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Abstract
This paper carries out an analysis of the global properties of solutions of an in-host
model of hepatitis C for general values of its parameters. A previously unknown
stable steady state on the boundary of the positive orthant is exhibited. It is proved
that the model exhibits Hopf bifurcations and hence periodic solutions. A general
parametrization of positive steady states is given and it is determined when the number
of steady states is odd or even, according to the value of a certain basic reproductive
ratio. This implies, in particular, that when this reproductive ratio is greater than one
there always exists at least one positive steady state. A positive steady state which
bifurcates from an infection-free state when the reproductive ratio passes through one
is always stable, i.e. no backward bifurcation occurs in thismodel. The results obtained
are compared with those known for related models of viral infections.

Keywords Viral dynamics · Hepatitis C · Hopf bifurcations

1 Introduction

Hepatitis C is a major health problem on a global scale. This is illustrated by the
following facts [17]. There are 1.5 million infections per year. Of those infected 30%
recover after a fewmonths while the disease becomes chronic in the remaining 70% of
cases. The estimated number of people with chronic hepatitis C is 58 million. Chronic
infection leads in many cases to cirrhosis and liver cancer. In 2019 the number of
people who died from hepatitis C (mainly the long-term complications) was 290,000.
These numbers may be compared with those for hepatitis B, a disease due to an
unrelated virus which also affects the liver. In that case there are also 1.5 million
infections per year. The disease can become chronic, mainly in the case of childhood
infections. The estimated number of people with chronic hepatitis B is 296 million.
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As in the case of hepatitis C chronic infection leads in many cases to cirrhosis and
liver cancer. In 2019 the number of people who died from hepatitis B (mainly the
long-term complications) was 820,000. These numbers may be compared with those
for a viral infection better known to the general public, HIV/AIDS. In that case the
estimated number of infections per year is again 1.5 million. The disease always
becomes chronic. The estimated number of people infected with HIV is 37.7 million.
In 2020 the number of people who died from the effects of HIV was 680,000.

There is no effective vaccine against hepatitis C. However there are treatments with
direct-acting antivirals (DAA) which can cure most chronic cases. They do not suffer
from the very long treatment times and severe side effects of earlier treatments such
as interferon α and ribavirin. The availability of the new treatments has been limited
by their high costs. In the case of hepatitis B there is an effective vaccine but there is
no curative treatment. There are drugs which may help to reduce viral load and hence
long-term damage to the liver. In the case of HIV there is neither an effective vaccine
nor a curative treatment. There are drugs which can be used to maintain the virus load
on a low level on a long-term basis (highly active anti-retroviral therapy, HAART).
There is a great need to understand these diseases better and in doing so it may be
helpful to compare them with each other.

One way to attempt to better understand hepatitis C and its differences to other
diseases caused by viral infections is to use mathematical models of the evolution of
the disease within a host. The basic model of viral infection [12] is a system of three
ordinary differential equationswhere the unknowns are the numbers of uninfected cells
x , infected cells y and virus particles v. It can be used to model any viral infection and
any information about the difference between viruses must be contained in the choice
of parameters and initial data. The basicmodel was originally applied to HIV and there
are two aspects of it which may be inappropriate for modelling hepatitis C (infection
with HCV) and hepatitis B (infection with HBV). The first is that it includes a constant
source term in the evolution equation for uninfected cells. In the case of HIV the main
target cells of the virus are T cells and these can be replenished from production in
the bone marrow. In the case of HCV and HBV the target cells are the hepatocytes
of the liver and it is not clear that there is an external source for those. On the other
hand it has been suggested that blood cells coming from the bone marrow may be
transformed into hepatocytes [15] and to the authors’ knowledge this possibility has
not been ruled out. The second aspect of the basic model which is problematic for its
application to hepatitis is the fact that the infection rate is described by a mass action
term, i.e. one proportional to xv and this can lead to the conclusion that adults should
be more susceptible to hepatitis than children, something which is not seen in reality
[3]. This can be avoided by replacing mass action by the so-called standard incidence
function, which is proportional to xv

x+y . It has the mathematical inconvenience that this
expression is singular for x + y = 0.

In [11] a model for hepatitis C was introduced and some of the properties of its
solutions established. A central aim of what follows is to extend those results on the
dynamics of the model of [11]. Another aim is to better understand those results in
a wider context, both mathematical and biological. The model of [11] is a system of
five ODE which augments a modification of the basic model by a simple description
of virus production in the cell. The model for virus production comes from [4], where
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it was added to a previous model of hepatitis C introduced in [13]. The model of [11]
includes a constant source of uninfected cells and uses the standard incidence function.

The basic model has been extended in many directions, some of which are men-
tioned in what follows. One key issue is that of the role of the immune system in
the infection. The immune system is not included explicitly in the basic model. It
is included implicitly due the fact that the parameters describing the elimination of
infected cells andvirus particlesmay include contributions due to effects of the immune
system. This issue is important since the differences between the effects of HCV, HBV
and HIV probably have a lot to do with differences in the immune response. It is not
simple to identify these since the mechanisms involved may go beyond the most obvi-
ous candidates. For instance it is observed that in the initial phase of an infection with
hepatitis C the amount of virus reaches a maximum and decreases again. If this was
due to killing of infected cells an increase in liver enzymes should be seen. In fact no
such effect is observed. It is believed that the decrease of the virus in this phase is due
to the influence of natural killer cells (NK cells). However this influence takes place
not through the killing which gives NK cells their name but due to the fact that they
produce interferon γ [10]. In this context it should be noted that important features of
the dynamics of hepatitis C evolve on very different time scales, from a few days for
the acute infection to many years for the chronic infection. Thus it might be appro-
priate to use different models for different phases of the disease. In view of this the
strategy of the present paper is to understand the dynamics of the model without any
restrictions on the parameters other than their positivity. Restrictions on the parameters
which are appropriate for specific applications of the model and the restrictions on the
phenomenology which may result are left for future investigation.

In this paper we extend the analysis in [11] of the model introduced there. Section2
is concerned with basic properties of that model. Theorem 2 states that there are up to
three steady states E0, E ′

0 and E ′′
0 on the boundary of the positive orthant. The solution

E ′′
0 was not seen in [11] since it is not consistent with the stronger restrictions on the

parameters made in that paper. Theorem 3 shows, among other things, that there is
an open set of initial data leading to solutions which converge to E ′′

0 as t → ∞ and
that the study of the late-time behaviour of solutions which do not converge to either
E0 or E ′′

0 can be reduced to that of the late-time behaviour of a three-dimensional
system. In Sect. 3 the stability properties of the boundary steady states are studied by
linearization. In [11] a condition on the parameters in the system was found which
ensures that all solutions converge to steady states but the question whether this is true
for all values of the parameterswas left open. In Sect. 4we provide a negative answer to
this question by proving that there are parameter choices for which periodic solutions
exist. This is done with the help of Hopf bifurcations. In Sect. 5 a parametrization of
all steady states is given which extends one given in [11]. It follows that there are at
most three positive steady states for any choice of parameters. In many models related
to infectious diseases we have the situation that the number of positive steady states is
controlled by a basic reproductive number R0. It is zero for R0 ≤ 1 and one for R0 > 1.
For the model of [11] we are able to prove that for a certain quantityR′′

0 (see (17) for
its definition) the number of steady states is even for R′′

0 ≤ 1 and odd for R′′
0 > 1.

We were, however, not able to decide whether the number of positive steady states
is ever greater than the minimum consistent with this parity statement. One way in
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which a greater number of positive steady states might occur is through the occurrence
of a backward bifurcation from the infection-free steady state E ′

0, where an unstable
positive steady state arises [2, 8]. We show that this does not happen in the model
studied here. Instead there is a forward bifurcation where a stable positive steady state
arises. We also prove the existence of a stable steady state in a different region of
parameter space by a perturbation analysis of the limit where the source strength s
tends to zero. Section6 gives an outlook on possible future research directions.

2 Basic Properties of theModel

The following model for the dynamics of the infection of a host by the hepatitis C
virus (HCV) was introduced in [11].

dT

dt
= s + rT T

(
1 − T + I

Tmax

)
− dT − bT V

T + I
, (1)

d I

dt
= rI I

(
1 − T + I

Tmax

)
+ bT V

T + I
− δ I , (2)

dV

dt
= ρRI − cV − bT V

T + I
, (3)

dU

dt
= β R

(
1 − U

Umax

)
− γU , (4)

d R

dt
= α(1 − ε)U − σ R. (5)

In that paper several properties of the solutions of this model were determined. In what
follows these results will be extended and some features of solutions of this model
will be compared with those of solutions of related models.

In these equations T , I , V , U and R are functions of time t which are supposed
to be non-negative. All other quantities in these equations are positive constants and
ε < 1. U and R are the total amounts of certain types of RNA in the cells and they
give a representation of the replication machinery of HCV. T , I and V are the numbers
of uninfected cells, infected cells and virus particles outside the cells. Note that the
equations (4)–(5) form a closed system for U and R.

The right hand sides of (1)–(5) define smooth functions on the positive orthant
and thus local existence holds for the initial value problem with positive initial data.
These functions cannot all be extended continuously to the non-negative orthant and
so to go beyond local existence it is not enough to show that solutions are bounded on
any finite time interval. It is also necessary to show that a solution which is initially
positive cannot approach the singular set defined by T = I = 0. The following
theorem collects some results proved in [11] and extends them slightly by removing
some restrictions on the parameters.

Theorem 1 Let T0, I0, V0, U0, R0 be positive real numbers. Then there exists a unique
positive solution (T (t), I (t), V (t), U (t), R(t)) of (1)–(5) on the interval [0,∞) with
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T (0) = T0, I (0) = I0, V (0) = V0, U (0) = U0 and R(0) = R0. It is bounded and
there exists a constant C > 0 such that T + I ≥ C.

Proof In [11] it was proved that for any solution with positive initial data defined on
an interval [0, t1) with t1 finite or infinite there exists a constant C > 0 such that
T + I ≥ C . It was also proved in [11] that all solutions of the system considered in
that paper exist for all positive times and are bounded under the restrictions that d ≤ δ

and rI ≤ rT . In fact it is not hard to extend the proof given there to general positive
parameters. To do so let r1 = max{rT , rI } and d1 = min{d, δ}. Then

d(T + I )

dt
≤ s + r1(T + I )

(
1 − T + I

Tmax

)
− d1(T + I ).

This allows us to argue as in [11] to show that T + I is bounded and thus that the
whole solution is bounded. The bound of T + I by the quantity p0 introduced in [11]
is replaced by a bound in terms of the quantity obtained from p0 by replacing d by d1
and rT by r1. The definition of p0 is recalled in (6). Once the solution is known to be
bounded and remain away from the singular set it is straightforward to show that all
concentrations remain positive as long as the solution exists. ��

Note that it is essential for this result that s > 0. It was shown in [5] and [6] that for
somemodels related to the system (1)–(5) with s = 0 there are solutions which tend to
the origin as t → ∞. In fact it is also true, and simpler to prove, that there are solutions
of this type in the model of Guedj and Neumann [4]. There the origin is a steady state
and the linearization of the system about that point has a negative eigenvalue when
r < d. The analogues for the system of [4] of all statements in Theorem 1 other than
that concerning boundedness below by a positive constant hold and can be proved in
the same way.

In order to obtain insights into the dynamics of the model a useful first step is to
determine the boundary steady states, i.e. the non-negative steady states for which
at least one of the variables vanishes. Some information on these is collected in the
following theorem.

Theorem 2 For given values of the parameters, the system (1)–(5) has up to three
steady states on the boundary. Let

p0 =
⎛
⎝1 − d

rT
+

((
1 − d

rT

)2

+ 4s

rT Tmax

) 1
2
⎞
⎠ Tmax

2
. (6)

1. E0 = (p0, 0, 0, 0, 0) is a non-negative steady state.

2. Let U∗ = Umax

(
1 − 1

R′
0

)
and R∗ = Umax

γ
β
(R′

0 − 1), whereR′
0 = αβ(1−ε)

γ σ
. Then

ifR′
0 > 1 the point E ′

0 = (p0, 0, 0, U∗, R∗) is a non-negative steady state.
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3. If d > rT δ
rI

and s
rT Tmax

<
(
1 − δ

rI

) (
d
rT

− δ
rI

)
, let T ∗ = s

(
d − rT δ

rI

)−1
and

I ∗ = Tmax

(
1 − δ

rI
− s

rT Tmax

(
d

rT
− δ

rI

)−1
)

.

Then the point E ′′
0 = (T ∗, I ∗, 0, 0, 0) is a non-negative steady state. There are no

other non-negative steady states than those given in points 1.-3..

Proof For a non-negative steady state of (1)–(5) it follows from (1) that T is positive.
If V is positive then it follows from (3) that I and R are positive. It then follows from
(5) that U is positive and that we do not have a boundary steady state. Thus boundary
steady states of (1)–(5) satisfy V = 0. It then follows from (3) that at least one of
R and I must be zero. The case I = 0 was analysed completely in [11]. Under the
assumptions made on the parameters in [11] it was the only case. In that case T = p0
and only the steady states E0 and E ′

0 occur. (U
∗, R∗) is the unique positive steady state

of the sub-system (4)–(5). It remains to treat the case that I 
= 0, so that R = 0. Then
it follows that U = 0. As a consequence of (2) we have 1 − T +I

Tmax
= δ

rI
. Substituting

this back into (1) gives s =
(

d − rT δ
rI

)
T . If d ≤ rT δ

rI
this gives a contradiction.

Suppose then that d > rT δ
rI

. Solving for T we get the equation T = s
(

d − rT δ
rI

)−1
.

The evolution equation for I gives I = Tmax

(
1 − δ

rI
− T

Tmax

)
. Hence

I = Tmax

(
1 − δ

rI
− s

rT Tmax

(
d

rT
− δ

rI

)−1
)

.

It may be concluded that necessary and sufficient conditions for the existence of a

boundary steady state with I > 0 are d > rT δ
rI

and s
rT Tmax

<
(
1 − δ

rI

) (
d
rT

− δ
rI

)
.

When these conditions are satisfied we get explicit expressions for T and I and V =
R = U = 0. ��
Remark 1 In the model of [4] there exist boundary steady states corresponding to E0
and E ′

0 when d < r , with p0 replaced by 1− d
r . When r ≤ d the only boundary steady

states satisfy T = I = V = 0.

We recall some facts about the late time behaviour of solutions of (1)–(5) proved
in [11].

Theorem 3 Any solution of the system (1)–(5) with positive initial data belongs to one
of the following three cases.

1. The given solution converges to E0 as t → ∞.
2. The given solution converges to E ′′

0 as t → ∞.
3. The solution passing through any ω-limit point of the given solution is of the form
(T , I , V , U∗, R∗), where (T , I , V ) is a solution of the system (1)–(5) with R = R∗.
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Proof Given a positive solution of (1)–(5) we can consider a solution passing through
one of its ω-limit points. In the limiting solution R and U are constant while the other
unknowns satisfy the equations obtained from (1)–(3) by setting R equal to that given
value, either R = 0 or R = R∗. This was proved at the beginning of Section 5 of [11].
The proof is based on the facts that the evolution equations for R and U decouple
from those for T , I and V , that the resulting two-dimensional system is cooperative
on the region U ≤ Umax and, as shown in the proof of Theorem 2.5 of [11], each
solution is contained in this region for t sufficiently large. The ω-limit set of a given
solution is connected. Hence, for a given solution, R either converges to 0 or to R∗
for t → ∞. Consider first the case of the system (1)–(3) with R = 0. In that case V
is a Lyapunov function and V converges to zero for all solutions. Considering again
a solution passing through an ω-limit point leads to a solution of the system (1)–(2)
with V = 0. As remarked in [11] this system is competitive and so each solution
converges to a steady state. In [11] it was claimed that all points of this system with
T = 0 were steady states. This is not true. In fact on that boundary we have Ṫ = s > 0
and so no positive solution can approach a point of that boundary. On the boundary
I = 0 the unique steady state is given by T = p0. Under the assumptions made
on the parameters in [11] there did not exist an interior steady state. With the less
restrictive assumptions made here there is an interior steady state for certain choices
of parameters. It corresponds to the point E ′′

0 considered above. We can conclude that
any solution with the property that R → 0 for t → ∞ either converges to E0 or E ′′

0 .
The only remaining case is that where R does not tend to zero and then R → R∗ for
t → ∞ and the solution belongs to case 3. This completes the proof. ��

Under the assumptions made on the parameters in [11] only the first and third cases
listed in Theorem 3 occur. It will be seen in the next section that there are parameter
values for which the second case occurs. Theorem 3 implies that either a solution has
very simple asymptotics (case 1 or 2) or the analysis of its asymptotics can be reduced
to that of a solution of (1)–(3) with R = R∗. A similar statement holds for the model
defined by the equations (3) of [4]. Either a solution converges to E ′

0, it converges to
a steady state with T = I = V = 0 or its asymptotics are determined by those of a
solution of the equations (1) of [4].

The biological interpretation of the three boundary steady states will now be con-
sidered. The point E0 is a state where no viral RNA is present in the system. It gives a
representation of an individual who has never come into contact with hepatitis C. The
point E ′

0 is a state which is free of infectious virus and cells which produce that virus
but where the cells contain virus RNA in the form of replication units. These might
come from a previous infection of a given individual and would have an effect in the
event of a new infection. R′

0 > 1 is the condition for a new infection of this type to
be possible. The point E ′′

0 is a state in which a population of infected cells maintains
itself in the absence of free virus. Whether this can happen in an infected individual
is unclear.

3 Linearization

We now consider the linearization of the system (1)–(5) about an arbitrary steady state.
It has a block upper triangular form with the bottom left 2 × 3 submatrix being zero
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and so its eigenvalues are the union of those of the top left 3 × 3 submatrix and the
bottom right 2× 2 submatrix. The latter is the linearization of the system (4)–(5) and
is of the form [

− β R
Umax

− γ β
(
1 − U

Umax

)
α(1 − ε) −σ

]
. (7)

The former is the linearization of the system (1)–(3) and is of the form

⎡
⎢⎣

−a1 b1 − bT
T +I

a2 −b2
bT

T +I
− bI V

(T +I )2
ρR + bT V

(T +I )2
−c − bT

T +I

⎤
⎥⎦ (8)

where

a1 = d − rT + 2rT T

Tmax
+ rT I

Tmax
+ bI V

(T + I )2
,

a2 = − rI I

Tmax
+ bI V

(T + I )2
,

b1 = − rT T

Tmax
+ bT V

(T + I )2
,

b2 = δ − rI + rI T

Tmax
+ 2

rI I

Tmax
+ bT V

(T + I )2
.

Theorem 4 The eigenvalues of the linearization at the boundary steady states of the
system (1)–(5) have the following properties.

1. The number of eigenvalues at the point E0 which have positive real parts is equal

to the number of positive quantities among
(
1 − δ

rI

) (
d
rI

− δ
rT

)
− s

rT Tmax
andR′

0 − 1.

2. The point E ′
0 always has at least four eigenvalues with negative real part. The sign

of the remaining eigenvalue is equal to that ofR′′
0 − 1.

3. All eigenvalues of E ′′
0 have negative real part.

Proof It was shown in [11] that the eigenvalues of (7) at the origin have negative real
parts forR′

0 < 1 and that forR′
0 > 1 there is one positive and one negative eigenvalue.

It was also shown that the eigenvalues of (7) at the positive steady state always have
negative real parts.

If we evaluate the matrix (8) at the point E0 we see that the entries below the diag-
onal vanish so that the eigenvalues are just the diagonal elements. The third diagonal

element is obviously negative. The first is rT

[(
1 − d

rT

)
− 2p0

Tmax

]
, which is also neg-

ative. The sign of the second depends on the choice of parameters. Note that p0 is
a positive root of a quadratic polynomial p which has a positive leading term and is
negative at the origin. The eigenvalue has the same sign as the value of the polynomial

at the point Tmax

(
1 − δ

rI

)
. Hence it is negative precisely when

(
1 − δ

rI

)(
d

rT
− δ

rI

)
<

s

rT Tmax
. (9)
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This proves 1.
The signs of the real parts of the eigenvalues of the linearization at the point

(p0, 0, 0, R∗, U∗) were determined in [11] and this proves 2.
If we evaluate the matrix (8) at the point E ′′

0 we get

⎡
⎢⎢⎣

rT − d − rT (2T +I )
Tmax

− rT T
Tmax

− bT
T +I

− rI I
Tmax

rI − δ − rI (T +2I )
Tmax

bT
T +I

0 0 −c − bT
T +I

⎤
⎥⎥⎦ .

Evidently one eigenvalue is equal to −c − bT
T +I and the other two are given by the

eigenvalues of the upper left 2 × 2 submatrix. After some manipulation using the
expressions for T and I at the steady state it can be shown that the trace of this
submatrix is equal to −d + rT δ

rI
− rT T

Tmax
− rI I

Tmax
< 0. Its determinant is given by

rI I
Tmax

(
d − rT δ

rI

)
> 0. We conclude that all eigenvalues have negative real part. This

proves 3.. ��
Remark 2 It follows from 3. that E ′′

0 is a hyperbolic sink. In particular this implies that
there exist positive solutions which converge to E ′′

0 as t → ∞.

Remark 3 If the parameters are varied so that the quantities on the left and right hand
sides of (9) become equal then I tends to zero, which means that E0 and E ′′

0 approach
each other.

Remark 4 In the system of [4] the number of positive eigenvalues at the point E0 is
equal to the number of positive quantities among d

r −1 andR′
0. The stability properties

of E ′
0 are as in Theorem 4. The number of positive eigenvalues at one of the remaining

steady states is zero for R′
0 < 1 and one forR′

0 > 1.

Consider now the casewhere E ′′
0 does not exist. Then all solutionsmust approach E0

and this suggests that−b2 < 0. One case in which E ′′
0 does not exist is when d ≤ rT δ

rI
.

Then d
rT

≤ δ
rI
. We will show that this indeed implies that −b2 < 0. If d

rT
≥ 1 then

δ
rI

≥ 1 and −b2 < 0. If, on the other hand, d
rT

< 1 then p0 >
(
1 − d

rT

)
Tmax ≥(

1 − δ
rI

)
Tmax and again −b2 < 0. The other case where E ′′

0 does not exist is that

where d > rT δ
rI

and s
rT Tmax

≥
(
1 − δ

rI

) (
d
rT

− δ
rI

)
. It has been shown above that when

this inequality is strict −b2 < 0 while in the case of equality b2 = 0.

4 Oscillations

It has been known for a long time that in-host models of viral dynamics can exhibit
oscillations. This was seen numerically in a model for HIV in [14]. The model studied
in that paper has four unknowns, since it distinguishes between latently and produc-
tively infected cells. It uses mass-action kinetics for the process of infection. There
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are both a constant source and a logistic proliferation of uninfected cells. It was found
that for certain values of the parameters there are periodic solutions which arise in a
Hopf bifurcation. However these parameter values do not seem to be appropriate for
the concrete application considered in [14]. A version of this model without latently
infected cells was studied mathematically in [1]. It was proved that there exist stable
periodic solutions for certain values of the parameters. This model is similar to that of
[4] but not identical to it. The difference is that the expression T + I in the model of
[4] is replaced by T . This is essential for the proofs in [1] since they make use of the
fact that the system is three-dimensional and competitive.

In this section it will be proved that the system (1)–(5) possesses periodic solutions
and thus, in particular, that there are solutions which do not converge to a steady state
as t → ∞. In order to do this we start with the system obtained from (1)–(3) by setting
R = R∗, s = 0, d = 0 and rI = 0 and replacing the last term in (3) by − ηbT V

T +I with a
constant η. The result is

dT

dt
= rT T

(
1 − T + I

Tmax

)
− bT V

T + I
, (10)

d I

dt
= bT V

T + I
− δ I , (11)

dV

dt
= ρR∗ I − cV − ηbT V

T + I
. (12)

It is identical to a model studied in [5] except for an additional term in the last equation
which takes account of the absorption of virions by the cells they infect and the use
of a different notation. It coincides with the system of [5] in the case η = 0 while the
case η = 1 is that with absorption of virions. The equations are defined and smooth
except when T + I = 0. There are at most two steady states in the regular region
where T + I 
= 0. The first is a disease-free steady state with coordinates (p0, 0, 0).
Consider now the equations

T ∗ = Tmaxδ

rT

(
R1

R0
− 1

)
, (13)

I ∗ = Tmaxδ

rT

(
R1

R0
− 1

)
(R0 − 1), (14)

V ∗ = TmaxδρR∗ω
rT

(
R1

R0
− 1

)
(R0 − 1), (15)

where R0 = b
c

(
ρR∗

δ
− η

)
, R1 = rT +δ

δ
and ω =

(
c + ηb

R0

)−1
. When the expressions

on the right hand sides of these equations are all positive then they define a positive
steady state. Conversely, when a positive steady state exists it satisfies these equations.
These formulae generalize those given for the case η = 0 in [5]. We see that a
positive steady state exists precisely when 1 < R0 < R1. Let X = T ∗

T ∗+I ∗ . Then

X = R−1
0 = cδ

b(ρR∗−ηδ)
. If we let X− = (R1)

−1 = δ
rT +δ

then the values of X
corresponding to steady states lie in the interval (X−, 1).
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The linearization at the positive steady state is of the form

⎡
⎢⎢⎢⎢⎣

rT

(
1 − (R0+1)T ∗

Tmax

)
− bρR∗ω(R0−1)2

R2
0

− rT T ∗
Tmax

+ bρR∗ω(R0−1)
R2
0

− b
R0

bρR∗ω(R0−1)2

R2
0

− bρR∗ω(R0−1)
R2
0

− δ b
R0

− ηbρR∗ω(R0−1)2

R2
0

ρR∗ + ηbρR∗ω(R0−1)
R2
0

−c − ηb
R0

⎤
⎥⎥⎥⎥⎦ .

The eigenvalues are the roots of the characteristic polynomial λ3+a2λ2+a1λ+a0
where

a2 = c + δR1 + ηb

R0
,

a1 = 2δ2
(

R1

R0
− 1

)
(R0 − 1) + δ2

R2
0

(R0 − 1)2 − δrT

R0
(R0 − 1) + δc

(
R1

R0
− 1

)

+ηb2ρR∗ω(R0 − 1)

R2
0

+ ηδbR1

R2
0

,

a0 = δ2c(R0 − 1)

(
R1

R0
− 1

)
− ηδ2b(R0 − 1)

+ ηb

R0

[
δ2

(
R1

R0
− 1

)
+ δ(R0 − 1) + δbρR∗(R0 + 1)

R0

(
R1

R0
− 1

)]
.

Remark 5 Later we will be interested in the limit of these equations where b → 0,
b/c is constant and the parameters rT , Tmax, δ and ρR∗ are constant. In this limit R0
and R1 are constant while ω = O(b−1). If ai,0 denotes the values of these coefficients
when η = 0 then ai = ai,0 + O(b) for b → 0.

Lemma 1 There are parameter values for which the linearization of the system (10)–
(12) with η = 0 or η = 1 about the unique positive steady state has a pair of purely
imaginary eigenvalues and the remaining eigenvalue is negative.

Proof The proof uses the Routh–Hurwitz criterion. Both a2 and a0,0 are positive. It
can be ensured that a0 is positive by choosing b sufficiently small as described in
Remark 5. Note that if we start with parameters for which the condition R0 > 1
holds, this condition is maintained in this limiting procedure. In [5] two parameters
are introduced in order to understand the eigenvalues of the linearization at the point
(T ∗, I ∗, V ∗). Calling the first of these parameters δ̂ instead of δ to avoid a conflict
between the notation of [5] and that of the present paper the parameters are given by

δ̂ =
[
δ2

(
R1

R0
− 1

)
+ δ2

R2
0

− δrT

R0

]
(R0 − 1) + δc

(
R1

R0
− 1

)
,

σ = −δ2(R1 − R0)(R0 − 1)

R0
.
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To apply the Routh–Hurwitz criterion we must consider the quantity

a2a1 − a0 =
(

c + δ
R1

R0

)
δ̂ + δ2

(
c + δ

R1

R0

) (
R1

R0
− 1

)
(R0 − 1) + ηξ

where ξ = O(b). As observed in [5] in the case η = 0 the linearization has a pair of
purely imaginary eigenvalues precisely when δ̂ = σ . In the general case the condition
for imaginary eigenvalues is modified to

δ̂ + ηξ
R2
0

cR0 + δR1
= σ. (16)

Now we prove that in the case η = 0 there are parameters for which the condition
δ̂ = σ is satisfied.We note that no proof of this fact was given in [5] or in the later more
general paper [6]. Consider fixed positive values of the parameters δ, rT and c. Then
R1 is also fixed.We can vary R0 freely in the interval (1, R1), for instance by varying ρ

between δc
bR∗ and

(δ+rT )c
bR∗ while keeping the other parameters fixed.We think of δ̂ and σ

as functions of R0. The quantityσ is zero for R0 at both ends of the interval and negative

in between. Now δ̂(1) = δ2 + crT > 0 and δ̂(R1) = δ2r2T
(δ+rT )2

[(
δ

rT

)2 −
(

δ
rT

)
− 1

]
.

For suitable values of rT and δ, for instance with rT = δ, δ̂(R1) < 0 and so by the
intermediate value theorem there is a value of R0 for which δ̂ = σ . Consider now
the case η = 1. R0 can be varied between 1 and R1 by varying ρ between δc

bR∗ + 1

and (δ+rT )c
bR∗ + 1. If b is sufficiently small the quantity on the left hand side of (16) is

positive for R0 = 1 and negative for R0 = R1. The expressions for δ̂(1) and δ̂(R1)

are as in the case η = 0 and so in the case η = 1 (16) is satisfied at some point. ��
Remark 6 In [5] it is shown numerically that in the case η = 0 there is a Hopf bifur-
cation at points in parameter space where the condition δ̂ = σ is satisfied and that
periodic solutions arise. No analytical proof of the existence of a Hopf bifurcation is
given in [5].

Theorem 5 There are parameter values for which the system (10)–(12) with η = 0 or
η = 1 has Hopf bifurcations and therefore periodic solutions.

Proof In order to prove that a Hopf bifurcation occurs it remains to show that the
eigenvalues which lie on the imaginary axis at the bifurcation point cross the axis with
non-zero velocity as a suitable parameter is varied [7]. Assuming the existence of the
bifurcation point this crossing condition has been verified for the model with η = 0
in [6]. We give a new proof that this condition is satisfied for the model with η = 0.
The advantage of the new argument is that we were able to extend it to treat the case
η = 1. It follows from a result of [9] that in order to verify the crossing condition it is
enough to show that the Hurwitz coefficient a2a1 − a0 passes through zero with non-
zero velocity. To achieve this in the case η = 0 we need a curve ζ(u) in the space of
parameters (rT , Tmax, b, δ, ρR∗, c), passing through the bifurcation point for u = 0,
which satisfies ∇(δ̂ − σ) · ζ ′(0) 
= 0. Curves of this kind exist when the gradient of
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δ̂ − σ at the bifurcation point is non-zero. To show that this holds we can again fix the
parameters δ, rT and c and vary R0 freely. We have

d δ̂

d R0
= 1

R2
0

[−δ2 − c(δ + rT )] − 2δ2

R3
0

,

dσ

d R0
= δ2

(
1 − 1

R2
0

)
.

Hence
d(δ̂ − σ)

d R0
= −δ2 − c(δ + rT )

R2
0

− 2δ2

R3
0

< 0.

It follows that the condition on the gradient is always satisfied. In the case η = 1

we can argue similarly. For b small the gradient of δ̂ − σ + ηξ
R2
0

cR0+δR1
may not be

non-zero everywhere but it will be non-zero somewhere. Since it has now been proved
that the system admits Hopf bifurcations, both for η = 0 and η = 1, it follows that
in both cases there are parameters for which it admits non-constant periodic solutions
[7]. ��

This result can be used to prove that the system of five equations describing the
in-host dynamics of hepatitis C studied in [11] admits Hopf bifurcations and hence
periodic solutions for certain values of its parameters. Consider first the system (1.3a)–
(1.3c) of [11]. Setting the parameters s, d and rI in that system to zero gives, up
to differences in notation, exactly the system (10)–(12) with η = 1. To avoid any
confusion we note that, even after allowing for the differences in notation for the basic
quantities, the basic reproductive ratio R0 given above for the case η = 1 is different
from the quantityR′′

0 used in [11]. In fact, as explained in [16], there are choices which
can be made in defining R0 so that this quantity is not unique. What is independent
of these choices are the relations R0 < 1, R0 = 1 and R0 > 1. That this is true for
the choices of R0 made in [5] and [11] can easily be checked directly - in the notation
used above R′′

0 = bρR∗
(b+c)δ .

It will now be shown that the system (1.3a)–(1.3c) of [11] inherits the Hopf bifur-
cations and hence the periodic solutions from the system (10)–(12) with η = 1. To do
this we use the following result.

Lemma 2 Let f : U × (−ε, ε)k+1 → R
n, (x, α0, . . . , αk) �→ f (x, α0, . . . , αk) be

a C1 mapping, where U is an open subset of Rn. Suppose that f (0, 0, . . . , 0) = 0,
that the parameter-dependent system ẋ = f (x, α0, 0, . . . , 0) has a Hopf bifurcation
at (0, 0, . . . , 0) and that no more than two eigenvalues of Dx f (0, 0, . . . , 0) lie on
the imaginary axis. Then for sufficiently small fixed values of (α1, . . . , αk) the system
ẋ = f (x, α0, α1, . . . , αk) has a Hopf bifurcation at (x∗, 0) for some x∗(α1, . . . , αk)

close to zero.

Proof Denote the derivative Dx f by A. Then by assumption A(0, 0, . . . , 0) has a pair
of purely imaginary eigenvalues and all other eigenvalues lie off the imaginary axis.
Let λ∗ be one of the imaginary eigenvalues. Because of the smooth dependence of
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simple eigenvalues on the matrix there is a C1 function λ(α0, α1, . . . , αk) defined on
a neighbourhood of the origin with λ(0, . . . , 0) = λ∗. By the definition of a Hopf
bifurcation ∂

∂α0
(Re λ) 
= 0 at the bifurcation point. Hence for fixed (α1, . . . , αk) in a

small neighbourhood of the origin in R
k the quantity Im λ has one sign for α0 small

and positive and the other sign for α0 small and negative. By the implicit function
theorem the curve λ(α0, α1, . . . αk) for (α1, . . . , αk) fixed and sufficiently small also
passes through the imaginary axis for some α0 where its derivative is non-zero. Thus
a Hopf bifurcation occurs at that point. ��
Theorem 6 There are parameter values for which the system (1)–(5) has Hopf bifur-
cations and therefore periodic solutions.

Proof The system obtained from (1.3a)–(1.3c) of [11] by setting s, d and rI to zero
admits a Hopf bifurcation depending on the parameter ρ. Now Lemma 2 will be used
to show that there are also Hopf bifurcations in the system with s, d and rI small and
positive. It suffices to choose α0 = ρ, α1 = s, α2 = d and α3 = rI . This proves that
(1.3a)–(1.3c) of [11] admits a Hopf bifurcation. For a suitable choice of parameters
augmenting a periodic solution of (1.3a)–(1.3c) of [11] by the constants (U∗, R∗)
gives a periodic solution of the full system (1.3a)–(1.3e) of that paper. ��

In [6] the authors considered a system which corresponds to that obtained from
(1.3a)–(1.3c) of [11] by setting d = s = η = 0, system (14)–(16) of [6]. Lemma 2
can be used as above to prove that that system has Hopf bifurcations for small values
of the parameter ρ in that system, which corresponds to rI in our notation. In [6] it
was suggested that there are Hopf bifurcations in that case on the basis of computer
calculations.

The proofs above give us no information about the stability of the periodic solutions
arising. The following simulation indicates that there exist sustained oscillations. It
corresponds to the parameter values s = 10; d = 10−5; rT = 0.99; rI = 10−3;
Tmax = 10 × 108; b = 0.0014; δ = 0.0693; c = 0.693; ρ = 21.5; α = 50;
β = 15; ε = 0.5; σ = 30; Umax = 30; γ = 5 and initial data (T0, I0, V0, U0, V0) =
(1000, 500, 4, 15, 20).

5 Positive Steady States and Their Stability

In [11] it was left open how many positive steady states the system (1.3a)–(1.3c) of
that paper has. It was proved that there are at most three. However it was not decided
whether there can be more than one or whether there must be at least one when the
quantity R′′

0 introduced in [11] is greater than one (Fig. 1). An expression for this
quantity in the notation used above is

R′′
0 = bρR∗

(b + c)(δ − rI (1 − p0
Tmax

))
, (17)

where p0 is the quantity defined in (6). The expression for R′′
0 in (17) can be

obtained from the calculation of the basic reproductive number presented in [16]
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Fig. 1 The time histories and the phase trajectory of system (1)–(5) after Hopf bifurcation occurs for the
above parameter values such that the composite basic reproductive numberR′′

0 = 25.0270 and intracellular
basic reproductive numberR′

0 = 2.5
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when its denominator is positive. Otherwise it cannot since condition (A5) of that

paper fails to be satisfied. Note that δ − rI

(
1 − p0

Tmax

)
≥ δ

(
1 − max

{
rI d
rT δ

, rI
δ

})
.

Thus sufficient conditions to ensure that the denominator is positive are that rI < δ

(maximum proliferation rate of infected cells is less than their death rate) and rT > d
(proliferation rate of uninfected cells is greater than their death rate). Alternatively to
the second condition we can assume that rT ≥ rI (infected cells proliferate slower
than uninfected ones) and d ≤ δ (infected cells die faster than uninfected ones). These
conditions have simple biological interpretations. It is not clear that they must hold
in all biologically interesting situations. It is, for instance, conceivable that it is of
evolutionary advantage for the virus to cause the cells it infects to proliferate faster
than they would otherwise do.

Lemma 3 (i) When ρR∗ + rI − δ ≤ 0 the system (1)–(3) has no positive steady states.
(ii) When ρR∗ + rI − δ > 0 there is a one-to-one correspondence between positive
steady states of the system and roots of a polynomial p in the interval (X−, 1) where

X− = max
{
0, X̂

}
and X̂ = c(δ−rI )

b(ρR∗+rI −δ)
. In the case X− ≥ 1 this is to be interpreted

as the statement that there are no positive steady states.

Proof Consider a steady state (T ∗, I ∗, V ∗) of the system (1)–(3) with R = R∗. We
use the variable X introduced in the last section. In general this leads to the equations

s + rT T ∗
(
1 − T ∗

TmaxX

)
− dT ∗ − bV ∗ X = 0, (18)

rI I ∗
(
1 − T ∗

TmaxX

)
+ bV ∗ X − δ I ∗ = 0, (19)

ρR∗ I ∗ − cV ∗ − bV ∗ X = 0. (20)

A given steady state defines a value of X in the interval (0, 1). Suppose that conversely
X is given andwe look for a steady state giving rise to it. Equation (20) can be rewritten
as

V ∗ = ρR∗ I ∗

c + bX
. (21)

Substituting this into (19) and cancelling a factor I ∗ gives

rI

(
1 − T ∗

TmaxX

)
+ bρR∗ X

c + bX
− δ = 0.

Hence

T ∗ = TmaxX [b(ρR∗ + rI − δ)X + c(rI − δ)]
rI (c + bX)

. (22)

If ρR∗ +rI −δ were not positive then rI −δ would be negative and this relation could
not hold for a positive steady state. In other words ρR∗ + rI − δ > 0 is a necessary
condition for the existence of a positive steady state. This completes the proof of part
(i) of the lemma.
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If rI ≥ δ then the expression (22) for T ∗ is positive. If, on the other hand rI < δ

then it is necessary to impose the restriction X > X̂ . When T ∗ has been calculated in
terms of X it is possible to determine I ∗ = T ∗(1−X)

X and V ∗. This shows that there is at
most one steady state consistent with a given value of X . The quantities (T ∗, I ∗, V ∗)
defined in terms of X in this way define steady state solutions of equations (2) and
(3). Substituting these equations into (18) and multiplying the result by r2I (c + bX)2

gives

sr2I (c + bX)2 + rT TmaxX [b(ρR∗ + rI − δ)X + c(rI − δ)][−b(ρR∗ − δ)X + cδ]
+rI TmaxX [b(ρR∗ + rI − δ)X + c(rI − δ)][b(ρR∗ − d)X − dc − bρR∗] = 0.

Alternatively we can write this equation in the form

sr2I (c + bX)2 + TmaxX [b(ρR∗ + rI − δ)X + c(rI − δ)]
×[b((δrT − drI ) − ρR∗(rT − rI ))X + c(δrT − drI ) − bρR∗rI )] = 0.

(23)

We can also write it in the form p(X) = ∑3
i=0 bi Xi = 0 where

b3 = Tmaxb2(ρR∗ + rI − δ)[(δ − ρR∗)rT − (d − ρR∗)rI )],
b2 = sr2I b2 + Tmaxβ[(ρR∗ + rI − δ)(rT cδ − rI (dc + bρR∗))

+(rI − δ)c((δ − ρR∗)rT − (d − ρR∗)rI )],
b1 = 2sr2I bcTmax + (rI − δ)c[rT cδ − rI (dc + bρR∗)],
b0 = sr2I c2.

This is the polynomial p mentioned in the statement of the lemma. Suppose now that
X ∈ (X−, 1) satisfies p(X) = 0. Then it is possible to define corresponding positive
quantities (T ∗, I ∗, V ∗) as above and they satisfy (2) and (3). Now divide the equation
p(X) = 0 by r2I (c + X)2. Using (2) and (3) we can write the expressions depending
on X in the resulting equation in terms of T ∗ and V ∗. This shows that (1) holds.
Thus (T ∗, I ∗, V ∗) is a positive steady state. It has now been shown that provided
ρR∗ +rI − δ > 0 there is a one-to-one correspondence between positive steady states
and roots of the polynomial p in the interval (X−, 1). This is part (ii) of the lemma. ��

It turns out that a root of the polynomial p can only lie outside the region where it
corresponds to a steady state ifR′′

0 < 1.

Lemma 4 If ρR∗ + rI − δ ≤ 0 or X− ≥ 1 then R′′
0 < 1.

Proof When ρR∗ + rI − δ ≤ 0 it follows that ρR∗ ≤ δ − rI and, in particular, that
δ − rI > 0. It can be concluded that

R′′
0 = bρR∗

(b + c)
(
δ − rI + p0rI

Tmax

) ≤ b(δ − rI )

(b + c)
(
δ − rI + p0rI

Tmax

) < 1.
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When ρR∗ + rI − δ > 0 and X− ≥ 1 it follows that bρR∗ ≤ (b + c)(δ − rI ). Thus

R′′
0 = bρR∗

(b + c)
(
δ − rI + p0rI

Tmax

) ≤ (b + c)(δ − rI )

(b + c)
(
δ − rI + p0rI

Tmax

) < 1.

��
It is possible to get some information about the number and stability of positive

steady states. First we compare with the model of [6] which can be obtained from our
model by setting d = s = η = 0. In that case for general values of the parameters
there are up to three boundary steady states. We concentrate on the boundary steady
state called Ei in [6]. Its existence corresponds to the fact that p(X) has a factor X

when s = 0. Its coordinates are
(
0, Tmax(rI −δ)

rI
,

ρR∗Tmax(rI −δ)
rI c

)
. It evidently exists as a

non-negative steady state which is not at the origin precisely when rI > δ. In this case
X− = 0. It is always the case that at least two of the eigenvalues of the linearization
about that point are negative. The third has the sign opposite to that ofR′′

0 − rT
rI
. Thus

if R′′
0 > rT

rI
it is asymptotically stable. Note that in this case R′′

0 = bρR∗
ca . Next we

perturb the system of [6] by making s slightly positive.

Theorem 7 Suppose that rI > δ. If R′′
0 > rT

rI
then for sufficiently small values of d

and s with the other parameters fixed the system (1)–(3) has a positive steady state

Êi close to
(
0, Tmax(rI −δ)

rI
,

ρR∗Tmax(rI −δ)
rI c

)
. If R′′

0 < rT
rI

no such steady state exists.

An analogous result holds for the system obtained from (1)–(3) by omitting the term
− bT V

V +I . In that case Êi is asymptotically stable.

Proof By the implicit function theorem the perturbed system has precisely one steady
state close to Ei when s is small enough. It cannot be on the plane I = 0 when s 
= 0.
Consider the case where Ei is asymptotically stable. Call the perturbed steady state
Êi . By continuity there is an ε > 0 such that each solution which starts in Bε(Êi )

converges to Êi . When the perturbation is small enough this ball will intersect the
plane I = 0. Thus there is a solution which starts on that plane and converges to
Êi . When the perturbation and ε are small enough İ is positive on that ball. Hence
Êi lies in the positive octant and is asymptotically stable. If d is increased a little
from zero this solution continues to exist and be asymptotically stable. We can also
obtain a corresponding solution in the case η = 1 by the following trick. We consider
the system obtained from (1)–(3) by replacing the term bT V

T +I by ηbT V
T +I . A simple

perturbation argument gives a positive steady state of the system where η is a small
positive constant. We can go from there to a steady state with η = 1 by scaling η, ρ
and c by the same factor, since this scaling leaves the set of steady states invariant.
Note, however, that it is not clear that this scaling preserves the stability of the steady
state. Note that in the case where Ei is not asymptotically stable there does not exist a
positive steady state Êi . To see this consider now the case where Ei is a saddle. Then
there are points on its unstable manifold arbitrarily close to Ei for which T becomes
negative. After a sufficiently small perturbation this will still be the case. If Êi satisfied
the condition T > 0 then this would give a contradiction since it would mean that a
solution initially in the positive octant leaves the positive region. ��
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In some cases positive steady states can be obtained from steady states on the
boundary by a perturbation analysis, sometimes associated with the term ’backward
bifurcation’. The setting is one where the boundary steady state to be perturbed is such
that the reproductive ratio R0 is equal to one. Under a perturbation of the parameters
this point remains a steady state but R0 varies. In some well-known simple cases a
positive steady state near the boundary steady state exists for R0 > 1 and it is stable.
In other cases a positive steady state exists for R0 < 1 and is unstable. The latter
case has been called a backward bifurcation. This is because the positive steady state
arises when moving to smaller values of R0 (backwards) rather than (as in the most
familiar case) when moving to larger values of R0 (forwards). An example where this
occurs is an in-host model for HIV studied in [8]. There it is proved that there is a
backward bifurcation and it is proved that for R0 slightly less than one there are two
positive steady states, one of which is stable and one unstable. That model includes a
description of therapy appropriate for a reverse transcriptase inhibitor. Mathematically
this means that the coefficient of the infection term in the evolution equation for I is
less than that in the evolution equation for T . In that model mass action kinetics is
assumed for the infection and absorption of the virus is not included.

To investigate which of these phenomena occur in our model we follow the analysis
of [16]. This will be done for the boundary steady state E ′

0 where the corresponding
reproductive ratio isR′′

0. We now want to vary a parameter which leaves E ′
0 invariant

but changesR′′
0. This suggests leaving d, rT , s and Tmax unchangedwhile varying δ, rI ,

b,ρ or c. The next step in the analysis is tofind left and right eigenvectors corresponding
to the eigenvalue zero. The vector with components (−a12(b + c) − bρR∗, a11(b +
c), a11ρR∗) is in the right kernel while that with components (0, b + c, b) is in the
left kernel. The other two eigenvalues are negative. We would now like to compute
the quantities a and b defined in Section 5 of [16]. As explained there it is enough to
know a subset of the second derivatives of the right hand sides in order to do this. In
the terminology of [16] we choose I and V to be the infected variables and the term
containing b as the only one which contributes to the matrix F . Denote the right hand
sides of the evolution equations for y and v by f2 and f3. Then the relevant second
derivatives are the following derivatives of f2 and f3.

∂2 f2
∂ I 2

= − 2rI

Tmax
+ 2bV T

(I + T )3
,

∂2 f2
∂ I∂V

= − β I

(I + T )2
,

∂2 f2
∂V 2 = 0,

∂2 f3
∂ I 2

= − 2bV T

(I + T )3
,

∂2 f3
∂ I∂V

= bT

(I + T )2
,

∂2 f3
∂V 2 = 0,

∂2 f2
∂T ∂ I

= − rI

Tmax
+ bV (T − I )

(I + T )3
,

∂2 f2
∂T ∂V

= bI

(I + T )2
,

∂2 f3
∂T ∂ I

= −bV (T − I )

(I + T )3
,

∂2 f3
∂T ∂V

= − bI

(I + T )2
.

These derivatives should be evaluated at the disease-free steady state which means in
particular that it is possible to set I = 0 and V = 0, which implies that I + T = T . In
the present case the matrix with components αlk introduced in [16] has components
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(0, ρR∗
b+c ).We now have all the elements necessary to compute the quantity a introduced

in [16] to characterize backward bifurcations, which we denote by aV W .

aV W = a2
11(b + c)

[
− rI

Tmax
(b + c)2 − bρR∗c

I

]

+a11b(ρR∗)2cI

(b + c)I 2
[−a12(b + c) − bρR∗] .

This calculation shows that aV W is always negative and thus that no backward bifurca-
tion occurs in this system. To show that there is a forward bifurcation it remains only to
show that the bifurcation parameter can be chosen so that the quantity b in [16], call it
bV W , is non-zero. A suitable choice of bifurcation parameter is ρ −ρ0, where ρ0 is the
value ofρ corresponding toR′′

0 = 1. In that case bV W = a11(b+c)ρR∗ > 0. It follows
from Theorem 4 of [16] that for γ slightly larger than γ0 there is an asymptotically
stable positive steady state close to the bifurcation point. What is more interesting than
the fact that a forward bifurcation occurs here is the fact that no backward bifurcation
occurs.

We now study the way in which the number of steady states changes when the
parameters are varied.

Lemma 5 Consider a sequence of positive parameters with ρn R∗
n + (rI )n − δn > 0

for all n converging to a limit and a sequence Xn ∈ ((X−)n, 1) of roots of p for these
parameter values converging to some limit X∗. Suppose that ρn R∗

n + (rI )n − δn does
not tend to zero as n → ∞ and that R′′

0 does not tend to one along the sequence.
Then X∗ is not equal to the value X∗− of X− corresponding to the limiting parameter
values or to one.

Proof Suppose first that Xn tends to X∗−. Then p(X∗−) = 0 for the limiting parameters,
contradicting (23). Next suppose that Xn tends to one. For each n there is a steady
state (Tn, In, Vn) corresponding to Xn and since ρR∗ + rI − δ remains positive in
the limit there is also a corresponding non-negative steady state (T ∗, I ∗, V ∗). In fact,
since I = (1−X)T

X , V ∗ = I ∗ = 0 and thus this steady state is E ′
0. It follows that along

the sequence two steady states approach each other and that the linearization at the
limiting steady state must have zero as an eigenvalue. This implies that R′′

0 tends to
one, contradicting the assumptions of the lemma. ��
Theorem 8 If ρR∗ + rI − δ > 0 the number of positive steady states of the system
(10)–(12) with η = 1 is even for R′′

0 ≤ 1 and odd for R′′
0 > 1. In particular, there

always exists at least one positive steady state in the latter case.

Proof Call the given parameter set z0 and suppose that for that parameter set ρ =
ρ0. Consider a family z(u), u ∈ [0, 1], with z(0) = z0 obtained from z by setting
ρ(u) = (1 − u)ρ0 + uρ1 and leaving the other parameters unchanged. Choose ρ1 so
that R′′

0 = 1 for u = 1. Consider first the case R′′
0 < 1. Then within the parameter

family ρ is an increasing function of U and ρR∗ + rI − δ does not approach zero. It
follows from Lemma 5 that the roots of p, which vary continuously with u, cannot
approach the endpoints of the interval for u < 1. Hence the parity of the number of
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positive steady states is independent of ρ forR′′
0 < 1. Consider next the caseR′′

0 > 1.
If ρR∗ + rI − δ approached zero for some u < 1 then R′′

0 would become less than
one as a consequence of Lemma 4, in contradiction to the definition of the family. We
can then argue as before to see that the parity of the number of positive steady states
is independent of ρ for R′′

0 > 1. We have seen what happens when R′′
0 is perturbed

a little in the discussion of backward bifurcations. For R′′
0 slightly less than one the

number of roots does not change while for R′′
0 slightly greater than one it increases

by one. Thus the parity changes whenR′′
0 passes through one. It remains to determine

the parity of the number of positive steady states forR′′
0 = 1. In that case p(X−) > 0

and p(1) = 0. Thus the parity of the number of roots in the interval of interest is even.
��

6 Summary and Outlook

In [11] an in-host model for hepatitis C was introduced and some properties of its
solutions were determined. At the same time a variety of questions concerning this
model were left open. In the present paper we obtain some answers to these questions.
In [11] a restriction on the parameters was identified which implies that every solution
converges to a steady state. It is shown here that convergence to steady states does
not hold without restriction since there exist periodic solutions for some values of the
parameters. Another question is that of the number of steady states. It is shown that the
parity of the number of steady states is determined byR′′

0−1. This is achieved without
any restriction on the parameters other than their positivity. It follows in particular that
forR′′

0 > 1 there is always at least one positive steady state. It is shown that when this
solution is close enough to the disease-free steady state it is asymptotically stable.

There remain a number of open questions concerning the model studied in this
paper. Does there ever exist a positive steady state in the case R′′

0 ≤ 1? Does there
ever exist more than one positive steady state in the case R′′

0 > 1? Despite the fact
that a general parametrization of steady states by the roots of a polynomial has been
obtained we did not succeed in answering these questions. One route which might
have led to an answer is via backward bifurcations. However it turns out that these do
not exist in this model. Related to this is the fact that we do not know if there ever
exist unstable positive steady states in this model. Another route which might lead to
answers to these questions is to investigate the existence of fold bifurcations in the
positive region. At the moment the question of whether bifurcations of this type occur
remains open.

Is is proved that there exist periodic solutions but no proof of their stability is avail-
able. The only indication we have that they are stable are simulations. It might be
possible to investigate their stability using the method of Li and Muldowney, general-
izing what was done in [11]. While studying the properties of the model of [11] some
properties of solutions of related models were obtained as by-products. This concerns
in particular the model of Guedj and Neumann [4] but in that case the question of the
existence of periodic solutions was not settled.

It is clear from this discussion that there remain many open mathematical questions
concerning the model of [11] and related ones. Beyond this there remain questions
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concerning the relations of these mathematical models to the diseases which they
are intended to describe. In which phases of which diseases is which model most
appropriate? Once a model has been chosen in a given biological situation what are
appropriate restrictions on the parameters?We hope that in the future answers to these
questions will lead to a better understanding of hepatitis C and other viral diseases
and to new ideas for treating them.
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