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Abstract

In the domain of high-performance computing (HPC), large (distributed) parallel file
systems form the storage backbone of HPC systems to solve complex computational
problems. Such HPC systems can include hundreds of thousands of compute nodes
backed by hundreds of petabytes of available storage. However, in recent years, file
system access patterns have changed as increasingly more data-intensive applications
have started using HPC systems to process massive amounts of experimental data.
Their access patterns differ from traditional HPC workloads that mainly performed
sequential I/O (input/output) operations on large files for which the parallel file
systems were initially optimized. Since the file system is shared within the entire
HPC system, access patterns of a single data-intensive application can interfere with
other users of the HPC system, resulting in reduced I/O throughput, prolonged
I/O latencies, and long waiting times. Various storage solutions were proposed to
mitigate such issues, including dedicated hardware-based solutions or new software-
based I/O interfaces. Nevertheless, these methods can be costly or, depending on
the application, challenging to support, particularly if they involve adapting an
application’s I/O layer to new I/O APIs and semantics.

In this dissertation, we will discuss three topics in the realm of these new challenges,
focusing on system analytics in parallel file systems, burst buffer file systems, and
object store file systems. First, we will provide a detailed investigation and offer
insights into the difficulties developers face when aiming to understand the behavior
of the GPFS parallel file system. We will propose a new analysis framework, FlexTrace,
alleviating various limitations and overheads of existing mechanisms. Next, we
will design, implement, and evaluate two novel distributed file systems, GekkoFS
and DelveFS, leveraging existing compute node-local storage devices that often
remain unused. The GekkoFS distributed burst buffer file system offers a temporary
and highly scalable I/O system that is optimized for the above-presented data-
intensive HPC applications. GekkoFS can be started ad hoc in seconds, provides the
standard I/O interface, and can be easily used exclusively by a single application.
Therefore, challenging access patterns are handled by GekkoFS instead of the HPC
system’s parallel file system. By redefining file system protocols and semantics, the
burst buffer file system can considerably outperform the capabilities of parallel file
systems if given enough node-local storage resources while still supporting most
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HPC applications. Lastly, the DelveFS event-driven semantic file system focuses on
providing the standard I/O interface for data-intensive HPC applications that need
to access scientific data which is only available via the custom APIs of object stores,
e.g., OpenIO or Amazon’s S3. DelveFS builds on new mechanisms of object stores to
provide users with a new interactive way of accessing data, allowing them to define
their own views on object store containers that sometimes contain millions of objects.
By offering new techniques, DelveFS provides similar I/O throughput compared to
an object store’s native I/O interface while accelerating certain I/O operations that
are generally challenging for object stores to perform efficiently.
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German abstract

Im Bereich des Hochleistungsrechnen (engl. high-performance computing, HPC),
das bei der Berechnung von komplexen numerischen Problemen zum Einsatz
kommt, werden große (verteilte) parallele Dateisysteme eingesetzt, um den enormen
Speicher-Bedarf von HPC-Systemen zu decken. Solche HPC-Systeme können
Hunderttausende von Rechenknoten umfassen, die von Hunderten von Petabytes an
Speicher gestützt werden. In den letzten Jahren hat sich der Zugriff auf parallele
Dateisysteme jedoch stark verändert. Immer mehr daten-intensive Applikationen
haben damit begonnen, HPC-Systeme zur Verarbeitung enormer Mengen von
experimentellen Daten zu nutzen. Die entsprechenden Zugriffsmuster unterscheiden
sich dabei stark von Zugriffsmustern traditioneller HPC-Applikationen, die vor allem
durch sequenzielle Zugriffe auf große Dateien geprägt waren und dahingehend
optimiert wurden. Da parallele Dateisysteme innerhalb des gesamten HPC-Systems
gemeinsam verwendet werden, können diese neuartigen Zugriffsmuster der daten-
intensiven Applikationen dazu führen, dass einzelne Anwendungen andere Nutzer
des HPC-Systems negativ beeinflussen. Dies kann sich in einem verringerten
Datendurchsatz und längeren Zugriffslatenzen äußern, was insgesamt zu längeren
Wartezeiten beim Zugriff auf Daten im parallelen Dateisystem führen kann. Hierbei
wurden bereits verschiedene Lösungen vorgeschlagen, um solche Probleme zu
entschärfen. Darunter fallen sowohl dedizierte hardwarebasierte Lösungen als
auch neuartige softwarebasierte Datenschnittstellen. Solche Methoden können
jedoch kostspielig oder, je nach Anwendung, schwierig zu verwenden sein. Das gilt
insbesondere dann, wenn Anwendungen modifiziert werden müssen, um nicht-
standardisierte Datenschnittstellen oder Semantiken zu unterstützen. Dies ist
aufgrund der Komplexität solcher Anwendungen oft nur unter hohem Aufwand
möglich.

In dieser Dissertation werden wir drei Themen im Kontext dieser Herausforderungen
erörtern und uns dabei auf die Systemanalyse in parallelen Dateisystemen, Burst-
Buffer-Dateisystemen und Objektspeicher-Dateisystemen fokussieren. Zunächst
werden wir Schwierigkeiten untersuchen, die auftreten, wenn das Verhalten
von einem parallelen Dateisystem festgestellt werden soll. Hierbei werden wir
außerdem die Perspektive der GPFS-Entwickler erläutern. Um diese Analyse zu
vereinfachen, werden wir das neue FlexTrace Analyse-Framework beschreiben,
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das verschiedene Einschränkungen und Overheads bestehender Mechanismen
von GPFS entschärft. Als Nächstes werden wir die Architektur von zwei
neuartigen verteilten Dateisystemen vorstellen und evaluieren: GekkoFS und DelveFS.
Beide Dateisysteme nutzen dabei bereits existierende, lokale Flash-Speicher der
Rechenknoten, die sonst oft ungenutzt bleiben. Bei GekkoFS handelt es sich um
ein temporäres und hoch-skalierendes, verteiltes Burst-Buffer-Dateisystem, das
im Hinblick auf die genannten Zugriffsmuster der HPC-Anwendungen optimiert
wurde. Das Dateisystem stellt dabei die standardisierte Schnittstelle für Lese- und
Schreib-Operationen zur Verfügung und kann (ohne administrative Unterstützung)
exklusiv von einer einzigen Anwendung innerhalb eines Rechenjobs verwendet
werden. Es kann dementsprechend ad hoc in wenigen Sekunden gestartet
und wieder gestoppt werden. Anstelle des parallelen Dateisystems können
die Zugriffsmuster somit direkt durch GekkoFS verarbeitet werden. Mit der
Neudefinition von Dateisystemprotokollen und -Semantiken kann GekkoFS die
Performanz von parallelen Dateisystemen weit übertreffen, sofern genügend lokale
Speichermöglichkeiten verfügbar sind. Dabei kann GekkoFS die meisten HPC-
Anwendungen unterstützen. Zuletzt werden wir das ereignis-gesteuerte semantische
Dateisystem DelveFS vorstellen. Es stellt eine standardisierte Lese- und Schreib-
Schnittstelle für HPC-Anwendungen bereit, die auf wissenschaftliche Daten zugreifen
müssen, die aber nur über proprietäre Schnittstellen von Objektspeichern zugänglich
sind. Als Beispiele für Objektspeicher können OpenIO oder S3 von Amazon genannt
werden. Das Dateisystem nutzt dabei neuartige Mechanismen der Objektspeicher,
um den Nutzern einen interaktiven Zugriff auf diese Objektspeicher zu bieten.
Dies ermöglicht eine Nutzer-definierte Ansicht auf Objektspeicher-Container und
erleichtert deren Handhabung erheblich, da solche Container mitunter Millionen
von Objekten enthalten können. Durch neuartige Techniken bietet DelveFS
einen ähnlichen Schreib- und Lese-Durchsatz, verglichen mit den proprietären
Schnittstellen der Objektspeicher. Gleichzeitig beschleunigt es verschiedene
Operation, die von den Objektspeichern häufig nur ineffizient durchgeführt werden
können.

x



Contributions and funding

In this section, I will describe my own contributions to this thesis in detail, which are
complete to the best of my knowledge. I personally performed the vast majority of
the scientific and technical work that is presented in this thesis, and I authored the
entirety of this dissertation. Nevertheless, I cannot claim sole authorship for every
idea and design decision as they were subject to the usual scientific discussions with
my doctoral advisor, supervisors, and external collaborators.

As listed in the following pages, this thesis will discuss various topics in the scope of
distributed file systems in high-performance computing (HPC). The corresponding
peer-reviewed publications [252, 253, 254, 255, 256] form the basis of this thesis,
and I am the primary author of these workshop and conference papers as well as
journal articles. I considerably extended these contributions by providing additional
details, background information, experiments, and explanations. Further, if not
otherwise clearly specified, I exclusively performed all experiments that were run
in the context of these publications. I clearly marked any contributions that were
partly made by me or exclusively by a third party.

I conducted the vast majority of this scientific work within the context of the ADA-FS
project, for which I did not author its proposal. However, although the initial idea
of using ad hoc storage systems in HPC was part of the ADA-FS project proposal,
my design and implementation of the GekkoFS burst buffer file system [252, 253]
significantly differ from it, drawing from insights that I achieved during my master’s
thesis [251]. This research has been conducted in collaboration with the Barcelona
Supercomputing Center (BSC), with some experiments kindly executed on the
MareNostrum 4 and NEXTGenIO supercomputers. Chapter 4 discusses GekkoFS, and
its content is partly based on the conference paper “GekkoFS – A temporary distributed
file system for HPC applications” by Vef et al. [253] and on the research articles
“GekkoFS – A temporary burst file system for HPC applications” by Vef et al. [252] and
“Ad hoc file systems for High-Performance Computing” (Section 4.2.5 – Interfacing
ad hoc file systems) by Brinkmann et al. [32]. Moreover, Section 4.5.7, which
presents GekkoFS in the context of deep learning, is partly based on the conference
paper “Streamlining distributed Deep Learning I/O with ad hoc file systems” [218]
by Schimmelpfennig and Vef et al. Note that although the author of this thesis

xi



contributed to the work in [218], it should not be considered as a main contribution
for this thesis.

I also designed and evaluated the DelveFS object store file system [254] within the
ADA-FS project. The OpenIO object store used in this context was configured and
set up by OpenIO at the MOGON II supercomputer at JGU. Its idea and design were
not part of the project proposal as its benefits only became apparent later in the
project. Chapter 5 discusses DelveFS, and its content is based on the conference
paper “DelveFS – An event-driven semantic file system for object stores” by Vef et
al. [254], which received a best paper award.

I investigated the challenges during tracing in the GPFS parallel file system and
designed and implemented the FlexTrace tracing framework [255, 256] partly within
the ADA-FS project. This topic was not initially part of the project proposal. I mostly
worked on this topic during a research internship at IBM, who offered the initial idea
and opportunity as it required access to the closed-source GPFS parallel file system.
Because the corresponding publication [255] and its contents were cleared by IBM’s
legal department, I did not include further insights and experiments on this topic
beyond textual and figure improvements, as well as additions to the background and
related work of the general tracing topic. I clearly marked insights that were only
possible due to private discussions with GPFS developers by using the citation [196],
which are consistent with the corresponding publication [255]. Chapter 3 discusses
this research direction, and its content is based on the research article “Challenges
and Solutions for Tracing Storage Systems: A Case Study with GPFS” by Vef et al. [256].
Note that [255], and correspondingly Chapter 3, describes a research direction, and
IBM does not have a commitment to integrate FlexTrace in its products.

This research was supported by the German Research Foundation (DFG) through
the Priority Programme 1648 “Software for Exascale Computing” and the ADA-FS
project. Further, this work was partially funded by the European Union’s Horizon
2020 under the “Adaptive multi-tier intelligent data manager for Exascale (ADMIRE)”
project; Grant Agreement number: 956748-ADMIRE-H2020-JTI-EuroHPC-2019-1.
The vast majority of the research discussed in Chapter 3 was gratefully funded
by IBM Research. Moreover, the scientific work presented in Chapters 4 and 5
was conducted using the supercomputer MOGON II and services offered by JGU.
I gratefully acknowledge the computing time granted on MOGON II. Finally, this
research was partially funded by JGU’s Center for Data Processing under the direction
of Prof. Dr.-Ing. André Brinkmann.

xii



Publications

Most of the contributions presented in this thesis have been published and were
peer-reviewed conference papers and journal articles. This thesis only discusses the
contributions where I am the first author. Exceptions are clearly specified.

The following lists all publications including those I co-authored:

First author:

• M. Vef, V. Tarasov, D. Hildebrand, and A. Brinkmann. “Tracing of Complex Pro-
duction Systems: Obstacles and Solutions”. In: Workshop on System Analytics
and Characterization (SAC) (Co-located with SIGMETRICS) (2016) [256].

• M. Vef, N. Moti, T. Süß, T. Tocci, R. Nou, A. Miranda, T. Cortes, A. Brinkmann
“GekkoFS - A Temporary Distributed File System for HPC Applications”. In:
IEEE International Conference on Cluster Computing, CLUSTER (2018) [253].

• M. Vef, V. Tarasov, D. Hildebrand, and A. Brinkmann. “Challenges and Solu-
tions for Tracing Storage Systems: A Case Study with Spectrum Scale”. In:
ACM Transactions on Storage 14.2 (2018) [255].

• M. Vef, N. Moti, T. Süß, M. Tacke, T. Tocci, R. Nou, A. Miranda, T. Cortes,
A. Brinkmann. “GekkoFS – A Temporary Burst Buffer File System for HPC
applications”. In: SPRINGER Journal of Computer Science Technology 35.1
(2020) [252].

• M. Vef, R. Steiner, R. Salkhordeh, J. Steinkamp, F. Vennetier, J. Smigielski,
A. Brinkmann. “DelveFS - An Event-Driven Semantic File System for Object
Stores”. In: IEEE International Conference on Cluster Computing, CLUSTER
(2020) [254].

Second author:

• S. Oeste, M. Vef, M. Soysal, W. E. Nagel, A. Brinkmann, A. Streit. “ADA-
FS - Advanced Data Placement via Ad hoc File Systems at Extreme Scales”.
In: SPRINGER Software for Exascale Computing – SPPEXA 2016–2019.
(2020) [174].

xiii



• F. Schimmelpfennig, M. Vef, R. Salkhordeh, A. Miranda, R. Nou, A. Brinkmann.
“Streamlining distributed Deep Learning I/O with ad hoc file systems”. In: IEEE
International Conference on Cluster Computing, CLUSTER (2021) [218].

Co-author:

• T. Süß, L. Nagel, M. Vef, A. Brinkmann, D. Feld, T. Soddemann. “Pure
Functions in C: A Small Keyword for Automatic Parallelization”. In: 2017 IEEE
International Conference on Cluster Computing, CLUSTER (2017) [234].

• M. Soysal, M. Berghoff, T. Zirwes, M. Vef, S. Oeste, A. Brinkmann, W. E. Nagel,
A. Streit. “Using On-Demand File Systems in HPC Environments”. In: 17th
International Conference on High Performance Computing & Simulation, HPCS
(2019) [229].

• A. Brinkmann, K. Mohror, W. Yu, P. H. Carns, T. Cortes, S. Klasky, A. Miranda,
F. Pfreundt, R. B. Ross, M. Vef. “Ad Hoc File Systems for High-Performance
Computing”. In: SPRINGER Journal of Computer Science and Technology 35.1
(2020) [32].

• T. Süß, L. Nagel, M. Vef, A. Brinkmann, D. Feld, T. Soddemann. “Pure
Functions in C: A Small Keyword for Automatic Parallelization”. In: SPRINGER
International Journal of Parallel Programming 49.1 (2021) [235].

• Y. Qian, W. Cheng, L. Zeng, M. Vef, O. Drokin, A. Dilger, S. Ihara, W. Zhang,
Y. Wang, A. Brinkmann. “MetaWBC: POSIX-compliant metadata write-back
caching for distributed file systems”. In: ACM/IEEE SC ’22: The International
Conference for High Performance Computing, Networking, Storage and Analysis
(2022) [197].

xiv



Abbreviations

ADMIRE Adaptive Multi-tier Intelligent Data Manager for Exascale
AI Artificial intelligence
API Application programming interface
BSC Barcelona Supercomputing Center
CLI Command-line interface
CMA Cross-memory attach
CPU Central processing unit
DB Database
DL Deep learning
DNA Deoxyribonucleic acid
DLM Distributed lock manager
EXT Extended file system
FAT32 File allocation table 32
FIDIUM Federated Digital Infrastructures for Research on Universe and Matter
FS File system
FUSE File system in user space
GPFS General parallel file system
GNU GNU’s not Unix
GPL GNU General Public License
HA High availability
HDD Hard disk drive
HPC High-performance computing
IBM International Business Machines
I/O Input/Output
IOPS Input/Output operations per second
IP Internet protocol
IPC Inter-process communication
JGU Johannes Gutenberg University Mainz
KV Key-value

xv



MDS Metadata service/server
MDT Metadata target
MMU Memory management unit
Mutex Mutual exclusion
MPI Message Passing Interface
NAS Network-attached storage
NFS Network File System
NUMA Non-uniform memory access
NSD Network-shared disk
NVMM Non-volatile main memory
OS Operating system
OSS Object storage service/server
OST Object storage target
POSIX Portable Operating System Interface
PTE Page table entry
RAID Redundant array of inexpensive disks
RAM Random access memory
RDMA Remote direct memory access
RPC Remote procedure call
SAS Serial-attached SCSI
SATA Serial advanced technology attachment
SDK Software development kit
SSD Solid-state drive
SST Static sorted table files
TLB Translation lookaside buffer
UNIX Uniplexed information computing system
USB Universal Serial Bus
VFS Virtual file system
YAML YAML ain’t markup language

xvi



Table of contents

1 Introduction 1

2 Theoretical background 5
2.1 File systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 The virtual file system . . . . . . . . . . . . . . . . . . . . . . 6
2.1.2 Block devices . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.3 File system specifics . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 General-purpose parallel file systems . . . . . . . . . . . . . . . . . . 12
2.2.1 GPFS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.2 Lustre . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Scalability challenges in distributed file systems . . . . . . . . . . . . 15
2.3.1 The POSIX standard . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.2 Metadata and small I/O operations . . . . . . . . . . . . . . . 17
2.3.3 Burst buffer file systems . . . . . . . . . . . . . . . . . . . . . 19

2.4 Object storage systems . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Challenges and solutions for tracing storage systems 23
3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.1 Tracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2.2 Tracing techniques . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3 Tracing in GPFS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.4 Challenges in tracing in GPFS . . . . . . . . . . . . . . . . . . . . . . 33

3.4.1 Tracepoint distribution . . . . . . . . . . . . . . . . . . . . . . 33
3.4.2 Trace collection overhead . . . . . . . . . . . . . . . . . . . . 37

3.5 Design of FlexTrace . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.5.1 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.5.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.6 Evaluation of FlexTrace . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.6.1 Test setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.6.2 Static tracing and single tracepoints . . . . . . . . . . . . . . 46

xvii



3.6.3 Bitmap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4 GekkoFS – A temporary burst buffer file system for HPC applications 53
4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2.1 General-purpose parallel file systems . . . . . . . . . . . . . . 56
4.2.2 Burst buffers . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.2.3 POSIX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.2.4 Metadata scalability . . . . . . . . . . . . . . . . . . . . . . . 58
4.2.5 Interfacing ad hoc file systems . . . . . . . . . . . . . . . . . . 59

4.3 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.3.2 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.3.3 Relaxed POSIX semantics . . . . . . . . . . . . . . . . . . . . 66
4.3.4 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.3.5 Metadata management . . . . . . . . . . . . . . . . . . . . . . 71
4.3.6 Data management . . . . . . . . . . . . . . . . . . . . . . . . 74

4.4 Use cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.5.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . 80
4.5.2 Startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.5.3 Metadata performance . . . . . . . . . . . . . . . . . . . . . . 84
4.5.4 Data performance . . . . . . . . . . . . . . . . . . . . . . . . 88
4.5.5 I/O variability and worst-case . . . . . . . . . . . . . . . . . . 96
4.5.6 Effects on the network . . . . . . . . . . . . . . . . . . . . . . 98
4.5.7 Distributed deep learning . . . . . . . . . . . . . . . . . . . . 100

4.6 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5 DelveFS – An event-driven semantic file system for object stores 107
5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
5.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.2.1 Containers and objects . . . . . . . . . . . . . . . . . . . . . . 111
5.2.2 Object properties . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.2.3 Object storage file systems . . . . . . . . . . . . . . . . . . . . 112
5.2.4 Event notifications . . . . . . . . . . . . . . . . . . . . . . . . 113

5.3 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
5.3.1 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

xviii



5.3.2 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
5.3.3 Event handler . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
5.3.4 File system client . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
5.4.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . 122
5.4.2 Event processing . . . . . . . . . . . . . . . . . . . . . . . . . 123
5.4.3 Metadata performance . . . . . . . . . . . . . . . . . . . . . . 126
5.4.4 Data performance . . . . . . . . . . . . . . . . . . . . . . . . 131

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6 Conclusion 137

A Appendix 139

Bibliography 149

xix





Introduction 1
When consumer magazines publish articles about data storage, the conversation
usually mainly revolves around a storage device’s price and its performance, i.e.,
the write and read (I/O) speeds and the capacity [@31, @107, @120]. Flash-based
storage technologies, such as solid-state drives (SSDs), have become the de-facto
standard in many consumer products. Compared to traditional mechanical, magnetic
disks, more commonly known as hard disk drives (HDDs), the superior read and
write bandwidth, access latency, energy efficiency, and physical dimensions of SSDs
are vital for premium laptops, phones, cameras, and other consumer devices. With
manufacturers pushing for designing ever-thinner devices, non-volatile memory
express (NVMe) SSDs are often used, offering even more write and read performance
than SATA SSDs, and they reach up to an order of magnitude higher bandwidths
than HDDs. Nevertheless, while SSDs, in general, outsold HDDs in unit sales by 3:2
in 2021, HDDs still outsold SSDs in terms of capacity by 4.5:1 [@224]. Therefore,
with the much lower price per terabyte of HDDs compared to SSDs by up to 5 times
in 2021, HDDs are still heavily used when capacity requirements are more important.
This is especially the case when data is accessed sequentially, e.g., for backups, file
storage, or for home network-attached storage (NAS) solutions.

While the type of storage device is the most driving factor behind its I/O performance,
it cannot be solely used on its own to store data conveniently. For this task, file
systems exist, which provide a software abstraction layer that organizes a user’s data
on a storage device. Based on the familiar idea of ordering physical documents
(or files) into folders which can hold several files, file systems present a similar
hierarchical structure to users which they can quickly grasp. In essence, a file in a
file system represents a contextual piece of coherent data, such as a document or
spreadsheet, accessed by its name. Files can then be organized into a digital folder
(or a directory1) which itself can contain more directories. Therefore, although
possible, users almost never use the storage device directly.

Overall, similar to how the placement and function of a car steering wheel and
pedals are identical for the vast majority of automobiles, files and directories have

1Historically speaking, file systems at first only offered a flat namespace [104], i.e., a single directory,
while hierarchical file systems were first introduced with the Multics operating system [49] and
later became wide-spread with the FAT [62], MINIX [239], or HFS [33] file systems.
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become an integral part of human-machine interaction for storage and, in their
representation and function, are equivalent across the mainly used Windows, macOS,
and Linux operating systems. As a result, consumers are accustomed to the basic
functionalities of file systems due to their fundamental similarities in usage. That
being said, users can still encounter incompatibilities between different file systems
because of limitations, e.g., the 4 GiB maximum file limit of the FAT32 file system
that comes pre-installed on most USB flash drives.

Nonetheless, file systems offer much more than organizing a user’s data into files
and directories. Over time, a large number of file systems were developed, each
focusing on a specific use case, such as file systems for local machines [@140, 213],
tapes [186], distributed environments [30, 219] and many more [6, 19, 21, 41, 54,
94, 100, 159, 211]. They have fostered many innovations and features; some have
become so complex that they contain millions of lines of code [255]. Such features
include increasing maximum allowed file sizes or the ability to use symbolic and
hard links. More advanced features cover, e.g., journaling to prevent inconsistent
file system states on crashes or extents to reduce metadata and fragmentation of
data blocks [@140]. Even an entire set of I/O standards was specified (see the
Portable Operating System Interface (POSIX) [262]) coupled with a well-defined
interface of the Linux kernel for all file systems – the virtual file system (VFS) [113]2.
With the VFS, application developers can rely on an I/O interface supported by all
Linux kernel file systems, and it further offers various caches, e.g., a cache for file
metadata. However, as we will discuss later, the VFS and the POSIX I/O standards
also have several drawbacks, especially when file systems operate in a distributed
environment.

An example of such a distributed environment is a supercomputer or compute cluster
that is used by high-performance computing (HPC) to solve complex computational
problems. The size of HPC clusters can range from thousands of machines (or
compute nodes) to hundreds of thousands of nodes with millions of processor cores
in total [@247] that are connected via high-performance network fabrics. Because
individually managing local file systems and their data on each node is highly im-
practical, HPC clusters also use one or several parallel file systems that pool together
the resources of tens of thousands of storage devices. Examples of commercial
and widespread parallel file systems are Lustre [30], GPFS [219], or BeeGFS [97].
Typically, these parallel file systems rely on a large number of HDDs for cost reasons.
For instance, the Frontier supercomputer [@74] at Oak Ridge Leadership Computing
Facility (OLCF) started user operations in 2022 and is one of the first exascale super-
computers in the world with a targeted 1.5 exaflops of peak performance. Frontier’s

2Note that this thesis focuses on file systems for the Linux operating system.
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Lustre parallel file system combines the performance and storage capacity of more
than 45,000 HDDs providing more than 650 petabytes of storage capacity, and it
uses 20 petabytes of NVMe SSD storage to handle file system metadata and to offer
a fast storage tier.

Using HDDs for data and SSDs for metadata is common across many HPC systems
and is often complemented by additional node-local SSDs for temporary storage [32,
265]. Nevertheless, while a single HDD can provide a bandwidth of more than
200 megabytes per second for sequential access, which has been the predominant
use case for HPC systems in the past, newer data-driven applications, processing
massive amounts of experimental data from various scientific fields, have different
I/O behavior and larger data requirements [265, 276]. Their I/O operations include
random and small I/O that can reduce disk throughput below one percent of an
HDDs peak performance [32]. Further, limitations imposed by the POSIX standard
can severely hinder the metadata performance of parallel file systems. This, and
other challenges, e.g., cross-application interference due to I/O [139, 272], can
lead to prolonged I/O latencies, reduced I/O throughput, and long wait times for
users of the parallel file system. What is more, this does not only impact the user’s
application but can also heavily disrupt other applications that are using the same
shared storage system [60, 243].

This thesis discusses three main subjects in this context, covering various challenges
of parallel file systems in modern HPC systems and proposing possible solutions:

1. We will provide a detailed analysis of the challenges developers face when
aiming to understand the behavior of the widely established GPFS [219]
parallel file system. To examine system behavior, the tracing technique has
become an essential tool in many use cases, including in development and
production environments. However, tracing has various limitations that can
cause high performance and storage overheads in certain situations and use
cases, e.g., in metadata-intensive workloads. We will discuss and evaluate these
tracing limitations and propose a new practical tracing interface – FlexTrace –
to alleviate them.

2. We will discuss – GekkoFS – a novel ephemeral and highly scalable distributed
file system that is optimized for I/O operations found in the above-introduced
data-driven applications. It can be deployed ad hoc and uses a compute node’s
local storage capabilities as burst buffers to pool together the storage and
performance of many nodes. As a result, GekkoFS can linearly scale data and
metadata operations, substantially outperforming the capabilities of typical
parallel file systems. By taking the design of existing distributed file systems
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and previous studies on the behavior of HPC applications into account, we
will present and evaluate a highly decoupled file system implementing relaxed
file system semantics that any HPC user can deploy without administrative
support.

3. We will present – DelveFS – an event-driven semantic file system for object
stores that offers users the ability to define a custom file system, allowing
multiple unique views onto the object store. Because of their high scalability
and low maintenance overhead, object stores have become a popular option
for many use cases ranging from archiving, media, and entertainment to large
amounts of scientific data. However, object stores offer a custom I/O interface
and cannot be utilized by existing applications that expect the standard file
system interface. DelveFS provides such a file system interface, can run beside
other object store interfaces and achieves similar performances as native object
store interfaces. By exploiting object store events to keep file system views
consistent, DelveFS significantly eases the usability of object store containers
that contain huge numbers of objects and improves the performance of the
corresponding file system operations considerably.

This dissertation is structured as follows: First, Chapter 2 will provide the theoretical
background, covering all topics that are relevant to this thesis. Chapter 3 will present
the challenges and solutions for tracing storage systems, discussing tracing tech-
niques and their limitations, and will propose the FlexTrace tracing interface. Next,
Chapter 4 will introduce the GekkoFS distributed burst buffer file system, covering
its design and presenting a detailed evaluation for up to 512 nodes. Chapter 5 will
discuss the DelveFS event-driven semantic file system for object stores, providing its
design and evaluation. Chapter 6 will conclude this thesis.
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Theoretical background 2
This chapter will provide essential background information for the context and topics
covered in this thesis. This includes general concepts (e.g., file system basics and
interface standards), file system paradigms (e.g., block storage and object storage),
and the usage and challenges of distributed file systems in HPC environments. First,
Section 2.1 will introduce the basic file system terminology and some of the core
mechanisms. Section 2.2 will introduce parallel file systems and their architectural
differences. Next, Section 2.3 will discuss scalability challenges in distributed file
systems in the context of the POSIX standard and how burst buffer file systems can
help. Lastly, Section 2.4 will briefly introduce object-based storage systems and their
challenges for HPC applications.

2.1 File systems

File systems provide a way to organize data on storage devices in the form of files and
directories. These can then be accessed by users and applications via the common
file system interface. All objects in a Linux file system are generally considered files
and are identified by their name. A file’s type can refer to a regular file, a directory, a
hardware device, a socket, and others [@195]. The regular file is an abstract data
object identified by its name that people are used to.

The regular file, henceforward called a file, is the most common file type, and it
is used for documents, spreadsheets, or program executables, for instance. A file
contains both an ordered sequence of bytes (the corresponding data) and further
information about the file’s data (the file metadata). A folder or directory is another
type of file and essentially contains a list of file names to refer to other file system
objects within the directory. Therefore, the directory data is its list of files. As a
result, nested directories allow the file system namespace (or directory tree) to form
a hierarchical structure where files are the leaf nodes.
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Figure 2.1.: Simplified kernel architecture for I/O and the VFS with its components.

2.1.1 The virtual file system

The virtual file system (VFS) is a software abstraction layer within UNIX kernels,
handling all file system-related system calls and offering a unified interface for
all UNIX file systems [28]. For instance, this makes it possible that a file can be
copied between two file systems (on the same machine), e.g., an EXT4 Linux file
system and a FAT32 file system which is often used on USB flash drives, by using the
copy tool cp: cp /home/vef/some_data /mnt/flash_drive/some_data. In this
example, some_data is transparently copied between the two file systems EXT4
and FAT32. This is only possible because both file systems support the unified
VFS-defined interfaces, system calls, and data structures.

Figure 2.1 presents a simplified kernel architecture including the VFS. The VFS
consists of four main components which will be discussed in the following in more
detail: 1. the above-discussed abstraction layer; 2. the inode cache storing frequently
accessed file metadata information; 3. the dentry cache (or dcache) storing frequently
accessed directory information; and 4. the page cache representing the main kernel
disk cache.

The inode object All file metadata information, such as ownership or file size, is
kept in an inode (short for index node) structure on the disk. It uses the inode
number for the lifetime of the file as a unique identifier. When an inode is in use,
the VFS inode object is placed into the inode cache. Some of the inode data fields
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1 ~$ s t a t /home/ vef /dummy_file
2 F i l e : /home/ ve f /dummy_file
3 Size : 8089 Blocks : 32 IO Block : 4096 regu la r f i l e
4 Device : 38h/56d Inode : 4995867 Links : 1
5 Access : (0644/−rw−r−−r−−) Uid : ( 1000/ ve f ) Gid : ( 1000/ ve f )
6 Access : 2021−01−29 00:03:16.880647856 +0100
7 Modify : 2021−01−27 18:54:29.194008369 +0100
8 Change : 2021−01−27 18:54:29.202008398 +0100
9 B i r th : −

Figure 2.2.: Listing metadata of the dummy_file file with the stat command.

can be viewed by any user from the command-line interface (CLI) (see Figure 2.2),
e.g., the file size, permissions, or the time of the last file write. Other inode fields
include pointers to various file system structures or locking variables.

When specific file systems are implemented, the VFS inode object is then extended
appropriately, e.g., how the data of the corresponding file is found and read on the
disk (see Section 2.1.3 later). The exact approach of how a file system treats inodes
or accesses data is left to the file system developers as long as the corresponding
interfaces are supported.

The dentry object and pathname lookup While the inode contains most file meta-
data, it does not contain the file’s name by which users and applications refer to it.
Instead, the filename is part of a dentry (short for directory entry) object, associating
a file with its directory. More specifically, the dentry object contains the file’s name,
a pointer to the file’s inode, a pointer to the dentry object of the parent directory,
and others. Therefore, a dentry exists for each component in a path, connecting
the root (/) directory to its subdirectories and final component. In the example of
Figure 2.2, the path /home/vef/dummy_file involves four dentry objects: one for
each directory (including /) and one for the dummy_file file. Note that the dentry
object is not directly stored on disk and only resides in memory. This is because the
file system can decide how directory contents, or more generally, how data is stored
as long as a dentry object can be created from this information.

A dentry object is created during a pathname lookup operation, henceforth referred
to as lookup, for each path component. Thus, each lookup operation loads the
corresponding dentries, accessed via the directory’s inode object. Next, the lookup
operation looks for the name in the directory for the next path component. Overall,
each iteration of this process retrieves the dentry object and the inode of the next
path component. When the final path component is resolved, the loop stops. These
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Figure 2.3.: An examplary pathname lookup procedure in three steps walking to the regular
file: dummy_file.

consecutive lookup operations on the entire path are also known as a path walk,
exemplarily shown in Figure 2.3.

Path walks are commonplace and constantly occur while the system is running.
Accessing the disk for the same directory entries repeatedly would therefore be
unnecessarily expensive and is avoided by caching dentry objects in the dcache.
As a result, each lookup operation initially consults the dcache if a dentry object
already exists for an inode-pathname pair. If this fast lookup fails, the corresponding
directory information is accessed on the disk and, if successful, creates a new dentry
object that is then placed into the dcache. If unsuccessful, the path does not exist,
returning the error code ENOENT to the calling application.

File object and file descriptors Every time a file is opened, a corresponding file
object is created as well, and it therefore counts as one of the important VFS
data structures. This object remains in memory until the file is closed and stores
information on how a process interacts with said file. This information includes a
pointer to the file’s dentry object and file permissions. Most notably, the file object
stores the current offset (f_pos) in the file for the next I/O operation. For instance, a
user might set this offset explicitly with the lseek() operation, after which a read()
operation starts reading at the previously specified offset for the specified number
of bytes. However, the read() operation also sets a new offset implicitly for future
I/O calls based on the number of bytes read. The current offset is not stored within
the file’s inode since multiple processes can open the same file simultaneously, each
with separate offsets.

Whereas the file object contains information on how a process interacts with a file,
the file descriptor (fd) describes the connection between the opened file and the
process. Programmatically, the user receives the file descriptor as an integer when
the open() system call succeeds. Subsequent file operations then require the file
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descriptor as an argument. The close() system call finally closes the file descriptor,
freeing the file object.

2.1.2 Block devices

When retrieving and storing data on block-addressable storage (block device), such
as HDDs, file systems access data by blocks that make up a file. A block is a file
system abstraction of several sectors, that is, the smallest physically addressable unit,
ranging from 512 bytes in older devices to 4096 adjacent bytes in modern devices.

File        
block region

Logical (disk)      
block region

Figure 2.4.: Relationship bet-
ween file blocks
and logical blocks.

Sectors and blocks are the most basic units in block-
addressable storage devices and file systems for trans-
ferring data. Nevertheless, since the continuous
blocks of a file (file blocks) are not necessarily phys-
ically adjacent on disk, file systems further translate
the file blocks to logical blocks. Therefore, logical
block indices start from the beginning of the disk
or partition, and file block indices start from the be-
ginning of the file. File blocks form the contiguous
sequence of bytes in the file, while the actual logical
blocks on the storage device may not be adjacent
at all (see Figure 2.4). The mapping between both
block types is then accessible via the file’s inode,
discussed in the next section in detail.

Before a process can read the data stored on disk, it
must first be copied into main memory. Further, pro-
cesses do not know the physical memory addresses
where the data has been copied to and must use
virtual addresses. Among others, virtual memory in-
creases security through memory isolation so that
each process can only access its own memory space,

and it saves processes from managing the shared memory space themselves. Virtual
addresses are translated by the memory management unit (MMU), which is part of
the CPU, to the corresponding physical memory addresses. The MMU further divides
the virtual address space into pages, a fixed-length continuous block, e.g., 4 KiB. The
actual mapping of each virtual page to a physical memory page is then stored in the
page table. However, because resolving each page table entry (PTE) for each memory
access can be costly, the translation lookaside buffer (TLB) as part of the MMU caches
the most recent virtual-to-physical address translations. Finally, the page’s content is

2.1 File systems 9



Indirect block 
pointer

Double 
indirect block 

pointer
Triple  

indirect block 
pointer

File metadata

12 direct  
block pointers

Disk block

Direct        
block pointers

Disk blockDisk block

Disk blockDisk blockDisk block

Indirect block 
pointers

Double 
indirect block 

pointers

Direct        
block pointers

Direct        
block pointers

Direct        
block pointers

Disk blockDisk blockDisk block

Indirect block 
pointers

Indirect block 
pointers

Indirect block 
pointers

Direct        
block pointers

Direct        
block pointers

Direct        
block pointers

Disk blockDisk blockDisk block

Inode First 
indirection-level

Second
indirection-level

Third
indirection-level

Figure 2.5.: EXT2 inode and levels of indirection for data blocks.

cached in the page cache to avoid the costly disk access1. The page cache typically
utilizes the currently unused portions of main memory.

2.1.3 File system specifics

We exemplarily use the EXT2 file system (short for the second extended file sys-
tem) [39] to briefly explain basic file system mechanisms with regards to how parts
of the VFS interact with a specific file system. In particular, we will focus on inodes,
data block addressing, directories, and how modern file systems extend these mech-
anisms. EXT2 was released in 1993, is native to the Linux kernel, and is still used in
practice (e.g., in boot partitions).

Inodes and data block addressing As introduced earlier, each VFS inode object
must contain several fields, e.g., file size or permissions. Nevertheless, the VFS does
not dictate how a file system addresses a file’s data. EXT2 extends the VFS inode
by several fields in the ext2_inode structure, most notably, the i_block array of
pointers to data blocks. These data blocks contain the mapping between the file
block number (relative to the beginning of the file) and the logical block number
(relative to the beginning of the disk or partition). By default, the i_block array
holds 12 direct blocks and 3 indirect blocks visualized in Figure 2.5. Direct blocks
map the first 12 file block numbers to their corresponding logical block numbers.
The three indirect blocks, on the other hand, point to second, third, and fourth-order
arrays before containing the mapping to the logical block number. These levels of

1Sometimes, it can be beneficial to by-pass the page cache via the O_DIRECT flag when opening a file.
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indirection allow EXT2 to store around 4 TiB in total per regular file while the 12
direct blocks only allow 48 KiB (based on a 4 KiB block size). Depending on the
file size and the corresponding levels of indirection required, this structure benefits
smaller files since larger files have a higher number of memory accesses per data
block.

Directories Directories use data blocks to store information about which files be-
long to the directory. Thus, directory data blocks are also called directory blocks, each
containing many directory entries. The directory entries are not to be confused with
the earlier-introduced in-memory dentry objects. The directory entry corresponds to
a file within the directory and includes storing its filename and inode number. For
instance, when a directory is read during a lookup() operation, the inode number
in the directory entry allows the file system to traverse to the next component of the
path. Therefore, a directory block on the disk is only read when the corresponding
VFS dentry object is not already available in the dcache. Note that reading all
directory entries of a directory allows the file system to list all filenames without
actually accessing their inodes for further metadata.

Modern file systems Although EXT2 still finds usage, modern file systems have
added significant improvements for the above-introduced basic mechanisms. For
instance, the EXT4 file system [37, 148], released in 2008 and kernel version
2.6.19, is nowadays used in many Linux environments and extends EXT2 by many
features.

These features include extents which describe ranges of contiguous physical blocks
and replaces the logical block map, reducing the required metadata for the data
blocks. Extents decrease data access times, especially for large files, and allow for up
to 16 TiB file size and a maximum of 1 EiB overall file system size. Nevertheless, some
file systems are still using the indirect block design, e.g., GPFS [219], introduced
later in this chapter.

Journaling is another prominent feature and was introduced in EXT3 [38]). Jour-
naling keeps track of changes that have not yet been persisted on disk in a circular
log, called a journal. In the event of a system crash, not yet persisted changes can be
replayed to repair the file system, reducing the likelihood for file system corruption
and data loss2.

2Typically journaling only applies to metadata for performance benefits at the cost of possible data
corruption. EXT4 forces all data to disk before metadata is committed to the journal, although full
data journaling can be enabled when mounting the file system.
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Other features introduced persistent pre-allocation of disk space, delayed alloca-
tion, online defragmentation, support for significantly larger directories, and many
more [@140].

2.2 General-purpose parallel file systems

A general-purpose parallel file system (in short parallel file system) is a file system that
runs in a distributed environment, e.g., in supercomputers used for HPC. Therefore,
it is a type of distributed file system that communicates over the network. A parallel
file system uses a number of server and management compute nodes connected to a
large number of storage devices. These devices are typically combined into several
logical units with the RAID [184] (redundant array of inexpensive disks) storage
virtualization technology. RAID offers multiple configurations (or levels) depending
on the performance or redundancy requirements. The file system clients run on a
separate set of compute nodes presenting a standard UNIX mount point and appear
just as any other file system for users.

Throughout this thesis, we will use two of the most popular parallel file systems,
GPFS and Lustre, in various experiments. From the user perspective, GPFS [219] and
Lustre [29] are traditional parallel file systems. Typical use cases range from small
(less than ten machines) to large (tens of thousands of nodes) compute clusters.
Unlike some other distributed file systems [81, 225], GPFS and Lustre provide
a complete POSIX interface with a strong consistency model (see the following
section) to applications which contributes additional complexity to their architecture.
Therefore, when an application on one file system client creates or updates a file in
GPFS or Lustre, other nodes seamlessly see the updates. Both parallel file systems
are used as the storage backbone in most HPC centres [@105, @247].

2.2.1 GPFS

The General Parallel File System (GPFS) started as a research project in the early
1990s [92] and was released in 1998. It is closed-source and developed, supported,
and released by IBM. In 2016, GPFS’s codebase already contained over 1 million
lines of code added by over 73 thousand commits [255].

GPFS uses a shared block device model to store its data. In general, the block device
of any compute node can be assigned as a shared disk. They can be shared naturally
via a storage area network (SAN), or they can be exported through GPFS’s proprietary
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Figure 2.6.: A simplified example of the GPFS architecture in an NSD configuration.

block-level protocol. Since SAN configurations can become increasingly complex for
large GPFS clusters, a network shared disk (NSD) configuration is commonly used.
To achieve high performance in terms of throughput and latency when performing
I/O, GPFS stripes its metadata and data across all shared disks, called wide striping.
For coordinating the parallel updates to the shared disks, a configurable number
of token servers control the distribution of per-object (e.g., per-block or per-file)
lock tokens to GPFS clients. When a client owns a token for a file, it has exclusive
access and can update the file and its metadata without any coordination with other
nodes.

Figure 2.6 presents an example configuration where GPFS servers are set up in a
high availability (HA) configuration such that access to all NSDs is ensured when
a GPFS server in a pair fails. Each HA server pair can use multiple NSDs, each
using either a single block device directly or a virtual device. The virtual device can
consist of multiple block devices pooled together in a RAID configuration. Users
then transparently access GPFS’s namespace via the corresponding mount point at
the compute node (GPFS client). More information about the GPFS architecture can
be found in [98, 219].

To support the needs of new customers, many advanced features were added to GPFS
over time [99]. These include snapshots (as well as writable per-file snapshots),
integrated backups, user-defined tiering policies, file sets, caching over wide area
network (WAN), rolling upgrades, online file system resizing, and quality of service
(QoS) policies. For compatibility, GPFS also includes major file system protocol
implementations, namely NFS (network file system), SMB (server message block), and
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the RESTful Object protocol. GPFS runs on Linux, AIX, and Windows and supports
x86, Power, and System/390 architectures.

2.2.2 Lustre
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Figure 2.7.: A simplified example of a Lustre configuration.

The development of Lustre started in 1999 by Peter Braam at Carnegie Mellon
University, PA, USA. In contrast to GPFS, Lustre is an open-source project licensed
under the GPL 2.0 software license. Overall, Lustre’s history is complex, with several
companies acquiring its assets over the years. Since 2010, Lustre has been mainly
developed by Whamcloud, but many other companies, e.g., Fujitsu, contributed to
the codebase as well. At the time of writing, DDN’s (DataDirect Networks) acquired
Whamcloud division has developed, supported, and released the Lustre parallel file
system since 2018.

Like GPFS, Lustre provides a POSIX-compliant parallel file system with strong
consistency guarantees. On the other side, Lustre’s fundamental architecture differs
significantly from GPFS and is based on the object storage concept (see Section 2.4
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later in this chapter). The object storage abstraction layer (the object storage device,
OSD) is built on top of the underlying block storage devices formatted with the
LDISKFS (based on EXT4) or ZFS local file system. For instance, an object can be
considered a file on such a local file system [29]. Note that, depending on stripe size
that can be set at directory granularity, a Lustre file can be distributed over multiple
OSTs. Three OSD types are connected to one or more storage devices:

1. The metadata target (MDT) used by the metadata service (MDS) to manage
Lustre’s metadata and maintain its namespace.

2. The object storage target (OST) used by the object storage service (OSS) to
handle all data objects that contain the contents of Lustre files.

3. The management target (MGT) used by the management service (MGS) to
manage general Lustre configuration data.

Figure 2.7 shows an exemplary Lustre architecture with HA MDS and OSS pairs
to ensure data is still accessible if one MDS or OSS fails. Each HA pair can use
multiple OSTs or MDTs, whereas each target uses a single block device directly or
a virtual device consisting of multiple block devices. For example, a single OST
could represent 15 HDDs pooled together via ZFS in a RAID configuration. In such a
configuration, OSSs can share the load by assigning them to distinct OST sets while,
due to HA, a single one can manage all OSTs in case one OSS fails. While a Lustre
file system can scale to hundreds of OSSs, a typical Lustre installation may only use
few MDSs for handling metadata. Moreover, it is common that the MGS is co-located
with an MDS since it only uses few computational resources. Users transparently
access Lustre’s namespace via the corresponding mount point at the compute node
(Lustre client). More information about the Lustre architecture can be found in [29,
@190].

2.3 Scalability challenges in distributed file systems

This section will discuss some of the scalability challenges that occur in distributed
file systems and bring them into context with the POSIX standard and burst buffer
file systems.
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2.3.1 The POSIX standard

The Portable Operation System Interface (POSIX) [262] is a set of standards intro-
duced in 1988 by the Institute of Electrical and Electronics Engineers (IEEE) and The
Open Group. Their main goal has been to set out various operating systems guide-
lines to ease cross-platform development of systems and applications via specific
definitions of OS interfaces or file system protocols. POSIX.1-2017 is the most recent
release discussing a multitude of topics like standard shell interfaces or definitions
on portability and error handling for the C programming language.

In the context of file systems and this thesis, the following topics in the POSIX
standard are particularly important. As part of the System Interfaces Volume, POSIX
defines the interface of I/O operations, i.e., syntax, behavior, and error codes. Notice
that it does not define its implementation. Therefore, I/O operations, such as open()
or write(), implicitly hold assumptions about how data must be accessed and
when data of a write() operation is readable by other processes. For instance, the
UNIX man page of the write() page reads: “POSIX requires that a read(2) that can
be proved to occur after a write() has returned will return the new data.” [@132].
Further, all write operations must appear atomic to any reader, regardless of location.
In other words, a write operation must be immediately visible to any reader in a
POSIX-compliant file system. Thus, if multiple processes write to overlapping data
regions, the rules of the I/O system guarantee consistent results. This consistency is
also called strong consistency (or strong POSIX semantics) and has become a major
point for discussion in the systems community [19, @119, @193, 241, 263].

When POSIX was first ratified in 1988, local file systems were accessed by a single-
core machine. This allowed file systems to implement a strong consistency model
without complex mechanisms to control concurrent access to a file. With multi-core
processors, file systems needed to control access to a shared resource, e.g., a storage
disk, to avoid undefined results when multiple processes concurrently access the
same file region. This is commonly done with synchronization primitives, e.g., locks
or mutexes, to coordinate atomic access efficiently.

When a similar consistency model is required in a distributed environment, these
synchronization protocols must extend to a large number of computing nodes.
Maintaining strong consistency under these conditions with many file system servers
and clients is therefore a communication-intensive and complex task. Two possible
approaches to control access in a distributed setting are the usage of a central broker
node (centralized management) or a distributed locking manager (DLM) [30, 121,
219]. In the former case, a dedicated broker node is used to act as a proxy server for
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all clients. In other words, all I/O requests must pass through the broker node, which
then essentially serializes access to a data region. In the DLM case, a dedicated
node is used to hand out tokens to clients. Each token can refer to a specific shared
resource, such as a data region, and gives a client shared or exclusive access to the
resource.

Such locking mechanisms can scale reasonably well for large sequential I/O access
patterns [178] in cases where each process accesses its own file since a corresponding
lock does not need to be acquired repeatably. On the other hand, they can also cause
significant scalability issues. This is especially the case when multiple processes
access the same file concurrently, causing lock congestion at the locking manager
and resulting in delays in performing an I/O operation. To mitigate such delays,
distributed storage systems employ granular locking techniques in which locks only
apply to file regions instead of the whole file; see byte-range locking in Lustre [30] and
GPFS [219]. However, strong consistency semantics and poor parallel I/O support
in file systems [123] combined with scientific applications’ access patterns [168]
are the main reasons for I/O challenges in today’s HPC environments. Despite
ever-increasing computing performance, data-intensive applications running on HPC
systems face scalability challenges that prevent them from fully utilizing the offered
computing power [46]. These challenges are particularly apparent during metadata
workloads that include many metadata operations, which we will discuss next.

2.3.2 Metadata and small I/O operations

For shared accesses, parallel file systems typically rely on expensive distributed
locking mechanisms to avoid conflicts, e.g., byte-range locking. This is generally a
fundamental feature for parallel file systems because it allows them to represent
a fully POSIX-compliant I/O interface with strong consistency semantics. As a
result, users can access the (parallel) file system just as any other local file system.
Nevertheless, while distributed locking mechanisms can work well in sequential
workloads on large files, they can become challenging for metadata operations.

At its core, metadata in Unix-like operating systems can be categorized into three
components: an object’s (e.g., file or directory) metadata, a file’s data, and a
directory’s contents [207]. A corresponding metadata operation involves accessing a
file’s inode or a directory’s data blocks containing its directory entries. In contrast to
large I/O operations, which mainly target a file’s data blocks3, metadata operations
are typically only in the range of kilobytes. Handling such operations in a strongly

3A write operation must also update the inode’s file size field.
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consistent distributed file system is challenging because inodes and directory blocks
were not designed for parallel accesses as only a single block can be accessed by one
process at a time. Moreover, metadata operations can be significantly more complex
than data operations, whereas a single metadata operation, e.g., listing a directory
or even creating a file, results in write-accessing multiple inodes and directory
blocks. In these cases, each metadata modification requires a write-lock to access the
corresponding metadata structure. It is therefore not surprising that in concurrent
metadata workloads, multiple processes compete to acquire the corresponding locks.
This, in turn, frequently results in lock-thrashing, i.e., locks are continuously granted
and revoked, causing even more overhead in the form of network communication
between file system clients and distributed lock managers. The high complexity
combined with a potentially high frequency of metadata operations (due to their
small size) exacerbates the metadata challenges parallel file systems face, causing
poor scalability and performance (see Section 4.5.3 later on Lustre’s metadata
performance).

Prominent example workloads with a huge number of metadata operations are the
listing of large directories [182], bulk operations that create millions of files in a
single directory in parallel [19, @179, 182, 255], or small I/O operations in the
range of bytes to kilobytes [40]. To measure metadata performance, the evaluations
in this thesis frequently include the concurrent file creation workload for two reasons:
First, due to the complexity of the file create process, this workload stresses many
file system components at the same time. In particular, we analyzed the complexity
of the file create process and its implication for GPFS in an earlier work [251],
showing the large impact of various synchronization and locking mechanisms on
the file system’s metadata performance. Other works showed how concurrent file
creation from thousands of clients is one of the most difficult workloads for a parallel
file system to perform efficiently [205]. Second, we used concurrent file creation
because of its significance in many HPC applications. For instance, it is a use case in
checkpointing to protect intermediate results from failures [72, 77, 182]. Here, each
process often creates files in a single directory [19]. This workload is so common in
HPC that official requirements for the CORAL supercomputer include a 50,000 file
creates per second rate in a single directory [@179]. Other workloads that include
concurrent file creation are data ingestion [151] and migration [199], especially
from object stores that use flat namespaces and therefore files are often created in a
single directory in a file system corresponding to a single object store container [@12,
161].

Other works discussed that metadata costs are a major factor in the application I/O
throughput in supercomputer environments [40, 144]. Carns et al. [40], for instance,
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showed the high metadata overhead of an application writing many small files of
about 400 KiB on average. As a result, researchers presented various techniques
throughout the last decade for several distributed storage systems, exploring new
ideas to handle heavy metadata loads effectively [19, 73, 182, 183, 273, 274]. This
challenge is still prevailing and is becoming an even bigger challenge for upcoming
data science applications due to their I/O access patterns and used data volumes.
One of the possible solutions for this challenge is to employ burst buffer file systems
which we will discuss next.

2.3.3 Burst buffer file systems

Burst buffers are fast storage systems logically placed between the application
and the parallel file system to soak potentially harmful I/O operations and bursts.
Therefore, they aim to reduce an application’s I/O overhead and load on the parallel
file system [134]. Burst buffers can be categorized into two groups [265]: remote-
shared and node-local. Remote-shared burst buffers are centralized, dedicated
I/O nodes structured as a forwarding layer, e.g., DDN’s IME [@55] and Cray’s
DataWarp [95].

Nowadays, supercomputers typically offer fast flash-based storage devices at the
compute nodes that can be used temporarily by an application to accelerate its I/O
performance. However, these node-local SSDs are often under-utilized by applica-
tions [32, 265], and therefore burst buffer file systems can leverage them to form
an ephemeral distributed file system that combines the capacities and performance
of all node-local SSDs. Thus, burst buffer file systems are often collocated with
compute nodes and deployed ad hoc. Such file systems are also called ad hoc file
systems and their ability to be quickly deployed and destroyed in a job context is
particularly important not to waste precious computational resources. Moreover,
burst buffers can also be dependent on the parallel file system (e.g., PLFS [19]) or
managed directly by it [@179]. Because these ad hoc burst buffer file systems are
often accessed by a single application, they can heavily optimize for an application’s
requirements. If possible, such a file system could even relax consistency guaran-
tees to offer higher performance and scalability than the parallel file system can
provide.

In this context, Chapter 4 will introduce the GekkoFS burst buffer file system, a
temporary, highly scalable distributed file system that attempts to solve metadata
challenges for HPC applications by using a decoupled file system architecture that
does not require inter-node locking. It provides relaxed POSIX semantics targeting
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file system operations that are mainly used by HPC applications. As a result, GekkoFS
can provide scalable I/O performance and reaches millions of metadata operations
already for a small number of nodes, significantly outperforming the capabilities of
common parallel file systems. By flexibly deploying multiple burst buffer file systems,
temporary file systems can work together with the parallel file system combining
the performance of distributed burst buffers and the long-term data persistence of
parallel file systems.

In summary, well-known central data structures, such as inodes and directory
blocks, are one of the root causes of today’s metadata challenges. Although POSIX
only defines the I/O interface and therefore not the implementation of these data
structures, maintaining a strongly consistent file system in a distributed context
remains challenging for performance. In this thesis, we argue that a fully POSIX-
compliant file system is not always necessary and can greatly benefit performance as
well as reduce its complexity, exemplarily shown by GekkoFS.

2.4 Object storage systems

Object storage, or object-based storage, is another approach to store data [7, 153,
161, 268]. While file systems use files as distinct data units, object storage uses the
concept of objects. Objects can be placed into containers (or buckets), but they cannot
form a hierarchy, as is the case with directories in file systems. Thus, object stores use
a flat namespace with sometimes millions of objects within a single container [@12].
Also, object stores are not implementing a strong consistency model and are not
POSIX-compliant. They do not interact with UNIX kernel components, for example,
and use an entirely different API to interact with objects that are often accessed via
cloud services over the internet.

A low-level interface to object storage was already defined in 2004 by the ANSI
T10 body [162]. This and similar interfaces successfully served as a foundation for
parallel file system implementations [29, 270]. Today, most object storage interfaces
provide two types of web-based representational state transfer (REST) interfaces:
a custom interface tailored to the corresponding object store via a corresponding
software development kit (SDK) and the Amazon S3 API [79]. Nonetheless, even
when using the S3 API, there are still limitations, subtle differences, and S3 version
incompatibilities that are challenging for applications to adapt to and that restrict
the portability of applications closely tied to one API [188].
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Object-based storage has several advantages over traditional storage methods, such
as file systems. Generally, object stores tend to scale well [153] because object store
and container complexity do not increase when objects are uploaded. Moreover,
it is possible to add arbitrary metadata to objects, and the combination of data
and metadata allows object stores to optimize the data layout or to provide QoS
guarantees based on individual objects [269]. The flat structure of an object store
also allows for a low maintenance overhead.

Especially for unstructured data, e.g., large media libraries or data lakes where
information is stored in the raw format [89], object-based storage has become a
popular choice for many internet-scale applications like Netflix, Spotify, or Dropbox.
It is therefore not surprising that nearly all cloud providers provide or internally use
object storage [35, 79, 231]. Over the past decade, many academic implementations
have fostered the development of object stores [2, 149, 150, 170, 242, 246]. Further,
open-source and commercial providers also enable on-premise hosting of object
stores [7, 268].

For legacy applications or applications that require a POSIX file system interface
and strong consistency, such an object-based API is not a usable option. As a
result, numerous file system connectors have been developed that internally utilize
object-based APIs to provide a UNIX file system [21, 130, @177, @214, 261, 267].
However, the flat namespace of object stores and huge container sizes can still
cause significant metadata challenges, e.g., when listing such a container. Further
challenges include usability because of the lack of basic semantic properties and
structure, as in standard UNIX file systems.

Chapter 5 will discuss this topic and introduce DelveFS, an event-driven semantic
object store file system proposing a solution for these challenges by offering the
ability to compose a custom semantic file system that allows multiple unique views
onto the object store. Through flexible filters, users can specify each view’s content,
tailored to their unique interests or an application’s requirements. By processing
object store events that describe changes in the object store, DelveFS is able to keep
all views eventually consistent. DelveFS allows to operate concurrently through the
object and file system interfaces on the same set of objects, delivering similar file
system throughput compared to the native object store interfaces or other file system
connectors.
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Challenges and solutions for
tracing storage systems

3
IBM Spectrum Scale’s General Parallel File System (GPFS) has a 20-year development
history with over 100 contributing developers. Its ability to support strict POSIX
semantics across more than 10K clients leads to a complex design with intricate
interactions between the compute nodes. Tracing has shown to be a vital tool to un-
derstand the behavior and the anomalies of such a complex software product [196].
In essence, the produced trace records are time-stamped journal entries containing
selective variables at a specific location within a code path. However, the necessary
trace information is often buried in hundreds of gigabytes of byproduct trace records.
Further, the overhead of tracing can significantly impact running applications and
file system performance, limiting the use of tracing in a production system.

This chapter will discuss the evolution of the complex and highly scalable GPFS
tracing tool and demonstrate how the current approach can cause significant prob-
lems in long-living systems that are deployed in large production environments. We
will provide detailed insights into the proprietary GPFS file system, explain how its
tracing mechanisms work, and analyze the root causes for the above-mentioned
challenges. Further, we will present an exploratory study of a possible new tracing
interface for GPFS, FlexTrace, which allows developers and users to accurately specify
what to trace. FlexTrace integrates seamlessly into GPFS’s existing tracing framework
and gives users and developers fine-grained control over each individual tracepoint
minimizing the typical tracing volumes and overheads of GPFS’s original tracing
mechanisms. Coupled with user-defined tracing profiles, users can dynamically
design and enable a specific set of trace points for a given use case.

FlexTrace’s simplicity from the conceptual and implementation points of view is
an essential design choice, showing how a simple (and yet not widely recognized)
technique can have many advantages over other existing tracing techniques. We
will evaluate our methodology and prototype and demonstrate that the proposed
approach has negligible overhead even under intensive I/O workloads and with
low-latency storage devices. Therefore, we will show how FlexTrace’s approach
is beneficial when developing systems that are expected to live long and that are
developed by many engineers.
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Section 3.1 will motivate and introduce the work in detail. In Section 3.2, we
will provide background information and the related work of the general tracing
topic and of the numerous tracing techniques and tools. Moreover, Section 3.3 will
thoroughly describe GPFS’s tracing tool and how its internal mechanisms function.
We will explain the tracing challenges concerning tracepoint distribution in the
source code, offer insights into developer decisions when placing tracepoints, and
evaluate the performance and data volume overheads of tracing in Section 3.4.
Section 3.5 will introduce FlexTrace, which we will evaluate in Section 3.6. Finally,
Section 3.7 will conclude this chapter.

3.1 Motivation

The complexity of modern software tends to be extremely high. For example, Mi-
crosoft Windows contains over 50 million lines of code (LoC), the Linux kernel
has almost 16 million LoC, and IBM’s General Parallel File System (GPFS) [219]
contains more than 1 million LoC. Complex code logic incorporates many non-trivial
interactions between software components and is specific to particular operating
systems or the underlying hardware. To ensure continued support for running appli-
cations, software projects rarely remove existing features, resulting in growing code
complexity, often at an alarmingly high rate. For instance, the Linux kernel grows
by approximately 4.5K LoC daily. Therefore, reducing the hurdle of understanding
the code and the resulting system behavior becomes a grand challenge for many
organizations.

Distributed storage systems, such as parallel file systems, are an excellent example
of complex software due to their extensive network communication and the need
to support various complex semantics, such as POSIX [262] or NFSv4.1 [94]. The
code complexity affects developers and maintainers of such software because it
hinders their ability to add new features and debug issues efficiently. The difficulties
of understanding code are complemented by the fact that, in many cases, the
original developers are no longer available or have moved to other projects or
companies. Scanning scarce (sometimes outdated) documentation, commit logs,
or reviewing millions of LoC is a cumbersome, time-consuming, and complicated
process. Moreover, this process is inefficient and typically not sufficient either
because of unexpected side effects, especially when working in heavily parallel
environments.
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Nevertheless, code complexity also impacts users of distributed storage systems who
struggle to understand and reproduce various issues of running applications that
access the storage system. Hence, both developers and users need better tools to
debug and diagnose the underlying storage system to solve issues and ultimately
improve application performance and storage system efficiency.

In the past, tracing has been shown to be an essential method for a wide range of use
cases during development, testing, and in production environments [196]. These
use cases include: 1. gaining a detailed understanding of storage systems’ behavior
and the applications that use them, 2. recently implemented code verification,
3. workload characterization, 4. bug analysis, and 5. performance diagnosis. At its
core, a trace (record) is a time-stamped journal entry that captures a set number of
variables at a specific location in an application’s code path. In general, finalized
traces are human-readable text files that contain records and allow an understanding
of how a system works. This knowledge can then be helpful in the above-described
use cases.

By default, trace records are not collected since collecting traces remains a challenge
in production environments. This is because trace collection consumes CPU, mem-
ory, network, and storage resources and thus can significantly cause performance
degradation, leading to a change in execution flow and system behavior that po-
tentially hides production defects. This challenge becomes even harder for larger
and more powerful systems in the future since tracing overheads (and the trace
output size) increase with the number of operations collaboratively executed per
second. Although many studies and engineering efforts have focused on improving
tracing performance and efficiency to better understand a system as a whole, this
problem still persists in production-grade storage systems and in distributed systems
in general [20, 145, 223, 256].

This chapter will explain the tracing framework of GPFS, a widely deployed storage
system with over 20 years of continuous development. As described in more detail
in Section 2.2.1, GPFS is a POSIX-compliant parallel file system that uses distributed
locking techniques for its data and metadata management. While it was initially
developed for HPC, GPFS’s functionality was greatly extended to support a wide
variety of modern workloads [99]. Nowadays, it is used by thousands of customers
and runs on hundreds of thousands of servers.

Section 3.3 will first discuss how GPFS’s tracing works in modern deployment, de-
scribing rarely explored practical insights that shaped GPFS’s tracing infrastructure.
After that, we will present statistics on how over 100 developers used the trace-
points, given its fixed and rigid tracing interface. We will show that when a tracing
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interface is based on a traditional subsystem-and-priority classification of tracepoints,
developers tend to use only a limited number of subsystems concentrated around
default priority levels.

We will also discuss other significant limitations of this commonly used approach to
tracing, such as high overheads due to many byproduct trace records, and propose
a new practical tracing interface for alleviating this issue called FlexTrace. At
its core, FlexTrace offers developers and users the ability to enable and disable
individual tracepoints rather than static pre-configured sets. FlexTrace’s conceptual
and implementation simplicity is one of its most essential properties as it allows
its design to be easily adapted to nearly any storage system and other complex
applications. Although FlexTrace is not an entirely novel concept [83, @249], we
are, to the best of our knowledge, the first to investigate and evaluate the benefits of
a flexible tracing facility in a real-world storage system.

We implemented FlexTrace in GPFS and investigated how everyday trace-based
tasks, e.g., understanding system behavior or workload characterization, can become
significantly less data-intensive and easier to perform. We note how this simple (and
yet not widely recognized) method can substantially impact many use cases where
the rigid subsystem-and-priority classification fell short and sometimes required
custom GPFS builds for customers. We will evaluate FlexTrace’s overhead in the
worst case (see Section 3.6) and demonstrate that it was indistinguishable from
running applications without tracing, even for workloads that stress the system.
This is especially important in cases where a specific number of traces need to be
collected for more extended time periods. Because of the GPFS’s tracing facility
limitations, this is rarely possible today.

3.2 Related work

Even relatively simple local file systems have become significantly more complex [5,
208]. Distributed file systems work on a drastically higher scalability level which
exacerbates common storage challenges. These include high performance, near-
perfect availability, fault tolerance, support for POSIX (or similar) semantics, and
advanced functionalities at scale. As a result, distributed file systems count towards
the most complex software systems today [29, 30, 81, 198, 219, 225, 267].

Tracing is an essential tool for developers to continuously maintain such complex sys-
tems efficiently. Consequently, any production-type and widely deployed distributed
file system offers a corresponding mechanism to collect traces [@93, @143]. With
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GPFS being on the market longer than other major production-type distributed file
systems, e.g., Lustre or Ceph, GPFS allows for unique observations of its evolving
tracing mechanism, its use by developers, and its limitations when facing real-world
problems of a deployed system.

The following will discuss tracing as a generic concept and compare existing instru-
mentation techniques.

3.2.1 Tracing

Over the last two decades, developers have cultivated a wide variety of techniques
and associated tools for examining system behavior [48, 223, @230]. The techniques
range from analyzing system logs [@238], monitoring performance counters and
profiling [43, @133], to complex system tracing that produces a log of time-stamped
events and their attributes [63]. To log an event via a trace mechanism, a tracepoint
needs to be either predefined during compile time or dynamically added at runtime
at the desired code location. For instance, a tracepoint only contains a template
string but can capture the content of several crucial variables. Further, tracing needs
a mechanism that conditionally executes the tracepoints to produce a trace record,
that is, a corresponding log entry capturing the data of a tracepoint. For the sake
of efficiency, trace records are typically written to an in-memory buffer first before
asynchronously being moved to persistent storage [6, 48].

The term tracing itself is rather broad and at times ambiguous as its meaning depends
on the context and the environment. For instance, tracing can refer to tracking
network routes [4, 126], collecting information on consecutive function calls [212],
or also recording disk I/O activity [80, 154]. In the case of GPFS, traces can contain
information about events from almost any part of the software system, e.g., token
managers, locking mechanisms, and remote procedure calls.

Because tracing plays an important role within the storage community [6, 64,
65, 282], many tracing tools and techniques have been implemented [@50, 58,
@111, @230, @249]. They can be utilized in many use cases: understanding
system behavior, locating various performance bottlenecks, general debugging,
user workload characterization, application behavior optimizations, and more. For
instance, Wright et al. [271] achieved a 25x speedup in I/O performance on a large
Parallel Log-structured File System (PLFS) installation via I/O trace analysis. Moreover,
traces were shown to be an essential tool during development and testing [145],
including using them to accurately replay entire user workloads [154]. They have
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also been shown to be a vital source of information both in controlled environments
and in production environments [196].

Because the accumulation of trace records (the trace output) grows over time [240],
engineers and researchers made efforts to reduce the trace output size. Google, for
example, optimized the Linux kernel tracing to remove constant strings from the
trace buffers [@111]. Among others, this allowed them to increase the time frame
where recent events could be stored in trace buffers from the initial 10 seconds to
45 seconds. Thus, more traces could be captured over a larger time frame.

3.2.2 Tracing techniques

Nowadays, there is a plethora of tracing tools available [48, 58, 63, @85, 212,
@230], making it challenging to find the appropriate approach in a specific situation.
They usually differ in their flexibility and performance overheads outlined below.
Strace [@230], for example, is easy to use and widely available but only gathers
data about an application’s used system calls and has well-known performance
overheads. The extended Berkeley Paket Filter (eBPF) allows to trace an arbitrary
execution but also allows filters with dynamically placed tracepoints. Although many
improvements were made focusing on its performance, it still causes measurable
overhead [223]. Other end-to-end tracing techniques gather information about the
call path and timings in a distributed system of individual requests, analyzing the
system’s behavior and request flows [71, 217, 245]. Another set of tools monitors
specific parts of a distributed system. For instance, some track the inter-node
communications between cluster components [34], their accurate trace replay [15],
and their compression [169]. Others target I/O workload characterization which is
either achieved through I/O profiling [43, 227, 248] or I/O trace analysis and trace
replay [142, 154, 271].

These tools can be categorized into two groups based on their underlying instrumen-
tation technique: static and dynamic.

Static instrumentation Nowadays, static instrumentation is the most commonly
used tracing technique in distributed storage systems, e.g., Lustre [30, @143],
Ceph [@93, 267], or BeeGFS [@17, 97]. In static instrumentation, the tracepoint
location and its format, i.e., the data it captures, is defined a priori by a developer.

Several tracing tools that use static instrumentation also support the individual
enabling of tracepoints [58, @249]. The TRACE_EVENT macro [@249] in the Linux
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kernel allows adding a static tracepoint at the desired location in the source code.
Interestingly, tracepoints defined by TRACE_EVENT must still be assigned to static
subsystems, a set of tracepoints (usually describing its context). We argue that such
static subsystems limit the usefulness of tracing and that this decision should be
made by the user rather than at compilation time (which is not always possible).
Later, Section 3.4.1 will debate the practicality of subsystems in the context of large
storage systems.

Dynamic instrumentation With dynamic instrumentation, a tracepoint can be
added at runtime after the software has been developed, compiled, and deployed
by using binary code instrumentation [36]. SystemTap is one example in Linux that
uses the Kprobe facility for binary instrumentation of running code at a desired
location [63, 115]. At its core, a Kprobe replaces an in-memory instruction with a
trampoline instruction or an interrupt, leading to the corresponding user-defined
code.

Google’s Xray framework attempts dynamic low-overhead tracepoints [20] by placing
NOOP instructions at a function entry and exit during compilation. When tracing
is enabled by the user, these NOOP instructions are then replaced with the actual
tracing code. Ftrace provides a comparable mechanism for the Linux kernel [212].
Nevertheless, functional tracing is not always sufficient, especially when larger
functions with many conditional branches need to be traced.

Fully dynamic instrumentation can be achieved with DTrace [48] and Kprobes [115]
in Unix-like systems and Fay in Windows [66]. They allow adding tracepoints at
arbitrary kernel locations. Pin [141] offers another technique for runtime binary
instrumentation on Linux, using either probes similar to Dtrace or just-in-time (jit)
compiler techniques to insert and instrument code. IOPin [112] uses Pin’s probe-
mode for runtime profiling of parallel I/O in HPC systems. While it can be helpful
when analyzing the I/O path performance of workloads, its overhead is too high to
run in production environments [227].

The authors of Pivot Tracing [145] argue that it is hard to decide where tracepoints
should be placed during development and that this decision should be given to users
at runtime. We share this idea, but we further argue in this chapter how practical
constraints limit the adaptation of this approach in a software product with a long
history of development.
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Comparing static and dynamic instrumentation For static tracing, the data each
tracepoint emits (due to its fixed format) cannot be changed without recompilation.
On the other end of the spectrum, dynamic instrumentation allows deciding what
data is collected while an application is running instead of during development.
Moreover, dynamic tracepoints can be placed at almost any code location while the
locations of static tracepoints are predefined.

Though there is no clear understanding of the dynamic instrumentation overhead, it
is higher than static instrumentation when the tracepoint is active. This is because
of the slow speed of the interrupt instruction and because of the CPU having
to jump to a new, unpredictable location, slightly reducing the effectiveness of
the CPU instruction prefetcher and CPU caches. Further, the jumping cost can
increase in certain instruction cache issues. On the other hand, when tracing is
disabled, dynamic tracepoints do not exist in the code and cannot incur any overhead.
However, even when disabled, static tracing requires at least one comparison and
branch to determine whether the tracepoint is active. This pollutes instruction
caches with instructions that are never actually executed.

Dynamic instrumentation in production environments is also challenging from a
maintenance perspective because many code versions and patches of the same
code are deployed at various customer sites. Even minor code modifications then
result in a unique list of dynamic tracepoints for each code version. This is because
each version may change the offsets of functions, their names, arguments, or other
variables.

Our discussions with GPFS’s engineers showed that they prefer static tracing over
dynamic tracing [196]. They argued that maintaining per-build lists of tracepoints is
an overwhelming and time-consuming task. This problem is not so acute with static
tracing since the tracepoints are part of the code itself. Further, the overhead of
dynamic instrumentation is seen as too high. This preference towards static tracing
seems to be shared among storage developers as other parallel file systems used in
production environments, e.g., Lustre [30] and Ceph [267], are also using static
tracepoints [@93, @143].

3.3 Tracing in GPFS

GPFS’s tracing framework has evolved in its lifetime, incorporating a highly opti-
mized tracing mechanism with over 20K tracepoints positioned at strategic code
locations. All tracepoints are grouped into 62 sets, called subsystems, which describe

30 Chapter 3 Challenges and solutions for tracing storage systems



the tracepoint’s context and software layer it is positioned in, such as locking opera-
tions or GPFS’s virtual file system layer. To describe each tracepoint’s importance,
each is assigned a priority level (1 to 14). Smaller values indicate a higher importance
for a tracepoint.

When users trace GPFS, they must first set the priority level for each subsystem
they are interested in. The user then enables tracing per file system node, which
collects the traces only for its own operations. Note that specifying a subsystem for
a higher priority level value, that is, tracepoints of lower importance, also enables
all tracepoints with a lower priority level value. Therefore, it is not possible to only
enable tracepoints with a priority level 10, for instance, without also enabling all
tracepoints from level 1 to 9.

Engineers set the assigned subsystem and priority level of each tracepoint during
development and, hence, before compilation and shipment of the product. That is
to say, a tracepoint and its context (subsystem) reflect an engineer’s special interest
in the particular location of the tracepoint and the information it emits. Such sets
were introduced in the first place since CPU, memory, I/O overheads, let alone the
space consumption of traces, are too high and greatly disrupt an application when
over 20K tracepoints are enabled.

Today, GPFS offers two tracing modes: blocking and overwrite. In both modes, GPFS
stores the trace records in an in-memory buffer before persisting them as a trace
file (containing all trace records); one for each file system node. By default, GPFS
uses the blocking mode where, with tracing being enabled, all trace records are
written from the in-memory buffer (configurable between 1 MiB and 64 MiB) to the
trace file. However, when the trace collection rate is higher than the throughput
capabilities of the underlying storage device where the traces are written to, GPFS
blocks until enough buffer space is flushed to accommodate incoming trace records.
Moreover, if the maximum allowed trace file size (set by the user) has been exceeded,
GPFS discards the oldest written trace records to keep new trace records.

Because of the known overhead of the blocking mode, overwrite mode was added
to GPFS later on. In contrast to the blocking mode, the trace records are moved to
persistent storage only when tracing is stopped. In case more traces are collected
than can fit in the in-memory buffer while tracing is running, GPFS overwrites the
oldest trace records in the circular buffer. Over the years, several optimizations were
added to the overwrite mode, such as lock-free memory management, which makes
it more efficient than the blocking mode. In summary, while the overwrite mode
causes less performance degradation than the blocking mode, the trace file size in
the latter is usually larger than the circular buffer in the overwrite mode, allowing
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1 # TIMESTAMP PID SUBSYSTEM TRACE_MESSAGE
2 0.000785 11281 TRACE_VNODE: gpfs_ i_ lookup enter : diP 0xFFFF880B28458000

dentryP 0xFFFF880B60DC0840 name ’someFilename’ d_count 1

Figure 3.1.: A human-readable trace example for entering the file lookup function, con-
taining the trace collection timestamp (relative to when tracing was started),
the thread ID, the tracepoint’s subsystem, and the trace message, containing a
constant template text and the event-specific parameters (in bold).

fewer traces to be recorded in total. However, increasing the circular buffer size to
capture more traces makes a significant memory portion unusable for the running
application.

For the in-memory buffer, the trace records are kept in a compressed binary form. In
particular, each trace record contains a timestamp, the collecting thread id, an integer
tracepoint id, and the trace data, containing only event-specific parameters (variable
values) without the constant text added by the developer. In the blocking mode,
GPFS constantly compresses and moves the binary trace records to the underlying
storage while the overwrite mode keeps them compressed in the circular buffer.
Overall, the compression reduces the trace data needed to be flushed to the disk
and, thus, reduces the frequency the blocking mode blocks the application. In the
overwrite mode, compression allows a higher number of trace records to be collected
in the circular buffer. When tracing is stopped, the compressed binary records are
converted into human-readable text files. For this, GPFS merges the trace data
(containing the captured variable values) of each trace record with the constant text
templates of each tracepoint, resulting in the final trace message. Figure 3.1 provides
an example excerpt of a single trace record from the final human-readable trace
file when entering the function to look up a file in GPFS. Here, the trace message
(starting with gpfs_i_lookup) of a tracepoint contains the memory address to the
inode of the current directory, the memory address to the directory entry of the
file, and the name of the file itself as the event-specific parameters. The non-bold
portions of the trace message are the tracepoints’ constant template text.

In the code, all tracepoints are added via preprocessor directives to avoid the over-
head of a function invocation in case the tracepoint is disabled. Before each trace is
collected, GPFS first checks if tracing is enabled with a single global variable. This
global check reduces the overhead of further conditional checks when tracing is
disabled, which is the most common situation. When tracing is enabled, additional
checks test if the tracepoint should be collected with regards to the tracing configu-
ration and the tracepoint’s priority level and subsystem. If the tracepoint is collected,
the function generates the trace record that is then added to the buffer.
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3.4 Challenges in tracing in GPFS

While GPFS’s trace collection mechanism is highly optimized, the fundamental logic
behind what tracepoints to collect and in which situations causes several serious
challenges that reduce the efficiency of these optimizations. This section will explore
these challenges by investigating the tracepoint distribution across subsystems and
by evaluating the trace collection overhead.

3.4.1 Tracepoint distribution

As introduced earlier, GPFS categorizes its tracepoints into subsystems and priority
levels. The silent assumptions behind this simple and commonly used categorization
policy is that 1. some tracepoints are more important than others, 2. each tracepoint
belongs to only one subsystem, and 3. developers make the right decisions when
assigning the subsystem and its priority to a new tracepoint. Although seemingly
uncontroversial, we found that these assumptions do not always hold for products
that have been developed for a long time, like GPFS.

GPFS offers two tracing layers, default and io, which are presets of specific sub-
system and priority level configurations. The default layer enables over 14K
tracepoints across all subsystems at varying priority levels with the goal of collecting
tracing data that will be useful in most situations. However, this kind of detailed
tracing data comes at the cost of data volume and performance overhead (see the
next section). The io layer, on the other hand, only enables around 900 tracepoints
of selected subsystems with high priorities to gain a basic understanding of the sys-
tem’s I/O behavior. These two layers are often used in various situations, e.g., bug
analysis, performance diagnosis, and workload characterization during development
and in production environments.

In the experience of GPFS’s developers [196], the above-described categorization and
layers work well in use cases where diagnostic data has to be collected for previously
unknown bugs, performance issues, or workloads. Nevertheless, depending on the
situation, most of the collected trace records (enabled by the default layer, for
instance) may not be necessary for a given issue. But, this can also not be avoided
since it is impossible to know beforehand which trace records are actually required
to solve an issue. In other use cases where the exact tracepoints are known, GPFS’s
tracing categorization can result in many unnecessary byproduct trace records. In
these cases, it is already known a priori that the byproduct traces are irrelevant for a
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Figure 3.2.: The tracepoint distribution (y-axis) across priority levels 1 – 14 for all
subsystems (x-axis). The smaller the priority level value of a tracepoint the
more important it is.

given problem, but they can also not be disabled due to the static subsystem and
priority interface.

Tracepoint distribution according to priority levels Figure 3.2 presents the trace-
point distribution across the priority levels in GPFS without taking their subsystems
into account. As can be derived from the non-uniform distribution, developers
tend to place many tracepoints in levels 1 to 4 and almost don’t use levels 6 to 14
at all. This is because the default tracing layer sets the default priority to 4 for
most subsystems. Developers are aware of the default layer’s configuration and,
therefore, usually assign new tracepoints a high priority level so that its trace record
is collected in a typical deployment. In other words, for the developers, the specific
priority level of a tracepoint is irrelevant, and their decision is mainly driven by two
configurations: within the default layer or not. Naturally, most developers choose
to have their tracepoints collected by default.

This behavior can be seen in Figure 3.2 as the default level of all subsystems
covers almost 75% of all tracepoints. The corresponding overhead in all of these
enabled tracepoints can reduce the system’s performance in terms of runtime by up
to 95% compared to an environment where all traces are disabled (see the following
section). To slightly mitigate the performance overhead, the default levels are
periodically re-evaluated. However, this is usually an inefficient process since it is
not clear which priority level a tracepoint should be assigned long after creation,
especially in highly complex code paths.
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Whenever a new feature is developed, developers often add more tracepoints to
the default level than required in the final version. While the code evolves during
the software development cycle, the tracepoint’s priority levels are re-evaluated and
lowered in their importance. However, at the same time, developers must ensure
not to lose valuable trace information when important tracepoints are no longer
part of the default layer, which may affect the ability to analyze an issue later on.
Deciding which tracepoints can be de-prioritized is difficult due to two reasons: First,
each developer has a different interpretation and vision of a tracepoint’s importance.
Second, each tracepoint on its own only adds a relatively small incremental benefit
in reducing total performance overhead and tracing volume compared to the risk of
not being able to access important information during the later trace analysis. Thus,
developers are cautious when de-prioritizing tracepoints out of the default layer
due to the risk of picking the wrong tracepoints, resulting in more tracepoints in the
default layer than may be required.

Tracepoint distribution across subsystems Further challenges arise from the tra-
cepoint distribution across the subsystems. In general, each subsystem is associated
with a specific mechanism (e.g., locking or remote process communication, RPCs) or
a file system layer (e.g., GPFS’s VFS layer). Over the years, some areas of GPFS’s
codebase became larger in scope and complexity, resulting in an uneven distribution
of tracepoints. Nevertheless, the number of tracepoints per subsystem is also influ-
enced by the developers, who may have varying strategies when adding tracepoints
because it is often unclear to which subsystem a tracepoint should belong. Figure 3.3
shows how many tracepoints are part of each subsystem, visualized on a logarithmic
scale. The distribution is grossly uneven, with some subsystems containing fewer
than 10 tracepoints while others (e.g., FS) contain almost 3,000 tracepoints. Conse-
quently, it is not clear to developers and users how many tracepoints are actually
enabled by a subsystem, and hence it is impossible to predict its performance impli-
cations. Moreover, some code overlaps between different parts of GPFS, making it
challenging to decide which subsystem a tracepoint should belong to. If the wrong
subsystem is chosen, a whole subsystem might need to be enabled only to capture a
few tracepoints in a specific code segment, unnecessarily increasing the trace output
size further.

We conclude that statically assigning tracepoints to a subsystem does not work well in
projects where many developers work on a large, ever-increasing code base. Further,
each developer might have a different understanding of which tracepoints should
belong to which subsystem and at which priority level. The following section will
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discuss and evaluate the corresponding performance implications of static tracing in
GPFS.

3.4.2 Trace collection overhead

In general, depending on the invocation rate, each tracepoint adds some amount of
CPU, memory, and I/O overhead, while the latter only occurs in the blocking mode.
In practice, users and developers often only need to enable a few tracepoints, but
they are usually scattered among subsystems and priority levels. As discussed in
the previous section, collecting a few tracepoints of interest leads to a large amount
of byproduct traces that are then discarded during post-processing. As a result,
gigabytes of potential byproduct trace records are collected, causing unnecessary
overhead while getting increasingly worse as the number of subsystems increases.
GPFS cluster administrators are aware of these overheads and are reluctant to enable
tracing.

Test setup For our experiments, we used two IBM System x3650 M4 machines
equipped with two Intel Xeon E5-2650 v2 CPUs each. Each CPU has 8 cores @
2.6 GHz with two hyper-threads per core. Each system includes 96 GiB of main
memory and one 10 Gb Ethernet Mellanox card connected to a 10 Gb Force 10
S2410 Ethernet switch. Further, each machine uses an internal ServeRAID M5110e
SATA/SAS controller with a 15,000 RPM SAS Enterprise HDD of 146 GiB capacity
and a single Intel SSD of 120 GiB capacity connected to it.

We will demonstrate the tracing-induced overhead by simulating a common HPC
metadata-intensive workload using the well-known mdtest benchmark [@106]. In
the experiments, mdtest performs concurrent file creation in a single directory,
creating two million zero-byte files from two file system clients. We selected this
workload for two reasons: First, concurrent file creation is a common workload in
many HPC applications and, second, it is one of the most difficult workloads for a
parallel file system to perform efficiently. Section 2.3.2 explained these two topics,
elaborating on the metadata challenges and their corresponding operations, which
are major factors in the application I/O throughput in supercomputer environments.
Because of the workload’s complexity and commonness, they are frequently traced in
various production deployments [196]. Moreover, metadata operations are usually
in the kilobyte range, requiring extensive synchronization and logging mechanisms.
Therefore, the time is mainly spent within the file system, triggering significantly
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more tracepoints compared to data-intensive workloads where the time is spent
waiting for I/O operations to complete [251].

The experiments to investigate the tracing overhead were run on two nodes. We
only used two nodes for two reasons: First, because each node only traces its own
execution, there is little change in additional trace records when the number of
nodes is increased. In essence, the number of triggered tracepoints scales almost
linearly with the number of nodes, and there is no fixed amount of fewer tracepoints
collected by using more nodes in the same workload. In fact, the opposite can
be the case as the network communication increases with more file system nodes,
resulting in more triggered tracepoints overall. Second, we require at least a two-
node configuration as a single node cluster would not need to handle inter-node
and node-local locking of file system resources.

The experiments were run in two configurations regarding the underlying storage:
RAM disk and SATA SSD. We decided on this configuration as faster storage tech-
nologies are expected to become more common in storage systems in the future,
potentially replaced by persistent memory technologies [24, 90, 160]. Already to-
day, many parallel file system installations are using SSDs for storing metadata,
while the newest supercomputing clusters are incorporating dedicated NVMe-based
burst buffers [@179]. Further, these configurations increase the number of IOPS
that the file system can perform, causing more tracepoints to be triggered in gen-
eral. Therefore, we target these methods which especially require efficient tracing
mechanisms.

We ran the experiments with tracing in the blocking mode, with tracing in the
overwrite mode, and without tracing at all. Experiments with enabled tracing were
evaluated in two settings, using 1. different priority levels for the file system (FS)
subsystem, and 2. using the default tracing layer. We used the FS subsystem as it
has the highest number of tracepoints.

Notice that the blocking mode writes its in-memory buffer periodically to the disk,
whereas the overwrite mode keeps it in memory. Thus, the blocking mode’s per-
formance depends on the underlying storage device. For storing the trace files, a
single enterprise-grade HDD per node was used. This is a common setup among
GPFS users, who are often reluctant to invest in additional equipment just for trace
collection [196].

Evaluation Figure 3.4 visualizes different levels of tracing impact on file creates
per second. In all cases, the relative standard deviation was less than 5%. The

38 Chapter 3 Challenges and solutions for tracing storage systems



No t
rac

ing FS 
1

FS 
2

FS 
3

FS 
4

FS 
5

FS 
6

FS 
7

FS 
8

FS 
9

FS 
10

FS 
11

FS 
12

FS 
13

FS 
14

Defa
ult

 la
ye

r

Priority levels

0
1000
2000
3000
4000
5000
6000
7000
8000

Th
ro

ug
hp

ut
 (c

re
at

es
 / 

se
co

nd
)

RAM disk with blocking mode
RAM disk with overwrite mode

SSD with blocking mode
SSD with overwrite mode

Figure 3.4.: The average performance of concurrently creating two million files in a single
directory with various tracing settings (x-axis): no tracing, FS (file system)
subsystem in all levels, and the default layer, in four tracing modes.

in-memory trace buffer was set to the default (4 MiB) in blocking mode and 4 GiB
in overwrite mode. For both SSD and RAM disks, the blocking mode’s overhead
is severe, causing a performance drop by more than 60% when the priority level
4 was used compared with the no-tracing case. With higher priority levels (less
importance), the performance remains similar because most tracepoints are located
in levels 1 – 4. For the default layer, which enables the tracepoints of all subsystems,
the performance drops by almost 95%. We also ran the experiments with all 20K+
tracepoints enabled. However, GPFS detected hanging nodes during our experiments
rendering the results invalid, and they are therefore not included in Figure 3.4.

Due to the blocking modes overhead, traces can also be of limited use for perfor-
mance analyses and diagnosing problems, e.g., caused by race conditions. This is
because the trace collection overhead can change the system behavior, resulting
in false conclusions. GPFS developers have encountered such situations numerous
times over the past 20 years [196]. In the overwrite mode, on the other hand, the
trace collection overhead is significantly less, with only 10% performance degrada-
tion in the RAM disk case. Nevertheless, the overwrite mode requires expensive main
memory to be dedicated for the in-memory buffer, and thus a significantly smaller
number of events can be traced in a single execution. For example, with 8 GiB used
for tracing buffers in total on both nodes, only about 16% of the overall most recent
traces could be kept when two million files were created with the default layer.
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Subsystem Compressed
(GiB)

Uncompressed
(GiB)

Trace records
(millions)

FS 1 2.1 19.2 179.6
FS 2 4.4 40.4 395.4
FS 3 4.8 41.6 413.3
FS 4 8.5 80.1 747.2
FS 5 12.4 109.1 1,021.1
Default layer 88.1 458.1 4,032.7

Table 3.1.: The amount of data generated when four million files are concurrently created
in a single directory on two nodes for different subsystem configurations.

Consequently, the large trace size leads to the next challenge. These experiments
used the overwrite mode and concurrently created four million zero-byte files on
two nodes which ran about ten minutes in all cases. Table 3.1 lists the human-
readable trace file sizes for the compressed (by gzip) and uncompressed states, in
addition to the overall number of trace records. The table shows the numbers for the
first five FS subsystem priority levels and the default layer. Higher priority levels
were omitted as fewer additional tracepoints were assigned from levels 5–14, and
therefore the trace file sizes remained similar. For the default layer, 10 minutes
produced about 460 GiB of uncompressed traces, corresponding to over 4 billion
trace records. Note that because each node is only tracing its own execution, the
amount of generated traces grows almost linearly with the number of file system
nodes. Therefore, in a much larger setup (some users have more than 10K file
system clients), the generated trace data becomes practically intractable.

We conclude that the blocking mode suffers from severe performance degradation,
making many analyses, such as time-related bugs, hard to reproduce. However,
other bugs may also be more likely to occur because artificial tracing delays can
cause unexpected file system behavior. On the other hand, while the overwrite mode
causes considerably less performance degradation than the blocking mode, there
might not be enough data captured for trace analysis due to the large trace sizes.
Yet, both modes are essential tools on a daily basis but suffer from the limitations of
the subsystem-and-priority classification scheme in many use cases.

3.5 Design of FlexTrace

We present FlexTrace, a new tracing interface to overcome the challenges presented
in the previous section. It is built on top of and extends the existing GPFS tracing in-
terface, allowing a wider use of tracing for production systems and, as a result, better
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insights for developers and users. Although GPFS and FlexTrace are closed-source
implementations, FlexTrace’s conceptual and implementation simplicity makes its
design easily adaptable to other storage systems.

FlexTrace aims for the following use cases where GPFS’s subsystem-and-priority
classification has shown not to work well [196]: 1. diagnosing known performance
issues, bugs, or workloads by reducing the performance degradation and the data
volume caused by byproduct traces, 2. understanding complex code behavior, and
3. verifying recently implemented code during development. Moreover, FlexTrace
should eliminate situations that required special tracing builds for customers to
identify a specific problem. Finally, FlexTrace is combined with GPFS’s overwrite
mode, which already shows low trace collection overhead, to make always-on tracing
possible in many more situations, allowing for a more straightforward diagnosis at
customer sites.

The next sections will describe FlexTrace’s goals, including its requirements to seam-
lessly integrate into GPFS’s existing tracing framework, and its implementation.

3.5.1 Goals

We define the following goals for the tracing improvements to GPFS:

Functionality With FlexTrace, both GPFS developers and users should have fine-
grained control over which tracepoints to enable to ensure minimal trace overhead
and byproduct traces.

Backward compatibility GPFS users, which include developers, administrators, and
testers, are accustomed to today’s tracing API and CLI commands and, in many
cases, have built upon it via management frameworks or other scripts. Breaking the
API or semantics would require modifications of such software, and it could cause
disruptions of deployment upon upgrade. Therefore, the existing trace-related APIs
and CLIs should still be functional for backward compatibility. Further, the trace
record format should not change so that analysis tools still work as expected with
FlexTrace.
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Minimal code changes With over 20K tracepoints in GPFS’s code, it is hard to
estimate the impact of even small modifications to the tracing framework concerning
the entire system behavior. Changes could cause unexpectedly high performance
degradation and increased resource utilization, especially when operating on a
highly optimized tracing framework. Developers, therefore, would be reluctant and
naturally alarmed if the tracing framework were to be heavily modified. Conse-
quently, our initial goal is to limit the number of changes and avoid modifying each
source file that contains a tracepoint.

Low overhead and increased system performance With FlexTrace’s fine-grained
control over which tracepoints to enable, this, in turn, reduces the amount of col-
lected byproduct traces significantly (depending on the use case). Thus, decreasing
the amount of byproduct traces would increase the overall system performance
when tracing is enabled. However, the GPFS developers were concerned that giving
users such fine-grained control would increase the overhead and decrease tracing
performance, especially when most tracepoints are disabled. This is because, for
each encountered tracepoint, the executing thread must check if the specific trace-
point is enabled. In addition to executing more instructions, GPFS and applications
might encounter an increase in CPU cache misses with an increasing number of
tracepoints. Thus, our goal is to keep the overhead and performance degradation as
low as possible.

Improved usability Allowing complete fine-grained control over 20K+ tracepoints
raises several usability challenges. First, a numeric (non-descriptive) identifier would
make the tracing interface difficult to use for both users and developers. Second,
and even more fundamental, it is not clear how users would be supposed to know
which tracepoints to enable. Developers could consult the source code, but it can
be time-consuming, especially when a developer is not familiar with the entire
code base. This is not an option for users because they do not have access to the
proprietary source code. Therefore, our goal is to make FlexTrace’s interface easy
to use for developers with various levels of experience as well as for users on a
deployed system.

3.5.2 Implementation

In the remainder of this chapter, the unmodified GPFS tracing version is referred
to as vanilla. To achieve the goal of allowing flexible and fine-grained control
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over all tracepoints, FlexTrace builds on GPFS’s vanilla tracing framework and
extends it. Though we initially considered dynamic instrumentation for FlexTrace,
its performance and management drawbacks (see Section 3.2.1) counter our goals.
Also, because the GPFS source is not publicly available, dynamic instrumentation
would be of limited use to users while also requiring extensive code modifications.
As a result, FlexTrace builds on GPFS’s static instrumentation mechanism. To not
break existing software that analyzes trace records, we did not change the trace
record format.

FlexTrace uses a bitmap to store the tracepoint state, that is, if it is enabled or
disabled, for all 20K+ tracepoints. Vanilla GPFS already maintains a unique (integer)
identifier for each tracepoint to efficiently transform a binary trace to its textual
form (see Section 3.3). FlexTrace reuses these identifiers as bitmap indices to reduce
the amount of newly added code. Although all tracepoints would ideally only need
2.4 KiB for the bitmap, the tracepoint IDs are actually sparsely distributed across
65K indices, making FlexTrace’s bitmap 8 KiB in size. The bitmap size is important
and should be as low as possible so that it still fits in the CPU cache while leaving
enough space for other code and data. Generally, the L1 and L2 CPU caches per core
can contain 64 KiB (32 KiB instruction cache and 32 KiB data cache) and 256 KiB in
size, respectively.

To control which tracepoints are enabled, the existing GPFS trace command now also
accepts a list of tracepoint IDs. However, because tracepoint IDs on their own are
non-descriptive and meaningless for users, FlexTrace leverages the already existing
preprocessor names each tracepoint is associated with. The preprocessor names are
typically very descriptive, e.g., the ACCESSDIRENTRY_EXIT tracepoint captures an
exit from the function that processes access to a directory entry. Therefore, users
can use the preprocessor name in place of the ID1. Further, FlexTrace extends the
trace command to allow listing all tracepoints with IDs and names.

When tracing is disabled, a single global variable is used to check if at least one
tracepoint is enabled, which is identical to the vanilla tracing mechanism. As a result,
FlexTrace has no performance impact when tracing is disabled because the bitmap
is never accessed. Moreover, FlexTrace’s individual tracepoints are independent of
one another, which is in contrast to the vanilla subsystem-and-priority classification,
where tracepoints of a lower importance level would also enable all tracepoints of
the same subsystem with a higher importance level.

When at least one tracepoint is enabled, FlexTrace checks whether each of the
corresponding bits for each encountered tracepoint is enabled. This could cause

1Note that a corresponding list of preprocessor names would need to be publicly available.
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more overhead than in the vanilla case, which only checks the subsystem and priority
levels for a given tracepoint. In the vanilla case, this is a lightweight operation as
all priority levels fit into just 64 bytes (one byte per subsystem) and, hence, into a
single cache line2. FlexTrace’s bitmap might therefore decrease GPFS performance,
but, as we will show in Section 3.6.3 later, this is not the case.

Because manually activating a large number of individual tracepoints is a tedious
task, FlexTrace introduces a new type of tracepoint sets: tracing profiles. Profiles
contain a list of tracepoints that should be enabled, and, contrary to static subsystems,
they are flexible and easily modifiable after GPFS is built and deployed at the
customer’s site. In many ways, trace profiles offer the flexibility of dynamic tracing
without its overhead when enabled. Therefore, the GPFS trace command also
accepts tracing profiles next to tracepoint names and IDs.

In general, tracing profiles allow users to define their own tracepoint sets, tailored
to their specific use case. Nevertheless, we do not expect users, that is, customers,
to extensively use the tracing profiles directly. As GPFS’s developers are already
supporting customers today, tracing profiles can help developers create custom
tracing profiles to analyze a particular issue they face rather than creating custom
GPFS builds. Also, this allows developers to create tracing profiles to debug issues
of applications’ I/O workloads. For example, I/O workload profiles can help un-
derstand an I/O workload’s used I/O sizes, randomness, or read vs. write balance,
among others. In the past, GPFS had numerous customers who could rewrite their
application to be more efficient after they understood that their I/O workload was
not suitable for the storage system they were using [196]. In summary, flexible
tracing profiles can help developers build more efficient applications, while GPFS
developers can easily provide them with the appropriate tracing profiles to enable
the necessary tracepoints. In addition, FlexTrace can help to debug problems appli-
cation developers face by being able to achieve a more detailed understanding of an
I/O workload through rich trace-like information.

To present an example of how tracing profiles can be used, we defined a special
create-analysis profile to analyze concurrent file create performance in a single
directory, a common workload and one of the most difficult for a parallel file
system to handle efficiently (see Section 2.3.2 for details). Optimizing this complex
workload demands a great understanding of many code paths, which would require
the enablement of many trace subsystems in vanilla GPFS to catch all necessary
information. Considering the performance degradation, which can hide bottlenecks

2The CPU reads and writes the entire cache line whenever any location is accessed within the 64 byte
region.
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when tracing is enabled, and the large trace file sizes of vanilla GPFS tracing,
this is a suitable workload candidate to demonstrate FlexTrace’s advantages. The
create-analysis tracing profile and the corresponding analysis script not only help
understand GPFS’s behavior but also profiles the time GPFS spends in various stages
of the file create process.

Further, for the sake of backward compatibility, additional tracing profiles were
developed for the tracepoints of existing subsystems and their priority levels, as well
as for the default and io layers. For instance, the IO-5 profile is equivalent to the
I/O subsystem with the priority level 5 (without FlexTrace). As in vanilla GPFS, this
enables all tracepoints for the I/O subsystem with priorities 1 to 5. In the long run,
we expect that a library of profiles grows over time suited to trace a wide variety of
issues or gain a deeper understanding of various workloads.

3.6 Evaluation of FlexTrace

This section will compare FlexTrace’s impact on GPFS’s subsystem-and-priority
tracepoint classification system. First, we will present the experimental setup
and used benchmarking tools. Then, Section 3.6.2 will evaluate the overhead of
GPFS’s static instrumentation when tracing is disabled and investigate if a single
tracepoint can have a measurable impact on the overall file system performance.
These experiments mainly aim to determine if small parts of a big system can
be continuously traced in production environments. Finally, Section 3.6.3 will
empirically check if and to what extent FlexTrace’s bitmap (of 8 KiB) pollutes the
CPU caches, potentially degrading the file system’s and application’s performance.

3.6.1 Test setup

We used the same workload and test setup for performing the experiments as
presented earlier in Section 3.4.2, i.e., mdtest [@106], to concurrently create two
million zero-byte files in a single directory of a GPFS file system on two file system
nodes. If not mentioned otherwise, all experiments were run at least 10 times on 2
nodes with 16 used processes each. Both nodes used SSDs and RAM disks for GPFS’s
underlying storage. The performance is presented as the average throughput, i.e.,
file creates per second, over ten iterations.

Further, when indicated, the cache benchmark of the lmbench CPU benchmark
suite [@135] polluted and stressed the CPU caches on the test system. To investigate
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the effects of FlexTrace’s large bitmap on the CPU, lmbench was run alongside
mdtest, pinned to the same CPU cores. We monitored the overhead caused by the
two benchmarks competing for L1 and L2 CPU caches with the commonly used
Linux perf [@133] application. Each core has a 32 KiB data and a 32 KiB instruction
cache for the L1 cache and 256 KiB for the L2 cache. The L3 cache with a size of
20 MiB is shared among all cores.

3.6.2 Static tracing and single tracepoints

Even if all tracepoints are disabled, static tracing requires at least one conditional
check per tracepoint, causing some amount of overhead. This section will investigate
the overhead of the 20K+ statically placed tracepoints when all of them are disabled
in the vanilla GPFS case (not yet including FlexTrace). Therefore, the performance
of two GPFS binaries is compared: One without any code modifications and one
with completely removed (compiled-out) tracepoints, which decreased the binary
size by ∼5%.

The results showed that statically placed tracepoints could decrease the create
throughput by up to 3% in the two-node experiments for both SSD and RAM disk
cases. However, it is important to note that the level of performance degradation
also depends on the number of encountered tracepoints in the executed code paths.
Thus, fewer tracepoints cause fewer conditional checks if a tracepoint is enabled and
less performance degradation in general. For instance, the I/O code path contains
few tracepoints and is, as a result, not noticeably affected by tracing. This is in
addition to the delays when performing I/O in which the executing thread has to
wait for the disk operation to complete. Analysis tools, e.g., iostat [@131], refer to
this waiting time as iowait.

However, the impact of disabled tracepoints can also be higher with more tracepoints
in the code path and with more IOPS being executed. If the experiments are run
only on a single node, for example, global locking mechanisms and inter-node
communication are not required. This results in a file create throughput increase
of ∼30% and ∼50% for the RAM disk and SSD cases, respectively. In turn, the
increased throughput rate then leads to more encountered tracepoints per second.
In this scenario, adding static (and disabled) tracepoints decrease performance by
up to 9% for the RAM disks and 5% for the SSDs (without generating a single trace
record) compared with the GPFS binary with completely removed tracepoints.

Next, we evaluated the impact of a single enabled tracepoint that is hardcoded
into the code without requiring a conditional check. Such hardcoded tracepoints
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are always enabled and cannot be dynamically disabled through a data structure
like a subsystem or a bitmap. This experiment aims at understanding the overall
performance degradation once FlexTrace’s bitmap is introduced later to check if a
tracepoint is active. As a result, all tracepoints except a single one were removed,
which is emitted only once for each created file.

After performing and measuring several file create experiments on one and two
nodes with both SSD or RAM disk as storage, there is no statistical difference in the
average file create throughput for a single hardcoded tracepoint in the overwrite or
the blocking mode compared with disabled tracing. This shows the insignificance
of collecting single tracepoints on the overall system performance, although such
metadata workloads cause a high frequency of tracepoints even if just a single
tracepoint is enabled. With this information in mind, all other measured overhead
(if any) can be attributed to FlexTrace’s bitmap when it is used to control the
tracepoints.

3.6.3 Bitmap

This section will discuss the impact of FlexTrace’s bitmap, which stores each trace-
point’s state, on the performance of the file create workloads. Further, we will clarify
the concerns raised by the developers (see Section 3.5.1) with regards to GPFS’s
performance when CPU-cache-intensive applications are running because parts of
the bitmap are forced into the cache when at least one tracepoint is enabled. When
tracing is globally disabled via a corresponding variable, the bitmap is not accessed
and does not incur any overhead. Moreover, note that the number of tracepoints
does not impact the bitmap performance because the bitmap size remains constant,
and the same number of indexes needs to be accessed in all cases (disabled or
enabled tracepoints).

Performance comparison Figure 3.5 shows the performance in create throughput
for various tracing experiments on the x-axis. They are categorized into four groups
depending on whether a RAM disk or SSD was used as underlying storage and
differentiate each between the blocking and the overwrite tracing modes. Every
experiment was run at least ten times. The relative standard deviation was less than
5% in all cases unless otherwise indicated. Each group describes the performance
of the following four scenarios: (VANILLA_NO_TRACE) vanilla with disabled tracing,
(VANILLA_FS_4) vanilla with enabled tracing of the FS subsystem at the default
priority level 4, (VANILLA_DEFAULT) vanilla with enabled tracing of all subsystems
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Figure 3.5.: A throughput comparison (y-axis) for concurrently creating files in four scenar-
ios (x-axis).

with default priority levels (default layer), and (FLEXTRACE_BITMAP) FlexTrace
with a bitmap and four enabled tracepoints.

In the vanilla case, the four specific enabled tracepoints in FlexTrace’s bitmap are
assigned to different subsystems with a low priority level (high importance level).
Enabling the same four tracepoints via the subsystem-and-priority classification in
vanilla GPFS would activate over 3K tracepoints, adding measurable overhead and a
substantially increased trace data volume. We selected these tracepoints because
our experimental workload triggers them for each file creation and because they
were used in other projects involved with latency analysis of file create performance
in GPFS [251].

As previously discussed in Section 3.4.2, the create throughput is greatly impaired by
tracing in the blocking mode, especially if it involves the default layer, resulting in
a slowdown of up to 95%. This type of overhead is also visualized in Figure 3.5 for
both storage device cases (see the VANILLA_FS_4 and VANILLA_DEFAULT scenarios).
For the overwrite mode, the performance differences are not as serious but still
up to 20% compared with disabled tracing (VANILLA_NO_TRACE). Nevertheless, the
in-memory buffer of the overwrite mode can be exceeded in a matter of seconds,
depending on the buffer size, the individual trace record size, and the tracepoint
trigger frequency. In other words, the longer the trace collection period and the
smaller the trace buffer, the less frequent trace information can be kept.

For the FlexTrace scenario using the bitmap data structure (FLEXTRACE_BITMAP)
the performance remains similar within the margin of error in all cases. More-
over, there is no measurable overhead compared with the disabled tracing case
(VANILLA_NO_TRACE). This shows that FlexTrace’s bitmap does not add a measurable
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overhead in our experiments, although the file system must access the bitmap index
for each encountered tracepoint in the code path, regardless of its state. In fact,
FlexTrace’s results, in combination with the overwrite mode, are the most promising
for cases where traces should be continuously collected. In this context, it is essential
that trace collection does not slow down the application and does not alter its
behavior.

Effects on the CPU cache When tracing with FlexTrace is enabled, the constant
bitmap accesses for each encountered tracepoint force parts of the bitmap into the
CPU caches, regardless of an individual tracepoint’s state (enabled or disabled).
Note that, in this context, disabling tracing is controlled via a single global variable,
and the bitmap is not accessed at all when it is disabled. If tracing is enabled, the
bitmap is accessed for each tracepoint in all cases. Applications that depend on
and heavily use the caches would then compete with the bitmap. This affects its
access latencies and can negatively influence the overall tracing performance. Thus,
when an application and FlexTrace’s bitmap compete for the caches, an increase
in cache misses is to be expected. This scenario concerned GPFS developers and
in-field experts and is addressed in the following paragraphs.

Several experiments evaluated the cache utilization with FlexTrace’s bitmap. To
pollute and stress the CPU caches on all available cores, the cache benchmark of
the lmbench benchmarking suite was run, which continuously accesses and clears
the caches. In addition, similar to previously presented experiments, two million
zero-byte files were created in a single directory with mdtest. Both benchmarks
have been pinned to the same CPU cores to ensure cache competition. The Linux
perf tool monitored the cache miss percentages for all cache references encountered
by mdtest when both benchmarks were executed when tracing was enabled and
disabled. In addition, to not skew the caching results with executed tracing code
beyond the bitmap, all tracepoints were modified so that no trace records are
collected when the tracepoint is enabled. Therefore, each tracepoint results in
accessing the corresponding index in the bitmap, no matter the tracepoint’s state,
leaving only the bitmap’s potential overhead. In case the cache misses increase when
tracing is enabled, the conclusion would be that the bitmap affects the caches and
leads to a higher overall cache utilization.

Figure 3.6 shows the percentage of cache misses of all cache references (y-axis)
in four scenarios for each storage subsystem (x-axis). The relative standard de-
viation was less than 10% in all cases. The baseline case is without cache pollu-
tion (NO_CACHE_P) paired with enabled tracing (TRACE) and with disabled tracing
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Figure 3.6.: A comparison of the bitmap’s effects on the CPU cache by investigating the
percentage of cache misses of all cache references (y-axis) when concurrently
creating files with and without polluting the CPU caches (x-axis).

(NO_TRACE). In both cases, ∼2.5% of all cache references are accounted to cache
misses on average. Note that accessing the bitmap does not impact the average
creates throughput (see Figure 3.5). When the same workload is run for the disabled
tracing case and cache pollution, a slowdown of almost three times could be observed
because GPFS now needs to share CPU cycles with the computationally-intensive
lmbench. At the same time, the cache misses increase to over 6% on average
(CACHE_P, NO_TRACE). However, when tracing is additionally enabled, there was no
measurable impact outside the margin for error on the overall create throughput or
the number of cache misses (CACHE_P, TRACE). We therefore conclude that, under
the conditions of our experiments, a cache-intensive application does not cause
negative effects on the overall cache misses and the performance of FlexTrace’s used
bitmap.

In this regard, notice that not the entire bitmap is accessed (and therefore pulled
into the cache) during this workload. This is because the number of encountered
tracepoints depends on how densely they are populated in the executed code
path. For instance, the presented workload comes across fewer than 900 different
tracepoints per file create. Consequently, this results in the same amount of unique
accesses to the corresponding bitmap indices, although the bitmap can contain up to
65K tracepoints. Furthermore, there was no measurable increase in CPU utilization
caused by the bitmap in the presented experiments.
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3.7 Summary

Tracing is a versatile and powerful tool that users and developers utilize in many
use cases on a daily basis. Yet, the rapidly growing trace output makes it difficult to
analyze, while enabling tracing can severely impair an application’s performance
and behavior. This chapter has examined today’s tracing challenges from the point of
view of GPFS’s users and developers. Moreover, it has pointed out various difficulties
that occurred during file system development because of its high complexity, long
development history, large codebase, and a high number of developers.

This chapter has included several observations, for instance, that the typical ap-
proach of splitting tracepoints into static sets (e.g., by their scope and priority) can
limit trace scalability and flexibility. Further, we showed that developers tend to
put tracepoints around few “default” levels that can lead to high and unpredictable
overhead when tracing is enabled. For moving towards a better tracing infras-
tructure, we have proposed, designed, implemented, and evaluated the FlexTrace
research prototype – a new tracing interface that allows users fine-grained control
over individual tracepoint activation with little overhead. Based on this interface,
FlexTrace introduces the concept of tracing profiles that users can define, tailored
for a specific analysis. By decoupling tracepoints from their static subsystems, users
have full control over which information to collect, significantly reducing common
tracing overheads in real use cases. Finally, because of the low overhead, FlexTrace
even makes the continuous collection of few crucial tracepoints a possibility.

The future work covers two directions. First, we would like to conduct a user study
to create useful tracing profiles. And second, we would like to explore additional
use cases for FlexTrace, including always-on tracing that 1. is able to adjust the
number of collected tracepoints automatically based on the amount of currently
measured file system overhead, and 2. uses individual tracepoints for end-to-end
tracing, allowing developers to understand call paths and timings of various file
system operations.
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GekkoFS:
A temporary burst buffer file
system for HPC applications

4

Nowadays, many scientific fields have started to use HPC to process and analyze
massive amounts of experimental data. As a result, the HPC system’s parallel file
system has to cope with new access patterns that were not commonplace in the
past. Such access patterns include large numbers of metadata operations, small I/O
requests, or random file I/O.

Burst buffer file systems are a way to reduce pressure from the backend parallel
file system and to increase an application’s I/O performance (see Section 2.3.3 for
details). At its core, a burst buffer file system is a separate distributed file system that
stores temporary data. They combine the available node-local storage of compute
nodes or use dedicated SSD clusters to offer a single global namespace. Therefore,
given enough storage capabilities, they can offer a higher peak bandwidth than
the backend parallel file system without interfering with it. However, current burst
buffer file systems often provide many features that are not necessary for a scientific
application that runs in an isolated environment.

This chapter will present GekkoFS, a temporary, highly scalable distributed file
system that is specifically optimized for the aforementioned use cases. The burst
buffer file system can be deployed ad hoc in a matter of seconds and provides
relaxed POSIX semantics supporting only features that are actually required by most
HPC applications. As a result, GekkoFS can provide scalable data and metadata
performance, reaching millions of metadata operations per second already at small
node numbers, thus substantially outperforming the capabilities of typical parallel
file systems.

First, Section 4.1 will motivate and introduce the work in detail. In Section 4.2, we
will provide background information and the related work of parallel file systems,
burst buffers, and the challenge of metadata scalability in distributed environments.
Further, we will discuss how users and applications can interface with file systems
and present the benefits and drawbacks of existing approaches in the context of ad
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hoc burst buffer file systems. Next, the overall design of GekkoFS will be described
in Section 4.3. Section 4.4 will introduce some of the main use cases of such a
burst buffer file system and how they can be beneficial. Section 4.5 will evaluate
GekkoFS on several supercomputers and various workloads ranging from metadata-
intensive and data-intensive workloads to real-world workloads found in distributed
deep learning applications. Finally, Section 4.6 will present the future work, and
Section 4.7 will conclude this chapter.

4.1 Motivation

Today, new types of applications are used in HPC. Where HPC applications have
been primarily compute-bound, large-scale simulations in the past, increasingly
more applications are generating, processing, and analyzing massive amounts of
data. This trend, also known as data-driven science, affects various kinds of scientific
fields, with several of them now being able to address many difficult challenges due
to newly developed techniques [209, 244].

With the data-driven workloads came new I/O patterns, which imposed new require-
ments on the HPC file systems [44, 168, 181, 264]. These new I/O patterns differ
significantly from past HPC workloads that mainly performed sequential I/O opera-
tions on large files. Compared to traditional HPC workloads, data-driven workloads
are based on new algorithms and data structures, such as graph databases, including
large numbers of metadata operations, data synchronization, non-contiguous and
random access patterns, and small I/O requests [52, 168]. Consequently, these I/O
patterns can not only slow down data-driven applications but can also heavily disrupt
other applications that access the same shared storage system concurrently [60,
243]. This is because parallel file systems were optimized for traditional HPC use
cases and workloads, and they are unable to handle these new kinds of workloads
efficiently. Data-driven applications accessing their parallel file system can there-
fore suffer from reduced throughput, prolonged I/O latencies, and long waiting
times. Other data-intensive use cases involve checkpoint-restart [19, 68, 191, 192],
bulk-synchronous [32], and machine learning [44, 45, 283] workloads.

Software-based approaches aim to support data-driven applications and their access
patterns by aligning them more to the abilities of the underlying storage system.
This can be done by directly modifying the I/O layer of the application or by using
middleware software and high-level libraries (e.g., ADIOS [137], or HDF5 [70]).
Nevertheless, adapting software is typically a time-consuming process, hard to
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couple with machine learning or big data libraries, or at times, depending on the
used data structures and algorithms, not possible.

Hardware-based approaches employ NAND-based solid-state drives (SSDs) instead of
magnetic disks (HDDs), which are still used as the primary storage device technology
in parallel file systems. Today, many supercomputers use SSDs to achieve a much
higher sequential and random access performance [@9, @51, @75, @147, @157,
@226, @232]. SSDs can be used to improve metadata performance of the parallel
file system as dedicated burst buffers [134] or as node-local burst buffers, whereas
the node-local burst buffers use SSDs that are directly installed at the compute
nodes. To improve file system performance, burst buffers can then be deployed in
combination with a dynamic burst buffer file system [19, 265].

In general, burst buffer file systems can increase I/O throughput and latency com-
pared to a parallel file system without modifying the application itself. Existing burst
buffer file systems typically support the POSIX I/O and offer the standard semantics
and consistencies accepted by most application developers. However, as discussed
earlier in Sections 2.3.1 and 2.3.2, enforcing POSIX can severely reduce a file sys-
tem’s peak performance [257], particularly for metadata operations. Moreover, most
scientific applications do not need all POSIX features [128, 263], especially when
they can exclusively access a dedicated file system. Comparable argumentations
hold for other advanced features, such as security or fault tolerance.

This chapter will present GekkoFS – a highly scalable distributed burst buffer file
system for HPC applications. GekkoFS combines node-local storage resources, e.g.,
fast SSDs, into a shared namespace that all file system nodes can access. It is
specifically designed for temporary scenarios, e.g., during an HPC job, or for longer-
term use cases, such as campaigns where many nodes access data in parallel and in
short bursts. To allow such an ad hoc deployment, the file system runs in user space
and can be easily started in less than 10 seconds on a 512 node cluster by any user.
GekkoFS relaxes POSIX and removes some of its semantics that impairs file system
performance in a distributed setting. In addition, for GekkoFS, we considered earlier
studies that investigated the behavior of HPC applications [128] to optimize for the
most used file system operations.

For scalability and load-balancing, GekkoFS distributes all data and metadata across
all file system nodes. Further, its modular I/O layer supports multiple data and
metadata distribution schemes that can benefit various I/O patterns, e.g., when
metadata needs to be globally available but data only locally. For moving the data
between the nodes, GekkoFS uses the HPC RPC framework Mercury [228] via
Margo [210] in combination with the HPC threading framework Argobots [42, 221].
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This allows GekkoFS to natively use enterprise network technologies used in HPC
systems, such as InfiniBand and Omni-Path.

This chapter will demonstrate the details of GekkoFS’s lightweight design, allowing
it to achieve scalable data and metadata performance with more than 45 million
metadata operations per second on a 512 node supercomputer. Moreover, we
will show that GekkoFS can run complex scientific applications, e.g., OpenFOAM
solvers [109] or deep learning workloads with TensorFlow [1]. We achieve these
features while GekkoFS operates synchronously and with strong consistency for all
file system operations which target a specific file or directory.

4.2 Related work

This section will discuss existing HPC file systems and outline their differences from
GekkoFS. In addition, we will describe possible options to develop and run user
space file systems.

4.2.1 General-purpose parallel file systems

Earlier in this thesis, Section 2.2 introduced parallel file systems, which most HPC
systems are using as a backend storage system to provide a global shared namespace
for all users. Examples for parallel file systems are GPFS [219], Lustre [30, 198],
BeeGFS [97], or PVFS [211]. These file systems focus on data consistency and
long-term storage and offer a POSIX-like interface so that applications can use them
as any other local file system. However, due to the nature of the file system being
globally accessible, a single application can be enough to severely disrupt the I/O
performance of others applications. Moreover, parallel file systems do not work
well for small file access, specifically when operating on shared files, often used in
scientific applications [168].

GekkoFS does not focus on a similar long-term storage solution. Instead, GekkoFS
provides a separate namespace that is only accessible to nodes that are part of the
file system within the context of an HPC job or other temporary use cases. Then,
after the HPC job finishes, all data is deleted. In addition, GekkoFS offers a relaxed
POSIX environment that allows for a significant increase in metadata performance
and reduces the impact on other applications running on the same HPC system.
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4.2.2 Burst buffers

Section 2.3.3 introduced node-local burst buffer file systems, which are logically
placed between the parallel file system and an application. Their goal is to use the
available node-local storage resources as a temporary distributed file system offering
fast and scalable I/O performance for an application and reducing the load on the
parallel file system. Burst buffer file systems are sometimes used ad hoc as part of a
single compute job or multi-job workflows. For example, in a single job use case,
they are started when a compute job starts and shut down when it ends.

Hermes [114], an I/O middleware library, provides a distributed I/O buffering
system transparently combining multi-tiered storage and memory hierarchies of
supercomputer environments. It considers both local and shared resources as
potential burst buffers and places data on all available storage layers.

UnifyFS [@119] is a node-local burst buffer file system and offers lamination seman-
tics, allowing a process to mark a file as no longer being modified. After lamination,
the file becomes permanently read-only and can be accessed by other compute
nodes without further synchronization, which can be useful for checkpoint-restart
workloads. UnifyFS does not include a POSIX I/O interface and must be linked
directly to the application.

BurstFS [265] is similar to GekkoFS regarding them being standalone burst buffers
and not requiring a centralized instance. Nevertheless, BurstFS is limited to writing
data only locally, whereas GekkoFS allows various distribution schemes, e.g., local
write/reads coupled in a global namespace or user-defined distributions linked to a
directory or file. By default, GekkoFS distributes all data and metadata across all
file system nodes, balancing data workloads for write and read operations without
sacrificing scalability.

The Hercules in-memory burst buffer storage system [78] focuses on in-memory use
cases and further offers a custom put/get interface. GekkoFS, on the other hand,
targets node-local SSDs and POSIX relaxation while both file systems further offer
several different data distribution strategies.

BeeOND [@16] (BeeGFS on demand) is a special deployment mode of BeeGFS [97]
which allows it to be deployed ad hoc, similar to GekkoFS. However, contrary to
GekkoFS, BeeGFS is a POSIX-compliant kernel-based file system, and our measure-
ments show GekkoFS having a much higher metadata throughput than offered by
BeeOND (see Section 4.5.3 later).
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4.2.3 POSIX

When parallel file systems provide POSIX semantics in a distributed environment,
supporting a strong consistency model coupled with shared access, they typically rely
on expensive distributed locking mechanisms, e.g., byte-range locking in Lustre [30]
and GPFS [219]. Nevertheless, strong consistency guarantees and poor parallel I/O
support in file systems [123] combined with access patterns of scientific applica-
tions [168] are the main reasons for I/O challenges in HPC. With the continuous
increase in computing performance, data-intensive applications encounter scalability
challenges, preventing them from fully using the computing power offered by HPC
systems [46].

One solution to reduce locking-induced overheads is to give the responsibilities to
applications and external libraries so that no shared file conflicts occur. PVFS, for
instance, does not implement a locking sub-system for this reason [159, 211]. With
GekkoFS, we support this argumentation and do not use a locking mechanism to
avoid the discussed overheads. In fact, avoiding locking and therefore inter-node
communication and synchronization between servers is one of the fundamental
pillars GekkoFS is built on.

4.2.4 Metadata scalability

Earlier in this thesis, Section 2.3.2 discussed the metadata challenges in the context
of parallel file systems. One of the large contributors to this issue are inodes and
directory blocks, which were not designed for parallel access. Over the years, the file
system community has presented several techniques for how to approach metadata
scalability [19, 73, 182, 183, 273, 274], but this challenge is still acute and becoming
even more important in upcoming data science applications.

For example, IndexFS is one such attempt to significantly improve metadata per-
formance [205] by using it as a middleware software between the application and
the parallel file system. Like GekkoFS, IndexFS stores all metadata information
in a key-value database and distributes metadata across multiple IndexFS servers.
IndexFS uses various client caches and assigns directories to IndexFS servers to
further increase RPC efficiency. GekkoFS, on the other hand, does not use any client
caching and uses a loosely coupled architecture, avoiding communication between
GekkoFS servers or linking data structures to a set of components. Moreover, it uses
wide-striping by default to aggressively distribute all metadata across all servers.
Contrary to GekkoFS, IndexFS is still bound by POSIX file I/O semantics, requiring
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it to use all file system protocols and interfaces of the used underlying file system.
GekkoFS implements relaxed POSIX semantics and only offers strong consistency for
requests that focus on a specific file or file data. As such, it weakens the concept of
directories, no longer using directory blocks and removing the connection between
inodes and directory entries. In fact, directory blocks are entirely removed and
replaced by objects for each file that are stored in a strongly consistent key-value
database. Among other things, this design allows GekkoFS to achieve linear scaling
with tens of millions of metadata operations for 512 nodes and billions of files.

4.2.5 Interfacing ad hoc file systems

When applications interact with a standard file system, they expect a familiar and
portable interface that follows a set of rules in the POSIX family of standards that
define the syntax and semantics of the I/O interface. Therefore, the POSIX I/O
interfaces are deeply embedded into the operating system and familiar to users
and applications that, as a general rule, do not directly use the corresponding I/O
system calls but use the GNU C standard library (glibc), which wraps the Linux
system calls and offers additional I/O functions, e.g., fwrite(). Notice that these
application-oriented interfaces should not be confused with other interfaces, such as
block I/O, object-oriented I/O, or file-based I/O, which are defined for lower-level
storage media access.

In general, a file system and its interfaces can be implemented at the kernel level or
user level (user space). Figure 4.1 presents three possible approaches. Kernel-based
file systems, e.g., EXT4 [37, @140], are the first option and run entirely in the kernel.
The second option adds an additional user space component to which I/O requests
are redirected, such as FUSE [@76, 250], which will be discussed later in this section.
Therefore, developers can write a file system that is run in user space relying on
the corresponding FUSE driver in the kernel. Such kernel-based file systems that
aim to support the standard file system interface must register their interfaces to
Linux’s VFS that the glibc library then accesses via system calls. The third option is
file systems that run entirely in user space (without any kernel component). Because
they are not connected to the VFS, which is part of the kernel, the file system provides
their implementation by preloading a library through the LD_PRELOAD environment
variable in which it intercepts defined I/O calls and redirects them to the user space
file system. The latter option is becoming increasingly popular [136, 160, 201,
265, 281] (including in ad hoc file systems) because of several benefits for code
development, portability, debugging, maintenance, and, often, performance.
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Figure 4.1.: Techniques to interface file systems with their components in three configura-
tions: a kernel file system, a custom FUSE file system running in user space but
relying on the FUSE driver in the kernel, and a custom user space file system
without a kernel component.

An alternative to file systems using standard interfaces is dedicated I/O libraries or
I/O wrappers, providing a thinner set of API functions that may ease deployment and
maintenance. I/O libraries are not necessarily backed by user space file systems and
are used to align access patterns with the capabilities of the underlying parallel file
system (e.g., ADIOS [137]). They can also be used as an API for another user space
file system, e.g., OrangeFS [159]. Other works, such as Aerie [260], use a flexible
file system architecture using a key-value interface. Yet, custom interfaces that do
not follow standards and usually require a modification of involved applications are
not suitable in many cases.

FUSE file systems The FUSE (Filesystem in Userspace) [202, 250] framework is a
popular approach to developing user space file systems due to its low development
overhead. At its core, FUSE uses two components: the FUSE kernel module (FUSE
driver) and the FUSE library (libfuse) in user space, supporting kernel-based and
user-level redirection for I/O calls, respectively. The libfuse library is executed as
part of a process that manages the entire file system at the user level. The library
communicates with the kernel through the FUSE device and the FUSE kernel module
that is connected to the VFS. Internally, all I/O calls are implemented as callbacks
through the libfuse library, which supports the communication between the FUSE
kernel module and the user space file systems [202]. As a result, a FUSE file system
can be used as any other kernel-based Linux file system, providing the traditional file
system interface. Due to FUSE’s API, developers can quickly implement a file system

60 Chapter 4 GekkoFS – A temporary burst buffer file system for HPC applications



while avoiding much of the complexity of the kernel. Several file systems use the
FUSE library, e.g., ChunkFS [96], SSHFS [100], FusionFS [280], or GlusterFS [54].

Although convenient, FUSE-based file systems also face several drawbacks due
to their architecture which requires constant communication between libfuse and
the kernel module. This is because libfuse is run as a separate user process in
which the round trip between an application and the FUSE process can result in
severe performance overhead [250]. Among other things, this is caused by a large
number of context switches between the user level and kernel level, requiring
two context switches for each file system request between the FUSE process and
its kernel module. Note that a single file system operation can involve several
such communication steps. DAOS, for instance, explored ways to mitigate this
issue by coupling a FUSE file system with library preloading in which only read
and write requests are intercepted by the interception library [136]. However,
Vangoor et al. [250] showed that specifically metadata operations are most affected
by FUSE’s performance overheads. Moreover, mounting a FUSE file system requires
extended privileges for their users and the availability of the FUSE kernel module,
which can pose a challenge in some HPC environments.

We conclude that for ad hoc file systems utilizing fast node-local storage devices as
burst buffers, the performance overheads can become too high for efficient usage
of the underlying storage and outweigh the benefits of convenient development.
Nevertheless, FUSE-based file systems can still be useful for file systems that do not
require strong consistency semantics, as is the case with object storage, for example.
As a result, many file system connectors for object stores are using FUSE. Chapter 5
will discuss this topic in detail and will present DelveFS that is also based on FUSE. In
this context, DelveFS explores ways to mitigate various FUSE performance overheads,
specifically when operating on large directories, which are commonplace in object
storage systems.

User space file systems Because pure user space file systems cannot be registered
to the VFS of an operating system due to a missing kernel component, user space
file systems must use other methods to offer a file system interface to applications.
Generally, there are two options: The file system is either directly linked to the appli-
cation at compile time or dynamically loaded at runtime, which can be achieved by
using a preloading library that intercepts defined file system-related function calls.
UnifyFS [@119] and DAOS [136] are examples of distributed file systems using the
former linking approach. UnifyFS supports the standard file system interface but
still requires some file system setup modifications to the application source code.
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DAOS, on the other hand, offers an entirely new I/O API for file system operations.
Nevertheless, such approaches require access to the application’s source code and po-
tentially extensive code modifications to accommodate custom APIs. An alternative
is preloading libraries that do not require application modification or recompila-
tion. Example file systems using this option are CRUISE [201], BurstFS [265], and
DeltaFS [281]. They all intercept the application I/O via a set of wrapper functions
that are implemented in the form of user-level preloading libraries.

Using such libraries can ease application development and maintenance and can be
beneficial concerning I/O throughput and latency because the kernel can be avoided.
Although the existing kernel-based components for file systems are well suited
for spinning disk-based storage, Volos et al. [260] discuss that they unnecessarily
limit the design and implementation of file systems that utilize faster storage, e.g.,
persistent memory devices that can offer I/O performances close to DRAM. Their
Aerie framework has shown that a POSIX-like file system in user space can perform
similarly or better than kernel-based implementations.

The Persistent Memory Development Kit [@187] (PMDK) is another approach to
efficiently use non-volatile main memory (NVMM) devices, also sometimes called
persistent memory devices. It avoids the kernel and builds on Linux’s DAX feature so
that applications can utilize persistent memory as memory-mapped files. Therefore,
approaches that bypass the kernel, e.g., by library preloading via the LD_PRELOAD
environment variable, are an attractive consideration when designing an ad hoc file
system, especially when it uses fast flash-based burst buffers. Reducing the time
within the kernel is likely becoming increasingly important for future storage tech-
nologies, e.g., NVMM, so that applications can fully exploit their storage capabilities
and achieve high I/O performance. Although not using PMDK, Simurgh [160] is an
example user space NVMM file system in shared memory that uses library preloading
to avoid kernel communication.

When using LD_PRELOAD, the corresponding library can, in principle, intercept any
function. Because of this, all I/O functions need to be reinterpreted by the user
space file system for the application to function correctly. Thus, the more I/O-related
operations an application uses, the more functions must be intercepted as well. As a
result, a large part of a given I/O library, such as those provided by glibc, would need
to be reimplemented. The system call intercepting library [@237] (syscall intercept)
aims to solve this challenge by offering a low-level interface for hooking Linux system
calls while still using the LD_PRELOAD method. This is done by patching the machine
code of the standard C library in the memory of the process, allowing the library
user only to intercept system calls and leaving the functionality of a given I/O library
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Figure 4.2.: GekkoFS combines the node-local SSDs of multiple nodes (highlighted in green)
in two cases for different node numbers.

untouched. For instance, when an application uses the commonly-used fwrite()
function of glibc, the interception library would need to reimplement its functionality
while also providing possibly different implementations of the numerous glibc
versions. Syscall intercept, on the other hand, limits the implementation to the
write() system call while glibc still provides the fwrite() functionality. Therefore,
syscall intercept dramatically decreases the number of functions that the user space
file system needs to implement as it is sufficient to only intercept system calls. In
this context, GOTCHA [@118, 194] is a wrapper library similar to LD_PRELOAD, but
it operates via a programmable API. For instance, UnifyFS is using GOTCHA as an
interception mechanism. Nevertheless, GOTCHA still requires some modifications to
the application source code.

GekkoFS incorporates the syscall intercept approach for the above-stated bene-
fits.

4.3 Design

This section will explain GekkoFS’s goals and design considerations. First, a short
overview will outline how GekkoFS works and how users interact with it. Next,
GekkoFS’s goals will be defined, followed by a brief introduction to GekkoFS’s
architecture and components. Finally, we will discuss each file system component in
detail.

4.3.1 Overview

GekkoFS’s goal is to provide a distributed file system in user space for use cases
where temporary storage access is available, such as within the context of an HPC
job that can use the node-local SSDs. It uses these node-local SSDs and combines
their storage capacity into a single global shared namespace, illustrated in Figure 4.2.
To achieve scalability with an arbitrary number of nodes, all data and metadata are
distributed across all nodes that run a GekkoFS server.
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Figure 4.3 presents a simplified overview of how an application interacts with
GekkoFS. As the first step, a file system server must be started on each node
that should use its local storage device for the file system. One of the server
parameters includes a path to a shared hosts file which each server uses to register
itself. Therefore, it contains all addresses of all servers used in the file system and it
is supposed to be placed on the HPC system’s parallel file system. The hosts file’s
path is then made available through an environment variable so that the clients
know which servers are part of their particular file system instance. An application
then preloads the GekkoFS client interception library, which intercepts all file system
operations and checks if they operate within the GekkoFS namespace, i.e., path (see
Figure 4.3). The client library can also be used to copy input data from the parallel
file system (stage-in) into GekkoFS or copy output data from GekkoFS to the parallel
file system (stage-out), if necessary. For instance, to stage-in data, a user can use
the cp command on the command line interface (CLI) while having the client library
preloaded. After a file system operation is intercepted and operates within GekkoFS,
the client forwards it to the responsible server, determined by hashing the file’s path,
where it is independently executed. To avoid an unbalanced data distribution for
large files, each file is additionally split into equally sized chunks by the client before
being distributed to the servers. Due to this communication scheme, there is no
communication required between the server instances.
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4.3.2 Goals

We define the following goals for GekkoFS’s design:

Functionality Any user should be able to deploy the file system on an arbitrary
number of nodes without administrative assistance. The paths to the mount point
(that is, the path where clients access the file system) and the data directory (that
is, the path where file system data is stored) are passed to the server executable
when it is started. The mount point should then present the user with a single global
namespace, consisting of the aggregated node-local storage of each server node.

Scalability GekkoFS should scale well with an arbitrary number of nodes and
efficiently use available hardware to benefit from current and future storage and
network technologies.

Consistency model GekkoFS should provide the same consistency as POSIX for any
file system operation that accesses a specific file or data (region) within a file. This
includes read and write operations as well as any metadata operations that target a
single file, e.g., file creation. However, the consistency of directory operations, e.g.,
an ls operation to list a directory, can be relaxed.

Fast deployment Compute time in HPC environments is valuable and expensive
and should not be wasted for the purpose of file system deployment. Therefore,
GekkoFS’s startup should be finished within one minute to be used immediately by
applications once the startup succeeds.

Hardware independence GekkoFS should utilize networking hardware commonly
used in HPC clusters, such as Infiniband or Omni-Path, and support the native
protocols of these fabrics to move data between file system nodes efficiently. In cases
where this is not possible, TCP/IP should be available for Ethernet, Infiniband, and
Omni-Path. Moreover, GekkoFS should work with any modern and future storage
subsystem that is (or will be) attached to compute nodes with the condition that the
node-local storage is accessible at a local file system path permitted to the user.
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4.3.3 Relaxed POSIX semantics

I/O interfaces and their definitions implicitly set requirements and expectations for
how file systems retrieve data for the user. The POSIX model inherently results in a
consistency model which requires atomicity and locking mechanisms in distributed
environments. Adhering to the POSIX consistency model is especially challenging
for the scalability of a parallel file system in the following cases:

1. Atomic operations which require exclusive access to a central data structure
or central file system component within a distributed environment: Acquiring a
(global) lock allows such atomicity requirements but can impair concurrent work.
For instance, a basic creation of a file involves exclusive access to a number of central
data structures, e.g., modifying the parent directory or allocating a new inode in the
inode table. Another example for such atomic operations is listing a directory with
the ls -l command, which creates a snapshot of the current directory state.

2. Cache coherency protocols: While there are several advantages of various forms
of caching in a parallel file system, it is generally not clear whether an application
with particular semantics can benefit from such general caching protocols. Moreover,
distributed cache coherency protocols often require a large amount of network
communication to maintain synchronization, which is commonly impractical at
larger scales.

Consequently, GekkoFS does not implement a global locking mechanism, similar
to PVFS [41] and OrangeFS [159]. Therefore, applications should be responsible
for avoiding conflicts that would require complex locking within the file system,
e.g., concurrent writing to overlapping file regions. Nonetheless, avoiding global
locking mechanisms also affects certain file system operations that query an arbitrary
number of files regarding their consistency guarantees. We call these indirect file
system operations because the number of affected file system objects is not known
a priori, e.g., when requesting the current state of a directory. In other words,
readdir() operations which are called by the ls -l or rm -rf /* commands, for
instance, follow an eventual consistency model [259]. In essence, eventual consistency
states that the file system guarantees that all accesses will return the last updated
value of an object eventually if it receives no additional updates [259]. Specifically,
for GekkoFS, this means that a readdir() operation guarantees to return the
current state of the directory at the time a server receives the corresponding request.
However, if another process is simultaneously modifying the directory and creating
files, a readdir() operation may return a directory state that has already changed
once the operation finishes. Hence, such a directory operation does not influence
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other directory operations via inter-node locking mechanisms, or similar, as it is the
case in file systems that use a strong consistency model. Also, for the above-stated
reasons, GekkoFS operations are synchronous and without any form of caching.
For example, this is beneficial for the above-mentioned readdir() case concerning
eventual consistency so that users are not stuck in a cached (outdated) view of
the directory, even if repeatably executing the readdir() operation. Further, this
reduces file system complexity and allows for an evaluation of GekkoFS’s raw
performance capabilities.

Moreover, studies on HPC application behavior have revealed that many common
file system operations, such as move/rename operations, are rarely used or not used
at all [128, 263]. This is owing to HPC applications running in a controlled batch
script environment, whereas above-stated operations are only called from a console
after the actual simulation ends and when parallel access is no longer required. With
these observations in mind, GekkoFS does not optimize move or rename operations
and linking functionality, although supporting them rudimentarily.

Finally, security management in the form of access permissions is not maintained by
GekkoFS directly. This is because a user in a compute job environment must already
follow the security protocols of the supercomputer and its batch systems as well as
the permissions of the node-local file system where GekkoFS’s data and metadata
are stored. Thus, data can only be accessed in GekkoFS if the user has sufficient
access permissions within the assigned environment.

4.3.4 Architecture

The GekkoFS architecture (see Figure 4.4) consists of two core components: the
GekkoFS server or daemon and the GekkoFS client library. To use GekkoFS, an
application must preload the client interception library through the LD_PRELOAD
environment variable, allowing the library to intercept file system operations. When
an I/O operation is intercepted, the client library processes it and determines if it
is within the file system’s namespace. If not, the operation is passed to the kernel
without modification. Otherwise, the GekkoFS client processes the operation and
forwards it to the corresponding GekkoFS daemon (or multiple daemons for some
operations), sending a response when finished. The receiving daemon is then
handling the operation accordingly without further communication to other file
system nodes. The daemons are therefore effectively unaware of one another.

For communication between the client and the daemon, we leverage on the Mercury
RPC framework [228]. A remote procedure call (RPC) [23] is essentially a transparent
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Figure 4.4.: GekkoFS architecture and its components.

way to call a remote function via a client-server model, which also handles serial-
ization and deserialization of the function arguments. Mercury is developed by the
Argonne National Laboratories (ANL) and focuses on HPC environments. It allows
GekkoFS to be network-independent, achieving one of our design goals. GekkoFS
can therefore use the native network transport layer to handle large data transfers
efficiently, unlike other more generic RPC frameworks that focus only on TCP/IP
communication. Mercury’s Network Abstraction Layer provides a high-level interface
on top of the lower-level network fabrics. Its modular approach offers a wide variety
of network plugins to natively support common fabric protocols, e.g., InfiniBand
or Omni-Path. It further provides local communication plugins to efficiently move
data between a client and server running on the same machine. When allowed
by the underlying network protocol, large data transfers are processed via remote
direct memory access (RDMA) or cross-memory attach (CMA) in remote and local
communications, respectively. This allows GekkoFS to transfer data within the file
system with high throughput and low latency.

Within GekkoFS, Mercury is interfaced indirectly through the Margo library [210]
which uses Argobots-aware wrappers to Mercury’s API, allowing a simple multi-
threaded execution model [42]. Argobots is a lightweight low-level threading and
tasking framework developed to support massive on-node concurrency in mod-
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ern HPC environments [221]. Mercury, Argobots, and Margo are all part of the
Mochi project [@117] with the goal to design methodologies and tools that allow
for the rapid development of distributed data services. Using the Mochi tools al-
lows GekkoFS daemons to minimize resource consumption of Margo’s threads and
handlers that accept and handle RPC requests [42].

GekkoFS client The client consists of three components: 1. An interception in-
terface that catches relevant calls to GekkoFS and forwards unrelated calls to the
kernel; 2. a file map that manages the file descriptors of opened files and directo-
ries, independently of the kernel; and 3. an RPC-based communication layer that
forwards file system requests to local/remote GekkoFS daemons.

An application uses the client library via the LD_PRELOAD environment variable,
intercepting all I/O calls that target the GekkoFS namespace. As discussed earlier
in Section 4.2.5, GekkoFS uses syscall intercept instead of the basic LD_PRELOAD
method. When the GekkoFS client library intercepts an I/O call it has a hook defined
for, it must determine if the operation is within GekkoFS’s namespace. There are two
ways how a file is referred to an operation: via its path or via its file descriptor (fd).
Although GekkoFS can easily check if a path is within the file system’s namespace, a
file descriptor is more complicated because it is created in the kernel after a file has
been opened. Since GekkoFS does not use a kernel module, it must reimplement
some of the file descriptor logic in user space as part of the client library, called the
file map client component. It allows GekkoFS to associate a file descriptor with its
file name and keeps track of the seek() position when calling consecutive write()
operations, for example. Therefore, a corresponding file map entry is created when
a file is opened and it is removed upon closing the file.

After an application initially invokes the client library, it first initializes the inter-
ception layer and then looks for the hosts file containing all GekkoFS daemons’
addresses that are part of the file system. It then proceeds to retrieve the current file
system configuration from one of the daemons (preferably the local one if available),
which includes the path of the mounting dir, defining the GekkoFS namespace for
the interception layer.

While a file is open, the client uses the file path p to determine the GekkoFS daemon
node that should process it. Specifically, the path p is hashed using a hash function
h to resolve the responsible daemon for an operation by calculating:

nodeID = h(p) (mod n)
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where n is the number of GekkoFS nodes. The corresponding operation is then
processed and forwarded to the daemon identified via a unique nodeID. That is to
say, the GekkoFS client uses a pseudo-random distribution to wide-stripe all data and
metadata across all nodes. Using a distribution algorithm that allows all clients to
independently resolve the responsible node for a file system operation is essential for
the file system’s scalability. This is because it enables GekkoFS to function without
any central data structures that keep track of where metadata or data is located. We
will further discuss the implications of wide-striping later in this section.

Note that, although wide-striping is the default setting, the distribution layer is
modular and allows other algorithms as long as the client can resolve the target
daemon on its own. For instance, another algorithm only wide-stripes metadata
while storing data locally. This is useful for some scientific applications which
only repeatably access data that has been written on the same compute node but
still require knowledge of the whole namespace (e.g., OpenFoam solvers [109]).
Moreover, to achieve a balanced data distribution for large files, data requests are
split into equally sized chunks before they are distributed. During the data transfers,
the client exposes the relevant chunk memory region to the daemon, which accesses
it via RDMA, if supported by the underlying network fabric protocol.

GekkoFS daemon A GekkoFS daemon’s main task is to process file system opera-
tions forwarded by the clients to store and retrieve data and metadata information.
To achieve this goal, GekkoFS daemons consist of three parts: 1. A key-value store
(KV store) used for handling metadata operations, 2. an I/O persistence layer that
reads/writes data from/to the underlying node-local storage system, and 3. an RPC-
based communication layer that accepts local and remote connections to handle file
system operations.

For handling metadata operations, each daemon operates a single RocksDB key-
value store (KV store), which provides a high-performance embedded database for
key-value data, based on a log-structured merge-tree (LSM) [59]. The KV store is
optimized for NAND storage technologies with low latencies and is therefore suitable
for our requirements since SSDs are primarily used as node-local storage in HPC
supercomputers.

For processing data chunks, the daemon leverages directly on the accessible node-
local storage device and its file system. As a result, there is no need to prepare or
reformat the backend storage. This is essential so that any user can run the GekkoFS
daemon without administrative privileges. With the help of Argobots’s user-level
threads (ULTs) and tasklets [221], the daemon’s data backend moves data chunks
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from the client via RDMA over the network to node-local storage. In I/O operations
involving multiple chunks to be processed at a single daemon, network transfer
and disk access are done in parallel to use the available resources as efficiently as
possible.

Modularity and configurations Overall, GekkoFS’s architecture is modular, allowing
various file system configurations and the replacement of the above-stated individual
file system components in both client and daemon. Because GekkoFS can be run
within a compute job, the file system can be configured to fit the application’s
requirements, unlike general-purpose parallel file systems, which have to optimize
for the general case. This includes configurations targeting 1. the metadata and
data storage, e.g., which metadata fields are stored or which chunk size is used,
2. the metadata and data distribution, and 3. modifications to the overall file system
behavior, e.g., enabling the check whether a file exists before it is created or if the
corresponding directory must be created before files can be created. We will further
elaborate on some of these configurations concerning points 1 and 3 in the following
sections.

4.3.5 Metadata management

Parallel file systems utilize several strategies to distribute data and metadata across
all backend storage devices [30, 97, 219]. While these techniques typically work
well for data, they do not achieve the same efficiency and performance (through-
put or operations per second) for metadata operations because of expensive dis-
tributed locking mechanisms that are required due to legacy data structures (see
Section 2.3.2). Hence, our goal is to design a file system that performs well for any
metadata operation and allows them to scale with an arbitrary number of nodes.

With the first step being the research and acknowledgment of the discussed metadata
challenges that today’s distributed file systems face, we present our modifications
to how GekkoFS handles metadata in the following paragraphs. The changes can
be categorized into three topics: 1. Removing the concept of directory blocks,
decouple directory entries from inodes, and aggressively distribute the metadata
load, 2. reassessing the actually required metadata fields, and 3. simplifying file
system protocols to avoid unnecessary file system complexity and overhead.
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Decoupled wide-striping Instead of using the concept of directory blocks and
inodes, we store the metadata in a daemon’s KV store. Each file and directory
is treated as a single entry in the KV store where the file path is used as the key and
the value contains the file’s metadata. As a result, each file becomes individually
accessible by its path, resulting in a flat namespace where paths that share the same
prefix are considered the children of a directory. Therefore, a directory’s content
and a file’s hierarchical placement in the file system are implicitly given by its path
without requiring a separate data structure, e.g., a directory block. A flat name-
space also allows GekkoFS to directly look up a file without the need to perform
a path walk, for instance, which would entail several RPC lookup calls. Moreover,
treating each file as an independent KV store entry makes it possible to share the
total metadata load by simply distributing all metadata across all nodes with the
previously described distribution algorithm. This allows GekkoFS to avoid storing a
large directory or a subset of the directory tree at a single file system node, which
is common in other file systems [29, 205], potentially causing an grossly uneven
metadata distribution and load.

However, using the path of a file system object as an index within a flat namespace
does not come without cost. For example, when a directory is moved to a different
file system path, the paths of all its contents would have to be recursively modified as
well. Depending on the size of the directory and due to the distribution of metadata,
this can be a time-consuming process because metadata might need to be migrated
if the hashes for the new paths lead to different file system nodes. Nevertheless, as
described earlier, GekkoFS does not support move and rename operations as they
are not used in HPC applications [128, 263].

Metadata content In a particular use case, e.g., in the HPC job context, not all
metadata may need to be stored, especially if a file is stored only for a limited time
period. Therefore, when less metadata is stored and processed in the file system,
less data must be maintained in the KV store and sent over the network. More
importantly, it reduces the amount of code that needs to be executed for a file system
operation. A typical example is the last access time (atime) metadata field which is
updated each time a file is accessed. Updating this metadata field in a highly parallel
environment with a huge number of files and file system operations is expensive and
can cause significant performance degradation. As a result, many file systems [29,
97, @140, 219] allow to disable atime or to only update it once a day. Similar
argumentations hold for other metadata fields, such as last modified time (mtime).
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We categorize metadata fields into three categories: redundant, rarely used, and
mandatory. The first category includes permission bits, user ID, and group ID
information. These are used for security, which we consider as redundant because
GekkoFS already has to follow the security protocols of the batch system and node-
local file system. The second category contains metadata fields that are rarely
used by HPC applications, including timestamps, the inode number, and block size
information. We disable these metadata fields by default for the above-stated reasons,
but they can still be enabled if needed1.

In the third category, we place mandatory metadata fields which cannot be turned
off: the file type and the file size. For the file type, we mainly differentiate between
files and directories. Although GekkoFS does not use traditional directories and
directory blocks, it still supports directory types because applications often check
for a directory’s existence before it is populated. The second mandatory metadata
field, the file size, is used to track a file’s data boundaries. The file size is necessary
because it is required in each write() and read() operation, e.g., to check if an
application is accessing a file outside its boundaries. Moreover, it allows GekkoFS to
work with sparse files in which file systems generally do not write regions to disk
that contain no information.

Simplifying file system protocols Because GekkoFS, as a pure user space file system,
does not use a kernel component and is not connected to the VFS, GekkoFS does not
need to implement the same protocols and call paths as kernel-based file systems.
As a result, GekkoFS can simplify some of the file system protocols that could impact
file system performance in distributed file systems. For example, in earlier work, we
discussed the protocol to create a simple file in GPFS [251]. When a file is created
with the O_CREAT flag via the open() system call, the file system must ensure that the
file does not exist before it is created2. Because GPFS must follow the VFS-defined
interfaces, a file creation is split into the VFS lookup function, followed by the create
function. However, a file could have been created by another process after the
lookup function, and, therefore, the create function must lookup the file again to
ensure it does not exist. Such situations can cause complex and redundant protocols,
but they are also problematic from a performance perspective. In the GPFS case,
the lookup function contributed up to ∼75% of the overall time spent in the create
process for four GPFS clients [251].

1One exception is the inode number which cannot be enabled as GekkoFS does not utilize inodes.
2When the open() system call is used with the O_CREAT flag and the file already exists, the file system

opens the existing file quietly. If the O_CREAT and O_EXCL flags are both used on an existing file,
open() returns an error and the error code EEXIST.
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For this example, GekkoFS’s file create protocol has been significantly simplified,
requiring only a single communication step to a GekkoFS daemon to create the file
which can handle the request independently, regardless of the number of nodes
involved in the GekkoFS file system. Several protocol simplifications can be found in
other GekkoFS parts with the goal of increasing the overall throughput of metadata
and data operations. Another example involves GekkoFS allowing file placement
into directories that do not technically exist if the user enables this feature. Other
changes to file system protocols involve most metadata operations, such as file stat
or file removal operations or the listing of all files at a file system path.

4.3.6 Data management

For storing the data in GekkoFS, the file system uses a node-local storage device and
leverages its already existing local file system. In the following paragraphs, we will
describe GekkoFS’s I/O protocol and explain how shared file access is managed in
an environment where global inter-node locks are not used.

I/O protocol Similar to metadata, data is evenly distributed across all file system
nodes by splitting it into equally sized chunks. On the node-local file system level,
each chunk is a regular file and is named after the numeric identifier describing the
chunk’s data offset. For instance, in a 512 KiB chunk-sized file system, the chunk
number 4 identifies a file’s offset beginning at 2 MiB3. All of a file’s chunks are
placed within the same directory on the node-local file system. In other words, one
directory on the node-local file system contains the chunks in the form of regular
files of one GekkoFS file with which a GekkoFS user interacts. Note however that the
directory only contains the chunks of the GekkoFS file.

Figure 4.5 shows a write operation from the client’s point of view. In this case, the
write buffer is split into six chunks. GekkoFS computes the target node with the
help of the file’s path and chunk identifier for each chunk. The client then sends an
I/O RPC message to each target daemon node, independently handling the write
request for a group of chunks. Each GekkoFS daemon accesses the client’s memory
via RDMA and writes the corresponding chunks to its node-local file system. If the
target daemon refers to the local machine, data is moved via cross-memory attach
(CMA). Intra-node communication via CMA only involves a single copy and therefore
allows to copy data between the address spaces of two processes without moving
the data through kernel space. When multiple chunks hash to the same daemon, the

3The first index is chunk number 0.

74 Chapter 4 GekkoFS – A temporary burst buffer file system for HPC applications



compute node

Ap
pl

ic
at

io
n

w
rit

e(
)

GekkoFS client library 

sy
sc

al
l_

in
te

rc
ep

t

Write 
buffer

Chunked 
buffer

Ch
un

ki
ng

 p
ro

ce
ss

5

4

2

3

1

0

Package per 
destination

5

2

4

1

3

0

Co
m

pu
te

 d
es

tin
at

io
n 

&
pa

ck
ag

e 
ch

un
ks

GekkoFS daemon

Mercury RPC
Server

Lo
ca

l F
S

3

0

GekkoFS daemon

Mercury RPC
Server

Lo
ca

l F
S

4

1

GekkoFS daemon

Mercury RPC
Server

Lo
ca

l F
S

5

2

M
er

cu
ry

 R
PC

 C
lie

nt

Parallel              
Bulk Transfer

(RDMA)

Figure 4.5.: GekkoFS’s write operation where a write buffer is split into six chunks and
then distributed among three daemons. Each daemon stores its chunk in a
node-local file system.

GekkoFS I/O layer parallelizes the data transfer and disk I/O so that the network
and storage device resources are used as efficiently as possible. This process works
analogously for a read operation but in reverse. Notice however that the daemon
must access the client’s memory in both cases and not vice versa. This is because,
regardless of the operation, the client must prepare the memory region for RDMA
access. Therefore, the I/O RPC to the daemons also serves as confirmation and sends
the necessary information to access the client’s memory. Finally, as explained in
Section 4.3.3, all I/O operations are synchronous without any caching mechanisms
on clients or daemons. Depending on the configuration of the node-local file system,
GekkoFS transparently uses the local file system’s internal caching mechanisms.

Shared write conflicts As shown in Section 4.3.3, GekkoFS does not implement a
global locking manager, which can impose challenges when working with shared files.
For example, a shared write conflict could be caused when multiple processes write
to the same file region in parallel, resulting in an undefined behavior concerning the
data written to the underlying storage. However, due to GekkoFS’s decoupled design,
such locking conflicts can, in fact, be easily handled by any file system daemon
independently. This is because GekkoFS builds on the POSIX-compliant node-local
file system to store the data chunks. Thus, the local file system automatically
sequentializes access to the same chunk file in case of a shared write conflict. Notice
also that a GekkoFS file may be distributed across many chunk files and nodes,
reducing potential shared write conflicts since it only affects one chunk file at a time.
As a result, other chunks are unaffected by a potential shared write conflict.
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However, even when conflicting I/O accesses do not occur in a shared file, there
are atomicity concerns on the GekkoFS daemon that manages the file’s file size
since the file’s metadata is represented by a single KV store entry. This is owing
to each write operation also requiring a corresponding size update. Therefore, for
each file size update, the daemon would have to read (Get()) the current size
value, then update it locally, and write it back to RocksDB via a Put() operation.
Since the daemon runs multiple processes in parallel to handle RPCs and the file
size is updated simultaneously, this is a typical read-modify-write race condition
because interleaving processes could issue consecutive Put() operations, effectively
overwriting each other and resulting in a corrupted file size. GekkoFS solves this
challenge by leveraging RocksDB’s merge operator offering the possibilty for user’s to
define and implement how merge operations behave. In essence, the read-modify-
write operation is encapsulated into a RocksDB interface which further allows some
additional (unspecified) internal RocksDB optimizations, avoiding the extra cost of
repeatedly issuing Get() operations.

4.4 Use cases

Burst buffer file systems, such as GekkoFS, can combine the capabilities of node-local
storage of many nodes into a single global namespace. Coupled with the ability
for an ad hoc deployment, GekkoFS can be a powerful option for creating a single
distributed namespace within seconds. What is more, burst buffer file systems are
able to not only absorb challenging access patterns but they can also transform
random access patterns, for example, into larger sequential access patterns that
work best for a parallel file system. That is to say, input data is read sequentially on
the parallel file system side and copied into the burst buffer file system’s distributed
namespace (called stage-in process). After the application finishes, the output data
is sequentially copied back (called stage-out process). Besides sequential access,
GekkoFS aims to perform especially well in use cases with lots of random access
patterns, small I/O sizes, and high metadata loads. The following paragraphs will
outline some of today’s most prominent workloads where these access patterns are
relevant and where GekkoFS can be beneficial.

Bulk-synchronous workloads Bulk-synchronous workloads represent one of the
most dominant workloads in modern HPC systems [32]. Bulk-synchronous applica-
tions are typically characterized by independently running processes synchronizing
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Figure 4.6.: An annotated I/O analysis for a workload run by the NEK5000 computational
fluid dynamics application kindly executed at the Dardel HPC system at KTH
Sweden [@53], showing the I/O in bytes over time broken down by MPI rank.

in bulk at specific step boundaries. These synchronization steps can include collec-
tive inter-process communication and I/O to the underlying storage, among others.
Moreover, application processes do not impede themselves, and they either use a
dedicated set of files per process or operate at non-conflicting offsets within a large
shared file.

Depending on the amount of I/O and the state of the overall storage system, burst
buffer file systems can often be advantageous in general as they can provide higher
I/O performances than a parallel file system. Further, because processes are non-
impeding concerning their I/O operations, there is no need for globally locking parts
of a shared file, as is the case in parallel file systems, resulting in locking communi-
cation overhead and increased latencies. Finally, individual data distributions can be
introduced on a per-application basis to optimize for its access pattern, as will be
shown later in Section 4.5.6 with GekkoFS and the OpenFOAM application [109].

The NEK5000 [69] application for computational fluid dynamics is another example
of a bulk-synchronous HPC application. Figure 4.6 presents the I/O footprint of a
NEK5000 workload, created by the Darshan I/O profiling tool [227], which ran on
16 nodes with 128 processes per node. The experiment was kindly executed at the
Dardel HPC system [@53] by the SimEx/FLOW Dept. Engineering Mechanics at the
KTH Royal Institute of Technology in Sweden. In this case, all MPI ranks read input
data initially, whereas the current state of the simulation (time and three velocity
components) is written every 125 simulation steps. In addition, based on these four
components, a large number of statistical quantities are written every 200 steps.
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Overall, this specific workload produced close to 300 GiB of data in its 28 minutes
of runtime, while the I/O bursts averaged around 650 MiB/s of write throughput
(within the I/O burst time frame).

For such a type of application, it is useful to have as much data available as possible
for post-processing. Nevertheless, because of I/O bottlenecks at the parallel file
system, writing the resulting output more frequently is often not possible. And so,
simulation output is essentially discarded, although it could be beneficial for further
analysis.

Depending on the workload and I/O capabilities, burst buffer file systems could offer
the ability to discard significantly fewer data due to their higher I/O performance.
Further, they could gradually stage-out the output generated by these I/O bursts
to the parallel file system and spread write operations over a larger time frame. In
other NEK5000 workloads, GekkoFS has shown to improve simulation runtimes by
up to 3 times compared to running the same workload on Lustre on JGU’s MOGON
II supercomputer. However, it is important to remember that the performance
improvement depends on many variables, e.g., the number of GekkoFS daemons,
the size and current usage of the parallel file system, and the simulation workload
itself. Therefore, in bulk-synchronous workloads where burst buffer file systems are
advantageous, they could allow even higher performance improvements.

Checkpoint-restart workloads In the event of software or hardware failures, appli-
cations can protect their progress by storing the application’s state at set intervals to
the parallel file system [32, 182]. This process is called checkpointing and allows ap-
plications to restart the application at a later time at the most recent checkpoint [72,
77, 182]. During checkpointing, an application writes each process’s state into one
large file at specified offsets or assigns one file per process in a single directory [19,
182]. Therefore, the larger systems and applications become, the higher is the load
on the storage systems to accommodate checkpoint-restart workloads where many
files are created.

Checkpointing has been a common I/O access pattern for decades [68, 191, 192]
and remains one of the most day-to-day relevant workloads in HPC [32, 167, 263].
Among other metadata-heavy workloads, checkpointing has also been a contributor
to specific requirements in HPC environments concerning file creates per second
rate (see Section 2.3.2). Over the years, the storage community presented many
approaches ranging from integrating node-local storage into the MPI-IO proto-
col [47], providing checkpointing libraries [158], using specific checkpointing file
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systems, such as PLFS [19], or proposing an adaptive asynchronous checkpointing
strategy [167] and more [@103].

Burst buffer file systems offer an alternative as they are not dependent on specific
libraries or MPI. As a result, they can be used to write checkpoints on node-local stor-
age or in memory, which can even be extended by asynchronous mechanisms [167,
201]. This way, checkpoints can be written to the burst buffer file system at a high
frequency at memory speeds and asynchronously pushed to the parallel file system.
In the context of GekkoFS, Section 4.5.3 will evaluate the performance for those I/O
patterns that are typically found in checkpointing.

Deep learning workloads In general, deep learning (DL) aims to find an optimal way
to connect a set of parameters of a deep layered model to predict a particular output
and increase its accuracy [218]. Simplified speaking, to obtain an accurate DL model,
many training samples are repeatedly passed through the model. Because the used
optimizers are typically based on stochastic gradient descend (SGD) methods [27],
DL access patterns on the input training data tend to be highly random [152].

In recent years, deep learning input data sizes have increased rapidly to produce
more adequate models to detect real-world variations in input [32], exceeding
the capacities of dedicated solutions of single machines [218], such as NVIDIA
DGX systems [@173]. Consequently, HPC has become a cornerstone for these
distributed DL use cases. For instance, using highly distributed setups and high-speed
network fabrics of HPC systems, the required DL training runtime for the widespread
ImageNet [57] was reduced from hours [87, 278] to below two minutes [155,
233].

Because of the nature of DL applications to randomly access training data, input
data is first copied from the parallel file system to node-local storage. If the overall
training performance then suffers from this copying process, the workload has
encountered an I/O bottleneck [283]. However, copying a training set is only
possible if it can fit into the storage capacity of a single node. In this case, such
training sets are copied to each node, duplicating them across all nodes. This can
minimize training biases (e.g., selection bias) since each node has access to the
entire training set without it being partitioned. Contrary, this is not possible if the
input data does not fit into a single node. A common approach for solving this
challenge for both cases is to partition the data set into partitions [108, 116, 180] or
data shards before there are distributed to the compute nodes. While this reduces
data volume that needs to be copied per node, it is not trivial to partition a data set
in a non-biased way since biases are not always immediately detectable [218].
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In this regard, burst buffer file systems can be beneficial since they aggregate
multiple nodes’ local storage capacities and performances, creating a single global
namespace. Therefore, it is no longer necessary to split input training data into
several partitions because the data set must only be copied once into the burst buffer
file system. Section 4.5.7 will discuss this topic in more detail, showing that GekkoFS
can provide an easy-to-use transparent DL workflow and scales linearly for common
DL workloads.

4.5 Evaluation

In this section, we will evaluate the performance of GekkoFS based on various
microbenchmarks that catch access patterns common in HPC applications. First,
we will introduce the experimental setup and explain the workloads we simulated
with microbenchmark applications. Next, we will compare GekkoFS’s metadata
performance with a Lustre parallel file system. While GekkoFS and Lustre have
different goals, we will highlight the performance benefits when GekkoFS is used as a
burst buffer file system. Moreover, we will compare GekkoFS’s metadata performance
with BeeGFS’s BeeOND, in which both use node-local storage as burst buffers. Then,
we will evaluate GekkoFS’s SSD usage efficiency and compare its data performance
with BeeGFS’s BeeOND. We will investigate GekkoFS’s I/O variability compared
to GPFS and explore GekkoFS’s effects on the network when the OpenFOAM HPC
application [109] is used compared to Lustre. Finally, we will discuss the benefits of
GekkoFS in distributed deep learning workloads.

4.5.1 Experimental setup

We used three supercomputers in our experiments: MOGON II at the Johannes
Gutenberg University Mainz in Germany [@157], MareNostrum IV at the Barcelona
Supercomputing Center in Spain [@147], and the NEXTGenIO prototype at the
EPCC supercomputing center in the UK [@165].

MOGON II The MOGON II supercomputer, located at the Johannes Gutenberg
University in Mainz, Germany, consists of 1,876 nodes in total, with 822 nodes
using Intel 2630v4 Intel Broadwell processors (two sockets each) and 1046 nodes
using Xeon Gold 6130 Intel Skylake processors (four sockets each). Intel Broadwell
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Figure 4.7.: MOGON II’s Lustre scratch file system configuration.

processors were used in all experiments in this section if not otherwise noted. The
main memory of the nodes ranges from 64 GiB up to 512 GiB.

MOGON II uses a 100 Gbit/s Intel Omni-Path interconnect to establish a fat tree
between all compute nodes and offers a 7.5 PiB storage backend managed by several
Lustre parallel file systems. Each node uses an Intel SATA SSD DC S3700 Series
with 200 GiB or 400 GiB of storage space as a scratch environment (XFS formatted)
which can be used entirely within a compute job. In our experiments with GekkoFS
and BeeGFS, we use these SSDs for storing data and metadata. Both GekkoFS and
BeeGFS use internal chunk sizes of 512 KiB.

All Lustre experiments were performed on a Lustre scratch file system with its
configuration visualized in Figure 4.74. Each OST consists of 15 HDDs with 10 TiB,
each pooled together by a zpool, providing a ZFS file system built on top of a virtual
storage pool. Within this zpool, 2 HDDs are used for parities and 1 HDD is reserved
as a hot-spare disk. The MDT, on the other hand, uses 6 HDDs with 1.3 TiB each.
For GekkoFS and BeeGFS experiments and before each experiment iteration, all SSD
data is removed, and all kernel caches, i.e., buffer, inode, and dentry caches, are

4MOGON II offers two additional and significantly larger partitions for data storage, although all
configurations utilize a single dedicated MDT with varying numbers of HDDs.

4.5 Evaluation 81



flushed. We also restarted all GekkoFS daemons before each iteration. The GekkoFS
and BeeGFS server services and the application under test are pinned to separate
processor sockets to ensure that the file system and application do not interfere with
each other.

For deep learning experiments, we used a separate partition of MOGON II which
includes 30 nodes with Intel Xeon CPU E5-2650 v4 processors and 6 NVIDIA Geforce
1080 Ti GPUs each. They used NVIDIA CUDA [@172] (v11.2.2) and the NVIDIA
collective communications library [@171] (NCCL) (v2.8.4). Each node provides
128 GiB of memory and is connected via a 50 Gbit/s (4X FDR) Infiniband network.
Similar to the other MOGON II nodes, a Micron 5100 Pro SSD (XFS formatted) is
available at each node for the user.

MareNostrum IV The MareNostrum IV supercomputer, located at the Barcelona
Supercomputing Center in Spain, consists of 3,456 Lenovo ThinkSystem SD530
compute nodes on 48 racks. Each node uses 2 Intel Xeon Platinum 8160 24C chips
with 24 processors each at 2.1 GHz and 390 TB of total main memory. In addition,
each node uses a 240 GiB Intel SSD DC S3520 Series as scratch space. All GekkoFS
experiments use these SSDs as their underlying storage for data and metadata.

MareNostrum IV uses a 100 Gb Intel Omni-Path fat tree for the intercommunication
network with a 14 PiB parallel file system offered by IBM’s GPFS. All GPFS exper-
iments were run on the projects file system, offering 4.4 PiB of storage with an
8 MiB file system block size.

NEXTGenIO prototype The NEXTGenIO prototype uses 34 compute nodes and is
located at the EPCC supercomputing center at the University of Edinburgh in the
UK. Each node utilizes a dual Intel Xeon Platinum 8260M CPU @ 2.40 GHz (48
cores per node), 192 GiB of main memory, and 3 TiB of node-local Intel Optane DC
Persistent Memory (DCPMM). All GekkoFS experiments use these DCPMMs as their
underlying storage for data and metadata.

The compute nodes are connected via an Omni-Path fabric with two network devices
per node, called ib0 and ib1. They use a 56 Gbps InfiniBand to communicate with
a Lustre server using 6 OSTs. In the corresponding experiments, GekkoFS uses
TCP/IP over Omni-Path (emulated TCP), while Lustre uses the Omni-Path fabric
with Infiniband emulation.
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Figure 4.8.: GekkoFS daemon startup time for an increasing number of nodes.

4.5.2 Startup

When a file system is deployed ad hoc as part of a compute job, the additional
time required to start the file system must be considered. Therefore, the required
wall-time is either accounted directly to the user’s quota or is part of the general
job setup time, which includes preparing storage space on node-local for the user
and the current job. Prolonged startup times reduce the efficiency of the ad hoc file
system since the necessary time for the startup, data stage-in, and data stage-out
must result in an overall decreased job wall-clock time compared to the application
using the parallel file system instead. For instance, Soysal et al. [229] showed that
starting the BeeGFS BeeOND ad hoc file system on 256 nodes can take more than
220 seconds. As a result, we defined a fast deployment as part of GekkoFS’s goals
(see Section 4.3.2) which we evaluate next.

On MOGON II, we started GekkoFS for up to 512 nodes, and for each node config-
uration, we computed the mean of at least five startups. To achieve a fast parallel
launch, we used SLURM’s srun command so that GekkoFS runs as part of a SLURM
job step. SLURM [277] is a resource manager used in many HPC centers and offers
the ability for users to submit batch jobs in which their applications run for a given
wall-time.

Figure 4.8 presents the results showing that GekkoFS required at most 4.9 seconds
on average for 512 nodes to provide a usable file system environment to the user.
We note that, although the startup times remained mostly stable over several job
and node configurations, we observed three significant outliers, which we omitted
in the presented results, taking up to 30 seconds. Further investigation showed
that a small number of daemons were unable to immediately register themselves
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in the shared hosts file (see Section 4.3) that was placed on the parallel Lustre file
system. In general, such minor delays when accessing a parallel file system are not
uncommon and expected in storage systems that use distributed locking managers.
Nevertheless, we aim to remove this hosts file dependency on the parallel file system
as part of GekkoFS’s future work.

4.5.3 Metadata performance

We simulated common metadata-intensive HPC workloads on MOGON II using the
mdtest microbenchmark [@106] to assess GekkoFS’s metadata performance. In our
performed experiments, mdtest consecutively runs batches of create, stat, and
remove operations in parallel in a single directory. For the GekkoFS experiments,
each batch consists of 100,000 zero-byte files per process with 16 used processes
per node. We ran the benchmark with this high number of files so that RocksDB
flushes its in-memory tables to the underlying SSD, showing RocksDB’s consistent
performance. As a result, RocksDB created several static sorted table files (sst files)
on the backend storage during the experiments. Concurrent metadata operations in
a single directory are an especially important workload in many HPC applications,
but they are also one of the most difficult workloads for a parallel file system to
perform efficiently [255] (see Section 2.3.2).

While all files are created in a single directory (from the user’s and application’s
perspective), there is conceptually no difference for GekkoFS if files are created
within a single directory or spread across multiple directories. Notice also that
traditional parallel file systems, on the other hand, may perform better when a
workload is spread across many directories. In this case, inserting files only into
a single directory mostly sequentializes the file creation process since multiple
processes cannot access the same file system block in parallel. As a result, application
developers are often asked to create files in a separate directory per process, even
if this does not fit their natural ordering. This effect will be demonstrated in this
section as well when comparing GekkoFS to Lustre and BeeGFS.

Figure 4.9 compares GekkoFS with Lustre with the above-described workload with
up to 512 nodes (x-axis). The y-axis depicts the corresponding operations per second
achieved for a particular workload on a logarithmic scale. For the experiment’s
runtime, GekkoFS was running exclusively on the compute cluster without other
jobs interfering. Each data point represents the mean of at least five iterations of
each experiment. GekkoFS’s workload was weakly scaled, with 100,000 files per
process doubling the workload when the node count is doubled as well. On the
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Figure 4.9.: GekkoFS’s file create, stat, and remove throughput for an increasing number of
nodes compared to a Lustre parallel file system.
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other hand, Lustre’s workload was fixed to four million files for all experiments. We
fixed the number of files for Lustre’s metadata experiments because Lustre detected
hanging nodes when operating on too many files and could therefore not complete
its workload.

To examine the common advice to use multiple directories when operating on a
large directory, we ran the Lustre experiments in two configurations: All processes
operated in a single directory (single dir) or each process worked in its own
directory (unique dir). Lustre’s metadata performance was evaluated while the
system was accessible by other applications as well.

As seen in Figure 4.9, GekkoFS outperforms Lustre by a large margin in all scenar-
ios, regardless of whether Lustre processes operated in a single or in an isolated
directory. Compared to Lustre, GekkoFS achieved around 46 million creates per
second (∼1,405x), 44 million stats per second (∼359x), and 22 million removes per
second (∼453x) at 512 nodes. The relative standard deviation was less than 3.5%
in all GekkoFS cases. For GekkoFS, each operation was performed synchronously
without any caching mechanisms in place, showing close to linear scaling. Therefore,
we achieve our scalability goal and have demonstrated the performance benefits
of wide-striping metadata while decoupling directory entries from non-scalable
directory blocks (see Section 4.3.5).

We also reran all experiments while MOGON II was used by other users in a pro-
duction environment. In this situation, we were unable to measure a difference in
metadata operations per second outside the margin of error with up to 128 nodes,
compared to the above-shown experiments in an undisturbed environment. For
256 and 512 nodes, on the other hand, we measured a reduced metadata opera-
tion throughput between 10% and 20% for create and stat operations, respectively,
revealing network interference within the cluster.

Lustre’s metadata performance did not scale beyond approximately 32 nodes, demon-
strating the aforementioned metadata scalability challenges of a general-purpose
parallel file system. Note that if processes operated in their own directories, Lustre
achieved a higher throughput in most cases. An exception is the remove case where
Lustre’s unique dir remove throughput is reduced by over 70% at 512 nodes com-
pared with Lustre’s single dir throughput. The reason is that the time required to
remove the directory of each process (in which it creates its workload) is included
in the remove throughput while the amount of unique directories increases as well
with the number of the used process in an experiment. This is similar to the create
operation, which also includes the creation of process directories, but does not show
the same behavior, indicating optimizations towards create operations.
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(c) Remove throughput

Figure 4.10.: GekkoFS’s file create, stat, and remove throughput for an increasing number
of nodes compared to a BeeGFS’s BeeOND.
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In Figure 4.10, we compare GekkoFS with BeeGFS BeeOND, which is a POSIX-
compliant burst buffer file system. We configured BeeGFS to match GekkoFS’s
properties as close as possible, i.e., distributing all data and metadata across all file
system nodes and using the same file system block size (or chunk size in GekkoFS’s
case). Further, BeeGFS is deployed in an ad hoc fashion for the lifetime of a
compute job and destroyed afterward while all metadata is stored on the node-
local SSD. It is therefore only accessible by the benchmark application. Similar
to the Lustre experiments, we ran BeeGFS experiments in two configurations: All
processes operated in a single directory (single dir) or each process worked in
its own directory (unique dir). GekkoFS’s workload and all BeeGFS unique dir
experiments were weakly scaled with 100,000 files per process. On the other hand,
the workload for BeeGFS single dir experiments was fixed to four million files.
This is because BeeGFS’s distribution to multiple metadata servers is coupled with
the number of directories. Therefore, single directory experiments only utilize a
single metadata server, which inherently congests the responsible node, significantly
impacting scalability.

Figure 4.10 presents the corresponding metadata experiments for both GekkoFS and
BeeGFS. In both cases, the unique dir experiments show close to linear scalability
with the number of nodes for the create and stat operations. However, BeeGFS’s
remove performance stagnated after four nodes, although its throughput doubled
from 256 to 512 nodes. GekkoFS’s unique dir and single dir performance are
equivalent as both scenarios are internally treated indifferently. In summary, at 512
nodes, GekkoFS achieved a ∼6.5x higher create throughput, a ∼1.2x higher stat
throughput, and a ∼102x higher remove throughput, compared to BeeGFS unique
dir scenario. All BeeGFS single dir experiments did not scale beyond four nodes
due to the above-described limitations.

4.5.4 Data performance

On the MOGON II supercomputer, we evaluated GekkoFS’s I/O performance and
designed our experiments to reflect some of the most difficult I/O patterns that
scientific applications request from a parallel file system, e.g., small I/O requests or
random access patterns. For this task, we ran the commonly used IOR microbench-
mark [@106], offering a rich configuration interface to evaluate a file system’s I/O
performance in several scenarios. We performed our experiments for sequential
and random access patterns in two configurations: Each process accesses its own
file (file-per-process), and all processes access a single file (shared-file). We used
four different write and read sizes, 8 KiB, 64 KiB, 1 MiB, and 64 MiB, in each
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configuration, which we refer to as transfer sizes henceforward. Therefore, these
configurations assess the file system’s performance for many small I/O accesses and
few large I/O requests. We ran 16 processes per client, each writing and reading
4 GiB in total.

We did not compare GekkoFS’s data performance with the Lustre scratch file system
because its peak performance for the assigned hardware, around 12 GiB per second,
was already reached for ∼10 nodes for sequential I/O patterns. Moreover, Lustre has
shown to scale linearly with the number of nodes for sequential access patterns in
much larger deployments that employ more OSSs and OSTs [178]. Instead, we first
focus on GekkoFS’s behavior for various transfer sizes and I/O patterns to achieve
close to linear scalability while evaluating its efficiency when using the node-local
SSDs. Afterward, we compare GekkoFS’s I/O performance with BeeGFS’s BeeOND
in similar file system configurations.

First, we will discuss the file-per-process throughput results, the write and read
operations per second (IOPS), and the latencies. After, we will evaluate the shared-
file performance and its challenges.

File-per-process and sequential access patterns GekkoFS’s sequential read and
write throughput is presented in Figure 4.11 for an increasing number of nodes
(x-axis) and four transfer sizes (bars). Each data point represents the mean of at
least five iterations. We calculated the relative standard deviation which was smaller
than 5% in all cases except for 64 KiB writes varying up to 13%. We also compared
each data point to the peak performance that all aggregated SSDs could deliver
for a given node configuration if used locally (SSD usage efficiency), visualized
as a white rectangle above each bar. In other words, the throughput disparity
between a data point and SSD peak performance shows the cost of operating
in a distributed namespace using GekkoFS. The results demonstrate GekkoFS’s
close to linear scalability with the number of nodes. For 512 nodes, it achieves
about 141 GiB/s (∼80% SSD usage efficiency) and 204 GiB/s (∼70% SSD usage
efficiency) in the corresponding write and read operations for 64 MiB transfer sizes,
respectively.

Notice that any I/O operation larger than the used chunk size of 512 KiB is internally
split into equally sized chunk files on the node-local file system. GekkoFS further
packages all chunks assigned to the same node into a single RPC request, allowing
the file system to perform parallel RDMA accesses to the client’s memory from
multiple nodes. Therefore, chunks of 64 MiB I/O requests can be served in parallel,
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Figure 4.11.: GekkoFS’s sequential write and read throughput for various transport sizes
with each process operating on its own file compared with the plain SSD peak
throughput.

achieving a higher throughput than 1 MiB I/O requests. I/O requests smaller than
the chunk size always target a single chunk and thus a single node.

Figure 4.12 shows the I/O operations per second (IOPS) for an increasing number
of nodes (x-axis). IOPS is another representation of the throughput evaluation of
Figure 4.11 which only focuses on the raw operation rate without taking the transfer
size into account. The metric is typically used as a performance measure for storage
devices, but it is also sometimes used as a measurement in file systems, particularly
when discussing metadata operations or small I/O operations. Because the transfer
sizes are not taken into account, IOPS tend to be higher for smaller I/O requests
since the amount of time the target node spends during an I/O operation is lower
than for larger I/O requests. Therefore, the latency of each I/O request becomes
the predominant factor in a small I/O operation, causing a decrease in throughput
(MiB/s) and an increase in IOPS. GekkoFS confirms this expectation, achieving more
than 13 million write IOPS and more than 22 million read IOPS at 512 nodes with
an 8 KiB transfer size.
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(b) Read IOPS

Figure 4.12.: GekkoFS’s sequential write and read operations per second (IOPS) for various
transport sizes with each process operating on its own file.

In Figure 4.13, we investigate the I/O latencies for such small I/O requests, exem-
plarily shown for 8 KiB transfer sizes. Each data point represents the mean latency
for all write or read requests over five iterations. Also, the experiments were weakly
scaled (4 GiB in total per process), and therefore more nodes translated into more
IOPS. For instance, at 512 nodes, the I/O latency of over 167 million operations was
considered. In all the presented cases, the I/O latencies were well below a modern
hard disk drive’s capability, which has access times of several milliseconds, showing
GekkoFS’s efficient utilization of the SSD storage backend. Note that the latencies
of read operations are lower than of write operations since the latter involves an
additional communication step to update the size of the file.

Further, we noticed rare but severe outliers, which resulted in a high relative
standard deviation that needs to be further investigated. Despite these outliers, the
throughput and IOPS in various scenarios, as shown above, were stable with a low
relative standard deviation.
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Figure 4.13.: GekkoFS’s I/O latencies for 8 KiB transfer sizes.
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(b) Read throughput

Figure 4.14.: GekkoFS’s sequential write and read throughput for various transport sizes
with each process operating on its own file compared with BeeGFS’s BeeOND.

In Figure 4.14, we compare GekkoFS with BeeGFS’s BeeOND up to 256 nodes in two
configurations, 64 MiB and 8 KiB transfer sizes, to evaluate large and small transfer
sizes alike. Both burst buffer file systems scale almost linearly, exhibiting a relative
standard deviation smaller than 9% in all cases. As GekkoFS, BeeGFS uses node-
local SSDs for data distributed across all file system nodes. Notice that BeeGFS’s
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Figure 4.15.: GekkoFS’s random write and read throughput for various transport sizes with
each process operating on its own file.

distribution setting, i.e., to how many nodes data is spread, can be controlled via
the stripe setting that can be set on a directory and file granularity. We set the
test directory’s stripe size to -1 to achieve a wide-striping configuration. At 256
nodes with 64 MiB transfer sizes, GekkoFS’s write throughput is ∼1.12x higher than
BeeGFS while, on the other hand, BeeGFS’s read throughput is ∼1.26x higher than
of GekkoFS. For 8 KiB transfer sizes, BeeGFS’s write and read throughput is ∼1.73x
and ∼1.86x higher than GekkoFS, respectively. For BeeGFS, we performed additional
experiments and used several transfer sizes ranging from 1 MiB to 8 KiB, showing a
similar write and read throughput, suggesting caching mechanisms for such transfer
sizes. Because GekkoFS is not utilizing any caching mechanisms, a reduction in I/O
throughput for smaller transfer sizes is expected since each I/O request must be sent
individually, thereby becoming increasingly more latency-dependent in the process.
We plan to target these small I/O use cases as part of the future work.

File per process and random access patterns Figure 4.15 shows GekkoFS’s
throughput (y-axis) for random accesses for an increasing number of nodes (x-
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Figure 4.16.: GekkoFS’s random write and read throughput for various transport sizes with
each process operating on its own file compared with to BeeGFS’s BeeOND.

axis), exhibiting close to linear scalability in all cases. The file system achieved up
to 141 GiB/s write throughput and up to 204 GiB/s read throughput for 64 MiB
transfer sizes at 512 nodes.

For GekkoFS’s behavior of the used transfer sizes, we expect that the throughput
for random access patterns and transfer sizes larger than the chunk size (512 KiB in
our case) are similar to the results presented earlier in Figure 4.11. This is because
I/O operations of such cases are internally handled indifferently. Regardless of the
access pattern (sequential or random), whole chunk files are written to and read
from GekkoFS’s data backend while distributed across several nodes. The results
confirm this expectation, showing that the throughput for 64 MiB and 1 MiB transfer
sizes are comparable to the sequential results. For transfer sizes smaller than the
chunk size, we expected reduced performance compared to the sequential results
as the chunk files in GekkoFS’s data backend are randomly accessed as well. We
observed a decreased write and read throughput by approximately 33% and 60%,
respectively, for 512 nodes and a transfer size of 8 KiB. Hence, applications may
benefit from choosing smaller chunk sizes if their transfer sizes are small.
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Figure 4.17.: GekkoFS’s sequential write throughput and write IOPS for each process
operating on a single shared file.

Figure 4.16 compares GekkoFS’s throughput for random accesses with BeeGFS for
up to 256 nodes and two transfer sizes: 64 MiB and 8 KiB. For 256 nodes with
64 MiB transfer sizes, GekkoFS’s write and read throughput is ∼1.86x and ∼2.7x
higher than of BeeGFS, respectively, possibly showing the above-described benefits
of transfer sizes larger than the chunk size. For small 8 KiB transfer sizes, GekkoFS’s
write throughput is ∼2x higher than BeeGFS while BeeGFS’s read throughput is
∼1.95x higher than of GekkoFS.

Single shared file Because of GekkoFS’s design, shared file operations have many
similarities to the previously presented experiments, where each process operated on
its own file. For example, if the transfer size is larger than the chunk size, each chunk
file is only accessed by a single process, regardless of whether the whole file is shared
among many processes or accessed by just a single process. In cases where multiple
processes access the same offset in the same chunk file, local locking mechanisms of
the node-local file system serialize the access to this file (see Section 4.3.6).

In Figure 4.17, we present the write throughput and write IOPS for 64 KiB and
8 KiB transfer sizes when sequentially operating on a single shared file for up to
32 nodes. However, we can observe a drawback of GekkoFS’s synchronous and
cache-less design in these cases as no more than ∼150K write operations per second
were achieved. We omit experiments beyond 32 nodes since the throughput and the
IOPS stagnate. We pinpointed the reason for this behavior at the file size metadata
field because the single shared file only uses a single metadata entry maintained by
only one node. Thus, it needs to be constantly updated by all nodes in a mutually
exclusive way. This results in a large number of small RPC messages, each updating
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the file size, causing network contention on the metadata-maintaining node. This
observation is supported by the fact that read operations did not exhibit the same
bottleneck because no metadata updates are necessary and that increasing the
number of RPC handler threads did not result in a higher number of write IOPS.

The bottleneck becomes worse the more processes participate in an experiment.
Eventually, this reaches a plateau, visible in the number of write IOPS stagnating.
If we compare each GekkoFS daemon node’s metadata load to the file-per-process
experiments, each node only handled at most 25K write operations per second on
average. As a result, we did not observe similar behavior in the previous experi-
ments.

To combat this bottleneck, we added a rudimentary client cache to locally buffer size
updates during consecutive write operations before sending them to the GekkoFS
daemon that manages the file size. This, in turn, drastically reduces the number of
RPC messages being sent to a single node. As a result, the sequential throughput on a
single shared file for up 512 is showing close to linear scalability. The corresponding
throughput and IOPS results are available in Figures A.1 and A.2 in the appendix.
Again, due to the internal similarities in file system logic with regards to the data
distribution, shared file performances are now similar to the above-shown file-
per-process results. While such a cache may not be ideal for all applications, it
significantly mitigates node contention.

4.5.5 I/O variability and worst-case

We ran several experiments to highlight GekkoFS’s benefits in terms of I/O variability
and throughput predictability. When HPC users ask for compute time in the context
of an HPC job, they have to decide on the compute job duration to run their applica-
tion. This duration estimate is important because the job allocation is revoked when
the allocated time ends, terminating the application. Yet, the parallel file system
I/O performance can differ significantly, making this estimate difficult, especially
for data-driven applications. As a result, users tend to grossly overestimate the time
they actually require for their application to finish [67, 266]. This, in turn, can cause
the batch job scheduler to make inefficient decisions when placing a job into its
queue.

On MareNostrum IV, we used the IOR benchmark to measure the I/O variability and
worst-case I/O performance that applications experience both for GekkoFS and for
the HPC system’s GPFS parallel file system. To get an accurate real-world picture,
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Figure 4.18.: I/O variability of GPFS and GekkoFS of multiple IOR runs on different times
and node allocations throughout one week.

we ran all experiments during production, co-located with ordinary HPC workloads.
We ran 25 independent repetitions of the same benchmark set for each file system,
each using different node allocations at different times throughout one week. Each
set of benchmarks used varying I/O request sizes ranging between 512 bytes and
64 MiB to evaluate a more realistic representation of real-world applications that
use different I/O sizes throughout their runtime. In addition, we varied GekkoFS’s
chunk size as well, ranging between 128 KiB and 64 MiB. GPFS’s block size is not
dynamically changeable during production and remained 8 MiB. For the benchmarks,
we used 24 out of the 48 available cores on each node. We ensured that the I/O
size was large enough to fill the node’s main memory to avoid cache effects. The
IOR processes operated each on their own file, which was initially created at the
beginning of the job.

Figure 4.18 presents the I/O variability of GPFS and GekkoFS as squares and trian-
gles, respectively, up to 32 nodes (x-axis) for each IOR run. For GPFS, we observed
significant variability in its throughput performance (y-axis), often scattered across
orders of magnitude, with writes showing a higher variability than reads. In reality,
this I/O behavior is commonplace at many HPC sites [114, 139, 272], known as cross-
application interference. It is caused by an I/O bottleneck where a shared resource,
e.g., a parallel file system, is accessed by multiple, uncoordinated applications.
Nowadays, these kinds of I/O bottlenecks are already a great challenge at many
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Figure 4.19.: I/O worst-case of GPFS and GekkoFS of multiple IOR runs on different times
and node allocations throughout one week.

HPC sites and could become one of the core challenges in exascale supercomputers
in the future [91, 138, 203].

GekkoFS, on the other hand, shows steady and predictable performance with low
cross-application interference. This shows the advantages of using a node-local burst
buffer file system accessed by a single application. In both read and write cases,
GekkoFS scales almost linearly with the number of nodes as the available bandwidths
and storage capabilities increase, which eventually closes the gap to GFPS’s best-case
performance. If we observe the worse-cast performance of both file systems at a
specific node number (x-axis) in Figure 4.19, GekkoFS considerably excels GPFS’s
throughput in most cases due to the low impact of cross-application interference on
GekkoFS. This shows that a burst buffer file system like GekkoFS can also help users
to more easily predict the achieved I/O performance for a node configuration and,
therefore, be able to give more precise job time estimates, allowing for more precise
job scheduler decisions.

4.5.6 Effects on the network

To investigate GekkoFS’s effects on the network, we ran the OpenFOAM application
on the NEXTGenIO prototype. OpenFOAM [109] is a C++ library for developing
user-customized numerical solvers for the solution of continuum mechanics problems,
including computational fluid dynamics. The application’s solvers often run multiple
stages in a single execution and involve large amounts of I/O operations. Open-
FOAM specifically benefits from distributing its workload on multiple nodes while
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Figure 4.20.: Runtime of the simpleFOAM application when its MPI communication is run
on different network interfaces (ib0 and ib1).

parallelization is achieved via MPI. OpenFOAM solvers are used in both academia
and industry in large-scale computations [@26, @102, @204].

In our experiments, we used the simpleFOAM solver, a steady-state solver for incom-
pressible, turbulent flow, using the semi-implicit method for pressure-linked equations
(SIMPLE) algorithm. We ran the application with 100 iterations, whereas the first
time step generated around 25 GiB of data spread over 170K files. For the exper-
iments, we used 4 nodes (24 processes per node) with the application pinned to
socket 0. GekkoFS and Lustre both used the ib0 Omni-Path adapter. To investigate
the file systems’ effects on the network, SimpleFOAM’s MPI communication was
run in three configurations: MPI using the ib0, ib1, or ib0 and ib1 Omni-Path
adapters. Therefore, in the ib1 case, MPI communication is separated from Lustre’s
and GekkoFS’s internal file system network traffic.

Figure 4.20 presents the runtime (y-axis) of the experiments when run with both
file systems. Each of the three bar groups represents one of the above-described
configurations. Although simpleFOAM in this configuration does not generate
significant I/O, GekkoFS is still ∼7% to ∼9% faster in all cases compared with Lustre.
Further investigation and profiling revealed that the runtime improvements were
caused by the MPI_Waitall and MPI_Allreduce functions and not from direct file
system operations. Hence, both MPI functions could benefit from less generated
network pollution of GekkoFS as compared with Lustre. This is because we used the
local data distributor where data is locally written but metadata is still distributed
(see Section 4.3.6). As a result, less file system traffic is being put onto the network
in general compared with Lustre, where all file system communication is remote.
Therefore, in addition to GekkoFS’s linear scaling for metadata and data operations,
applications and their inter-node communication can also benefit from GekkoFS to
reduce file system network pollution.
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4.5.7 Distributed deep learning

In the following, we will present some of the results by Schimmelpfennig and Vef
et al. [218] within the context of GekkoFS and deep learning (DL). Specifically, we
will discuss the training performance of various compute-bound and I/O-bound
training models when run with Lustre, GekkoFS, and node-local storage. Therefore,
[218] includes a much more detailed discussion and evaluation of this topic. Further,
the work discussed the impact of data shards (see Section 4.4) on training accuracy
of various popular data sets, which are not included below.

To run the DL workloads, we used TensorFlow [1] (v2.4.1) and Horovod [222]
(v0.21.3). TensorFlow is a widespread end-to-end open source machine learning
platform that helps researchers and developers to train machine learning models. In
a distributed setting, however, the model synchronization of gradients via all-reduce
operations before each training step is limited. Frameworks, such as Uber’s Horovod
which can use TensorFlow, have therefore become an attractive option to run DL
workloads on multiple nodes with multiple GPUs on each node. Further, Horovod
supports NVIDIA’s NCCL [@171] library which allows inter-node communication to
use RDMA with Infiniband fabrics.

For measuring the training times, we used the popular ILSVRC2010 ImageNet data
set [57] which consists of 1.26 million images with an average size of 109 KiB.
Figure 4.21 presents the step time (y-axis) analysis for running a distributed training
with Horovod on eight nodes when the data set is loaded from Lustre, locally, or via
GekkoFS. In the latter two, we also differentiate between using memory and SSD.
Each data point represents the mean of the average step times of at least five training
epochs (lower is better). Within one epoch, each training set sample is applied once
to the model. Before each training step, the model gradients are synchronized,
representing an all-reduce operation. The data set is run with different training
models and batch sizes (bs, see x-axis) ranging from compute-bound to I/O-bound.
A batch size dictates how many training samples are part of a single training step.

For instance, Res50 is highly compute-bound since its step times did not change
regardless of the used storage backend. Alex (bs128), on the other hand, is highly
I/O-bound because the performance discrepancies were highest between the Lustre,
GekkoFS, and local storage backends. The figure clearly shows that a parallel
file system, such as Lustre, is unsuitable for I/O-bound deep learning workloads.
Nevertheless, it is important to remember that parallel file systems are typically not
used directly for training, and therefore it represents a performance baseline for
the local and GekkoFS cases. In practice, node-local storage is generally used for

100 Chapter 4 GekkoFS – A temporary burst buffer file system for HPC applications



Res50
bs32

Alex
bs32

Alex
bs64

Alex
bs128

Res18
bs128

Alex1G
bs64

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

st
ep

 ti
m

e 
[s

]

PFS 8N
local memory 8N
local ssd 8N
GekkoFS memory 8N
GekkoFS ssd 8N

Figure 4.21.: Comparison of the average training step times for different setups, models
and file systems using the ImageNet data set [218].

training which, as expected, showed the best performance in both memory and SSD
cases. Because GekkoFS is aggressively distributing the data across all nodes, there
is a certain performance penalty due to remotely accessing the training data visible
when compared with the local cases. The cost of remote access has also been shown
earlier in Section 4.5.4.

However, when comparing the local and GekkoFS cases, it is important to consider
the data volumes that need to be copied. In the above local case, the complete data
set was available on each of the eight nodes. In other words, the training data was
copied to node-local storage eight times, wasting the bandwidth of the parallel file
system. In the GekkoFS case, the data only needed to be copied once to its shared
global namespace. What is more, in cases where the training set exceeds the node’s
storage capabilities, the data must be partitioned in a way to minimize biases, called
data shards, whereas the shards are then distributed across the nodes. While shards
do not necessarily impact training accuracy, minimizing biases in shards is not trivial
and can result in biases that are not immediately visible [218]. Therefore, GekkoFS
can offer a transparent way for shard-free distributed training.

In summary, Schimmelpfennig and Vef et al. [218] proposed a transparent workflow
using GekkoFS which does not rely on shards or other means of data packing. As a
result of its shared namespace, researchers do not need to minimize biases when
creating shards because each node has access to the full training set, requiring only a
single copy from the parallel file system. Finally, further evaluation in [218] showed
that GekkoFS scales linearly with common DL workloads (not shown in this thesis)
while the file system does not interfere with the all-reduce model synchronization
process.

4.5 Evaluation 101



4.6 Future work

At the time of writing, GekkoFS remains in continuous development due to the file
system being funded through ADMIRE (Adaptive multi-tier intelligent data manager
for Exascale) and the FIDIUM (Federated Digital Infrastructures for Research on
Universe and Matter) projects. This section will outline some of the work that is
planned for GekkoFS in the context of these projects and beyond.

Malleability and interference In the context of the ADMIRE project, GekkoFS will
be significantly extended to support malleability, allowing various internal config-
urations changeable during runtime. Such configurations include increasing or
decreasing the number of file system nodes, caching policies relaxing consistency
guarantees, data placement strategies, and QoS to control the used network or
computational resources. The specific malleability policies will be implemented into
GekkoFS after a detailed analysis of the HPC applications used in ADMIRE. Finally,
we will investigate GekkoFS’s interference with other applications (that are running
on the same node) and how to minimize it. For example, this can be achieved by
reducing the general RPC throughput, decreasing CPU utilization, or prioritizing
application network traffic over the file system, as supported by Intel’s Omni-Path.

Reliability We also plan to support reliability with GekkoFS when a file system
instance runs for more extended periods, e.g., weeks or months. This allows the
file system to be used in long-term use cases, such as when compute jobs access the
same data repeatedly. For this, GekkoFS needs to support resilience mechanisms,
e.g., mirroring or two-error correcting erasure codes. This could be complemented
by a reliability protocol with recovery mechanisms in the future. However, GekkoFS
is not planned to run for years as a general parallel file system does.

Data and metadata backends Today, GekkoFS can use any node-local storage device
accessible via a path to the user. Therefore, GekkoFS can use storage hardware
ranging from spinning HDDs and SSDs to memory. We plan to extend GekkoFS to
efficiently use future storage technologies, e.g., non-volatile main memory (NVMM)
devices. While kernel-based file systems exist that are specifically optimized for
NVMM devices and provide a path that GekkoFS could use, Moti et al. [160]
showed that the OS and its software stack complexity hold back NVMM devices
from unfolding their full potential. Their Simurgh file system runs fully in user
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Figure 4.22.: GekkoFS architecture and its components with the GekkoFS proxy.

space, providing significant performance improvements (up to an 89% increase in
application runtime), and could be used in the future for NVMM by GekkoFS.

Proxy forwarding Because a GekkoFS client is started implicitly when an appli-
cation (process) is launched via library preloading, any potential optimizations,
e.g., client caching, is limited to the corresponding preloading process. Especially,
batching of I/O requests and support for asynchronous operations showed significant
performance benefits in other work [197]. Therefore, we plan to extend the GekkoFS
architecture by an additional forwarding component, called GekkoFS proxy, that
runs on each client node. All GekkoFS client requests must thus go through this
component as depicted in Figure 4.22.

The first preliminary performance results were promising, showing up to 85%
efficiency in metadata workloads and similar performances for data workloads in
comparison to GekkoFS’s original design. The corresponding performance results
are visualized in Figures A.3 and A.4 in the appendix for zero-byte files and 4 KiB
sized files metadata experiments, respectively. Further, sequential data experiments
are also presented in Figure A.5 in the appendix.
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4.7 Summary

Larger supercomputers and higher I/O expectations and requirements have increased
the pressure on common parallel file systems, starring new workloads, e.g., from
the data-driven science domain. To combat I/O interference, slow metadata opera-
tions, and more predictable performance, both software-based and hardware-based
approaches have been proposed. One of the software-based approaches is to use a
burst buffer file system that is placed between the application and the parallel file
system and utilizes already available node-local storage, which applications often
underutilize.

This chapter has presented GekkoFS5, a high-performing distributed burst buffer
file system in user space that can be deployed ad hoc by any non-privileged users
in a matter of seconds. By choosing the LD_PRELOAD method and intercepting
I/O-related system calls within the GekkoFS namespace, the file system can run
entirely in user space. As a result, GekkoFS does not need to implement common
central data structures that are required by the virtual file system (VFS), e.g.,
inodes or directory blocks. Avoiding such data structures and running in user space
is essential for GekkoFS’s design, which is fundamentally based on a decoupled
architecture and can, as a result, avoid inter-node locking communication and other
synchronization protocols. By additionally relaxing certain file system operations
and aggressively distributing metadata and data, GekkoFS has shown to linearly
scale both metadata and data operations with the number of compute nodes. As
such, it can scale to millions of metadata operations already for a small number of
nodes and efficiently use node-local storage for data operations. GekkoFS achieves
these features while still offering strong consistency semantics when accessing a
single file system resource, e.g., a file.

Since its initial publication, GekkoFS has been the basis for other works and student
theses [8, 13, 22]. For instance, Bez et al. [22] demonstrated in their paper the
benefits of dynamic I/O forwarding [110, 175, 258] by adding a forwarding mod-
ule as part of GekkoFS, called GekkoFWD. To reduce interferences at the parallel
file system, GekkoFWD uses the AGIOS [25] library, which includes several I/O
scheduling algorithms [124], aiming to alleviate these interferences by using machine
learning to pick the best algorithm for a particular application. In their experiments,
GekkoFWD could improve the aggregated bandwidth of a queue of nine heteroge-
neous applications by up to 85% compared with the typically-used static allocation
approach. Moreover, GekkoFS has placed 4th in its first submission to the IO500’s

5https://storage.bsc.es/gitlab/hpc/gekkofs
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10-node challenge [@105] at the “International Conference for HPC, Networking,
Storage, and Analysis” (SC) conference in 2019. The IO500 list represents an effort
of the storage community to provide a set of experiments (based on mdtest and
IOR [@106]) that should capture a file system’s performance that is representa-
tive, comparable, and trustworthy. GekkoFS has further inspired other researchers
to build on its architecture with MadFS [@146], showing that GekkoFS’s design
philosophy can scale to significantly larger supercomputers than those presented
in this thesis. MadFS uses a similar architecture compared to GekkoFS [@146],
including the hash-based distribution algorithm, syscall intercept via LD_PRELOAD
for their clients, and RocksDB for metadata and chunks for data on the server-side.
Nevertheless, MadFS differs in other areas, e.g., in their used network layer (not
using Mercury), and offering other optimizations, e.g., placing small files within
RocksDB. At the time of writing, MadFS remains in first place on IO500’s main list.

In the future, we plan to significantly extend GekkoFS in several directions. These
additions mainly focus on I/O malleability, longer-running workflows, and reliability.
In addition, GekkoFS will feature further data and metadata backends, data dis-
tribution algorithms, such as random slicing as proposed by Miranda et al. [156],
and a proxy forwarding component allowing GekkoFS to utilize client caching
mechanisms.
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DelveFS:
An event-driven semantic file
system for object stores

5

Data-driven applications are becoming increasingly important in numerous industrial
and scientific fields, growing the need for scalable data storage, such as object storage
(see Section 2.4). Yet, many data-driven applications cannot use the custom object
interfaces directly and typically have to rely on third-party file system connectors
that offer a standard POSIX file system interface. What is more, these connectors
only provide a basic representation of objects as files in a flat namespace, that is,
a single directory. Given that object store buckets can grow to millions of objects,
such a simple organization can be insufficient for users and applications who are
usually interested in only a small subset of objects in a bucket. Therefore, these huge
buckets lack basic semantic properties and structure and are further challenging to
manage from a technical perspective because object store file systems cannot cope
with the corresponding large directory sizes.

This chapter introduces DelveFS, the first object store file system that aims to solve
this challenge by offering the ability to compose a custom user-defined semantic
file system, allowing multiple unique views onto the object store. Through flexible
filters, users can specify each view’s content, tailored to their unique interests or an
application’s requirements. With user-defined views, the file system can improve the
usability of huge directories and allow new ways to implement complex workflows.
DelveFS delivers similar file system throughput compared to the native object store
interfaces or other file system connectors for both metadata and data operations.
Moreover, due to how DelveFS handles its views, the file system can considerably
increase the performance for common directory operations.

First, Section 5.1 will motivate this work and give an introduction to the topic.
Section 5.2 will provide a background to describe the important core functionalities
of modern object stores for DelveFS. In addition, related work will be discussed
in detail. Next, Section 5.3 will describe DelveFS’s goals, its central components,
and main design considerations. In Section 5.4, DelveFS will be evaluated with
regard to its event processing capabilities, event latencies, and metadata and data
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performance. Finally, Section 5.5 will conclude this chapter and outlines our future
work.

5.1 Motivation

Data-intensive applications drive a significant fraction of today’s innovations in
research and industry. Big data processing or machine learning, among many other
underlying technologies, depend on the availability of huge data sets. Consequently,
with more accurate techniques than ever before, data is being generated and col-
lected at an increasingly rapid pace. For instance, in the bioinformatics community,
the requirements to store sequenced genomes are growing faster than the stor-
age density of hard drives [10, 11]. Already in 2014, the European Centre for
Medium-Range Weather Forecasts (ECMWF) reached a storage capacity of over 100
petabytes with a 45% annual growth rate [88]. The particle physics community
stores hundreds of petabytes of generated data by the Large Hadron Collider (LHC)
at CERN [189], and the Square Kilometre Array (SKA) telescope will require more
than 100 petabytes of short-term buffer storage for a 12-hour observation duration
and exabytes of long-term storage [200].

Recently, companies also began to manage their data in data lakes in which all
information is stored in a raw format [89]. Before data is accessed in data lakes,
applications first need to locate the desired files among all files in the lake which
adds to their complexity. Object storage, with its high scalability, low maintenance
overhead, flat namespace hierarchy, and ease of use, has made this storage solution a
popular option for such scale-out use cases. Nowadays, there exist many commercial
and academic objects stores, e.g., Amazon S3 [161], BlobSeer [166], Ceph [268],
Swift [7], OpenIO [176], or Ursa Minor [2]. Their use cases are manifold and
include archiving, media and entertainment, scientific data, and the internet of
things (IoT).

In addition, new internet-scale applications like Netflix or Dropbox have been
designed around using object storage systems through their native object API [3, 61].
However, because these custom APIs are not adhering to established standards, such
as a standard file system interface that is semantically similar to POSIX, data-driven
applications may not be able to use these new interfaces offered by object stores.
Adapting the I/O layer of these applications is typically time-consuming and may
not be a feasible option. This is especially the case for many proprietary applications
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or applications that have a decade-long development history, e.g., Nek5000 [69,
@164].

As a result, several object stores added a corresponding file system interface or
depend on third-party file system connectors [21, 130, @214, 267, 279]. Object
store containers (or buckets) are then represented as file system directories and
the containing objects as files. Therefore, applications can then use object stores
through a file system interface without the need to modify the application’s I/O
layer. Nevertheless, since object stores operate in a flat namespace, these file
system connectors only offer a basic representation of objects as files in a similar
flat namespace, i.e., one directory per object store container. This is especially
challenging when millions of objects are stored in single containers [@12] because
of the lack of basic semantic properties and the typical file system structure.

Yet, even if a hierarchical directory structure of file systems was used, such hierar-
chies would often be insufficient when handling large amounts of data. For this
reason, the usefulness of the hierarchical file system model has been questioned
several times over the past three decades [82, 101, 220]. An alternative approach
was proposed that involves a semantic model where data is dynamically searchable
so that a user can create a data organization that fits how applications access their
files. In this context, some object stores support search capabilities, e.g., basic filters
for object name wildcards [@86] or time ranges [@56], but also more sophisticated
metadata search capabilities [127, @216]. However, these are not available in file
system connectors.

Another challenge that arises from the missing structure and data semantics is that
the object store’s flat namespace is mapped directly into the file system. This can
result in severe challenges concerning metadata when a large amount of data is
presented [269]. The reason is that POSIX-like file systems are built around a
hierarchical structure, utilizing many mechanisms to optimize for this model, such
as the dentry cache which caches directory entries in memory (see Section 2.1). This
is the opposite in object stores which may gain scalability benefits by employing a
flat namespace design [128].

DelveFS is an object store file system in user space that offers the ability to compose
a custom semantic file system. It keeps consistency by processing object store events
which describe changes in the object store, such as the creation of an object. Tailored
to the user’s requirements, DelveFS creates unique views onto the object store that
can be flexibly filtered by several criteria, e.g., object names, sizes, access times,
or object properties (similar to extended attributes in file systems). In addition,
DelveFS allows a hierarchical structure on top of the user-defined view, emulated
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within the object store’s flat namespace to support applications that internally
expect a hierarchical structure. Further, the file system operates in a distributed
setting, supporting clients from many machines, each having potentially different
but possibly overlapping views. DelveFS achieves these features without restricting
access to the native object store API or the usage of other object store interfaces
which can run alongside DelveFS.

This chapter will demonstrate how events can be used to map objects in a flat
namespace to file system files and how events can be utilized to provide meaningful
semantic subsets of data. Via object store events, DelveFS can update its views
through its event handler at low latency and can operate without interfering with
the object store by otherwise constantly contacting it for changes. Because DelveFS
is using the object store as a black box, it offers an eventual consistency model with
close-to-open semantics [94] between its different interfaces. Further, it achieves
similar throughputs compared to the native object store interfaces and provides up
to 110× increased performance for common directory operations (ls -l) compared
with other object store file systems.

Overall, DelveFS aims for a number of use cases: 1. (virtually) reducing the number
of objects in large containers, 2. filtering for specific types of objects to ease access
to target data of, e.g., data lake applications, and 3. automatically classifying new
objects to the context of user-defined views. For instance, the latter can be beneficial
in short read alignment tools in computational biology where a large number of
(short) sequences, classified by object metadata, are aligned to a reference genome.
This allows users and applications to filter for desired metadata via DelveFS’s
views instead of scanning potentially huge containers for input objects with specific
metadata and putting file system connectors and object stores under high loads.

5.2 Related work

Earlier in this thesis, Section 2.4 introduced the concept of object storage systems
which has several advantages over traditional storage techniques, e.g., file systems.
Most prominently, compared to file systems, object stores use a flat namespace
and an object storage API that does not follow the standard POSIX semantics or
established interfaces whatsoever. As a result, the object stores tend to scale well
since their container complexity does not increase when objects are added [153].
It is therefore a popular choice for storing large amounts of unstructured data,
e.g., photos or media files. In the context of DelveFS, this section will discuss
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more advanced object storage topics, such as how object properties work, how file
systems can use the object store via the standard file system interface, and how
event notifications work.

5.2.1 Containers and objects

In general, object stores use containers (also called buckets) to accommodate ob-
jects [176, @214]. But, due to the flat namespace, there is no hierarchy of containers.
Therefore, there is little overall structure (unlike the hierarchical structures in file
systems), often resulting in large numbers of objects within a single container that
can reach millions of objects [@12].

An object is a distinct unit of data with a globally unique identifier and some
attached metadata. However, compared to a file in file systems, an object is generally
immutable. In other words, to change parts of an object, the entire object needs
to be downloaded, locally modified, and then uploaded, thereby replacing the old
object in the process. In particular, this can become an issue when uploading large
objects (hundreds of megabytes and more) as an upload failure requires repeating
the entire upload process. S3, for example, offers the multipart upload feature which
splits an object into multiple parts that can be individually uploaded. Hence, a failed
upload of a single part does not fail the entire object upload. Only after all parts are
uploaded, an object is formed that can be accessed.

5.2.2 Object properties

Object properties are custom user-defined metadata similar to extended file attributes
(xattr) supported by many file systems [125, 129, 148]. They consist of key-value
pairs that allow users to further classify an object beyond its name. Most object
storage solutions support object properties but they differ in their usage.

For example, Amazon S3 allows two types of object properties: metadata and tags.
Object metadata is tied to the immutability of the object and cannot be changed
while tags are managed separately. OpenStack Swift only offers to upload a set of
all properties instead of modifying each property individually. Thus, each property
is also essentially immutable.

For DelveFS, flexible object property implementations, such as those offered by
OpenIO or Google Cloud Storage, work best because they work similarly to extended
attributes in file systems where individual key-value pairs can be updated. This is
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because DelveFS allows the modification of object properties. It not only maps them
to extended attributes but also uses them to build a hierarchical namespace on top
of the object store’s flat namespace.

5.2.3 Object storage file systems

Since object stores offer custom object-based APIs to manipulate objects, applications
that are built around a file system POSIX interface are unable to use them. Hence,
numerous file system connectors have been developed which allow an object store to
be used as a UNIX file system [21, @84, 130, @177, @206, @214, @215, @236,
261, 267].

At their core, file system connectors present object store containers as directories
and objects as files. However, they differ significantly in their features and how they
operate. For example, S3QL supports multiple object stores and offers on-the-fly
encryption [@215]. BlueSky employs a log-structured design to hide the latency
of accessing the backend object store [261]. CephFS [267] uses its own Reliable
Autonomic Distributed Object Store (RADOS) to offer a file system interface.

The above-listed file systems do not feature dual-access, that is, objects can only be
accessed through the file system interface if consistency is required. In this context,
the authors in [130] discuss the importance and efficiency of dual-accessing the
object store through multiple interfaces. Object store file systems allowing dual-
access include S3FS [@214], Goofys [@84], SVFS [@236], RioFS [@206], and
OIO-FS [@177].

Nevertheless, these file systems do not consider containers with millions or even
billions of objects which have become increasingly common in today’s object
stores [@12]. They only offer a basic representation of objects as files in a flat
namespace, lacking any structure or semantics in addition to technical challenges
due to metadata management [269].

However, even if a hierarchical structure would be used to retain some structure, it
is still not enough when managing large data volumes. Consequentially, semantic
file systems have been proposed several times in the past decades [82, 101, 220]. In
a semantic file system, data is dynamically searchable to achieve a representation
that fits the way it is accessed. For instance, Gifford et al. [82] allow suffixes to
file system paths to filter files by ownership, among others. Some object stores also
offer basic filtering mechanisms, such as for object name wildcards [@86] or time
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ranges [@56], or more sophisticated search capabilities for object properties [@216].
Similar features are not available in current object store connectors.

DelveFS offers both dual-access and provides considerably higher usability than
above-mentioned file systems by allowing semantic file system views based on a
metadata filtering mechanism. Further, DelveFS overcomes existing consistency
restrictions by coupling the object store’s view and the user-defined file system view
via the event interface of modern object stores. Because DelveFS relies on the event
interface for fast client namespace updates at low latency, the file system achieves
the features without actively disrupting the object store to retrieve the most recent
namespace changes.

5.2.4 Event notifications

To ensure that both the object interface and the DelveFS views can become eventually
consistent, DelveFS requires notifications whenever the namespace changes. For
this, the file system processes an object store’s events (or notifications) and uses
object properties to form the file system views. More precisely, an event refers to a
piece of data describing an operation in the object store, e.g., object write/upload
operations. The event can then be (actively) retrieved by an application whenever a
container or an object is updated. Such events are available in object stores, such
as OpenIO, Amazon S3, or in Google Cloud, but they are still missing in Swift or
RADOS. However, there is no standardized interface for events and, as a result, they
differ significantly by how events are accessed, by the events’ content, and by the
general features the event interface offers, i.e., which operations produce events.

For DelveFS, events that describe changes of object properties or object sizes are
most important as they are crucial to update a client’s view on its defined namespace.
This is because object metadata, e.g., properties and sizes, can be used when a client
defines its view (see Section 5.3.4 later). Nevertheless, such object properties events
are only supported by OpenIO and by Google Cloud Storage. In this chapter, DelveFS
uses the OpenIO event interface as an example to leverage these kinds of events.

Agni [130] and YAS3FS [@275] use events to notify file system clients of changes in
the object store. Such FUSE-based file systems, which are usually used in object stor-
age connectors [21, @84, 130, @177, @206, @214, @215, @236], are, however,
known to struggle with workloads that involve a large number of metadata opera-
tions [250] – also shown in Section 5.4.3 later. DelveFS addresses this shortcoming
by processing events significantly further to allow user-defined semantic file system
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views, allowing fine-grained searches and reducing the overhead of listing otherwise
potentially huge directories.

5.3 Design

This section will present DelveFS’s goals, architecture, and system components and
will also discuss how object store events are processed in the file system and how it
influences its consistency model.

5.3.1 Goals

DelveFS was designed to achieve the following objectives:

Functionality DelveFS should provide a file system interface to an existing object
store through the Linux virtual file system (VFS). The file system should maintain its
own persistent view of the object store via metadata information, but it should not
store data outside the object store except for caching.

Dual-access The object store’s interfaces should be able to be used at the same
time as DelveFS. In addition, multiple DelveFS clients should be able to operate
concurrently and access the object store in parallel. However, we assume that a
single object is only modified by one client at a time, either DelveFS or through an
object store interface.

Object property filtering Users should be able to define rules within DelveFS which
allow them to view objects in the file system that are of particular interest. Such
rules filter the object namespace for containers, objects, object sizes, object access
times, or object properties. Filtering for container and object names should allow
exact name searches and more complex expressions, such as filtering for all objects
with a characteristic prefix or suffix.
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Figure 5.1.: DelveFS’s architecture with its components and interaction with the object
store.

Consistency model DelveFS is not intended to strictly follow the POSIX I/O se-
mantics. Instead, DelveFS should provide an eventual consistency model with
close-to-open semantics [94]. Close-to-open semantics guarantee that other pro-
cesses can see the latest changes once a file is closed but not while it is still open
and being modified. This allows the client to locally cache all changes until closing
the file. These semantics are sufficient for our assumption that only a single client is
modifying an object at a time.

A stronger consistency model, e.g., provided by several parallel file system imple-
mentations [219, 270], would also require a distributed locking mechanism (DLM)
and hence full control of the object store. However, we use the object store as a
black box so that DelveFS does not interfere with other simultaneously used object
store interfaces. Further, aligning DelveFS more to NFS semantics [94] allows us
to significantly reduce the file system’s complexity and avoid otherwise intricate
and communication-intensive distributed locking mechanisms [271]. Using such an
eventual consistency model implies that changes applied to files within DelveFS may
not be immediately visible in the object store and vice versa. This is due to caching
mechanisms and event processing affecting both metadata and data operations.

5.3.2 Architecture

Figure 5.1 presents DelveFS’s architecture, its main components, and its interaction
with an object store. In this work, DelveFS uses the OpenIO object store [176] as
its backend that is running on multiple nodes. OpenIO offers suitable interfaces
to communicate metadata and bulk data between the object store and its clients.
DelveFS includes the event handler and allows multiple FUSE file system clients.
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At the core of the DelveFS ecosystem, the event handler is running as a single
instance. Its three primary responsibilities are: 1. maintaining the state of the object
store’s namespace by processing its events, 2. filtering the namespace for user-defined
rules, and 3. providing a unique client namespace’s state to the requesting client.
DelveFS allows multiple concurrently running clients which can be added to and
removed from the DelveFS ecosystem at any time. To considerably reduce the load
on the single event handler instance and increase overall file system performance,
clients heavily utilize metadata and data caches.

Overall, the DelveFS architecture focuses on managing the object store’s metadata
(updated by events) to form a semantic file system view of objects of interest. Rulesets
define these views, each containing a set of filters for relevant objects. All matching
objects are then placed as files into a directory defined by the ruleset.

The life cycle of a file starts with its creation either via the object store interface or the
file system interface. Once the object is created in the object store, a corresponding
event is produced that the event handler captures, updating all affected file system
views of DelveFS clients. Clients do not get notified by these updates directly, but
have to poll the event handler explicitly when required, e.g., when a user lists a
directory. Notice that views may also be affected by objects created or removed
outside DelveFS since it supports dual-access. For instance, this can occur through
the native object interface or other connected object store file systems, producing
the appropriate events that are then processed by the event handler.

For maintaining consistency, DelveFS requires at least three event types: an object
creation event, an object removal event, and an object update event when its size
or properties are modified. Properties, i.e., key-value pairs similar to file system
extended attributes, allow a fine-grained way of filtering the namespace.

The communication between DelveFS’s components uses the Mercury RPC commu-
nication library [228]. DelveFS interfaces Mercury through the Margo library [42]
which provides Argobots-aware wrappers [221] to Mercury’s API (see Section 4.3.4
for details on Mercury and Margo).

5.3.3 Event handler

The event handler keeps the object store’s state, i.e., its containers and objects, for
the DelveFS client-registered rulesets. Therefore, the event handler maintains and
provides the metadata for objects that are part of a view, including their directory
structure. In principle, any user can launch the event handler, e.g., within the context
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of an HPC compute job. However, modifying the configurations for the object store’s
event interface may require administrative support, depending on the used object
store. Overall, the event handler consists of four main components (see Figure 5.1):
1. a key-value (KV) store to keep track of the object store’s state, 2. an event loop
which handles incoming events, describing a change within the object store, 3. a
parallel rule-matching engine to process the content of each event, and 4. an RPC
communication layer to exchange messages with DelveFS clients.

For storing object metadata, the event handler utilizes a local RocksDB KV store,
offering a high-performance embedded database for key-value data [59]. When a
client first connects to the event handler, the latter queries the object store to list
all objects of containers that are part of the client’s rulesets if not already available
in RocksDB. Otherwise, a previous client already triggered the initial scan for a
particular container. Hence, the KV store does not necessarily store the complete
object store state but lazily populates it when required, which avoids scanning the
entire object store when the event handler is started. This is important because,
depending on the object store size, scanning the object store with possibly millions
of objects is time-consuming and heavily disrupts the object store, impeding access
times for other users.

Moreover, keeping a part of the object store’s namespace allows DelveFS to discard
irrelevant events to a ruleset. In other words, when the container was not scanned
yet, it is not part of any ruleset, and therefore the event can be dropped. Note that
the DelveFS event handler postpones applying the event to objects when it notices
that the container is currently being scanned for the first time. For low-latency
access, some of the object’s metadata that matches a connected client’s ruleset is
kept in memory. Adapting to Google’s object store would further allow listening only
for specified containers, which makes discarding events unnecessary. In the case of
OpenIO, events are exposed by one beanstalkd [@14] work queue per OpenIO node.
Each event in the beanstalkd work queue describes a single change in the object
store and is removed from the work queue after it has been processed.

The event loop pulls events from the beanstalkd work queues and prepares fur-
ther processing. Essentially, it consists of multiple progress threads, accessing the
beanstalkd queues, and worker threads, processing new events that the progress
threads have accessed. First, the progress thread identifies the event type and passes
its content to a worker thread created from a dedicated thread pool. In the event
matching process, each worker checks if the event refers to a tracked container and
if the described changes apply to any registered ruleset. In that case, the worker
thread updates the KV store and ruleset (if applicable) accordingly. Notice that the
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event handler does not notify a DelveFS client of an incoming event that affects its
rulesets. Instead, the client lazily requests this information when required.

In the case of an event handler failure, no client data is lost because the event
handler is a read-only medium. It does not immediately affect clients, with the
exception of them being unable to update their ruleset metadata information. Hence,
an interruption does not break the eventual consistency guarantees. Moreover, since
the event handler does not store information beyond what is already available in the
object store, there is no immediate need for advanced crash consistency procedures
to conserve events while the event handler is shut down. Such a procedure is part of
future work and could decrease the time when clients lazily ask for their data after
the event handler is restarted.

5.3.4 File system client

An application uses the DelveFS client directly via the standard file system interface.
It connects both to the DelveFS event handler and the object store. It is based
on the FUSE library, providing an interface to export a user space file system
implementation to the kernel. More precisely, DelveFS is using FUSE’s low-level
API which allows a flexible file system design that avoids various overheads of the
high-level API [250]. The high-level API operates entirely on paths and does not
allow manipulating internal file system data structures, such as inodes or dentries.
This can reduce overall file system complexity and the required development time
but induces additional costs for general metadata and data performance.

Like any other kernel file system, it can be mounted at a specified path. The client
consists of four components: 1. A file system implementation based on FUSE’s
low-level API, 2. an in-memory caching module to store metadata as well as data
for a short time frame, 3. an object store module to directly communicate with the
object store, and 4. an RPC communication layer based on Mercury to exchange
messages with the DelveFS event handler.

Rulesets When the client is started, the user passes a mounting path and a file that
contains a ruleset. A ruleset is a collection of rules in the YAML syntax [@18] that
the object store should be filtered for. Each ruleset can use rules of five categories
with each rule narrowing down the results: container name (mandatory), object
name, object size, object access time, and object properties. Then, all rulesets are
sent to the event handler which processes them and responds with the resulting
metadata of all matched objects. Figure 5.2 visualizes the overall startup process.
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Figure 5.2.: DelveFS client startup procedure.

1 ---
2 Gecko:
3 account: "delvefs"
4 container : "gecko_genome"
5 object : "*.fasta"
6 propert ies :
7 color : "black"
8 color : "green"
9 Leopard:

10 [ . . . ]
11 ---

Figure 5.3.: An example of the Gecko ruleset in YAML syntax and its defined rules to filter
for objects in the gecko_genome container.

An example YAML ruleset is shown in Figure 5.3 with the name Gecko (defined in
line 2), showcasing some of the rule categories. All objects that match all rules of
the set are placed into a single directory named after the ruleset. In this example,
the ruleset matches all objects in the gecko_genome container with the properties
black color or green color. In addition to exact matches, DelveFS supports partial
matches via the * character. Here, the object keyword represents a suffix-wildcard
and matches all objects whose name ends with "*.fasta". The fasta extension
is used for files storing nucleotide sequences or protein sequences in the FASTA
format [185].

Metadata management The client queries the event handler via read-only RPC
messages to get the latest update of a directory’s state, that is, the ruleset’s metadata.
The directory state is represented as inodes and directory entries which are kept in
in-memory caches. The directory is then considered recent for a configurable amount
of time, during which the client does not ask the event handler for updates on that
directory. Hence, changes in the object store may not be immediately visible to the
client. Note that a file can disappear from a client’s ruleset directory under specific
conditions. For instance, the corresponding object could have been removed from
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Figure 5.4.: DelveFS client lookup procedure.

the object store, or an object’s properties have changed and no longer match all
ruleset criteria.

This process is similar to file lookup operations issued, e.g., via a stat system call.
If the directory was recently listed, a file’s metadata, i.e., the inode, is cached and
therefore served locally. Otherwise, the event handler is queried for a potential
update of the corresponding object’s metadata that was modified by an event.
Figure 5.4 provides an example of a stat operation that queries the event handler,
including the ongoing event processing that updates the ruleset information stored
at the event handler.

File system operations that change the namespace, i.e., creating and removing files
or modifying their extended attributes, communicate directly with the object store’s
native interface. This avoids potential consistency issues between DelveFS and the
object store. By and large, the object store is always treated as the primary source
of truth because it is updated before DelveFS. For example, when a client creates a
file, it also creates the equivalent object in the object store. During this process, the
event handler is unaware of this operation until it receives a respective create event.
That is to say, the event handler relies on the object store’s event interface to update
its database, even if a DelveFS client changes the object store’s namespace. Notice
that the event handler cannot determine whether a given event was modified by a
DelveFS client or another source.

Data management Like metadata operations, I/O operations do not notify other
DelveFS nodes. Instead, objects are directly accessed via the object store’s native
API. However, for I/O operations, the file system interface and object-based interface
are not immediately compatible due to how data is written and read. A (local) file
system assumes that data is available in mutable blocks, changeable at any offset.
On the contrary, object storage uses the concept of immutable objects which cannot
be modified in place after their creation [7, 161].
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As a result, modifications of an object require downloading the object, modifying it
locally, and then uploading a new object with the same name that replaces the old
object. It is worth mentioning that object replacement is not available in all object
stores and can depend on container configurations, in which case the object has
to be removed first. FUSE-based file systems, on the other hand, split file system
operations for reads and writes with a maximum buffer size of 1 MiB and 128 KiB,
respectively. Therefore, a read operation on a 10 MiB file involves 10 FUSE-internal
read function invocations. In the case of a write operation, downloading the full
object for each operation and replacing at most 128 KiB of data before uploading it
back to the object store is, thus, inefficient and slow. Moreover, it causes unnecessary
additional loads over the network and disrupts the object store for other accessing
users.

For this issue, DelveFS implements a write-back data cache. It supports the OpenIO
API and the S3 API to translate (remote) objects to files (henceforward called object
files). The cached object files are then stored at a user-defined local file system path
outside of the FUSE environment. This allows DelveFS’s write operations to operate
locally until a close or fsync command is called, indicating that no further write
operations are issued or the object file should be synchronized with the object store,
respectively. The file system then uploads the object file to the object store. DelveFS’s
semantics assume that data is not changed outside of this client until the data is
uploaded back to the object store and, therefore, only allow a single writer to each
file. This is not a special limitation of using DelveFS but applies to any object store
client, whether the native API is used or another object store file system because of
the object’s immutability that does not allow parallel access.

For read operations, DelveFS downloads the remote object during the first encoun-
tered read operation, placing the resulting object file into its cache. All subsequent
read operations can then work locally. A user-defined configuration decides how
long an object is considered recent in the DelveFS caches before it is downloaded
again. To avoid downloading an object repeatedly after the caching time expires,
DelveFS first compares the checksum value of the object file and the remote object.
This is a small metadata operation between the client and the object store.

Virtual directories Rulesets allow users to create a semantic file system view, but
due to the object store’s flat namespace, ruleset directories would not allow a further
directory structure that applications and users might require. Therefore, DelveFS
emulates a directory hierarchy within a ruleset, e.g., to represent the source code of a
complex application with many subdirectories. These directories are entirely virtual
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since object stores do not support recursive container structures. In DelveFS, the
object’s position in the (virtual) directory hierarchy is stored as an object property
that is resolved only on the client side. As a result, the directory hierarchy of an
object is fixed for all clients.

Alternatively, the file system could use dedicated directory objects, similar to direc-
tory blocks in file systems, only containing information on object names belonging
to the directory. We decided against this approach because it would require a central
entity (e.g., a global lock manager) to control access to such an object so that file
system clients do not issue conflicting write requests, effectively overwriting the
directory information of each other. Moreover, directory objects are of no value to
other object store users and would be considered junk objects.

Nevertheless, in both techniques, virtual directories are tied to the object and fixed
for all clients, although their content can differ based on which rules are applied to
the ruleset directory. If necessary, showing virtual directories can be disabled for a
ruleset.

5.4 Evaluation

This section will present the evaluation of DelveFS concerning the event processing
performance, the file system’s metadata handling and (ruleset) directory capabilities,
as well as its data accesses. Finally, we will present an example of how rulesets can
benefit an application’s workflow.

5.4.1 Experimental setup

Our experiments used the Intel Skylake partition of the MOGON II cluster at Johannes
Gutenberg University Mainz. MOGON II consists of 1,876 nodes in total, from which
1,046 nodes contain two Xeon Gold 6130 Intel Skylake processors with main memory
capacities ranging from 64 GiB up to 1,536 GiB. The cluster nodes are connected via
a 100 Gbit/s Intel Omni-Path network to establish a fat tree network, and it offers a
Lustre parallel file system as a storage backend.

The DelveFS event handler uses local-node SATA SSDs as backend storage for
RocksDB. The DelveFS clients and the event handler use TCP/IP over Omni-Path
as the network protocol. In all DelveFS experiments, the DelveFS clients and the
applications under test are pinned to separate processor sockets to minimize possible

122 Chapter 5 DelveFS – An event-driven semantic file system for object stores



interference. The FUSE client library runs in multi-threaded mode and uses up to
ten threads.

An OpenIO object store is used (running on ten compute nodes) to demonstrate
DelveFS’s functionality and performance. Nine nodes serve as storage nodes for
data and metadata, and one node serves as a management node and gateway
for metadata requests. For data and metadata, OpenIO’s storage nodes use data
center SATA SSDs, offering approximately 1.8 TB of storage in total. The object
store was used in isolation without any other user accessing it. Internally, OpenIO
communicates using TCP/IP over Omni-Path. External nodes that use the object
store use TCP/IP over Omni-Path as well to download and upload objects. In all
S3FS experiments, the S3 interface of OpenIO was used. Finally, data replication
was disabled in OpenIO and versioning was limited to two versions per object to
reduce general overheads.

5.4.2 Event processing

DelveFS clients rely on the performance capabilities of the object store’s event
interface and the event handler’s ability to process events quickly. For OpenIO,
events are exposed by the beanstalkd work queue (see Section 5.3.3) with each of
the nine OpenIO nodes running a separate beastalkd instance. Henceforward, we
use the terms beanstalkd and work queue interchangeably.

Because the event handler stores metadata outside the object store, it avoids that
read-heavy metadata requests, e.g., lookup() or readdir(), are issued to the object
store directly. Moreover, the event handler manages rulesets that filter the namespace
in a user-defined way. Therefore, depending on a central entity in this use case
requires that the event handler can process events at a reasonable throughput. In
addition, each event must be available for the clients at a low latency if it modifies
one of their defined rulesets.

We designed three scenarios to evaluate the various components of the event handler
and to measure its event processing throughput and event latencies. The first
scenario (RAW) covers the event handler’s raw throughput capabilities when events
are not matching any client ruleset. This scenario is the best case with the least
amount of functionality triggered since events are merely removed from the work
queues and then discarded. The second scenario (MATCH) measures performance
degradation by continuously matching events to rulesets. MATCH only accesses a
single object that is matching to 100 different rulesets that are maintained in memory.
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Figure 5.5.: DelveFS’s event throughput in three scenarios.

Operating on a single object allows RocksDB to (almost) completely work in memory,
minimizing potential performance degradation due to the KV store accessing the
underlying SSD. The latter case is then shown in the third scenario (DB_MATCH),
stressing the KV store. DB_MATCH events do not only match each event to 100 rulesets
but also refer to enough objects in total (10,000 in this case) so that RocksDB must
continuously read and write static sorted table files (SST files) from and to the
underlying storage. SST files contain parts of the KV store’s entries to persist the
KV store’s state to disk. Hence, the DB_MATCH workload targets all event handler
components. On a separate node, a DelveFS client sets up the required rulesets for
the event handler, but it remains idle during the experiments to not interfere with
the event handling process.

Event throughput The event throughput for all three scenarios was measured by
artificially inserting two million events into each of the nine OpenIO nodes’ work
queues. The insertion rate was set to ∼390,000 events per second in total (resulting
in over a 1-minute runtime) because it exceeds the event handler’s processing
capabilities in the RAW scenario. This allows for examining the event handler’s
sustained event throughput.

We did not trigger events using OpenIO directly because it emitted fewer than
1,000 events per second due to its limited installation size. Instead, by using similar
artificial events, we were able to explore the event handler’s processing capabilities in
an environment that generates a considerably higher number of events per second.

Figure 5.5 shows the event handler’s throughput for the three discussed scenarios
for up to four threads per work queue (x-axis). The y-axis depicts the total event
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throughput for each case. For the RAW scenario, the event handler processed up to
200K events per second by using four threads per work queue.

For the MATCH scenario, the throughput decreased to 180K events per second. How-
ever, even for a single object, the performance degradation is mainly attributed to
the repeated KV store accesses because each event causes a KV store put operation
to update the object’s metadata. Increasing the number of threads for each work
queue did not yield further improvements in the RAW and MATCH scenarios.

For the DB_MATCH scenario, the event throughput reached up to 126K events per
second for four work queue threads. Like in the MATCH scenario, the performance
degradation is caused by the continuous access and modification of all objects’
metadata in RocksDB. As the KV store must use more storage to accommodate the
metadata of all objects, it created several SST files on the backend SSD storage that
is constantly written and read. Overall, this slightly delays access to each KV store
entry, resulting in a ∼30% reduced throughput compared to MATCH for four work
queue threads.

Event latency The time from when an event enters the work queue until its cor-
responding changes are available to the client is defined as the event latency. As a
result, a client can access the update (if they actively ask for it) as soon as the event
handler has processed it.

The event latency was evaluated by running the MATCH and DB_MATCH workloads.
RAW was omitted since it only processes events that are discarded and thus irrelevant
for clients. For each of the two workloads, eight million events were inserted into all
work queues in total. The event insertion rate was set to ∼50,000 events per second
so that the maximum latency of MATCH remained below 30 milliseconds. We also
ensured that this insertion rate does not lead to a saturation in the DB_MATCH scenario
since the event latencies of the more complex DB_MATCH scenario significantly differ
from MATCH. Finally, the event handler and workload-inducing benchmarks were
run on the same node to compute accurate latencies. To minimize interference, the
event handler and benchmark were run on separate processor sockets.

Figure 5.6 visualizes the latency distribution for the MATCH scenario for eight million
events. The x-axis presents a non-linear range of latencies to capture all processed
events’ latencies, ranging from 100 microseconds to 30 milliseconds. The y-axis
depicts the percentage of events corresponding to a latency bucket (on a logarithmic
scale). For example, the latencies of all events in the 200 µs bucket range from 101
to 200 µs. For this experiment, over 99.8% of the events were processed in less than

5.4 Evaluation 125



0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9 1 2 3 4 5 6 7 8 9 10 20 30

Latency buckets (in milliseconds)

0.001%

0.01%

0.1%

1%

10%

100%

La
te

nc
y 

di
st

rib
ut

io
n 

in
 %

Figure 5.6.: DelveFS’s latency distribution for the event handler’s event processing in the
MATCH scenario.

400 µs. The event with the highest latency required 30 ms. These low latencies
were achieved because the rulesets and nearly all updates to RocksDB were kept in
memory.

Figure 5.7 presents the latency distribution for the DB_MATCH scenario for 8 million
events in which all events refer to a total of 10,000 objects in addition to each event
being matched to 100 rulesets. Compared to the MATCH scenario’s latencies, this
workload showed a considerably higher range of latencies attributed to congestion
at the KV store, taking up to several seconds. Nevertheless, more than 92% of events
were processed in less than 300 µs with an overall event throughput well above the
load our experimental setup can emit.

5.4.3 Metadata performance

This section will cover DelveFS’s metadata performance for file metadata and direc-
tory operations.

Microbenchmarks The metadata performance was evaluated by running a parallel
microbenchmark that creates, removes, and stats 1,000 zero-byte files per process

126 Chapter 5 DelveFS – An event-driven semantic file system for object stores



0.
1

0.
2

0.
3 1 2 3 10 20 30 10
0

20
0

30
0 1K 2K 3K 4K 5K 6K

Latency buckets (in milliseconds)

0.001%

0.01%

0.1%

1%

10%

100%

La
te

nc
y 

di
st

rib
ut

io
n 

in
 %

Figure 5.7.: DelveFS’s latency distribution for the event handler’s event processing in the
DB_MATCH scenario.

in a single container for 8 processes per node. The workload was also run with the
equivalent operations when using OpenIO’s SDK directly (i.e., the native object store
API) to measure the impact of DelveFS’s file system layer.

Figure 5.8 presents the results, each data point showing the mean of five iterations
and the corresponding relative standard deviation. OpenIO’s native object API via its
SDK achieved a throughput of up to 290 creates per second, 370 removes per second,
and 4,200 stats per second. OpenIO reaches its maximum throughput for create and
removal operations already at a single client node, indicating metadata congestion
at the object store. DelveFS did not achieve the same throughput for a single
client node since each create and remove operation causes multiple consecutive
internal FUSE function invocations that cause several overheads in FUSE’s internal
components [250]. Overall, the observed overhead was significantly more prevalent
in the metadata experiments compared to the data experiments that will be discussed
in a later section. Nevertheless, these effects become less severe when multiple
nodes are used, showing similar throughputs as the native object store API.

On the other hand, the stat throughput of DelveFS was over 23× higher compared
to OpenIO’s SDK. This is because the DelveFS client does not use the object store API
for requesting an object’s metadata but instead retrieves it from the event handler.
The event handler can then serve the results from memory without additional
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Figure 5.8.: DelveFS’s metadata throughput when compared to the direct usage of OpenIO’s
SDK.

lookups to RocksDB. Bigger systems may show a lower stat throughput when not all
metadata can be served from memory.

Directory operations Several experiments measured the time required to list large
containers with the typically used ls -l command for both DelveFS and S3FS.
The container size was restricted to 100K objects since the ls -l command did
not complete when using larger container sizes (e.g., 150K objects) for S3FS. As
is typical for object store file systems, S3FS was mounted to a single container
whereas DelveFS clients used two rulesets within the same mount point: 1. A ruleset
containing all 100K objects of the container, and 2. a ruleset that filters the container
for a rule-defined object name prefix, reducing the number of files within the
directory to 100. This configuration compares DelveFS’s directory listing capabilities
with the established S3FS object store connector, highlighting the performance
benefits of rulesets if they operate on a large container. Figures 5.9a and 5.10
present the results with regards to the time required in seconds (y-axis) to run the
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Figure 5.9.: Cold cache: Listing a directory containing 100K objects in DelveFS and S3FS
compared to using a ruleset, reducing its size to 100 objects.
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ls -l command for an increasing number of nodes (x-axis) for a cold and hot cache,
respectively. Each node ran a single process, and each data point presents the mean
of three iterations.

Figure 5.9a shows the cold cache case whereas we flushed the operating system
caches and restarted the file system and the DelveFS event handler before each
iteration. It is important to understand that DelveFS’s cold cache case for ls -l
must also include the time for two additional operations since the client relies on
the initial ruleset processing when DelveFS is started. Therefore, it must include
the time for the event handler’s initial container scanning (DFS EH scan) and the
time required to process the ruleset of the client (DFS client start). For a sin-
gle node, S3FS needed ∼360 seconds to list the container contents compared to
DelveFS’s ∼22 seconds in total. When the number of nodes is increased, the time for
S3FS increased to ∼2450 seconds (over 40 minutes) at 32 nodes, while DelveFS’s
performance remained constant. Further node numbers are omitted as DelveFS’s
performance remained stable for up to 128 tested client nodes.

The reason for S3FS’s 110× longer runtime at 32 nodes is that clients must share
a connection to the object store. This bottleneck already becomes visible at eight
nodes and worsens when more nodes are used. DelveFS’s event handler, on the other
hand, must read the content of the container only once for all DelveFS clients using
DFS EH scan. Afterward, it can use its event processing without directly querying
the object store. The startup for the DelveFS clients (DFS client start) for a
100K file ruleset required less than 4 seconds to complete in all cases. This time
includes communication with the event handler and processing the given ruleset,
which creates the directory metadata for the client for all matching objects. In fact,
the average client startup decreased when more nodes were used since the event
handler can reuse similar existing rule set definitions of other clients while they were
starting up simultaneously (all clients used the same ruleset definition). Accounting
for DFS EH scan and DFS client start leaves the runtime of ls -l, which was
less than eight seconds in all cases. The time is mainly attributed to the repeated
invocation of FUSE’s internal readdir() function that can only serve ∼100 entries
at a time (depending on the file name length).

When a smaller ruleset was used that contained only 100 objects (DFS ls smaller
ruleset), the client startup took less than 150 milliseconds, with ls -l requiring
less than 20 milliseconds. Because of the y-axis’s range of several seconds, the startup
time and ls -l are not visible in Figure 5.9a. Figure 5.9b provides a zoomed-in
view where the y-axis range is capped at 0.4 seconds, revealing the runtime for the
client startup and for the ls -l command. Therefore, a ruleset that decreases the
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Figure 5.10.: Hot cache: Listing a 100K object directory in DelveFS and S3FS compared to
using a ruleset, reducing its size to 100 objects.

number of objects in a large container can both reduce the working set and also
significantly decrease the necessary time for directory operations.

Figure 5.10 presents the same cases on a logarithmic scale for a hot cache, that is,
the directory has recently been listed. This allows each DelveFS client to operate in
its local caches. Thus, the time required to read the container content and to start
the client is not included in the figure, leaving less than 8 seconds to list the 100K
file ruleset directory (mainly due to FUSE’s overhead) and less than 10 milliseconds
to list the 100 file ruleset directory. For a single node, S3FS required ∼46 seconds to
list the directory but again showed a bottleneck at around 8 nodes, indicating that
the file system is not operating entirely locally.

5.4.4 Data performance

The following paragraphs will investigate DelveFS’s I/O performance and present
an example of how rulesets can be used in a complex workflow by using the
Bowtie [122] application to align short sequences to a human reference sequence.

Microbenchmarks To evaluate DelveFS’s I/O performance, the file system was com-
pared directly to the OpenIO SDK, i.e., the native object-based interface presenting
the upper bound, and S3FS. Each experiment iteration accessed its own file/object
and performed 4 GiB (worth) of writes and reads per process in succession for up to
16 nodes. For DelveFS, each iteration is broken down into four core I/O operations:
1. Writing test data to local storage, 2. uploading the data from local storage to the
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object store, 3. downloading the data from the object store to local storage, and
4. reading the test data from local storage. Therefore, in the I/O benchmarks, the
former two I/O operations form the overall write operation, and the latter two I/O
operations represent the overall read operation.

First of all, the experiments were designed to investigate potential FUSE-induced
overheads and to compare DelveFS directly to the equivalent object store interac-
tions. Thus, when measuring the OpenIO SDK I/O throughput, the above core I/O
operations were run in succession when using the OpenIO SDK. As a result, when
comparing the OpenIO SDK to DelveFS, the equivalent local and remote I/O opera-
tions are performed, leaving only the performance degradation of the file system
and FUSE. Further, for the S3FS comparisons, we disabled its multipart feature.
Multipart allows users to split the object upload process into multiple parts. If one
part upload were to fail, the user can attempt to reupload the failed part without the
need to re-upload all other parts. When all parts are uploaded, the object store forms
the final object out of all parts on the server side. This is particularly useful for large
objects because a failure to upload the entire object without multipart would require
the user to upload the entire object again. Nevertheless, in the S3FS experiments,
using multipart did not come without cost and reduced the overall throughput by
up to 10%. Since the OpenIO SDK does not offer similar functionality, multipart
was disabled on S3FS. Moreover, because the write and read operations include
writing and reading to and from local storage and because the network bandwidth
is considerably higher than the node-local SSDs bandwidth, the DelveFS client’s and
S3FS’s data caches were placed on a RAM disk. However, to prevent read operations
from accessing the RAM disk, the file systems are restarted and their caches are
flushed after each write experiment. Finally, to avoid measuring the buffer cache
instead of the sustained node-local SSD’s performance in OpenIO, the amount of
available memory was limited on the object store nodes by hogging about 80% of
their main memory.

Figure 5.11 presents the combined I/O throughput on a logarithmic scale on the y-
axis for up to 16 client nodes. Each data point represents the mean of five iterations
with the corresponding relative standard deviation. For 16 nodes in the OpenIO SDK
case, the upload (write) and download (read) throughput reached 2,500 and 4,100
MiB per second, respectively. For smaller node numbers, the throughput is bound by
the network, while OpenIO achieved to saturate the expected SSD I/O throughput
starting at 4 clients for reads and 16 clients for writes. DelveFS was slightly slower
for writes, but it could saturate the object backend for reads starting at 16 client
nodes. We omit further node numbers as the data throughputs did not increase for
up to 128 tested client nodes.
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Figure 5.11.: DelveFS’s sequential write and read throughput when compared to the direct
usage of OpenIO’s SDK and S3FS.

S3FS achieved at most ∼282 MiB per second write throughput and ∼764 MiB
per second read throughput for 8 nodes. However, note that S3FS was unable to
complete the workload for 16 nodes, causing I/O errors upon closing the files. This
also resulted in an incomplete upload to the object store. We decreased the number
of processes to 4 per node for S3FS’s 16 node experiment to allow for a complete
run.

Note that the above-described experiments only directly compare the raw perfor-
mance capabilities of each interface, but it does not consider using the data caches
of DelveFS. This is because we are interested in DelveFS’s and S3FS’s I/O inter-
face efficiency compared to using the native object store API directly, which does
not implement a client cache. Nevertheless, if the data cache was placed on the
node-local SSD and the experiments were run repeatably with caching enabled, the
corresponding object was accessed locally and therefore showed the expected SSD
I/O throughput of multiple clients, as shown in Section 4.5.4 earlier in this thesis.
This specific configuration of stacking file systems, i.e., running a FUSE file system
on top of another local file system, was already evaluated by [250].

In summary, DelveFS can achieve close to similar bandwidths as when the native
object interface was used, albeit requiring a larger number of nodes for the read
case to catch up to the object store’s I/O capabilities. This shows that FUSE adds
some amount of performance degradation, but not to the extent seen for the meta-
data experiments. The reason for this behavior is that FUSE’s I/O path requires
significantly fewer internal function invocations that communicate between the
user space component and FUSE’s kernel component compared to FUSE’s metadata
operation code paths. These observations are consistent with the results shown by
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Vangoor et al. [250], who investigated the performance overhead of various FUSE
operations.

Short read alignment As an example of how DelveFS rulesets could be used in
a scientific workflow and to demonstrate its usage, we ran DelveFS in a typical
workload from the biology field with the popular Bowtie application [122]. In this
workload, many short reads, i.e., short DNA sequences of fewer than 200 nucleobases
produced by Next Generation Sequencing (NGS) devices, were aligned to a reference
DNA sequence. Bowtie was run to align a total of ∼100 GiB short reads (consisting
of 16 fastq input files1) to a human reference sequence. In the alignment process,
around 11 GiB of output data was generated.

Next-Generation 
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Data 
containerUpload

short reads

Publisher

DFS client_1

DFS client_2

DFS client_3

Unique ruleset

Unique ruleset

Unique ruleset
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Object Storage 
for raw data

Object Storage for 
processed data

Load input 
data, filtered 
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Perform short 
read alignment

Upload 
processed data; 

assign new 
properties

Produce
short reads

Data 
container

Figure 5.12.: DelveFS in a publish-subscribe model workflow.

In this case, the rules describe a publish-subscribe model in which the publisher
(the sequencer) addressed its subscribers (the alignment processes) based on their
interests that are defined as object properties in rulesets (see Figure 5.12 for a
three-node example). DelveFS clients were run on up to eight nodes, each client
with its own unique ruleset. The publisher then put the 16 fastq input objects
into a container via the native object interface. For each experiment, the objects’
properties were defined to address the rulesets of a defined group of DelveFS clients
to distribute the overall workload.

On each node, a subscriber process checked the ruleset directory regularly for
new input data. If input data was available, the subscriber launched the Bowtie
application for each file in sequence. Figure 5.13 presents the Bowtie runtimes
for these four experiments, presenting the impact of the implicit load balancing.
Finally, the alignment results were written to a separate output ruleset directory.

1The short read sequences were downloaded from the National Center for Biotechnology Information’s
(NCBI) Sequence Read Archive (SRA) [@163]
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Figure 5.13.: Bowtie runtimes with DelveFS.

Each output ruleset directory contained a number of rules, e.g., a specific container
name and some defined properties. Because of this, each Bowtie output file that
was placed in the said directory was automatically assigned its constraints. In other
words, the corresponding objects that were uploaded to OpenIO were automatically
assigned the matching object properties.

This example shows that rulesets can improve overall performance, e.g., shown for
the DFS ls smaller ruleset above, and also simplify the development of complex
workflows and load balancing schemes.

5.5 Summary

As the amount of experimental data increases over time, scalable data storage
solutions will become even more critical assets in the future. Object storage systems
have successfully established themselves in numerous fields, but the lack of interface
standards makes them challenging to use for application developers. Although file
system connectors exist for this use case, they only provide a basic representation of
the object store and often prohibit the simultaneous access of multiple object store
interfaces.

This chapter has presented DelveFS2, a novel approach to how object store events
can form unique semantic file system views for each user. DelveFS has shown to
process up to 200,000 events per second, distributing modifications of the object
store’s namespace to client views at low latency. The file system provides dual-access,
and we have shown that it can provide similar metadata and data throughputs
compared to the native object store interface. With an ever-increasing amount of
experimental data stored in object storage containers, users can leverage views to
considerably reduce the size of containers via rulesets. DelveFS’s evaluation has

2https://gitlab.rlp.net/DelveFS/delvefs
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demonstrated that these rulesets can significantly improve directory operations from
a usability and performance perspective, and rulesets have shown how they could
simplify complex workflows.

For future work, we plan to extend DelveFS with several features. First, we intend
to develop more sophisticated techniques to persistently store rulesets on the event
handler’s backend storage to allow failure recovery. Further, the rulesets should
be grouped based on their similarities to pack metadata between rulesets more
efficiently. Second, we plan to explore using a distributed event handler to increase
DelveFS’s overall event processing capabilities, removing its single point of failure
when updating file system clients. Finally, we aim to support additional object store
interfaces (e.g., Google Cloud Storage) and investigate other consistency concepts,
e.g., allowing DelveFS to periodically upload parts of an object while the writing
process is running (if supported by the underlying object store).
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Conclusion 6
The first exascale HPC systems have become operational, and their storage systems
employ tens of thousands of HDDs, providing hundreds of petabytes of capacity.
In the future, the size of HPC systems is set to continuously increase with higher
I/O demands on the corresponding backend parallel file systems. These higher I/O
demands are not solely because of higher data volumes due to a higher resolution
of modern instruments that leads to more raw experimental data, for instance.
Coupled with challenging I/O patterns, e.g., random I/O in the case of machine
learning, and with more compute nodes, more applications can therefore run in
parallel and increase the overall load on these file systems. Already today, some
users of HPC applications, e.g., the NEK5000 [69] application for computational
fluid dynamics, need to discard some of the simulation output due to I/O bottlenecks.
Supercomputers have expanded the I/O hierarchy with additional storage layers to
reduce such bottlenecks, offering fast flash-based storage devices at each compute
node. However, distributed HPC applications usually require a single namespace
and therefore node-local storage often remains unused.

On another spectrum, object storage has established itself in numerous fields and,
because of its scalability and low maintenance, can also serve as data lakes for HPC
systems running applications that process this data. Nevertheless, object stores offer
a non-standardized interface, and applications that expect a POSIX-like file system
interface are unable to use them. While such file system connectors are available,
they suffer various drawbacks ranging from performance degradations to usability
limitations due to rising data volumes in flat namespaces.

This dissertation has discussed three main subjects, covering challenges in develop-
ing and maintaining the GPFS parallel file system and presenting the design and
evaluation of two distributed file systems that target the usage of node-local SSDs
and object stores. First, we have shown rare insights into how decades of develop-
ment have shaped the complex tracing facilities in the closed-source GPFS parallel
file system and discussed the corresponding performance and storage overheads
that make examining system behavior difficult. To alleviate these overheads, we
have proposed a new tracing interface, called FlexTrace, which offers significantly
more control over which traces are collected and can even make always-on tracing
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a possibility. Second, we have introduced the temporary GekkoFS burst buffer file
system, which uses a compute node’s local storage capabilities to pool together the
storage and performance of many nodes to provide a single global namespace. It
can be deployed ad hoc within seconds and can be used by any non-privileged user.
GekkoFS has shown to significantly outperform the metadata and data capabilities
of parallel file systems and remains in continuous international development. Finally,
we have presented the DelveFS event-driven semantic file system for object stores
which provides users the ability to define custom file systems allowing multiple
unique views onto the object store, severely improving the usability of huge con-
tainers. Like GekkoFS, DelveFS clients can be deployed ad hoc for a given view
configuration. DelveFS keeps these views consistent by exploiting object store events,
further provides dual-access, and offers similar metadata and data performances as
the native object store interface.
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Appendix A
The appendix contains additional experiments in the context of this thesis.

GekkoFS metadata cache
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Figure A.1.: GekkoFS’s sequential write and read throughput with a metadata client cache
for all processes operating on a single shared file (see Section 4.5.4).

139



1 2 4 8 16 32 64 128 256 512
Number of nodes (16 processes / node)

100

102

104

106

Op
er

at
io

ns
 / 

se
co

nd

8 KiB
64 KiB

1 MiB
64 MiB

(a) Write IOPS

1 2 4 8 16 32 64 128 256 512
Number of nodes (16 processes / node)

100

102

104

106

Op
er

at
io

ns
 / 

se
co

nd

(b) Read IOPS

Figure A.2.: GekkoFS’s IOPS for a sequential workload with a metadata client cache for all
processes operating on a single shared file (see Section 4.5.4).
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GekkoFS proxy

The following figures will compare the GekkoFS proxy (see Section 4.6) with the
original GekkoFS implementation. Each data point represents the average of ten it-
erations unless otherwise specified. Further, unless otherwise specified, the GekkoFS
daemons are using shared memory as its data backend. The used abbreviations of
the compared network configurations are defined as follows:

1. GekkoFS without proxy using the native Omni-Path protocol (psm2) presenting
GekkoFS’s maximum performance (GKFS_MAX).

2. GekkoFS without the proxy using TCP/IP over Omni-Path (GKFS_TCP).

3. GekkoFS with the proxy using the native Omni-Path protocol (psm2) for
communication between the proxy and the daemons (GKFS_PROXY).

4. GekkoFS using the node-local SATA SSDs of MOGON II (GKFS_SSD). Since the
SSDs represent the performance bottleneck, the throughput of the three above
network configurations are similar for all GKFS_SSD experiments.

For these experiments, we used the Skylake compute nodes of MOGON II.
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Figure A.3.: GekkoFS’s average file create, stat, and remove throughput for an increasing
number of nodes using the GekkoFS proxy. For each operation, we used a
workload of 100,000 files per process with 16 processes per node comparing
several GekkoFS configurations (see Section 4.6).
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Figure A.4.: GekkoFS’s file create, stat, read, and remove throughput for 4 KiB-sized files for
an increasing number of nodes using the GekkoFS proxy. For each operation,
we used a workload of 100,000 files per process with 16 processes per node
comparing several GekkoFS configurations (see Section 4.6).
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Figure A.5.: GekkoFS’s maximum sequential write and read throughput for up to 64 nodes
using the GekkoFS proxy compared to other network protocols for various
I/O sizes. In each experiment, 16 processes were run per node, with each
process sequentially writing and reading a 1 GiB file to and from memory (see
Section 4.6).
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