal model for setting them parameter and Sect. 3.4 discusses
updates. Table 2 summarizes the notation used in the paper.

3.1 A comparison-free version of HINT

We first describe a version of HINT, which is appropriate for
a discrete and not very large domain. Specifically, assume
that the domain D wherefrom the endpoints of intervals in
S take value is [0, 2m −1]. We can define a regular hier-
archical decomposition of D into partitions, where at each
level � from 0 to m, there are 2� partitions, denoted by array
P�,0, . . . , P�,2�−1. Figure5 illustrates the hierarchical domain
partitioning for m = 4.

Each interval s ∈ S is assigned to the smallest set of
partitions from all levels which collectively define s. It is not
hard to show that s will be assigned to at most two partitions
per level. For example, in Fig. 5, interval [5, 9] is assigned to
one partition at level � = 4 and two partitions at level � = 3.
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ALGORITHM 1: Assignment of an interval to parti-
tions
Input : HINT index H, interval s
Output : updated H after indexing s

1 a ← s.st ; b ← s.end; 	 set masks to s endpoints
2 � ← m; 	 start at the bottom-most level
3 while � ≥ 0 and a ≤ b do
4 if last bit of a is 1 then
5 add s to H.P�,a ; 	 update partition
6 a ← a + 1;

7 if last bit of b is 0 then
8 add s to H.P�,b; 	 update partition
9 b ← b − 1;

10 a ← a ÷ 2; b ← b ÷ 2; 	 cut-off last bit
11 � ← � − 1; 	 repeat for previous level

Fig. 5 Hierarchical partitioning and assignment of [5,9]

The assignment procedure is described by Algorithm 1. In a
nutshell, for an interval [a, b], starting from the bottom-most
level �, if the last bit of a (resp. b) is 1 (resp. 0), we assign
the interval to partition P�,a (resp. P�,b) and increase a (resp.
decrease b) by one. We then update a, b by cutting-off their
last bits (i.e., integer division by 2, or bitwise right-shift). If,
at the next level, a > b holds, indexing [a, b] is done.

3.1.1 Query evaluation

A selection query q can be evaluated by finding at each
level the partitions that overlap with q. Specifically, the
partitions that overlap with the query interval q at level
� are partitions P�,pre f i x(�,q.st) to P�,pre f i x(�,q.end), where
pre f i x(k, x) denotes the k-bit prefix of integer x . We call
these partitions relevant to the query q. All intervals in the
relevant partitions are guaranteed to overlap with q and inter-
vals in none of these partitions cannot possibly overlap with
q. However, since the same interval s may exist in multi-
ple partitions that overlap with a query, s may be reported
multiple times in the query result.

We propose a technique that avoids the production and
therefore, the need for elimination of duplicates and, at the
same time, minimizes the number of data accesses. For this,
we divide the intervals in each partition P�,i into two groups:
originals PO

�,i and replicas P
R
�,i . Group PO

�,i contains all inter-
vals s ∈ P�,i that begin at P�,i , i.e., pre f i x(�, s.st) = i .
Group PR

�,i contains all intervals s ∈ P�,i that begin before

ALGORITHM 2: Searching HINT
Input : HINT index H, query interval q
Output : set R of all intervals that overlap with q

1 R ← ∅;
2 foreach level � in H do
3 p ← pre f i x(�, q.st); 	 1st relevant partition

4 R ← R ∪ {s.id|s ∈ H.PO
�,p ∪ H.PR

�,p}
5 while p < pre f i x(�, q.end) do
6 p ← p + 1; 	 next relevant partition

7 R ← R ∪ {s.id|s ∈ H.PO
�,p}

8 return R;

Fig. 6 Accessed partitions for query [5,9]

P�,i , i.e., pre f i x(�, s.st) �= i . 2 Each interval is added as
original in only one partition of HINT. For example, interval
[5, 9] in Fig. 5 is added to PO

4,5, P
R
3,3, and PR

3,4.
Given a query q, at each level � of the index, we report

all intervals in the first relevant partition P�, f (i.e., PO
�, f ∪

PR
�, f ). Then, for every other relevant partition P�,i , i > f , we

report all intervals in PO
�,i and ignore PR

�,i . This guarantees
that no result is missed and no duplicates are produced. The
reason is that each interval s will appear as original in just
one partition; hence, reporting only originals cannot produce
any duplicates. At the same time, all replicas PR

�, f in the
first partitions per level � that overlap with q begin before q
and overlap with q, so they should be reported. On the other
hand, replicas PR

�,i in subsequent relevant partitions (i > f )
contain intervals, which are either originals in a previous
partition P�, j , j < i or replicas in PR

�, f , so, they can safely
be skipped. Algorithm 2 describes the search algorithm using
HINT.

For example, consider the hierarchical partitioning of
Fig. 6 and a query interval q = [5, 9]. The binary represen-
tations of q.st and q.end are 0101 and 1001, respectively.
The relevant partitions at each level are shown in bold (blue)
and dashed (red) lines and can be determined by the cor-
responding prefixes of 0101 and 1001. At each level �, all

2 Whether an interval s ∈ P�,i is assigned to PO
�,i or P

R
�,i is determined

at insertion time (Algorithm 1). At the first time Line 5 is executed, s
is added as an original and in all other cases as a replica. If Line 5 is
never executed, then s is added as original the only time that Line 8 is
executed.
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intervals (both originals and replicas) in the first partitions
P�, f (bold/blue) are reported while in the subsequent parti-
tions (dashed/red), only the original intervals are.

Discussion The version of HINT described above finds
all query results, without any comparisons. Hence, in each
partition P�,i , we only have to keep the ids of the intervals
that are assigned to P�,i and do not have to store/replicate
the interval endpoints. Further, the relevant partitions at each
level are computed by fast bit-shifting operations which are
comparison-free. Under this, we expect a pipelined execu-
tion as CPU branchmispredictions are reduced. To useHINT
for arbitrary integer domains, we should first normalize all
interval endpoints by subtracting the minimum endpoint, in
order to convert them to values in a [0, 2m − 1] domain (the
same transformation should be applied on the queries). If the
required m is very large, we can index the intervals based
on their m-bit prefixes and support approximate search on
discretized data. Approximate search can also be applied on
intervals in a real-valued domain, after rescaling and dis-
cretization in a similar way.

3.2 HINTm: indexing arbitrary intervals

We now present a generalized version of HINT, denoted
by HINTm , which can be used for intervals in arbitrary
domains. HINTm uses a hierarchical domain partitioning
with m + 1 levels, based on a [0, 2m − 1] domain D; each
raw interval endpoint is mapped to a value in D, by linear
rescaling. The mapping function f (R → D) is f (x) =
� x−min(x)
max(x)−min(x) · (2m − 1)�, where min(x) and max(x) are

the minimum and maximum interval endpoints in the dataset
S, respectively. Each raw interval [s.st, s.end] is mapped
to interval [ f (s.st), f (s.end)]. The mapped interval is then
assigned to at most two partitions per level in HINTm , using

Algorithm 1.
For the ease of presentation, we will assume that the raw

interval endpoints take values in [0, 2m′ −1], wherem′ > m,
which means that the mapping function f simply outputs the
m most significant bits of its input. As an example, assume
that m = 4 and m′ = 6. Interval [21, 38]

(=[0b010101, 0b100110]) is mapped to interval [5, 9]
(=[0b0101, 0b1001]) and assigned to partitions P4,5, P3,3,
and P3,4, as shown in Fig. 5.

So, in contrast to HINT, the set of partitions whereto an
interval s is assigned in HINTm does not define s, but the
smallest interval in the [0, 2m − 1] domain D, which covers
s. As in HINT, at each level �, we divide each partition P�,i

to PO
�,i and PR

�,i , to avoid duplicate results.

3.2.1 Query evaluation using HINTm

For a query q, simply reporting all intervals in the relevant
partitions at each level (as in Algorithm 2) would produce

Fig. 7 Avoiding redundant comparisons in HINTm

false positives. Instead, comparisons to the query endpoints
may be required for the first and the last partition at each
level that overlap with q. Specifically, we can consider each
level of HINTm as a 1D-grid (see Sect. 2) and go through
the partitions at each level � that overlap with q. For the first
partition P�, f , we verify whether s overlaps with q for each
interval s ∈ PO

�, f and each s ∈ PR
�, f . For the last partition P�,l ,

we verifywhether s overlapswithq for each interval s ∈ PO
�,l .

For each partition P�,i between P�, f and P�,l , we report all
s ∈ PO

�,i without any comparisons. As an example, consider
the HINTm index and the query interval q shown in Fig. 7.
The identifiers of the relevant partitions to q are shown in the
figure (and also some indicative intervals that are assigned
to these partitions). At level m = 4, we have to perform
comparisons for all intervals in the first relevant partitions
P4,5. In partitions P4,6,…,P4,8, we just report the originals
in them as results, while in partition P4,9 we compare the
start points of all originals with q, before we can confirm
whether they are results or not. We can simplify the overlap
tests at the first and the last partition of each level � based on
the following:

Lemma 1 At every level �, each s ∈ PR
�, f is a query result

iff q.st ≤ s.end. If l > f , each s ∈ PO
�,l is a query result iff

s.st ≤ q.end.

Proof For the first relevant partition P�, f at each level �, for
each replica s ∈ PR

�, f , s.st < q.st , so q.st ≤ s.end suffices
as an overlap test. For the last partition P�,l , if l > f , for
each original s ∈ PO

�, f , q.st < s.st , so s.st ≤ q.end suffices
as an overlap test. ��

3.2.2 Avoiding redundant comparisons

One of ourmost important findings in this study and a power-
ful feature of HINTm is that at most levels, it is not necessary
to do comparisons at the first and/or the last partition. For
instance, in the previous example, we do not have to perform
comparisons for partition P3,4, since any interval assigned
to P3,4 should overlap with P4,8 and the interval spanned by
P4,8 is covered by q. This means that the start point of all
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intervals in P3,4 is guaranteed to be before q.end (which is
inside P4,9). In addition, observe that for any relevant parti-
tion which is the last partition at an upper level and covers
P3,4 (i.e., partitions {P2,2, P1,1, P0,0}),we do not have to con-
duct the s.st ≤ q.end tests as intervals in these partitions are
guaranteed to start before P4,9. The lemma below formalizes
these observations:

Lemma 2 If the first (resp. last) relevant partition for a query
q at level � (� < m) starts (resp. ends) at the same value as
the first (resp. last) relevant partition at level � + 1, then for
every first (resp. last) relevant partition Pv, f (resp. Pv,l ) at
levels v ≤ �, each interval s ∈ Pv, f (resp. s ∈ Pv,l ) satisfies
s.end ≥ q.st (resp. s.st ≤ q.end).

Proof Let P.st (resp. P.end) denote the first (resp. last)
domain value of partition P . Consider the first relevant par-
tition P�, f at level � and assume that P�, f .st = P�+1, f .st .
Then, for every interval s ∈ P�, f , s.end ≥ P�+1, f .end,
otherwise s would have been allocated to P�+1, f instead
of P�, f . Further, P�+1, f .end ≥ q.st , since P�+1, f is the
first partition at level � + 1 which overlaps with q. Hence,
s.end ≥ q.st . Moreover, for every interval s ∈ Pv, f with
v < �, s.end ≥ P�+1, f .end holds, as interval Pv, f covers
interval P�, f ; so, we also have s.end ≥ q.st . Symmetri-
cally, we prove that if P�,l .end = P�+1,l .end, then for each
s ∈ Pv,l , v ≤ �, s.st ≤ q.end. ��

We next focus on how to rapidly check the condition of
Lemma 2. Essentially, if the last bit of the offset f (resp.
l) of the first (resp. last) partition P�, f (resp. P�,l ) relevant
to the query at level � is 0 (resp. 1), then the first (resp.
last) partition at level �− 1 above satisfies the condition. For
example, in Fig. 7, consider the last relevant partition P4,9 at
level 4. The last bit of l = 9 is 1; so, the last partition P3,4 at
level 3 satisfies the condition and we do not have to perform
comparisons in the last partitions at level 3 and above.

Algorithm 3 is a pseudocode for HINTm search. The
algorithm accesses all index levels, bottom-up. It uses two
auxiliary flags comp f irst and complast to mark whether it
is necessary to perform comparisons at the current level (and
all levels above it) at the first and the last partition, respec-
tively, according to the discussion in the previous paragraph.
At each level �, we find the offsets of the relevant partitions to
the query, based on the �-prefixes of q.st and q.end (Line 4).
For the first position f = pre f i x(q, st), the partitions hold-
ing originals and replicas PO

�, f and PR
�, f are accessed. The

algorithmfirst checkswhether f = l, i.e., the first and the last
partitions coincide. In this case, if comp f irst and complast
are set, thenweperformall comparisons in PO

�, f and apply the

first observation in Lemma 1 to PR
�, f . Else, if only complast

is set, we can safely skip the q.st ≤ s.end comparisons; if
only comp f ist is set, regardless whether f = l, we just per-
formq.st ≤ s.end comparisons to both originals and replicas

ALGORITHM 3: Searching HINTm

Input : HINTm index H, query interval q
Output : set R of intervals that overlap with q

1 comp f irst ← T RUE ; complast ← T RUE ;
2 R ← ∅;
3 for � = m to 0 do 	 bottom-up
4 f ← pre f i x(�, q.st); l ← pre f i x(�, q.end);
5 for i = f to l do
6 if i = f then 	 1st relevant partition
7 if i = l and comp f irst and complast then
8 R ← R ∪ {s.id|s ∈ H.PO

�,i , q.st ≤
s.end ∧ s.st ≤ q.end};

9 R ← R ∪ {s.id|s ∈ H.PR
�,i , q.st ≤ s.end};

10 else if i = l and complast then
11 R ← R ∪ {s.id|s ∈ H.PO

�,i , s.st ≤ q.end};
12 R ← R ∪ {s.id|s ∈ H.PR};
13 else if comp f irst then
14 R ← R ∪ {s.id|s ∈ H.PO

�,i ∪ H.PR
�,i , q.st ≤

s.end};
15 else
16 R ← ‘R ∪ {s.id|s ∈ H.PO

�,i ∪ H.PR
�,i };

17 else if i = l and complast then 	 last
partition, l > f

18 R ← R ∪ {s.id|s ∈ H.PO
�,i , s.st ≤ q.end};

19 else 	 in-between or last (l > f ), no
comparisons

20 R ← R ∪ {s.id|s ∈ H.PO
�,i };

21 if f mod 2 = 0 then 	 last bit of f is 0
22 comp f irst ← FALSE ;

23 if l mod 2 = 1 then 	 last bit of l is 1
24 complast ← FALSE ;

25 return R;

in the first partition. If neither comp f irst nor complast are
set, we just report all intervals in the first partition as results.
If we are at the last partition P�,l and l > f (Line 17) then
we just examine PO

�,l and apply just the s.st ≤ q.end test
for each interval there, according to Lemma 1. Last, for all
partitions in-between the first and the last, we simply report
all original intervals there.

3.2.3 Complexity analysis

Let n be the number of intervals inS. Assume that the domain
is [0, 2m′ −1], withm′ > m. To analyze the space complexity
of HINTm , we first prove that:

Lemma 3 The total number of intervals assigned at the low-
est level m of HINTm is expected to be n.

Proof Each interval s ∈ S will go to zero, one, or two parti-
tions at levelm, based on the bits of s.st and s.end at position
m (see Algorithm 1); on average, s will go to one partition.

��
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Using Algorithm 1, when an interval is assigned to a par-
tition at a level �, the interval is truncated (i.e., shortened)
by 2m

′−�. Based on this, we analyze the space complexity of
HINTm as follows.

Theorem 1 Let λ be the average length of intervals in input
collection S. The space complexity of HINTm is O(n ·
log(2log λ−m′+m + 1)).

Proof Based on Lemma 3, each s ∈ S will be assigned on
average to one partition at level m and will be truncated by
2m

′−m . Following Algorithm 1, at the next level m − 1, s is
also be expected to be assigned to one partition (see Lemma
3) and truncated by 2m

′−m+1, and so on, until the entire inter-
val is truncated (condition a ≤ b is violated at Line 3 of
Algorithm 1). Hence, we are looking for the number of lev-
els whereto each s will be assigned, or for the smallest k for
which 2m

′−m + 2m
′−m+1 + · · · + 2m

′−m+k−1 ≥ λ. Solving
the inequality gives k ≥ log(2log λ−m′+m + 1) and the space
complexity of HINTm is O(n · k). ��

For the computational cost of queries in terms of con-
ducted comparisons, in the worst case, O(n) intervals are
assigned to the first relevant partition Pm, f at level m and
O(n) comparisons are required. To estimate the expected
cost of query evaluation in terms of conducted comparisons,
we assume a uniform distribution of intervals to partitions
and random query intervals.

Lemma 4 The expected number of HINTm partitions for
which we have to conduct comparisons is four.

Proof At the last level of the index m, we definitely have
to do comparisons in the first and the last partition (which
are different in the worst case). At level m − 1, for each of
the first and last partitions, we have a 50% chance to avoid
comparisons, due to Lemma 2. Hence, the expected number
of partitions for which we have to perform comparisons at
levelm−1 is 1. Similarly, at levelm−2 each of the yet active
first/last partitions has a 50% chance to avoid comparisons.
Overall, for the worst-case conditions, where m is large and
q is long, the expected number of partitions, for which we
need to perform comparisons is 2+1+0.5+0.25+· · · = 4.

��
Theorem 2 The expected number of comparisons during
query evaluation over HINTm is O(n/2m).

Proof For each query, we conduct comparisons at least in
the first and the last relevant partitions at level m. The
expected number of intervals, in each of these two partitions,
is O(n/2m), considering Lemma 3 and assuming a uniform
distribution of the intervals in the partitions. In addition, due
toLemma4, the number of expected additional partitions that
require comparisons is 2 and each of these two partitions is

expected to also hold at most O(n/2m) intervals, by Lemma
3 on the levels abovem and using the truncated intervals after
their assignment to level m (see Algorithm 1). Hence, q is
expected to be compared with O(n/2m) intervals in total and
the cost of each such comparison is O(1). ��

In the worst case, all data intervals fall at the top-most
level � = 0 and the queries fall inside [2m − 2, 2m − 1]; in
this (extreme) case, query cost is O(n), as all intervals are
compared with each query.

3.3 Settingm

As shown in Sect. 3.2.3, the space requirements and the
search performance of HINTm depend on the value of m.
For large values of m, the cost of accessing comparison-free
results will dominate the computational cost of comparisons.
We conduct an analytical study for estimating mopt : the
smallest value ofm, which is expected to result in aHINTm of
search performance close to the best possible, while achiev-
ing the lowest possible space requirements. Our study uses
simple statistics namely, the number of intervals n = |S|, the
mean length λs of data intervals and the mean length λq of
query intervals.We assume that the endpoints and the lengths
of intervals and queries are uniformly distributed.

The overall cost of query evaluation consists of (1) the cost
for determining the relevant partitions per level, denoted by
Cp, (2) the cost of conducting comparisons between data
intervals and the query, denoted by Ccmp, and (3) the cost of
accessing query results in the partitions for which we do not
have to conduct comparisons, denoted by Cacc. Cost Cp is
negligible, as the partitions are determined by a small num-
ber m of bit-shifting operations. To estimate Ccmp, we need
to estimate the number of intervals in the partitions whereat
we need to conduct comparisons and multiply this by the
expected cost βcmp per comparison. To estimate Cacc, we
need to estimate the number of intervals in the correspond-
ing partitions and multiply this by the expected cost βacc of
(sequentially) accessing and reporting one interval. βcmp and
βacc are machine-dependent and can easily be estimated by
experimentation.

According to Algorithm 3, unless λq is smaller than the
length of a partition at level m, there will be two partitions
that require comparisons at level m, one partition at level
m − 1, etc. with the expected number of partitions being
at most four (see Lemma 4). Hence, we can assume that
Ccmp is practically dominated by the cost of processing two
partitions at the lowest level m. As each partition at level
m is expected to have n/2m intervals (see Lemma 3), we
have Ccmp = βcmp · n/2m . Then, the number of accessed
intervals for which we expect to apply no comparisons is
|Q| − 2 · n/2m , where |Q| is the total number of expected
query results. Under this, we have Cacc = βacc · (|Q| − 2 ·
n/2m). We can estimate |Q| using the selectivity analysis for
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(multidimensional) intervals and queries in [31] as |Q| =
n · λs+λq

�
, where � is the length of the entire domain with all

intervals in S (i.e., � = max∀s∈S s.end − min∀s∈S s.st).
With Ccmp and Cacc, we now estimate mopt . First, we

gradually increase m from 1 to its max value m′ (determined
by �), and compute the expected cost Ccmp + Cacc. For
m = m′, HINTm corresponds to the comparison-free HINT
with the lowest expected cost. Then, we select as mopt the
lowest value of m for which Ccmp + Cacc converges to the
cost of the m = m′ case.

3.4 Updates

We handle insertions to an existing HINT/HINTm by calling
Algorithm 1 for each new interval s. Small adjustments are
needed forHINTm to add s to the originals division at the first
partition assignment, i.e., to PO

�,a or P
O
�,b, and to the replicas

division for every other partition, i.e., to PR
�,a or P

R
�,b. Further,

we handle deletions using tombstones, similarly to previous
studies [25, 30] and recent indexing approaches [19]. Given
an interval s for deletion, we first search the index to locate
all partitions that contain s (both as original and as replica)
and then, replace s.id by a special “tombstone” id to signal
the logical deletion. Each insertion costs O(m) time as an
interval is added to up to 2m partitions, and finding the par-
titions at each level costs O(1) time. By running the same
algorithm, we find the partitions that include an interval to
be deleted in O(m) time. Last, we handle modifications to an
existing interval, via a deletion and a consecutive insertion.

4 Optimizing HINTm

In this section, we discuss optimization techniques, which
greatly improve the performance of HINTm (and HINT) in
practice. First, we show how to reduce the number of parti-
tions inHINTm where comparisons are performed andhow to
avoid accessing unnecessary data.Next,we showhow to han-
dle very sparse or skewed data at each level of HINT/HINTm .
Another optimization is decoupling the storage of the interval
ids with the storage of interval endpoints in each partition.
Finally, we revisit updates under the prism of these optimiza-
tions.

4.1 Subdivisions and space decomposition

Recall that, at each level � of HINTm , every partition P�,i is
divided into PO

�,i (holding originals) and PR
�,i (holding repli-

cas). We propose to further divide each PO
�,i into POin

�,i and

P
Oaf t
�,i , so that POin

�,i (resp. P
Oaf t
�,i ) holds the intervals from

Fig. 8 Partition subdivisions in HINTm (level � = 2)

POin
�,i that end inside (resp. after) partition P�,i . Similarly,

each PR
�,i is divided into PRin

�,i and P
Ra f t
�,i .

Queries that overlap with multiple partitions Consider a
query q, which overlaps with a sequence of more than one
partitions at level �. As already discussed, if we have to con-
duct comparisons in the first such partition P�, f , we should
do so for all intervals in PO

�, f and PR
�, f . By subdividing PO

�, f

and PR
�, f , we get the following lemma:

Lemma 5 If P�, f �= P�,l (1) each interval s in POin
�, f ∪ PRin

�, f
overlaps with q iff s.end ≥ q.st; and (2) all intervals s in

P
Oa f t
�, f and P

Ra f t
�, f surely overlap with q.

Proof Follows directly from the fact that q starts inside P�, f

but ends after P�, f . ��
Hence, we need just one comparison for each interval in

POin
�, f ∪PRin

�, f ,whereaswecan report all intervals P
Oa f t
�, f ∪P

Ra f t
�, f

as query results with no comparisons. As already discussed,
for all partitions P�,i between P�, f and P�,l , we just report

intervals in POin
�,i ∪ P

Oaf t
�,i as results, with no comparisons,

whereas for the last partition P�,l , we perform one compari-

son per interval in POin
�,l ∪ P

Oaf t
�,l .

Queries that overlap with a single partition If the query
q overlaps only one partition P�, f at level �, we can use
following lemma to minimize the necessary comparisons:

Lemma 6 If P�, f = P�,l , then

– each interval s in POin
�, f overlaps with q iff s.st ≤ q.end∧

q.st ≤ s.end,

– each interval s in P
Oa f t
�, f overlaps with q iff s.st ≤ q.end,

– each interval s in PRin
�, f overlaps with q iff s.end ≥ q.st ,

– all intervals in P
Ra f t
�, f overlap with q.

Proof All intervals s ∈ P
Oaf t
�, f end after q, so s.st ≤ q.end

suffices as an overlap test. All intervals s ∈ PRin
�, f start before

q, so s.st ≤ q.end suffices as an overlap test. All intervals

s ∈ P
Ra f t
�, f start before and end after q, so they are guaranteed

results. ��
Overall, the subdivisions help us to minimize the number

of intervals in each partition, forwhichwe have to apply com-
parisons. Figure8 shows the subdivisions which are accessed
by query q at level � = 2 of a HINTm index. In partition
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Table 3 Necessary data and beneficial sort orders

Subdivision Beneficial sorting Necessary data

POin
�,i By s.st or by s.end s.id, s.st, s.end

P
Oa f t
�,i By s.st s.id, s.st

P Rin
�,i By s.end s.id, s.end

P
Ra f t
�,i No sorting s.id

P�, f = P2,1, all four subdivisions are accessed, but com-

parisons are needed only for intervals in POin
2,1 and PRin

2,1 . In

P2,2, only the originals (in POin
2,2 and P

Oaf t
2,2 ) are accessed and

reported without any comparisons. Finally, in P�,l = P2,3,

only the originals (in POin
2,3 and P

Oaf t
2,3 ) are accessed and com-

pared to q.

4.1.1 Sorting the intervals in each subdivision

We can keep the intervals in each subdivision sorted, in order
to reduce the number of comparisons for queries that access
them. For example, let us examine the last partition P�,l that
overlaps with a query q at a level �. If the intervals s in POin

�,l
are sorted on their start endpoint (i.e., s.st), we can simply
access and report the intervals until the first s ∈ POin

�,l , such
that s.st > q.end. Or, we can perform binary search to find
the first s ∈ POin

�,l , such that s.st > q.end and then scan
and report all intervals before s. Table 3 (second column)
summarizes the sort orders for each of the four subdivisions
of a partition that can be beneficial in query evaluation. For a
subdivision POin

�,i , intervals may have to be compared based
on their start point (if P�,i = P�, f ), or basedon their endpoint
(if P�,i = P�,l ), or based on both points (if P�,i = P�, f =
P�,l ).We choose to sort based on s.st to accommodate two of

these three cases. For a subdivision P
Oa f t
�,i , intervalsmay have

to be compared only based on their start point (if P�,i = P�,l ).
For a subdivision PRin

�,i , intervals may have to be compared
only based on their end point (if P�,i = P�, f ). Last, for a

subdivision P
Ra f t
�,i , there is never any need to compare the

intervals, so, no order provides any benefit. Overall, sorting
will reduce the expected number of comparisons per query

for P
Oaf t
�,l and PRin

�,l to O(log(n/2m)), but the expected cost

for POin
�,l remains O(n/2m). Under this, the worst-case query

cost remains O(n + K ), where K is the number of query
results, derived from Theorem 2.

4.1.2 Storage optimization

So far, we have assumed that each interval s is stored in the
partitionswhereto s is assigned as a triplet 〈s.id, s.st, s.end〉.
However, if we split the partitions into subdivisions, we do

not need to keep all information of the intervals in them.
Specifically, for each subdivision POin

�,i , we may need to use

s.st and/or s.end for each interval s ∈ POin
�,i , while for each

subdivision P
Oaf t
�,i , we may need to use s.st for each s ∈

POin
�,i , but we will never need s.end. From the intervals s

of each subdivision PRin
�,i , we may need s.end, but we will

never use s.st . Finally, for each subdivision P
Ra f t
�,i , we just

have to keep the s.id identifiers of the intervals. Table 3
(third column) summarizes the data thatwe need to keep from
each interval in the subdivisions of each partition. Since each
interval s is stored as original just once in the entire index, but
as replica in possibly multiple partitions, space can be saved
by storing only the necessary data, especially if the intervals
spanmultiple partitions.Note that evenwhenwe do not apply
the subdivisions, but just use PO

�,i and PR
�,i (as suggested in

Sect. 3.2), we do not need to store the start points s.st of all
intervals in PR

�,i , as they are never used in comparisons.

4.2 Handling data skewness and sparsity

Data skewness and sparsity may cause many partitions to
be empty, especially at the lowest levels of HINT (i.e., large
values of �). Recall that a query accesses a sequence of mul-
tiple PO

�,i partitions at each level �. Since the intervals are
physically distributed in the partitions, this results into the
unnecessary accessing of empty partitions and may cause
cache misses. We propose a storage organization where all
PO

�,i divisions at the same level � are merged into a sin-

gle table T O
� and an auxiliary index is used to find each

non-empty division. 3 The auxiliary index locates the first
non-empty partition, which is greater than or equal to the
�-prefix of q.st (i.e., via binary search or a binary search
tree). From thereon, the nonempty partitions which over-
lap with the query interval are accessed sequentially and
distinguished with the help of the auxiliary index. Hence,
the contents of the relevant PO

�,i ’s to each query are always
accessed sequentially. Figure9(a) shows an example at level
� = 4 of HINTm . From the total 2� = 16 PO partitions at
that level, only 5 are nonempty (shown in gray at the top
of the figure): PO

4,1, P
O
4,5, P

O
4,6, P

O
4,8, P

O
4,13. All 9 intervals in

them (sorted by start point) are unified in a single table T O
4 as

shown at the bottom of the figure (the binary representations
of the interval endpoints are shown). At the moment, ignore
the ids column for T O

4 at the right of the figure. The sparse
index for T O

4 has one entry per nonempty partition pointing
to the first interval in it. For the query in the example, the
index is used to find the first nonempty partition PO

4,5, for

3 For simplicity, we discuss this organization when a partition P�,i is
divided into PO

�,i and P
R
�,i ; the same idea canbe straightforwardly applied

also when the four subdivisions discussed in Sect. 4.1 are used.
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Fig. 9 Storage and indexing optimizations

which the id is greater than or equal to the 4-bit prefix 0100
of q.st . All relevant non-empty partitions PO

4,5, P
O
4,6, P

O
4,8 are

accessed sequentially from T O
4 , until the position of the first

interval of PO
4,13.

Searching for the first partition PO
�, f that overlapswith q at

each level can be quite expensive when numerous nonempty
partitions exist. To alleviate this issue, we add to the auxiliary
index, a link from each partition PO

�,i to the partition PO
�−1, j

at the level above, such that j is the smallest number greater
than or equal to i÷2, for which partition PO

�−1, j is not empty.
Hence, instead of performing binary search at level � − 1,
we use the link from the first partition PO

�, f relevant to the
query at level � and (if necessary) apply a linear search back-
wards from the pointed partition PO

�−1, j to identify the first

non-empty partition PO
�−1, f that overlaps with q. Figure9(b)

shows an example, where each nonempty partition at level �
is linked with the first nonempty partition with greater than
or equal prefix at the level �−1 above. Given query example
q, we use the auxiliary index to find the first nonempty parti-

tion PO
4,5 which overlaps with q and also sequentially access

PO
4,6 and PO

4,8. Then, we follow the pointer from PO
4,5 to PO

3,4
to find the first nonempty partition at level 3, which overlaps
with q. We repeat this to get partition PO

2,3 at level 2, which,
however, is not guaranteed to be the first one overlapping
with q, so we go backwards to PO

2,3.

4.3 Reducing cachemisses

At most levels of HINTm , no comparisons are conducted
and the only operations are processing the interval ids which
qualify the query. Also, even for the levels � where com-
parisons are required, these are only restricted to the first
and the last relevant partitions PO

�, f and PO
�,l and no compar-

isons are needed for the partitions in-between. Summing up,
when accessing any (sub-)partition for which no comparison
is required, we do not need any information about the inter-
vals, except for their ids. Hence, in our implementation, for
each (sub-)partition, we store the ids of all intervals in it in
a dedicated array (the ids column) and the interval endpoints
(wherever necessary) in a different array.4 If we need the
id of an interval that qualifies a comparison, we can access
the corresponding position of the ids column. This storage
organization greatly improves search performance by reduc-
ing the cache misses, because for the intervals that do not
require comparisons, we only access their ids and not their
interval endpoints. This optimization is orthogonal to and
applied in combination with the strategy in Sect. 4.2, i.e.,
we store all PO divisions at each level � in a single table
T O

� , which is decomposed to a column that stores the ids
and another table for the endpoint data of the intervals. We
exemplify the ids column in Fig. 9(a). If, for a sequence of
partitions at a level, we do not have to perform any com-
parisons, we just access the sequence of the interval ids that
are part of the answer, which is implied by the position of
the first such partition (obtained via the auxiliary index). In
this example, all intervals in PO

4,5 and PO
4,6 are guaranteed to

be query results without any comparisons and they can be
sequentially accessed from the ids column without having
to access the endpoints of the intervals. The auxiliary index
guides the search by identifying and distinguishing between
partitions for which comparisons should be conducted (e.g.,
PO
4,8) and those for which they are not necessary.

4.4 Updates

A version of HINTm that uses all techniques from Sects. 4.1,
4.1.1, 4.1.2,4.2, is optimized for query operations.Under this,

4 Similar to the previous section, this storage optimization can be
straightforwardly employed also when a partition is divided into POin

�,i ,

P
Oaf t
�,i , PRin

�,i , P
Ra f t
�,i .

123



HINT: a hierarchical interval index for Allen relationships

Table 4 Characteristics of real
datasets

BOOKS WEBKIT TAXIS GREEND

Cardinality 2,312,602 2,347,346 172,668,003 110,115,441

Size (MBs) 27.8 28.2 2072 1321

Domain (s) 31,507,200 461,829,284 31,768,287 283,356,410

Min. duration (s) 1 1 1 1

Max. duration (s) 31,406,400 461,815,512 2,148,385 59,468,008

Avg. duration (s) 2,201,320 33,206,300 758 15

Avg. duration (%) 6.98 7.19 0.0024 0.000005

the index cannot efficiently support individual updates, i.e.,
new intervals inserted one-by-one. Dealing with updates in
batcheswill be a better fit. This is a commonpractice for other
update-unfriendly indices, e.g., the inverted index in IR. Yet,
for mixedworkloads (i.e., with both queries and updates), we
adopt a hybrid setting where a delta index is maintained to
digest the latest updates as discussed in Sect. 3.4,5 and a fully
optimized HINTm , which is periodically updated in batches,
holds older data supporting deletions with tombstones. Both
indices are probed upon querying.

5 Experimental analysis

We compare our hierarchical indexing, detailed in Sects. 3
and 4 against the interval tree [18]6, the timeline index [21],
the (adaptive) period index [4], and a uniform 1D-grid. All
indices were implemented in C++ and compiled using gcc
(v4.8.5) with -O3.7 The tests ran on a dual Intel(R) Xeon(R)
CPUE5-2630 v4 at 2.20GHzwith 384GBs ofRAM, running
CentOS Linux.

5.1 Data and queries

We used 4 collections of real intervals, which have also been
used in previous works; Table 4 summarizes their character-
istics. BOOKS [8] contains the periods of time in 2013 when
books were lent out by Aarhus libraries (https://www.odaa.
dk). WEBKIT [8, 9, 15, 33] records the file history in the git
repository of the Webkit project from 2001 to 2016 (https://
webkit.org); the intervals indicate the periods during which
a file did not change. TAXIS [10] stores the time periods of
taxi trips (pick-up and drop-off timestamps) fromNYCity in
2013 (https://www1.nyc.gov/site/tlc/index.page). GREEND
[11, 28] records time periods of power usage from house-
holds in Austria and Italy from January 2010 to October

5 Small adjustments are applied for the POin
l,i , P

Oaf t
l,i , PRin

l,i , P
Ra f t
l,i sub-

divisions and the storage optimizations.
6 Code from https://github.com/ekg/intervaltree.
7 Source code available in https://github.com/pbour/hint.

Table 5 Parameters of synthetic datasets

Parameter Values (Defaults in bold)

Domain length 32M, 64M,128M, 256M, 512M

Cardinality 10M, 50M, 100M, 500M, 1B

α (Interval length) 1.01, 1.1, 1.2, 1.4, 1.8

σ (Interval position) 10K, 100K, 1M, 5M, 10M

2014. BOOKS and WEBKIT contain around 2M intervals
each, which are quite long on average; TAXIS and GREEND
have over 100M short intervals.

We also generated synthetic collections to simulate dif-
ferent cases for the lengths and the skewness of the input
intervals. Table 5 shows the construction parameters for the
synthetic datasets and their default values. The domain of the
datasets ranges from 32M to 512M, which requires index
level parameter m to range from 25 to 29 for a comparison-
free HINT (similar to the real datasets). The cardinality
ranges from 10M to 1B. The interval lengths were generated
using the random.zipf(α) in the numpy library. They
follow a zipfian distribution according to the p(x) = x−a

ζ(a)

probability density function, where ζ is the Riemann Zeta
function. A small value of α results in most intervals being
relatively long, while a large value results in the great major-
ity of intervals having length 1. We generated the positions
of the middle points of the intervals from a normal distri-
bution centered at the middle point μ of the domain. So,
the middle point of each interval is generated using numpy’s
random.normalvariate(μ, σ ). The greater the value
of σ , the more spread the intervals are in the domain.

On the real datasets, we used queries uniformly distributed
in the domain.On the synthetic, the querypositions follow the
distribution of the data. In both, the query extentwas fixed to a
percentage of the domain size (default 0.1%).At each test, we
ran 10K random queries to measure the overall throughput.
Measuring query throughput instead of average query time
makes sense in applications that manage huge volumes of
interval data and offer a search interface to billions of users
simultaneously (e.g., public historical databases).
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Fig. 10 Optimizing HINTm : query evaluation approaches

5.2 Optimizing HINT/HINTm

In our first set of tests, we study the best setting for our
hierarchical indexing. We compare the effectiveness of the
two evaluation approaches in Sect. 3.2.1 and investigate the
impact of the optimizations in Sect. 4.

5.2.1 Query evaluation approaches on HINTm

We compare the straightforward top-down approach for eval-
uating queries on HINTm that uses solely Lemma 1, against
the bottom-up illustrated in Algorithm 3 which additionally
employs Lemma 2. Figure10 reports the throughput of each
approach on BOOKS and TAXIS, while varying the number
of levelsm in the index.We omit the results forWEBKIT and
GREEND that follow identical trend to BOOKS and TAXIS,
respectively. We observe that the bottom-up approach signif-
icantly outperforms top-down for BOOKS while for TAXIS,
this performance gap is very small. As expected, bottom-
up performs at its best for inputs that contain long intervals
which are indexed on high levels of the index, i.e., the inter-
vals in BOOKS. In contrast, the intervals in TAXIS are very
short and so, indexed at the bottom level of HINTm , while
the majority of the partitions at the higher levels are empty.
Hence, top-down conducts no comparisons at higher levels.
For the rest of our tests, HINTm uses the bottom-up approach.

5.2.2 Subdivisions and space decomposition

We next evaluate the subdivisions and space decomposi-
tion optimizations described in Sect. 4.1 for HINTm . Note
that these techniques are not applicable to our comparison-
free HINT as the index stores only interval ids. Figure11
shows the effect of the optimizations onBOOKS and TAXIS,
for different values of m; similar trends were observed in
WEBKIT and GREEND, respectively. The plots include
(1) a base version of HINTm , which employs none of the
proposed optimizations, (2) subs+sort+opt, with all opti-
mizations activated, (3) subs+sort, which only sorts the
subdivisions (Sect. 4.1.1) and (4) subs+sopt, which uses only
the storage optimization for the subdivisions (Sect. 4.1.2).We
observe that the subs+sort+opt version ofHINTm is superior

Fig. 11 Optimizing HINTm : subdivisions and space decomposition

Table 6 Optimizing HINT: impact of the skewness & sparsity opti-
mization (Sect. 4.2), default parameters

Dataset Throughput (queries/s) Index size (MBs)

Original Optimized Original Optimized

BOOKS 12098 36173 3282 273

WEBKIT 947 39000 49439 337

TAXIS 2931 31027 10093 7733

GREEND 648 47038 57667 10131

to all three other versions, on all tests. Essentially, the index
benefits from the sub+sort setting only when m is small,
i.e., below 15, at the expense of increasing the index time
compared to base. In this case, the partitions contain a large
number of intervals and therefore, using binary search or
scanninguntil thefirst interval that does not overlap the query,
will save on the conducted comparisons. On the other hand,
the subs+sopt optimization significantly reduces the space
requirements of the index. As a result, the version incurs a
higher cache hit ratio and so, a higher throughput compared to
base is achieved, especially for large values ofm, i.e., higher
than 10. The subs+sort+opt version manages to combine the
benefits of both subs+sort and subs+sopt versions, i.e., high
throughput in all cases, with low space requirements. The
effect in the performance is more pronounced in BOOKS
because of the long intervals and the high replication ratio.
In view of these results, HINTm employs all optimizations
from Sect. 4.1 for the rest of our experiments.
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Fig. 12 Optimizing HINTm : impact of handling skewness & sparsity
and reducing cache misses optimizations

5.2.3 Handling data skewness & sparsity and reducing
cache misses

Table 6 tests the effect of the handling data skewness & spar-
sity optimization (Sect. 4.2) on the comparison-free version
of HINT (Sect. 3.1).8 Observe that the optimization has a
great effect on both the throughput and the size of the index
in all four real datasets, because empty partitions are effec-
tively excluded from query evaluation and from the indexing
process.

Figure12 shows the effect of either or both of the data
skewness & sparsity (Sect. 4.2) and the cache misses opti-
mizations (Sect. 4.3) on the performance of HINTm for
different values of m. In all cases, the version of HINTm

which uses both optimizations is superior to all other ver-
sions. As expected, the skewness & sparsity optimization
helps to reduce the space requirements of the index when
m is large, because there are many empty partitions in this
case at the bottom levels of the index. At the same time, the
cache misses optimization helps in reducing the number of
cache misses in all cases where no comparisons are needed.
Overall, the optimized version of H I NTm converges to its
best performance at a relatively small value of m, where the
space requirements of the index are relatively low, especially

8 The cache misses optimization (Sect. 4.3) is only applicable to
HINTm .

on the BOOKS and WEBKIT datasets which contain long
intervals.

For the rest of our experiments, HINTm employs both
optimizations and HINT the data skewness & sparsity opti-
mization. Last, by juxtaposing Table 7 with Figs. 11 and 12,
we also observe that both mopt values correspond to the part
of the plots before the index size blows, usually for m ≥ 20.

5.2.4 Tuningm

After demonstrating the merit of HINTm optimizations, we
now elaborate on how to set the value of m and on the
effectiveness of our analytical model from Sect. 3.3. As we
alreadydiscussed ourmodel is based on the intuition that asm
increases, the cost of accessing comparison-free results dom-
inates the computational cost of the comparisons. Figure13
confirms our intuition on BOOKS and TAXIS (the plots for
WEBKIT and GREEND exhibit exactly the same trend as
BOOKS and TAXIS, respectively). For different values of
m and for 10K queries, we report the overall time spend
for comparisons between data intervals and query intervals,
denoted by Ccmp, and the overall time spent to output results
with no comparisons, denoted by Cacc, i.e., the time taken
for simply accessing data intervals which are guaranteed
query results. We also include the total execution time, i.e.,
Ccmp + Cacc.

The plots clearly show the expected behavior. For small
values of m, the cost of conducting comparisons dominates
the total execution cost since the partitions at the bottom level
m of the index have large extents and numerous intervals. As
m increases, the fraction of the results collected from just
accessing the contents of partitions rises, increasing the Cacc

cost. The optimal valuesmopt (i.e., where the total execution
time is the lowest possible) occur after Cacc exceeds Ccmp.
In fact, we notice that increasing m beyond mopt roughly
eliminates the cost of comparisons (Ccmp ≈ 0) as the parti-
tions are much shorter than the queries, while the total cost
essentially equals the cost of simply accessing the intervals
from the comparison-free partitions.

To determine mopt , our model in Sect. 3.3 selects the
smallest m value for which the index converges within 3%
to its lowest estimated cost. Table 7 reports, for each real
dataset, mopt (est.) and mopt (exps), which brings the high-
est throughput in our tests. Overall, our model estimates a
value of mopt which is very close to mopt (exps). Despite
a larger gap for WEBKIT, the measured throughput for the
estimated mopt = 9 is only 5% lower than the best observed
throughput.

5.2.5 Discussion

Table 7 also shows the replication factor k of the index, i.e.,
the average number of partitions in which every interval is
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Table 7 Statistics and
parameter setting

Index Parameter BOOKS WEBKIT TAXIS GREEND

Period #levels 4 4 7 8

#coarse partitions 100 100 100 100

Timeline #Checkpoints 6000 6000 8000 8000

1D-grid #Partitions 500 300 4000 30000

HINTm mopt (est.) 9 9 16 16

mopt (exps) 10 12 17 17

Rep. factor k (est.) 6.09 8.98 1.98 1

Rep. factor k (exps) 5.13 6.07 2.14 1.0013

Avg. comp. part. 3.226 3.538 3.856 2.937

No comp. results 99.9% 99.9% 99.8% 99.3%

Fig. 13 Setting m: measured costs

stored, as predicted by our space complexity analysis (see
Theorem 1) and as measured experimentally. As expected,
the replication factor is high onBOOKS,WEBKIT due to the
large number of long intervals, and low onTAXIS, GREEND
where the intervals are very short and stored at the bottom
levels. Although our analysis uses simple statistics, the pre-
dictions are quite accurate.

The next line of the table (avg. comp. part.) shows the
average number of HINTm partitions for which comparisons
were conducted. Consistently to our analysis in Sect. 3.2.3,
all numbers are below4,whichmeans that the performance of
HINTm is very close to the performance of the comparison-
free, but space-demanding HINT. To further elaborate on the
number of required comparisons, we last show the fraction
of the results produced by HINTm without any comparisons.
In all datasets, over 99% of the results are collected with no
comparisons, which explains how HINTm is able to match
the performance of the comparison-free HINT.

5.3 Index performance comparison

Next, we compare the optimized versions of HINT and
HINTm against the previous work competitors. We start with
our tests on the real datasets. For HINTm , we set m to the
best value on each dataset, according to Table 7. Similarly,
we set the number of partitions for 1D-grid, the number of
checkpoints for the timeline index, and the number of lev-
els and number of coarse partitions for the period index (see

Table 8 Comparing index size (MBs)

Index BOOKS WEBKIT TAXIS GREEND

Interval tree 97 115 3125 2241

Period 210 217 2278 1262

Timeline 4916 5671 4203 2525

1D-grid 949 604 2165 1264

HINT 273 337 7733 10131

HINTm 81 98 2039 1278

Table 9 Comparing index time (s)

Index BOOKS WEBKIT TAXIS GREEND

Interval tree 0.25 0.33 47.2 26.8

Period 1.15 1.35 76.9 46.4

Timeline 12.7 19.2 40.4 15.9

1D-grid 1.26 0.95 4.02 2.24

HINT 1.70 11.8 49.6 36.5

HINTm 0.73 0.53 22.8 8.58

Table 7). Table 8 shows the sizes of each index in memory
and Table 9 shows the construction cost of each index, for the
default query extent 0.1%. Regarding space, HINTm along
with the interval tree and the period index have the lowest
requirements on datasets with long intervals (BOOKS and
WEBKIT) and very similar to 1D-grid in the rest. In TAXIS
and GREEND where the intervals are indexed mainly at the
bottom level, the space requirements of HINTm are signifi-
cantly lower than our comparison-free HINT due to limiting
the number of levels. When compared to the raw data (see
Table 4), HINTm is 2 to 3 times bigger for BOOKS and
WEBKIT (which contain many long intervals), and 1 time
bigger for GREEND and TAXIS. These ratios are smaller
than the replication ratios k reported in Table 7, thanks to
our storage optimization (cf. Section4.1.2). Due to its sim-
plicity, 1D-grid has the lowest index time across all datasets.
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Fig. 14 Comparing throughputs, real datasets

Fig. 15 Comparing throughputs, synthetic datasets

Nevertheless, HINTm is the runner up in most of the cases,
especially for the biggest inputs, i.e., TAXIS and GREEND,
while in BOOKS and WEBKIT, its index time is very close
to the interval tree.

Figure14 compares the throughputs of all indices on
queries of various extents (as a percentage of the domain
size). The first set of bars in each plot corresponds to stab-
bing queries, i.e., queries of 0 extent. We observe that HINT
and HINTm outperform the competition by almost one order
of magnitude, across the board. In fact, only on GREEND
the performance for one of the competitors, i.e., 1D-grid,
comes close to the performance of our hierarchical index-
ing. Due to the extremely short intervals in GREEND (see
Table 4) almost all the results are collected from the bottom
level of HINT/HINTm , which essentially resembles the eval-
uation process in 1D-grid. Yet, our indices are even in this
case faster as they require no duplicate elimination.

HINTm is the best index overall, as it achieves the perfor-
mance of HINT, requiring less space, confirming the findings
of our analysis in Sect. 3.2.3. As shown in Table 8, HINT
always has higher space requirements than HINTm ; even
up to an order of magnitude higher in case of GREEND.
What is more, since HINTm offers the option to control the
occupied space in memory by appropriately setting the m
parameter, it can handle scenarios with space limitations.
HINT is marginally better than HINTm only on datasets with
short intervals (TAXIS and GREEND) and only for selective
queries. In these cases, the intervals are stored at the low-
est levels of the hierarchy where HINTm typically needs to
conduct comparisons to identify results, but HINT applies
comparison-free retrieval.

We next consider the synthetic datasets. In each test, we
vary the value of one parameter (domain size, cardinality, α,
σ , query extent) and fix the rest to their default (see Table 5).
The value of m for HINTm , the number of partitions for 1D-
grid, the number of checkpoints for the timeline index and
the number of levels/coarse partitions for the period index
are set to their best values on each dataset. The results from
Fig. 15 follow a similar trend to the tests on the real datasets.
HINT and HINTm are always significantly faster than the
competition.

Different to the real datasets, 1D-grid is steadily out-
performed by the other three competitors. Intuitively, the
uniform partitioning of the domain in 1D-grid cannot cope
with the skewness of the synthetic datasets. As expected the
domain size, the dataset cardinality and the query extent have
a negative impact on all indices. Essentially, increasing the
domain size under a fixed query extent affects the perfor-
mance similar to increasing the query extent, i.e., the queries
become longer and less selective, including more results.
Further, the querying cost grows linearly with the dataset
size since the number of query results is proportional to it.
HINTm occupies around 8% more space than the raw data,
because the replication factor k is close to 1. In contrast, as
α grows, the intervals become shorter, so the query perfor-
mance improves. Similarly, when increasing σ the intervals
are more widespread, meaning that the queries are expected
to retrieve fewer results, and the query cost drops accordingly.
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Table 10 Throughput (operations/s), total cost (s)

Index Operation Total cost
Queries Insertions Deletions

BOOKS

Interval tree 1258 5841 1142 9.63

Period index 3088 519,904 765 4.52

1D-grid 3739 411,540 165 8.68

subs+soptHINTm 14,390 2,405,228 2201 1.14

HINTm 40,311 3,680,457 5928 0.41

TAXIS

Interval tree 2619 61,923 14,318 3.93

Period index 2695 1,026,423 21,293 3.76

1D-grid 2572 8,347,273 16,236 3.95

subs+soptHINTm 8774 4,407,743 71,122 1.15

HINTm 28,596 6,745,622 90,460 0.36

5.4 Updates

We now test the efficiency of HINTm in updates using both
the update-friendly version of HINTm (Sect. 3.4), denoted
by subs+soptHINTm , and the hybrid setting for the fully opti-
mized index from Sect. 4.4, denoted as HINTm . We index
offline the first 90% of the intervals for each real dataset in
batch and then execute a mixed workload with 10K queries
of 0.1% extent, 5K insertions of new intervals (randomly
selected from the remaining 10% of the dataset) and 1K ran-
dom deletions. Table 10 reports our findings for BOOKS and
TAXIS; the results for WEBKIT and GREEND follow the
same trend. Note that we excluded Timeline since the index
is designed for temporal (versioned) data where updates only
happen as new events are appended at the end of the event
list, and the comparison-free HINT, for which our tests have
already shown a similar performance to HINTm with higher
indexing/ storing costs. Also, all indices handle deletions
with “tombstones.”We observe that both versions of HINTm

outperform the competition by a wide margin. An exception
arises on TAXIS, as the short intervals are inserted in only
one partition in 1D-grid. The interval tree has in fact several
orders of magnitude slower updates due to the extra cost of
maintaining the partitions in the tree sorted at all time. Over-

all, we also observe that the hybrid HINTm setting is themost
efficient index as the smaller delta subs+soptHINTm handles
insertions faster than the 90% pre-filled subs+soptHINTm .

5.4.1 Interval joins

We conclude the first part of our analysis studying the appli-
cability of HINTm to the evaluation of interval joins. Given
two input datasets R, S, the objective is to find all pairs of
intervals (r , s), r ∈ R, s ∈ S, such that r G-OVERLAPS
with s. The rationale is that if the outer dataset R is very
small compared to the inner S, an index already available for
S can be used to evaluate fast the join in an index nested-loops
fashion. Hence, we show how HINTm constructed for each
of the four real datasets can be used to evaluate joins where
the outer relation is a random sample of the same dataset. As
part of the join process, we sort the outer dataset R in order
to achieve better cache locality between consecutive probes
to the inner dataset S. As a competitor, we used the state-
of-the-art interval join algorithm [10], which sorts both join
inputs and applies a specialized sweeping algorithm optFS.
Figure16 shows the results for various sizes |R| of the outer
dataset R. The results confirm our expectation. For small
sizes of |R|, HINTm is able to outperform optFS. On TAXIS
in particular,HINTm loses to [10] onlywhen |R|/|S| ≥ 50%.

6 Supporting Allen’s algebra

We now turn our focus to Allen’s algebra for intervals [1].
Table 11 (first two columns) summarizes the basic relation-
ships of the algebra, each denoted by q REL s, where q is
the query interval and s, an interval in the input collection
S. Note that the G-OVERLAPS selection query from the
previous sections identifies every interval s non-disjoint to
query q, i.e., a combination of all basic algebra’s relation-
ships besides BEFORE and AFTER.

We study selection queries on Allen’s relationships under
two setups for our hierarchical indexing. We focus on
HINTm ,which exhibits similar performance to the comparison-
free HINT but significant lower indexing costs, as our
experiments showed in Sect. 5.

Fig. 16 G-OVERLAPS based interval joins, real datasets
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6.1 Setup optimized for G-OVERLAPS

We start off with the HINTm setup from the first part of
our paper (see Table 3), optimized for the G-OVERLAPS
selection. In what follows, we discuss how queries based
on Allen’s relationships in Allen’s algebra can be evaluated
without any structural changes to the index. Table 11 sum-
marizes the set of intervals reported for each selection query.

Relationship EQUALSAn EQUALS selection determines all
input intervals identical to query q, i.e., with q.end = s.end
and q.st = s.st . To answer such a query, we access two
specific index partitions; the first relevant P�, f at level � and
the last relevant P�′,l , at level �′.9 Intuitively, these two parti-
tions correspond to the first and last partition where HINTm

would store the query interval q, respectively. We then dis-
tinguish between two cases. If q overlaps a single partition,
i.e., if f = l, we need only the intervals that both start and
end inside this partition, i.e., the POin

�, f subdivision. So, we

report set
{
s ∈ POin

�, f : q.st = s.st ∧ q.end = s.end
}
. Oth-

erwise, if f �= l, we report results among the intervals that

start in the first relevant partition (from P
Oaf t
�, f ) and end in

the last (from PRin
�′,l ), i.e., set

{
s ∈ P

Oaf t
�, f : q.st = s.st

} ⋂
{
s ∈ PRin

�′,l : q.end = s.end
}
. Note that we cannot directly

check q.end = s.end as P
Oaf t
�, f stores only s.st (and s.id).

Relationship STARTS According to Allen’s algebra, a
STARTS selection query reports all intervals that start
where q does, i.e., with q.st = s.st , but outlive its
end, i.e., with q.end < s.end. By construction, HINTm

stores such intervals as originals in the first relevant par-
tition. We consider two cases for every index level �. If
f = l, we report each interval in the POin

�, f subdivi-
sion that satisfies both query conditions and each interval

in P
Oaf t
�, f that satisfies only q.st = s.st ; for the latter

intervals, their s.end is by construction after q.end. So,

we report
{
s ∈ POin

�, f : q.st = s.st ∧ q.end < s.end
} ⋃

{
s ∈ P

Oaf t
�, f : q.st = s.st

}
. In contrast, if f �= l, the results

can only come from the intervals that end after the first rele-

vant partition at current level �, i.e., from P
Oa f t
�, f . But, as subdi-

visions P
Oaf t
�, f store only s.st according to Table 3, we cannot

directly check the q.end < s.end condition. Instead, we rely
on the replicas inside the last relevant partition at any index

level. Intuitively, if an interval
{
s ∈ P

Oaf t
�, f : q.st = s.st

}
is

stored as a replica in the last relevant partition l at a level
�′, which either (1) ends inside l (i.e., s ∈ PRin

�′,l ) but after

q.end or (2) outlives the partition (i.e., s ∈ P
Ra f t
�′,l ) then

9 In the general case, � �= �′ holds for levels � and �′.
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q.end < s.end holds for s. The above two sets are com-

puted as
⋃

∀�′
{{

s ∈ PRin
�′,l : q.end < s.end

} ⋃
P
Ra f t
�′,l

}
.

Relationship STARTED_BY. As an inverse to STARTS,
a STARTED_BY selection determines all intervals that
again start at q.st but end before q.end. Therefore, if
f = l holds at a level �, we consider only the inter-
vals that both start and end inside the partition, reporting

set
{
s ∈ POin

�, f : q.st = s.st ∧ q.end > s.end
}
. Otherwise,

results are found among all originals in f . For the POin
�, f

subdivision, we directly output
{
s ∈ POin

�, f : q.st = s.st
}

as their s.end is by construction before q.end. For the

intervals in s ∈ P
Oaf t
�, f with q.st = s.st , we apply a

similar technique to STARTS for checking the q.end >

s.end condition. Intuitively, such an interval s will be
reported if it ends at any level �′, either inside a partition
i with f < i < l or in the last relevant partition l but
before q.end. For this purpose, we check if s is inside set⋃

∀�′
{{⋃

∀ f <i<l P
Rin
�′,i

} ⋃ {
s ∈ PRin

�′,l : q.end > s.end
} }

.

Relationship FINISHES This selection query returns all
intervals that end exactly where query q does, i.e., with
q.end = s.end, but start before q, i.e., with q.st >

s.st . If q overlaps a single partition ( f = l) at a level
�, we consider the intervals that end in the last relevant
partition l:

{
s ∈ POin

�,l : q.end = s.end ∧ q.st > s.st
} ⋃

{
s ∈ PRin

�,l : q.end = s.end
}
. Otherwise ( f �= l), only repli-

cas that end inside partition l (Subdivision PRin
�,l ) with

q.end = s.end can be part of the results. To this end,
we face a similar challenge to STARTS/STARTED_BY as
PRin

�,l does not store s.st (see Table 3) to directly check
q.st > s.st . The solution is to check if an interval{
s ∈ PRin

�,l : q.end = s.end
}
is contained in set

⋃
∀�′

{{
s ∈ P

Oaf t

�′, f : q.st > s.st
}⋃

P
Ra f t
�′, f

}
, i.e., the inter-

vals that either (1) start before q.st in the first relevant

partition f at any level �′ or (2) are stored in P
Ra f t
�′, f and

so, their start is by construction before q.st .

Relationship FINISHED_BY. A FINISHED_BY selection
inverses the second condition of FINISHES, determin-
ing intervals with q.end = s.end and q.st < s.st . For
a level �, if f = l we report the intervals that start
and end inside the partition, and satisfy both conditions,

i.e., set
{
s ∈ POin

�,l : q.end = s.end ∧ q.st < s.st
}
. Other-

wise ( f �= l), the results are among all intervals that

end in partition l, i.e., set
{
s ∈ POin

�,l : q.end = s.end
} ⋃

{
s ∈ PRin

�,l : q.end = s.end
}
. For the intervals from sub-

division POin
�,l , q.st < s.st holds by construction while

for PRin
�,l intervals, a direct check of the condition is not

possible. Instead, we check such an interval s against
the set of intervals that start either (1) after q in the
first relevant partition at any level �′ or (2) inside the
partitions in between the first and the last relevant; set⋃

∀�′
{{

s ∈ P
Oaf t

�′, f : q.st < s.st
} ⋃ {⋃

∀ f<i<l P
Oa f t

�′,i

}}
.

Relationship MEETS This selection query returns all inter-
vals that start at q.end. Under this, we report for each level
�, all originals in the last relevant partition l that satisfy

the q.end = s.st condition, i.e., set
{
s ∈ POin

�,l

⋃
P
Oaf t
�,l :

q.end = s.st
}
.

Relationship MET_BY This selection query returns all inter-
vals that end at q.st . To this end, the results are among the
intervals that end inside the first relevant partition f , i.e., set{
s ∈ POin

�, f

⋃
PRin

�, f : q.st = s.end
}
, at each level �.

Relationship OVERLAPS An OVERLAPS selection deter-
mines all non-disjoint intervals to query q, which start
after q.st and end after q.end. If q overlaps a single
partition ( f = l) at a level �, such intervals are found
among the originals in the partition; for the POin

�, f subdi-
vision all query conditions are checked, while for an s in

P
Oaf t
�, f , q.end < s.end always holds. So, we report set{
s ∈ POin

�, f : q.st < s.st ∧ q.end > s.st ∧ q.end < s.end
}

⋃ {
s ∈ P

Oaf t
�, f : q.st < s.st ∧ q.end > s.st

}
. Otherwise,

results are reported in two parts. The first part is drawn
from the originals in the last relevant partition at each

level �, i.e.,
{
s ∈ POin

�,l : q.end > s.st ∧ q.end < s.end
} ⋃

{
s ∈ P

Oaf t
�,l : q.end > s.st

}
. For the second part, we con-

sider the intervals that start before partition l and outlive q,

i.e., set
{{

s ∈ PRin
�,l : q.end < s.end

} ⋃
P
Ra f t
�,l

}
. For every

such interval s, q.end > s.st holds by construction, but we
need to check its start against q.st . As subdivisions PRin

� and

P
Ra f t
� do not store s.st , we cannot directly check the q.st <

s.st condition. Instead, we compare s against all P
Oaf t

�′ at any
level �′ that (1) either start before q.st in the first relevant par-
tition f or (2) inside every partition in between f and l, i.e.,

set
⋃

∀�′
{{

s ∈ P
Oaf t

�′, f : q.st < s.st
}⋃ {⋃

∀ f <i<l P
Oa f t

�′,i

}}
.

Relationship OVERLAPPED_BYAs inverse to OVERLAPS,
the OVERLAPPED_BY selection determines all non-disjoint
intervals to q that start before q.st and end before q.end.
If f = l, we draw the results from all intervals (both
originals and replicas) that end inside the partition; set{
s ∈ POin

�, f : q.st > s.st ∧ q.st < s.end ∧ q.end > s.end
}

⋃ {
s ∈ PRin

�, f : q.st < s.end ∧ q.end > s.end
}
.Otherwise,

the results consist of two parts for every level �. The
first part includes again originals and replicas that end
inside the first relevant partition f , but now, condition
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q.end > s.end always holds by construction. Hence,

we report set
{
s ∈ POin

�, f : q.st > s.st ∧ q.st < s.end
} ⋃

{
s ∈ PRin

�, f : q.st < s.end
}
. For the second part, we seek

results among all intervals that start before q, i.e., originals{
s ∈ P

Oaf t
�, f : q.st > s.st

}
and replicas P

Ra f t
�, f for both sets

q.st < s.end holds by construction as intervals outlive the

first relevant partition f . As neither of the P
Oaf t
�, f and P

Ra f t
�, f

subdivisions maintains s.end, we check q.end > s.end by
determining the replicas at any index level �′ that end (1)
either before the last relevant partition l or (2) inside l after

q.end, i.e., set
⋃

∀�′
{{⋃

∀ f <i<l P
Rin
�′,i

} ⋃ {
s ∈ PRin

�′,l : q.end

> s.end
}}

.

Relationship CONTAINS This selection query returns all
intervals, fully contained inside the query interval q, i.e.,
with q.st < s.st ∧ q.end > s.end. For every level �,
if f = l, q can contain only intervals that both start
and end in this partition, i.e., from subdivision POin

�, f ; we

report set
{
s ∈ POin

�, f : q.st < s.st ∧ q.end > s.end
}
. Oth-

erwise, the results are drawn from the original intervals
in every partition from the first relevant partition f to
the last l; for the latter only originals that end inside the
partition are considered. Specifically, for the intervals in

POin
� subdivisions, we report

{
s ∈ POin

�, f : q.st < s.st
}⋃

{⋃
∀ f <i<l P

Oin
�,i

} ⋃ {
s ∈ POin

�,l : q.end > s.end
}
; observe

how only one condition is checked for partitions f and
l, while for every partition i in between, all originals
that end inside i are directly output. In contrast, for all

intervals in the P
Oaf t
� subdivisions, we need to check the

q.end > s.end condition; additionally, for every s ∈
P
Oaf t
�, f subdivision, we also check if q.st < s.st holds.

As P
Oaf t
� subdivisions store only s.st , q.end < s.end

is checked similarly to OVERLAPPED_BY, i.e., using set⋃
∀�′

{{⋃
∀ f <i<l P

Rin
�′,i

} ⋃ {
s ∈ PRin

�′,l : q.end > s.end
}}

.

Relationship CONTAINED_BY This selection determines
all intervals that fully contain q, i.e., with q.st > s.st ∧
q.end < s.end. For each level �, if f = l, the result intervals
are found among all subdivisions in the partition, report-

ing
{
s ∈ POin

�, f : q.st > s.st ∧ q.end < s.end
} ⋃ {

s ∈
P
Oaf t
�, f : q.st > s.st

} ⋃ {
s ∈ PRin

�, f : q.end < s.end
}

⋃
P
Ra f t
�, f . In contrast, if f �= l, the results are among the

intervals that (1) start before q.st , corresponding to set{
s ∈ P

Oaf t
�, f : q.st > s.st

}⋃
P
Ra f t
�, f , and (2) end after q.end.

As the P
Oaf t
� or the P

Ra f t
� subdivisions do not store s.end, in

order to check theq.end < s.end condition,we need to inter-
sect the above candidates set with the replicas at any level �′

that either end inside the last relevant partition l or outlive it,

i.e., set
⋃

∀�′
{{

s ∈ PRin
�′,l : q.end < s.end

} ⋃
P
Ra f t
�′,l

}
.

Relationship BEFORE A BEFORE selection determines
all intervals that start after q. Such intervals are found
at each level � as originals either (1) inside the last rel-
evant partition l, if they satisfy q.end < s.st , i.e., set{
s ∈ POin

�,l

⋃
P
Oaf t
�,l : q.end < s.st

}
or (2) inside every par-

tition after l, i.e., set
⋃

∀i>l

{
POin

�,i

⋃
P
Oaf t
�,i

}
. Note that

replicas from these partitions are ignored as they will only
produce duplicate results.

Relationship AFTER An AFTER selection determines all
intervals that end before q. Results are found at each level
among the intervals which end inside either (1) the first
relevant partition f and satisfy q.st > s.end, i.e., set{
s ∈ POin

�, f

⋃
PRin

�, f : q.st > s.end
}

or (2) every partition

before f , i.e., set
⋃

∀i< f

{
POin

�,i

⋃
PRin

�,i

}
. Note that subdivi-

sions P
Oaf t
�,i and P

Ra f t
�,i are ignored to avoid duplicate results

(Table 12).

6.2 One setup for all

The storage optimization discussed in Sect. 4.1.2 allows the
G-OVERLAPS setup of HINTm to reduce the memory foot-
print of the index and improve cache locality. But as an
optimization technique tailored for the G-OVERLAPS rela-
tionship, it has a negative impact on Allen’s algebra basic
relationships. The key issue is that we cannot directly check
the conditions on s.end for the POaf t and PRa f t subdivi-
sions and on s.st for PRin and PRa f t . Instead, we are forced
to access extra partitions to implicitly conduct these checks,

e.g., the PRin
�′,l and P

Ra f t
�′,l subdivisions in the last relevant par-

tition l at each index level �′, for the STARTS relationship.
In view of this, we next consider a subs+sort setup of

HINTm for Allen’s algebra.10 Essentially, no changes are
required if query q overlaps a single partition ( f = l) at
a level � as all necessary information is available for the
selection conditions. Further, the computation of MEETS,
MET_BY, BEFORE and AFTER queries remains unchanged.
So, in what follows, we discuss the necessary changes for the
rest of relationships in the f �= l case.

Relationship EQUALS We can now directly retrieve results

from the first relevant partition f and the P
Oaf t
�, f subdivi-

sion by checking both query conditions, i.e., we report set{
s ∈ P

Oaf t
�, f : q.st = s.st ∧ q.end = s.end

}
.

10 The cache misses and the skewness & sparsity optimizations
are orthogonal and can be straightforwardly combined with the
subs+sortHINTm setup.
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RelationshipSTARTSWith s.end in P
Oaf t
�, f , both query con-

ditions can be directly checked at each level � and thus report{
s ∈ P

Oaf t
�, f : q.st = s.st ∧ q.end < s.end

}
.

Relationship STARTED_BY Similar to STARTS, we can

directly check both conditions for P
Oaf t
�, f in the first rel-

evant partition f . We report
{
s ∈ POin

�, f : q.st = s.st
} ⋃

{
s ∈ P

Oaf t
�, f : q.st = s.st ∧ q.end > s.end

}
, at each level.

Relationship FINISHES With s.st in PRin
�,l subdivisions,

we can directly check q.st > s.st and report
{
s ∈ PRin

�,l :
q.end = s.end ∧ q.st > s.st

}
, at each level.

Relationship FINISHED_BY Similar to FINISHES, we
can directly check both conditions on PRin

�,l and thus,

report at each level �, set
{
s ∈ POin

�,l : q.end = s.end
} ⋃

{
s ∈ PRin

�,l : q.end = s.end ∧ q.st < s.st
}
.

Relationship OVERLAPS With s.st in subdivisions PRin
�

and P
Ra f t
� , we directly check q.st < s.st for partition

l. So, we report
{
s ∈ PRin

�,l : q.st < s.st ∧ q.end < s.end
}

⋃ {
s ∈ P

Ra f t
�,l : q.st < s.st

}
intervals at each level along

with the set
{
s ∈ POin

�,l : q.end > s.st ∧ q.end < s.end
}

⋃ {
s ∈ P

Oaf t
�,l : q.end > s.st

}
.

RelationshipOVERLAPPED_BYWith s.end stored in P
Oaf t
�, f

and P
Ra f t
�, f , we can directly check q.end > s.end, report-

ing set
{
s ∈ P

Oaf t
�, f : q.st > s.st ∧ q.end > s.end

} ⋃ {
s ∈

P
Ra f t
�, f : q.end > s.end

}
along with the intervals contained

in
{
s ∈ POin

�, f : q.st > s.st ∧ q.st < s.end
} ⋃ {

s ∈ PRin
�, f

: q.st < s.end
}
.

RelationshipCONTAINSWith s.end in P
Oaf t
� subdivisions,

we can directly check the q.end > s.end condition to

output
{
s ∈ P

Oaf t
�, f : q.st < s.st ∧ q.end > s.end

} ⋃ {
s ∈

⋃
∀ f <i<l P

Oa f t
�,i : q.end > s.end

}
along with the set{

s ∈ POin
�, f : q.st < s.st

} ⋃ {
s ∈ POin

�,l : q.end > s.end
}

⋃ {⋃
∀ f<i<l P

Oin
�,i

}
from POin

� subdivisions at each level.

Relationship CONTAINED_BY With s.end stored in both

P
Oaf t
�, f and P

Ra f t
�, f subdivisions, we can now directly check the

q.end < s.end condition at each level �, reporting the inter-

vals
{
s ∈ P

Oaf t
�, f : q.st > s.st ∧ q.end < s.end

} ⋃ {
s ∈

P
Ra f t
�, f : q.end < s.end

}
.
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6.3 Bottom-up evaluation approach

Both setups of HINTm can benefit from the bottom-up
approach in Sect. 3.2.2. The idea is to determine the levels
when the last bit of the first (last) relevant partition f (l) are
set to 1 or 0, for the first time. Due to lack of space, we discuss
only STARTS for the G-OVERLAPS setup as an example.
Specifically, results are found among the original intervals
stored in the first relevant partition f up to the level where
the last bit in f is 1, for the first time. All originals in f at a
higher level start by construction of the index before q.st and
thus, violateq.st = s.st . Further, at levels after the onewhere
the last bit of l is 0 for the first time, q.end < s.end always
holds for all s ∈ PRin

�′,l . Consider the query q in Fig. 7. Can-
didate results are contained only as originals in P4,5, where
the last bit of f = 5 is 1. Also as the last bit of l is 0 at
the 4th level, all PRin intervals in P2,2, P1,1, P0,0 satisfy
q.end < s.end.

7 Experiments on Allen’s algebra

For the second part of our experiments, we focus on selec-
tion queries under the basic relationships of Allen’s algebra.
We first compare the two alternative HINTm setups from
Sect. 6 and then put the best setup against the competition.
We extended our code for all competitive indices in Sect. 5 to
supportAllen’s algebra.We ran our tests on datasetsBOOKS,
WEBKIT, TAXIS and GREEND; we omit the results on the
synthetic datasets due to lack of space and because of observ-
ing similar trends. Lastly, parameter m and all other index
parameters are set according to Table 7.

7.1 Determining the best index setup

Figure 17 reports the throughputs achieved by the two
HINTm setups; results in WEBKIT and GREEND are sim-
ilar and therefore omitted due to lack of space. Note that
both setups adopt the bottom-up evaluation (Sect. 3.2.2)
and employ the skewness & sparsity and the cache misses
optimizations (Sects. 4.2 and 4.3). The ‘one setup for all’
setup drastically improves the performance of HINTm for
the majority of the queries. Essentially, the G-OVERLAPS
setup matches the performance of ‘one setup for all’ in the
G-OVERLAPS relationship, as expected, and in relation-
ships where only one partition per level is examined by both
setups, without the need to indirectly check a condition, i.e.,
in MEETS, MET_BY, BEFORE and AFTER. In the rest, ‘one
setup for all’ is fromone to several orders ofmagnitude faster.

We also compare the two setups on their index size and
updates. As expected, ‘one setup for all’ requires more space
(35% on average, see Table 13) due to disabling sopt from
Sect. 4.1.2. Regarding insertions and deletions, both setups

Fig. 17 Comparing HINTm setups: throughput

Table 13 Comparing HINTm setups: index size (MBs)

HINTm setup BOOKS WEBKIT TAXIS GREEND

For G-OVERLAPS 81 98 2039 1278

One setup for all 134 138 2769 1321

will employ the hybrid setting in Sect. 4.4 with similar per-
formance. Overall, in a typical space-time tradeoff, ‘one
setup for all’ increases the space requirements in exchange
of drastically accelerating querying, even several orders of
magnitude for some relationships. So, for the rest of our anal-
ysis, HINTm operates always under ‘one setup for all’.

7.2 Index performance comparison

Figure 18 compares the performance of all studied indices.
The first 4 rows of plots report the results for OVERLAPS,
OVERLAPPED_BY, CONTAINS, CONTAINED_BY, while
varying the query extent, similar to Fig. 14. Note that for
CONTAINED_BY on TAXIS and GREEND, we consider a
different range of values as these datasets contain signifi-
cantly shorter intervals than BOOKS andWEBKIT. The last
row of plots reports on the rest of the relationships where
the selection queries essentially resemble typical stabbing
queries, i.e., query overlaps either one partition per level or
only two in total partitions in EQUALS.

Overall, HINTm exhibits the highest throughput for all
queries based on Allen’s algebra relationships, in line with
the results in Fig. 14. Its performance gap to the competitor
indices ranges from almost half to several orders of magni-
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Fig. 18 Comparing throughputs on Allen’s algebra, real datasets

tude. Essentially, the smallest performance gap is observed
mainly in WEBKIT and GREEND where the input intervals
are very short.

8 Conclusions

Weproposed a hierarchical index (HINT) for intervals,which
has low space complexity and minimizes the number of
data accesses and comparisons during query evaluation. Our
experiments on real and synthetic datasets show that HINT
outperforms previous work by almost one order of magni-
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tude in a wide variety of interval data and query distributions.
Our index fully supports selection queries based on Allen’s
relationships [1] between intervals, achieving consistently
excellent performance independently of the query predicate.
In the future, we intend to extend our work toward multiple
directions. Regarding the index structure, we plan to consider
compression techniques to further reduce HINTm memory
footprint and adaptive variants that e.g., use non-regular par-
titioning to better deal with long intervals. We also plan to
support queries combining temporal selections and selections
on additional attributes or the interval duration [4]. Further,
we will study how to manage transactional data using HINT,
e.g., streams of events. Last, we plan to investigate hardware-
aware techniques, e.g., for effective parallelization relying on
the fact that HINT partitions are independent, or near-storage
computation with Processing-in-Memory.
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