Supplementary Material 4

Effects of internal cooling on physical performance, physiological and perceptional parameters when exercising in the heat: a systematic review with meta-analyses

Juliane Heydenreich*, Karsten Koehler, Hans Braun, Mareike Grosshauser, Helmut Heseker, Daniel Koenig, Alfonso Lampen, Stephanie Mosler, Andreas Niess, Alexandra Schek, Anja Carlsohn
* Correspondence:
Dr. Juliane Heydenreich
juliane.heydenreich@uni-mainz.de

4 Supplementary Data: Characteristics of articles included in the systematic review.

Study	Design	$\begin{gathered} n \\ (\operatorname{sex}) \end{gathered}$	Discipline, level	$\begin{gathered} \text { Age } \\ \text { (yrs) } \end{gathered}$	Ethnicity , country	Exercise	Environment al conditions	Interventions ${ }^{1}$	Outcomes ${ }^{2}$										
									Performance			Physiological					Perceptional		
									TT	TTE	$\begin{gathered} \text { MP } \\ \mathbf{O} \end{gathered}$	SR	HR	BLa	$T_{\text {c }}$	$T_{\text {sk }}$	RPE	TS	TC
Aldous et al. 2019	Crossover, counterbalanc ed	8 (M)	Soccer, university-level $\left(\mathrm{VO}_{2} \max 56 \pm 9\right.$ $\left.\mathrm{ml} \cdot \mathrm{kg}^{-1} \cdot \mathrm{~min}^{-1}\right)$	$\begin{aligned} & 22 \pm \\ & 3 \end{aligned}$	NR, UK	$2 \times 45-\mathrm{min}$ INT Soccer Performance Test (in between 15 min half-time)	Chamber; $\begin{aligned} & 30.7 \pm 0.3^{\circ} \mathrm{C}, \\ & 50.9 \pm 4.2 \% \\ & \text { RH } \end{aligned}$	Pre- + mid-exercise: ingestion of non-CHO drink at $-1^{\circ} \mathrm{C}$ (ICE) or room temperature (TN) within 30 min before exercise ($7.5 \mathrm{~g} / \mathrm{kg}$) and at half-time (3.75 g / kg) in 3 serial aliquots				(\checkmark)	(\checkmark)		\checkmark	\checkmark	\checkmark	\checkmark	
Alhadad et al. 2021	Crossover, counterbalanc ed	$\begin{aligned} & 10 \\ & (\mathrm{M}) \end{aligned}$	NR, physically active $\left(\mathrm{VO}_{2} \max \right.$ $52 \pm 6 \mathrm{ml} \cdot \mathrm{kg}^{-1}$ - min^{-1})	$\begin{aligned} & 24 \pm \\ & 1 \end{aligned}$	NR, Singapore	75 min running SS at 40% or 70% VO_{2} max	Laboratory; $\begin{aligned} & 25.1 \pm 0.6^{\circ} \mathrm{C} \\ & 63 \pm 5 \% \mathrm{RH} \end{aligned}$	Mid-exercise: ingestion of sports drink at ~$2^{\circ} \mathrm{C}(\mathrm{ICE})$ or $\sim 26^{\circ} \mathrm{C}(\mathrm{TN})$ at 15 min intervals $(5 \times 2 \mathrm{~g} / \mathrm{kg})$ - sports drink contained $6.2 \% \mathrm{CHO}$				\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	
Bain et al. 2012	Crossover, counterbalanc ed	9 (M)	NR, NR (VO_{2} peak 53.4 $\pm 3.6 \mathrm{ml} \cdot \mathrm{kg}^{-1}$. $\min ^{-1}$)	$\begin{aligned} & 22 \pm \\ & 2 \end{aligned}$	Caucasia n, Canada	75 min cycling SS at $50 \% \mathrm{VO}_{2}$ peak	Laboratory; $\begin{aligned} & 23.6 \pm 0.6^{\circ} \mathrm{C}, \\ & 23 \pm 11 \% \mathrm{RH} \end{aligned}$	Pre- + mid-exercise: ingestion of water at $1.5^{\circ} \mathrm{C}$ (ICE), $10^{\circ} \mathrm{C}(\mathrm{COLD}), 37^{\circ} \mathrm{C}(\mathrm{TN})$, or $50^{\circ} \mathrm{C}$ (WARM) 5 min before SS , and after 15,30 and 45 min of SS in serial aliquots (4 $\mathrm{x} 3.2 \mathrm{ml} / \mathrm{kg}$)				(\checkmark)	\checkmark		\checkmark	\checkmark			
Brade et al. 2014	Crossover, counterbalanc ed	$\begin{aligned} & 12 \\ & (\mathrm{M}) \end{aligned}$	Team sport players, NR	$\begin{aligned} & 21.8 \\ & \pm 2.3 \end{aligned}$	NR, Australia	$2 \times 30 \mathrm{~min}$ sprint cycling (in between 10 min half-time)	$\begin{aligned} & \text { Climate } \\ & \text { chamber; } 35.2 \\ & \pm 0.3^{\circ} \mathrm{C}, 57.8 \\ & \pm 1.2^{\%} \mathrm{RH} \end{aligned}$	Pre- + mid-exercise: ingestion of water at $0.6^{\circ} \mathrm{C}$ (ICE) or $\sim 23^{\circ} \mathrm{C}$ (TN) within 30 min before exercise ($7 \mathrm{~g} / \mathrm{kg}$) and at half-time (2.1 g / kg) in 3 serial aliquots			\checkmark	\checkmark	(\checkmark)		\checkmark	\checkmark		(\checkmark)	
Burdon et al. 2010	Crossover, randomized	7 (M)	Cyclists, regional level (VO_{2} peak 59.4 $\pm 6.6 \mathrm{ml} \cdot \mathrm{kg}^{-1}$. $\min ^{-1}$)	$\begin{aligned} & 32.8 \\ & \pm 6.1 \end{aligned}$	NR, Australia	(1) 90 min cycling SS at 65\% $\mathrm{VO}_{2} \max$, (2) 15 min cycling TT	Climate chamber; $28^{\circ} \mathrm{C}, 70 \%$ RH	Mid-exercise: ingestion of sports drink at (1) $4^{\circ} \mathrm{C}$ (COLD), (2) $37^{\circ} \mathrm{C}$ (TN), or (3) $37^{\circ} \mathrm{C}+$ INT ingestion of ICE $\left(-1^{\circ} \mathrm{C} ; 30 \mathrm{~mL}\right.$; every 5 min), in serial aliquots during SS (9×2.3 $\mathrm{mL} / \mathrm{kg}$) - isocaloric intake in all trials - sports drink contained $7.4 \% \mathrm{CHO}$			\checkmark	(\checkmark)	(\checkmark)		\checkmark	\checkmark	(\checkmark)		(\checkmark)
Burdon et al. 2013	Crossover, counterbalanc ed	$\begin{aligned} & 10 \\ & (\mathrm{M}) \end{aligned}$	Cyclists, NR $\left(\mathrm{VO}_{2} \max 61.8 \pm\right.$ $5.6 \mathrm{ml} \cdot \mathrm{kg}^{-1}$. min^{-1})	$\begin{gathered} 30.1 \\ = \pm 7.0 \end{gathered}$	NR, Australia	(1) 90 min cycling SS at 60% VO_{2} peak, (2) 4 $\mathrm{kJ} / \mathrm{kg}$ cycling TT	Climate chamber; $\begin{aligned} & 32^{\circ} \mathrm{C}, 40 \% \\ & \mathrm{RH} \end{aligned}$	Mid-exercise: ingestion of sports drink at $1^{\circ} \mathrm{C}$ (ICE), $37^{\circ} \mathrm{C}(\mathrm{TN})$, or $37^{\circ} \mathrm{C}$ plus ICE MR ($20 \mathrm{~s}, 25 \mathrm{~g}$, every 5 min ; WASH) during SS in serial aliquots ($6 \times 3.5 \mathrm{~g} / \mathrm{kg}$) - sports drink contained $7.4 \% \mathrm{CHO}$	\checkmark		\checkmark	(\checkmark)	(\checkmark)		(\checkmark)	(\checkmark)	(\checkmark)		(\checkmark)
Burdon et al. 2015	Crossover, randomized	$\begin{aligned} & 10 \\ & (\mathrm{M}) \end{aligned}$	Cyclists/triathlet es, NR $\left(\mathrm{VO}_{2} \max 61.8 \pm\right.$ $5.6 \mathrm{ml} \cdot \mathrm{kg}^{-1}$. $\min ^{-1}$)	$\begin{gathered} 30.1 \\ \pm 7.0 \end{gathered}$	NR, Australia	90 min cycling SS at $60 \% \mathrm{VO}_{2}$ max	Climate chamber; $\begin{aligned} & 32^{\circ} \mathrm{C}, 40 \% \\ & \mathrm{RH} \end{aligned}$	Mid-exercise: ingestion of sports drink at $1^{\circ} \mathrm{C}$ (ICE) or $37^{\circ} \mathrm{C}(\mathrm{TN})$ every 15 min of SS ($6 \times 3.5 \mathrm{~mL} / \mathrm{kg}$) - sports drink contained $7.4 \% \mathrm{CHO}$					(\checkmark)		(\checkmark)	\checkmark			
Byrne et al. 2011	Crossover, randomized	7 (M)	Cyclists, recreational	$\begin{aligned} & 21 \pm \\ & 1.5 \end{aligned}$	NR, UK	30 min cycling TT	Environmenta 1 chamber; 33	$35-\mathrm{min}$ pre-exercise: ingestion of 900 mL non-CHO sports drink at $37^{\circ} \mathrm{C}(\mathrm{TN})$ or $2^{\circ} \mathrm{C}$	(\checkmark)		\checkmark		\checkmark						

							$\begin{aligned} & \pm 2^{\circ} \mathrm{C}, 61 \pm \\ & 13 \% \mathrm{RH} \end{aligned}$	(ICE) at 35,25 , and 10 min before exercise in serial aliquots ($3 \times 300 \mathrm{~mL}$)											
Flood et al. 2017	Crossover, randomized, single-blind	8 (M)	NR, nonacclimated/fit $\left(\mathrm{VO}_{2} \max 55.4 \pm\right.$ $6.0 \mathrm{ml} \cdot \mathrm{kg}^{-1}$. $\min ^{-1}$)	$\begin{aligned} & 26 \pm \\ & 5 \end{aligned}$	NR, UK	(1) cycling TTE at RPE = 16, (2) before and after TTE isokinetic cycling sprints	Heat chamber, 35.0 $\pm 0.8^{\circ} \mathrm{C}, 47.8$ $\pm 2.3 \% \mathrm{RH}$	Pre- + mid-exercise: MR (MR temp $\sim 19.7^{\circ} \mathrm{C}$; each $25 \mathrm{~mL} ; 5 \mathrm{~s}$) before fixed RPE protocol and at $10-\mathrm{min}$ intervals during TTE with MEN or PLA - MEN: L-menthol solution (0.01\%) - PLA: apple-flavored non-calorific artificial sweetened		\checkmark	\checkmark	\checkmark	(\checkmark)		(\checkmark)	(\checkmark)		(\checkmark)	(\checkmark)
Gavel et al. 2021	Crossover, randomized	9 (F)	Cyclists, regional level $\left(\mathrm{VO}_{2} \max 50.8 \pm\right.$ $6.0 \mathrm{ml} \cdot \mathrm{kg}^{-1}$. $\min ^{-1}$)	$\begin{aligned} & 26.7 \\ & \pm 1.4 \end{aligned}$	NR, Canada	(1) 30 km cycling TT, (2) before and after TT handgrip strength and maximal sprint tests	Environmenta 1 chamber; 30 $\pm 0.6^{\circ} \mathrm{C}, 70 \pm$ $1 \% \mathrm{RH}$	Mid-exercise: MR at 7 times (MR temp $22^{\circ} \mathrm{C}$; each 25 mL) during TT with PLA or MEN - MEN: L-menthol solution (0.01\%) - PLA: non-caloric berry-flavored sweetener	\checkmark		\checkmark	\checkmark	\checkmark		(\checkmark)		\checkmark	\checkmark	\checkmark
Gerrett et al. 2017	Crossover, counterbalanc ed	$\begin{aligned} & 12 \\ & (\mathrm{M}) \end{aligned}$	NR, moderately to well-trained $\left(\mathrm{VO}_{2} \max 58.5 \pm\right.$ $8.1 \mathrm{ml} \cdot \mathrm{kg}^{-1}$. min^{-1})	$\begin{aligned} & 30.4 \\ & \pm 3.4 \end{aligned}$	NR, UK	31 min INT running	$\begin{aligned} & \text { Climate- } \\ & \text { controlled } \\ & \text { room; } 30.9 \pm \\ & 0.9^{\circ} \mathrm{C}, 41.1 \pm \\ & 4.0^{\circ} \% \mathrm{RH} \end{aligned}$	$30-\mathrm{min}$ pre-exercise: ingestion of $7.5 \mathrm{~g} / \mathrm{kg}$ drink at $0.1 \pm 0.1^{\circ} \mathrm{C}$ (ICE) or $23.4 \pm 0.9^{\circ} \mathrm{C}$ (TN) in serial aliquots ($3 \times 2.5 \mathrm{~g} / \mathrm{kg}$) - drinks contained $0.23 \% \mathrm{CHO}$				\checkmark							
Gibson et al. 2019	Crossover, randomized	$\begin{aligned} & 14 \\ & (11 \\ & \mathrm{M}+ \\ & 3 \mathrm{~F}) \end{aligned}$	Team sports players, trained $\left(\mathrm{VO}_{2} \max 46.2 \pm\right.$ $12.9 \mathrm{ml} \cdot \mathrm{kg}^{-1}$. $\min ^{-1}$)	$\begin{aligned} & 24 \pm \\ & 3 \end{aligned}$	NR, UK	40 min INT cycling sprint protocol	Laboratory; $40^{\circ} \mathrm{C}, 50 \%$ RH	Mid-exercise: MR at 4 times (MR temp. $40^{\circ} \mathrm{C}$; each 25 mL ; 5 s) during exercise with MEN, water, or PLA - MEN: L-menthol solution (0.01\%) - PLA: orange-flavored fruit squash (0.5% CHO)			\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Hailes et al. 2016	Crossover, randomized	$\begin{aligned} & 12 \\ & (\mathrm{M}) \end{aligned}$	NR, recreationally active $\left(\mathrm{VO}_{2}\right.$ peak $61.5 \pm 7.9 \mathrm{ml}$. $\mathrm{kg}^{-1} \cdot \mathrm{~min}^{-1}$)	$\begin{aligned} & 24 \pm \\ & 4 \end{aligned}$	NR, USA	3 h walking SS at $40 \% \mathrm{VO}_{2}$ peak	Laboratory; $35.5^{\circ} \mathrm{C}, 50 \%$ RH	Mid-exercise: ingestion of water at $35.5^{\circ} \mathrm{C}$ (TN) or $0^{\circ} \mathrm{C}$ (ICE) during SS in serial aliquots ($2 \mathrm{~g} / \mathrm{kg}$ every 10 min)				\checkmark	\checkmark		\checkmark	\checkmark	\checkmark		
Hue et al. 2013	Crossover, randomized	$\begin{aligned} & 9(5 \\ & M+ \\ & 4 \mathrm{~F}) \end{aligned}$	Long-distance swimmers, internationally ranked	$\begin{aligned} & 23.4 \\ & \pm 3.3 \end{aligned}$	NR, France	(1) 1000 m warmup, (2) $10 \times 100 \mathrm{~m}$ at competition pace, (3) 3000 m	Swimming pool; WBGT $\begin{aligned} & 27.5 \pm 2.3^{\circ} \mathrm{C}, \\ & 73 \pm 10 \% \mathrm{RH}) \end{aligned}$	Mid-exercise: ingestion of 950 mL water at $1.3 \pm 0.3^{\circ} \mathrm{C}$ (ICE) or $26.5 \pm 2.5^{\circ} \mathrm{C}(\mathrm{TN})$ in serial aliquots ($5 \times 190 \mathrm{~mL}$)				(\checkmark)	\checkmark		\checkmark			\checkmark	\checkmark
Hue et al. 2015	Crossover, randomized	$\begin{aligned} & 8(5 \\ & \mathrm{M}, 3 \\ & \mathrm{~F}) \end{aligned}$	Long-course swimmers, internationally ranked	$\begin{aligned} & 24.4 \\ & \pm 3.6 \end{aligned}$	NR, France	5 km swimming SS at competition pace	Open water (WBGT: $\sim 29.3^{\circ} \mathrm{C}$)	Mid-exercise: ingestion of 950 mL water at $1.1 \pm 0.7^{\circ} \mathrm{C}$ (ICE) or $28.0 \pm 3.0^{\circ} \mathrm{C}(\mathrm{TN})$ in serial aliquots ($5 \times 190 \mathrm{~mL}$)				\checkmark	\checkmark		\checkmark			\checkmark	\checkmark
Ihsan et al. 2010	Crossover, counterbalanc ed	7 (M)	Cyclists/triathlet es, trained	$\begin{aligned} & 27.7 \\ & \pm 3.1 \end{aligned}$	NR, Australia	$\begin{aligned} & \sim 40 \mathrm{~km} \text { cycling } \\ & \mathrm{TT}(1200 \mathrm{~kJ}) \end{aligned}$	Climate chamber; $30^{\circ} \mathrm{C}$, 75% RH	$30-\mathrm{min}$ pre-exercise: ingestion of $6.8 \mathrm{~g} / \mathrm{kg}$ water at $1.4 \pm 1.1^{\circ} \mathrm{C}$ (ICE) or $26.8 \pm 1.3^{\circ} \mathrm{C}$ (TN) in serial aliquots ($150-200 \mathrm{~g}$ at $8-10$ \min intervals)	\checkmark		\checkmark	\checkmark	(\checkmark)	(\checkmark)	(\checkmark)	(\checkmark)	(\checkmark)	(\checkmark)	

Iwata et al. 2020	Crossover, counterbalanc ed	24 (12 M, 12 F)	NR, healthy ($\mathrm{VO}_{2} \max : \mathrm{M}$: $43.6 \pm 3.3 ; \mathrm{F}:$ $36.5 \pm 4.2 \mathrm{ml}$. $\mathrm{kg}^{-1} \cdot \mathrm{~min}^{-1}$)	$\begin{aligned} & \mathrm{M}: \\ & 25.2 \pm \\ & 1.7 \\ & \mathrm{~F}: \\ & 22.4 \\ & \pm 1.5 \end{aligned}$	NR, Japan	Cycling TTE at $55 \% \mathrm{VO}_{2}$ max	Climate chamber; $38^{\circ} \mathrm{C}, 50 \%$ RH	$30-\mathrm{min}$ pre-exercise: ingestion of $7.5 \mathrm{~g} / \mathrm{kg}$ sports drink at $-1^{\circ} \mathrm{C}\left(\right.$ ICE) or $20^{\circ} \mathrm{C}(\mathrm{TN})$ in serial aliquots ($6 \times 1.25 \mathrm{~g} / \mathrm{kg}$) - sports drink contained $5.9 \% \mathrm{CHO}$	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	$\checkmark \quad \checkmark$
James et al. 2015	Crosssover, randomized	$\begin{aligned} & 12 \\ & (\mathrm{M}) \end{aligned}$	Runners, recreational $\left(\mathrm{VO}_{2} \max 57.5 \pm\right.$ $4 \mathrm{ml} \cdot \mathrm{kg}^{-1}$. $\min ^{-1}$)	$\begin{aligned} & 38 \pm \\ & 11 \end{aligned}$	NR, UK	2 running GXT	Environmenta 1 chamber; $\begin{aligned} & 31.9 \pm 1.0^{\circ} \mathrm{C}, \\ & 61 \pm 8.9 \% \mathrm{RH} \end{aligned}$	20 -min pre-exercise: ingestion of $7.5 \mathrm{~g} / \mathrm{kg}$ sports drink at $-1^{\circ} \mathrm{C}\left(\right.$ ICE) or $21^{\circ} \mathrm{C}(\mathrm{TN})$ in serial aliquots ($4 \times 1.88 \mathrm{~g} / \mathrm{kg}$) - sports drink contained $\sim 2.4 \mathrm{~g} \mathrm{CHO} / 100 \mathrm{~mL}$		\checkmark						
Jeffries et al. 2018	Crosssover, randomized, single-blind	10 (M)	NR, endurance trained (VO_{2} peak 52.4 $\pm 5.3 \mathrm{ml} \cdot \mathrm{kg}^{-1}$. $\min ^{-1}$)	$\begin{aligned} & 33 \pm \\ & 9 \end{aligned}$	NR, UK	Cycling TTE at 70\% Wmax	Environmenta 1 chamber; 35 $\pm 0.2^{\circ} \mathrm{C}, 40 \pm$ $0.5 \% \mathrm{RH}$	Mid-exercise: MR at 1 time at 85% of TTE ($25 \mathrm{~mL} ; 5 \mathrm{~s}$) with MEN or PLA - MEN: L-menthol solution (0.01\%) - PLA: neutral, raspberry flavor, noncalorific solution	\checkmark	(\checkmark)	(\checkmark)	(\checkmark)	\checkmark	(\checkmark)	(\checkmark)	$(\checkmark) \quad(\checkmark)$
Lamarche et al. 2015	Crosssover, randomized	$\begin{aligned} & 10 \\ & (\mathrm{M}) \end{aligned}$	$\begin{aligned} & \mathrm{NR}, \mathrm{NR} \\ & \left(\mathrm{VO}_{2} \text { peak } 47.9\right. \\ & \pm 9.8 \mathrm{ml} \cdot \mathrm{~kg}^{-1} . \\ & \left.\mathrm{min}^{-1}\right) \end{aligned}$	$\begin{aligned} & 25 \pm \\ & 4 \end{aligned}$	NR, Canada	75 min cycling SS at $50 \% \mathrm{VO}_{2}$ peak	Calorimetric chamber; $\begin{aligned} & 25^{\circ} \mathrm{C}, \sim 25 \% \\ & \mathrm{RH} \end{aligned}$	Pre- + mid-exercise: ingestion of water at $1.5^{\circ} \mathrm{C}$ (ICE) or $50^{\circ} \mathrm{C}$ (WARM) 5 min before SS, and after 15,30 , and 45 min of SS in serial aliquots ($4 \times 3.2 \mathrm{~mL} / \mathrm{kg}$)					\checkmark	\checkmark		
Lee \& Shirreffs 2007	Crosssover, counterbalanc ed	9 (M)	NR , recreational $\left(\mathrm{VO}_{2}\right.$ peak 50.0 $\pm 5.3 \mathrm{ml} \cdot \mathrm{kg}^{-1}$. $\min ^{-1}$)	$\begin{aligned} & 26 \pm \\ & 6 \end{aligned}$	NR, UK	(1) 90 min cycling SS at 50\% VO_{2} peak, (2) cycling TTE at $95 \% \mathrm{VO}_{2}$ peak	Laboratory; $25^{\circ} \mathrm{C}, 60 \%$ RH	Mid-exercise: ingestion of 1 L non-CHO beverage at $10^{\circ} \mathrm{C}(\mathrm{COLD}), 37^{\circ} \mathrm{C}(\mathrm{TN})$ or $50^{\circ} \mathrm{C}$ (WARM) between 30 and 40 min in SS in serial aliquots ($4 \times 250 \mathrm{~mL}$)	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	(\checkmark)	(\checkmark)
$\begin{aligned} & \text { Lee et al. } \\ & \text { 2008a } \end{aligned}$	Crosssover, counterbalanc ed	8 (M)	NR, moderately active $\left(\mathrm{VO}_{2}\right.$ peak $53.8 \pm 6.2 \mathrm{ml} \cdot$ $\mathrm{kg}^{-1} \cdot \mathrm{~min}^{-1}$)	$\begin{aligned} & 27 \pm \\ & 4 \end{aligned}$	NR, UK	(1) 90 min cycling SS at 50\% VO_{2} peak, (2) cycling TTE at $95 \% \mathrm{VO}_{2}$ peak	Laboratory; $25.4^{\circ} \mathrm{C}, 60 \%$ RH	Mid-exercise: ingestion of 1.6 L non- CHO drink at $10^{\circ} \mathrm{C}(\mathrm{COLD}), 37^{\circ} \mathrm{C}(\mathrm{TN})$ or $50^{\circ} \mathrm{C}$ (WARM) at $30,45,60$, and 75 min of $\mathrm{SS}(4$ x 400 mL)	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	(\checkmark)	(\checkmark)
Lee et al. 2008b	Crosssover, counterbalanc ed	8 (M)	NR , recreational $\left(\mathrm{VO}_{2}\right.$ peak 57.8 $\pm 5.6 \mathrm{ml} \cdot \mathrm{kg}^{-1}$. $\min ^{-1}$)	$22 \pm$	NR, UK	Cycling TTE at $65 \% \mathrm{VO}_{2}$ peak	Environmenta 1 chamber; $35^{\circ} \mathrm{C}, 60 \%$ RH	Pre- + mid-exercise: ingestion of non-CHO drink at $4^{\circ} \mathrm{C}$ (COLD) or $37^{\circ} \mathrm{C}$ (TN) in serial aliquots within 30 min before ($3 \times 300 \mathrm{~mL}$) and during TTE (100 mL every 10 min)	\checkmark	\checkmark			\checkmark	\checkmark	(\checkmark)	(\checkmark)
Morris et al. 2014	Crosssover, counterbalanc ed	$\begin{aligned} & 12 \\ & (\mathrm{M}) \end{aligned}$	NR, NR (VO_{2} peak 53.9 $\pm 5.4 \mathrm{ml} \cdot \mathrm{~kg}^{-1}$ $\left.\min ^{-1}\right)$	$23 \pm$	NR, Canada	75 min cycling SS at $50 \% \mathrm{VO}_{2}$ peak	Laboratory; $\begin{aligned} & 23.7 \pm 1.3^{\circ} \mathrm{C}, \\ & 32 \pm 10 \% \end{aligned}$	Pre- + mid-exercise: ingestion of water at $1.5^{\circ} \mathrm{C}(\mathrm{ICE}), 37^{\circ} \mathrm{C}(\mathrm{TN})$, and $50^{\circ} \mathrm{C}$ (WARM) 5 min before SS, and after 15,30 and 45 min of SS in serial aliquots ($4 \times 3.2 \mathrm{~mL} / \mathrm{kg}$)		\checkmark			(\checkmark)	(\checkmark)		
Morris et al. 2016	Crosssover, counterbalanc ed	9 (M)	NR, healthy $\left(\mathrm{VO}_{2}\right.$ peak 50.9 $\pm 8.5 \mathrm{ml} \cdot \mathrm{kg}^{-1}$. min^{-1})	$\begin{aligned} & 25 \pm \\ & 5 \end{aligned}$	NR, Canada	75 min cycling SS at $55 \% \mathrm{VO}_{2}$ peak	Laboratory; $\begin{aligned} & 33.5 \pm 1.4^{\circ} \mathrm{C} \text {, } \\ & 23.7 \pm 2.6^{\circ} \\ & \text { RH } \end{aligned}$	Mid-exercise: ingestion of water at $37^{\circ} \mathrm{C}$ (TN) or ICE ($1: 2$ mixture of shaved ice and $1.5^{\circ} \mathrm{C}$ water) in serial aliquots (3×3.2 $\mathrm{mL} / \mathrm{kg}$) in the first 45 min of SS		(\checkmark)	\checkmark		(\checkmark)	(\checkmark)		

Naito et al. 2020	Crosssover, randomized	7 (M)	NR, physically active	$\begin{aligned} & 31 \pm \\ & 4 \end{aligned}$	NR, Japan	2×30 sets INT cycling sprint exercise (1 set $=$ (1) 5 s max pedaling at the load of weight \times $0.075(\mathrm{kp}),(2) 25$ s of pedaling with no-workload, (3) 30 s of rest)	Climate chamber, 36.5 $\begin{aligned} & \pm 0.5^{\circ} \mathrm{C}, 50 \pm \\ & 3 \% \mathrm{RH} \end{aligned}$	Mid-exercise: ingestion of $1.25 \mathrm{~g} / \mathrm{kg}$ sports drink at $-1^{\circ} \mathrm{C}$ (ICE) or $36.5^{\circ} \mathrm{C}(\mathrm{TN})$ at each break and $7.5 \mathrm{~g} / \mathrm{kg}$ at the half-time - sports drink contained $5.9 \% \mathrm{CHO}$		\checkmark	\checkmark	\checkmark			\checkmark	\checkmark	\checkmark	\checkmark
Nakamur a et al. 2020	Crosssover, randomized	8 (M)	NR , recreational $\left(\mathrm{VO}_{2} \max 42.4\right.$ $\left.\mathrm{ml} \cdot \mathrm{kg}^{-1} \cdot \mathrm{~min}^{-1}\right)$	$\begin{aligned} & 22 \pm \\ & 1.3 \end{aligned}$	NR, Japan	Cycling TTE at $75 \% \mathrm{VO}_{2} \max$	$\begin{aligned} & \text { Climate } \\ & \text { chamber; } 35.0 \\ & \pm 0.5^{\circ} \mathrm{C}, 62.9 \\ & \pm 2.6^{\circ} \mathrm{RH} \end{aligned}$	15 -min pre-exercise: ingestion $4 \mathrm{~g} / \mathrm{kg}$ sports drink at $-1^{\circ} \mathrm{C}$ (ICE) or room temperature (TN) - sports drink contained $5.9 \% \mathrm{CHO}$	\checkmark		\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Ng et al. 2018	Crosssover, counterbalanc ed	8 (M)	NR, moderately - vigorous active	$\begin{aligned} & 21 \pm \\ & 4 \end{aligned}$	NR, USA	30 min walking SS at $4 \mathrm{~km} / \mathrm{h}$ and 12% incline wearing firefighter protective clothing	Laboratory; $\begin{aligned} & 35.2 \pm 0.4^{\circ} \mathrm{C}, \\ & 39 \pm 4 \% \mathrm{RH} \end{aligned}$	Mid-exercise: ingestion of sports drink at $1.3 \pm 0.2^{\circ} \mathrm{C}$ (ICE), $7.1 \pm 1.5^{\circ} \mathrm{C}$ (COLD) or $22.4 \pm 1.7^{\circ} \mathrm{C}(\mathrm{TN})$ in serial aliquots (12 x $1.25 \mathrm{~g} / \mathrm{kg}$) - sports drink contained $5 \% \mathrm{CHO}$			\checkmark	(\checkmark)		(\checkmark)	(\checkmark)	\checkmark	\checkmark	
Ng et al. 2019	Crosssover, counterbalanc ed	8 (M)	NR, moderately - vigorous active $\left(\mathrm{VO}_{2} \max \right.$ $52.2 \pm 7.9 \mathrm{ml}$. $\mathrm{kg}^{-1} \cdot \mathrm{~min}^{-1}$)	$\begin{aligned} & 22 \pm \\ & 4 \end{aligned}$	NR, USA	(1) 45 min cycling SS at 60\% $\mathrm{VO}_{2} \max$, (2) cycling GXT	Environmenta 1 chamber; $35^{\circ} \mathrm{C}, 40 \%$ RH	Mid-exercise: ingestion of sports drink at-1.1 $\pm 0.5^{\circ} \mathrm{C}$ (ICE) or $22.8 \pm 0.3^{\circ} \mathrm{C}(\mathrm{TN})$ during SS in serial aliquots (amount: individual sweat rate +500 g ; divided into 6 aliquots) - sports drink contained CHO (amount NR)	\checkmark									
Onitsuka et al. 2020	Crosssover, counterbalanc ed	11 (M)	Healthy, NR $\left(\mathrm{VO}_{2} \max 46.5 \pm\right.$ $9.8 \mathrm{ml} \cdot \mathrm{kg}^{-1}$. min^{-1})		NR, Japan	60 min cycling SS at $50 \% \mathrm{VO}_{2}$ max	Laboratory; $34^{\circ} \mathrm{C}$	2 analyses: (1) 30 -min pre-exercise: ingestion of sports drink at $37^{\circ} \mathrm{C}(\mathrm{TN})$ or $-1^{\circ} \mathrm{C}$ (ICE) in serial aliquots ($5 \times 1.5 \mathrm{~g} / \mathrm{kg}$) (2) Pre- + mid-exercise: ingestion of sports drink at $37^{\circ} \mathrm{C}$ (TN) or $-1^{\circ} \mathrm{C}$ (ICE) 30 min before exercise in serial aliquots (5×1.5 g / kg), and during SS in serial aliquots (6 x $1.25 \mathrm{~g} / \mathrm{kg}$) - sports drink contained $6.2 \% \mathrm{CHO}$			\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Parton et al. 2021	Crossover, randomized, double-blind	$\begin{aligned} & 22 \\ & (11 \mathrm{~F} \\ & +11 \\ & \mathrm{M}) \end{aligned}$	NR, regular physical active $\left(\mathrm{VO}_{2} \max\right.$: F : 43.5 ± 2.9; M: $53.9 \pm 6.9 \mathrm{ml}$. $\mathrm{kg}^{-1} \cdot \mathrm{~min}^{-1}$)	$\begin{aligned} & \text { F: } 22 \\ & \pm 2 \\ & \text { M: } \\ & 20 \pm \\ & 1 \end{aligned}$	NR, UK	Cycling TTE at RPE of 16	Heat chamber; 34.9 $\pm 0.5^{\circ} \mathrm{C}, 40.6$ $\pm 2.2 \% \mathrm{RH}$	Pre- + mid-exercise: MR before TTE and every 10 min during TTE (MR temp. $\sim 32^{\circ} \mathrm{C}$; each $25 \mathrm{~mL} ; 10 \mathrm{~s}$) with MEN or CON - MEN: L-menthol solution (0.01\%) - CON: apple flavored, non-calorific artificial sweetener	\checkmark	\checkmark	(\checkmark)	(\checkmark)		(\checkmark)			(\checkmark)	(\checkmark)
Pryor et al. 2015	Crosssover, counterbalanc ed	$\begin{aligned} & 10 \\ & (\mathrm{M}) \end{aligned}$	Healthy, NR $\left(\mathrm{VO}_{2} \max 50.5 \pm\right.$ $8.1 \mathrm{ml} \cdot \mathrm{kg}^{-1}$. min^{-1})	$\begin{aligned} & 32.1 \\ & \pm 8.3 \end{aligned}$	NR, USA	45 min walking SS at $6.4 \mathrm{~km} / \mathrm{h}$ wearing firefighting	Laboratory; $\begin{aligned} & \sim 39^{\circ} \mathrm{C}, \sim 17 \% \\ & \text { RH } \end{aligned}$	30 -min pre-exercise: ingestion of $7.5 \mathrm{~g} / \mathrm{kg}$ sports drink at $0.1^{\circ} \mathrm{C}(\mathrm{ICE})$ or $20^{\circ} \mathrm{C}(\mathrm{TN})$ in serial aliquots ($6 \times 1.25 \mathrm{~g} / \mathrm{kg}$) - sports drink contained $3 \% \mathrm{CHO}$			\checkmark	(\checkmark)		(\checkmark)	(\checkmark)	(\checkmark)		(\checkmark)

equipment (~ 20.4
kg)

							$\begin{aligned} & 45.8 \pm 5.7 \% \\ & \text { RH } \end{aligned}$	- MEN: L-menthol solution (0.01\%) - CON: no MR (2) 35-5 min pre-exercise: ingestion of 7.5 g / kg sports drink at $-1^{\circ} \mathrm{C}($ ICE $)$ or $22^{\circ} \mathrm{C}(\mathrm{TN})$ in serial aliquots ($2 \times 3.75 \mathrm{~g} / \mathrm{kg}$) - sports drink contained $6 \% \mathrm{CHO}$											
Tabuchi et al. 2021	Crosssover, randomized	$\begin{aligned} & 12 \\ & (\mathrm{M}) \end{aligned}$	Firefighters, NR	$\begin{aligned} & 24.4 \\ & \pm 4.3 \end{aligned}$	NR, Japan	(1) 10 min cycling SS at 125 W , (2) 20 min cycling SS at 75 W	Climate chamber; 35 ${ }^{\circ} \mathrm{C}, 50 \% \mathrm{RH}$	8 min pre-exercise: ingestion of $5 \mathrm{~g} / \mathrm{kg}$ sports drink at $25^{\circ} \mathrm{C}(\mathrm{TN})$ and $-1.7^{\circ} \mathrm{C}$ (ICE) in serial aliquots ($2 \times 2.5 \mathrm{~g} / \mathrm{kg}$) - sports drink contained $6.2 \% \mathrm{CHO}$				\checkmark	\checkmark		\checkmark		\checkmark	\checkmark	\checkmark
Takeshim a et al. 2017	Crosssover, counterbalanc ed	$\begin{aligned} & 10 \\ & (\mathrm{M}) \end{aligned}$	NR, active (PPO: 242 ± 27 W)	$\begin{aligned} & 20.3 \\ & \pm 1.6 \end{aligned}$	NR, Japan	Cycling TTE at 55% PPO	Climate chamber;29.7 ${ }^{\circ} \mathrm{C}, 78.8 \%$ RH	$0-15 \mathrm{~min}$ pre-exercise: ingestion of $7.5 \mathrm{~g} / \mathrm{kg}$ sports drink at $37^{\circ} \mathrm{C}(\mathrm{TN})$ or $-1^{\circ} \mathrm{C}$ (ICE) in serial aliquots ($3 \times 2.5 \mathrm{~g} / \mathrm{kg}$) -3 conditions: (1) ICE before and CON after warm-up, (2) CON before and ICE after warm-up, (3) CON before and after warm-up - sports drink contained $5.5 \% \mathrm{CHO}$		\checkmark		\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	
Tay et al. 2016	Crosssover, counterbalanc ed	$\begin{aligned} & 16 \\ & (\mathrm{M}) \end{aligned}$	Military personnel, fit (estimated $\mathrm{VO}_{2} \max 52 \pm$ $3.3 \mathrm{ml} \cdot \mathrm{kg}^{-1}$. $\min ^{-1}$)	$\begin{aligned} & 21.8 \\ & \pm 1.2 \end{aligned}$	NR, Singapore	$2 \times 4 \mathrm{~km}$ walking SS at $5.3 \mathrm{~km} / \mathrm{h}$ with 30 kg load (in between 15 min rest period)	Environmenta 1 chamber; $32^{\circ} \mathrm{C}, 70 \%$ RH	Pre- + mid-exercise: ingestion of water at $29^{\circ} \mathrm{C}(\mathrm{TN})$ or ice-slurry (ICE) 10 min before exercise, at 15 and 30 min of each work cycle, and during rest period in serial aliquots ($6 \times 200 \mathrm{~mL}$)					\checkmark		\checkmark		\checkmark		
Thomas et al. 2019	Crosssover, counterbalanc ed	$\begin{aligned} & 10 \\ & (\mathrm{M}) \end{aligned}$	NR, level 3 athletes $\left(\mathrm{VO}_{2} \max 56.2 \pm\right.$ $6.6 \mathrm{ml} \cdot \mathrm{kg}^{-1}$. min^{-1})	$\begin{aligned} & 30.5 \\ & \pm 5.8 \end{aligned}$	NR, UK	46 min INT running	Laboratory; $\begin{aligned} & 34.4 \pm 1.4^{\circ} \mathrm{C} \text {, } \\ & 36.3 \pm 4.6{ }^{\%} \\ & \text { RH } \end{aligned}$	30 -min pre-exercise: ingestion of $7.5 \mathrm{~g} / \mathrm{kg}$ sports drink at $23.4 \pm 0.2^{\circ} \mathrm{C}(\mathrm{TN})$ or $-0.5 \pm$ $0.4^{\circ} \mathrm{C}$ (ICE) in serial aliquots ($3 \times 2.5 \mathrm{~g} / \mathrm{kg}$) - sports drink contained $0.75 \mathrm{~g} / \mathrm{kg}$ CHO				\checkmark							
Watkins et al. 2018	Crosssover, randomited	$\begin{aligned} & 11 \\ & (\mathrm{M}) \end{aligned}$	NR, physically active	$\begin{aligned} & 20 \pm \\ & 2 \end{aligned}$	NR, UK	45 min INT walking exercise wearing protective clothing ($\sim 17 \mathrm{~kg}$)	Environmenta 1 chamber; $\begin{aligned} & 49.6 \pm 0.8^{\circ} \mathrm{C} \\ & 15.4 \pm 1.2 \% \\ & \text { RH } \end{aligned}$	$15-\mathrm{min}$ pre-exercise: ingestion of 500 mL ($6.75 \pm 0.84 \mathrm{~g} / \mathrm{kg}$) beverage at $-1^{\circ} \mathrm{C}$ (ICE) or $22^{\circ} \mathrm{C}$ (TN) - beverage contained $0.6 \% \mathrm{CHO}$				\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	
Zimmerm ann \& Landers 2015	Crosssover, randomited	9 (F)	Team sport athletes, trained	$\begin{aligned} & 21 \pm \\ & 1.2 \end{aligned}$	NR, Australia	$2 \times 36 \mathrm{~min}$ INT cycling sprint protocol (in between 6 min recovery)	$\begin{aligned} & \text { Climate } \\ & \text { chamber; } 33.1 \\ & \pm 0.1^{\circ} \mathrm{C}, 60.3 \\ & \pm 1.5 \% \mathrm{RH} \end{aligned}$	30 -min pre-exercise: ingestion of $6.8 \mathrm{~g} / \mathrm{kg}$ water at $25^{\circ} \mathrm{C}(\mathrm{TN})$ or $-0.5^{\circ} \mathrm{C}$ (ICE) in serial aliquots ($150-200 \mathrm{~g}$ servings)			\checkmark		\checkmark		\checkmark		\checkmark	\checkmark	
Zimmerm ann et al. 2017a	Crosssover, randomited	$\begin{aligned} & 10 \\ & \text { (F) } \end{aligned}$	Cyclists/triathlet es, NR	$\begin{aligned} & 28 \pm \\ & 6 \end{aligned}$	NR, Australia	800 kJ cycling TT	Environmenta 1 chamber; $34.9 \pm 0.3^{\circ} \mathrm{C}$, $49.8 \pm 3.5 \%$ RH	30-min pre-exercise: ingestion of $7 \mathrm{~g} / \mathrm{kg}$ of water at $0.5 \pm 0.5^{\circ} \mathrm{C}$ (ICE) or $22.0 \pm 2.0^{\circ} \mathrm{C}$ (TN) in serial aliquots (each 200 g at consistent time points)	\checkmark		\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	

Note. ${ }^{1}$ ICE: beverages with a temperature $\leq 2^{\circ} \mathrm{C}$ and studies stating that "ice-slurry" was ingested; COLD: beverages with a temperature >2 and \leq $10^{\circ} \mathrm{C}$; TN: beverages with a temperature >10 and $\leq 37^{\circ} \mathrm{C}$ and studies stating that "tepid" or "room temperature" drinks were ingested; WARM: beverages with a temperature $>37^{\circ} \mathrm{C}$ and $\leq 50^{\circ} \mathrm{C}$. ${ }^{2}$ ticks in brackets: quantitative data not reported. Abbreviations: $\checkmark=$ data could be used in metaanalysis, $(\checkmark)=$ data could not have been used for meta-analysis, $\mathrm{F}=$ female, $\mathrm{BLa}=$ blood lactate, $\mathrm{CHO}=$ carbohydrates, $\mathrm{CON}=$ control group, GXT $=$ graded exercise test, $\mathrm{HR}=$ heart rate, $\mathrm{INT}=$ intermittent, $\mathrm{M}=$ male, $\mathrm{MEN}=$ menthol, $\mathrm{MPO}=$ mean power output, $\mathrm{MR}=$ mouth rinse, $\mathrm{MVC}=$ maximal voluntary contraction, $\mathrm{NR}=$ not reported, $\mathrm{PLA}=$ placebo group, $\mathrm{RH}=$ relative humidity, $\mathrm{RPE}=$ rate of perceived exertion, $\mathrm{SR}=$ sweat rate, $T_{\mathrm{c}}=$ core $/$ rectal $/$ gastrointestinal temperature, $\mathrm{TC}=$ thermal comfort, $\mathrm{TS}=$ thermal sensation, $T_{\mathrm{sk}}=$ skin temperature, $\mathrm{TT}=$ time trial, $\mathrm{TTE}=$ time to exhaustion, $\mathrm{VO}_{2} \max =$ maximum oxygen consumption, WBGT $=$ wet-bulb globe temperature; Wmax $=$ maximum Watt

References

Aldous, J. W. F., Chrismas, B. C. R., Akubat, I., Stringer, C. A., Abt, G., \& Taylor, L. (2019). Mixed-methods pre-match cooling improves simulated soccer performance in the heat. European Journal of Sport Science, 19(2), Article 2.
https://doi.org/10.1080/17461391.2018.1498542

Alhadad, S. B., Low, I. C. C., \& Lee, J. K. W. (2021). Thermoregulatory responses to ice slurry ingestion during low and moderate intensity exercises with restrictive heat loss. Journal of Science and Medicine in Sport, 24(1), 105-109. https://doi.org/10.1016/j.jsams.2020.07.002

Bain, A. R., Lesperance, N. C., \& Jay, O. (2012). Body heat storage during physical activity is lower with hot fluid ingestion under conditions that permit full evaporation. Acta Physiologica (Oxford, England), 206(2), 98-108. https://doi.org/10.1111/j.1748-1716.2012.02452.x

Brade, C., Dawson, B., \& Wallman, K. (2014). Effects of different precooling techniques on repeat sprint ability in team sport athletes. European Journal of Sport Science, 14(sup1), S84-S91. https://doi.org/10.1080/17461391.2011.651491

Burdon, C. A., Hoon, M. W., Johnson, N. A., Chapman, P. G., \& O’Connor, H. T. (2013). The effect of ice slushy ingestion and mouthwash on thermoregulation and endurance performance in the heat. International Journal of Sport Nutrition and Exercise Metabolism, 23(5), 458-469. https://doi.org/10.1123/ijsnem.23.5.458

Burdon, C. A., Ruell, P., Johnson, N., Chapman, P., O'Brien, S., \& O'Connor, H. T. (2015). The effect of ice-slushy consumption on plasma vasoactive intestinal peptide during prolonged exercise in the heat. Journal of Thermal Biology, 47, 59-62. https://doi.org/10.1016/j.jtherbio.2014.11.005

Burdon, C., O’Connor, H., Gifford, J., Shirreffs, S., Chapman, P., \& Johnson, N. (2010). Effect of drink temperature on core temperature and endurance cycling performance in warm, humid conditions. Journal of Sports Sciences, 28(11), 1147-1156. https://doi.org/10.1080/02640414.2010.489197

Byrne, C., Owen, C., Cosnefroy, A., \& Lee, J. K. W. (2011). Self-paced exercise performance in the heat after pre-exercise cold-fluid ingestion. Journal of Athletic Training, 46(6), 592-599. https://doi.org/10.4085/1062-6050-46.6.592

Flood, T. R., Waldron, M., \& Jeffries, O. (2017). Oral L-menthol reduces thermal sensation, increases work-rate and extends time to exhaustion, in the heat at a fixed rating of perceived exertion. European Journal of Applied Physiology, 117(7), 1501-1512. https://doi.org/10.1007/s00421-017-3645-6

Gavel, E. H., Logan-Sprenger, H. M., Good, J., Jacobs, I., \& Thomas, S. G. (2021). Menthol Mouth Rinsing and Cycling Performance in Females Under Heat Stress. International Journal of Sports Physiology and Performance, 16(7), 1014-1020. https://doi.org/10.1123/ijspp.2020-0414

Gerrett, N., Jackson, S., Yates, J., \& Thomas, G. (2017). Ice slurry ingestion does not enhance self-paced intermittent exercise in the heat. Scandinavian Journal of Medicine \& Science in Sports, 27(11), Article 11. https://doi.org/10.1111/sms. 12744

Gibson, O. R., Wrightson, J. G., \& Hayes, M. (2019). Intermittent sprint performance in the heat is not altered by augmenting thermal perception via L-menthol or capsaicin mouth rinses. European Journal of Applied Physiology, 119(3), 653-664. https://doi.org/10.1007/s00421-018-4055-0

Hailes, W. S., Cuddy, J. S., Cochrane, K., \& Ruby, B. C. (2016). Thermoregulation During Extended Exercise in the Heat: Comparisons of Fluid Volume and Temperature. Wilderness \& Environmental Medicine, 27(3), 386-392. https://doi.org/10.1016/j.wem.2016.06.004

Hue, O., Monjo, R., Lazzaro, M., Baillot, M., Hellard, P., Marlin, L., \& Jean-Etienne, A. (2013). The effect of time of day on cold water ingestion by high-level swimmers in a tropical climate. International Journal of Sports Physiology and Performance, 8(4), 442-451. https://doi.org/10.1123/ijspp.8.4.442

Hue, O., Monjo, R., \& Riera, F. (2015). Imposed Cold-water Ingestion during Open Water Swimming in Internationally Ranked Swimmers. International Journal of Sports Medicine, 36(11), 941-946. https://doi.org/10.1055/s-0035-1548812

Ihsan, M., Landers, G., Brearley, M., \& Peeling, P. (2010). Beneficial effects of ice ingestion as a precooling strategy on 40-km cycling time-trial performance. International Journal of Sports Physiology and Performance, 5(2), 140-151. https://doi.org/10.1123/ijspp.5.2.140

Iwata, R., Kawamura, T., Hosokawa, Y., Chang, L., Suzuki, K., \& Muraoka, I. (2020). Differences between sexes in thermoregulatory responses and exercise time during endurance exercise in a hot environment following pre-cooling with ice slurry ingestion. Journal of Thermal Biology, 94, 102746. https://doi.org/10.1016/j.jtherbio.2020.102746

James, C. A., Richardson, A. J., Watt, P. W., Gibson, O. R., \& Maxwell, N. S. (2015). Physiological responses to incremental exercise in the heat following internal and external precooling. Scandinavian Journal of Medicine \& Science in Sports, 25 Suppl 1, 190-199. https://doi.org/10.1111/sms. 12376

Jeffries, O., Goldsmith, M., \& Waldron, M. (2018). L-Menthol mouth rinse or ice slurry ingestion during the latter stages of exercise in the heat provide a novel stimulus to enhance performance despite elevation in mean body temperature. European Journal of Applied Physiology, 118(11), Article 11. https://doi.org/10.1007/s00421-018-3970-4

Lamarche, D. T., Meade, R. D., McGinn, R., Poirier, M. P., Friesen, B. J., \& Kenny, G. P. (2015). Temperature of Ingested Water during Exercise Does Not Affect Body Heat Storage. Medicine and Science in Sports and Exercise, 47(6), 1272-1280. https://doi.org/10.1249/MSS. 0000000000000533

Lee, J. K. W., Maughan, R. J., \& Shirreffs, S. M. (2008). The influence of serial feeding of drinks at different temperatures on thermoregulatory responses during cycling. Journal of Sports Sciences, 26(6), 583-590. https://doi.org/10.1080/02640410701697388

Lee, J. K. W., \& Shirreffs, S. M. (2007). The influence of drink temperature on thermoregulatory responses during prolonged exercise in a moderate environment. Journal of Sports Sciences, 25(9), 975-985. https://doi.org/10.1080/02640410600959947

Lee, J. K. W., Shirreffs, S. M., \& Maughan, R. J. (2008). Cold drink ingestion improves exercise endurance capacity in the heat. Medicine and Science in Sports and Exercise, 40(9), 1637-1644. https://doi.org/10.1249/MSS.0b013e318178465d

Morris, N. B., Bain, A. R., Cramer, M. N., \& Jay, O. (2014). Evidence that transient changes in sudomotor output with cold and warm fluid ingestion are independently modulated by abdominal, but not oral thermoreceptors. Journal of Applied Physiology (Bethesda, Md.: 1985), 116(8), 1088-1095. https://doi.org/10.1152/japplphysiol.01059.2013

Morris, N. B., Coombs, G., \& Jay, O. (2016). Ice Slurry Ingestion Leads to a Lower Net Heat Loss during Exercise in the Heat. Medicine \& Science in Sports \& Exercise, 48(1), Article 1. https://doi.org/10.1249/MSS. 0000000000000746

Naito, T., Haramura, M., Muraishi, K., Yamazaki, M., \& Takahashi, H. (2020). Impact of Ice Slurry Ingestion During Break-Times on RepeatedSprint Exercise in the Heat. Sports Medicine International Open, 4(02), Article 02. https://doi.org/10.1055/a-1139-1761

Nakamura, D., Muraishi, K., Hasegawa, H., Yasumatsu, M., \& Takahashi, H. (2020). Effect of a cooling strategy combining forearm water immersion and a low dose of ice slurry ingestion on physiological response and subsequent exercise performance in the heat. Journal of Thermal Biology, 89, 102530. https://doi.org/10.1016/j.jtherbio.2020.102530

Ng, J., Dobbs, W. C., \& Wingo, J. E. (2019). Effect of Ice Slurry Ingestion on Cardiovascular Drift and V`O2max during Heat Stress. Medicine \& Science in Sports \& Exercise, 5l(3), 582-589. https://doi.org/10.1249/MSS. 0000000000001794

Ng, J., Wingo, J. E., Bishop, P. A., Casey, J. C., \& Aldrich, E. K. (2018). Ice Slurry Ingestion and Physiological Strain During Exercise in NonCompensable Heat Stress. Aerospace Medicine and Human Performance, 89(5), 434-441. https://doi.org/10.3357/AMHP.4975.2018

Onitsuka, S., Zheng, X., \& Hasegawa, H. (2020). Ice slurry ingestion before and during exercise inhibit the increase in core and deep-forehead temperatures in the second half of the exercise in a hot environment. Journal of Thermal Biology, 94, 102760. https://doi.org/10.1016/j.jtherbio.2020.102760

Parton, A. J., Waldron, M., Clifford, T., \& Jeffries, O. (2021). Thermo-behavioural responses to orally applied 1-menthol exhibit sex-specific differences during exercise in a hot environment. Physiology \& Behavior, 229, 113250. https://doi.org/10.1016/j.physbeh.2020.113250

Pryor, R. R., Suyama, J., Guyette, F. X., Reis, S. E., \& Hostler, D. (2015). The effects of ice slurry ingestion before exertion in Wildland firefighting gear. Prehospital Emergency Care: Official Journal of the National Association of EMS Physicians and the National Association of State EMS Directors, 19(2), 241-246. https://doi.org/10.3109/10903127.2014.959221

Saldaris, J. M., Landers, G. J., \& Lay, B. S. (2020). Physical and perceptual cooling: Improving cognitive function, mood disturbance and time to fatigue in the heat. Scandinavian Journal of Medicine \& Science in Sports, 30(4), Article 4. https://doi.org/10.1111/sms. 13623

Schulze, E., Daanen, H. A. M., Levels, K., Casadio, J. R., Plews, D. J., Kilding, A. E., Siegel, R., \& Laursen, P. B. (2015). Effect of thermal state and thermal comfort on cycling performance in the heat. International Journal of Sports Physiology and Performance, 10(5), 655-663. https://doi.org/10.1123/ijspp.2014-0281

Siegel, R., Maté, J., Watson, G., Nosaka, K., \& Laursen, P. B. (2011). The influence of ice slurry ingestion on maximal voluntary contraction following exercise-induced hyperthermia. European Journal of Applied Physiology, 111(10), 2517-2524. https://doi.org/10.1007/s00421-011-1876-5

Siegel, R., Maté, J., Watson, G., Nosaka, K., \& Laursen, P. B. (2012). Pre-cooling with ice slurry ingestion leads to similar run times to exhaustion in the heat as cold water immersion. Journal of Sports Sciences, 30(2), 155-165. https://doi.org/10.1080/02640414.2011.625968

Snipe, R. M. J., \& Costa, R. J. S. (2018). Does the temperature of water ingested during exertional-heat stress influence gastrointestinal injury, symptoms, and systemic inflammatory profile? Journal of Science and Medicine in Sport, 21(8), 771-776. https://doi.org/10.1016/j.jsams.2017.12.014

Stanley, J., Leveritt, M., \& Peake, J. M. (2010). Thermoregulatory responses to ice-slush beverage ingestion and exercise in the heat. European Journal of Applied Physiology, 110(6), 1163-1173. https://doi.org/10.1007/s00421-010-1607-3

Stevens, C. J., Thoseby, B., Sculley, D. V., Callister, R., Taylor, L., \& Dascombe, B. J. (2016). Running performance and thermal sensation in the heat are improved with menthol mouth rinse but not ice slurry ingestion: Running performance and thermal sensation. Scandinavian Journal of Medicine \& Science in Sports, 26(10), 1209-1216. https://doi.org/10.1111/sms. 12555

Tabuchi, S., Horie, S., Kawanami, S., Inoue, D., Morizane, S., Inoue, J., Nagano, C., Sakurai, M., Serizawa, R., \& Hamada, K. (2021). Efficacy of ice slurry and carbohydrate-electrolyte solutions for firefighters. Journal of Occupational Health, 63(1). https://doi.org/10.1002/13489585.12263

Takeshima, K., Onitsuka, S., Xinyan, Z., \& Hasegawa, H. (2017). Effect of the timing of ice slurry ingestion for precooling on endurance exercise capacity in a warm environment. Journal of Thermal Biology, 65, 26-31. https://doi.org/10.1016/j.jtherbio.2017.01.010

Tay, C. S., Lee, J. K. W., Teo, Y. S., Q.Z. Foo, P., Tan, P. M. S., \& Kong, P. W. (2016). Using gait parameters to detect fatigue and responses to ice slurry during prolonged load carriage. Gait \& Posture, 43, 17-23. https://doi.org/10.1016/j.gaitpost.2015.10.010

Thomas, G., Cullen, T., Davies, M., Hetherton, C., Duncan, B., \& Gerrett, N. (2019). Independent or simultaneous lowering of core and skin temperature has no impact on self-paced intermittent running performance in hot conditions. European Journal of Applied Physiology, 119(8), 1841-1853. https://doi.org/10.1007/s00421-019-04173-y

Watkins, E. R., Hayes, M., Watt, P., \& Richardson, A. J. (2018). Practical pre-cooling methods for occupational heat exposure. Applied Ergonomics, 70, 26-33. https://doi.org/10.1016/j.apergo.2018.01.011

Zimmermann, M., Landers, G. J., \& Wallman, K. E. (2017). Crushed Ice Ingestion Does Not Improve Female Cycling Time Trial Performance in the Heat. International Journal of Sport Nutrition and Exercise Metabolism, 27(1), 67-75. https://doi.org/10.1123/ijsnem.2016-0028

Zimmermann, M., Landers, G., Wallman, K. E., \& Saldaris, J. (2017). The Effects of Crushed Ice Ingestion Prior to Steady State Exercise in the Heat. International Journal of Sport Nutrition and Exercise Metabolism, 27(3), 220-227. https://doi.org/10.1123/ijsnem.2016-0215

Zimmermann, M. R., \& Landers, G. J. (2015). The effect of ice ingestion on female athletes performing intermittent exercise in hot conditions. European Journal of Sport Science, 15(5), 407-413. https://doi.org/10.1080/17461391.2014.965751

