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Zusammenfassung

Die Wechselwirkung zwischen Proteinen und anorganischen Oberflächen fasziniert

sowohl aus angewandter als auch theoretischer Sicht. Sie ist ein wichtiger Aspekt

in vielen Anwendungen, unter anderem in chirugischen Implantaten oder Biosen-

soren. Sie ist außerdem ein Beispiel für theoretische Fragestellungen betreffend

die Grenzfläche zwischen harter und weicher Materie. Fest steht, dass Kenntnis der

beteiligten Mechanismen erforderlich ist um die Wechselwirkung zwischen Proteinen

und Oberflächen zu verstehen, vorherzusagen und zu optimieren.

Aktuelle Fortschritte im experimentellen Forschungsbereich ermöglichen die Un-

tersuchung der direkten Peptid-Metall-Bindung. Dadurch ist die Erforschung der

theoretischen Grundlagen weiter ins Blickfeld aktueller Forschung gerückt.

Eine Möglichkeit die Wechselwirkung zwischen Proteinen und anorganischen

Oberflächen zu erforschen ist durch Computersimulationen. Obwohl Simulationen

von Metalloberflächen oder Proteinen als Einzelsysteme schon länger verbreitet sind,

bringt die Simulation einer Kombination beider Systeme neue Schwierigkeiten mit

sich. Diese zu überwinden erfordert ein Mehrskalen-Verfahren: Während Proteine

als biologische Systeme ausreichend mit klassischer Molekulardynamik beschrieben

werden können, bedarf die Beschreibung delokalisierter Elektronen metallischer Sys-

teme eine quantenmechanische Formulierung. Die wichtigste Voraussetzung eines

Mehrskalen-Verfahrens ist eine Übereinstimmung der Simulationen auf den ver-

schiedenen Skalen. In dieser Arbeit wird dies durch die Verknüpfung von Simu-

lationen alternierender Skalen erreicht.

Diese Arbeit beginnt mit der Untersuchung der Thermodynamik der Benzol-

Hydratation mittels klassischer Molekulardynamik. Dann wird die Wechselwirkung

zwischen Wasser und den [111]-Metalloberflächen von Gold und Nickel mittels eines

Multiskalen-Verfahrens modelliert. In einem weiteren Schritt wird die Adsorbtion

des Benzols an Metalloberflächen in wässriger Umgebung studiert.

Abschließend wird die Modellierung erweitert und auch die Aminosäuren Alanin

und Phenylalanin einbezogen. Dies eröffnet die Möglichkeit realistische Protein-

Metall-Systeme in Computersimulationen zu betrachten und auf theoretischer Basis

die Wechselwirkung zwischen Peptiden und Oberflächen für jede Art Peptide und

Oberfläche vorauszusagen.





Abstract

The interaction of proteins with inorganic surfaces is fascinating from various

points of view. As an application, it forms the essential working mechanism in

systems like biosensors and surgical implants. As a theoretical problem, it describes

a complex interface between hard and soft matter. In all cases, it is clear that

theoretical knowledge of the mechanisms involved is needed to understand, predict,

and optimize protein-surface interactions.

Recent experimental advancements have enabled the research of direct inter-

actions of peptide groups with metal surfaces, and, with that information as a

reference, it becomes possible to investigate the theoretical basis of protein-metal

interactions.

One way to study this is via computer simulations. Computer simulations of

either solids or biological systems are common, but simulating both systems com-

bined introduces new problems, for which simulations at several levels of detail will

be needed. Simulating the behavior of delocalized electrons in the metal will require

quantum mechanical treatment, whereas biological systems are best described by

classical statistical mechanics. Protein-metal systems form therefore a typical mod-

eling problem for which so-called multiscale simulations are needed. In a multiscale

modeling approach, simulations at the multiple scales of interest need to be con-

nected in such a way that a consistent picture can be attained. This will be done in

the current work by connecting calculations on the quantum and the atomistic level

in a sequential, alternating, manner.

As a start, the thermodynamic properties of hydration of benzene is studied

via classical statistical mechanics approaches and computer simulations. Then, the

interaction of water with gold and nickel [111]-surfaces is modeled by including

quantum calculation data via a newly introduced multiscale procedure. As a next

step, these two systems are combined and the multiscale procedure is extended to

study benzene surface adsorption in an aqueous environment.

Finally, the modeling is expanded to include the amino acids alanine and pheny-

lalanine, for which differences in the metal adsorption properties can be identified.

This opens the way to study realistic protein-metal systems, which will enable the

theoretical prediction of surface attraction for a given peptide, at a given surface.
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1 Introduction

This thesis will present a new computer simulation method that uses multiple levels

of resolution to study biomolecular interactions with metal surfaces in the pres-

ence of water (see figure 1.1). To understand why there is a need to introduce a

new method for this purpose, it will be necessary to evaluate the existing methods

commonly available in computer simulations, and the requirements needed by the

specific application.

At the level of analytical theory, the physics of a molecular system is described by

Figure 1.1: A schematic view of the multiscale procedure applied in this thesis. An
application could be the study of antibody-surface interactions in a biosensor (left frame).
It will at least be necessary to research the interaction mechanism at an atomistic level,
for the part of the protein that is closest to the surface (middle frame). For the sake
of calculation speed, one could then neglect effects from all other parts of the protein.
As will be shown later on, the interaction of a molecule with a metal surface can not
simply be seen as a generalized atom-atom interaction, but will depend specifically on the
perturbation of the electron-distributions in the metal surface due to the nearby molecule.
To obtain chemically and physically correct data, calculations at the quantum level will
therefore be necessary (right frame).
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1 Introduction

a set of equations that can be solved on a computer. These kinds of calculations are

useful to obtain general physical properties of molecular systems, such as polymer

melts, liquid crystals, and many other systems. Often, the same systems can also

be studied by making a simple particle-based model system for the set of molecules

and calculating the inter-particle interactions and forces in this system. Atoms or

groups of atoms can be represented by ’beads’, the connectivity (topology) between

these ’beads’ is approximated by ’springs’. Both the analytical and bead-and-spring

models can be used for fast calculations and deliver a range of useful properties of

molecular systems (orientations, viscosity, phase diagrams).

These approaches might not be sufficient for all molecular systems, and one

might need to consider the chemical composition of the molecules in the system.

In that case, one can represent the different atom types that are present by sets of

attractive and repulsive potential energy functions. This concept, called atomistic

simulation, has gained considerable popularity in the field of biomolecular simula-

tions. A typical example is the calculation of the interaction of a drug with the

receptor protein it should act upon. Even though these systems contain consider-

able chemical detail, they still contain several approximations, for example molecular

topologies and therefore the bonds are fixed, chemical reactions can not take place.

The simulation of a chemical reaction will require extensive knowledge about the

electronic states of the reacting molecules during the reaction. This is not contained

in an atomistic simulation, but can be calculated by quantum calculations. Simi-

lar problems arise when studying metal surfaces as substrates for organic/inorganic

hybrid materials, a popular combination due to the conducting properties of the sur-

face, enabling the combination of biomolecules with electronic devices. Atomistic

and molecular modeling of proteins near these metal surfaces is not straightfor-

ward. At the electronic and atomistic level, the interactions between a molecule

and a metal surface are driven by the overlap and perturbation of the electrons in

the molecular orbitals with the delocalized electrons in the conducting band of the

metal. Clearly, quantum simulations are needed on this scale.

The modeling becomes even more difficult for these systems since the chem-

ical and electronic interactions at the quantum scale influence, and in turn are

influenced by, the bulk atomistic or larger-scale statistical properties of the many-

molecule system, where molecule-molecule interactions and molecular conformations

at the surface determine the adsorption properties. Therefore, so-called multiscale
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simulations are developed to combine the specificity of more detailed atomistic or

quantum simulations with the speed of coarse grained or analytical calculations[1, 2].

Ideally, the separation between the less and more detailed scales would be possible

in a fully automated way, and the system would adapt to the desired detail during

the simulation[3–5].

As an example, a non-biological system where the usefulness of a multiscale sim-

ulation was demonstrated was the simulation study on the interaction of polycarbon-

ate (PC) with a Ni(111) surface.[6–8] There it was shown that the melt morphology

close to the surface crucially depends on the choice of chain ends during the poly-

merization process. These results could be obtained with the use of first-principles

Density Functional (DFT) calculations for the surface interaction of subgroups of

the PC monomer. These quantum calculations were performed while considering

molecular geometries consistent with the topologically allowed PC configurations at

the surface, and combined with a study of the conformation properties at the surface

as described by a suitably parameterized coarse grained model for the PC chains.

In a similar way also the adsorption out of solution, which is the more appropri-

ate problem for biomolecules, can be tackled. This is however a research area which

is still in its infancy. Similar to the situation in polymer melts, the interaction of

small organic molecules with a metal surface in the presence of water has to be

studied as a first step, to gain a deeper understanding of the underlying processes

and mechanisms. This includes researching the thermodynamics of the adsorption-

desorption equilibrium as well as retrieving geometrical information near the surface.

Once the methodologies have been developed to study this for small molecular frag-

ments, an extension to macromolecules will be possible. A first step, namely the

adsorption of benzene, phenol, and several amino acids out of water onto a Ni(111)

or Au(111) surface, will be presented in the current thesis. Gold is chosen as it is a

commonly used material in hybrid organic/inorganic systems[9]. Nickel was chosen

because quantum data and a dual scale modeling had been already developed for

this metal, for the research of polymer blend properties near the nickel surface[6, 7].

A more general goal, however, is the rational procedure for the on-demand design

of peptides that specifically bind to inorganic surfaces (aptamers). Such a procedure

enables the construction of protein-inorganic composite materials, combining opti-

mal solute binding specificity in proteins with the optimal signaling properties of

inorganic materials[10]. Applications of these aptamer-inorganic surfaces are abun-
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1 Introduction

dant, examples include bio-analytical devices such as biochemical sensors (e.g. as

applied in Surface Plasmon Resonance,[11, 12]) bio-electronic switches and gates,

chemical separation and purification surfaces, and enzymatically controlled electro-

chemical interfaces[13].

The efficiency and small scales found in biology have been endorsed by material

science in its quest to create functional materials and miniaturized devices, exploring

ways to mimic biological systems[14–16]. A large amount of work in nanotechnology

is therefore focused on combining inorganic materials with biological systems. An

additional merit of these systems is that they can be constructed by well-known or

even ubiquitous techniques (e.g. a DNA or protein layer can be fixed on a substrate

using a standard ink-jet cartridge[17, 18]). As the power of this combination of

material science and biotechnology lies in its specific interactions at the molecular

level, there is a need for a detailed understanding of its properties at the molecular or

even atomic scale. This has driven the interest to study such systems at a theoretical

level, and attempts have been made to perform simulations of organic/inorganic

interfaces at atomistic and other levels of modeling[19, 20].

The remaining part of this introduction will present a detailed outline of the

thesis. Following this introduction, chapter 2 gives an overview of research concern-

ing the interaction of proteins with (metal) surfaces, considering the main questions,

applications, experiments, and simulations that have been performed recently.

Methodologies used in molecular simulation are covered in chapter 3. The em-

phasis will lie on classical atomistic simulation, and introductions to the quantum

calculations and multiscale methods that are connected to this thesis. Note that

there is no standard recipe on how to unambiguously separate processes occurring

at the atomistic and quantum scales. Care should therefore be taken to retain the

fundamental physical properties of these two processes and to link them without

violating physical or chemical principles.

Next to the multiscale modeling of biomolecule-metal interactions, a recurring

theme in the thesis concerns the understanding of macroscopic effects from mi-

croscopic phenomena. Atomistic simulation is well suited to describe microscopic

phenomena. It will be shown that microscopic quantities calculated in a molecular

dynamics simulation can give explanations of macroscopic effects. An important

contribution to this is given by the calculation of free energies in classical atomistic

simulations, which will therefore be treated separately in chapter 4.
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In chapter 5, the quality of an existing force field for benzene solvation is an-

alyzed by calculating a range of thermodynamic properties from simulations and

comparing these with experimental values. The free energy of hydration for a real-

istic model of benzene is calculated in simulations and dissected into entropy and

interaction energy terms. In this way it can be researched in how far entropic or

energetic arguments determine the lower aqueous solubilities of non-polar molecules

compared to polar molecules.

Following that, a series of simulations will introduce the modeling of solute-

surface interactions. It starts from the solvated benzene solute of chapter 5, repre-

senting an amino acid side chain, adding the surface interaction and leads up to a

biomolecule-surface study. A prerequisite for these simulations is the introduction

of a multiscale modeling of water at gold and nickel metal surfaces under ambi-

ent conditions, as worked out and validated in chapter 6. A main characteristic of

this modeling is the use quantum chemical data that specifically take into account

the interactions of liquid water with a metal surface. Furthermore care is taken to

split-up the water-surface interactions from the water-water interactions, which are

treated by existing classical force fields.

A further step is the introduction of benzene and phenol solutes, simple model

systems for the amino acid side chains of phenylalanine and tyrosine, in chapter 7.

Similarly to the water modeling, the basis will be surface adsorption energy and

conformational input from first-principles density functional methods and classical

molecular dynamics simulations using atomistic force fields. Surface effects at a

Ni(111) and Au(111) surface will be studied, allowing the research of the competition

between water adsorption and solute adsorption at different surfaces. This can

clarify how geometric effects concerning water layering and molecular configurations

are connected to the adsorption mechanism of solutes near metal surfaces in explicit

water.

Finally, actual amino acids are introduced in their neutral form in chapter 8.

Specifically, systems containing the neutral forms of phenylalanine and alanine are

simulated, at the interface with a Ni(111) surface in explicit water at room tem-

perature. This time, an iterative quantum-classical strategy is used, starting with

initial quantum mechanical calculations, on which a preliminary chemical modeling

scheme is parameterized. This parameterization is used in preliminary atomistic

simulations to determine optimal energies and configurations that can be sampled
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1 Introduction

with this modeling scheme. Additional quantum calculations can be performed

to analyze configurations from the atomistic simulations, this will lead to subse-

quent modeling parameterizations, simulations, and quantum calculations until a

consistent modeling is reached. Such simulations give qualitative insight in amino-

acid-surface binding. Also here, the importance will be shown of taking the water

explicitly into account in the modeling of surface adsorption behavior. Hydration of

both solute and surface strongly affect the solute conformation space and cause free

energy barriers for surface approach. The multiscale modeling approach used here

enable a chemical, quantum-based, simulation of a bulk-to-metal adsorption process

of an amino acid in an explicitly hydrated system.
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2 Protein-surface interactions, an

overview

In order to demonstrate the scientific relevance of the systems studied in this thesis,

an overview will be given here of the current state of experimental and computa-

tional research of the interaction of proteins with (metal) surfaces. The emphasis

will be put on studying direct, steered, protein-surface interactions. That will be

followed by a more elaborate description of existing research at various levels of com-

putational modeling for the interaction of proteins with (metal) surfaces. Protein-

surface interactions often take place in the hydrated state, and therefore water and

its interactions with the protein and the metal should be taken into account in

a computational model as well. The analysis and modeling of this water-surface

interaction is a problem on itself and will be covered separately in chapter 6.

2.1 Experimental studies of biomolecule-surface

interactions

Experimental research on protein-inorganic surface interactions has been concerned

mainly with those protein-surface interactions where the size of the systems enables

a straightforward acquisition of macroscopic data (e.g. adsorption kinetics[21, 22]),

but lacks insight into the driving forces for peptide-surface interactions[23]. Re-

cently, however, it has become possible to determine relative adsorption strengths

for series of oligopeptides. Details of these experiments will be shown below, af-

ter a short introduction of experimentally available experimental techniques and

inorganic surfaces.
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2 Protein-surface interactions, an overview

2.1.1 Experimental techniques

A range of experimental techniques is available to characterize and obtain quanti-

tative information of protein-surface systems, at various levels of detail[24]. The

film thickness of an adsorbed protein layer can be measured with ellipsometry[25],

neutron reflectivity can be used to measure the density of an adsorbed layer[26]. In

the case of biosensors an enzymatic reaction can be controlled and measured via

electrochemistry between the protein and the conductive surface[13]. Atomic force

microscopy (AFM) micro-cantilevers can be used by fixing proteins on the cantilever

tips. Protein-substrate interactions will change the surface tension on the micro-

cantilever, thereby bending the cantilever and creating a measurable signal[27]. Sur-

face Plasmon Resonance (SPR) can be applied for immunoassays where antibody

proteins are fixed to a metal surface, and a signal is generated upon antigen bind-

ing[11, 28]. Advanced biosensors can be constructed that combine several analytical

techniques that are able to give complementary information. For example, SPR can

be combined with subsequent Maldi-TOF mass spectrometry[29], or with fiber op-

tic absorbance spectrometry[22], all in a single measurement cell. The technological

devices that combine biological systems, mechanics and electronics are known as

Biomedical or Biological Micro-Electro-Mechanical Systems (BioMEMS)[30]. Apart

from the biochemical analysis tools mentioned above, one can also use the same

techniques for e.g. the construction of artificial retinal implants[31].

2.1.2 Commonly used inorganic surfaces

The choice of the inorganic surface substrate in a protein-surface study is based on

several practical considerations. Probably the most important consideration is the

fact that many biosensor techniques, for example electrochemical or SPR analysis,

need a conductive surface [11, 24]. Gold surfaces are traditional metal substrates in

liquid/metal systems, due to its ease of use (e.g. patterning) and inertness, which

ensures a stable surface during the course of the experiment[9]. This does not imply

that gold is the only surface of interest, as also palladium and platinum can be

considered interesting substrates for biological systems[9, 23, 32]. Other metals that

have been experimentally evaluated as a substrate for peptide binding are Cr[33],

Al[23], Ag, Cu[34] and Ti[10, 35].

Apart from metals, semiconductors are systems of high interest for protein-
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2.1 Experimental studies of biomolecule-surface interactions

surface systems, as they can be integrated with electronic circuits[10, 23, 35–38].

Examples of semiconductor surfaces used in experimental peptide binding studies

are GaAs, AlGaAs[23, 37], CdS, CdSe, ZnS, ZnSe[38], InP, Ge, GaP, Si[36] and

several metal oxide semiconductors as PbO2, CoO, MnO2[10], ZnO, Cu2O, Cr2O3

and Fe2O3[39].

A special consideration when studying biological systems is the issue of biocom-

patibility. For this, not only the ability of a surface to bind proteins should be

considered, but also its inertness, as the release of metal ions out of a surface can

for example disturb protein structure, or have a toxic effect on any living cells that

might be present. In the case of Ti, for example, it is known that an oxide layer

can form at the contact with air, after which the material becomes effectively inert.

Protein binding to this outer TiO2 layer might then occur via carboxyl groups.[40].

Metals that are not of the noble metal group or able to form an inert layer will

generally not be suited for biosensor applications. A well-known example is Cu,

which easily oxidizes and is highly toxic[41].

In the current thesis, the noble metal Au will be used for a part of the studies.

However, most of the studies will concern a Ni surface, which is too reactive to

be considered a noble metal, but was of interest due to experience gained for this

system in similar simulation work that was performed for a completely different

technological problem concerning the optimization of compact disc materials[6, 7,

42–45]. The nickel surface is modeled here only in its idealized state, as oxidation is

not considered, and therefore represents a model inert metal surface. In the water-

and benzene-surface interaction studies also gold is taken into account, but the initial

studies performed in this thesis indicated that gold was not an interesting substrate

to study specific, non-covalent interaction. It will therefore be important to extend

the system to surfaces that are likely to be interesting from both an application and

a modeling point of view, as for example Pt and Pd.

2.1.3 Experimental research of direct peptide-surface

interactions

Ongoing technical developments such as combinatorial peptide engineering[33, 37]

have opened the way to study and predict direct protein adhesion by consider-

ing adhesive properties of the constituting amino acids. For these studies, either
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2 Protein-surface interactions, an overview

Figure 2.1: Relative binding of different peptide oligomers to a polycrystalline gold
surface, as measured by the area coverage of yeast cells with oligomers expressed at the
outside of the cells[38]. Each data point is labeled with the one-letter abbreviation used for
amino acids (see also figure 2.2). The data point labeled * represents the test performed
in the absence of expressed peptide at the yeast cell surface.

existing metal-binding peptides were used as a starting point (e.g. Gold Binding

Peptide, GBP[33]), or randomized chains were created and analyzed for their the

metal-binding strength[37]. The most recent advancements can be found in the

systematic experimental studies that can identify an increase or decrease in pep-

tide surface binding when comparing various peptide groups in synthetic, ordered,

poly-peptides[23, 38].

For example, using genetical engineering, it was possible to display oligomer

peptides at the outside of yeast cell clones[38]. These yeast cells where then brought

into contact with metal plates, and the adhesion of the cells to the metal surface

could be quantified by counting individual cells with an optical microscope. Rel-

ative area coverages of yeast cells with interdigitated oligopeptides (XHXHXHX,

where H is Histidine and X was a different amino acid type for each different clone

tested) expressed at the cell surface are shown in figure 2.1. Apparent is that posi-

tively charged amino acids (K,R,H) resulted in a relatively stronger binding, whereas
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2.1 Experimental studies of biomolecule-surface interactions

negatively charged amino acids (D,E) had a weakened binding compared with the

peptide containing alanine (X=A).

A different study used solubilized peptide decamers and quantified the absorp-

tion by labeling each decamer with a single fluorescent group and measuring the

fluorescence of the peptides that adhered to the surface. A range of surfaces was

tested, a table is given in figure 2.2. The data in table one indicate that charged

peptides are the best binders on semiconductor surfaces and some of the metals.

By comparing the data for gold surface binding in the two before-mentioned

studies it becomes clear that they are not consistent, which is most likely due to

the large difference between the experimental set-up of both studies. Still, the value

of studies like these is clear: as the binding strength of a certain peptide subunit

will differ from surface to surface, the knowledge about individual peptide binding

enables the construction of polypeptides that bind selectively or even specifically to

a certain inorganic surface[10, 23, 33, 35–38].

EH DK R T Q PYNS M W G AC IV L F

Figure 2.2: Peptide surface density (×103/µm2) as measured by fluorescence data of
peptide decamers containing one end-group fluorescent label[23].
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2 Protein-surface interactions, an overview

2.2 Modeling biomolecule-surface interactions

Parallel to the advancements in experimental techniques, there is an increased in-

terest in performing modeling studies of water-solvated proteins near (inorganic)

interfaces. The molecular modeling of protein-surface interactions can elucidate

the underlying principles of the interactions, and thus enable the design of tai-

lored protein-surface interactions[19]. The simulation of such interface systems will

however have to cope with methodological problems, for example the at force field

level[20], a point that will be addressed in the current thesis. Modeling protein-

surface interactions can be done at several levels of detail. In the sections below,

ordered by increasing atomistic detail, examples will be given of recent research in

these levels.

2.2.1 Analytical models

General interaction properties can be calculated on the analytical level[46, 47]. For

example, an analytical approach based on dielectric properties was used to estimate

the van der Waals interaction of a slab of protein near a solid[46]. A protein slab

was represented by a layer with a refractive index and dielectric permittivity corre-

sponding to protein matter. Other materials present (the metal layer, slabs of water

and organic material), where represented by their respective refractive indices and

dielectric permittivities. It was found that adding a hydrocarbon layer on top of the

metal surface minimized the van der Waals interaction energy between the protein

and the metal surface: for a layer corresponding to only 3 carbon atoms in height

the interaction energy is already 10 % of the original strength.

2.2.2 Monte Carlo simulations

More detailed structural information at the peptide-surface interface can be ob-

tained from Monte Carlo (MC) simulations. Often, coarse grained peptide models

are employed that look for structural transitions that may occur as the peptide

model approaches the surface. The most simplified model in these studies is a ho-

mopolymer[48], of which a complete folding phase diagram can be constructed[49],

or a charged polymer model, used to study pH-dependence of the surface adsorp-

tion[50]. The Gō model that performs Monte Carlo steps based on a known global
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2.2 Modeling biomolecule-surface interactions

minimum is often used in protein folding simulations to probe folding paths has

also been used in protein-surface simulations, for example to study the influence of

the location of the protein-surface binding residue on the folding mechanism[51, 52].

Chemical information can be used in such models, for example by distinguishing be-

tween hydrophobic and polar subunits[53]. Several studies address the orientation of

proteins at a specific surface, where not only the interaction with the surface[54, 55],

but also the spacial arrangement of the protein next to the surface is of impor-

tance[56]. Some Monte Carlo studies apply explicit solvent or solvent/co-solvent

mixtures to gain orientation and hydration information of small peptides near sur-

faces[57, 58]. A step higher in complexity is the application of available (empirically

parameterized) force-fields and appropriate mixing rules to create a realistic descrip-

tion of both the biomolecule and a nonconducting surface. Although this approach

is applicable within Monte Carlo studies, it is more often simulated via molecular

dynamics simulations, as that allows to study dynamic behavior.

2.2.3 Molecular dynamics simulations

Interactions in systems containing peptides and solvent molecules near organic and

nonconducting inorganic surfaces can in principle be described by classical force-

fields. The total solute-surface interaction energy can then be calculated by inte-

grating the solute-surface atom pair interaction potential over all separate surface

atoms[59–61].

Another application for this is the simulation of interactions of proteins with

self-assembled-monolayers (SAMs), where the SAM is considered to cover its base

surface completely[62, 63]. An atomistic description of complete protein-organic

surface adsorption processes in explicit water is limited by the large system size

and long simulation times required. As an approximation, proteins can at first be

energy-minimized onto the surface, after which water is added to the system[59].

The electron-conducting nature of metal surfaces make this the most versatile

base for protein-surface composites, but also the most difficult system to study

with molecular modeling. The main cause for this is that, contrary to the peptide-

organic surface case, one can not construct a generalized force field to parameterize

peptide-metal surface interactions. Force fields generally account for the non-bonded

interactions between two atoms by applying mixing rules to the Lennard-Jones po-
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2 Protein-surface interactions, an overview

tential of both atoms, whereas bonded interactions are based on either constrained

distances or anharmonic potentials. In the case of metal surfaces however, it will

be incorrect to calculate an overall surface interaction of nearby molecules by inte-

grating over all separate pair interactions between solute and metal atoms[20]. A

main cause for this is the delocalization of the electrons (the main contributor to

interactions) in a metal surface. Perturbations of the electron density caused by a

nearby molecule will lead to interaction strengths and optimal interacting config-

urations that can only be determined via quantum mechanical (QM) calculations

and its parameterization into atomistic potential energy functions for classical sim-

ulations should be verified on a case-by-case basis[20]. This does not mean that

interactions of organic molecules with metal surfaces are not parameterizable in a

molecular modeling scheme per se. Even when single atom-metal surface interac-

tion parameters are not readily transferable between different molecule types, we can

still model the QM-determined adsorption energies and configurations of chemically

active groups that have relatively isolated electronic properties (e.g. polar groups

in an alkane chain), and combine any number of those groups in a macromolecule,

as long as this combination does not have a heavily altered electronic structure,

and the surface-adsorbed groups will be separated far enough to not disturb the

electron distribution of the neighboring solute-metal interactions. This methodol-

ogy has been successfully applied in previous studies concerning the modeling of

polycarbonate-nickel interactions[6, 7].

Previous approaches to model metal-adsorbed peptides tried to simplify the

problematics in various ways, e.g. by ignoring the peptide-metal interaction alto-

gether[64], or by using a generalized force field for the solvent-metal and protein-

metal interaction[65, 66], even though this has the conceptual problems mentioned

above. An approach to overcome these difficulties will be introduced in this thesis,

as will be worked out in chapters 7 and 8.

2.2.4 Quantum calculations

Several studies describing quantum calculations for the interaction between amino

acids in their neutral state and metallic surfaces are available[67–71]. Attempts to

study amino acids in their zwitterionic state have also been made[72–75]. Analyzing

adsorption energies of the zwitterionic state by quantum calculations is complex,
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2.2 Modeling biomolecule-surface interactions

since the zwitterion is only stable in solvated state, not as an isolated molecule,

and no clearly defined reference state is present. It is however possible to obtain a

minimal estimate of the adsorption energy, as will be discussed in chapter 8.

A further step is the study of peptide-surface interactions by quantum calcula-

tions. The N-methyl-acetamide molecule, which is the smallest representation of a

peptide bond, has already been subject of intensive research on the quantum calcu-

lation level, most of which are dedicated to the rotational energy profile around the

peptide bond[76–84]. The interaction of a peptide bond with a metal surface has

been studied by quantum calculations for a system containing a TiO2 surface and a

peptide bond with one of the connected amino acid groups[85].
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3 Theoretical basis of Molecular

Simulation

Some of the main aspects of molecular simulation will be treated here, with a main

focus put on the classical molecular dynamics calculation methods used in the cur-

rent thesis, and on the special considerations required for simulating aqueous/metal

interfaces. Most of the methodologies used are well-established techniques and are

extensively explained in classical reference works on molecular simulation[86, 87] and

software package references[88]. Therefore only the basic foundations of these sub-

jects will be treated here. Short introductory comments will be made about the

quantum calculations to which this work refers to, and on the current status of

multiscale simulations methodologies.

3.1 Mechanics of Molecular Systems

Consider a one-component system consisting of N particles. This system can be

described by the set of N Cartesian coordinates ri and momenta pi, which results

in a phase space Γ with dimension 6N .

The Hamiltonian of this system is given by the sum of the kinetic energy K and

the potential energy V , where the former energy term depends on the momentum

p of the particles, the latter on the coordinates r:

H(r,p) = K(p) + V (r) (3.1)

The separation in the Hamiltonian that defines kinetic energy as solely depen-

dent on the momenta, and potential energy solely on the coordinates, enables the
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3 Theoretical basis of Molecular Simulation

use of a simple set of equations of motion, called Hamilton’s equations:

ṙi =
∂H

∂pi
=

pi
mi

(3.2)

ṗi = −
∂H

∂ri
= −

∂V

∂ri
= fi (3.3)

Where fi is the force acting on particle i. Given a set of initial conditions, these

equations can be numerically integrated in discrete time steps in the molecular

dynamics simulation using so-called integrators, as explained in section 3.3. Kinetic

energy is the most trivial part of the Hamiltonian, as it is just the sum of kinetic

energies for all particles. Potential energy is a more complex issue, however, and will

be built up out of a combination of pairwise interactive terms, that are described in

the molecular force field used, as described in the following section.

3.2 Molecular force fields

Potential energy within molecular dynamics is defined by a force field, often initially

based on initial quantum calculations and then optimized to be able to represent

experimental bulk data, leading to so-called ’empirical force fields’. Common force

fields describe the interactions between molecules by a combination of dispersion

interactions and electrostatic interactions between the atoms or, more generally,

sites on the molecules present in the system.

3.2.1 Electrostatics

In the case of ions, electrostatics between an ion i and another ion j is given by the

electrostatic interaction energy between the two charges qi and qj, which is described

by the Coulomb interaction:

Vc(rij) =
1

4πǫ0

qiqj
rij

(3.4)

Where ǫ0 represents the dielectric permittivity of vacuum. In atomistic simulations,

the total dielectric permittivity of a system (ǫ) can be calculated from fluctuations

in the total dipole moment of the system[89]. The ratio between the permittivity of
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3.2 Molecular force fields

a system and the permittivity of vacuum (ǫ/ǫ0) is known as the relative permittiv-

ity (ǫr) and is often used when calculating coulomb interactions in coarse grained

simulations where no explicit medium is present.

The force on charge point qi due to electrostatic interactions with point qj can

be calculated as:

Fi(rij) =
rij

4πǫ0

qiqj
r3
ij

(3.5)

Difficulties arise due to the long distance range of these functions, the special

methodologies used to treat this in simulation will be therefore discussed in more

detail in section 3.7. For molecules that have no net charge, its atoms can still be

assigned partial charges to represent the dipole and higher order electric moments

or to reproduce the electrostatic potential on the molecular surface.

3.2.2 Dispersion

Dispersion describes the interactions due to induced dipole interactions in a molecule.

These interactions are short range and often described in Lennard-Jones potentials,

together with short range repulsive interactions. The Lennard-Jones interaction

can either be expressed as a function of radius σ and interaction strength ǫ, or as

Lennard-Jones parameters C(6) and C(12).

V (rij) = 4ǫ

[

(

σ
rij

)12

−
(

σ
rij

)6
]

=
C

(12)
ij

r12ij

−
C

(6)
ij

r6ij

(3.6)

One advantage of the Lennard-Jones interaction is its computational efficiency. The

power terms can be reused for the force calculation, for example:

Fij =
rij
r2
ij

[

12

(

C
(12)
ij

r12
ij

)

− 6

(

C
(6)
ij

r6
ij

)]

(3.7)

When calculating the interaction between different particle types, the interaction

potential for this set of particles is needed. In most force fields, this interaction

potential is determined by applying a mixing rule on the interaction parameters
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3 Theoretical basis of Molecular Simulation

(interaction strength and optimal distance) of both particle types. The choice of

the mixing rule depends on the force field used. In the case of the GROMOS43a1

force field[88], for example, the geometric average method is applied:

C6
ij = (C6

i ∗ C
6
j )

1/2 (3.8)

C12
ij = (C12

i ∗ C12
j )1/2 (3.9)

3.2.3 Surface potentials

In this thesis, the metal surface will be modeled by a set of site-surface potentials.

Two popular site-surface potentials are considered. A generic surface interaction can

be constructed by 10-4 interactions, that represent an integration of all interactions

that would exist between a site and all surface atoms in its vicinity in an all-atom

surface description[90]. This potential was used in previous multiscale modeling

methods describing polycarbonate-nickel interactions[6]. A graphical representation

for all functions is given in figure 3.1.

UAttr.10−4 =

{

2πǫ
[

2
5

(

σ
z

)10
−
(

σ
z

)4
]

, z ≤ zcutoff

0 , z > zcutoff
(3.10)

URep.10−4 =

{

2πǫ
[

2
5

(

σ
z

)10
−
(

σ
z

)4
+ 3

5

]

, z ≤ σ

0 , z > σ
(3.11)

An alternative choice for site-surface interaction potentials is the Morse potential.

This is originally a bond-like potential[91], and able to describe short-range electron

overlap. An advantage to the Morse interaction is that an additional factor is present

that can fine tune the steepness with which the interaction strength will decay at

increasing distances from the surface.

UAttr.Morse =

{

ǫ
(

1 − e−a(z−σ)
)2

− ǫ , z ≤ zcutoff

0 , z > zcutoff
(3.12)

URepMorse =

{

ǫ
(

1 − e−a(z−σ)
)2

, z ≤ σ

0 , z > σ
(3.13)
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Figure 3.1: A graphical representation of the equations in . A σ value of 0.2 nm was used,
ǫ was set to 1 kJ/mol for the Morse potentials, and 1

6/5π kJ/mol for the 10-4 potentials,

both having a well depth of 1 kJ/mol. Two potentials are drawn for the Morse potential,
with different Morse parameters. Small Morse parameters will lead to shallow curves, even
up to r = 0nm.

3.3 Molecular Dynamics

The interactions, forces, velocities, and updated coordinates in a system can be

calculated from the interaction potentials via various ”integration” schemes. For

the current study, only molecular dynamics (MD) was applied. Other integration

methods are also available. For example, Monte Carlo calculations employ non-

dynamic ’steps’ that are based on random movements of the system. This can

create more efficient sampling for certain systems, but makes MC less suitable to

research dynamic properties of a system.
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3.3.1 Time Step Integration

In molecular dynamics simulation, the configuration change in time step ∆t are

based on velocities and forces in the system as were calculated in the time step before.

For infinitely small values of ∆t, a continuous and energy-conserving simulation can

be performed, but for computational efficiency a time step as high as possible should

be chosen that can still retain energy-conservation with acceptable accuracy. Various

integrators are available for molecular dynamics, the Gromacs software package used

in this thesis[92–94] applies a variation of the Verlet algorithm, called the leap frog

algorithm. In this algorithm, the velocity is calculated for the point in time between

the current an the next time step (v(t+ ∆t
2

)). This is calculated from the previously

calculated velocity (at v(t− ∆t
2

)), plus the acceleration due to the force at the whole

time step t. Then, based on that velocity, the coordinates for the next time step are

calculated. This scheme is in principle time-reversible.

v(t+
∆t

2
) = v(t−

∆t

2
) +

F(t)

m
∆t (3.14)

r(t+ ∆t) = r(t) + v(t+
∆t

2
)∆t (3.15)

Forces are calculated from the functions describing the distance-derivative of the

interaction potentials (−∂V
∂r

). The simplest form of molecular dynamics describes a

system with a constant number of particles, a constant volume, and constant energy

(NVE or microcanonical ensemble). This ensemble does not resemble standard

experimental conditions, therefore alternative algorithms have to be used to sample

in different ensembles. For molecular dynamics several methods are available to

control temperature and pressure, as will be shown below.

3.3.2 Treatment of Bonds and Angles

In simulations on the atomistic level it is often sufficient to keep bond lengths fixed

during the simulation, thereby avoiding the need of exact calculations of bond length

vibrations. Several algorithms are available to retain fixed bond lengths in the

simulation, well-known examples are the SHAKE[95] and the LINCS[96] algorithm.

The general idea of these bond constraint algorithms is that firstly, all atoms are

displaced in an unconstrained way, according to the Verlet algorithm, for example.
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3.4 Periodic Boundary Conditions

After this step most bonds will be offset from their ideal bond lengths. Then, forces

are applied to the atoms depending on the deviation of the bonds from their ideal

positions. As soon as all atoms are within a certain threshold distance from their

ideal positions, the constraints are considered converged and the system is ready for

the next time step.

Angles can be treated by simple spring potentials, where the deviation of the

angle θ from its optimal value θopt is used in a harmonic potential, together with a

parameterizable force constant kangle. In the case of GROMOS force fields[88, 97, 98],

the cosine of the bond angle is used instead of the angle itself:

Vangle(θ) =
1

2
kangle[cos(θ) − cos(θopt)]

2 (3.16)

In the case of rigid water models, no angular vibrations are taken into account, to

increase computational speed. Other angular potentials can be used as well. Well-

known potentials are dihedral potentials, that can be used to describe the potentials

of staggered and eclipsed conformations in alkane chains, and improper dihedrals,

that can for example be used to enforce flat conformations in aromatic systems.

3.4 Periodic Boundary Conditions

Basically, a simulation is performed on a single box of molecules, which would mean

that a significant amount of the contents is located near a side of the box. To better

represent a real-life system, mirror images are considered at each side of the original

box, ending up with an infinite system of copies of the central box. Within these

periodic boundary conditions, the so-called minimum image approach is normally

used, where for each atom in the central periodic box, interactions are calculated

with the atoms surrounding it, which can be either in the same box or in the periodic

images of box. Normally, the number of calculations that need to be performed is

reduced by only considering interactions within a spherical cutoff instead of within

the total box, where the atoms within this cutoff are kept in a so-called neighbor

lists, which is updated only every n time steps. When studying interactions of

solutions with solid surfaces a 3D periodicity is not wanted. Surfaces can mostly be

considered infinitely deep when compared to the nanometer scale used in MD, but for

the sake of simulation speed, only the first few layers are simulated. To prevent the
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calculation of interactions with molecules at the periodic image beyond the surface

one can introduce a vacuum space exceeding the neighbor-search cutoff length in

one direction. Still, special measures have to be made for long-range electrostatics,

as will be discussed in 3.7.

3.5 Thermal Coupling

Molecular dynamics in its simplest form samples a system in the microcanonical

ensemble (NV E), with a constant number of particles N , constant volume V , and

a constant total energy of the system E. To sample in more common experimental

conditions, a constant pressure, temperature isotherm − isobar ensemble (NPT)

is needed. Defining constant pressure and temperature can be straightforward in

Monte Carlo simulations, but is more troublesome under molecular dynamics sim-

ulations[99]. In effect one will need to add degrees of freedom used to regulate

temperature to the equations of motion, thereby influencing the degrees of freedom.

3.5.1 Langevin Thermostat Molecular Dynamics

In Langevin thermostat molecular dynamics, an effective medium is represented by

temperature-dependent noise term and a friction term added to the equations of

motion. Langevin thermostat MD is often used in cases where the solvent degrees

of freedom are not explicitly modeled. Instead, a solvent ’background’ is assumed,

that causes random accelerations and friction on the explicitly modeled solutes. The

random accelerations are accounted for by a stochastic force, the friction is applied

as an additional term to the particle velocities.

mi
d2ri
dt2

= −miξi
dri
dt

+ fi(ri) + r̊i (3.17)

Here, ξ is a friction term with unit ps−1, and r̊ is a noise force which depends on

the absolute temperature and the friction constant.

The Langevin thermostat MD method generates an exactly defined canonical,

NVT, ensemble, but the random noise does disturb the actual dynamics. A special

case of the Langevin thermostat is given by Brownian dynamics, where it is assumed

that on average no acceleration takes place in the system. This can also be described
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3.5 Thermal Coupling

as over-damped or non-inertial Langevin dynamics.

The dissipative particle dynamics (DPD) thermostat is taken from the DPD

simulation method. DPD is a method for the simulation of hydrodynamic behavior

of mesoscopic fluids, and can be seen as a combination of a soft particle interaction

potential and a thermostat, [100]. The thermostat is based on a similar idea as the

Langevin thermostat as it applies conservative, random, and dissipative forces in the

equations of motion. It has however the advantage that is preserves hydrodynamics

as the dissipative and random forces are added in a pairwise fashion, which enables

the conservation of momentum[101].

3.5.2 Berendsen

The Berendsen coupling scheme was introduced as an alternative to stochastic dy-

namics, keeping the coupling of temperature to an external heat-bath, while leaving

out any noise effects, to not locally disturb dynamics in the simulation[102].

Main part of the Berendsen temperature coupling to a reference temperature T0

is a change dT in temperature for each time step dt.

(

dT

dt

)

bath

=
T0 − T

τT
= 2γT0 − T (3.18)

Where γ is a friction term (with unit ps−1), for which in MD programs often the

temperature coupling time constant τT is used. The temperature change is processed

in the equations of motion via a velocity scaling from v to λv, where the scaling factor

λ is temperature dependent. In a leap-frog algorithm, velocities for configuration

x(t) are known only from half a time step before: v(t − 1
2
∆t). The error due to

this difference is small when coupling time τT is long compared to time step dt, and

therefore λ can be written as:

λ =

[

1 +
∆t

τT

(

T0

T (t− 1
2
∆t)

− 1

)]1/2

(3.19)

After calculation of λ, velocities at half a time step later (v(t+ 1
2
∆t)) will be scaled.

Berendsen coupling does not maintain an exact constant temperature ensemble,

whereas Nose Hoover temperature coupling (described below)does. Still Berendsen

coupling has an advantage as one can chose short coupling constants can be well-
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suited for quick equilibration.

3.5.3 Nosé-Hoover

In Nosé-Hoover pressure temperature coupling [99], a function added to the equa-

tions of motion is chosen in such a way that the static quantities of the system

are in accordance with the ensemble. The added degree of freedom is the coupling

constant Q, which enters in the definition of heat bath parameter ξ:

dξ

dt
=
T − T0

Q
(3.20)

Note that T is the instantaneous temperature of the system, and T0 is the reference

temperature. The heat bath parameter enters the equation of motion:

d2ri
dt2

=
Fi

mi
− ξ

dri
dt

(3.21)

In Gromacs, Q is defined via a coupling time τT and reference temperature T0, by

stating Q =
τ2
T
T0

4π2 . This coupling period τT is then a measure of the kinetic energy

oscillations between the system and the reservoir.

3.6 Pressure Coupling

Pressure coupling is normally performed on box-vectors and either the particle co-

ordinates (in the case of Berendsen pressure coupling) or particle velocities (in the

case of Parrinello-Rahman coupling). As for temperature coupling, Berendsen cou-

pling is more likely to speed up equilibration, but generates an ill-defined ensemble.

Parrinello-Rahman introduces longer fluctuations, but generates a well-defined en-

semble.

3.6.1 Berendsen

Berendsen pressure coupling[102] applies a weak coupling to coordinates x(t) and

box lengths l(t). In the most general case, describing anisotropic systems, pressure

needs to be regarded as a tensor, P. A more straightforward case is formed by

30



3.6 Pressure Coupling

isotropic systems, where pressure can be described as a scalar P , and just as for

scalar temperature T in equation 3.18, one can write:

(

dP

dt

)

bath

=
P0 − P

τP
(3.22)

Similar to temperature coupling, P is the instantaneous pressure of the system, and

P0 is the reference pressure. In practice, a scaling factor (µ) is used to perform the

pressure coupling. In the case of isotropic coupling, it can be described as:

µ = 1 −
β∆t

3τP
(P0 − P ) (3.23)

Where β denotes the isothermal compressibility of the system, defined as.

β = −
1

V

(

dV

dP

)

T

(3.24)

For anisotropic systems, the scaling factor will take the form of a tensor. In the case

of interfaces (for example the modeling of surfaces as performed in this thesis), one

can use a tensor consisting of only the diagonal terms µxx, µyy, and µzz. The zz

term can then be evaluated independently from the xx and yy terms, for example

by setting µzz to zero, which means that the zz direction will not be scaled during

the simulation. Pressure scaling is applied to box-lengths for the next time step

(l(t + ∆t) = µl(t); for coordinates scaling is applied only after the coordinates of

the next time step have been calculated, resulting in x(t+ ∆t) = µ× x(t+ ∆t).

3.6.2 Parrinello-Rahman

Parrinello-Rahman pressure coupling[103] is similar to Nosé-Hoover temperature

coupling, as it introduces an additional degree of freedom to the equations of motion.

In the case of Parrinello-Rahman, this is an inverse mass parameter matrix W−1.

This can be roughly interpreted as using a ’heavy piston’ to control the pressure in

the system. The mass of the piston influences the fluctuations of the sample and

should be set in such a way that the time scale for the volume fluctuation of a sample

relates to the length of the sample divided by the speed of sound in the sample[104].

In simulation however, alternative values for the mass parameter can be used[103],

for example, Gromacs uses the inverse mass parameter matrix W−1. This matrix
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3 Theoretical basis of Molecular Simulation

has the unit of inverse mass and is a function of isothermal compressibility β and

time constant τp. It takes the form of a tensor as it allows for anisotropic coupling,

and is defined as (W−1)ij =
4π2βij

3τ2
pL

. L denotes the largest box matrix element. For

any type of unit cell, the box vectors can be expressed in a matrix b. In the case

of Parrinello-Rahman coupling the box matrix b′ would depend on a function of

volume V , transposed box matrix b′, and W−1.

db2

dt2
= VW−1b′−1

(P −Pref). (3.25)

The box matrix can then be used to define a scaling matrix M, that will enter the

equations of motion.

M = b−1

[

b
db′

dt
+
db

dt
b′

]

b′−1
(3.26)

d2ri
dt2

=
Fi

mi

− M
dri
dt

(3.27)

3.7 Long range electrostatics

Long range interactions form a complex part of molecular simulations, as an increase

in the cut-off radius within which all calculations are performed will scale with the

third power for the number of particles that need to be calculated. To reduce

computational costs, short-range cut-offs would therefore be desirable. However, at

the cut-off distance unphysically high values for the derivative of the potential are

present, which will be especially problematic when the cut-off distance is relatively

low. This leads not only to an overestimation of the forces in the system, but

also impairs the conservation of energy in the system. Common solutions to this

problem are based on two popular methods: reaction-field electrostatics or Ewald

summation.

3.7.1 Reaction-field

In reaction-field electrostatics[105], the effect of the electrostatic interactions caused

by molecules outside the cutoff distance rc is seen as the effect of a isotropic dielectric

continuum with a known dielectric constant ǫrf . The value for ǫrf is therefore given
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by the dielectric constant of the medium. The interaction potential then becomes:

Vcrf
=

qiqj
4πǫ0ǫr

[

1

rij
+ krfr

2
ij − crf

]

(3.28)

In the case for explicit solvent, ǫr = 1, in all other cases ǫr depicts the relative per-

mittivity as compared to vacuum. The krfr
2
ij term is a gradually decreasing function

to making sure the derivative, the force, is zero at the cutoff distance rc and no un-

wanted forces are created in the system that would disturb the energy conservation.

The krf factor is determined by the influence of the dielectric continuum outside the

cutoff and in it simplest form for a system of zero ionic strength it can be written

as[105]:

krf =
1

r3
c

ǫrf − ǫr
(2ǫrf + ǫr)

(3.29)

The form of the function is such, that the electrostatic interaction is most strongly

screened when surrounded by a continuum with a large dielectric constant (ǫrf ≫ ǫr).

The last term, crf , is a constant correction term that makes sure the potential of

the system is zero at cutoff distance rij = rc.

crf =
1

rc
+ krfr

2
c =

1

rc

3ǫrf
(2ǫrf + ǫr)

(3.30)

The force function determining the force in charge point qi due to the reaction

field coulomb interaction with charge point qj is:

Fi(rij) =
qiqj

4πǫ0ǫr

[

1

r3
ij

− 2krf

]

rij (3.31)

In the case of anisotropic systems, as liquid/solid interfaces, applying the reaction

field method will be incorrect. The dielectric constant will not be constant behind

cutoff, but depending on the direction (perpendicular or parallel to the surface).

A simple cutoff could be used, but is not very reliable [106], therefore the optimal

choice would be a (semi) 2D method, as is possible with techniques based on Ewald

summation.
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3.7.2 Ewald summation

The treatment of electrostatics with Ewald summation, originally developed for

the calculation of charges in crystals[107], is a well-known method for the periodic

systems studied in molecular dynamics[108, 109]. It is based on a representation of

the electrostatics in a system by coulombic point charges q. For such a system of N

point charges the total electrostatic energy can be given as:

E =
1

2

N
∑

i,j=1

′
∑

n∈Z3

qiqj
|rijlnL|

(3.32)

The prime ′ in the sum over periodic images n indicates that the particle self inter-

action i = j should be skipped when i and j are in the same periodic image (n = 0).

Because of the slow convergence of the electrostatic interaction in equation 3.32, the

calculation is split into two parts. The reasoning can be visualized by the following

expression:

1

r
=
f(r)

r
+

1 − f(r)

r
(3.33)

The first part on the right hand side is a Coulomb-like interaction potential within

a certain cutoff rc. Beyond the cutoff this function will be negligible or zero. The

second part on the right hand side will be a slowly varying function at all distances

r, and is optimized to be represented by a Fourier transfer.

In practice, the charge interactions can be treated by dividing the potential in

three terms, a short range real space interaction E(r), a long range interaction that

will be calculated in reciprocal space E(k), and a self interaction correction term

E(s), which is constant.

E = E(r) + E(k) + E(s) (3.34)

The reciprocal space part extends infinitely over all periodic images. The actual

charge distribution is described by a set of Gaussian charge clouds, for which an

interaction in reciprocal space can be written as a sum over the set of k-vectors:

E(k) =
1

2L3

∑

k 6=0

4π

k2
e(−k

2/4α2)|ρ(k)|2 (3.35)
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where α is the inverse length (or: Ewald parameter) that is used to set the relative

weight of the real and reciprocal contributions, and ρ(k) is given by:

ρ(k) =
∑

j=1

qje
−1k·rj (3.36)

The real space part is calculated in a similar way as normal coulomb interactions,

except that the Gaussian functions (erf(α|rij + nL|)) are subtracted from the point

charges, to cancel the charges added to the system in equation 3.35. Using the

function (erfc(. . .) ≡ 1 − erf(. . .)), this can be written as:

E(r) =
1

2

∑

i,j=1

′
∑

n∈Z3

qiqj
erfc(α|rij + nL|)

|rij + nL|
(3.37)

The system now contains both point charges and Gaussian charge clouds around a

single charge point, and for a single charge point there can be a charge interaction

with itself. To remove this term, a self interaction correction is performed:

E(s) = −
α

√

(π)

∑

i

q2
i (3.38)

In computer simulations, an alternative version of Ewald summation is often

used, Particle Mesh Ewald (PME)[108, 109]. Here, the charge distribution of the

particles in the system is discretized onto a grid. Fast Fourier methods can be used

to equate the potential for this grid, after which the resulting potential and force is

assigned to each particle by interpolating the potential and force on the surrounding

grid points.

3.8 Quantum calculations

The principle of standard molecular dynamics simulation is based upon the assump-

tion that quantum effects play no role in the processes that are simulated. For many

systems this atom-only description suffices, although the force field parameters that

are applied there can be based on quantum calculations. Performing detailed quan-

tum calculations would actually deliver unnecessary information for such problems.

In some cases, however, the quantum nature of the system requires detailed in-
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formation about the electronic states of the molecules of interest. Examples are

chemical reactions, proton transfer, and interactions of solutes with metal surfaces,

the subject of this thesis.

Therefore, complementary to the atomistic simulations presented in this thesis,

quantum calculations have been performed, as a part of the multiscale modeling

procedure. The exact details on the quantum calculations are outside the scope of

this thesis and are treated elsewhere[43, 44, 67, 72]. Still, at least an elementary view

on the materials is necessary to understand the multiscale modeling presented here,

therefore a short introduction on the quantum calculations used is given here.

Ideally, systems would be solved fully by the Schrödinger equation for all elec-

trons and nuclei. A solution would give the ground state wavefunction ψ, and the

electron distribution of the system. Exactly solving this many body Schrödinger

equation is however practically impossible. As one would like to obtain the electron

distribution in the system, approximations have to be made, which will introduce

adjustable parameters into the calculations. Methods to calculate the quantum me-

chanical properties of systems are often called ”first principles” or ab initio methods

as they ideally would not require any adjustable parameters. A popular approximate

method is based on the Hartree-Fock methodology, where the complex n-particle

wavefunction ψ is approximated by combinations of single orbital elements[110].

The current thesis refers to another commonly used quantum calculation method:

first principles Density Functional Theory (DFT). It is based upon the assumption

that a functional E[ρ(r)] exists that depends on the electron density ρ(r). Self con-

sistent minimization of E[ρ(r)] with respect to ρ(r) will yield an unique, ground

state, electron density[111, 112]. To solve this problem, a so-called pseudopotential

plane-wave approach can be applied where the core electrons of the atoms are treated

within the pseudopotential[111, 112]. Empirical parameters have to be introduced in

DFT to describe electron exchange and correlation effects. These enter the effective

potential of the system, Veff (r). Despite that disadvantage of requiring external pa-

rameters and thus not being purely ab initio, the plane-wave approach will be useful

for describing complicated systems, as metallic crystals[112] and surfaces. For these

systems, the quality of the calculation, and thus the added empirical parameters,

can be readily validated by comparing experimental and simulated lattice constants,

cohesive energy, and other properties.

A point of general concern is the treatment of dispersion interactions in quantum
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calculations, as these interactions are caused by non-local instantaneous fluctuations,

which would require an immense calculation load and is therefore left out of most

quantum calculations. Recently, several attempts have been made to quantify the

error made by this approximation[113, 114].

3.9 Multiscale Modeling

As mentioned in the previous section, DFT calculations are too slow to perform

dynamics with adequate sampling. Similarly, treating chemical reactions or pro-

ton transfers in solution will require long time scales for equilibration and detailed

treatment of the reaction centers. On a higher scale, when studying large hydrated

proteins, a lot of computation time is spent on treating the water. Treatment of

water near the protein is essential for realistic simulation, but further away from

the protein bulk water could be assumed. All these cases have in common that

a relatively small (central) part of the system needs a detailed treatment, while

the major (outer) part could be treated by more coarse grained or even analytical

descriptions. In these situations, a multiscale approach could form a solution to

increase simulation speed[115, 116].

Multiscale methodologies are not without difficulties, often problems concern-

ing the treatment of boundary zones are present, especially in QM/MM multiscale

methods. Another problem occurs when a detailed description is needed at dynamic

positions in the system, or when the system is dynamically moving around the po-

sition where a detailed description is necessary (for example when only molecules

close to a surface need detailed treatment). A solution to this last problem can be

resolved by a recently developed algorithm that can allow for particles moving from

the coarse-grained to the atomistic level within a simulation[3, 4].

The multiscale modeling studies presented in the current thesis treat separate

simulations at the various scales in a sequential coarse graining approach. Integra-

tion of the two levels is done in two directions. Translation from the quantum to

the atomistic level is performed by parameterizing energetic and geometrical data

from the molecule-surface interaction into the atomistic force field by a combina-

tion of atom-surface and virtual site-surface interactions. Langevin thermostat MD

runs can then be used to quickly show the quality of the parameterization. In the

other direction, the vacuum Langevin thermostat MD runs can sample stable con-
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formations that were not sampled in the initial quantum calculations. Then, these

conformations are taken from the Langevin MD runs and used as input files for

the consecutive quantum calculations. This way, new minima can be allocated. As

the sampling at the atomistic level will be mostly governed by the global surface

attraction energy minima conformations, no overly detailed quantum description of

local minima is needed. The approach described above will be treated in detail in

chapter 8.

In recent years this kind of problem has been successfully addressed for a poly-

carbonate melt interacting with a metal surface[6]. There, in order to determine

the polymer-surface interaction, quantum calculated adsorption energies of poly-

carbonate sub-molecules were combined with geometry considerations for polymer

conformations at the surface, taking properly into account the chain topology and

its influence into the adsorption process. This modeling was then incorporated into

a coarse-grained model for the polymer interacting with a planar surface and later

extended to a step defected surface[117]. Extensions will have to be made when

starting from that model to the current modeling requirements. One extension will

be the introduction of the modeling of water, which will be treated in chapter 6

of this thesis. Another point of complication will the fact that more interaction

sites and less molecular symmetry can be found in biopolymers, as compared to

the synthetic polymers studied earlier. Furthermore, the combination of adsorbing

water and biopolymer adsorption will lead to a competition effect in the adsorption

process. In chapters 7 and 8, a starting point to deal with these modeling problems

will be introduced, based on an approach where all molecular groups of interest are

considered separately in a building block-like manner.
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4 Free Energy in Statistical

Mechanics

Statistical mechanics provides a link between the macroscopic properties and the

molecular constitution of a system. It is based on the idea that macroscopic ob-

servables can be expressed as statistical averages over the collection of microstates

(instantaneous snapshots of particle positions and velocities) sampled by the system.

Microstates can be seen as instantaneous snapshots of all positions and momenta in

the system (the phase space Γ). An important condition for this is that the system

is bound by external constraints that are well defined, for example, density and

temperature are given and constant. Such a collection of microstates is referred to

as a statistical ensemble.

The ensemble where the number of particles N, the volume V, and the temper-

ature T are fixed, is referred to as the canonical ensemble (or NVT ensemble). The

probability P (Γ) that the system will visit a particular microstate i, Γi = (ri,pi) is

given in the NVT ensemble by:

P (Γ) =
e−βH(Γ)

QNV T

(4.1)

where H(Γ) is the (classical) Hamiltonian and QNV T is a normalization factor that

is defined as:

QNV T =

∫

dΓe−βH(Γ) (4.2)

The normalization factor in equation 4.2 is more commonly known as the canonical

partition function, and relates to the free energy of an NVT system, F (N, V, T ), by:

F (N, V, T ) = −kBT lnQNV T (4.3)
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The macroscopic observable < A > of a mechanical quantity A(Γ) can be ex-

pressed in the canonical system as a function of the probability defined in equation

4.1:

< A >NV T =
∫

dΓA(Γ)P (Γ)

= 1
QNV T

∫

dΓA(Γ)e−βH(Γ)
(4.4)

By assuming that the ensemble averaged quantity < A > can be replaced by a

time averaged quantity A, it becomes possible to evaluate equation 4.4 in molecular

dynamics simulations. When the time average over observation time T equals the

ensemble average of a system, the observed system is called ergodic (A =< A >),

and A can be defined as:

A =
1

T

∫ T

0

dtA(t) (4.5)

Unlike the mechanical properties < A > or A defined above, the calculation of

thermal properties, as for example free energy or entropy, can not be performed by

straightforward statistical averaging. The difficulty that arises can be exemplified

by expressing free energy 4.3 in the form of an ensemble average (equation 4.4):

F = −kBT ln
∫

dΓe−βH

= −kBT ln
[

∫

dΓ e−βH
R

dΓe+βHe−βH

]

= kBT ln
[

R

dΓe+βHe−βH

QNV T

]

= kBT ln
〈

e+βH
〉

NV T

(4.6)

It can be seen that the calculation of the ensemble average of e+βH is needed to

calculate the free energy. This becomes problematic for the states in the phase

space where the Hamiltonian H is large. These are unfavorable high-energy states

and have a low probability to be sampled (for increasingH , the e−βH part of equation

4.1 drops exponentially). These high energy states contribute however significantly

to the ensemble average in equation 4.6, leaving the exact calculation of equation

4.6 practically useless. This is a major problem that complicates the calculation of

the (absolute) free energy. However, in practice only free energy differences between

various states are of interest and not so much the absolute free energy of a single

system. Therefore, two frequently used methods to calculate free energy differences
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in simulations, will be treated in the following section.

4.1 Determining free energy changes

This thesis will deal for a great part with solvation effects and the corresponding

thermodynamic changes. In chapter 5, the free energy change of aqueous solvation

is discussed as studied via various methods, whereas in chapters 7 and 8 free energy

changes will be retrieved along an order parameter.

4.1.1 Thermodynamic perturbation

As stated before, the parameter of interest is the free energy difference between

two states. One can take for example a state B containing a solvated solute, which

differs from state A only by a different interaction with its solvent environment. The

difference in potential energy U of these states can be written down as:

UB = UA + ∆U (4.7)

Note that in this example ∆U describes the difference in solute-solvent interaction

energy of state A and B. The free energy difference of these two states can be written

for an NVT ensemble as (based on equation 4.3):

∆FAB = −kBT ln
QB

QA
(4.8)

The NVT partition functions can be written fully, as in equation 4.2:

∆FAB = −kBT ln
R

drN e−βUB
R

drNe−βUA

= −kBT ln
R

drN e−βUAe−β∆U

R

drN e−βUA

= −kBT ln
〈

e−β∆U
〉

A

(4.9)

The ensemble average < . . . >A will be taken from a system which is described

with the Hamiltonian HA. Equation 4.9 can succesfully be evaluated in case the

perturbation potential ∆U is small. In such closely related systems, the probability

distributions PA(Γ) and PB(Γ) will have sufficient overlap, and a simulation of only

one of the states is necessary. In practice this will only hold for very small changes,
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in the case of solute hydration one could perform for example a pure water run (state

A) and directly calculate the hydration energy needed to insert small hydrophobic

solutes (e.g. He, Ar, CH4). This leads to a description of state B, the state consisting

of the solvent/solute mixture. This method is generally known as Widom’s particle

insertion method[118]. The limitation of this method is that the bigger the solute

will get, the smaller the probability overlap between state A and B will get, which

will eventually result in insufficient sampling to reach correct free energy differences

between these states.

4.1.2 Thermodynamic integration

In the case of large perturbation potentials ∆U (equation 4.7), a different method

needs to be applied to correctly calculate free energy differences. One of the methods

available, thermodynamic integration, can in essence be seen as an extension to

thermodynamic integration. It enables the calculation of free energy differences of

larger perturbation potentials by dividing the perturbation potential in a collection

of smaller perturbation potentials. More exactly put, it introduces a switching

parameter λ, which can take values between 0 and 1 (following the previously used

definitions, 0 would correspond to state A and 1 would correspond to state B). Then,

any state in between A and B has a potential energy described by U(λ), which is

given as:

U(λ) = (1 − f(λ))UA + f(λ)UB (4.10)

The function f(λ) can take various forms but has the boundary conditions that

f(0) = 0 and f(1) = 1, for the sake of simplicity it is considered to be f(λ) = λ in

the rest of the discussion.

Instead of the total perturbation energy ∆U , only the small change of U(λ)

is considered that occurs at a given λ-point. If the path from state A to state B

would be divided into infinitesimally small steps, the energy perturbation at each

point λ would be equal to ∂U(λ)
∂λ

. Using that instead of ∆U , and the fact that the

partition function (equation 4.3) is now λ-dependent, one can write a λ derivative
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of the perturbation free energy:

(

∂F (λ)
∂λ

)

NV T
= −kBT

∂ lnQNV T (λ)
∂λ

= −kBT
1

QNV T (λ)
∂QNV T (λ)

∂λ

(4.11)

Rewriting the partition functions and consecutively performing the derivation by λ

results in the ensemble average of the factor ∂U
∂λ

:

(

∂F (λ)
∂λ

)

NV T
=

R

drN ∂U(λ)
∂λ

e−βU(λ)

R

drNe−βU(λ)

=
〈

∂U
∂λ

〉

λ

(4.12)

Integration over λ results in:

∆F =

∫ 1

0

dλ

〈

∂U(λ)

∂λ

〉

λ

(4.13)

In practice, the value
〈

∂U(λ)
∂λ

〉

λ
will be calculated for a set of λ values, and then

integrated over λ, which results in the total free energy for the perturbation from

state A to state B.

4.1.3 Obtaining a free energy along an order parameter

For causes like for example coarse graining, an effective potential might be needed to

describe the effective interaction of a medium, including both energetic and entropic

effects, for a particle-particle interaction. When applied in the form of a free energy

profile along the particle-particle distance coordinate, it can be called a potential of

mean force (PMF), and in that interpretation it will be used in the current thesis.

The distance-dependent free energy potential between two particles is a function

of the radial distribution function g(r) in the form:

VPMF (r) = −kBT ln g(r) + constant (4.14)

And therefore a potential of mean force can be obtained by measuring the distri-

bution of particle-particle distance r during a run. However, low sampling may

occur for certain values of the particle-particle coordinate due to barriers or other

factors, and a bias might be necessary to get a correct PMF profile. A frequently
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used method to obtain a PMF in these circumstances is by constraining the particle-

particle distance along small intervals over the range of interest. The mean value

of constraint force Fc(r), the force needed to replace the particle at its constraint

position after being forced away due to forces arising from the other parts of the

system, can be calculated over the run. The integral of these mean forces over a

distance will result in the potential of mean force. In the current thesis (chapters 7

and 8) this potential will be directed solely along the z-axis, perpendicular to the

flat surface that is studied, in which case the free energy potential of mean force can

be written as:

VPMF (z) =

∫ z

∞

dz < Fc(z) > + constant (4.15)

At infinite distance the potential will be zero, and by integrating from the zat the

point of zero potential towards z = 0, no constant value needs to be added to the

integral.

4.2 Distinction of enthalpy-entropy compensation in

the free energy

Free energies, as retrieved from experiments or simulations, give an indication of

how favorable non-covalent molecule-molecule interactions are. It does not, how-

ever, explain which molecular properties, interaction energy or entropy, steer this

behavior. Even after splitting the free energy into an entropy and interaction en-

ergy, a compensating term can be identified. To retrieve the factual driving forces

within the free energy, on needs a redistribution of the contributing terms to the free

energy, resulting in a set of terms of which the compensating terms are removed.

Even though this would end up as a set of purely theoretical contributions that can

not be calculated experimentally, the possibility to calculate every term separately

in computer simulations can help understand the driving forces for molecular pro-

cesses. An example that shows the value of this approach will be given in chapter 5,

where the driving forces for hydrophilic vs. hydrophobic solvation will be discussed.

The method discussed here is constructed for the calculation of solute hydration

free energy [119, 120]. Instead of defining an overall ∆G = ∆H − T∆S equa-

tion, a separation is made between solvent-solvent (WW) energy and entropy and
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solute-solvent energy (SW). The excess potential as defined by Sanchez et al.[121],

describing excess interaction of solute particle S with its solution environment as

compared to the interaction of the interaction of particle S with its surroundings if

that was an ideal gas with the same number density.

µex,S = ∆uSW − T∆sSW (4.16)

The solute (S) excess chemical potential (µex,S) can be defined using Widom’s po-

tential distribution theorem[118], which resembles the particle insertion method de-

scribed previously.

µex,S = −β−1 ln < e−βψ >A (4.17)

In equation 4.17, ψ denotes the interaction energy of the inserted solute molecule

with the other (solvent) molecules, β = (kBT )−1 with kB the Boltzmann constant,

and the angular brackets a constant volume-temperature ensemble average, in this

case in the ensemble including only solvent (state A). By converting equation 4.17

to the ensemble in which both solvent and solute particles are present (state B),

the equation can be inverted and decomposed in an energetic and entropic contri-

bution[121, 122]:

µex,S = β−1 ln < eβψ >B

=< ψ >B +β−1 ln < eβ(ψ−<ψ>B) >B

≡ ∆uSW − T∆sSW

(4.18)

In equation 4.18, ∆uSW =< ψ >B and therefore ∆sSW = −kB ln < eβ(ψ−<ψ>B) >B.

Using the inequality < eβψ >B ≥ eβ<ψ>B one sees that ∆sSW is always negative

or zero and thus −T∆SSW adds positively to µex,S. For molecules with attractive

interactions ∆uSW is always negative. Negative values of µex,S therefore always

result from favorable solute-solvent interactions (∆uSW < 0) overriding the solute-

solvent entropy. These two terms can be described as separate processes, where

−T∆sSW may be interpreted as the work of creating a cavity that has the solvent

molecules in the appropriate positions and orientations to accommodate all chemical

moieties of the solute. ∆uSW can be more intuitively understood as the interaction

energy of the solute with the properly formed cavity.

Based on the formalism introduced above, it is possible to find fully compen-

45



4 Free Energy in Statistical Mechanics

sating terms in the excess chemical potential. Consider a (constant pressure) excess

partial molar enthalpy (h(ex, S)P ) which will, in addition to the solute-solvent en-

ergy ∆uSW , contain a contribution arising from changes of solvent-solvent interac-

tions. This contribution is different depending on whether the pressure or volume is

kept fixed[123, 124]. The solvent-solvent energy (enthalpy) change in the constant

pressure ensemble will be applied as:

(∆hWW )P = (∆uWW )P + p∆v ≈ (∆uWW )P (4.19)

This energy change is localized in the solute hydration shell unlike in the constant

volume case where it includes a nonlocal bulk response contribution[123, 124]. Be-

low, the subscript (· · · )P is dropped, but one should keep in mind that in the for-

mulation described here excess partial molar enthalpies and entropies are evaluated

at constant pressure. Assuming the energies ∆uSW and ∆hWW are additive yields:

hex,S = ∆uSW + ∆hWW (4.20)

Because the excess chemical potential is defined as µex,S = hex,S−Tsex,S, the excess

partial molar entropy is given by:

sex,S = ∆sSW + ∆hWW/T (4.21)

Hence, hex,S and Tsex,S contain a contribution (∆hWW ) which never impacts µex,S

(exact energy-entropy compensation). Although the definitions of ∆uSW and ∆sSW

(equation 4.18) take slightly different forms in the constant P-T and constant V-T

ensembles their values are ensemble-independent.

Equations 4.20 and 4.21 identify ∆uSW and ∆sSW as the non-compensating

terms in the excess potential. However, a physical interpretation of these terms

is needed. The interpretation of ∆uSW is straightforward, it can be seen as the

interaction energy between a solute S and the surrounding solvent W. To better un-

derstand the more complicated physics inherent in ∆sSW it is useful to think of it as

having two contributions of which both are negative. First, ∆sSW has a cavity con-

tribution that arises from repulsive solute-solvent interaction energies (ψ > 0) with

corresponding solvent configurations that violate the excluded volume constraint

imposed by the solute. This contribution reflects the tendency of the solvent to

close the solute cavity (or ”squeeze-out” the solute). The second contribution arises
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from fluctuations of the interaction energy in configurations where the interaction

is attractive (ψ ≤ 0). In chapter 5, the alternative formulation of ∆sSW as derived

by Sanchez et al.[121] will be used:

∆sSW/kB = lnPins − ln < eβ(ψ−<ψ>B) >a − lnPa

= lnPins − [(< ψ2 >B − < ψ >2
B)β2/2 + · · · ]a − lnPa

(4.22)

where the subscript ’a’ indicates that the average is taken under the condition that

the solute-solvent interaction energy is attractive (ψ < 0). The quantity Pins is the

probability that a randomly inserted solute molecule into a system of only solvent

molecules will experience an attractive or zero interaction (ψ ≤ 0). Pa is the proba-

bility that the solute molecule in the fluid will have an attractive energy. Because Pa

will be very close to unity under the given condition, the lnPa term can be ignored.

The second term on the right hand side of equation 4.22 will always be zero in case

ψ is independent of the positions and orientations sampled by solvent molecules vic-

inal to the solute. In equation 4.22, the fluctuation term (< ψ2 >B − < ψ >2
B)β2/2

expresses the fact that the available configuration space is biased by attractive in-

teractions (i.e. solute-solvent attractive interactions bias positions and orientations

of the vicinal solvent molecules). The (< ψ2 >B − < ψ >2
B)β2/2 term is always

positive, causing a decrease of the entropy. This can be interpreted as a loss of con-

figuration space to be sampled in presence of attractive interaction, which causes a

loss of entropy.
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5 A thermodynamic analysis of

benzene solvation

Standard force field parameterizations are often based on calculation of the hydra-

tion free energy and comparing this with experimental values or estimates. The

disadvantage of this method is that a correct solvation free energy may be repro-

duced by different atomistic force fields with considerable different values for entropy

and enthalpy, as these values partly compensate as shown in chapter 4. In the cur-

rent case, the quality of the force field is validated not only by the hydration free

energy, but also by calculating the enthalpy, entropy, and hydration heat capacity.

This is not only a well-defined validation of the force field, but can also give insight

into the microscopic driving forces for solute hydration. Benzene is chosen as the

solute to study, as it combines a slight hydrophobicity with weak hydrogen bond ac-

ceptor. The benzene GROMOS43a1 force field is shown to reproduce experimental

values of hydration enthalpy, hydration entropy, and hydration heat capacity, and

will therefore be used in this thesis in the multiscale study of the adsorption of a

solute from bulk solution to a metal surface in an aqueous environment (see chapter

7). Comparison with a hypothetical benzene model that has no hydrophilic interac-

tion will demonstrate differences in the mechanism of hydrophobic and hydrophilic

solvation for this type of solute.

5.1 Benzene as a hydrophilic molecule

Hydrophobic hydration is believed to play an important role in protein folding and

other self assembly processes in water and therefore a popular object of research.[125–

129] Hydrophobic hydration of nonpolar solutes (i.e. aliphatic hydrocarbons), de-

fined as the process of transferring the solute molecule from the gas phase into room

temperature water, is characterized by unfavorable (negative) hydration entropies
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5 A thermodynamic analysis of benzene solvation

and favorable, but smaller in magnitude, hydration enthalpies (negative). In room

temperature water, first shell water molecules form a hydrogen bonded cage struc-

ture surrounding the nonpolar solute. In a cage structure, the water molecules do

not ”waste” hydrogen bonds by pointing them at the solute; instead they orient their

O-H bonds tangential to the solute surface in order to maximize hydrogen bonding

with vicinal water molecules.[129] Historically, Frank and Evans[130] proposed that

the large entropy that opposes solute transfer into water arises from the cost of

ordering the waters in this way.

The mechanism causing hydrophobicity of aromatic hydrocarbons (i.e. benzene,

toluene) has a different nature than that causing the hydrophobicity of aliphatic

hydrocarbons. In the case of aromatic hydrocarbons the enthalpic contribution pre-

dominates over the entropic contribution to the free energy of hydration.[131] This

results in a negative value of the hydration free energy of aromatic hydrocarbons,

in contrast to the positive values obtained in the case of aliphatic hydrocarbons. In

terms of aqueous solubilities, these differences cause the solubility of, e.g., hexane

being almost 20 times lower than the solubility of benzene, although these hydrocar-

bons have similar molecular weight.[132] Moreover, the heat capacity change upon

transfer into aqueous solution (the thermodynamic hallmark that indicates the pres-

ence of structured hydration water), normalized to the water accessible surface area,

is smaller for the aromatic hydrocarbons than the aliphatic ones[133, 134].

Benzene is a slightly polar molecule due to the nature of its π-electron system

that acts as a weak hydrogen bond acceptor, which is for this case defined as a

bond with an interaction energy high enough to be stable (higher than about 7.5

kJ/mol (3 kBT )) and a small distance between the hydrogen bond donor group (OH)

and the benzene center of mass.[135–138] It has been argued that higher aqueous

solubilities of aromatic hydrocarbons are probably due to formation of energetically

favorable hydrogen bonds between the aromatic hydrocarbons and water.[131] This

explanation is in accord with results of computer simulation studies using semi-

empirical force fields that showed that the hydration free energy of benzene can only

be reproduced when adopting a model that includes a permanent charge distribution

of benzene, which can be expressed by an electrostatic multipole expansion where

the quadrupole moment is the first nonzero term.[139] A consequence of this charge

distribution is that the benzene-water potential energy is strongly dependent on

the mutual orientation thereby accounting for weak hydrogen bonding interactions.
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5.2 Thermodynamics

Using available experimental and computer simulation data, Graziano and Lee[140]

however argued that formation of weak O-H· · ·π hydrogen bonds between water

and benzene is likely to be largely enthalpy-entropy compensating therefore not

explaining the higher solubility of aromatic hydrocarbons. Instead they argue that

the large van der Waals interaction energy overwhelms the free energy cost of cavity

formation at room temperature in contrast to aliphatic hydrocarbons where the free

energy cost of cavity creation dominates.

In the current chapter, the hydration thermodynamics of benzene is obtained

by classical molecular dynamics simulations of benzene in simple point charge (SPC

[141]) water. To quantify how benzene-water hydrogen bonding changes the hydra-

tion thermodynamics, a benzene model that favors formation of weak water-benzene

hydrogen bonds (”real” benzene) was compared to a ”van-der-Waals-benzene” model

obtained by removing all partial charges of the first model while keeping the exchange

repulsion and dispersion interaction terms unaffected. In addition to calculating the

free energy of hydrating the ”real” benzene- and van-der-Waals-benzene models, the

enthalpy, entropy, and heat capacity of hydration were calculated. To understand

the difference in aqueous solubility between these benzene models better, contribu-

tions to the hydration enthalpy and entropy arising from benzene-water interactions

(the solute-solvent interaction energy and solute-solvent entropy) and reorganization

of the solvent were examined.

5.2 Thermodynamics

For convenience, the main results of the derivation by Yu and Karplus[120] (as

discussed in section 4.2) of solute hydration free energy (the Ben-Naim pseudo-

chemical potential[119] µex,S), and the corresponding hydration enthalpy (hex,S)

and entropy (sex,S), are repeated here.

µex,S = ∆uSW − T∆sSW (5.1)

(hex,S)P = ∆uSW + (∆hWW )P (5.2)

(sex,S)P = ∆sSW + (∆hWW )P /T (5.3)

In equations (5.1, 5.2, 5.3), ∆uSW denotes the solute-water interaction energy
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5 A thermodynamic analysis of benzene solvation

(the solute-solvent energy), ∆sSW the entropy change of solute-water interaction

(the solute-solvent entropy), and (∆hWW )P the (constant pressure) water-water

enthalpy change (solvent reorganization enthalpy).

Whereas µex,S is ensemble independent, hex,S and sex,S do depend on the inser-

tion condition (constant P,T; constant V,T) with the ensemble dependence occur-

ring in the ∆hWW term[123, 124]. Here, only conditions of constant pressure and

temperature (at which experiments are usually performed) are considered, and the

subscript (· · · )P is dropped. In hydrophobic hydration, ∆hWW is usually small (in

comparison to solvent reorganization energies in organic solvents) and positive[142]

because water hydrates nonpolar solutes without significantly sacrificing hydrogen

bonding.

In computer simulation studies, µex,S may be obtained by thermodynamic inte-

gration (TI), perturbation (TP), or related methods [124], some of which have been

discussed in chapter 4. Since ∆uSW is obtained straightforwardly by keeping an

average of the solute-water interaction energy at the end-point simulation (λ=1) in

TI/TP, ∆sSW follows directly from eq (5.1). Note that both ∆uSW and ∆sSW are

negative (see section 4.2) while ∆hWW is positive. Equations (5.1, 5.2, 5.3) have

several important consequences:

(1) The water-water enthalpy change has no impact on µex,S, since ∆hWW is ex-

cluded from this definition of µex,S.

(2) However, cancellation of ∆hWW in µex,S(= hex,S − Tsex,S) does not mean that

the extent to which water-water hydrogen bonds are disrupted is irrelevant in

understanding µex,S because ∆uSW and ∆sSW are defined as ensemble aver-

ages containing the water-water interaction implicitly.[120] The solute-solvent

entropy change (−T∆sSW ) can conceptually be interpreted as the free energy

to create a solute cavity that has all solvent molecules properly oriented to

accommodate all chemical moieties of the solute[143], while the solute-solvent

energy (∆uSW ) may be interpreted as the remaining solute-cavity interaction

contribution to µex,S. In hydrophobic hydration, first shell water molecules

orient to minimize their loss of H-bonds. Any reduction of orientational en-

tropy associated with preferred water orientations (driven by W-W interac-

tions) therefore appears in ∆sSW . The cavity formation work (−T∆sSW ) also

increases with the excluded volume radius (i.e. loss of translational entropy).
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(3) In hydrophilic hydration, polar solute-solvent interactions (e.g. dipolar inter-

actions, dipole-quadrupole interactions) bias orientations of hydration waters,

too. This process, the reduction of orientational freedom due to attractive

interaction, may in fact reduce the solute-solvent entropy stronger than the

biasing of water orientations close to nonpolar solutes. In that case, higher

aqueous solubilities of polar molecules over nonpolar molecules result from the

presence of favorable electrostatic interactions with the solvent.

5.3 Computational details

5.3.1 Thermodynamic calculations

Excess chemical potentials µex,S were calculated by TI using at least 50 λ-values.

At each new λ, the system was first equilibrated for 50 ps after which the free

energy derivative was sampled for 500 ps. A soft-core λ scaling was used[93] to

avoid singularities of the free energy derivative at the end-points. The excess partial

molar enthalpy was calculated using the expression,

hex,S =< USW + UWW + PV >solution − < UWW + PV >pure H2O (5.4)

where USW denotes the solute-water interaction energy, UWW the sum of inter-

action energies of the water molecules with all other water molecules, and PV a

pressure-volume work term. The brackets denote a constant pressure-temperature

ensemble average. Two constant pressure-temperature simulations, one of the aque-

ous solution (1 solute, N solvent molecules) and one of the neat solvent (N solvent

molecules), are performed and the average potential energies are subtracted (the

P∆V term is usually small). Because both terms on the right hand side of eq 5.4

are of O(N) whereas hex,S is of O(1), the statistical accuracy obtained in MD runs of

several hundreds of picoseconds is usually poor. Therefore, long (90 ns) trajectories

were produced to sample the two averages in eq 5.4 resulting in statistical inac-

curacies of hex,S smaller than 0.05 kJ/mol (as calculated by block averaging[144]).

Excess partial molar entropies were obtained from the calculated excess chemical

potential and enthalpy using Tsex,S = hex,S − µex,S. Solute-solvent entropies were
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5 A thermodynamic analysis of benzene solvation

obtained from the calculated excess chemical potential and solute-solvent energy

using T∆sSW = ∆uSW − µex,S (eq 5.1). The solute-solvent energy was obtained

from the simulations by taking the average benzene-water interaction energy. Heat

capacities of hydration were calculated from the temperature dependence of hex,S

using the finite difference expression

cP,ex,S(T ) =
hex,S(T + ∆T ) − hex,S(T − ∆T )

2∆T
(5.5)

A relatively large temperature difference ∆T = 20K was chosen in the current

simulations to ensure that a quantifiable difference in molar enthalpies could be

found, even though it might be not completely correct if the enthalpy change is

nonlinear on this temperature range. The excess partial molar enthalpies hex,S(T +

∆T ) and hex,S(T − ∆T ) were calculated using eq 5.4 based on 90 ns trajectories.

The statistical inaccuracy of cP,ex,S is determined by that of hex,S and amounts to

15 − 20Jmol−1K−1.

5.3.2 Simulation Details.

All simulations were performed using the Gromacs 3.2.1 simulation package[92, 93]

and were based on an equilibrated cubic, periodic simulation box containing 1500

water molecules and 1 benzene molecule. The simple point charge (SPC) model of

water was used[141]. A complete force field description of rigid SPC water is given

in table 6.1 and figure 6.2 in chapter 6. Benzene was modeled using the GRO-

MOS 43A1 force field parameters.[88] For reasons of comparison, a benzene model

based on the recent GROMOS 53A6 parameters was analyzed as well.[98] The non-

bonded force field parameters are summarized in Table 5.1. Its geometry is given in

figure 7.2(B) in chapter 7. Bonded parameters were identical in the 43A1 and 53A6

GROMOS force field[88, 98], and contained improper dihedrals to enforce the flat

conformation of the benzene ring. Intramolecular Lennard-Jones and electrostatic

interactions were accounted for between atom pairs separated by more than 3 bonds.

The simulation temperature was kept constant at 302 K by weakly coupling to a

temperature bath with a relaxation time of 0.1 ps.[102] The pressure was maintained

at 1 atmosphere by also applying the weak coupling algorithm with a relaxation time
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of 0.5 ps and an isothermal compressibility of 45.75 × 10−5(kJmol−1nm−3)−1. The

equilibrated box length was 3.592 nm. For non-bonded interactions, a twin-range

method with cutoff radii of 0.8 and 1.4 nm was used. Outside the longer cutoff

radius a reaction field correction was applied with a relative dielectric permittivity

of 54.0. The integration time step was 2 fs, the pair list for pairs within the inner

cutoff and the energies and forces for pairs between the inner and outer cutoff radii

were updated every 10 fs. All bond lengths were kept constant using the SHAKE

algorithm[95] using a relative geometrical tolerance of 10−4.

C12(i, j) C6(i, j)
atom (10−6kJmol−1nm12) (10−3kJmol−1nm6) q (e)

Benzene (GROMOS 43A1)[88]
C 3.374569 2.340624 -0.10
H 0.015129 0.084640 0.10

Benzene (Van der Waals)
C 3.374569 2.340624 0.00
H 0.015129 0.084640 0.00

Benzene (GROMOS 53A6)[98]
C 4.937284 2.340624 -0.14
H 0.015129 0.084640 0.14

SPC Water [141]
O 2.634129 2.617346 -0.82
H 0.00 0.00 0.41

Table 5.1: Nonbonded Interaction Parameters (Nonbonded interaction function consisted
of the sum of equations 3.6 and 3.28. Combination rules were used as mentioned in
equations 3.8 and 3.9).

5.3.3 Benzene-Water Interaction.

The benzene-water interaction potential is strongly orientation dependent. There-

fore, the ability of the force field to reproduce this dependency was analyzed. Based

on the relative orientations shown in figure 5.1, the interaction energy between a

benzene-water (SPC) pair was calculated as a function of the distance r defined

in figure 5.1 (using the GROMOS 43A1 parameters in table 5.1). Fig 5.2 shows
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the corresponding potential energy curves (denoted here as ”real O in” and ”real

O out”), which also includes the interactions obtained when not accounting for

the electrostatic part of the interaction (denoted here as ”van-der-Waals O in & O

out”). The interaction energies for a water molecule oriented perpendicular to the

aromatic plane (figure 5.2 (A)) are in good agreement with the energies reported

by Linse[136, 145, 146] which are based on quantum calculations using a Hartree-

Fock self-consistent-field approximation combined with a second order perturbation

procedure to account for the dispersion energy. The dashed line in Fig 5.2 a (”real

O out”; benzene-water hydrogen bonding) shows a minimum at approximately 3.0

Å with a corresponding energy between 13 and 14 kJ/mol, corresponding to al-

most 5 kBt at 300K. In quantum calculations,[136, 145, 146] the minimum is found

at the same distance with an energy of 12-13 kJ/mol. The configuration with the

oxygen pointing inward (dotted curve in Fig 5.2 (A)) is repulsive and is also in

good agreement with the corresponding benzene-water interaction energy reported

from quantum calculations in reference [136]. For conformations where the water

is aligned in the benzene plane (figure 5.2 (B)), the agreement between the current

data and those from the work of Linse et al. is less satisfactorily. In the quan-

tum calculations, the energy minimum for the oxygen-inward conformation is found

around 4.5 Å with a corresponding energy of 7-8 kJ/mol, while with the GROMOS

43A1 force field this minimum is located at 5.2 Å with a corresponding energy of

3.6 kJ/mol. For the configuration with the oxygen pointing outward, the quantum

calculations show a slightly stronger repulsion than the atomistic force field data

presented here.

5.4 Results and Discussion

5.4.1 Hydration Structure: Radial distribution functions

Due to the anisotropic benzene-water interaction potential, the characterization of

benzene hydration structure should preferably distinguish between water molecules

inside the volume above the benzene plane and water molecules located outside this

volume. The approach of Linse et al.[146] to subdivide the space around the ben-

zene was adopted. Water molecules inside the conical volumes above and below

the benzene plane and remaining water molecules were considered separately. The
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O out r

O in r

O out

r

O in

r

(A) (B)

Figure 5.1: Relative orientations used for calculating the water-benzene interaction. The
distance r is defined between the water oxygen and the ring center of mass. In orientation
”O out”, the water dipole moment is pointing toward the solute, in orientation ”O in” the
water dipole moment is oriented outward. Two symmetry axes are considered: (A) the
water molecule is located above the benzene plane. (B) the water molecule is located in
the plane of the benzene ring.

0 1 2 3 4 5 6 7 8 9 10
Distance (Å)

-15

-10

-5

0

5

10

15

U
in

t(k
J/

m
ol

)

VdW O in & O out
real O in
real O out

3 4 5 6 7 8 9 10
Distance (Å)

-15

-10

-5

0

5

10

15

U
in

t(k
J/

m
ol

)

VdW O in & O out
real O in
real O out

(B)(A)

Figure 5.2: Potential energy curve for SPC water - benzene interaction. (A) the water
molecule is located above the benzene plane. (B) the water molecule is located in the plane
of the benzene ring (see figure 5.1). Solid line: van-der-Waals benzene (the quadrupole-
dipole interaction is omitted); Dashed line: water having its dipole pointing inward; Dotted
line: water having its dipole pointing outward (see figure 5.1).
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cones make a 45o angle with the benzene symmetry axis (see figure 5.3 (A)). Water

molecules located inside the conical volumes are more likely hydrogen bonded to

benzene than molecules located outside. Fig 5.4 shows the in-cone water-benzene

center of mass radial distribution function (RDF) for ”real” benzene (figure 5.4

(A)), modeled with the GROMOS 43a1 parameters, and the van-der-Waals-benzene

model (figure 5.4 (B)). For the case of the ”real” benzene, the first peak of the

hydrogen at 2.25 Å clearly indicates that water OH-groups can approach benzene

within short distances, and hydrogen bond formation is plausible. The peak area up

to 3 Å corresponds to 1.0 benzene-water hydrogen bonds. The larger oxygen peak

is split in two parts. The first maximum occurs at 3.25 Å and corresponds to the

water molecule donating a hydrogen bond to benzene (i.e. the distance between the

first maximum of the hydrogen RDF and that of the oxygen RDF is exactly a OH

bond length). The second oxygen peak at 4 Å corresponds to water not directly

hydrogen bonded to benzene. The in-cone RDFs for the van-der-Waals benzene (fig-

ure 5.4 (B)) are typical of hydrophobic hydration. The peaks are narrower and the

maxima are higher compared to the ”real” benzene system, indicating significantly

more structured hydration water. Moreover, the first maximum for the oxygen and

hydrogen RDFs are located at the same distance, which suggests that water orients

one of its OH bonds parallel to the surface of the nonpolar solute. The first peak of

the hydrogen RDF has a broad shoulder extending to larger distances, which arises

from the second OH bond that orients toward the bulk where it donates a hydrogen

bond to water molecules in the second solvation shell. The latter becomes apparent

from the second maximum of the oxygen RDF being located closer to the solute

than the second maximum of the hydrogen RDF. The out-of-cone RDFs for ”real”

benzene and van-der-Waals benzene are shown in figs 5.5a and 5.5b, respectively.

For both systems the observed structure is typical of hydrophobic hydration with

no significant differences between the realistic and van-der-Waals benzene models.

5.4.2 Orientational Distributions

The probability density of orientation of the water OH bonds with respect to the

vector connecting the benzene center of mass and the water oxygen is shown in

figure 5.6. The orientation angle θ is defined in figure 5.3 (B). The data in figure 5.6

apply to water molecules in the first shell (r < 6 Å), which on average contains 26.5

molecules. No distinction is made here between water molecules located inside or
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Figure 5.3: (A) Definition of the 45 o cone as used in this study and previously in the
work of Linse et al. (B) Definition of the angle θ defining the orientation of the OH bond
with respect to the vector connecting O to the center of the benzene ring.
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Figure 5.4: In-cone benzene-water radial distribution functions. Solid line: benzene
center-of-mass-to-water oxygen RDF; Dashed line: benzene center-of-mass-to-water hy-
drogen RDF. (A) ”real” benzene (GROMOS43a1). (B) van-der-Waals benzene.
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Figure 5.5: Out-of-cone benzene-water radial distribution functions. Solid line: ben-
zene center-of-mass-to-water oxygen RDF; Dashed line: benzene center-of-mass-to-water
hydrogen RDF. (A) ”real” benzene (GROMOS43a1). (B) van-der-Waals benzene.

outside the conical volumes. The distribution P ′(θ) obtained just from the statistical

sampling of the angles was rescaled according to P (θ) = P ′(θ)/sin(θ), accounting for

the volume elements associated with the angle θ. For the GROMOS 43A1 van-der-

Waals model, a higher occurrence of OH orientation was observed at both 0o (radially

outward) and 110-120o. Postma et al.[147] made similar observations in a study of

the hydration of spherical cavities with a thermal radius of 3 Å (the orientationally

averaged cavity radius of van-der-Waals benzene equals ≈ 3.5 Å). They showed

that water molecules may have one OH-bond directed towards the bulk whereas the

other OH bond is directed parallel to the cavity surface, but may also have both of

their OH-bonds parallel to the cavity surface. The water orientational distribution

corresponding to ”real” benzene shows somewhat weaker maxima at 0o and 110o

and has an additional weak maximum at 180o (OH radially inward), which arises

from benzene-water hydrogen bonding. The orientational distribution of second

shell hydration waters (dotted line in figure 5.6) neither reveals strong preferential

OH directions nor does it show differences for the real- and van-der-Waals solutes.
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Figure 5.6: Probability density of orientation of the OH direction with respect to the
vector connecting the benzene center of mass and water oxygen (see figure 5.3 (B)). Nor-
malization is performed using:

∫

P (θ) sin θdθ = 1. Data apply to molecules in the first
shell (r < 6 Å) or second shell (6 < r < 9Å). Solid line: GROMOS43a1 ”real” benzene
model (first shell); Dashed line: van-der-Waals benzene (first shell); Dotted line: benzene
(second shell).

5.4.3 Hydration Thermodynamics

In table 5.2 all thermodynamic hydration quantities are summarized. For ”real”

benzene, the calculations were performed using the 43A1[88] and 53A6[98] GRO-

MOS parameters (see table 5.1). The thermodynamic quantities for van-der-Waals

benzene were obtained from simulations using 12-6 Lennard-Jones parameters from

the 43A1 force field. The best agreement with the experimental data is found for the

43A1 GROMOS parameter set and will be discussed here. Not only the benzene ex-
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cess chemical potential agrees satisfactorily with the experimentally reported value,

but also the excess partial molar enthalpy and entropy are closely reproduced. Es-

pecially the latter quantities provide a good verification of the quality of a particular

force field. Although the excess chemical potential can be predicted correctly, it may

happen for the wrong reason because errors in the energy may cancel out against

errors in the entropy. The isobaric heat capacity of benzene hydration is predicted

most accurately as well with the GROMOS 43A1 force field. The hydration ther-

modynamics of the van-der-Waals benzene model differs from the real model and is

typical of hydrophobic hydration: the excess chemical potential is positive and also

the isobaric heat capacity of hydration is significantly more positive than for ”real”

benzene. The excess partial molar entropies of van-der-Waals and ”real” benzene

do not significantly differ. The excess partial molar enthalpy of real (43A1) benzene

is however -4.5 kJ/mol more favorable compared to that of van-der-Waals benzene,

hence the larger negative excess chemical potential of ”real” benzene is mainly en-

thalpic. This enthalpy difference compares with a value of -5.4 kJ/mol predicted by

Makhatadze and Privalov[131] based on combining experimental data for benzene

and aliphatic hydrocarbons, the latter corrected for the benzene accessible surface

area. Based on a similar calculation, Makhatadze and Privalov predict a change of

the excess chemical potential and excess partial molar entropy of -13.4 kJ/mol and

+26.8 J/mol/K, respectively, which the current calculations do not reproduce.

5.4.4 Solute-Solvent Contributions

The solute-solvent interaction energies, ∆uSW , solute-solvent entropies, T∆sSW , and

water reorganization enthalpies, ∆hWW , are shown in table 5.3 for the 43A1 ”real”

benzene and the 43A1 van-der-Waals benzene models. The benzene-water energy is -

13.8 kJ/mol more favorable than the van-der-Waals-benzene - water energy (T=302

K). Because benzene on average accepts one hydrogen bond from water and the

benzene-water hydrogen bond energy equals approximately 13 kJ/mol (figure 5.2

(A)), this result is expected.

The enthalpy change of water reorganization was calculated based on eq 5.4,

which can also be written as:
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µex,S hex,S Sex,S cp,ex,S
T (K) (kJ/mol) (kJ/mol) (J/mol/K) (J/mol/K)

Experimental[131]
278 -35.7 -108.4 318.8
298 -3.6 -29.6 -87.2 291.6
323 -22.6 -64.6 268.1

43A1 benzene
282 -32.7
302 -4.8 -29.3 -82.2 277.5
322 -21.6

53A6 benzene
282 -34.5
302 -6.7 -31.1 -81.8 217.5
322 -25.8

43A1 benzene, van der Waals only
282 -29.7
302 1.0 -24.8 -86.5 327.5
322 -16.6

Table 5.2: Hydration thermodynamics of benzene and ”van der Waals benzene” (The ex-
cess chemical potentials (µex,S) were computed by thermodynamic integration, the excess
partial molar enthalpies (hex,S) were computed using eq 5.4 in which total potential ener-
gies of the solution (water + benzene) and solvent (water) MD simulations were averaged
over 90 ns time periods. The excess partial molar entropies (Sex,S) were obtained from
TSex,S = hex,S−µex,S. Heat capacity changes (cp,ex,S) were calculated by finite difference
(eq 5.5).)

hex,S =< USW >solution +[< UWW + PV >solution − < UWW + PV >pure H2O]

= ∆uSW + ∆hWW

(5.6)

The water reorganization enthalpies (∆hww) are large and positive contributing

significantly to the excess partial molar enthalpies. For dissolving a solute in its

own pure liquid at constant P and T , the solvent reorganization enthalpy equals the
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T (K) ∆uSW (kJ/mol) T∆SSW (kJ/mol) ∆hWW (kJ/mol)

43A1 benzene
282 -61.2 28.5
302 -59.4 -54.6 30.1
322 -57.5 35.9

43A1 benzene, van der Waals only
282 -47.1 17.4
302 -45.6 -46.6 20.8
322 -43.9 27.3

Table 5.3: Solute-solvent energy change (∆uSW ), solute-solvent entropy change
(T∆sSW ), and solvent reorganization energies (∆hWW ) for hydrating ”real” benzene and
van-der-Waals-benzene.

average potential energy of the liquid.[148] Transferring for example a SPC water

molecule from the saturated vapor phase into the liquid SPC water phase involves a

solvent reorganization enthalpy of 41.5 kJ/mol at 298 K. For benzene (43A1 model)

in its own liquid this enthalpy is 33.2 kJ/mol. If one compares these numbers to the

reorganization enthalpies in table 5.3 it shows that, in particular for van-der-Waals

benzene, the water reorganization enthalpy is small. For the ”real” benzene model,

∆hWW is larger because benzene-water hydrogen bonding happens at the expense of

water-water hydrogen bonding. The temperature dependencies of ∆uSW and ∆hWW

are interesting because they provide further clues on the different heat capacity

changes of real- and van-der-Waals benzene (table 5.2). In the 40 K temperature

interval,∆uSW increases with 3.7 kJ/mol and 3.2 kJ/mol for real- and van-der-Waals

benzene, respectively. For the ”real” benzene model it was found that this energy

change was almost exclusively due to a reduction of the benzene-water van der Waals

energy with increasing temperature. The benzene-water electrostatic interactions

changed only little (+0.7 kJ/mol) in this temperature interval. Interestingly, in

the same temperature interval, ∆hWW increases with 7.4 kJ/mol (”real” benzene)

and 9.9 kJ/mol (van-der-Waals-benzene). Based on these energy changes it can be

concluded that the larger positive heat capacity change of hydrating van-der-Waals

benzene is entirely due to an increase of the water-water enthalpy, which occurs

upon ”melting” the cage-like water structure surrounding the nonpolar solute. Note

that under conditions of constant pressure, theoretical work[123] and experimental
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data[149] have suggested that the mechanism of enthalpy absorption may indeed be

localized in the solute hydration shell (whereas under conditions of constant volume,

the excess partial molar energy contains a nonlocal, bulk response contribution).[123]

It is interesting to address in some detail the question to what extent reorgani-

zation of the solvent occurring in response to introducing solute-solvent electrostatic

interactions is enthalpy-entropy compensating in the free energy. Because the solute

molecule considered here is rigid, all the entropy change of this process is due to

the rearrangement of solvent molecules. Thus, as originally proposed by Lee,[142]

the total entropy change can be considered as the solvent reorganization entropy.

This quantity will be referred to here as ∆sreo(= sex,S(real)−sex,S(vanderWaals)).

The solvent reorganization enthalpy for introducing electrostatic interactions is cal-

culated as the difference between solvent reorganization enthalpies for introducing

’real’ and van der Waals benzene: ∆hreo(= ∆hWW (real)−∆hWW (vanderWaals)).

The free energy change of introducing solute-solvent electrostatic interactions con-

tains the free energy of solvent reorganization (∆hreo − T∆sreo) in addition to the

change of solute-solvent interaction energy. In case perfect enthalpy-entropy com-

pensation occurs (T∆sreo = ∆hreo), the free energy change of introducing the elec-

trostatic interactions will only be determined by the change of the solute-solvent

interaction energy. The solute-solvent energy change (Table 5.3) amounts to -59.4

+ 45.6 = -13.8 kJ/mol. The free energy change (43A1 benzene, Table 5.2) is however

smaller and amounts to -4.8 - 1.0 = -5.8 kJ/mol indicating that solvent reorgani-

zation contributes unfavorably to the free energy change. From Table 5.2 it can

be seen that introducing benzene-water electrostatic interactions causes an entropy

change T∆sreo = 1.3 kJ/mol (302 K). The reorganization enthalpy (Table 5.3) is

significantly larger and amounts to ∆hreo = 9.3 kJ/mol. This leads to a free energy

of solvent reorganization of 9.3 kJ/mol - 1.3 kJ/mol = 8 kJ/mol. The free energy

of solvent reorganization thus consists of an (small) increase of the entropy, which

is however over-compensated by a much larger unfavorable increase of the solvent

reorganization enthalpy. In this view, the presence of weak solute-solvent hydrogen

bonds forces the solvent to assume strained, less stable, conformations relative to

the pure solvent leading to a free energy change smaller than the energy gained by

solute-solvent hydrogen bonding.

Although the conclusion mentioned above might be satisfactory from a free en-

ergy point of view, the microscopic significance of the reorganization entropy remains
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difficult to interpret. An alternative way exists to arrive at the same conclusion based

on a discussion of the solute-solvent entropy and the solute-solvent energy, whose

microscopic significance is discussed in section 4.2. A zero change of the solute-

solvent entropy is the condition for perfect enthalpy-entropy compensation of the

solvent reorganization process for the introduction of charges to a nonpolar system

as discussed above (i.e. ∆hreo−T∆sreo = T (∆ssw(real)−∆sSW (van derWaals))).

In section 4.2 it is shown that:[121]

T∆sSW = kBT lnPins − [(< ψ2 > − < ψ >2)β/2 + · · · ]a (5.7)

The solute-solvent entropy is determined by (1) the probability (Pins) that in a

system of only solvent molecules a cavity is found where the solute-solvent interac-

tion energy (ψ) is attractive and (2) the fluctuations of the solute-solvent energy in

configurations of the solute-solvent system where ψ < 0. The second contribution

reflects the fact that fluctuations in positions and orientations of solvent molecules

vicinal to the solute are biased by attractive solute-solvent interactions resulting in a

reduction of configuration space and thus a reduction of the entropy. The process of

introducing the electrostatic interactions leads to favorable change of ∆uSW of -13.8

kJ/mol while causing a compensating unfavorable change of T∆sSW of -54.6+46.6

= -8.0 kJ/mol (see Table 5.3). This observed change of T∆sSW results almost com-

pletely from changes in the second term on the right hand side of eq 5.7, not from

changes in the first term: calculations of (< ψ2 > − < ψ >2)aβ/2, using the 90 ns

trajectories of hydrated ”real” benzene and van-der-Waals-benzene, resulted in 12.8

(±0.2) kJ/mol for ”real” benzene and 3.9 (±0.2) kJ/mol for van-der-Waals benzene,

thus contributing -8.9 kJ/mol to the change of T∆sSW . Benzene-water hydrogen

bonding thus introduces a stronger bias on the orientations sampled by hydration

waters than the bias introduced in hydrating nonpolar van-der-Waals benzene. The

formation of weak benzene-water hydrogen bonds, which energetically favors the hy-

dration of ”real” benzene, happens in competition with solvent-solvent interactions

that favor water-water hydrogen bonding. In creating these energetically favorable

benzene-water hydrogen bonds, the solvent is forced to sacrifice some of its own hy-

drogen bonds. The corresponding water configurations will have a potential energy

significantly larger than configurations representative of pure water and configura-

tions compatible with hydrating van-der-Waals benzene (i.e the solvent reorganiza-
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tion enthalpy is positive). Clearly, due to its attempt to maintain hydrogen bonds,

pure water will with lower probability sample configurations representative for the

hydration structure of ”real” benzene than for van-der-Waals benzene. The proba-

bility e∆sSW /kB to successfully insert ”real” benzene in pure water configurations with

an appropriately formed cavity (that satisfies benzene-water hydrogen bonding) will

therefore be lower than the probability to successfully insert van-der-Waals benzene.

We thus see that the reduction of the solute-solvent entropy arising by introducing

electrostatic benzene-water interactions originates from less stable configurations

that water has to adopt in order to donate hydrogen bonds to benzene. This auto-

matically implies that the solvent reorganization process is non-compensating and

the solvent reorganization enthalpy is positive, and that moderately polar, ”real”

benzene dissolves better than van-der-Waals-benzene due to energetically favorable

electrostatic interactions with the solvent.

5.5 Discussion

Although here it is only shown that the hydration entropies of van-der-Waals- and

realistic benzene do not significantly differ, the current results more generally state

that lower aqueous solubilities of nonpolar compared to polar molecules are not due

to the entropy differences but due to the lack of favorable electrostatic interactions

with the solvent. This view, advocated earlier by Gallicchio et al.,[148] is supported

by the Monte Carlo simulations of Stone et al.[150] based on which it can be con-

cluded that poor aqueous solubilities correlate with poor solute-solvent electrostatic

interaction.
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6 A dual-scale modeling of

aqueous-metal surface

interactions.

Describing the aqeuous-metal surface interface is a challenge from both experimen-

tal and theoretical point of view. The main possibilities and difficulties of exisiting

research in this area will be reviewed in section 6.1. Clearly, a physically complete

description of the liquid water-metal surface for atomistic simulations forms a chal-

lenge as it has to combine the fluidity and solvation properties of bulk water with

the non-trivial adsorption mechanisms as shown by quantum calculations. For this,

equilibrium states of water near the surface are necessary, which require costly calcu-

lations on the quantum level. Therefore, a dual-scale method is applied to combine

the long sampling times attainable with atomistic MD with the absorption behavior

as acquired from quantum calculations.

The remainder of the chapter is organized as follows: section 6.2 contains a

detailed description of the basic ideas used to obtain a dual scale parameterization

of the water-surface interaction, section 6.3 presents the technical aspects regarding

the classical force fields, and in section 6.4 the independence is shown of both the

water-metal surface structure and the adsorption mechanism out of solution from

the classical molecular model employed. The discussion will cover the progress of

this modeling with respect to pre-existing water-metal classical model and future

prospectives.
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6 A dual-scale modeling of aqueous-metal surface interactions.

6.1 Water-surface interactions, an overview

The description of biomolecule-surface interactions under physiological conditions

is incomplete without a description of water in these systems. Whereas force field

based simulations of biomolecules in bulk water have a long history, water-surface

interactions have been researched relatively little.

The interaction of water with surfaces is ubiquitous, of importance in a whole

range of processes ranging from biological to industrial. Next to that, it is hard to

study experimentally and theoretically. Research in this field is however evolving

rapidly, and more and more data is becoming available. A first extensive review

of water-surface interaction studies was written almost two decades ago[151]. More

recently a range of overviews have been published focusing on either general surface

wetting by water[152, 153] or specifically addressing aqueous-solid interfaces, where

(contrary to protein-surface studies) experimental and theoretical insight is often

closely related[154–156].

For the current thesis, the main interest lies at the effects of room temperature

water near metal surfaces, a very common case at first sight, but a very special case

from an experimental/theoretical point of view as most studies are feasible only for

extreme conditions (e.g. Ultra High Vacuum, UHV). The specific approach that had

to be developed to atomistically model aqueous-surface interactions will be discussed

in great detail in chapter 6.

6.1.1 Experimental water-metal

From the experimental point of view, at low temperatures, it has been found that

deposition of water on metal surfaces forms different structures such as one dimen-

sional chains, bilayers, islands and clusters before bulk ice is formed.[157–159].

More recently, it has become possible to study the aqueous-metal interface.

For example, by Fourier transform infrared spectroscopy it was found that water

reversibly adsorbs on an MgO surface, and forms a liquid-like layer even for tem-

peratures down to -10◦C[160]. A different technique was applied to a metal oxide,

Al2O3, where the electron density of the adsorbed water layers could be determined

by high-resolution specular X-ray reflectivity[161]. As this metal oxide has oxygen

atoms at the outer layer, water specifically coordinated to these sites. This resulted
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in the formation of a few coordinated layers of water next to the surface, but this

was found to quickly fall off due to the disorder in fluid water, a process which

therefore might well be general for all aqueous-surface adsorbed systems. Similarly,

it was shown by a high-energy x-ray transmission-reflection method that ice next

to a SiO2 solid will form several intermediate layers, with a thickness of about 1.7

nm, consisting of water molecules in a liqid-like state, a process known as interfa-

cial melting[162]. Recently, the use of scanning tunneling miscrocopy to study the

solid-aqueous interface has been reported and it was possible to study a tunneling

behaviour in a several nm thick slit of water between two Au(111) surfaces[163].

6.1.2 Quantum calculations of water-metal interactions

DFT calculations of water on platinum (111) by Meng et al. [164] and of water

on 3d, 4d and 5d (111) transition metal surfaces by Michaelides et. al.[165] (for

the case of nickel these results were reproduced as well, see ref. [44]) show the

formation of a bilayer ice-like structure where the adsorption energy compared to a

free water molecule does not come from the water-metal interaction but from the

water-water interaction. These calculations present an evident limitation. In fact the

cell size used is often so small that the effect of the periodic images hinder the system

from melting, thus the adsorption properties are suitable to describe an ice/metal

interface but not liquid water where, contrary to the case of ice, the fluctuations of

the local structure play a crucial role. Obviously to perform calculations with larger

clusters, and eventually a more realistic liquid/metal system, would have increased

the computational cost massively but, at this stage, would not have offered a clearer

and more accurate modeling procedure for the single molecule/surface interaction.

6.1.3 Atomistic simulation of water near surfaces

A recent review of Spohr on computer simulations of aqueous double layers near

surfaces pointed out that most simulation studies showed the same layered structure,

consisting of three distinctly observable layers with increased water density. After

the third and lowest density layer, the water density profile becomes bulk-like.[166].

Another observation was the absence of a clearly visible peak splitting in the first

layer in both MD and quantum calculations, even though intuitively, a ’staggered

conformation would be expected, to retain hydrogen bonds at the layer closest at
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the surface.

In atomistic simulations, several methods to model the strength of the water-

surface interaction energy are commonly used. Initially only model surfaces were

considered using an estimated guess for the interaction strength of interest[167],

but also experimental data have been used[168], as well as ab-initio[44] or cluster

calculations[169]. In some cases, a detailed site-dependent potential has been ap-

plied[169], but it has been shown that this delivered the same results as less detailed

potentials that only contained a distance-dependent part[166].

An image-charge potential could be added to describe the metallic nature of the

surface, imaging all charges next to it at a virtual location in the surface[170]. It

has however been shown that due to the sheer quantity of partial (opposite) charges

present in water, the image charge interactions effectually cancel each other out and

it will be more efficient to not take this into account, without losing essential details

of the simulation[171].

As noted before, the features of water-surface layers seem very robust against

small changes or the addition of more detail in the simulation model. Indeed, a

comparison of a polarizable water model near a Mg(111) atomistic crystal surface

with a non-polarizable water model near a corrugated potential surface (shaped

equal to a Ni(110) surface), showed no significant changes in the interfacial structure

due to either corrugation of the surface or polarizability of the water model[172].

6.2 Quantum based modeling of liquid water-metal

interaction: Basic idea

The liquid water model developed here should be able to describe both adsorption

and solvation properties in combination with solutes, and therefore the focus should

deviate from studies aimed at describing catalysis or gas/ice adsorption at a surface.

Liquid water has completely different characteristics than ordered ice; as a molec-

ular liquid, its main feature is its fluctuating hydrogen-bonded structure. While

the general many body aspect of the liquid can be properly taken into account by

several readily available classical force fields, the intrinsic quantum nature of the

water-surface interaction must be described by first principle techniques and then

inserted into the classical framework. The aim of the quantum-classical modeling
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presented here is to design a suitable interaction potential between the molecule and

the surface, based on quantum calculations where the local liquid structure and its

influence onto the interaction with the surface are properly accounted for.

To this aim, paradoxically, the available quantum studies of isolated water

molecules adsorbed on different transition metals are in fact applicable.

For this cause it will be possible to refer to quantum studies of the metal adsorp-

tion of isolated water molecules. The interpretation and use of very recent state-of-

art Density Functional calculations treating layers with up to 128 ice-like structured

molecules on a metal surface[165, 173, 174] however turned out to be rather difficult.

The reason is twofold. First, it is necessary to assign the resulting interaction ener-

gies to the correct sites of the system. In the case of water, any contribution of the

hydrogen bonding network to the total energy of the system should be separated

from the surface-induced interaction energy. As pointed out later in this section,

this limits quantum calculations to configurations not larger than a water trimer.

Thus while large systems can certainly be used a posteriori to analyze the validity of

the modeling, they certainly cannot help much in defining a physically well founded,

yet simple, molecule-surface interaction. The second reason is that the structures

studied resemble in most of the cases ordered layering structures closer to ice, and

are therefore far from describing the fluctuating character of liquid water.

The current modeling idea is based on a well accepted statistical property of

liquid water, i.e. due to its hydrogen bond network it is locally and instantaneously

tetrahedral, also at interfaces[175]. In this case, local water conformations at the

surface must consist of full or half tetrahedrons (see figure 6.1) due the confinement

of the surface. Among possible arrangements of the like shown in figure 6.1, some are

not allowed according to data available from small quantum calculations, i.e. those

conformation displaying hydrogen down-like structures. This creates a first screening

of possible conformations that must be reproduced by the modeling. The second

important point is that, since many relevant configurations need to be explored,

many calculations need to be carried out. First principles quantum calculations are

known for being computationally very demanding, especially when metal surfaces

need to be studied. A solution to this problem comes from the observation that the

tetrahedral structure of figure 6.1 can be well described by different combinations of

substructures consisting of monomers, dimers and trimers in different conformations.

As it is shown in figure 6.1, a so-called ”first layer approximation” is made, i.e. only
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II

C
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I III

Figure 6.1: A graphical aid showing the rationale behind the set-up of the quantum cal-
culations. The water configurations studied by quantum mechanic DFT calculations were
chosen by considering all relevant ways for liquid water to interact with the surface. Some
examples are schematically shown here. In white circles: tetrahedral water substructures
at the water-metal surface. I: A possible tetrahedral water structure with two waters
interacting with the metal surface; II: A trimer, the upper part of a tetrahedral water
structure, with one water interacting with the metal surface and two additional hydrogen
bonded water molecules; III: One of many configurations that could be immediately dis-
carded as no electronic hydrogen-metal interaction exists. The isolated water tetrahedron
is an unstable structure, both in vacuo and metal-bound. Therefore, quantum calculations
are performed with smaller subunits. We can represent the tetrahedral structures shown
in I and II by using all relevant water-structures consisting of: A: a water monomer, rep-
resenting one of the symmetry axes of the tetrahedron; B: a water dimer, representing the
metal-bound water with its first hydrogen bonded neighbor, the tetrahedral center; C: a
water trimer, directly representing structure II. The complete overview on all calculated
conformations is given in ref. [44].

the molecule close to the surface and those directly bonded to that participate in

the determination of the adsorption strength. This turned to be an important point

for three reasons:

(1) First, a straightforward postulation, as recently discussed by Marx[175], clar-

ifies that the structure of water confined by an interface is energetically steered

to conformations where as many tetrahedral hydrogen bonds towards the bulk are

kept as possible, resulting in partial tetrahedral interfacial or bulk-connected water

structures in the interface region.

(2) A second point is that in order to calculate the adsorption energy, i.e. the

strength of the interaction of a water structure at the surface, such a structure must
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be stable. Adsorption energy Eads is defined here as:

Eads = Esurf+Nwat
−Esurf − ENwat

(6.1)

where Esurf+Nwat
is the total energy of the Nwat water molecules and the metal sur-

face, Esurf is the energy of the surface and ENwat
is the the energy of the isolated

cluster of Nwat water molecules; all such energies are obtained from a geometry opti-

mization process where all the degrees of freedom are allowed to relax. In quantum

calculations this requires box sizes that are large enough to prevent hydrogen bond-

ing with neighbors in vicinal boxes, thus preventing crystallization into an ice-like

phase. The calculation of Eads up to a trimer does not give problems, but already

for a tetramer no reasonable isolated, energy-minimized, cluster-like structure can

be found, and one ends up with chain-like molecular structures or pairs of dimers

forming and breaking. This makes energetic comparison between the Esurf+Nwat

and the ENwat states impossible for configurations of tetramer and up. The idea of

using tetrahedral substructures is in accordance with point (1) for describing bulk

liquid water at a metal surface, because if partial tetrahedral structures are present

at the surface, then they must locally consist of monomers, dimers or trimers. As

clarified in figure 6.1, even for a fully tetrahedral structure this choice of substruc-

tures assures a proper conformational description. As this approach manages to

describe all possible surface conformations with water structures not bigger than a

trimer, this trivially solves also the second problem.

In this line of thought, a Density Functional, Car-Parrinello, study of the ad-

sorption of water monomers dimers and trimers on all high symmetry sites of a

nickel (111) surface has been carried out by Sebastiani and Delle Site[44].

(3) The third point affects the integration into the classical model. Water adsorp-

tion energies determined by quantum calculations normally include the hydrogen-

bonding energies, for example the data of Sebastiani and Delle Site, calculated in

that way, showed good agreement with other studies[44]. For the current modeling,

however, a recalculation of the water-metal adsorption energies was performed us-

ing eq. 6.1 and it was found that all water molecules in the first bilayer (i.e. all

water molecules as shown in configuration A, B and C in figure 6.1) have similar

optimal interaction energies per water molecule, ca. 24 kJ/mol (0.25 eV). Therefore,

a single atom-surface interaction potential can be used in the MD implementation
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to describe the metal binding of all molecules in this bilayer. It should be noted

that further structuring due to hydrogen bonds is accounted for by the standard

force field water-water potentials. This implementation should result in a consistent

configuration as used in the initial quantum calculations, which can be verified by

analyzing the hydrogen bond network at the surface. Furthermore, it is has been

found in other quantum calculations and MD modeling studies that the first bilayer,

even in the ice-state, results in only one indistinguishable peak in the density pro-

file[166]. This and the fact that in liquid water thermal fluctuations play a larger

role than in low-temperature ice, justified the choice for this simple binding potential

scheme and redeemed the use of any complex (multibody) potentials to reproduce all

details of the bilayer structure near the surface. To sum up, the combined approach

of considering electronic binding effects only for the first metal-bounded water and

its direct neighbors, and treating both with a single potential in molecular dynamics

forms the ”first bilayer approximation” presented here.

6.3 Simulation details

The MD simulations applied the Gromacs 3.3 code[93, 94]. The Gromacs code was

adapted to take into account two, structureless, flat metal surfaces at opposite sides

of the simulation box, having the z-axis as the surface normal. These surfaces were

modeled by adding benzene-wall and water-wall interactions as external potentials

(see below), resulting in a slit of water with the same average density as a bulk

system. Within the accuracy we can achieve here, it is sufficient to employ a struc-

tureless surface. Even in the case of strong interaction (benzene Ni, and water Ni)

the energy barriers to move from one minimum to the next are small compared to

the overall interaction energy.

The box contained 3000 water molecules yielding a starting geometry with a

slab width of 7.6 nm, twice as big as the x and y box dimensions to ensure a bulk

liquid state in the middle of the box. The Gromacs pseudo-2d PME algorithm for

electrostatics was used and a semi-isotropic NPT ensemble was applied by coupling

x and y pressure components with Parrinello-Rahman pressure coupling[103, 176],

keeping the z-distance constant, and coupling temperature with the Nose-Hoover

thermostat[99, 177]. A time step 0.002 ps was used and every fifth time step a pair

list update was performed.
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6.4 The modeling idea applied to different water force fields

As classical water models the SPC[141], SPC/E[178], TIP3P[179], TIP4P[179]

and TIP5P[180] models were studied. All water models used were rigid, meaning

that besides the constraining of bond distances, no angular vibrations were taken

into account. The force field data and spatial configurations are given in table 6.1

and figure 6.2.

Water-solute interactions were taken from the GROMOS-specified pair interac-

tions[88, 98] for SPC and SPC/E, or by using geometric mixing rules, see equations

3.8 and 3.9, describing interaction parameters with the TIP models.

6.4 The modeling idea applied to different water

force fields

Figure 6.3 shows the normalized water densities near a Au(111) and a Ni(111) sur-

face for the SPC, SPC/E, TIP3P, TIP4P, and TIP5P water models. Note that the

hydrogen density (dashed line) shows most structure because hydrogen atoms be-

longing to water molecules in the first adsorbed layer either correspond to OH bonds

aligning the surface or OH bonds hydrogen bonded to water in the second adsorbed

layer. Hydrogen atoms belonging to water molecules in the second adsorption layer,

in turn, donate hydrogen bonds to waters in the first layer and waters in the bulk.

The large first oxygen peak is of equal magnitude for all water models. At this

distance, the water density is determined by the water-metal interaction (see table

6.2 for the quantum data and table 6.3 for the atomistic modeling parameters). The

first peak of the water hydrogen is located at 2.4 Å as well and has equal peak height

for all models except TIP5P. The 3D tetrahedral configuration of TIP5P causes a

weaker alignment of water OH bonds parallel to the surface. The water oxygen den-

sity in the second peak is identical for the SPC, SPC/E, and TIP5P models while

TIP3P and TIP4P show a slightly lower and higher density, respectively.

The hydrogen density in the second peak (first layer water donating H-bonds

to second layer waters) is equal for SPC, SPC/E, and TIP3P while being larger for

TIP4P and TIP5P. The hydrogen densities in the third (second layer water donating

H-bonds to first layer water) and fourth (second layer water donating H-bonds to

the bulk) peaks are of equal magnitude for all water models. Generally, the surface-

water density correlations are identical for all classical water models, except for small
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6 A dual-scale modeling of aqueous-metal surface interactions.

SPC[141] SPC/E[178] TIP3P[179] TIP4P[179] TIP5P[180]

qO(e) -0.82 -0.8476 -0.834
qH(e) +0.41 +0.4238 +0.417 +0.520 +0.241
qV (e) -1.04 -0.241
σO(nm) 0.31656 0.31656 0.31506 0.31536 0.312
ǫO(kJ/mol) 0.65017 0.65017 0.63639 0.64895 0.66989
rOH(nm) 0.100 0.100 0.09572 0.09572 0.09572
rOV (nm) 0.0150 0.070
θHOH (deg) 109.47 109.47 104.52 104.52 104.52
θV OV (deg) 109.47

Table 6.1: Definition of the rigid water force fields used. TIP4P contains one virtual site,
V , located inbetween the two hydrogens. TIP5P contains two virtual sites V , positioned
like lone pairs around the oxygen atom, creating a tetrahedral configuration in combination
with the hydrogen atoms. The spatial configurations are shown in figure 6.2

W
H W

H

W
H

W
H

W
O

W
H

W
H

W
O

W
O

Figure 6.2: Spatial configuration of the rigid water models used. The exact force fields
parameters are listed in table 6.1
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Interaction Eads (kJ/mol) dopt (nm)

H2O-Au 9.65 0.31
H2O-Ni 24.1 0.24

Table 6.2: Maximal first principles DFT interaction energies (Eads) and optimum water-
surface distances (dopt).[42]

Interaction Potential Type ǫ(kJ/mol) σ(nm)

Water-Au(111)
Ow-Au attractive 10-4 2.56 0.31
Hw-Au no interaction

Water-Ni(111)
Ow-Ni attractive 10-4 6.40 0.24
Hw-Ni no interaction

Table 6.3: Modeling of water-surface potential parameters. See figure 6.2 for the corre-
sponding structures and equation 3.12 for the potential function used.

differences in peak hights.

The difference between the water adsorption on the Ni(111) and the Au(111)

surfaces is mainly a question of adsorption energy, which can be seen by the lowered

peaks for Au(111) in figure 6.3, whereas the other characteristics of the adsorption

profiles near Au(111) and Ni(111) are the same. The density profile at the surface

can not be used for a quantitive comparison, however, and therefore the surface area

per water molecule was compared for both surfaces (table 6.4). Even though there

is a factor difference in peak heights for the first peak adjacent to the surface of

Au(111) and Ni(111), the factual difference in area per molecule is only about 10%.

To verify the consistency between the bulk-like hydrogen-bonding network at

the surface that was assumed in the initial quantum modeling, a hydrogen bonding

profile for water near the surface was calculated. The hydrogen bonding profile for

Ni(111) is shown in figure 6.4. Near the surface the amount of hydrogen bonds per

molecule oscillate slightly, between 3.2 and 3.6 hydrogen bonds per molecule, but

over the whole range the amount of hydrogen bonding is close to the bulk value of
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6 A dual-scale modeling of aqueous-metal surface interactions.
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Figure 6.3: Normalized water densities near an Au(111) (top) and a Ni(111) surface
(bottom). Water models used were: SPC, SPC/E, TIP3P, TIP4P, and TIP5P. Solid line:
water oxygen. Dashed line: water hydrogen.
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6.4 The modeling idea applied to different water force fields

Water model Au(111) Ni(111)
Area per molecule (Å2)

SPC 9.52 8.64
SPC/E 9.27 8.37
TIP3P 9.46 8.61
TIP4P 9.61 8.79
TIP5P 9.86 8.92

Table 6.4: Surface area per water molecule in the first adsorbed layer, as determined by
the integral of the oxygen density of the first peak adjacent to the surface in figure 6.3.
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Figure 6.4: Hydrogen bonding profile for SPC near the Ni(111) surface. Hydrogen bonds
were calculated for a hydrogen bond donor by counting the amount of surrounding water
molecules whose oxygen atom is closer than 0.35 nm and for which one of its hydrogen
atoms make an Odonor − Oacceptor − Hacceptor angle that is between -60 and +60 degrees.
For each water molecule in each snapshot it was calculated how many times it was involved
in a hydrogen bond as either a donor or an acceptor. Solid black line: water oxygen. Solid
grey line: water hydrogen. Dashed black line: hydrogen bonds per water molecule.
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6 A dual-scale modeling of aqueous-metal surface interactions.

3.4 hydrogen bonds per water molecule. This supports the assumption used in the

quantum calculations that a bulk-like hydrogen bonding structure exists near the

surface.

In chapter 7, it will be shown that the potential of mean force (PMF) for displac-

ing a solute (benzene) along the z-coordinate from bulk liquid water to the surface

does not only give an idea about adsorption/desorption free energies and interme-

diate free-energy barriers, but also help in understanding the critical steps in the

adsorption/desorption mechanism[42]. Any crucial effect that the choice of water

model would have on the adsorption mechanism would therefore be visible in the

corresponding PMF. However, as will be shown there, the PMFs of all models are

relatively similar, the shape of all graphs have the same characteristics and differ-

ences appear only in the relative height of the barrier and therefore as well the free

energy difference between bulk and the distances close to the wall.

6.5 Discussion

Even though most quantum calculations of water-metal adsorption are considering

only the ice state[165, 173, 174], and most classical simulation studies of these sys-

tems are based on simplified model systems[181, 182] or semi-emperical models[168],

a combination of quantum calculations and molecular dynamics simulations to model

the water-metal interactions seems logical[183, 184]. However, as in all multiscale

approaches, it is a non-trivial task to end up with a model where the connection of

the both scales is as simple and as physically sound as possible.

The work presented here demonstrates the first elaborated approach that can

deliver a general quantum-statistical model of the water-metal surface to be used

in molecular dynamics simulations. Water conformations near the surface, water-

metal interactions and water-water hydrogen bonding interactions are distinctively

taken into account on both the quantum and the classical force field level, to ensure

that every interaction is physically justified, and no double counting of interactions

occurs. The only limiting factor to the current modeling is that of possible con-

tributions that are not covered in the quantum calculations. One of those is the

dispersion energy contribution to water adsorption, but a recent study by Feibel-

man[113] comparing theoretical and experimental work already indicated that this

will be only a secondary factor compared to the strong interactions that determine
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6.5 Discussion

the mechanisms of interest for these systems (Feibelman mentions a ± 4 kJ/mol

contribution from dispersion interaction on a total interaction of ± 19 kJ/mol).

More direct quantum calculations of dispersion near a surface, as the calculation

performed for phenol near a graphite surface by Chakarova-Käc et al.[185], will be

needed to obtain quantitative data on the dispersion interaction near a surface. An-

other factor not taken into account yet could be water dissociation at the surface,

however quantum calculations have shown that the dissociation in a water bilayer

is not the most stable conformation for almost all of the transition metals tested

(Ag,Pt,Cu,Pd,Ni,Rh), excluding one (Ru)[165].

This water-metal surface atomistic model and the general modeling procedure

used form the basis for a broad range of modeling problems concerning liquid-metal

surfaces in aqueous environments, as will be treated in the following chapters.
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7 Modeling the interaction of

hydrated Benzene and Phenol with

metal surfaces.

Building further on the water-surface modeling introduced in chapter 6, now a solute

is introduced in the system, as a step towards the multi-scale modeling approach

of amino acids. Benzene is chosen as a model solute, as the hydration of this

molecule was already a matter of extensive simulations (see chapter 5) and the

metal adsorption of this molecule has been an object of study in previous research

papers in the theory group[6–8]. As a model solute it resembles the amino acid side

chain of phenylalanine, and the similar phenol solute relates to the side chain of

tyrosine.

7.1 Benzene and phenol as side chain analogs

In this chapter, the adsorption of fully hydrated benzene on Au(111) and benzene

and phenol molecules onto Ni(111) surfaces will be studied. A bottom-up multiscale

strategy is applied in which the interaction energies of isolated molecular fragments

(i.e. amino acid residues) with transition metal surfaces are determined by first

principles Density Functional Theory (DFT) quantum calculations. These energies

are then used to parameterize potential energy functions that are implemented in

a fully classical, atomistically detailed molecular dynamics (MD) simulation of the

system. In these MD simulations the remaining solute-water and water-water in-

teractions are described by empirical force fields, which are parameterized based

on hydration free energies of similar molecular fragments (e.g. the GROMOS force

field).[98] Despite the assumptions made in these modeling steps, this approach al-

lows to describe surface phenomena at a level of detail that cannot be reached by
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7 Modeling the interaction of hydrated Benzene and Phenol with metal surfaces.

any alternative computational method available today.

It will be demonstrated that benzene adsorption on Ni(111) and (to a lesser

extent) Au(111) is governed by solvation effects related to near-surface ordering of

water molecules. Despite the fact that the benzene-Ni(111) interaction energy is ap-

proximately 40 kJ/mol more favorable compared to the benzene-water interactions

energy of a fully hydrated benzene, it is balanced by an unfavorable entropy change

of transferring a benzene molecule from the aqueous bulk solution into contact with

the Ni(111) surface. Moreover, it will be shown that kinetic barriers exist causing

benzene adsorption on and desorption from the Ni(111) surface being a rare event.

Sampling of this event will therefore require accelerated sampling techniques (intro-

duced in chapter 4), of which in this case constrained dynamics with force averaging

and umbrella sampling will be used.

7.2 Methodology

7.2.1 First principles DFT-based modeling

First principles DFT calculations for benzene/nickel(gold)[7, 67, 186] and water/nickel(gold)[44]

were carried out using the Free Energy Molecular Dynamics (FEMD) approach of

Alavi[187, 188], implemented into the Car-Parrinello Molecular Dynamics package

(CPMD)[189]. For benzene on Ni the results are also in good agreement to recent

experimental studies[190, 191].

The adsorption energy for benzene/metal and water/metal was calculated as:

Eads = Esurf+mol −Esurf − Emol (7.1)

, where all energies correspond to relaxed geometries. To account for the possible

molecular conformations at the surface, the distance dependence and the angular

dependence of the adsorption energy were determined, where the angle corresponds

to the inclination of the carbon ring with respect to the surface. For gold, due to

the relatively weak interaction, this study turned out not to be necessary.

The distance and angular dependence of the benzene-nickel interaction is shown

in figure 7.1, combined with the purely atom-surface based MD potential discussed

below.

86



7.2 Methodology

Interaction Eads (kJ/mol) dopt (nm)

Benzene-Au 4.82 0.33
Benzene-Ni 105.2 0.20

Table 7.1: Maximal first principles DFT interaction energies (Eads) and optimum solute-
surface distances (dopt).
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Figure 7.1: First principles DFT values (dots) and corresponding MD potential (solid
line) for the distance and inclination dependence of the benzene-nickel interaction energy.
Distances are based on parallel orientation of the benzene and the metal surface. The tilt
angle is defined as the angle between the normal of the metal surface and the normal on
the plane of the benzene ring, upon rotation around one of the benzene hydrogens, starting
from the optimal distance (0.2 nm) at zero inclination. Note that the MD potential does
not contain an inclination-dependent part in the potential, but instead the inclination
dependence follows from the combination of atom-site potentials. In that way, an inclined
configuration at the surface will contain several atoms that are further away from the
surface than the optimal distance, thereby lowering the total interaction energy of the
molecule.

7.2.2 Molecular dynamics implementation

The rigid, non-polarizable, simple point charge (SPC) water model has been used

in describing water-water and solute-water interactions.[141] The effect of electronic

polarizability has been shown to have only little influence on the structure of water
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7 Modeling the interaction of hydrated Benzene and Phenol with metal surfaces.

near a metal surface and can therefore be neglected.[172]

7.2.3 Benzene modeling

Benzene-water non-bonded interaction parameters as well as the benzene bonded

parameters have been extensively investigated in chapter 5. Molecular dynamics

simulations were performed similarly to the simulations of chapter 6, however now

using the Gromacs 3.2.1 MD simulation package.[92, 93], and a system contain-

ing 1500 water molecules at constant volume and temperature (T=298K), using a

Berendsen weak-coupling thermostat,[102] with relaxation time τ = 0.1 ps. Other

differences include a twin-range cutoff scheme with 0.8 nm and 1.4 nm cutoff radii

that was applied here for solute-water and water-water electrostatic interactions[88].

The non-bonded interactions in the range between these radii were updated every

fifth time step. In the current simulations, bond lengths were constrained by the

SHAKE algorithm.[95]

Due to the different nature and strength of the benzene-metal interactions for

gold and nickel, different benzene-surface pair potentials (equations 3.10-3.12) were

used to model the first principles DFT data (table 7.1) in atomistic site-surface po-

tentials (table 7.2 and figure 7.2). An attractive 10-4 potential was chosen for the

interaction between benzene C-atoms and gold, between water O-atoms and gold,

and between water O-atoms and nickel (as described in table ?? in chapter 6). This

potential is appropriate to describe these relatively weak non-covalent interactions.

They take the form of equation 3.10 with zcutoff is 1.4 nm in the current simula-

tions. The stronger, more covalent-like, benzene-nickel interaction was modeled by

a Morse potential on the benzene C-atoms (UBC−Ni, equation 3.12), combined with

a repulsive 10-4 potential on the H-atoms (UBH−Ni, equation 3.11), to fine-tune

the angular and distance dependence to the one found in the quantum calculation

(figure 7.1). The repulsive H-surface potential corresponds to the fact that the H

atoms are slightly repelled by the surface, as indicated by the quantum calcula-

tions. The Morse parameter was optimized to get the best compromise between

corresponding distances and angles (a = 35 nm−1). The resulting curve (figure 7.1)

however somewhat underestimates the tilt-dependency and therefore will overesti-

mate the binding energy for tilted conformations at the surface. A larger Morse

potential leading to a steeper decrease of the Morse potential would have improved
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7.2 Methodology

the inclination-dependent correspondence to quantum data of the overall potential.

However, it would have impaired the distance-dependent correspondence to quan-

tum data, resulting in much weaker binding at all intermediate distances between

0.2 and 0.3 nm. The final form, shown in figure 7.1, was adopted as the best trade-off

for the distance and the inclination correspondence of MD data with quantum data.

In calculating the free energy of binding the error made by such an approximation

will be of the order of kBT , which results from a larger entropy of the tilt angle

vibration. Taking the entropy difference between a classical freely rotating benzene

and a benzene fixed to the flat configuration with respect to the wall (at constant

energy) leads to an entropy difference in the order of kBT (about 2.5 kJ/mol) for the

two degrees of freedom, disregarding any interaction effect. Thus the over estimate

of the benzene entropy close to the surface is within the order of the intrinsic error

bars of the quantum calculations. As we will see later, this is negligible compared

to the other energies, which dominate the properties.

7.2.4 Phenol modeling

Phenol on Ni (111) has a maximum surface interaction energy that is almost 15%

lower than the maximum surface interaction energy of benzene (see table 7.1 and

ref. [72]). Its conformation at the surface has the hydroxyl oxygen lifted by 0.5 Å,

which has some effect on the adjacent carbon atom as well. The hydroxyl hydrogen

is pointing down, ending up at the same height as the phenylic carbon atoms (see

fig 7.3). As a basis of the atomistic modeling of phenol, the benzene model as

discussed in chapter 5 is chosen. To describe the interaction with the surface, Morse

potentials are used on the aromatic ring carbon atoms (Cr) (equation 3.12), and

repulsive 10-4 potentials (equation 3.11) are used on the ring hydrogens(Hr). The

model parameters are given in table 7.2, atom types are defined in fig. 7.2. For all

attractive atom types a zcutoff of 1.4 nm was used.

Besides the substitution of one of the hydrogens by a hydroxyl group, only a

reduction of interaction energy was needed which was done by scaling down all

carbon-wall interactions. The carbon next to the hydroxyl group (Cp) was scaled

down to half the interaction energy of the other carbon atoms (Cr). A weak 10-4

repulsion was put on the hydroxyl oxygen (Op), an attractive 10-4 potential (see

equation 3.10) with similar strength was put on the hydroxyl hydrogen (Hp).
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7 Modeling the interaction of hydrated Benzene and Phenol with metal surfaces.

Interaction Potential Type ǫ(kJ/mol) σ(nm)

Benzene-Au(111)
Cr-Au attractive 10-4 0.21 0.33

Benzene-Ni(111)
Cr-Ni Morse (a=35nm−1) 17.5 0.20
Hr-Ni repulsive 10-4 4.27 0.20

Phenol-Ni(111)
Cr-Ni Morse (a=35nm−1) 15.8 0.20
Hr-Ni repulsive 10-4 4.27 0.20
Cp-Ni Morse (a=35nm−1) 7.96 0.20
Op-Ni repulsive 10-4 1.00 0.25
Hp-Ni attractive 10-4 0.70 0.22

Table 7.2: Modeling of molecule-surface potential parameters. See figure 7.2 for the
corresponding structures and equations 3.12-3.13 for the potential functions used.

(A) (B)

CrCr Cr

CrCr
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Cr
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Figure 7.2: Shown are: (A) Benzene (B) Phenol. Atom names refer to atom names in
table 7.2. Note that the water hydrogens HW do not have any interaction with the surface.
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7.3 Results and Discussion

Figure 7.3: Minimal energy phenol configuration when adsorbed on Ni(111), as found
by quantum calculations[67]. The green area represents the location of the nickel surface.

Configurations of phenol with the OH group pointing away from the surface

did not need to be taken into account in QM calculations, as the perturbing effect

of the OH group will be lower the further it is away from the surface, and any

interaction would be similar to the inclination dependence of benzene, which was

modeled previously[42]. The configuration where phenol is pointing with the OH

group towards the Ni(111) surface is currently being investigated by quantum cal-

culations. Preliminary calculations indicated a weak interaction, not significantly

higher than the error margin of the quantum calculation. Currently, no special

modeling considerations were made to account for this orientation in the classical

atomistic simulation.

7.3 Results and Discussion

MD simulations were performed for 2500 water molecules (oxygen and hydrogen

atoms) with one single benzene molecule (carbons and hydrogen atoms). To show

that the simulations are well equilibrated, typically density profiles are shown for

the full system. The overall size of the simulation box is then 5nm, with walls at

z = 0nm and z = 5nm and periodic boundary condition in the x and y direction.
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7 Modeling the interaction of hydrated Benzene and Phenol with metal surfaces.

7.3.1 Density profiles

Figure 7.4 shows the normalized densities for the 2500 water (oxygen and hydrogen

atoms) molecules and the single benzene (carbon and hydrogen atoms) molecule

along the z-coordinate normal to the surface. The density profile for water is highly

symmetric, while for the benzene molecule the averaging is somewhat poorer, due to

the much smaller statistics. Both, the Ni(111) and Au(111), surfaces are significantly

wetted and two pronounced water layers are observed. The wetting profile of water

at the Au(111) and Ni(111) surface has been discussed extensively in chapter 6.

The peak heights depend clearly on the metal-water interaction strength: water

adsorption on Au(111) (see inset) is significantly weaker than on Ni(111). Analyses

of the in-plane and out-of-plane diffusion showed that in both cases the adsorbed

water remained liquid-like. In the middle of the cell, the water concentration of the

Ni(111) forms a slight ’dip’, due to the dense layering at the surface after starting

from the correct bulk density. This is due to the fact that a constant volume was

used for the simulation shown here, and can be prevented by performing constant

pressure simulations as the ones performed in chapters 6 and 8. However, for the

surface structure the results are indistinguishable.

Due to the presence of only a single benzene molecule in the system, the benzene

density profile is not fully symmetric, however, the sampling is sufficient to extract

its most important features. The closer to the surface, the less probable it is to

have a benzene present. Most likely, steric (entropy) effects inhibit the benzene

molecule to penetrate the adsorbed water layers, preventing it from approaching

the surface close enough (z ≤ 0.3nm) to experience the short-ranged attractive

benzene-wall interaction (cf. figure 7.1). Benzene adsorption on nickel, which due

to a strong benzene-nickel interaction of 40 kBT at room temperature (z = 0.2 nm)

may thermodynamically be favorable, is kinetically prevented within the currently

used simulation times. To test if a pre-coating of the benzene molecule onto the

surface would be (meta)stable, a second 50 ns MD simulation starting with a benzene

molecule coated onto the nickel surface was performed, indeed showing benzene to

stay at the surface. From a pre-coated gold surface, however, benzene moves away

into bulk water within the first few picoseconds of the simulation. Below, we analyze

the thermodynamic aspects in more detail.
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Figure 7.4: Z-axis density profile between two modeled Ni(111) walls. Solid black line:
water O; solid grey line: water H; dashed black line: benzene C; dashed gray line: benzene
C. System consists of 2500 water molecules and 1 benzene molecule, runtime is 50 ns. The
relatively symmetrical density profile for benzene between the walls indicates that sampling
is almost sufficient. Main picture: Nickel walls at both z-axis ends. Inset: Similar system,
but with Au(111) walls.

7.3.2 PMF and umbrella sampling

The results of the previous section indicates clearly that there is no tendency for

the benzene to strongly adsorb onto the Au(111) surface and replace the water. For

the case of the Ni(111) surface the situation is more complicated. Taking the plain

energy information, as it comes out of the CPMD calculations, the energies are not

much different if one considers one benzene replaced by about five water molecules.

Thus a plain energetic consideration is certainly not sufficient. In addition the results

of the previous section clearly show, that there is a huge barrier for the benzene to

penetrate the water layer and adsorb onto the Ni. Thus, to make quantitative
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7 Modeling the interaction of hydrated Benzene and Phenol with metal surfaces.

statements on benzene adsorption on nickel as well as water-mediated free energy

barriers near the surface we calculated the potential of mean force (PMF) based on

the distance z between the nickel surface and the benzene center of mass. The PMF

was constructed using a quasi-static approach, measuring mean constraint forces

required to constrain the distance z between the surface and the center of mass of

the benzene molecule. Since only the distance z between the surface and the center

of mass of the benzene was constrained and fluctuations in the x and y direction were

permitted, this methodology should deliver the correct measure of the water- and

wall-induced forces working on the benzene molecule. The constraint was applied

for distances between 0.2 nm and 1.0 nm using 0.01 nm intervals along z, and 0.02

nm intervals between 1.0 nm and 2.0 nm. At every z-point, 3 ns runs were performed

to sample the mean force. Forces were stored each time step, the average force and

integrated error in the calculation was estimated by block averaging over 1000 time

steps. The location and relative magnitudes of the extremes in the PMF provides

insights in the mechanism of benzene adsorption as well as possible metastability of

a benzene-coated nickel surface.
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Figure 7.5: Construction of the umbrella forces and potential: The mean forces obtained
from the constraint mean force calculations are plotted on the left. A completely overlap-
ping force function (also plotted) was constructed by fitting a function built from Fourier
series with 30 independent parameters. The force function was used to subtract forces
during the simulation. Similarly, by integrating the fitted force function, a potential could
be obtained that completely overlapped with the potential of mean force obtained by the
constrained mean force calculations (both fit and original data shown in right graph).

To assess the quality of the resulting potential of mean force, we used this as an

input potential for a 100 ns umbrella sampling run, in order to get a more precise

estimate of free energy barrier. For this a Fourier series fit of the mean forces ob-
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7.3 Results and Discussion

tained in the distance constraint runs with force averaging was made (figure 7.5).

In the umbrella sampling simulation, the corresponding z-distance dependent um-

brella force and potential was subtracted from the actual force and potential values.

In the 100 ns umbrella sampling run the umbrella force on the benzene center of

mass was redistributed over the benzene interaction sites as mass-weighted forces.

After the simulation, a z-dependent free energy profile was constructed from the

z-dependent distribution of the benzene center of mass, corrected by adding the

umbrella potential. Figure 7.6 shows the PMF obtained by applying the constraints

as well as the one obtained by umbrella sampling. The agreement between the

two PMFs is excellent. The integration of the error on the mean constraint force

(z = 2 nm to z = 0.2 nm) results in an uncertainty of the free energy of adsorp-

tion of 3 kJ/mol, about 1.3 kBT at room temperature. Within the error of our

calculation, the adsorption free energy of benzene on nickel, which corresponds to

PMF(z = 0.2 nm) - PMF(z = 2.0 nm), is negligible. The slightly favorable energy

difference driving benzene adsorption apparently is compensated by unfavorable

entropy changes. These entropy changes are associated with loss of benzene orienta-

tional degrees of freedom near the surface, as well as a more significant loss of solvent

translational degrees of freedom in creating a solute-sized cavity close to the surface

relative to creating it in the bulk. Due to the ”rigid” water structure close to the hy-

drophilic surface (see figure 7.4), density fluctuations resulting in the formation of a

suitable cavity are suppressed thereby imposing strong excluded volume restrictions

on the benzene solute to contact the surface (by performing test-particle insertions of

smaller, methane-sized molecules we observed that insertions were hardly ever suc-

cessful close to the surface while in the bulk they were readily inserted). Although

it is outside the scope of this thesis to quantify these entropy contributions, we note

that these are reminiscent to those observed in co-solvent/water mixtures where the

interactions of solutes with co-solvent molecules are more strongly opposed by the

entropy change if the co-solvent molecules are stronger hydrated.[192, 193] To adsorb

or remove benzene from Ni(111) a barrier of 24 kBT must be surmounted, leading

to a metastable benzene layer on a nickel surface in the presence of water. For gold

no such metastable regime can be found. Even though both water and benzene have

a weak interaction with the Au(111) surface, the competition between water and

benzene adsorption onto the surface is dominated by the small size of water and its

hydrogen bonded network at the surface. This will prevent any metastable state of

benzene at the gold surface.
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Figure 7.6: PMF as obtained by constraining benzene-wall distances (solid black line)
and the potential retrieved from the density-profile of an umbrella sampling run, with a
correction for the umbrella potential (dashed grey line). The umbrella sampling potential
was applied between 0.203 and 0.981 nm, the discontinuity of the curve around 0.20 is a
result of one constrained PMF data point lying below the umbrella region.

7.3.3 Influence of the water model

In chapter 6, the water density profile at the surface was shown for 5 classical water

models (see fig 6.3).

Both the benzene and phenol z-dependent PMFs (Fig 7.7, see the appendix for

a detailed description) are qualitatively very similar. The structural details of the

PMFs follow the water oxygen density fluctuations (Fig 6.3). Upon approaching z

= 0.5 nm (corresponding to the position of the second oxygen peak in the water

density profile) from larger distances, the benzene (phenol) molecule starts to expel

water from the second water adsorption layer and the PMF increases rapidly. The

PMF profiles correlate with the water density data from figure 6.3, where we can
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7.3 Results and Discussion

find a first water layer around z = 0.2-0.3 nm, a second water layer around z =

0.5-0.6 nm, and a very weak third water layering around z = 0.8-0.9 nm.
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Figure 7.7: Solute-surface PMFs for displacing the geometrical center of the phenyl
ring of (A) benzene and (B) phenol perpendicular to a surface, in liquid water (300 K)
described with five classical water models. PMFs were obtained by integrating the average
constraint force on the solute center of mass along 140 discrete points between 0.20 and
3.00 nm from the metal surface. At each point, 3 ns MD runs were performed to sample
the mean constraint force. Solid black line: SPC water[141]; dashed black line: SPC/E
water[178]; dashed/dotted black line: TIP3P water[179]; solid grey line: TIP4P water[179];
dashed grey line: TIP5P water[180]. The errors of these PMF calculations ranged between
4 and 8 kJ/mol at z=0.2 nm, and was estimated by calculating the block average error
estimate[144] for every constraint distance and taking the square root of the integral of
the square of all error estimates from bulk (z = 3.0 nm) towards the closest distance to
the surface that was sampled (z = 0.20 nm).
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Figure 7.8: Desorption mechanism, from left to right, as shown by snapshots from the
umbrella sampling run. The first solvation shell and all water molecules between the
molecule and the surface are shown for six conformations at various distances from the
surface.

7.3.4 Mechanisms

To get an impression of the desorption mechanism, several snapshots of benzene

conformations near the surface were made (figure 7.8). Note that due to the liquid

nature of the surrounding of the benzene molecule and the structureless adsorbing

surface, the plain distance dependence trivially defines the natural ”reaction path”.

From these snapshots it appears that the first step in desorption is a fluctuation in

the benzene-surface distance, moving it some fractions of an Ångström away from

the surface. Due to the rapid decay of the interaction energy with the benzene-wall

distance (figure 7.1), the interaction energy already drops down significantly at this

point, however does not allow for any water to fill into the gap. As a second stage,

the benzene starts inclining and the interaction energy drops down further, until the

benzene is oriented perpendicular to the surface and almost no interaction energy is

left. At distances further away from the surface, water (5.3 molecules on average)

will completely fill up the gap left by benzene, re-adsorbtion from that point is

clearly hindered by the closed water-layer.

In figure 7.9 (A), 2-dimensional PMFs for benzene and phenol are shown as

a function of z and the inclination angle between the aromatic ring- and surface

normals. A selection of snapshots of benzene at various surface distances is provided

in fig. 7.9 (B). In this 2-dimensional free energy landscape, a more detailed picture
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is shown, and we can subdivide several zones when approaching the surface (z =

0 nm) from the bulk solvent (z > 1 nm). In the bulk zone going from z > 1 nm

towards z = 0.8 nm the sampling is evenly distributed over all angles. For benzene

(less clear for phenol), it can be seen that around 0.7 nm (in between the third and

second water layer; see Fig 6.3) already some structural effects occur and the parallel

conformation (cos(θ) = 1) is slightly less sampled. At distances corresponding to

the second adsorbed water layer (between z = 0.6 nm and z = 0.5 nm), benzene

(phenol) preferentially orients parallel to the metal surface (the distribution of cos(θ)

is narrowed down to 0.9-1.0 in fig 7.9 (A). A snapshot of the parallel conformation can

be seen in fig. 7.9 (B), at 0.49 nm). This orientation is favored energetically due to

O-H· · ·π hydrogen bonding involving water molecules in the first and second surface

hydration layers. This type of weak water-aromatic hydrogen bonding is properly

described by the force field [194]. In figure 7.7, this causes a shoulder to appear in

the PMF at z=0.58 nm. A rather flat landscape with respect to the orientational

degree of freedom is found in the region between the second and the first adsorbed

water layer (0.4 nm <z< 0.5 nm). Though, towards z= 0.4 nm, perpendicular

orientations are favored in comparison to parallel ones, which become energetically

unfavorable. In figure 7.7, a shoulder is observed at these distances, in figure 7.9 (B)

one can see how a perpendicular orientation minimizes the displacement of water

molecules in both the first and second adsorbed water layer. As the ring center of

mass approaches the first adsorbed water layer, the benzene (phenol) ring normal

gets significantly tilted with respect to the surface normal and finally lines up with

the surface normal, driven by an energetic stabilization of 1 eV due to the overlap

of benzene(phenol)-π-orbitals with free electrons in the surface. In this process, first

layer water molecules are expelled from the hydrophilic nickel surface, even before

significant benzene(phenol)-surface binding interaction is present. It is clear that if

the benzene would adsorb in a solvent-free environment, the z-dependent angular

distribution plot would show a random orientation for distances of ca. 0.5 nm and

higher, and will show a similar profile to the solvated state only for short distances

below 0.3 nm, as here the orientation of the ring is governed by the presence of the

surface.

The mechanism above originates from the very short-ranged and strong benzene-

surface interaction, combined with a strong wetting of the transition metal surface

by water. Without a need for additional simulations one can predict the same

mechanism to hold for other transition metals in case strong, short-ranged surface
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Figure 7.9: Figure 7.9 Two-dimensional PMFs for benzene (left) and phenol (right)
at Ni(111) in SPC/E water (298 K). The solute (center-of-mass)-to-surface distance is
plotted vertically, the cosine of the angle between the solute- and surface normal vectors
is plotted horizontally. The 2D-PMF, G(z, θ) = G(z) + G(θ | z), was calculated from
constrained MD. By applying a constraint to keep the z-coordinate fixed, G(z) (see fig
7.7) is obtained by integrating the mean constraint force along the z-coordinate. G(θ |
z) = −kBT ln P (θ | z) is obtained from the conditional distribution function, P (θ | z),
sampled in the constrained MD runs. Compare with the snapshots in figure 7.8.

interactions combine with approximately equal ratios of benzene and water adsorp-

tion energies (determined by either Density Functional calculations or experiment).

If one considers the energies listed in table 7.3, one likely expects the mechanism

in figure 7.8 to occur also at the (111)-surfaces of Ni, Pt, Pd, and Rh. Although

in our quantum modeling we do not have the contribution of dispersion forces,

these will not change the observed mechanism, because they are weaker and much

longer-ranged. This will most probably remain true also for the noble metal surface
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Eads (kJ/mol) H2O C6H6

Ni(111) 24.1 105.2
Pt(111) 33.8 [195] 86.8[196]
Pd(111) 31.8 [195] 114.8[196]
Rh(111) 40.5 [195] 147.6[196]
Au(111) 9.65 4.82

Table 7.3: Energy data from quantum calculations for a series of metal surfaces

Au(111), since including dispersion effects in the simulation will increase both the

water and benzene adsorption simultaneously. Only in the case if dispersion for

benzene would be several factors higher than for water, the inclusion of dispersion

would change the overall picture shown in the current chapter. No disperion data

of these molecules near a gold surface currently exist, and further research will be

necessary for an exact clarification.

7.4 Discussion

The simulations performed with benzene at Au(111) and benzene and phenol at the

Ni(111) showed that water-mediated effects are crucial in modeling the interaction

of benzene with metal surfaces. This illustrates that the current dual scale approach

that combines electronic structure quantum calculations and classical descriptions of

solvation is an appropriate tool to study the adsorption phenomena out of solution

for small molecules.

In the following chapter, the same technique will therefore be applied to a small

set of amino acids, as a next step towards the full multiscale modeling of biological

macromolecules.
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8 Modeling hydrated amino acids

near metal surfaces

The modeling methodology for solute-surface interactions in the hydrated state that

was constructed in the previous chapters is extended here to model the interaction of

the three amino acids alanine, phenylalanine, and tyrosine, with the Ni(111) surface.

The neutral forms of phenylalanine and alanine will be atomistically simulated in

explicit water at room temperature, at the interface with a surface representing

Ni(111). The increased conformational degrees of freedom for these molecules will

be shown to complicate the simulation and the interpretation of its results, however

still several general properties of the adsorption can be obtained and compared to

related experimental work.

8.1 Computational Details

The model presented here extends the ’molecular building block’ approach that

has been already successfully applied to organic-inorganic interfaces[6, 42] in earlier

work, as for example the previous chapter of this thesis. To reiterate, note that

the main idea in this approach is that macromolecule-surface interactions are de-

scribed at two levels. Firstly, building block molecules are chosen that describe the

recurring parts in the macromolecule. The small sizes of these building blocks allow

for quantum mechanical calculations of the building block-surface interactions, and

the resulting data are used for parameterizing atomistic solute-surface interaction

potentials. On the other, classical atomistic, level, this quantum-based parameteri-

zation describes building block-surface interactions, not only for the single building

blocks, but also for the structures such as (oligo)peptides or proteins that can be

constructed from combinations of these building blocks. The current chapter will

treat the neutral forms of alanine, phenylalanine and tyrosine, and study their in-
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Figure 8.1: Molecules used in the modeling study: (A) neutral Alanine (B) neutral
Phenylalanine (C) neutral Tyrosine. Atom names refer to atom names in table 8.2. The
sites Cαβ and CV are specially introduced for the current modeling: Cαβ is a virtual site
located exactly at the center-of-mass of Cα and Cβ. CV is a repulsive virtual site needed
to prevent simultaneous adsorption of the N and carbonyl O (OC) atoms within the same
molecule, as explained in the text. Note that the water hydrogens HW do not have any
interaction with the surface. Unlabeled atoms have the general repulsion ’R’.

teraction with a Ni(111) surface from the bulk-hydrated state. As Ni is taken only

as an ideal model surface, any oxidation effects at the surface will be ignored.

Quantum calculations of the amino acids alanine and phenylalanine have been

performed using the DFT based finite-electronic temperature method of Alavi et

al. [187] (FEMD), as implemented in the CPMD code [189]. Note that amino-

acids under physiological conditions exist mainly (> 99%) in the zwitterionic state,

whereas in the case of peptides the end-groups are condensated to form peptide

bonds and are therefore of different chemical nature. The neutral amino acids used

here are not the exact representations of any of those two states, but still are of

interest, as the neutral state (as well as the zwitterionic state) has been shown to

bind to a Ni(111) surface[72]. The zwitterionic state of amino acids as well as the

peptide form are currently under investigation[72] and will be a matter of further

research.
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8.1 Computational Details

Simulations were carried out in a system similar to the one described in chapter

6. As solutes, the molecules described above where used, for which the solute-

solute, solute-solvent, and solvent-solvent intermolecular potentials were described,

as in the previous chapters, by the GROMOS 43a1 force field[88]. As a solvent the

SPC/E water model was used[178]. Note that in chapter 6 it was already shown that

the choice of the water model has no influence on the water density profile at the

surface. Repeating the same study with a different water model would therefore be

possible without significant differences in the water-mediated adsorption behavior.

In addition to MD simulations, several simulations applying a Langevin thermo-

stat (at 300K) were performed in which the solute interacts with the metal surface

in a vacuum environment. The Langevin thermostat, available in Gromacs[94], was

used with a friction coefficient of 1 ps−1.

Solute-surface potentials of mean force (PMFs) in water were obtained via

constraint-biased simulation with force averaging[197] as provided by the Gromacs

package. The constraint direction was chosen perpendicular to the surface (i.e. in

the z-direction). For each PMF, 142 defined constraint distances from the surface

were chosen, in steps of 0.01 nm from 0.19 nm to 1.00 nm, in 0.02 nm steps from

1.00 to 2.00 nm and in 0.10 nm steps for distances up to 3.00 nm. In all cases, this

proved to be far enough to reach a bulk hydrated state of the molecule as indicated

by a constant value for the PMF at these distances. Several constraint sites on the

solute molecule were analyzed, each separately, to see if any site-dependence for the

PMF is present. The following interaction sites were chosen as constraint sites: the

center of the ring for benzene and phenol; for alanine the carbonylic oxygen and

the amine nitrogen; for phenylalanine the ring center, carbonylic oxygen and amine

nitrogen. It is important to note that only the z-component of the constraint site

has been fixed. The constraint site can move in the xy directions, and the remaining

parts of the molecule can move in any directions as long as this movement will not

displace the z-distance of the constraint site.

The starting conformations at the 142 distances mentioned above were generated

by first solvating the molecule in the middle of the slit, following by pulling it

to an adsorbed state (at z=0.19 nm). From there the z-distance was increased

in a sequence of short pull runs. Once all starting points were generated, 3 ns

production runs were performed for each z-distance, enabling the calculation of

distance-dependent mean forces, and mean surface interaction energies.
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8.2 Modeling

The quantum-atomistic multiscale modeling of amino-acid-metal surface interac-

tions is more complex than the previous multiscale modeling of benzene/polycarbonate

adsorption (see chapter 5 and references [6, 42]). This is largely due to the low sym-

metry and relatively large number of interaction sites in amino acids, and the fact

that these interaction sites are located too close to each other to be treated sepa-

rately. The low symmetry greatly affects the load of quantum calculations necessary:

Even though alanine has fewer atoms than benzene, there are many more possible

geometries in which it can be oriented relative to the surface. A complete quantum

analysis of all these configurations at all possible metal lattice sites would require

a very expensive computational effort. An expansion to the multiscale modeling

methodology is introduced here that can overcome the before-mentioned problems

in a way that actually enhances the methodology’s general validity and applicability.

It is important to note that the attention lies on finding global minimum free

energy conformations, as these will be the dominant contribution to the sampling

statistics during long runs at the atomistic level. Calculations on intermediate,

higher-energy states would provide only superfluous information at the current mod-

eling precision. Therefore, the starting point of the modeling will be a selection

of initial configurations that aims to give us the strongest binding conformations.

The electronic properties of the metal binding of these configurations is calculated

by a series of quantum density functional calculations (geometry optimization)[72],

considering per configuration the various possible positions on the metal lattice.

The data retrieved from these calculations give us the parameters (interaction sites,

interaction strength, optimal distances) based on which an atomistic model is con-

structed. However, since the molecules studied here have a large number of orienta-

tional degrees of freedom, the molecule is likely to get trapped in local energy minima

during quantum calculations. This is resolved by performing Langevin thermostat

MD simulations of the molecule in vacuum, applying the modeled molecule-surface

interaction parameters, and sample its configuration space at a range of distances

perpendicular to the surface, using the constraint method and sites described in

the Methodology section. This set of Langevin thermostat MD runs can sample

a larger amount of the phase space than could be done by quantum optimization

runs in a fraction of the time. If the Langevin thermostat MD simulation generates

(only) the surface adsorbing conformations that were already found in the initial
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quantum calculations, the classical model is considered finished. If, however, the

Langevin thermostat MD simulation generates adsorbing (low-energy) conforma-

tions that were not previously found in quantum calculations, these conformations

are used as starting configurations in a new series of quantum-based structure opti-

mizations. If these quantum calculations show that the conformations found differ

in their interaction properties from the Langevin thermostat MD simulations, the

atomistic modeling is adjusted. Then, the procedure is repeated (Langevin ther-

mostat run with new modeling, quantum calculation of Langevin run output), until

consistency between the quantum and the atomistic level is reached and all Langevin

run lowest energy conformations correspond to stable conformations from quantum

calculations with respect to the energy and the configuration.

8.2.1 Neutral Alanine

For neutral alanine four distinct conformations were used in the quantum calcula-

tions. The structures are shown in figure 8.2, energies and optimal surface interac-

tion site distances of all configurations are shown in table 8.1, the exact description

of the quantum calculation part of the simulations is described in ref. [72]. One

of the structures (number 4 in table 8.1 and figures 8.2 and 8.3) turned out to be

nonbonding.

No. Conf. Eads (eV) (kJ/mol) N (nm) Oc (nm) Cβ (nm)

1 NdownCHup -0.57 -55 0.22 0.32 0.46
2 NdownCHdown -0.32 -31 0.24 0.33 0.36
3 OdownCHup -0.37 -36 0.46 0.25 0.57
4 OdownCHdown non-bonded 0.39 0.22 0.27

Table 8.1: Properties of four neutral alanine conformations that were evaluated in quan-
tum mechanical DFT calculations[72]. Shown are the adsorption energy on the Ni(111)
surface, and the atom - to - top Ni layer distance of three of the atoms whose surface
distance most strongly affects the surface interaction.

The amine nitrogen (N) and the carbonyl oxygen atom (Oc) interact attrac-

tively with the surface. Surface attraction at these sites is of the order of one to

two hydrogen bond strengths and is modeled with attractive 10-4 potentials. An

interesting feature is the influence of the methyl side-group. Even when not directly

107



8 Modeling hydrated amino acids near metal surfaces

2
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Figure 8.2: Alanine-Ni(111) conformations as mentioned in table 8.1 and figure 8.3.
Main characteristic of conformation 1 is the binding of the amine nitrogen to a top site of
the Ni(111) surface and the methyl group pointing away from the surface. The carbonylic
oxygen is pointing slightly towards the surface. Conformation 2 is similar, but with the
methyl group closer to the surface. Conformation 3 has the carbonyl oxygen bound to the
surface, with the methyl group pointing away and the bond connecting the C-alpha and
the amine nitrogen almost parallel to the surface. The difference between conformations
3 and 4 is almost solely the fact that in conformation 4 the methyl group is closer to the
surface. An analysis of these structures at the quantum level is given in ref. [72].

interacting with the surface, the methyl-surface distance is found to influence the

total interaction energy, although relatively weakly.

The origin of this influence might be an effect of the position of the side chain

on the surface orientation of the interacting amine and carboxyl groups. A simple
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scheme to model this effect is chosen that includes a weak repulsive Morse potential

(equation 3.13) on the center-of-mass of the Cα and the Cβ atoms: this additional

interaction site is referred to as (Cαβ) side-chain (see figure 8.1).

The optimal distances (σ-values) for these potentials are retrieved from the

binding conformations in quantum calculations. Binding energies for the potentials

(ǫ-values) are chosen such that the sum of all site-surface potentials (eqs. 3.12-3.13)

acting on the molecule will reproduce the total interaction energy as found in the

quantum calculation, for every analyzed conformation. These are only initial values,

as the interplay between all binding energies and intramolecular interaction ener-

gies might eventually lead to binding energies and conformations in the atomistic

modeling that deviate from stable states that can be found in quantum calcula-

tions. Atoms with no specific surface interaction were given a simple repulsive 10-4

potential (with parameters based on the repulsive hydrogens in the benzene ring,

see group R in table 8.2) to prevent the occurrence of unphysical conformations

corresponding to a penetration of the surface. The first iteration of this modeling

resulted in minimal energy conformations from the Langevin thermostat MD runs

that had, both, the amino nitrogen and the carbonyl oxygen interaction sites at

optimum distance. The total interaction energy corresponded to the sum of both

interactions. Quantum calculations of the Langevin thermostat run output struc-

tures showed that this was actually a non-bonding conformation. Consequently, a

modification of the initial modeling was needed to assure that only one interaction

site at a time will be able to bind with optimal interaction energy. This was reached

by introducing a repulsive site (Cv) at a position between the amino nitrogen and

the carbonylic oxygen (at 40 % of the bond length between carbonylic carbon and

Cα, see figure 8.1), leading to a seesaw-like mechanism which allows for the binding

of either the amino or the carbonyl group.

Langevin thermostat runs with this modeling lead to optimal configurations close

to the previous quantum calculations, see figure 8.3, and this modeling was therefore

chosen for the MD production runs. The final potential parameters are given in table

8.2. Note that even though only one point (minimized energy) per conformation is

used, the fact that four different conformations were used for the potential fit, with

various groups interacting simultaneously for every conformation, makes this more

elaborate than a one-point parameterization. The shape of the average potential

energy curves of the Langevin thermostat MD runs of the atomistic modeling in
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Interaction Potential Type ǫ(kJ/mol) σ(nm)

Non-charged Ala
Oc-Ni attractive 10-4 8.90 0.23
N-Ni attractive 10-4 15.0 0.22
Cαβ-Ni Rep. Morse (a=6.0nm−1) 4.0 0.58
Cv-Ni repulsive 10-4 10.0 0.38
R-Ni repulsive 10-4 4.27 0.20

Non-charged Phe
Oc-Ni attractive 10-4 8.90 0.23
N-Ni attractive 10-4 15.0 0.22
Hv-Ni repulsive 10-4 4.27 0.17
Cv-Ni repulsive 10-4 10.0 0.38
Cr-Ni Morse (a=35nm−1) 17.5 0.20
Hr-Ni repulsive 10-4 4.27 0.20
R-Ni repulsive 10-4 4.27 0.20

Non-charged Tyr
Oc-Ni attractive 10-4 8.90 0.23
N-Ni attractive 10-4 15.0 0.22
Hv-Ni repulsive 10-4 4.27 0.17
Cv-Ni repulsive 10-4 10.0 0.38
Cr-Ni Morse (a=35nm−1) 15.8 0.20
Hr-Ni repulsive 10-4 4.27 0.20
Cp-Ni Morse (a=35nm−1) 7.96 0.20
Op-Ni repulsive 10-4 1.00 0.25
Hp-Ni attractive 10-4 0.70 0.22
R-Ni repulsive 10-4 4.27 0.20

Table 8.2: Modeling of molecule-surface potential parameters. See figure 8.1 for the
corresponding structures and equations 3.12-3.13 for the potential functions used. The
’R’ covers all interactions with no specific interaction with the surface (unlabeled atoms
in figure 8.1). The difference between phenylalanine and tyrosine corresponds to the
difference in parameterization of benzene and phenol as shown in table 7.2 and figure 7.2.
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Figure 8.3: Justification of the atomistic modeling. Dots: optimal energy ((A) and (B))
and optimal distance ((C) and (D)) of zero-temperature quantum calculation optimized
structures. The numbers of the dots correspond to the numbered configurations in table
8.1. Solid line: average alanine-surface interaction energy ((A) and (B)) and site-surface
distance ((C) and (D)) obtained from a series of 3 ns constrained atomistic Langevin
thermostat simulations using the modeling parameters from figure 7.2 and table 8.2, in
vacuum at 300K. In the left column, for a given constrained distance of the amino N
(horizontal axis), the total interaction energy (A) or the average distance of the carbonylic
O (C) is shown on the vertical axis. In the right column, for a given constrained distance of
the carbonylic O (horizontal axis), the total interaction energy (B) or the average distance
of the amino N (D) is shown on the vertical axis. Configurations 1 and 2 are sampled by
the atomistic runs either correctly, or within a 0.05 nm distance. Configuration 3 (shown
by dots in open squares) has similar positions for O and N as configuration 1, but has
a lower interaction energy due to the position of the methyl group close to the surface.
Therefore, configuration 1 was the preferred configuration during the Langevin thermostat
MD sampling and the interaction energy of configuration 3 is not retrieved in the atomistic
sampling. As configuration 4 was non-bonding, it is not shown in this diagram.
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8 Modeling hydrated amino acids near metal surfaces

figure 8.3 requires additional clarification. There is a clear difference in the shape

of graphs (A) and (B), where in the case of (A) the potential seems to reach a

shoulder in its interaction energy of about -30 kJ/mol, at 0.6 nm. For (B), at a

similar distance, this shoulder reaches about -40 kJ/mol. This can be explained

as follows. In the case of (A), the strongest interacting site (N) is constrained at

the given z-distance, whereas the rest of the molecule is allowed to move freely.

When the N-site is located below 0.6 nm, the other interacting site (O) is able

to reach its site of maximum interaction at about 0.23 nm. This can be seen in

graph (C), where the carbonyl O distance remains constant at 0.23 nm for the range

of constrained amino N distances between about 0.24 and 0.6 nm. At this range,

the carbonyl oxygen will have a stable interaction with the surface, resulting in the

shoulder in interaction energy observed in (A). Below constrained amino N distances

of 0.24, the seesaw mechanism sets in, pushing carbonyl O away from its optimal

distance. The interpretation of the shoulder in the case if the constrained carbonyl

oxygen simulations (B) is similar, with the only difference that a stronger adsorption

energy can be reached when the amino N group will bind the surface for the range

of carbonyl O constrained between 0.24 and 0.6 nm.

8.2.2 Neutral Phenylalanine and Tyrosine

Phenylalanine and tyrosine can, in a building block manner, be constructed by com-

bining characteristics of the alanine and the benzene/phenol modeling. However,

the side-chain residue in phenylalanine and tyrosine were considered here to be of

a different nature than in alanine and discarded the Cαβ interaction site present in

the alanine model. Instead, as repulsive aliphatic hydrogen atoms proved to be a

necessary modeling element to prevent unphysical conformations with Cβ hydrogens

penetrating the surface, these were introduced (one on the Cα, two on the Cβ) as

virtual sites in the phenylalanine and tyrosine molecules. The terminology ’virtual’

sites is used because, apart from experiencing surface repulsion, they do not inter-

act with the solvent; in the GROMOS 43a1 force field[88] hydrogens connected to

aliphatic Cα and Cβ carbons are absorbed into united-atom potentials centered on

the carbon positions. Interactions of other atoms (e.g. solvent) with these aliphatic

CHn groups are described using these united atom potentials. Virtual sites in Gro-

macs are built from the coordinates of 2, 3, or 4 vicinal atoms; any forces on the

virtual sites are spread out over these atoms at the end of each time-step. The bond
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lengths and angular potentials of the virtual sites applied here were taken from the

all-atom OPLS force field[198]. In the resulting lowest energy conformation obtained

from Langevin thermostat simulations in vacuum, we found that, both, the amine

nitrogen and the phenyl ring could reach their positions of maximum interaction

energy, leading to a total interaction energy of -153 kJ/mol (-1.59 eV). This is dif-

ferent from the initial quantum calculation corresponding to a -106 kJ/mol (-1.1 eV)

binding conformation, where the amino and carboxyl group were chosen to point

away from the surface, to minimize surface contact of the aliphatic Cβ hydrogens[43].

Following the iterative multiscale modeling procedure introduced here, the lowest

energy Langevin thermostat conformation was analyzed in a consecutive quantum

calculation, and it was found to be a stable conformation -145 kJ/mol (-1.5 eV).

One aliphatic Cβ hydrogen is close to the surface, but can apparently find a stable

position within a hollow site of the surface. As the optimal interaction energy and

conformation found in Langevin thermostat runs was close enough to the optimal

conformation found by quantum calculations (within the ± 5-10 kJ/mol (≈ ± 0.05-

0.1 eV) error of the quantum calculation), no further optimization of the modeling

was needed. The final combination of atom-surface potentials is given in table 8.2

and figure 8.1.

8.3 Analysis of Surface Interactions at the Ni(111) /

H2O Interface

For benzene and phenol, an in-depth analysis of the surface interaction mechanism

can be made. In chapter 7 it was shown how the distance between the surface and

the geometrical center of the phenyl ring was a suitable order parameter to obtain

free energy and geometric information for the absorption process of benzene and

phenol.

Following the surface interaction mechanisms of hydrated amino-acids will be

more problematic, not only because of their low symmetry as compared to a benzene

ring, but also because of their many degrees of conformational freedom and various

interaction sites. Therefore, several order parameters to follow the process can be

chosen, all of which will however be interdependent: at any surface distance of

a given interaction site, all other interaction sites will contribute to the PMF at
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8 Modeling hydrated amino acids near metal surfaces

that particular distance. The PMF curves will be given below, but because their

interpretation is not straightforward, it will be more clarifying to analyze the free

energy difference between the bulk-hydrated state and a selection of states with

strong surface interaction, and a description of the interaction energies involved.

To better understand hydration effects the explicit solvent MD simulations will

be compared with the Langevin thermostat simulations of the amino acids in vacuum

that were performed during the modeling procedure. The total combination of

relative surface interaction energies for the various amino acids and comparisons of

surface interactions under solvated and non-solvated conditions, can give essential

information to understand the main chemical factors that determine metal surface

interaction of amino acids, and in this way facilitate the design of surface-binding

peptides.

8.3.1 Amino acids

To study surface-interacting amino acid conformations, we performed several MD

runs, in which a single interaction site-surface distance (order parameter) was con-

strained and a PMF as a function of that order parameter was obtained by inte-

grating the mean force from z = 3 nm backwards towards the surface. Using this

method, the distances with the minimal free energy were determined, as can be seen

in figure 8.4. Snapshots of corresponding conformations as well as the average en-

ergies and free energies (relative to z=3 nm) at these distances are shown in figures

8.5 and 8.6.

Comparison of the free energies in fig. 8.5(A) and 8.5(B) as well as fig. 8.6(A)

and 8.6(B) shows that, independent of whether the distance constraint is applied

on the oxygen or nitrogen, similar values are obtained, which is an indication that

sufficient sampling has been reached. The snapshots show that the amino acid

conformations in fig. 8.5(A) and fig. 8.5(B) as well as those in fig. 8.6(A) and fig.

8.6(B) are similar. The free energies for phenylalanine viewed from the amino N (fig.

8.6(A)) and carbonylic O (fig. 8.6(B)) pathways are lower than for the alanine cases

(about 9 kJ/mol). This is rather counterintuitive, as the bulky phenyl ring did not

contribute to the surface interaction energy for these paths, but its excluded volume

requires the displacement of more water molecules from the surface as compared

to alanine. An explanation could be that in the case of alanine, the small methyl
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Figure 8.4: PMF curves (solid black lines) and the cumulative error calculated from
bulk (z ≤ 3) to a given z (see also the caption of figure 7.7), as obtained for the three
constraint sites: Amino N, Carbonyl O, and Ring Center. For the Amino N and Carbonyl
O different energy landscapes are found, with optimal distances at different sites and a ≈
15 kJ/mol barrier in the case of Amino N. However, it is clear by comparing figure 8.6(A)
and 8.6(B) that in both cases a similar state is reached, with a same value for the free
energy minimum. The Ring Center constraint site has a profile related to the benzene and
phenol PMFs from figure 7.7, though has a unfavorable free energy at the local minimum
close to the surface.

group is able to come close to the surface thereby weakening the interaction of

amine and carbonyl groups. In contrast, the bulky phenyl group of phenylalanine

will not be able to pass the hydrations layers present at the surface, and binding

of the amine and carbonyl groups is free. Note, however, that these ∆G values

can change dramatically if another set of potentials is needed, for example when

studying alanine within a peptide chain. The values presented here should therefore
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−1−1
E   = −55.3 kJ mol−1

int E   = −61.0 kJ molint
−1

G=   −1.0 kJ mol     ± 6.0 kJ mol∆ −1∆G=   +0.1 kJ mol      ± 2.3 kJ mol−1

Ala, N constrained : 0.24 nm Ala, O constrained : 0.28 nm

(B)(A)

Figure 8.5: Snapshots of amino acids and parts of the surrounding water at the free
energy minimum distance of the constraint sites chosen, determined by the PMF method
as explained in the text. (A) Alanine, amino N constrained at z = 0.24 nm (B) Alanine,
carbonyl O constrained at z = 0.28 nm. Eint denotes the sum of interaction energies for all
solute interaction sites with the surface. ∆G denotes the free energy of surface interaction,
taken by the difference in the PMF between the distance given here, and the bulk state at
z = 3.0 nm. Error bars are calculated by calculating the block average error estimate[144]
for every constraint distance and taking the square root of the integral of the square of all
error estimates from bulk (z = 3.0 nm) towards the constraint distance mentioned here.
∆G for a given molecule is found to be independent of the interaction site chosen for the
distance constraint order parameter (N for (A) or O for (B)).

be only used as a relative indication to help understanding adsorption processes.

The large positive free energy obtained by displacing the phenyl ring in pheny-

lalanine towards the surface (fig 8.6(C)) requires additional comments. This confor-

mation has the lowest total solute-surface interaction energy of all structures that

interact with the surface studied here, but it is the least favorable from a free en-

ergy point of view (∆Gads = +32.6kJ/mol ± 19.8kJ/mol). A reasoning to explain

this observation would be to consider the fact that bringing the ring to the surface

requires a displacement of more water molecules than in all other cases. In figures

8.7, 8.8, and 8.9, the surface interaction energies for water, phenylalanine, and the

interaction sites of phenylalanine are plotted against the distance of a constraint

site used in the calculation. For the simulation with a constrained geometric center

of the phenyl ring, the contribution of water-surface interactions decreases over the

bulk-to-surface distance with about 140 kJ/mol (see figure 8.9), about 60 kJ/mol

more than for the other cases, where, instead of the phenyl ring, the O (figure 8.8),or
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Phe, ring constrained : 0.22 nm Phe, ring constrained : 0.22 nm  (LD run)
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Figure 8.6: Snapshots of phenylalanine and parts of the surrounding water at the free
energy minimum distance of the constraint sites chosen. All conditions as mentioned in
the caption of figure 8.5. (A) Phenylalanine, amino N constrained at z = 0.24 nm. (B)
Phenylalanine, carbonyl O constrained at z = 0.29 nm. (C) Phenylalanine, geometrical
center-of-ring constrained at 0.22 nm. (D) As in (E), but taken from an Langevin thermo-
stat MD simulation in vacuum. Also here, ∆G is virtually independent of the choice of the
order parameter, but by comparing (C) and (D) it becomes clear that ∆G is dramatically
dependent on the presence of water.

N (figure 8.7) interacts with the surface. One can get an impression of this solvent

effect when comparing the phenylalanine surface interaction in explicit solvent MD

(fig 8.6(C)) with Langevin thermostat runs in vacuum (fig 8.6(D)), where free en-

ergy minima were found at the same distance (geometrical center of the ring at

0.22 nm), and similar interaction energies (-134.7 kJ/mol in explicit solvent MD

and -137.8 kJ/mol in vacuum Langevin thermostat MD), but largely different free

energy values (+32.6 kJ/mol in explicit solvent MD vs. -93.3 kJ/mol in vacuum
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8 Modeling hydrated amino acids near metal surfaces

Langevin thermostat MD). Interestingly, in the ’water-free’ Langevin thermostat

MD simulation a minimal interaction energy of -152.9 kJ/mol at 0.20 nm can be

reached, whereas in the MD simulations the maximum interaction energy occurs at

the maximum free energy distance and amounts to -134.7 kJ/mol.

0.2 0.3 0.4 0.5 0.6 0.7
Distance to wall (nm)

-120

-100

-80

-60

-40

-20

0

20

In
te

ra
ct

io
n 

E
ne

rg
y 

(k
J/

m
ol

)

-3460

-3560

-3540

-3520

-3500

-3480

-3580

-3600

 W
ater Interaction (kJ/m

ol)

solute
water
amino n
amino o

Figure 8.7: Dependence of surface interaction energies (averaged over 3 ns simulations) of
phenylalanine and water on the amino nitrogen-surface z-distance at 300K. Shown are the
overall solute-surface interaction energy (blue line), the water-surface interaction energy
(green line, right vertical axis), carbonyl oxygen-surface interaction energy (red line) and
amino nitrogen-surface interaction energy (brown line). The interaction energy between
the phenyl ring and the surface was zero for all distances as the phenyl ring did not
approach the surface close enough to interact with it.a When going from bulk (z ≤ 3.0nm)
to z = 0.24 nm (see snapshot (A) in figure 8.6), the solute gains a 69.3 kJ/mol stabilization
of surface interaction energy, whereas the water-surface interaction energy is destabilized
over the same range by only 49.7 kJ/mol. In the range from about 0.3 Å to 0.4 Å, a strong
competition between carbonyl O-surface and water-surface adsorption can be observed.

By looking at the water- and solute-surface interaction energies in figure 8.9, it

is apparent that a competition between water and nitrogen is present: every increase

in solute-surface interaction energy is accompanied by a decrease of water-surface

interaction energy, and vice versa. The destabilization of water-surface interaction

energy never exceeds the gain in solvent-surface interaction energy, and the difference
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Figure 8.8: Dependence of surface interaction energies (averaged over 3 ns simulations)
of phenylalanine and water on the carbonyl oxygen-surface z-distance at 300K. Shown
are the overall solute-surface interaction energy (blue line), the water-surface interaction
energy (green line, right vertical axis), carbonyl oxygen-surface interaction energy (red
line) and amino nitrogen-surface interaction energy (brown line). The interaction energy
between the phenyl ring and the surface was zero for all distances as the phenyl ring did not
approach the surface close enough to interact with it. When going from bulk (z ≤ 3.0nm)
to z = 0.29 nm (see snapshot (B) in figure 8.6), the solute gains a 71.5 kJ/mol stabilization
of surface interaction energy, whereas the water-surface interaction energy is destabilized
over the same range by 60.3 kJ/mol. Interestingly, hardly any competing effects between
surface adsorbing groups in the solute and water-surface adsorption is seen, which might
explain the absence of a barrier for this constraint site in figure 8.4.

between those two is in the same order for all three sets of distance constrained runs.

Still, the absence of a -150 kJ/mol surface interaction state in the explicit solvent

MD run shows that in this competition the water interaction eventually overrides

the chance of an amino N having a maximum interaction with the surface. The

similarities in the surface interaction mechanism of phenol and benzene (fig 7.9)

indicates that the tyrosine-surface interaction is similar to that of phenylalanine.
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Figure 8.9: Dependence of surface interaction energies (averaged over 3 ns simulations)
of phenylalanine and water on the phenyl-ring-surface z-distance at 300K. Shown are the
overall solute-surface interaction energy (blue line), the water-surface interaction energy
(green line, right vertical axis), phenyl-ring-surface interaction energy (red line) and amino
nitrogen-surface interaction energy (brown line). Water is expelled as the ring approaches
the surface, causing a loss in water-surface interaction energy of approximately 140 kJ/mol
over the distance from 0.75 nm to 0.20 nm. Over the same distance the solute gains
a maximum of 134.7 kJ/mol at 0.22 nm (see snapshot (C) in figure 8.6), whereas the
water-surface interaction energy is destabilized over the same range by 125.5 kJ/mol.
The statistical noise in the water-surface and solute-surface interaction energy profiles is
correlated due to a competition of water and amino nitrogen binding. The large statistical
uncertainty (19.8 kJ/mol) in the free-energy calculation (snapshot (C) in figure 8.6)is due
to the noisy energy profile. The free energy barrier in figure 7.7 can be explained from
the water-surface and solute-surface interaction energies: for 0.35 nm < z < 0.6 nm the
water-surface interaction energy decreases and is not compensated by an increase of solute-
surface interaction energy.
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8.4 Discussion

To get a complete theoretical picture of peptide adsorption on metal surfaces, four

factors are necessary at the level of computer simulations. First, any molecule-metal

surface interaction has to be parameterized by quantum calculations and can not be

represented by generalized force-fields. Therefore, one of the goals of this chapter was

to develop an efficient methodology to obtain a correct parameterization. A second

factor is the competitive adsorption energies of the solvent and solute, where one

should take into account the number of solvent molecules that have to be displaced

by the solute[42, 199]. This implies that, as shown by the example of the phenyl and

the amino nitrogen binding, for two molecular groups with similar surface attraction

but different excluded volume, the smaller molecule will generally have a stronger

surface attraction. It has become apparent, however, that taking these competitive

effects alone does not provide the full description of the system, because it does not

properly account for solute hydration and the surface hydrophilicity[42]. This is the

third factor that should be taken into account: depending on surface hydrophilicity,

adsorbed water layers may exist close to the surface. Intrusion of these mutually

hydrogen bonded layers causes energy barriers for surface approach. Therefore,

explicit solvent (atomistic) simulations are necessary, using timescales long enough

to allow for solvent rearrangements. The fourth factor concerns the geometry and

orientation. Especially for longer molecules like polypeptides, many conformations

exist next to the surface and a correct sampling has to be performed to find all

possible surface-interacting conformations. Due to solvent effects, the outcome may

well be non-trivial.

The multiscale simulation approach presented here combines configurational and

chemical information needed for engineering surface-interacting peptides. The sim-

ulations provide insights in mechanisms of surface interactions in hydrated systems,

and can therefore directly be applied to support and explain observations in exper-

imental studies. Obviously, the approach described here requires extension. QM

calculations of the peptide group (CONH) and water interacting with Pt surfaces

are currently being performed by us. Future work on additional modeling of amino

acid residue interactions with this surface will result in a molecular construction set

opening the way to the modeling of a variety of peptide-surface systems.

Amino acid interactions with the nickel surface modeled in this work are trans-
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8 Modeling hydrated amino acids near metal surfaces

ferable to surfaces of different chemical composition. The surface interaction energies

of benzene and water can be ordered in a series with comparable energies for Ni, Pt,

Pd, and Rh[42]. Therefore, the mechanisms described here for nickel are likely to be

similar on Pt, Pd and Rh. Several preliminary generalizations comparing the current

modeling with experimental results can therefore be made. First of all, these simula-

tions explain why phenylalanine, albeit QM density functional calculations indicate

that it binds strongly to a metal surface (i.e. Ni, Pt, Pd), is not found within the

strong metal binders experimentally (see figures 2.1 and 2.2) [23, 38]. The strongest

binding configuration of a phenylalanine molecule in vacuo (the interacting aromatic

ring oriented parallel to the surface) is shown by us to correspond with a highly un-

favorable free energy in the presence of solvent. Although, in these simulations,

phenylalanine is a better binder than alanine (contrary to experimental findings

on oligo-peptides[23, 38]), one has to take into account that this was observed for

the single amino acid; we will at a later point extend the simulations to peptide

chains. Tyrosine is experimentally found to be a relatively strong binder among the

uncharged amino acids[23, 38]. Because the simulations excluded the planar-ring

conformation to bind to a hydrated surface, the most reasonable explanation will

be an interaction of the phenol hydroxyl group in tyrosine with the metal surface.

Due to electronic polarization effects, surface defects will contribute to this interac-

tion. Here it should also be kept in mind that in most experiments polycrystalline

noble metals are used,[23, 38] hence interactions with alternative crystal planes and

surface defects require attention in future calculations. QM density functional cal-

culations of the adsorption of water[44] and benzene[186] on metal surface defects

have already been performed recently.
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A multiscale methodology for biomolecule-metal surface interactions under aqueous

ambient conditions, based on an interplay of classical molecular dynamics simula-

tion with quantum calculations, has been introduced. Aside from the advantage of

large system size and long sampling times attainable in molecular dynamics sim-

ulation, it is shown that free energy methodologies can relate microscopic effects

as measurable in simulations to macroscopic effects that can be measured exper-

imentally. As a starting point, a validation of the benzene force field used was

performed by calculating benzene excess chemical potential, excess partial molar

enthalpy and entropy, as well as the hydration heat capacity change. A good overall

agreement with the corresponding experimental values was found. A more in-depth

study was then performed, comparing the hydration structure and thermodynamics

between a realistic benzene model capable of forming weak hydrogen bonds with

water and a non-realistic (van der Waals) benzene model incapable of accepting

H-bonds. Calculations were performed using an all-atom benzene model taken from

the GROMOS43a1 force field and the SPC water model. The hydration heat ca-

pacity of the van-der-Waals model was found to be larger than that of the realistic

model. This is as expected from classical hydrophobic hydration models, where the

water surrounding a hydrophobic solute will form a network that will minimize the

loss of hydrogen bonds, and therefore closely relates to pure water when it comes to

the amount of enthalpy that can be adsorbed by breaking hydrogen bonds.

The GROMOS43a1 model for hydrated, realistic, benzene was then used as an

initial solute for the study of biomolecular interaction with metal surface in aqueous

environments. This first required the formulations of a correct description of the

water-metal interaction. As the simulations done should represent ambient condi-

tions, special care was taken to make sure water described a liquid-like state both in

the quantum calculations and in the atomistic parameterization. Important consid-

erations for this were the ability to move freely at the surface and form instantaneous
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tetrahedrons as in the bulk environment.

In quantum calculations there is no unambiguous way to separate binding en-

ergies of parts of the system of interest. For the case of metal surface adsorption of

clusters of water molecules, this will lead to the problem that the adsorption energy

calculated includes both water-metal interactions and water-water hydrogen bonds.

This was addressed by considering only water clusters up to a trimer, where a sta-

ble reference state in absence of the surface could be found. This way, the direct

water-surface adsorption energy could be retrieved and the water-water interactions

could therefore treated fully independently from the water-surface interactions. The

hydrogen bonding energies in the modeling was taken into account by the atomistic

water model, initially only the 3-site SPC water model. However, to evaluate if the

atomistic parameterization on the atomistic water model used is model dependent, a

comparison was made with the same quantum-atomistic parameterization performed

on five rigid water models that are often used in simulation and parameterization

of biological systems. No significant differences for the adsorption behavior were

found, even between the 3-site models and the explicitly tetrahedral 5-site model.

The combination of first principles density functional calculations and classical

molecular dynamics simulations used in the water-surface modeling was then ap-

plied to study adsorption of hydrated benzene and phenol on Ni(111) and benzene

on Au(111) surfaces. As the quantum calculations indicated an overlap between ben-

zene π orbitals and delocalized electrons in the metal, and the distance-dependent

quantum data showed a steep decrease of the interaction energy within the first few

Å above the surface, a Morse potential was chosen to fit the weak bond-like be-

havior. Repulsive 10-4 potentials on the benzene hydrogens were added to improve

the dependency of the benzene-metal interaction on the benzene-surface inclina-

tion. interaction of benzene with metal surfaces. Snapshots of benzene, phenol, and

hydration water near the surface show that the water layering combined with the ge-

ometry of the molecule (a disc-like shape in the case of benzene), form an important

contribution to the total surface adsorption process. This mechanism could be elu-

cidated in even more detail by the calculation of surface inclination angle-distance

distributions of benzene and phenol. These calculations help to understand the

factors influencing thermodynamics and kinetics of adsorption processes, and it is

found that water-mediated effects form a significant contribution here. Indeed, by

comparing the benzene-metal and water-metal interaction for different metals it is
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found that the ratio of the surface binding strengths for solute and solvent will de-

termine if surface adsorption might be found or not. The inclusion of explicit water

is therefore a crucial part of the surface interaction modeling.

In the final part of this thesis, the multiscale methodology was extended into an

iterative modeling strategy where quantum calculations are used to determine pre-

cise interaction data and to verify the atomistic modeling results. On the atomistic

level simulations overcome energetic barriers and help finding global minima. After

consistency between the atomistic modeling and the quantum calculations has been

reached, the fast sampling obtainable with atomistic simulation is used to study ad-

sorption properties of biological molecules to metal surfaces in bulk water. Following

this approach, it is possible to model the optimal adsorption energy and orienta-

tions as attainable in quantum calculations for interactions of amino acids with

metal surfaces. By treating the water-solute and water-surface interactions present

in hydrated systems as pairwise additive, fully hydrated systems can be treated us-

ing the current methodology. These advancements are essential in approaching a

realistic modeling of experimental peptide-surface systems. As an application, the

multiscale modeling of hydrated phenol, alanine, phenylalanine and tyrosine has

been performed, and several adsorption properties (adsorption energy, free energy,

structural information) have been obtained. Despite that no unambiguous order

parameter related to the adsorption process for amino acids exists, the various or-

der parameters used here (surface-site distance for various molecular sites) provided

internally consistent results.

Additionally, several general conclusions concerning the chemistry of surface ad-

sorption can be drawn from the current study. Most importantly, it is found that

quantum-based binding energies alone do not suffice to understand thermodynamic

aspects of protein-surface interactions. Instead, one should account for the com-

peting effects of solvent and other adsorbing groups, which can be a source for free

energy barriers for surface approach. It is clear how molecular simulation can aid

the research of biomolecular adsorption on metals by coupling macroscopic effects

as adsorption free energy or adsorption kinetics, to microscopic phenomena, such

as the hydration effects shown here for benzene, or the structural and orientational

dependent interactions found for biomolecules at hydrated metal surfaces.

A next step will be the extension to describe larger, fully hydrated systems by

combining surface potentials of molecular fragments (’building blocks’), and com-
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bine these building blocks to construct a realistic (bio)molecule-surface system. This

will require additional parameterizations, but also the introduction of new method-

ologies. Most straightforward will be the parameterizations similar to the ones

performed here, to model solute-surface interactions for all amino acid side chains

and the backbone. Looking further than the alanine, phenylalanine, and tyrosine

presented here, it will be relatively straightforward to model the amino acids with

aliphatic side chains as glycine, valine, leucine, isoleucine, as the side chain will not

involve specific polar interactions with the surface that require additional modeling.

Initial quantum calculations for an amino acid with charged amino and carboxyl

end groups have already been performed[72], atomistic modeling schemes for those

groups will closely resemble the modeling of the charged-sidechain amino acids as-

partic acid, glutamic acid, and lysine. Already with this subset of amino acids it

will be possible to study basic surface adsorption effects, such as the experimentally

measurable relative up- and down-modulation for a given combination of amino

acids in a peptide[23, 38], or one could imagine creating small model-peptides with

features of secondary structure (e.g. alpha-helix or beta-sheet) and studying the

effect of the surface on the stability of the structure. A model for the peptide bond

is still needed though, and this will be the next point of attention in the multiscale

modeling project this thesis belongs to. Finally, apart from the readily attainable

modeling of the amino acids mentioned above, still various amino acids exist that

might be problematic to analyze in quantum calculations and atomistic modeling,

as for example the large tryptophan amino acid and histidine, which contains a

heterocyclic, aromatic, base.

The amino acid and peptide adsorption parameterizations will likely be done for

metals other than nickel. Gold is an option, but apart from the covalent thiol bind-

ing, solute-metal interactions were found to be low. More interesting information

from a modeling point of view is therefore expected for platinum or palladium sur-

faces, both of which are known surfaces in experimental work considering proteins

immobilized on metals. As experimental conditions often involve multi-crystalline

surfaces, parameterization of solute interaction with surfaces different from the (111)

metal plane is also wished for. This will require a more elaborate approach to the

modeling of the metal surface. Another extension to improve the metal surface

modeling will be the introduction of dispersion interactions, about which still only

little quantitative data is present.
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Finally, more scales will have to be added to the multiscale approach, where also

the biopolymer itself will be treated on different levels of detail, since it is impossible

to treat large scale conformational adjustments of the molecules close to the surface

on an all-atom basis. This will allow computer simulations for the size ranges at

which all the main interactions in biopolymer/surface systems take place, and direct

comparisons between experiments and simulations will be possible.
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