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Abstract
Background: Patient motions are a repeatedly reported phenomenon in oral
and maxillofacial cone beam CT scans, leading to reconstructions of limited
usability. In certain cases, independent movements of the mandible induce
unpredictable motion patterns.Previous motion correction methods are not able
to handle such complex cases of patient movements.
Purpose: Our goal was to design a combined motion estimation and motion
correction approach for separate cranial and mandibular motions, solely based
on the 2D projection images from a single scan.
Methods: Our iterative three-step motion correction algorithm models the two
articulated motions as independent rigid motions. First of all, we segment cra-
nium and mandible in the projection images using a deep neural network. Next,
we compute a 3D reconstruction with the poses of the object’s trajectories fixed.
Third, we improve all poses by minimizing the projection error while keeping the
reconstruction fixed. Step two and three are repeated alternately.
Results: We find that our marker-free approach delivers reconstructions of up
to 85% higher quality, with respect to the projection error, and can improve
on already existing techniques, which model only a single rigid motion. We
show results of both synthetic and real data created in different scenarios.
The reconstruction of motion parameters in a real environment was evaluated
on acquisitions of a skull mounted on a hexapod, creating a realistic, easily
reproducible motion profile.
Conclusions: The proposed algorithm consistently enhances the visual quality
of motion impaired cone beam computed tomography scans, thus eliminating
the need for a re-scan in certain cases, considerably lowering radiation dosage
for the patient. It can flexibly be used with differently sized regions of interest
and is even applicable to local tomography.

KEYWORDS
cone beam computed tomography, motion, tomography

1 INTRODUCTION

Cone beam computed tomography (CBCT) is an estab-
lished three-dimensional (3D) radiographic imaging
technique. Introduced in dental imaging in the late
1990s,1,2 the technique is now also widely used in
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other medical disciplines.3–6 Owing to the implemen-
tation of flat-panel detectors as image receptors and
to its technical design, an inherent shortcoming of
CBCTs for maxillofacial application lies in long rotation
times of 10 to 40 s, during which several hundreds of
projection radiographs used for 3D reconstruction are
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3512 MOTION CORRECTION FOR SEPARATE

acquired.7 The backprojection process for 3D recon-
struction relies on a priori knowledge of the imaging
geometry for each projection radiograph up to voxel size
accuracy.8 If a patient moves during the acquisition time,
errors in the reconstruction chain necessarily occur.Due
to the long scan times, patient motion is an issue in
CBCT.7,9 The most common reconstruction technique
relies on the Feldkamp algorithm10 which essentially
is a 3D adaptation of the classical fan-beam filtered
backprojection.11

However, iterative reconstruction techniques are
known to be more flexible and can incorporate statis-
tics, physical models and a priori knowledge.12 This can
be used to create more exact results, which is espe-
cially important when using a projection based motion
correction method. In this context it is noteworthy that
CBCTs do not produce standardized gray values in the
sense of e.g. Hounsfield units (HU), that is they can-
not be compared between machines. The scale of the
reconstructed gray values even differs within volumes
and also between different exposure settings in one
machine.13,14

Periodic motions, such as those caused by breathing
or heart-beat,has been a topic of lively research over the
last 20 years.15–19 Typically, such approaches use mod-
els, for instance surrogate motion models, to estimate
motion that is otherwise not directly accessible,19,20

instead of real yet inaccessible organ motion, for exam-
ple, lung deformation estimated from the thoracoab-
dominal surface19 or by measuring air flow changes
by spirometry.21,22 Inherent errors from such surrogates
lie in potential miscorrelation with the internal organ
motion they shall represent.23 While such techniques
may be capable to address periodic motion, patient
movement characteristics in maxillofacial CBCT can not
easily be described by such models, since they include
multiplanar movements, head rotation or swallowing.24

Cases are also observed in which only the mandible
is moved against the remaining (resting) skull.24 Tech-
niques, which are applicable in scenarios more similar
to ours, include methods of autofocus,25–28 consistency
conditions29–31 and learning based approaches.32–34

However, methods using consistency conditions are
currently not able to correct separate cranial and
mandibular motions, which is the goal of our work.
Approaches based on an autofocus metric are typically
able to compensate non-rigid transformations, but usu-
ally incorporate temporal regularization of some kind
to reduce the motion parameter space, hindering their
application in cases of inconsistent or sudden motions
of the patient.Motion correction methods based on deep
learning are another lively field of research and will
play an important role in the future. Berger et al.35 pre-
sented an approach which is able to correct multiple
rigid motions in one field of view (FOV). This method
relies on a prior motion-free reconstruction of the same
region, performing a 3D/3D registration, followed by

a bone-wise 2D/3D registration. Another noteworthy
work in that field was presented by Flach et al.,36 per-
forming deformable 3D/2D registration by applying a
regularized deformation field to the reconstructed vol-
ume. In their method, the authors also make use of an
artifact-free reconstruction by splitting the scan into a
“prior” and “intervention” phase, of which only the sec-
ond one was motion impaired. Unfortunately, such an
artifact-free reconstruction is usually not available in
clinical applications.

Based on the work of Niebler,37 in this paper we intro-
duce a marker-free, projection-based iterative frame-
work for correcting movements of the facial skull or
of the mandible, which may move relative to the cra-
nium in certain cases. Without any priori knowledge, we
model the motion as two separate rigid motions of these
two components.

The paper is structured as follows: After an expla-
nation of the CBCT reconstruction model the method
is described, followed by the segmentation process
of the mandible from 2D projection images. The next
section highlights the implementation of the algorithm.
Results from synthetic experiments and real world data
are then described. Subsequently, the method is dis-
cussed and conclusions are drawn. Lastly future work
directions are presented.

2 MATERIALS AND METHODS

A typical CBCT setup consists of an X-ray source S and
a panel detector D rotating around an object x̃, generat-
ing n ∈ ℕ individual X-ray images b(i), i ∈ {1,… , n}, each
of dimension w × h. This results in a total number of
n × w × h pixels b(i)

c , each of which, in simplified terms,

can be associated with one X-ray r (i)
c running from S

through x̃ into b(i)
c in a straight line along the path 𝛾(i)

c .

On this path, the intensity of r (i)
c is weakened by the

attenuation coefficient of the matter which it is currently
passing through.

Since in practice it is only possible to reconstruct a
discrete approximation of x̃, we define a grid of mx ×
my ×mz voxels v each with a given pitch (size) over the
region of interest (ROI)Ω,where mx, my, mz ∈ ℕ denote
the number of voxels in x, y, z-dimension, respectively.
Each voxel is then assigned the attenuation value of x̃
at its spatial position. The following notation will use the
continuous and discrete versions of x̃ interchangeably.

Using this discrete version of x̃, the reconstruc-
tion problem boils down to solving a linear system of
equations of the form

Ax̃ = b. (1)

The system matrix A has a block diagonal shape, as
projection images are independent from one another,
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MOTION CORRECTION FOR SEPARATE 3513

and can be fully determined based on the specifica-
tions of the CBCT-machine. Since A is usually not a
square matrix, Equation (1) cannot be solved directly.
We can use the corresponding (damped) least squares
problem

arg min
x̃

‖Ax̃ − b‖2
2 + 𝜆R(x̃), (2)

with a suitable regularization term R and parameter
𝜆 ∈ ℝ, to minimize the residual error of the projection by
using the conjugate gradient method for least squares
(CGLS) on the normal equation.

2.1 Method overview

By assuming a static object x̃, standard reconstruc-
tion algorithms cannot account for patient motion,
resulting in highly artifact-laden reconstructions in cer-
tain cases.8 In this paper, we propose a method
to mitigate these effects, solely based on the 2D
acquisition images and without any need for further
prior knowledge.

Contrary to the previous work of Niebler,37 occur-
ring patient movements are modeled as two separate
rigid motions, one for the cranium and an independent
mandibular motion. Since the focus lies primarily on
reconstructing bone structure and teeth, modeling the
patient’s movement as two separate rigid motions is
well justified.

For that we need to separate x̃ into two parts:
mandible and cranium. We define ΩC ⊂ Ω as the region
of the cranium andΩM ⊂ Ω as the mandibular region,so
that ΩM ∪ ΩC = Ω, ΩM ∩ ΩC = ∅. This splits x̃ into

x̃C∕M(x) =

⎧⎪⎨⎪⎩
x̃(x), x ∈ ΩC∕M

0, otherwise
(3)

s.t. x̃(x) = x̃C(x) + x̃M(x) ∀x ∈ Ω. For each of
the two regions we define motion fields pC =

{p(i)
C }

i=1,…,n
and pM = {p(i)

M }
i=1,…,n

of the shape p(i)
C;M =

(𝜙(i), 𝜃(i),𝜓(i), t(i)x , t(i)y , t(i)z ), associated with cranium and
mandible, respectively, each describing the 6 degrees
of freedom (3 rotational and 3 translational) of a rigid
motion at acquisition time i.

Our proposed algorithm aims to solve the motion
corrected reconstruction problem for both x̃C and
x̃M using a three-step approach, iteratively splitting
Ω into ΩC and ΩM (Section 2.2.3), reconstructing
the approximate volume x̃ = x̃C + x̃M using a motion
aware reconstruction method with the current motion
parameters (Section 2.2.1) and finally updating the
motion fields using the latest (imperfect) reconstruction
(Section 2.2.2).

2.2 Method details

2.2.1 Motion-aware volume reconstruction

As we model the movement of the patient by two
separate rigid motions, we can express x̃ at frame i
as

x̃(x, i) = x̃C(x, i) + x̃M(x, i)

= T(p(i)
C )x̃C(x, 0) + T(p(i)

M )x̃M(x, 0)
(4)

where T(p(i)
C ) and T(p(i)

M ) are some linear maps describ-
ing the two separate rotations and translations of x̃,
parameterized by pC and pM. In our motion-aware recon-
struction the patient’s motion is incorporated into the
system matrix A.

The key observation in finding the motion-aware pro-
jection A(pC, pM) comes from Equation (4), as splitting x̃
into two disjoint regions, each acted upon by only a sin-
gle rigid motion, allows us to also write A(pC, pM) as two
matrices and rewrite Equation (1) into

A ⋅ (T(pC)x̃C + T(pM)x̃M) = b

⟺ A(pC)x̃C + A(pM)x̃M = b

⟺
(
A(pC) ⋅ 𝟙ΩC

+ A(pM) ⋅ 𝟙ΩM

)
x̃ = b

(5)

where A(⋅) := AT(⋅) is the motion-aware projection
matrix depending on only one of the two motion fields
and the indicator 𝟙 can be expressed as a matrix
multiplication. Defining

AΩC,ΩM
(pC, pM) := A(pC) ⋅ 𝟙ΩC

+ A(pM) ⋅ 𝟙ΩM
(6)

leads to the linear system in the form of Equation (1),
assuming ΩC,ΩM, pC and pM are known.

2.2.2 Motion estimation

In this section,we leverage a given reconstruction x̃approx
to find a better set of parameters pC and pM by min-
imizing the residual error between b and the virtual
projections of x̃approx

arg min
pC,pM

E
(
AΩC,ΩM

(pC, pM) ⋅ x̃approx, b
)
. (7)

In our implementation we chose E as the L2-norm
of the residual. There are numerous different suitable
metrics for this task suggested by other 2D/3D reg-
istration works, for example, the gradient orientation
similarity metric (GO) used by Ouadah,38 or gradient
correlation (GC) and normalized gradient information
(NGI) as used by Berger et al.,35 however, in our
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3514 MOTION CORRECTION FOR SEPARATE

experiments we could achieve the most consistent
results using L2.

As the motion parameters corresponding to two dif-
ferent projection images b(i) and b(j) are independent of
each other, we can separate Equation (7) into n inde-
pendent optimization problems, one for each frame, for
each of which we apply a gradient based solver (for
details see Appendix A). We use the nonlinear conju-
gate gradient method with Polak-Ribière weights39 for
the optimization process of pC and pM. The required
line search is performed as an exact line search for
quadratic functionals, as suggested by van Leeuwen
et al.40 We discard gradients outside of the ROI in
general.

2.2.3 Mandible segmentation

Unfortunately, the unambiguous segmentation into
cranium (ΩC) and mandible (ΩM) on an estimated
reconstruction x̃approx of earlier iterations, especially
in the first iteration, is not possible. This is because
x̃approx still contains artifacts, such as blur or double
contours. Even state-of -the-art neural networks such as
Anatomy Net41 are therefore unable to correctly identify
the mandible. Instead we perform 2D segmentations
of the mandible on the artifact-free projection images
b(i) yielding labeled data l(i)b , by using the segmentation
network PointRend42 (see following paragraph 2D seg-
mentation). From these the 3D label ΩM is computed.
We use a principal component model depending on
only a small number of parameters, representing trian-
gle meshes of various shapes of different mandibles.
This model’s projection is registered with the 2D labels,
creating the volumetric label of the mandible within
x̃approx (see paragraph Creating 3D labels).

2D segmentation
PointRend is an improvement of Mask-RCNN,43 a net-
work that for a given class (in our case the mandible)
provides the localization in the form of a bounding box
and a coarse mask. The PointRend variant uses the
coarse-resolution pixel mask and increases it to the orig-
inal input resolution to enhance the segmented objects’
edges. For the training set, we used 43 CT datasets
representing heads from a previous work.44 To gener-
ate the mask for the mandible, we first extracted the
bone structure from the CT by applying the March-
ing Cubes algorithm, yielding a triangle mesh of the
whole skull. We subsequently extracted the mandible
from the bony structure by manually separating the
meshes at the condyles and teeth area. As a result, we
have 43 volumes for our CT set showing the masking
of the mandible area. For each volume, we syntheti-
cally created a CBCT scan of 516 projection images
for the training process. The trained neural net is robust
against physical effects like noise, beam hardening and

scatter, so we did not need to consider these during
data generation.

Creating 3D labels
We compute ΩM using a principal component analysis
(PCA) model. This model is built from the same k = 43
triangle meshes of the mandible used for training the
2D segmentation network.We use the k̂ largest principal
components to formulate a parameterized triangle mesh
model Lk̂(𝝀).This number is set to k̂ = 5,since these five
eigenvalues are sufficient to achieve a coverage of more
than half of the underlying data. Finally, we extend L by
the parameters t, r, s ∈ ℝ3, the translation, rotation and
scale of the resulting mesh, respectively, leading to the
final model being parameterized by 𝜋 = {𝝀, t, r, s},a total
number of 14 parameters. Since the triangle meshes
used for L are static, this model can be computed
offline.

We register the forward projection of L with the labels
of the projection data lb = {l(i)b }, i ∈ {1,… , n} using the
following minimization problem

arg min
𝜋

E(Amax(pM) ⋅ L(𝜋), lb) (8)

where Amax denotes a maximum projection dependent
on the parameters pM. We solve Equation (8) using
the Nelder-Mead algorithm.45 In our implementation we
chose E to be the L2-norm of the residual, but other
tested metrics such as Intersection over Union (IoU)
provide very similar results. Note that Equation (8) is
still dependent on pM, suggesting more exact fits with
a good approximation of the jaw’s motion parameters in
later iterations.

With the optimal set of parameters 𝜋 computed, ΩM
is defined as the set of voxels inside the triangle mesh
L(𝜋); ΩC is then given implicitly as ΩC = Ω ⧵ ΩM. This
approach created very close fits in all of our experi-
ments (Section 4), even for local tomography scenarios
where the neural net is not always able to correctly
identify the whole mandible (see Figure 1b). It also has
the advantage of being independent of x̃approx, restrict-
ing further propagation of occurring reconstruction
errors.

We artificially enlarge the computed 3D label of the
mandible to account for motions of soft tissue,especially
relevant in the chin area, and for possible inaccuracies
of L.To avoid growing into the upper tooth row,we do not
dilate in the positive y-direction, keeping the upper and
lower teeth separated. Using a hard partition into cra-
nium and mandible in Equation (6) leads to very sharp
edges between the two regions within the final result,
especially since parts of the soft tissue do not undergo a
rigid transformation.Therefore we apply a Gaussian blur
to the 3D label itself, smoothing out those edges. Math-
ematically speaking, we convolve the 𝟙ΩM

function from
Equation (6) with a three-dimensional Gaussian kernel
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MOTION CORRECTION FOR SEPARATE 3515

F IGURE 1 The segmentation process. In each row, the two pictures on the left show the labeling l(i)b done by our neural net. On the right
side, the computed 3D label L(𝜋) can be seen. The top row (a) shows scans of the whole head whereas the bottom row (b) depicts a typical
local tomography scenario. Note that in both cases the 3D labels are of high quality.

G𝜎 of standard deviation 𝜎. This extends A to

A∗
ΩC,ΩM

(pC, pM) : = A(pC) ⋅ (𝟙 −G𝜎∗𝟙ΩM
)

+A(pM) ⋅ (G𝜎∗𝟙ΩM
), (9)

where 𝟙 is the identity. In our implementation we chose
𝜎 = (5∕vpx, 5∕vpy, 5∕vpz)T , where vp is the voxel pitch.
This ensures consistent results with differently sized
ROIs and resolutions (e.g. in local tomography).

2.3 Putting everything together

Algorithm 1 combines the described three separate
phases. We first create the labels of the mandible in
the 2D projections, since they are independent of the
motion parameters. ΩM is then computed in an outer
loop as described in Section 2.2.3 using the current
motion parameters. In earlier iterations of this outer loop,
we use a downsampled version bk of b to speed up cal-
culations. In later iterations we gradually increase the
resolution by adjusting the downsampling factor. In an
inner loop the reconstruction of x̃ and the search for
pC and pM are performed alternately according to Sec-
tions 2.2.1 and 2.2.2 The resolution of x̃ also increases
with the number of iterations already performed (sim-
ilar to Sun et al.46), since the low resolution versions
bk of the images can only support a limited recon-
struction quality. This procedure allows us to decrease
the reconstruction time drastically while not sacrificing
overall reconstruction quality.

We chose not to update ΩM in every iteration of the
process. Since the updates of pM are rather small in
each iteration, they induce very little change to ΩM. We
find that delaying this calculation has very little impact
on quality, while further reducing computational costs.

3 IMPLEMENTATION DETAILS

3.1 Rigid motion description

The position of the source S(i) at acquisition time i is
given by applying the rotation

R(i) :=
(
Rx(𝜙(i))Ry(𝜃(i))Rz(𝜓(i))

)
⋅ Ry(𝛿(i))

and the translation

t(i) :=
(

t(i)x , t(i)y , t(i)z

)T

to the initial source position S(0) defined by the specifi-
cations of the CBCT device, resulting in

S(i) = R(i) ⋅ S(0) + R(i) ⋅ t(i),

see Figure 2 for details. As the relative positions of
source and detector are fixed, the position and rota-
tion of the detector can be computed in exactly the
same way. The angle 𝛿(i), the gantry rotation, is implicitly
given by the device geometry. Often, the default posi-
tions are equidistantly placed on a circle around the
scanned object.

The reason for using the local coordinates of the
source-detector pair for t, i.e. translating by R ⋅ t instead
of only t, is that translations perpendicular to the detec-
tor plane cannot be reconstructed reliably. The narrow
field of view (FOV) of CBCT machines (in our test
cases about 18◦ horizontal and 14◦ vertical cone angles)
makes the recovery of this dimension nearly impossible.
Using the above notation ensures that only tz is affected
by this uncertainty. In our implementation we drop this
coordinate for the optimization process.
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3516 MOTION CORRECTION FOR SEPARATE

ALGORITHM 1 The complete reconstruction algorithm. We set
𝛼 := pC, 𝛽 := pM for notation purposes.

Input: raw projections b, regularization parameter 𝜆,
PCA-model L, number of max iterations Ninner , Nouter ,
stopping criteria

Output: motion corrected reconstruction x

1 x0,𝛼0, 𝛽0 ← 0

/∗ use neural net to find 2D segmentations ∗/

2 lb ← IdentifyJaw2d(b)

3 for k = 1,… , Nouter do

/∗downsample the resolution of each image ∗/

4 bk ←↓k b

/∗compute ΩM and ΩC
∗/

5 𝜋k ← arg min
𝜋

E(Amax(𝛽k−1) ⋅ L(𝜋), lb)

6 ΩMk ← {v | v is inside L(𝜋k )}

7 ΩCk ← Ω⧵ ΩMk

8 �̂�0, 𝛽0 ← 𝛼k−1, 𝛽k−1

9 for t = 1,… , Ninner do

/∗ reconstruct x with current motion parameters
using CGLS ∗/

10 x̂t ←

arg min
x

(‖A∗
ΩCk ,ΩMk

(�̂�t−1, 𝛽t−1)x − bk‖2
2 + 𝜆R(x))

11 if stopping criteria met then

12 break

13 end

/∗ find optimal motion parameters for each image
independently ∗/

14 fori = 1,… , n do

15 �̂�
(i)
t , 𝛽(i)

t ← arg min
𝛼,𝛽

‖A∗(i)
ΩCk ,ΩMk

(𝛼, 𝛽)x̂t − b(i)
k ‖2

2

16 end

/∗ concatenate individual poses to motion field ∗/

17 �̂�t , 𝛽t ← (�̂�(1)
t ,… , �̂�(n)

t ), (𝛽(1)
t ,… , 𝛽(n)

t )

18 end

/∗ update reconstruction and parameters in outer
loop ∗/

19 xk ← x̂t

20 𝛼k , 𝛽k ← �̂�t , 𝛽t

21 end

22 return xNouter

Stopping criteria
We stop the motion-aware CGLS reconstruction from
tion 2.2.1 after 30 iterations since we found a higher
number to only increase the noise within the recon-
struction as well as negatively affecting the runtime, but
less iterations may yield a blurry 3D volume. We stop
Newton’s method for Equation (7) if there is no signifi-
cant improvement of the residual anymore, that is, 1 −
‖rk‖2

2‖rk−1‖2
2

< 𝜀2, which takes about three to four iterations

on average. In Section 2.2.3 we stop the computation

F IGURE 2 Instead of using one projection, our approach uses
two virtual source-detector pairs per X-ray image b(i). (SC, DC) only
scans x̃C (grey area) while (SM, DM) scans x̃M (blue area). The
resulting intensities are then added to generate the final projection.

of Equation (8) if 2 ⋅
‖rbest−rworst‖2

2‖rbest+rworst‖2
2

< 10−5 or after a fixed

number of 800 iterations. For all our experiments we
set the maximum number of outer iterations in Algo-
rithm 1, Nouter , to three and inner iterations, Ninner , to
five. As an additional stopping criterion we test whether
1 − ‖Ax̂t−bk‖2‖Ax̂t−1−bk‖2

< 𝜀 and if so, we continue the outer loop

with k + 1. We set 𝜀 = 0.025.

4 RESULTS

We conducted several experiments with both syn-
thetic and real data to evaluate our motion correction
algorithm. The synthetic data stems from a volumet-
ric density model,44 on which different magnitudes of
motion were tested. We are aware that this data may
overlap with data used to train the neural net and the
PCA-model from Section 2.2.3 Therefore we also verify
the labeling of the 2D projection images and creation of
the 3D labels on data sets of real patients which were
not included in this process.

4.1 Synthetic data

In this section we evaluate our methods using synthet-
ically generated projection data. To assess the quality
of our motion correction algorithm in various scenarios,
we created projections with three differently sized ROIs,
one of the whole head, one representing the biggest
possible volume of the Accuitomo 170 CBCT device
(170 mm diameter, 120 mm height), and a local tomog-
raphy setup with a very limited ROI (80 mm diameter,
65 mm height), see Figure 3. For each scenario we
simulated the two separate motions of cranium and
mandible using different motion profiles.
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MOTION CORRECTION FOR SEPARATE 3517

F IGURE 3 The cylindrical ROIs of the three tested setups are
shown in different colors. The biggest is a scan of the whole head
(blue), the purple one resembles the biggest ROI of the Accuitomo
170 device and our local tomography scenario can be seen in orange.

Motion of the cranium
We used three distinct motion profiles for the cranium.
For two of them, a random walk was performed for
each motion parameter, that is, degree of freedom, one
of low (up to 5◦ rotation, 2 mm translation) and one
of high (up to 15◦ rotation, 6 mm translation) ampli-
tudes. These motion profiles were taken from the work
of Niebler et al.37 and provide an unpredictable, chal-
lenging environment with multiplanar patient motions.
In the third profile the patient performed a single sud-
den movement after 200 frames (3◦ rotation on each
axis, 2 mm translation on each axis) and held this posi-
tion for the rest of the scan. Spin-Neto et al.47 put
an approximate threshold of 3 mm movements that
significantly increases the likelihood of images being
not interpretable, but acknowledge that the majority of
present patient movements are ≤ 2 mm. Those smaller
movements are covered by our first profile while our sec-
ond and third ones cover motions, that potentially render
reconstructions unusable.

Motion of the mandible
Using 50 volumes of the same subject but with differ-
ent positions of the mandible, we simulate a patient
opening the mouth during an acquisition. For the low
and high amplitude motion profiles the mouth is being
opened steadily by a downward motion during the whole
acquisition (5◦ and 3 mm in total), in the scenario with
the sudden movement the mandible is moved once
between frames 258 and 259 (also 5◦ and 3 mm). All
other motions (and thus degrees of freedom) are simu-
lated implicitly since the mandible is additionally moved

with the cranium. In the motion reconstruction process
we treat pC and pM as two independent parameter
sets.

With the given motion parameters and CBCT device
geometry we generate the 2D acquisition images from
the synthetically generated volumes (550 × 625 × 550
voxels) by virtually applying rotation and translation
in the forward projection. We make sure to always
scan the whole head (i.e., matter outside of the recon-
struction radius) to achieve high authenticity of our
synthetic data. This is especially important in the local
tomography scenario.

Whole head
In this paragraph we evaluate the quality of our pro-
posed algorithm in a scenario, where the limitations and
effects of local tomography setups, in particular the
truncation of matter,do not occur.Table 1 shows a quan-
titative analysis of similarities to the ground truth and
residual errors of this and the following scenarios. An
overview over volume and image dimensions can be
found in Table 3.

Accuitomo 170
Figure 4 shows the comparison of both the com-
puted cranial (4a) and mandibular (4b) motions to their
respective ground truths in the case of high motion
amplitudes. Typically, the computed motion parameters
and the ground truth would not align. This happens
because the pose of the reconstruction itself can
differ from the ground truth, for example the whole
reconstruction could be shifted upwards on the y-
axis. To achieve the maximal comparability of the
motion parameters, we rotated and shifted the coordi-
nate system so that it aligns with the first projection
image. Even in this case of severe motion, our method
could identify the present motion with high preci-
sion and increase the overall reconstruction quality
(Figure 5, Table 1).

The figure also suggests that finding the cranium’s
motion works better than reconstructing movements of
the mandible. Since the influence of pC on the cost
function E from Equation (7) is usually greater than the
influence of pM (i.e., E(pC + 𝜀, pM) > E(pC, pM + 𝜀) for
optimal pC, pM), this phenomenon would be expected.
As already mentioned, the translation parameter tz can-
not be computed reliably and is therefore fixed at 0. The
relative projection error of this scenario can always be
kept below 2% and we achieve an SSIM value of at least
0.86.

Local tomography
The local tomography problem is an especially challeng-
ing one for our algorithm. This type of scan normally
only allows reliable reconstructions inside a very lim-
ited cylindrical ROI (see Figure 3). Since the forward
projection of our algorithm has to mimic the X-ray
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3518 MOTION CORRECTION FOR SEPARATE

F IGURE 4 Comparison of the reconstructed motion parameters (Rec, blue curve) with the ground truth (GT , orange curve) for the
Accuitomo 170 scenario of both the cranium (a) and mandible (b). The projection data was created using motions from the data set of high
motion amplitudes.

F IGURE 5 Using the proposed method we were able to increase
the visual quality of the reconstruction of our synthetic model
drastically. In the top image ([−1000 HU, 1600 HU]), one can see a
slice of the initial, uncorrected reconstruction while the bottom image
([−1000 HU, 2200 HU]) shows the same slice of our motion
correction algorithm output. The motion parameters of this scenario
are shown in Figure 4.

TABLE 1 Comparisons of the relative projection errors‖Ax̃ − b‖2∕‖b‖2 (upper rows) and SSIM48 values (bottom rows) of
the uncorrected reconstruction (first value) and the output of our
algorithm (second value). SSIM values stem from comparing the
reconstructions to the ground truth, restricted to their respective
ROIs, with a window of 7 voxels. Our procedure was able to
drastically improve the projection error (up to 85%) as well as
increase the similarity between reconstruction and ground truth in
every case. Due to the high motion amplitude and narrow ROI;
however, the result of the marked scenario (*) would still be unusable
in a clinical application.

Whole head Accuitomo 170 Local tomography

Low amplitude 0.056 / 0.011 0.051 / 0.015 0.050 / 0.026

0.81 / 0.93 0.74 / 0.90 0.66 / 0.76

High amplitude 0.093 / 0.014 0.066 / 0.016 0.072 / 0.029 (*)

0.69 / 0.92 0.63 / 0.87 0.60 / 0.72

Sudden motion 0.057 / 0.02 0.058 / 0.02 0.071 / 0.029

0.78 / 0.92 0.71 / 0.89 0.63 / 0.78

projections of the CBCT device (to correctly find the
solution of Equation (7)), we also need to project matter
outside of the reconstruction radius. Therefore we are
forced to reconstruct data outside of the ROI, which of
course automatically induces some error due to incor-
rect attenuation values at those voxel positions. Accu-
rately identifying the mandible within these truncated 2D
projection images poses another challenge for our algo-
rithm. However, even in this setup it was still possible
to create fitting 3D labels for the mandible. In Figure 6
we compare the output of the proposed method with
the uncorrected reconstruction, the previous work,37
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MOTION CORRECTION FOR SEPARATE 3519

F IGURE 6 Qualitative comparison of the local tomography setup using low intensity motion amplitudes (a) and the whole head scenario
using the sudden motion (b). Even for small movements, the uncorrected reconstruction bears artefacts like double contours, concentric ring
patterns and general fuzziness (as already described by Schulze et al.8). Compared to the previous approach,37 our method can improve the
reconstruction even further. In the local tomography scenario, the improvements are not limited to the region of the lower jaw only, but the quality
(visual as well as in least squares sense) of the remaining image is also increased by using our mathematical model of two separate rigid
motions. In scenario (b) the definition of the lower jaw is clearly enhanced compared to the previous approach. All shown Hounsfield units are
within [−1000 HU, 2200 HU].

F IGURE 7 Three examples of our PCA-model with scans of real
patients. The model provides a good fit in all cases, albeit a bit offset
in the last image. Since the labels are artificially enlarged afterwards,
small misalignments of only a few voxels usually do not matter. The
second image shows a patient with a tilted head, in this case the
model finds the correct rotation parameters and can achieve a close
fit, too.

and the ground truth in our local tomography setup (6a)
and for the whole head (6b).

PCA-model L
Figure 7 shows the voxels inside the triangle mesh
resulting from Equation (8), that is, L(𝜋), for three
examples, before we artificially enlarge this area and
soften its edges to create the final label ΩM. The three
depicted volumes were neither involved in the training

TABLE 2 The dice-coefficient DSC between ground truth and
the segmentation in the 2D projection data provided by our neural
network. The projections stem from the data sets of the high motion
amplitude category.

Whole head
Accuitomo
170

Local
tomography

DSC 0.95 0.95 0.84

data for our neural net, nor are they included in the data
for the PCA-model L (see Section 2.2.3). In Table 2 we
compare the output of the neural net with the ground
truth of the labeled projection data. The network pro-
vides segmentations of very high quality, whenever the
whole mandible is visible, that is, for the whole head and
Accuitomo 170 scenarios, and some reduced quality in
the case of local tomography.

Regularization
The choice of the regularization term R and the param-
eter 𝜆 in Equation (2) can have a drastic effect on
the reconstructions x̂t, and with that especially on the
motion estimation in Equation (7). It is important to note
that reconstructions showing high visual quality (which
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3520 MOTION CORRECTION FOR SEPARATE

F IGURE 8 Influence of the regularization term on the quality of
our method using the example of the Accuitomo 170 data set with
high motion amplitudes. The plot shows the SSIM value between the
final reconstruction and the ground truth. All intermediate
reconstruction were obtained with the depicted regularization term
and for the final reconstruction we applied the same regularization to
all test cases (R(x) = ‖∇x‖2

2 with 𝜆 = 100).

TABLE 3 Runtimes and dimensions of the different test
scenarios. For this table we performed all three outer and five inner
iterations without the usage of other stopping criteria to achieve a
conservative runtime estimation.

Volume size Image size Runtime

Whole head 300 × 300 × 300 300 × 300 × 516 9 min

Accuitomo 170 450 × 300 × 450 465 × 370 × 512 23 min

Local Tomography 450 × 300 × 450 357 × 285 × 600 21 min

can for example be achieved by penalizing ‖∇x‖2
2) are

not necessarily those, which are most useful for our
motion estimation. Figure 8 shows a study on differ-
ent regularization terms.We find that strongly penalizing
negative attenuation values, i.e. setting R(x) = ‖x−‖2

2,
which in theory breaks the linearity of Equation (2),
forces the conjugate gradients in a “more positive”direc-
tion and has a beneficial effect on our whole algorithm.
All shown results were created using this regulariza-
tion term with 𝜆 = 10000 during the motion correction
algorithm and R(x) = ‖∇x‖2

2 with 𝜆 = 100 for the final,
depicted reconstructions.

Runtimes
Optimizing the runtime of our algorithm was not the
primary focus of this work.Nevertheless we want to give
a brief summary of the overall execution times of the
previously discussed scenarios, which can be seen in
Table 3. Our algorithm was run on a test system with an
Intel i7-11700K processor and 64 GB of RAM equipped
with an Nvidia RTX 3090 GPU. The resulting execution
time is directly dependent on the number of input pixels
and the dimension of the reconstructed volume. Using
the resampling approach decreased the number of

F IGURE 9 The skull is placed on top of the hexapod, at the
height of a real patient’s head. The platform moves during the
acquisition, creating reproducible motion parameters.

F IGURE 10 Individual components of the motion apparatus.
Skull suspension and mandibular support (a), freedom of movement
of the mandible (b), HSRM marker (c), placement of marker and
camera on the platform (d).

pixels and voxels along each dimension by 50% and
30% in the two first outer iterations, respectively, cutting
the execution time roughly in half without negatively
impacting the final reconstruction. Note that the output
motion parameters are independent of image dimen-
sions and volume sizes, so they can be used to create
arbitrarily large reconstructions afterwards.

4.2 Real data

Skull
To verify the practicality of our approach with real
CBCT machines, we conducted several scans of a skull
placed on a robot platform. We simulate the patient’s
head movement utilizing a Stewart-Platform,49 often
also called a hexapod. A hexapod is a composition of
two platforms connected by six linear actuators. The
position and orientation of the upper platform can be
adjusted by changing the length of the individual actu-
ators. Figure 9 shows our setup positioned under the
CBCT machine during a test run. We use a commercial
solution for the Stewart-Platform,50 which we adapt and
expand for our usage. In addition, we developed a con-
struction for independent movement of the skull’s lower
jaw (Figure 10a). We simulate the complex mandible
movement as a simple rotation around the laterally
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MOTION CORRECTION FOR SEPARATE 3521

F IGURE 11 With our setup we were able to precisely control the movements (cranium and mandible) of a human skull while performing an
actual CBCT acquisition. Here we show the reconstructions of the machine’s manufacturer (top) and the output of our algorithm (bottom). The
shown slices of the two scenarios slightly differ to properly highlight the affected regions. In scenario (a) the vendor’s reconstruction suffers
heavily from motion-induced artifacts, while our method was able to mitigate those up to a point where they are barely even noticeable. In the
right half of this figure, reconstruction errors of the mandible are clearly observable in the top row, while the reconstruction of the cranium
worked perfectly. By modeling the patient’s mandibular motions independently, we were able to create an error-free reconstruction of the
mandible in this case, too. [−1000 HU, 2400 HU].

F IGURE 12 From the tracked positions and orientations of
cranium and mandible we compute the angles and translations in the
local coordinate system of the source-detector pair, as described in
Section 3. This figure compares the tracked motions (GT , orange
curve) with the motion parameters found by our algorithm (Rec, blue
curve). Again, the translation in the z-direction is kept at 0.

oriented axis positioned in the condyles area as a first
approximation.Using a standard step motor,we can per-
form jaw movements with a rotation angle of around 9◦

in steps of 0.1◦ (Figure 10b). To track the current posi-
tion and orientation of cranium and mandible,we use an
in-house built tracking system (HSRM Tracking51). As
seen in Figure 10d, we placed one marker on the back-
side of the platform and attached an additional one to
the construction of the mandible holder. With a camera
fixed to the lower platform, we can simultaneously track
the current positions of cranium and mandible.

We run different motion profiles, concurrently moving
the skull’s cranium and the lower jaw. Figure 11 shows
the results of two different such profiles.For Figure 11(a)
we performed a (quite strong) periodic motion of the cra-
nium while simultaneously moving the mandible (also
see Figure 12). In total we measured a movement of
about 6 mm in the middle and 7.4 mm in the upper part
of the reconstructed area. Figure 11b shows a scenario
where the lower jaw of the skull was opened and closed
several times and then remained in a different position

for the rest of the scan. With this motion profile the chin
moved 9.5 mm between start and end position.

Patient
Lastly we verify our method on a CBCT acquisi-
tion of a patient in a real clinical application. During
this acquisition the patient performed a strong motion
(about 1 cm displacement), rendering the uncorrected
reconstruction unsuitable for further clinical usage (see
Figure 13a). In this case the patient had to undergo
another CBCT-examination. The result of our method
can be seen in Figure 13(c). Compared to the vendor’s
reconstruction, the quality could be clearly enhanced
and existing motion artifacts are mitigated. Due to the
severe motion however, we increased Nouter and Ninner
and performed a total number of 34 iterations. The
image in the middle Figure 13b shows the result when
applying the method described by Niebler et al.37 Our
reconstruction shows further improvement of the overall
quality, especially noticeable as sharper edges through-
out the image, for example the transition between tooth
and air is less blurry. The visible artifacts in the region
of the lower jaw are due to a metal implant in one of the
patient’s teeth.

5 DISCUSSION

Patient motion during the 10 to 40 s long exposure
in maxillofacial CBCT is a frequent finding. Depend-
ing on the assessment method, patient motion was
detected between 24%52,53 and up to 78% of the
CBCT-examinations.24 Typical image degrading effects
caused by such motion are motion blur, that is, reduced
spatial resolution and typical artifacts like stripe- and
ring-patterns.7,8,54 Since the long exposure times are
due to hardware limitations and will most likely not be
reduced considerably in the near future, the patient
motion issue will also persist. We propose a marker-free
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3522 MOTION CORRECTION FOR SEPARATE

F IGURE 13 Reconstructions of motion-impaired data from a real patient. Written informed consent was obtained prior to publishing this
image.

method capable of enhancing the quality of motion-
beset maxillofacial CBCT-data a posteriori. As a novelty,
the method also reconstructs separate motion of the
mandible relative to the cranium. This motion pattern
has been observed in patient CBCT-examinations.24

Even in cases with unrealistically large motion ampli-
tudes of 6 mm the proposed method worked rather
well. Using a convolutional neural net dealing with seg-
mentations in the artefact-free 2D projection images
from the CBCT-scan, the mandible is very reliably seg-
mented from the remaining skull. Based on the previous
work from Niebler and colleagues37 our motion aware
reconstruction based on the CGLS algorithm models
patient motion by two separate rigid motions, that is,
that of the mandible and that of the cranium. This con-
sideration is the main difference to previous works, for
example, Niebler37 and the similar approach of Sun
et al.,46 providing a much more versatile motion correc-
tion algorithm. Our real-world clinical case (Figure 13)
also proves the enhancement of the resulting volume
reconstruction in an actual clinical application. In the-
ory, it is even possible to apply a different reconstruction
algorithm, for example the widely used FDK algorithm,
but we found CGLS to produce results of higher quality.

It is also interesting to note, that the proposed method
is capable of reliably estimating the motion occurring
in a CBCT. This could also be used to track motion in
existing data, whenever the 2D projection radiographs
and geometric machine parameters are available. In
a clinical or scientific context, estimation of the true
patient motion yields helpful information for both CBCT
image acquisition and further enhancement of the
machines.

5.1 Limitations

All of our test cases assumed an aligned detector of
the CBCT device and a full 360◦ rotation scan. Contrary,
some clinical CBCT devices employ different strategies,
for example, by using a lateral-offset detector or by
applying short scan protocols in certain acquisition
modes. In such cases, the patient is scanned mostly, or
even completely, for only 180◦ plus cone angle. Similar

F IGURE 14 Limitations of our algorithm: (a) A typical flawed
output when using scan geometries with lateral-offset detectors. (b)
Reconstruction of the scenario marked in Table 1 after motion
correction. In this case the combination of high motion amplitudes
and small ROI made the recovery of the true motion parameters
impossible.

to the methods analyzed by Santaella et al.55 we find
that our motion correction algorithm produces results
of lower quality in setups with lateral-offset detectors,
and it fails to output acceptable results for short scan
data. In lateral-offset setups, recovery of motions of the
cranium is still possible in many cases (albeit usually
with less precision), but correcting separate mandibular
motions was impossible in our test cases. A typical
output with this setup can be seen in Figure 14a.

When motion amplitudes are excessive,our proposed
method cannot reconstruct the correct motion parame-
ters because the bad quality of the initial reconstruction
does not allow useful pose estimations. Usually it is still
possible to reduce the projection error ‖Ax̃ − b‖2 and
enhance the reconstruction quality, but the result may
still be unusable for medical diagnosis. For example,
with the local tomography scenario using the tested high
motion amplitudes, our algorithm can improve both the
projection error and the SSIM compared to the ground
truth (Table 1); however, the visual quality of the result
is still not satisfactory and unsuitable for further usage
(Figure 14b). Unfortunately there is no hard threshold
of when motion amplitudes are too high, since the qual-
ity of our results also depends on the given setup. The
motion estimation works best for bigger ROIs and there-
fore fails earlier in narrow local tomography setups, as
already seen in Section 4.
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MOTION CORRECTION FOR SEPARATE 3523

Real-world CBCT data is hard to come by. We could
demonstrate our approach on one clinical data set and
several scans of a moving skull,but the evaluation of our
method would still benefit from more clinical data. This
also applies to the mandible segmentation within the 3D
volume. In our test cases, the label of the mandible did
not grow into the region of the upper jaw. However, our
segmentation method currently does not strictly enforce
this. In such cases separate motion correction for cra-
nium and mandible would not be possible or artifacts like
double contours within the tooth row can arise. In these
situations a tooth-type trained network could be helpful
to ensure a more exact segmentation of the lower and
upper teeth.We hope to perform further studies on more
measurements in the future.

6 CONCLUSION AND FUTURE WORK

We presented a motion estimation and motion cor-
rection method for 3D-CBCT, based only on the 2D
radiographic images. As a novelty, our method con-
siders separate cranial and mandibular motions. The
experiments showed that our algorithm is capable of
consistently enhancing reconstruction quality. Quantita-
tive comparisons of synthetically generated data from
different scenarios (including local tomography) and
qualitative comparisons of real acquisitions are pro-
vided. We found, that the proposed method was able to
improve visual quality as well as the SSIM to the ground
truth in every case. In many cases previously unusable
CBCT scans could be enhanced to allow for further clin-
ical usage. Since some manufacturers use lateral-offset
detectors to save hardware costs, our research group
will focus future work on further improving results with
these kinds of scanning geometries.Future research will
be also directed towards refinement of the methodology
and potential implementation in clinical work.
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APPENDI X A: DERI VAT I ON OF THE
GRADI ENT
Here we derive the gradient of Equation (7) with respect
to the motion parameters pC and pM. As we separate
Equation (7) into n independent optimization problems
and choose E as the L2-norm of the residual, we can
write it for each image b(i) as

E(x̃, p(i)
C , p(i)

M ) = ‖A(i)(p(i)
C , p(i)

M )x̃ − b(i)‖2
2

and with that the gradient is given by

∇pE = 2(∇pA(i)(p(i)
C , p(i)

M )x̃)T (A(i)(p(i)
C , p(i)

M )x̃ − b(i)).

To compute ∇pA(i)(p(i)
C , p(i)

M )x̃, we first look at every pixel
c of the forward projected (discrete) volume, which is
given by summing up the attenuation values along the
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discretized ray 𝛾c:

(A(pC, pM)x̃)c =
∑
x∈𝛾c

[(1 − 𝜆(T(pC)(x))) ⋅ x̃(T(pC)(x))

+𝜆(T(pM)(x)) ⋅ x̃(T(pM)(x))]

=
∑
x∈𝛾c

(1 − 𝜆(T(pC)(x))) ⋅ x̃(T(pC)(x))

+
∑
x∈𝛾c

𝜆(T(pM)(x)) ⋅ x̃(T(pM)(x)),

where 𝜆(x) is the value of the 3D label at position x ∈
ℝ3 and T being the rigid transformation on the voxel
position. This results in the (separated) gradients

∇pC
(A(pC, pM)x̃)c

=
∑
x∈𝛾c

[−JT (pC)(x) ⋅ ∇x𝜆(T(pC)(x)) ⋅ x̃(T(pC)(x))

+ (1 − 𝜆(T(pC)(x))) ⋅ JT (pC)(x) ⋅ ∇xx̃(T(pC)(x))]

=
∑
x∈𝛾c

JT (pC)(x) ⋅ [−∇x𝜆(T(pC)(x)) ⋅ x̃(T(pC)(x))

+ (1−𝜆(T(pC)(x))) ⋅ ∇xx̃(T(pC)(x)))]∇pM
(A(pC, pM)x̃)c

=
∑
x∈𝛾c

JT (pM)(x) ⋅ [∇x𝜆(T(pM)(x)) ⋅ x̃(T(pM)(x))

+𝜆(T(pM)(x)) ⋅ ∇xx̃(T(pM)(x))]

JT ∈ ℝ
6×3 can be obtained by computing the Jaco-

bian of the rigid transformation T(p) with respect to
the parameter p ∈ ℝ6 and ∇xx̃,∇x𝜆 ∈ ℝ

3 as the spatial
gradient of the reconstruction and label, respectively. In
our implementation we use linear interpolation on both
volumes,which enables a fast computation of these gra-
dients as they can be implemented via texture lookups
on the GPU.
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