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Abstract 

Background  Cardiovascular disease (CVD) is the leading cause of death worldwide and considered one of the most 
environmentally driven diseases. The role of DNA methylation in response to the individual exposure for the develop‑
ment and progression of CVD is still poorly understood and a synthesis of the evidence is lacking.

Results  A systematic review of articles examining measurements of DNA cytosine methylation in CVD was con‑
ducted in accordance with PRISMA (preferred reporting items for systematic reviews and meta-analyses) guidelines. 
The search yielded 5,563 articles from PubMed and CENTRAL databases. From 99 studies with a total of 87,827 individ‑
uals eligible for analysis, a database was created combining all CpG-, gene- and study-related information. It contains 
74,580 unique CpG sites, of which 1452 CpG sites were mentioned in ≥ 2, and 441 CpG sites in ≥ 3 publications. Two 
sites were referenced in ≥ 6 publications: cg01656216 (near ZNF438) related to vascular disease and epigenetic age, 
and cg03636183 (near F2RL3) related to coronary heart disease, myocardial infarction, smoking and air pollution. Of 
19,127 mapped genes, 5,807 were reported in ≥ 2 studies. Most frequently reported were TEAD1 (TEA Domain Tran‑
scription Factor 1) and PTPRN2 (Protein Tyrosine Phosphatase Receptor Type N2) in association with outcomes ranging 
from vascular to cardiac disease. Gene set enrichment analysis of 4,532 overlapping genes revealed enrichment for 
Gene Ontology molecular function “DNA-binding transcription activator activity” (q = 1.65 × 10–11) and biological 
processes “skeletal system development” (q = 1.89 × 10–23). Gene enrichment demonstrated that general CVD-related 
terms are shared, while “heart” and “vasculature” specific genes have more disease-specific terms as PR interval for 
“heart” or platelet distribution width for “vasculature.” STRING analysis revealed significant protein–protein interactions 
between the products of the differentially methylated genes (p = 0.003) suggesting that dysregulation of the protein 
interaction network could contribute to CVD. Overlaps with curated gene sets from the Molecular Signatures Data‑
base showed enrichment of genes in hemostasis (p = 2.9 × 10–6) and atherosclerosis (p = 4.9 × 10–4).

Conclusion  This review highlights the current state of knowledge on significant relationship between DNA methyla‑
tion and CVD in humans. An open-access database has been compiled of reported CpG methylation sites, genes and 
pathways that may play an important role in this relationship.
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Introduction
Cardiovascular disease (CVD) is the leading cause of death 
globally, accounting for approximately 30% of all deaths 
worldwide [1]. This puts an enormous burden on health-
care systems across the globe and has prompted clinicians 
and researchers to explore potential causes of this wide-
spread disease. The World Health Organization recognizes 
CVD as one of the most environmentally driven diseases 
with a comparatively small genetic component [2]. It is 
likely that epigenetic changes mediate, at least in part, the 
environmental risk for developing or progressing CVD. 
One prominent factor that is thought to play a role is DNA 
methylation, an epigenetic mark that can modify gene 
expression. DNA methylation usually refers to the methyla-
tion of the fifth carbon of cytosine residues found through-
out the genome. Methylation is most commonly observed 
at so-called CpG islands [3], which are long repeats of 
cytosine-guanine nucleotides. As technologies to study 
genome-wide DNA methylation continue to develop, there 
is growing evidence that there is a strong link between 
DNA methylation and CVD [4–6]. However, there is still 
little to no evidence of the directionality of this relationship, 
and clear findings on relevant CpG sites or genes have not 
yet emerged from the extensive research in this area.

The main aim of this systematic review was to synthesize 
results of studies that have investigated the relationship 
between DNA methylation and CVD and to create an eas-
ily accessible and searchable database from the results of 
these studies. Based on this database, we identified overlap-
ping differentially methylated CpG sites and neighboring 
genes across studies and performed functional enrichment 
and interaction network analyses. Based on these results, 
we highlighted pathways that may be involved in the devel-
opment or progression of CVD through a mechanism that 
is associated with DNA methylation changes.

Methods
Systematic literature search
A systematic search was conducted in online data-
bases “PubMed” (https://​pubmed.​ncbi.​nlm.​nih.​gov) and 
“Cochrane Central Register of Controlled Trials” (https://​
cochr​aneli​brary.​com) (CENTRAL). Two search queries 
were used, which included references to DNA methyla-
tion and epigenetics in general, and a comprehensive list-
ing of individual cardiovascular diseases based on the 
coding scheme of the International Classification of Dis-
eases (ICD), version 10 (see Additional file 1: Text 1). All 
studies included in these databases between the respec-
tive database inception date and June 14, 2022 for Pub-
Med and July 28, 2022 for CENTRAL were examined.

Study selection process
Titles and abstracts of all identified articles were 
screened for eligibility by one scientist (MK) using 
the online tool Abstrackr (http://​abstr​ackr.​cebm.​
brown.​edu) [7]. In case of any doubt about eligibil-
ity, the decision to include articles was discussed with 
a second scientist (VTC). Of all the articles remaining 
after screening, full texts were retrieved and assessed 
for suitability for systematic review. Eligibility criteria 
were discussed and established by an interdisciplinary 
team of epidemiologists, cardiologists, biologists and 
a biostatistician. As inclusion criterion, the article had 
to include data on DNA methylation with an associa-
tion to cardiovascular disease (CVD) as an outcome or 
exposure. Articles that investigated DNA methylation 
in the context of CVD risk factors, without CVD as 
outcome or exposure, were excluded. Other exclusion 
criteria were: Irrelevant content, non-human samples, 
the publication was a review paper or the article was 
not available in full text in English. Reasons for inclu-
sion or exclusion were recorded at each step (Addi-
tional file 2: Table 1).

Quality control of the studies
The quality of each study was assessed using the follow-
ing study quality assessment tools from the National 
Heart, Lung, and Blood Institute (NHLBI, Maryland, 
USA): quality assessment tool for observational cohort 
and cross-sectional studies, quality assessment of case–
control studies, and quality assessment tool for case 
series studies (https://​www.​nhlbi.​nih.​gov/​health-​top-
ics/​study-​quali​ty-​asses​sment-​tools). The detailed qual-
ity assessment was recorded digitally.

Data extraction
All study data were extracted and recorded digitally. 
Information collected included the following variables: 
study subjects, exposure, outcome, duration of follow-
up, cohort, study design, DNA methylation measure-
ment method, study location, sample size with details 
on cases and controls, tissue, sex and age. Detailed 
data were collected on individual CpG sites and genes 
reported in each study. This included beta estimates for 
the methylation level, p-values, standard errors, direc-
tion of methylation change and regression coefficients, 
where applicable. The collected information was organ-
ized in a database that was used for further analysis and 
is available in the Additional file  3: Table  2. CpG sites 
were mapped to genes using the publicly available 450 k 
[8] and 850 k [9] manifest files from Illumina (Califor-
nia, USA).

https://pubmed.ncbi.nlm.nih.gov
https://cochranelibrary.com
https://cochranelibrary.com
http://abstrackr.cebm.brown.edu
http://abstrackr.cebm.brown.edu
https://www.nhlbi.nih.gov/health-topics/study-quality-assessment-tools
https://www.nhlbi.nih.gov/health-topics/study-quality-assessment-tools
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Table 1  Study characteristics from N = 99 identified studies on cardiovascular epigenetics

% of total No. of articles

Category

Heart 43.4 43

Vasculature 32.3 32

Cardiovascular disease (CVD) 12.1 12

Cardiovascular risk factors (CVRF) 8.1 8

Other 4.0 4

Tissue

Blood 76.8 76

Cardiac tissue excluding ventricles 9.1 9

Cardiac ventricles 6.1 6

Aorta 5.1 5

Artery 3.0 3

Measuring method*

Illumina bead-based 450 k array 46.5 46

Pyrosequencing 12.1 12

Illumina bead-based 850 k array 10.1 10

Whole-Genome Bisulfite Sequencing (WGBS) 4.0 4

Illumina bead-based 27 k array 3.0 3

Reduced representation bisulfite sequencing (RRBS) 2.0 2

Radiolabeling 2.0 2

Other 18.2 18

Outcome

Ischemic Stroke 11.1 11

Atherosclerosis 10.1 10

Incident CVD 8.1 8

Incident MI 8.1 8

Incident HF 6.1 6

CAD 5.1 5

Incident Dilated cardiomyopathy 4.0 4

Acute coronary syndrome 3.0 3

AFIB 3.0 3

CHD 3.0 3

Other 38.4 38

Measuring type*

Epigenome-wide methylation 59.6 59

Specific gene methylation 23.2 23

Global genome methylation 8.1 8

Epigenetic clock methylation 8.1 8

Specific CpG methylation 2.0 2

Study location

Asia 38.4 38

Europe 36.4 36

North and South America 26.3 26

Australia 1.0 1

Sex**

Female 54.0*** 6986

Male 46.0*** 5963

Age range**

0–30 years 2.0 2
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Statistical and bioinformatics analysis
Aggregated values needed for the analysis were calcu-
lated and stored in the CpG database. Detailed calcula-
tions can be found in Additional file 4. CpG sites from 
each of these three “methylation clocks”: Horvath [10], 
Hannum [11] or GrimAge [12], were included sepa-
rately in the CpG database. CpG sites from GrimAge 
[12] were not included in the publicly available version.

For analysis of curated gene sets, the Molecular Sig-
natures Database (http://​gsea-​msigdb.​org) was used. 
The gene sets were selected in an interdisciplinary dis-
cussion between biologists and cardiologists based on 
the greatest perceived relevance to CVD.

All analyses were performed in R version 4.0.0 [13]. 
For gene set enrichment analysis, the R package Clus-
terProfiler [14] and the online tool STRING [15] were 
used. A one-sided Fisher’s test was used to calculate the 
relevance of the overrepresentation of a particular gene 
set compared to the expected background. Unadjusted 
p-values below 0.05 report overrepresentation, with 
p-values considered as continuous measure of the evi-
dence of a difference in this exploratory approach.

Results
Identified studies on DNA methylation in cardiovascular 
disease
An overview on the workflow of the systematic review is 
provided in Fig. 1.

Using the a priori defined search queries, a total of 
5327 articles was identified in PubMed and 236 articles 
in CENTRAL. After irrelevant articles were removed, a 
total of 207 studies were assessed for relevance by read-
ing the full text. A total of 99 articles [16–115] were con-
sidered eligible for systematic review (Fig. 2).

After grading for risk of bias, the majority of publica-
tions (n = 93) was assigned a study quality metric of “fair” 
using the NHLBI quality assessment tools, with two stud-
ies graded “poor” and four graded “good.” Eighty-five arti-
cles provided direct data comparing CpG sites and genes 
(beta-estimates of methylation level, p-value, standard 
errors, etc.), nine measured global DNA methylation (i.e., 
total hyper- or hypomethylation), and eight studies used 
a methylation-based clock without directly reporting 
summary statistics at the CpG site level.

A total of 87,827 individuals was included in the 99 
selected studies. Across studies that reported the sex 
distribution of participants, the overall proportion of 
females was 54% and that of males was 46%. DNA meth-
ylation measurements were performed using a variety 
of assays including the Illumina Infinium® Human-
Methylation 450 BeadChip (Illumina, California, USA), 
Infinium® HumanMethylation 850 BeadChip (Illumina, 
California, USA), Pyrosequencing, whole genome 
bisulfite sequencing, and others (Table  1). Study 
cohorts were located in four continents: Europe, Asia, 
North and South America, and Australia. Samples for 
DNA methylation measurements were extracted from a 
variety of tissues, with whole blood used in the majority 
of cases. Since the type of outcome varied widely across 

*Some studies used multiple measuring methods/measuring types

**Not all studies specified age range, sample size and sex of participants

***Percentages given considering n of reported male and female participants

Table 1  (continued)

% of total No. of articles

30–60 years 23.2 23

60–100 years 62.6 62

Sample size range**

1–100 34.3 34

100–500 29.3 29

500–1000 15.2 15

1000–2000 7.1 7

2000–5000 10.1 10

≥ 5000 3.0 3

Table 2  Identified CpG sites and genes reported in relation to 
cardiovascular system

No. of CpG sites No. of mapped 
genes

Including/excluding 
methylation clocks

Including/
excluding 
methylation 
clocks

Overall reported 74,580 73,686 19,127 19,042

Reported in ≥ 2 studies 1452 1331 5805 5472

Reported in ≥ 4 studies 102 10 787 498

http://gsea-msigdb.org


Page 5 of 16Krolevets et al. Clinical Epigenetics           (2023) 15:56 	

the studies, they were grouped into the following five 
main categories for analysis: ‘CVD’, ‘heart’, ‘vasculature’, 
‘cardiovascular risk factor (CVRF)’ and ‘others’. Study 
designs were grouped as follows: ‘investigation of epi-
genome-wide methylation’, ‘global genome methylation’, 
‘specific CpG site methylation’, ‘specific gene methyla-
tion’ and ‘epigenetic clock methylation’.

A meta-analysis of the collected data could not be 
performed since the endpoints, methods and reported 
estimates of the individual studies could not be suffi-
ciently reconciled.

Database of CpG sites associated with CVD
A CpG database was created by aggregating all CpG- 
and gene-related information from the collected studies 
together with three methylation clocks: Horvath [10], 
Hannum [11] and GrimAge [12]. The database includes 
74,580 unique CpG entries (73,550 entries without the 
methylation clock “GrimAge”) and 19,127 gene entries 
(18,374 entries without the methylation clock “Grim-
Age”). For each CpG/gene, there is information on the 
outcome, follow-up, cohort, measurement method, loca-
tion of study, sample size, tissue analyzed, age range and 

Fig. 1  Workflow for the systematic review
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related publication. For each entry, additional quantita-
tive information such as methylation beta value, p-value, 
z-score, standard error, false discovery rate, etc. is pro-
vided if the information was reported in the publication. 
The database can be found in Additional file 3: Table 2.

Overlap between reported CVD‑relevant CpG sites
Of the 85 studies that reported associations between CpG 
sites or genes and CVD, 78 reported CpG sites directly by 
identifier. A total of 1452 CpG sites were mentioned once 
or more in at least two of the publications, 441 CpG sites 
were mentioned once or more in at least three publica-
tions, and two CpG sites were mentioned in ≥ 6 publica-
tions (Table 2). The two latter CpG sites are cg01656216 
near gene ZNF438 (mentioned in [10, 22, 30, 60, 65, 108]) 
and cg03636183 near gene F2RL3 (mentioned in [49, 69, 
75, 79, 113], Table 3). These two CpG sites are also part 
of the methylation clocks. Three out of six papers men-
tioning cg01656216 [22, 30, 108] have vascular disease 

as an outcome, whereas the three other publications had 
investigated epigenetic age [10, 60, 65]. In the case of 
cg03636183, three out of six publications had coronary 
heart disease or myocardial infarction as the outcome 
[75, 79, 113], and the other three had investigated smok-
ing or air pollution [12, 49, 69].

Overlap between reported genes
The collected 74,580 CpGs were mapped to 19,127 
genes using the Illumina manifest files. Of these, 5807 
genes were reported in at least 2 studies (Table 2). Two 
genes—TEAD1 (TEA Domain Transcription Factor 1) 
and PTPRN2 (Protein Tyrosine Phosphatase Receptor 
Type N2)—were reported most frequently (in ten and 
eleven articles, respectively). Both genes were mentioned 
in association with a variety of outcome events ranging 
from vascular to cardiac disease [11, 12, 22, 27, 30, 38, 44, 
45, 54, 60–62, 65, 72, 92, 93] with PTPRN2 being a pre-
disposing factor for cardiac disease [12, 27, 30, 38, 44, 45, 

Fig. 2  PRISMA flowchart. CVD—cardiovascular disease
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54, 61, 72, 92, 93]. TEAD1 is next to one CpG (out of 71 
CpGs) underlying the Hannum clock [11] and PTPRN2 
was next to one CpG (out of 1030 CpGs) underlying the 
GrimAge clock [12].

Enrichment analysis
Gene enrichment analysis was performed for all 5,807 
overlapping genes (Fig.  3) and then separately for the 5 
outcome categories (‘CVD’, ‘Heart’, ‘Vasculature’, ‘CVRF’ 
and ‘Other’).

Of the gene IDs entered, 11.4% could not be mapped 
because their names were not available in the data-
base. Analysis of the remaining 4,532 overlapping 
genes revealed enrichment of “DNA-binding transcrip-
tion activator activity” (gene ratio, GR = 183/4,532, 
q = 1.65 × 10–11), “actin binding” (GR = 174/4,532, 
q = 6.97 × 10–10), “protein tyrosine kinase activity” 
(GR = 67/4,532, q = 7.98 × 10–8), “structural component 
of extracellular matrix” (GR = 76/4,532, q = 1.51 × 10–6), 
“GTPase regulator activity” (GR = 167/4,532, 
q = 6.40 × 10–6) and others for the molecular function of 
Gene Ontology (GO; Fig. 3-B). Enrichment analysis using 
the Gene Ontology database for biological processes for 
all overlapping genes showed enrichment for “skeletal 
system development” (GR = 221/4,462, q = 1.89 × 10–23), 
“extracellular matrix organization” (GR = 189/4,462, 
q = 1.89 × 10–23), “external encapsulating structure organi-
zation” (GR = 190/4,462, q = 1.89 × 10–23), and others 

(Fig.  3-C). The category “heart” showed similar enrich-
ment to all categories combined with “DNA-binding tran-
scription activator activity” being a top hit. The category 
“vascular” showed strong enrichment for the terms “actin 
binding” and “actin filament binding.” Genes assigned to 
the categories ‘CVD’, ‘CVRF’ and ‘other’ did not achieve 
a relevant enrichment. In STRING (Search Tool for the 
Retrieval of Interacting Genes/Proteins) analysis [15] with 
the confidence setting ‘high’, there was significant evi-
dence for protein–protein interactions between the prod-
ucts of these genes (p = 0.003; Fig. 3-A). The average node 
degree was 0.735, and the average local clustering coeffi-
cient 0.223.

Methylation of heart and vasculature
When comparing the “heart” and “vasculature” cat-
egories, there is an overlap of 272 genes considering 
those reported in at least two studies. The compart-
ment “heart” included 2,271 unique genes and the com-
partment “vascular system” included 442 unique genes 
(Fig. 4-A1 and A2). Analysis of gene enrichment using 
the GWAS Catalogue and ClinVar databases demon-
strated that general cardiovascular disease-related 
terms are found in the “shared” category, while “heart” 
and “vasculature” specific genes have more disease-
specific terms such as PR interval for “heart” or platelet 
distribution width for “vasculature” (Fig. 4-B).

Fig. 3  Gene enrichment analysis of identified genes. A Network analysis of genes occurring in ≥ 4 selected studies performed using STRING-db; 
genes without connections are hidden. B Enrichment analysis for the Gene Ontology databases “Molecular function” occurring in ≥ 2 selected 
studies. C Enrichment analysis for the Gene Ontology databases “Biological process” occurring in ≥ 2 selected studies
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Overlap between identified genes and curated gene sets
The overlap between pre-selected relevant curated gene 
sets from the Molecular Signatures Database (gsea-
msigdb.org) and genes identified by several selected pub-
lications as related to CVD was analyzed: Significant gene 
set overlap was observed for the category “heart” (num-
ber of genes = 2486) with the genes from the datasets 
REACTOME_HEMOSTASIS (123/678, p = 2.9 × 10–6) 
and HP_CORONARY_ARTERY_ATHEROSCLEROSIS 
(14/44, p = 4.9 × 10–4, Fig. 5A).

For the “vasculature” category (n = 791), there was 
enrichment for the REACTOME_HEMOSTASIS 
(53/678, p = 9.8 × 10–7) and GOBP_HEMOSTASIS (7/47, 
p = 2 × 103) gene sets (Fig.  5B). In the “CVD” category 
(n = 324), this was true for the HP_CORONARY_ARTERY_
ATHEROSCLEROSIS gene set (3/44, p = 0.032). No rel-
evant overlap was present with the categories “CVRF” and 
“Other.”

Fig. 4  Methylation sites in heart and vasculature-related studies. A1 Overlap of genes mentioned at least 2 times in Heart and Vasculature-related 
studies. A2 Network analysis of genes occurring in Heart and Vasculature-related studies. Color coding corresponds to Figure A 1. B Gene 
enrichment analysis of the GWAS Catalog and ClinVar databases. Transformed p-values (One sided Fisher’s test) are shown. ADHD—Attention deficit 
hyperactivity disorder

Fig. 5  Overlap of identified genes and curated gene sets from the molecular signatures database (MSigDB). A Genes from Heart-related studies. 
B Genes from vasculature-related studies. Transformed p-values (One sided Fisher’s test) are shown in A. and B. AMI—acute myocardial infarction, 
HP—human phenotype, GOBP—gene ontology biological process
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Disease association
Previous studies have identified at least 48 genes from 
the category of “heart” that have been associated with 
coronary artery disease in general and CAD in patients 
with heart failure [22, 33]; Table 4). Other genes have also 
been found to be associated with specific cardiac con-
ditions such as myocardial infarction [75, 79], cardiac 
hypertrophy [116], and cardiac remodeling [117]. In the 
“shared” category, 13 genes have been previously linked 
to weight loss [118], eight to congenital heart defects 
[119, 120], and individual genes have been associated 
with incident coronary heart disease [121] and myocar-
dial infarction [122]. The “vasculature” category includes 
four genes that have been previously identified as related 
to chronic Chagasic cardiomyopathy [123], four to diabe-
tes mellitus [124], and individual genes have been found 
to be associated with atherothrombotic stroke [125], cog-
nitive function in CVD [126], and aortic dissection [127].

Global DNA methylation level
The global methylation of DNA was investigated and 
reported by N = 9 studies. Six of them reported a mod-
erate to large increase in global methylation level asso-
ciated with the disease of interest: In a case–control 
study of coronary artery disease (N = 137 cases and 

N = 150 controls), global DNA methylation was quan-
tified using radiolabeling with incorporation of [3H] 
dCTP (Deoxycytidine [3H] triphosphate tetra-sodium 
salt) [23]. Another study investigated global methyla-
tion levels in patients with and without acute coronary 
syndrome (n = 190) using an Enzyme-Linked Immuno-
sorbent Assay (ELISA) [48]. Further studies examined 
N = 75 cardiomyopathy patients using immunoelectron 
microscopy [55], N = 286 subjects with self-reported 
history of physician-diagnosed myocardial infarction 
using the MethyLight method (Methylation-specific 
PCR [29, 128]), and in case–control studies using an 
ELISA-based kit, N = 20 patients who had undergone 
heart valve replacement surgery [95], and N = 44 indi-
viduals with coronary heart disease [83].

Only one study comparing 17 patients with athero-
sclerosis with 15 healthy individuals using radiolabe-
ling reported global hypomethylation [56]. Two studies, 
one of 8 patients compared to 8 controls and another of 
300 patients versus 300 controls, reported no change in 
global DNA methylation levels associated with athero-
sclerosis. These measurements were done with Illumina 
450 k and Pyrosequencing, respectively [54, 73].

Table 4  Association of methylated genes with cardiovascular related diseases

Genes Associated disease ICD –10 code PMID

Heart MIF,CAV2,ACSS2,JARID2,FAM212B,FRMD4
A,CHM,TRPM6,PDSS2,NFIA,HTR1D,HS6ST3,
DIS3,PARP4,SOX6,DAAM2,DOPEY2,MYO5A
,PLA2G4E,HDAC9,MYO1H,ABCB1,GREM1,R
PS6KA5,HYOU1

Coronary artery disease in patients with 
heart failure

I25* 32,618,141 [33]

ST6GALNAC1,HOXA5,EMP1,SULF1,NGEF,
SOST,HOXD4,TM4SF1,PLG,TMCO5A,WT1
,IKZF1,ALDH1A3,ALX4,THSD4,PAX9,CEP1
70,S100A10,RNF207,GLRX,SH2D2A,ESR1
,ELANE

Coronary artery disease I25* 25,856,389 [22]

F2RL3, ABTB2 Myocardial Infarction I21.9 35,012,325 [75], 33,883,000 [79]

ADAMTS2 Cardiac hypertrophy I42.2 28,373,586 [116]

ZBTB20 Cardiac remodeling - 33,063,955 [117]

Shared C7orf50, FBXL13, PRKCZ, KCNQ1, THBS1, 
PRDM16, DNMT3A, HOXA, HOXC4, TNXB, 
HOXB3, PTPRN2, SHANK2

Weight loss R63. 4 25,651,499 [118]

RUNX3, MYLK, GALNT2, TRAPPC9, 
PRDM16, NR2F2, HOXA3, HOXB3, AXIN2

Congenital heart defects (CHD) Q24.9 31,186,048 [119], 30,760,879 [120]

PTPRN2, TRAPPC9 Incident coronary heart disease I25.10 34,627,379 [121]

ACAP2 Myocardial infarction I21.9 34,139,744 [122]

Vasculature CD4, CCR5, CD8A, CXCR3 Chronic Chagasic Cardiomyopathy B57. 2 31,087,713 [123]

CD2, CCR5, CCR2, CD8A Diabetes mellitus E11.9 10,400,139 [124]

ARHGEF10 Atherothrombotic stroke I63.40 20,042,462 [125]

CAMTA1 Cognitive function in adults with cardio‑
vascular disease

- 21,951,953 [126]

COL5A1 Aortic dissection I71. 010 34,041,919 [127]
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Discussion
In this work, we systematically reviewed the current 
state of science in the field of cardiovascular epigenetics 
in humans using data from published clinical trials and 
summarized the methods and study results. CpG dinu-
cleotides, genes and pathways were extracted from the 
compiled data and cross-referenced with publicly avail-
able databases that provide evidence that CpG methyla-
tion may be a potential factor in the development and 
progression of CVD. All the information collected was 
compiled into a novel publicly available database pro-
vided in the supplement that can serve as a basis for 
future research. Such an overview of data on methylated 
CpG sites and affected genes associated with CVD was 
not previously available.

The work included a large number of studies from 
four continents with a wide range of age groups, tis-
sues and study designs. The studies predominantly used 
whole blood as tissue and applied the Illumina Infinium 
HumanMethylation 450  k as the method for measuring 
DNA methylation (DNAm). Whole blood is a relatively 
inexpensive and reliable source of DNAm information 
and in most cases it is difficult, for practical and ethical 
reasons, to obtain other tissues unless an invasive pro-
cedure is indicated. Although the use of whole blood is 
common in the case of CVD since diseases affecting the 
heart and vessels are significantly regulated via the blood 
and its components, multiple studies have consistently 
demonstrated that DNA methylation exhibits tissue-
specificity [129–131]. While utilizing whole blood sam-
ples allows for improved comparability between studies, 
it also significantly limits the scope of investigation into 
the relationship between methylation in various tissues 
and specific diseases. Despite the tissue-specificity of 
DNA methylation, the methylomes of various tissues and 
cells reveal universal characteristics that are indicative of 
the overall health and age status of the organism, such as 
tissue-independent “methylation clocks” which can pre-
dict biological age and longevity [10, 12].

The widespread use of the Illumina 450 k array is not 
surprising, as the method is relatively cheaper compared 
to whole genome bisulfite sequencing and covers a large 
portion of the methylated genome. It is surprising, how-
ever, that only ten studies to date have used the newer 
850  k method, even though it has been available for at 
least five years and is only slightly more expensive.

Using the data, this work investigated the CpG sites, 
genes, or pathways that have been described as differ-
entially methylated in several studies on CVD. These 
could be important key sites for the link between DNA 
methylation and the disease. However, the field of car-
diovascular epigenetics is still relatively young, and 
research activities to date have not yet converged on a 

standardized procedure. Although many scientists in the 
field have used similar study designs, the wide variety 
of measurement and analysis methods employed allows 
only limited comparison and prevents a more in-depth 
synthesis of existing knowledge. Evidence of this is the 
fact that CpG sites overlapping between studies were 
only identified in a maximum of six out of 99 studies. The 
fact that the same CpG sites were identified as differen-
tially methylated in studies of different diseases not only 
confirms that there is a strong link between DNA methyl-
ation as a global process and CVD, but also supports the 
hypothesis that methylation of specific CpG sites is also 
likely to be disease-relevant. This is further supported by 
the examination of CpG-annotated genes. CpG-anno-
tated genes that are investigated in studies pertaining to 
the heart and vasculature typically exhibit associations 
with specific diseases related to those tissues, while genes 
that are shared between them are linked to more gen-
eral cardiovascular disease terms and conditions. How-
ever, there is an urgent need to investigate the effects of 
individual CpG sites on the phenotype in more detail, 
as most authors only describe the effects at the level of 
the gene or gene region where the CpG site is located. It 
is also interesting to note that some of the differentially 
methylated CpG sites identified in this analysis are also 
part of methylation clocks. This is evidence that CVD is 
the most important life-limiting factor in the population, 
but may also indicate a more specific link between epige-
netic ageing processes and CVD. Indeed, several studies 
have reported significant associations between methyla-
tion clocks and CVD [12, 132, 133].

Looking at the most frequently observed methyl-
ated genes in the studies, whether directly mentioned 
or derived from the CpG sites analyzed, many of them 
exhibit properties specifically related to cardiovascular 
processes such as atherosclerosis, hemostasis, and coag-
ulation. The association of CVD with the gene level has 
already been documented in large GWAS studies [134]. 
The association of the CpG dinucleotides with CVD was 
also confirmed when comparing the identified genes 
with curated gene sets. The results of enrichment analy-
ses with pathomechanistically relevant processes such as 
coagulation also underscore this relationship.

As mentioned above, the many different methods 
for measuring the methylation of DNA make analyses 
that aim to summarize or build on existing knowledge 
difficult. This methodological heterogeneity is due to 
multiple factors. On the one hand, technologies are 
constantly evolving and new methods are arising every 
year; on the other hand, it takes time to introduce and 
implement new methods in clinical trials. In addi-
tion, differences between studies, e.g., in terms of geo-
graphical location, ethnic composition of cohorts, sex 



Page 12 of 16Krolevets et al. Clinical Epigenetics           (2023) 15:56 

distribution, endpoints analyzed and statistical meth-
ods used, make it difficult to synthesize the evidence. 
In perspective, there is a great need for further stud-
ies and research to investigate the clinical impact of 
CpG methylation on molecular, subclinical, and clini-
cal parameters to better understand the association 
between DNAm and CVD.

Conclusion
This review highlights the significant relationship 
between DNA methylation and CVD in humans. 
Numerous CpG methylation sites, genes and pathways 
have already been discovered that may play an impor-
tant role in this context. Methylated CpG sites identi-
fied in heart and vasculature-related disease belong 
to genes with distinct functions known to be impor-
tant in CVD. Orthogonal evidence from genome-wide 
association studies confirms that these genes have 
downstream impact on the cardiovascular phenotype, 
ranging from vascular markers such as blood pressure 
to cardiac function. The open-access database provides 
an overview of the identified CpG sites and the associ-
ated results from 99 studies. This will facilitate access 
to this information for future research in the field and 
support research in cardiovascular epigenetics.
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