Supplementary Material 4

Effects of internal cooling on physical performance, physiological and perceptional parameters when exercising in the heat: a systematic review with meta-analyses

Juliane Heydenreich^{*}, Karsten Koehler, Hans Braun, Mareike Grosshauser, Helmut Heseker, Daniel Koenig, Alfonso Lampen, Stephanie Mosler, Andreas Niess, Alexandra Schek, Anja Carlsohn

* **Correspondence:** Dr. Juliane Heydenreich juliane.heydenreich@uni-mainz.de

4 Supplementary Data: Characteristics of articles included in the systematic review.

		•											0	utcome	s ²				
Study	Design	n	Discipline, level	Age	Ethnicity	Exercise	Environment	Interventions ¹	Per	rforma	nce		Phy	ysiologi	cal		Per	ceptio	nal
2	8	(sex)		(yrs)	, country		al conditions		TT	TTE	MP O	SR	HR	BLa	Tc	Tsk	RPE	TS	TC
Aldous et al. 2019	Crossover, counterbalanc ed	8 (M)	Soccer, university-level $(VO_2max 56 \pm 9)$ ml \cdot kg ⁻¹ \cdot min ⁻¹)	22 ± 3	NR, UK	2 x 45-min INT Soccer Performance Test (in between 15 min half-time)	Chamber; 30.7 ± 0.3°C, 50.9 ± 4.2% RH	<u>Pre- + mid-exercise:</u> ingestion of non-CHO drink at -1°C (ICE) or room temperature (TN) within 30 min before exercise (7.5 g/kg) and at half-time (3.75 g/kg) in 3 serial aliquots				(✔)	(✔)		~	~	✓	~	
Alhadad et al. 2021	Crossover, counterbalanc ed	10 (M)	NR, physically active (VO ₂ max $52 \pm 6 \text{ ml} \cdot \text{kg}^{-1}$ $\cdot \text{min}^{-1}$)	$\begin{array}{c} 24 \pm \\ 1 \end{array}$	NR, Singapore	75 min running SS at 40% or 70% VO ₂ max	Laboratory; 25.1 ± 0.6 °C, $63 \pm 5\%$ RH	<u>Mid-exercise</u> : ingestion of sports drink at ~- 2°C (ICE) or ~26°C (TN) at 15 min intervals (5 x 2 g/kg) - sports drink contained 6.2% CHO				~	~		~	~	~	~	
Bain et al. 2012	Crossover, counterbalanc ed	9 (M)	NR, NR (VO ₂ peak 53.4 \pm 3.6 ml \cdot kg ⁻¹ \cdot min ⁻¹)	22 ± 2	Caucasia n, Canada	75 min cycling SS at 50% VO ₂ peak	Laboratory; 23.6 ± 0.6°C, 23 ± 11% RH	<u>Pre- + mid-exercise</u> : ingestion of water at 1.5°C (ICE), 10°C (COLD), 37°C (TN), or 50°C (WARM) 5 min before SS, and after 15, 30 and 45 min of SS in serial aliquots (4 x 3.2 ml/kg)				(✓)	✓		✓	~			
Brade et al. 2014	Crossover, counterbalanc ed	12 (M)	Team sport players, NR	$\begin{array}{c} 21.8 \\ \pm \ 2.3 \end{array}$	NR, Australia	2 x 30 min sprint cycling (in between 10 min half-time)	Climate chamber; 35.2 ± 0.3°C, 57.8 ± 1.2% RH	<u>Pre- + mid-exercise:</u> ingestion of water at 0.6°C (ICE) or ~23°C (TN) within 30 min before exercise (7 g/kg) and at half-time (2.1 g/kg) in 3 serial aliquots			~	~	(✔)		✓	~	(✔)	(✔)	
Burdon et al. 2010	Crossover, randomized	7 (M)	Cyclists, regional level (VO ₂ peak 59.4 \pm 6.6 ml \cdot kg ⁻¹ \cdot min ⁻¹)	32.8 ± 6.1	NR, Australia	(1) 90 min cycling SS at 65% VO ₂ max, (2) 15 min cycling TT	Climate chamber; 28°C, 70% RH	<u>Mid-exercise</u> : ingestion of sports drink at (1) 4°C (COLD), (2) 37°C (TN), or (3) 37 °C + INT ingestion of ICE (-1°C; 30 mL; every 5 min), in serial aliquots during SS (9 x 2.3 mL/kg) - isocaloric intake in all trials - sports drink contained 7.4% CHO			~	(✔)	(✔)		~	~	(✔)		(✓)
Burdon et al. 2013	Crossover, counterbalanc ed	10 (M)	Cyclists, NR (VO ₂ max $61.8 \pm 5.6 \text{ ml} \cdot \text{kg}^{-1} \cdot \text{min}^{-1}$)	30.1 ± 7.0	NR, Australia	(1) 90 min cycling SS at 60% VO ₂ peak, (2) 4 kJ/kg cycling TT	Climate chamber; 32°C, 40% RH	<u>Mid-exercise</u> : ingestion of sports drink at - 1°C (ICE), 37°C (TN), or 37°C plus ICE MR (20 s, 25 g, every 5 min; WASH) during SS in serial aliquots (6 x 3.5 g/kg) - sports drink contained 7.4% CHO	~		~	(✔)	(✓)		(✓)	(*)	(✔)		(✓)
Burdon et al. 2015	Crossover, randomized	10 (M)	Cyclists/triathlet es, NR (VO ₂ max 61.8 \pm 5.6 ml \cdot kg ⁻¹ \cdot min ⁻¹)	30.1 ± 7.0	NR, Australia	90 min cycling SS at 60% VO ₂ max	Climate chamber; 32°C, 40% RH	<u>Mid-exercise</u> : ingestion of sports drink at - 1°C (ICE) or 37°C (TN) every 15 min of SS (6 x 3.5 mL/kg) - sports drink contained 7.4% CHO					(*)		(✓)	~			
Byrne et al. 2011	Crossover, randomized	7 (M)	Cyclists, recreational	21 ± 1.5	NR, UK	30 min cycling TT	Environmenta 1 chamber; 33	<u>35-min pre-exercise:</u> ingestion of 900 mL non-CHO sports drink at 37°C (TN) or 2°C	(*)		✓	✓	✓	√	✓	~	√		✓

								± 2°C, 61 ± 13% RH	(ICE) at 35, 25, and 10 min before exercise in serial aliquots (3 x 300 mL)											
F	Flood et Il. 2017	Crossover, randomized, single-blind	8 (M)	NR, non- acclimated/fit (VO ₂ max 55.4 ± 6.0 ml · kg ⁻¹ · min ⁻¹)	26 ± 5	NR, UK	(1) cycling TTE at RPE = 16, (2) before and after TTE isokinetic cycling sprints	Heat chamber; 35.0 ± 0.8°C, 47.8 ± 2.3% RH	<u>Pre- + mid-exercise</u> : MR (MR temp ~19.7°C; each 25 mL; 5 s) before fixed RPE protocol and at 10-min intervals during TTE with MEN or PLA - MEN: L-menthol solution (0.01%) - PLA: apple-flavored non-calorific artificial sweetened		•	~	~	(✓)		(*)	(*)		(✓)	(✔)
C a	Gavel et Il. 2021	Crossover, randomized	9 (F)	$\begin{array}{l} Cyclists,\\ regional level\\ (VO_2max \ 50.8 \pm \\ 6.0 \ ml \cdot kg^{-l} \cdot \\ min^{-1}) \end{array}$	26.7 ± 1.4	NR, Canada	(1) 30 km cycling TT, (2) before and after TT handgrip strength and maximal sprint tests	Environmenta l chamber; 30 \pm 0.6 °C, 70 \pm 1% RH	<u>Mid-exercise</u> : MR at 7 times (MR temp 22°C; each 25 mL) during TT with PLA or MEN - MEN: L-menthol solution (0.01%) - PLA: non-caloric berry-flavored sweetener	✓		✓	~	~		(✓)		~	~	~
C a	Gerrett et Il. 2017	Crossover, counterbalanc ed	12 (M)	NR, moderately to well-trained (VO ₂ max 58.5 \pm 8.1 ml \cdot kg ⁻¹ \cdot min ⁻¹)	$\begin{array}{c} 30.4 \\ \pm \ 3.4 \end{array}$	NR, UK	31 min INT running	Climate- controlled room; 30.9 ± 0.9°C, 41.1 ± 4.0% RH	<u>30-min pre-exercise:</u> ingestion of 7.5 g/kg drink at 0.1 ± 0.1 °C (ICE) or 23.4 ± 0.9 °C (TN) in serial aliquots (3 x 2.5 g/kg) - drinks contained 0.23% CHO				•	~	~	•	•	~	~	
C a	Gibson et Il. 2019	Crossover, randomized	14 (11 M + 3 F)	Team sports players, trained (VO ₂ max 46.2 \pm 12.9 ml \cdot kg ⁻¹ \cdot min ⁻¹)	$\begin{array}{c} 24 \pm \\ 3 \end{array}$	NR, UK	40 min INT cycling sprint protocol	Laboratory; 40°C, 50% RH	<u>Mid-exercise</u> : MR at 4 times (MR temp. 40°C; each 25 mL; 5 s) during exercise with MEN, water, or PLA - MEN: L-menthol solution (0.01%) - PLA: orange-flavored fruit squash (0.5% CHO)			✓	~	✓		~	~	✓	✓	~
H a	Hailes et Il. 2016	Crossover, randomized	12 (M)	NR, recreationally active (VO ₂ peak $61.5 \pm 7.9 \text{ ml} \cdot \text{kg}^{-1} \cdot \text{min}^{-1}$)	$\begin{array}{c} 24 \pm \\ 4 \end{array}$	NR, USA	3 h walking SS at 40% VO ₂ peak	Laboratory; 35.5°C, 50% RH	<u>Mid-exercise</u> : ingestion of water at 35.5°C (TN) or 0°C (ICE) during SS in serial aliquots (2 g/kg every 10 min)				•	✓		•	~	✓		
F 2	Hue et al. 2013	Crossover, randomized	9 (5 M + 4 F)	Long-distance swimmers, internationally ranked	$\begin{array}{c} 23.4 \\ \pm \ 3.3 \end{array}$	NR, France	(1) 1000 m warm- up, (2) 10 x 100 m at competition pace, (3) 3000 m	Swimming pool; WBGT 27.5 ± 2.3°C, 73 ± 10% RH)	<u>Mid-exercise</u> : ingestion of 950 mL water at 1.3 ± 0.3 °C (ICE) or 26.5 ± 2.5 °C (TN) in serial aliquots (5 x 190 mL)				(*)	✓		~			~	√
F 2	Hue et al. 2015	Crossover, randomized	8 (5 M, 3 F)	Long-course swimmers, internationally ranked	$\begin{array}{c} 24.4 \\ \pm \ 3.6 \end{array}$	NR, France	5 km swimming SS at competition pace	Open water (WBGT: ~29.3°C)	<u>Mid-exercise</u> : ingestion of 950 mL water at $1.1 \pm 0.7^{\circ}$ C (ICE) or $28.0 \pm 3.0^{\circ}$ C (TN) in serial aliquots (5 x 190 mL)				~	~		~			~	✓
I a	hsan et ıl. 2010	Crossover, counterbalanc ed	7 (M)	Cyclists/triathlet es, trained	$\begin{array}{c} 27.7 \\ \pm \ 3.1 \end{array}$	NR, Australia	~40 km cycling TT (1200 kJ)	Climate chamber;30°C , 75% RH	<u>30-min pre-exercise:</u> ingestion of 6.8 g/kg water at $1.4 \pm 1.1^{\circ}$ C (ICE) or $26.8 \pm 1.3^{\circ}$ C (TN) in serial aliquots (150-200 g at 8-10 min intervals)	~		✓	~	(✔)	(✔)	(*)	(*)	(*)	(~)	

Iwata et al. 2020	Crossover, counterbalanc ed	24 (12 M, 12 F)	NR, healthy (VO ₂ max: M: 43.6 ± 3.3 ; F: 36.5 ± 4.2 ml \cdot kg ⁻¹ \cdot min ⁻¹)	M: 25.2± 1.7 F: 22.4 ± 1.5	NR, - Japan	Cycling TTE at 55% VO ₂ max	Climate chamber; 38°C, 50% RH	<u>30-min pre-exercise: ingestion of 7.5 g/kg</u> sports drink at -1°C (ICE) or 20°C (TN) in serial aliquots (6 x 1.25 g/kg) - sports drink contained 5.9% CHO	~	~	~		~	~	~	~	~
James et al. 2015	Crosssover, randomized	12 (M)	Runners, recreational $(VO_2max 57.5 \pm 4 \text{ ml} \cdot \text{kg}^{-1} \cdot \text{min}^{-1})$	38± 11	NR, UK	2 running GXT	Environmenta l chamber; 31.9 ± 1.0°C, 61 ± 8.9% RH	20-min pre-exercise: ingestion of 7.5 g/kg sports drink at -1°C (ICE) or 21°C (TN) in serial aliquots (4 x 1.88 g/kg) - sports drink contained ~2.4 g CHO/100 mL		~	✓	✓	✓	✓	~	~	
Jeffries et al. 2018	Crosssover, randomized, single-blind	10 (M)	NR, endurance trained (VO ₂ peak 52.4 \pm 5.3 ml \cdot kg ⁻¹ \cdot min ⁻¹)	33± 9	NR, UK	Cycling TTE at 70% Wmax	Environmenta 1 chamber; 35 \pm 0.2°C, 40 \pm 0.5% RH	<u>Mid-exercise</u> : MR at 1 time at 85% of TTE (25 mL; 5 s) with MEN or PLA - MEN: L-menthol solution (0.01%) - PLA: neutral, raspberry flavor, non- calorific solution	V	(✔)	(✔)	(✔)	✓	(✔)	(✓)	(✓)	(✔)
Lamarche et al. 2015	Crosssover, randomized	10 (M)	NR, NR (VO ₂ peak 47.9 \pm 9.8 ml \cdot kg ⁻¹ \cdot min ⁻¹)	25 ± 4	NR, Canada	75 min cycling SS at 50% VO ₂ peak	Calorimetric chamber; 25°C, ~25% RH	<u>Pre- + mid-exercise</u> : ingestion of water at 1.5°C (ICE) or 50°C (WARM) 5 min before SS, and after 15, 30, and 45 min of SS in serial aliquots (4 x 3.2 mL/kg)					~	✓			
Lee & Shirreffs 2007	Crosssover, counterbalanc ed	9 (M)	NR, recreational (VO ₂ peak 50.0 \pm 5.3 ml \cdot kg ⁻¹ \cdot min ⁻¹)	26 ± 6	NR, UK	(1) 90 min cycling SS at 50% VO ₂ peak, (2) cycling TTE at 95% VO ₂ peak	Laboratory; 25°C, 60% RH	<u>Mid-exercise</u> : ingestion of 1 L non-CHO beverage at 10°C (COLD), 37°C (TN) or 50°C (WARM) between 30 and 40 min in SS in serial aliquots (4 x 250 mL)	√	~	~		•	~	(✔)	(✔)	
Lee et al. 2008a	Crosssover, counterbalanc ed	8 (M)	NR, moderately active (VO ₂ peak $53.8 \pm 6.2 \text{ ml} \cdot \text{kg}^{-1} \cdot \text{min}^{-1}$)	27±	NR, UK	(1) 90 min cycling SS at 50% VO ₂ peak, (2) cycling TTE at 95% VO ₂ peak	Laboratory; 25.4°C, 60% RH	<u>Mid-exercise</u> : ingestion of 1.6 L non-CHO drink at 10°C (COLD), 37°C (TN) or 50°C (WARM) at 30, 45, 60, and 75 min of SS (4 x 400 mL)	✓	~	✓		~	✓	(*)	(✔)	
Lee et al. 2008b	Crosssover, counterbalanc ed	8 (M)) NR, recreational (VO ₂ peak 57.8 \pm 5.6 ml \cdot kg ⁻¹ \cdot min ⁻¹)	22 ± 4	NR, UK	Cycling TTE at 65% VO ₂ peak	Environmenta l chamber; 35°C, 60% RH	<u>Pre- + mid-exercise:</u> ingestion of non-CHO drink at 4°C (COLD) or 37°C (TN) in serial aliquots within 30 min before (3 x 300 mL) and during TTE (100 mL every 10 min)	✓	~			~	✓	(✔)	(✔)	
Morris et al. 2014	Crosssover, counterbalanc ed	12 (M)	NR, NR (VO ₂ peak 53.9 \pm 5.4 ml \cdot kg ⁻¹ \cdot min ⁻¹)	23 ± 3	NR, Canada	75 min cycling SS at 50% VO ₂ peak	Laboratory; 23.7 ± 1.3°C, 32 ± 10%	<u>Pre- + mid-exercise:</u> ingestion of water at 1.5°C (ICE), 37°C (TN), and 50°C (WARM) 5 min before SS, and after 15, 30 and 45 min of SS in serial aliquots (4 x 3.2 mL/kg)		~			(✓)	(✔)			
Morris et al. 2016	Crosssover, counterbalanc ed	9 (M)) NR, healthy (VO ₂ peak 50.9 ± 8.5 ml · kg ⁻¹ · min ⁻¹)	25 ± 5	NR, Canada	75 min cycling SS at 55% VO ₂ peak	Laboratory; 33.5±1.4°C, 23.7±2.6% RH	<u>Mid-exercise</u> : ingestion of water at 37°C (TN) or ICE (1:2 mixture of shaved ice and 1.5°C water) in serial aliquots (3 x 3.2 mL/kg) in the first 45 min of SS		(✓)	~		(*)	(✔)			

Naito et al. 2020	Crosssover, randomized	7 (M)	NR, physically active	31 ± 4	NR, Japan	2 x 30 sets INT cycling sprint exercise (1 set = (1) 5 s max pedaling at the load of weight \times 0.075 (kp), (2) 25 s of pedaling with no-workload, (3) 30 s of rest)	Climate chamber; 36.5 ± 0.5°C, 50 ± 3% RH	<u>Mid-exercise</u> : ingestion of 1.25 g/kg sports drink at -1°C (ICE) or 36.5°C (TN) at each break and 7.5 g/kg at the half-time - sports drink contained 5.9% CHO		V	V	V			V	~	~	V
Nakamur a et al. 2020	Crosssover, randomized	8 (M)	NR, recreational (VO ₂ max 42.4 ml · kg ⁻¹ · min ⁻¹)	$\begin{array}{c} 22 \pm \\ 1.3 \end{array}$	NR, Japan	Cycling TTE at 75% VO ₂ max	Climate chamber; 35.0 ± 0.5°C, 62.9 ± 2.6% RH	<u>15-min pre-exercise:</u> ingestion 4 g/kg sports drink at -1°C (ICE) or room temperature (TN) - sports drink contained 5.9% CHO	✓		~	✓		~	~	~	~	~
Ng et al. 2018	Crosssover, counterbalanc ed	8 (M)	NR, moderately - vigorous active	21 ± 4	NR, USA	30 min walking SS at 4 km/h and 12% incline wearing firefighter protective clothing	Laboratory; 35.2 ± 0.4°C, 39 ± 4% RH				•	(✔)		(✔)	(✔)	✓	~	
Ng et al. 2019	Crosssover, counterbalanc ed	8 (M)	NR, moderately - vigorous active (VO ₂ max $52.2 \pm 7.9 \text{ ml} \cdot \text{kg}^{-1} \cdot \text{min}^{-1}$)	22 ± 4	NR, USA	(1) 45 min cycling SS at 60% VO ₂ max, (2) cycling GXT	Environmenta l chamber; 35°C, 40% RH		~	~	•	~	•	~	~	~		
Onitsuka et al. 2020	Crosssover, counterbalanc ed	11 (M)	Healthy, NR (VO ₂ max 46.5 ± 9.8 ml · kg ⁻¹ · min ⁻¹)	22 ± 2	NR, Japan	60 min cycling SS at 50% VO ₂ max	Laboratory; 34°C	2 analyses: (1) 30-min pre-exercise: ingestion of sports drink at 37°C (TN) or -1°C (ICE) in serial aliquots (5 x 1.5 g/kg) (2) Pre- + mid-exercise: ingestion of sports drink at 37°C (TN) or -1°C (ICE) 30 min before exercise in serial aliquots (5 x 1.5 g/kg), and during SS in serial aliquots (6 x 1.25 g/kg) - sports drink contained 6.2% CHO			✓	✓		•	~	✓	V	•
Parton et al. 2021	Crossover, randomized, double-blind	22 (11 F + 11 M)	NR, regular physical active (VO ₂ max: F: 43.5 ± 2.9 ; M: 53.9 ± 6.9 ml \cdot kg ⁻¹ \cdot min ⁻¹)	F: 22 ± 2 M: 20 ± 1	NR, UK	Cycling TTE at RPE of 16	Heat chamber; 34.9 ± 0.5°C, 40.6 ± 2.2 % RH	<u>Pre- + mid-exercise</u> : MR before TTE and every 10 min during TTE (MR temp. ~32°C; each 25 mL; 10 s) with MEN or CON - MEN: L-menthol solution (0.01%) - CON: apple flavored, non-calorific artificial sweetener	~	•	(✔)	(✓)		(✔)			(✔)	(✔)
Pryor et al. 2015	Crosssover, counterbalanc ed	10 (M)	Healthy, NR (VO ₂ max 50.5 \pm 8.1 ml \cdot kg ⁻¹ \cdot min ⁻¹)	32.1 ± 8.3	NR, USA	45 min walking SS at 6.4 km/h wearing firefighting	Laboratory; ~39°C, ~17% RH	<u>30-min pre-exercise:</u> ingestion of 7.5 g/kg sports drink at 0.1°C (ICE) or 20°C (TN) in serial aliquots (6 x 1.25 g/kg) - sports drink contained 3% CHO			~	(✓)		(*)	(✓)	(✓)	(✔)	(✓)

						equipment (~20.4 kg)													
Saldaris et al. 2020	Crosssover, counterbalanc ed	12 (M)	Long-distance runners, NR (VO ₂ max 61.1 ± 7.3 ml · kg ⁻¹ · min ⁻¹)	25.3 ±4.2	NR, Australia	(1) 3 x 30 min running SS at 65% VO ₂ peak (before and in between resting periods with cognitive tests) (2) running TTE at 100% VO ₂ peak	Climate chamber; 35.3 ± 0.3°C, 59.2 ± 2.5% RH	<u>Pre- + mid-exercise</u> : MR before and at the 15- and 30-min point of each block of SS and before TTE (each 25 mL; 5 s) with MEN or PLA - MEN: menthol solution (0.1%) at $33.4 \pm 0.5^{\circ}$ C PLA: water at $33.6 \pm 0.7^{\circ}$ C		(✔)		✓	•		(✓)	(*)	•	✓	
Schulze et al. 2015	Crosssover, randomized	7 (M)) Triathletes, well trained (VO ₂ peak 61.7 \pm 3.0 ml \cdot kg ⁻¹ \cdot min ⁻¹)	33 ± 8	NR, New Zealand	 (1) 60 min cycling SS at RPE of 14, (2) 20 km cycling TT 	Environmenta l chamber; 30°C, 80% RH	<u>Mid-exercise</u> : ingestion of sports drink at - 1°C (ICE) or 37°C (TN) during SS in serial aliquots (2 x 7.5 g/kg) - sports drink contained 6.2% CHO	√		✓	✓	✓		•	✓	✓	✓	~
Siegel et al. 2011	Crosssover, counterbalanc ed	10 (M)	NR, recreational (VO ₂ peak 49.8 \pm 4.7 ml \cdot kg ⁻¹ \cdot min ⁻¹)	24 ± 3	NR, Australia	(1) Running TTE at first ventilatory threshold, (2) before and after TTE 2-min sustained isometric MVC test	Laboratory; 34.1 ± 0.1°C, 49.5 ± 3.6% RH	<u>Mid-exercise</u> : ingestion of 1.25 g/kg sports drink at -1°C (ICE) or 40°C (WARM) after TTE - sports drink contained 5% CHO		•			~		✓	~			
Siegel et al. 2012	Crosssover, randomized	8 (M)) NR, moderately active (VO ₂ peak $54.2 \pm 2.5 \text{ ml} \cdot \text{kg}^{-1} \cdot \text{min}^{-1}$)	$\begin{array}{c} 26 \pm \\ 4 \end{array}$	NR, Australia	Running TTE at first ventilatory threshold	Climate chamber; 34°C, 52% RH	<u>30-min pre-exercise: (1)</u> ingestion of 7.5 g/kg sports drink at -1°C (ICE) or 37°C (TN) in serial aliquots (6 x 1.25 g/kg) - sports drink contained 5% CHO		~		✓	(•)		✓	(•)	(✔)	(✓)	
Snipe & Costa 2018	Crosssover, counterbalanc ed	6 (M), 6 (F)	Runners, trained (VO ₂ max 56 \pm 6 ml \cdot kg ⁻¹ \cdot min ⁻¹)	$\begin{array}{c} 37 \pm \\ 8 \end{array}$	NR, Australia	120 min running SS at 60% VO ₂ max	Environmenta l chamber; $35.1 \pm 0.5^{\circ}$ C, $25 \pm 3\%$ RH	$ \begin{array}{l} \underline{Pre-+mid\text{-exercise:}} & \text{ingestion of water at } 0.4 \\ \pm 0.4^{\circ}\text{C} (\text{ICE}), 7.3 \pm 0.8^{\circ}\text{C} (\text{COLD}), \text{ or } 22.1 \\ \pm 1.2^{\circ}\text{C} (\text{TN}) & \text{immediately before, and every} \\ 15 & \text{min during SS in serial aliquots } (8 \times 3.75 \\ \text{mL/kg}) \end{array} $				•	•		~		•	~	
Stanley et al. 2010	Crosssover, counterbalanc ed	10 (M)	Cyclists/triathlet es, trained (VO ₂ max 60.0 ± 7.7 ml · kg ⁻¹ · min ⁻¹)	$\begin{array}{c} 30 \pm \\ 5 \end{array}$	NR, Australia	(1) 75 min cycling SS at $58 \pm 6\%$ PPO, (2) 50 min recovery, (3) cycling TT (total work = 75% PPO x 30 min)	Climate chamber; 33.7 ± 0.8°C, 60.3 ± 2.0% RH	<u>Mid-exercise:</u> ingestion of 400 mL sports drink (5 th minute) and each 200 mL (15 th min, 25 th min, 35 th min) at $18.4 \pm 0.5^{\circ}$ C (TN) or $-0.8 \pm 0.1^{\circ}$ C (ICE) during recovery - sports drink contained 5.7 % CHO	✓		✓	~	~	✓	✓				
Stevens et al. 2016	Crosssover, randomized	11 (M)	Runners, moderately trained	$\begin{array}{c} 29 \pm \\ 9 \end{array}$	NR, Australia	5 km running TT	Environmenta l chamber; 32.6 ± 0.2 °C,	2 analyses: (1) Mid-exercise: MEN MR (MR temp. 22°C; each 25 mL; 5 s) at the 0.2 km mark of every 1 km	~					(✔)	~	(✔)	(✔)	(✔)	

							45.8 ± 5.7% RH	 MEN: L-menthol solution (0.01%) CON: no MR (2) 35 - 5 min pre-exercise: ingestion of 7.5 g/kg sports drink at -1°C (ICE) or 22°C (TN) in serial aliquots (2 x 3.75 g/kg) sports drink contained 6% CHO 										
Tabuchi et al. 2021	Crosssover, randomized	12 (M)	Firefighters, NR	$\begin{array}{c} 24.4 \\ \pm \ 4.3 \end{array}$	NR, Japan	(1) 10 min cycling SS at 125 W, (2) 20 min cycling SS at 75 W	Climate chamber; 35 °C, 50% RH	8 min pre-exercise: ingestion of 5 g/kg sports drink at 25°C (TN) and -1.7°C (ICE) in serial aliquots (2 x 2.5 g/kg) - sports drink contained 6.2% CHO			~	✓		✓		✓	✓	✓
Takeshim a et al. 2017	Crosssover, counterbalanc ed	10 (M)	NR, active (PPO: 242 ± 27 W)	20.3 ± 1.6	NR, Japan	Cycling TTE at 55% PPO	Climate chamber;29.7 °C, 78.8% RH	0 – 15 min pre-exercise: ingestion of 7.5 g/kg sports drink at 37°C (TN) or -1°C (ICE) in serial aliquots (3 x 2.5 g/kg) - 3 conditions: (1) ICE before and CON after warm-up, (2) CON before and ICE after warm-up, (3) CON before and after warm-up - sports drink contained 5.5% CHO	~		~	~		~	~	~	~	
Tay et al. 2016	Crosssover, counterbalanc ed	16 (M)	$\begin{array}{l} \mbox{Military} \\ \mbox{personnel, fit} \\ \mbox{(estimated} \\ \mbox{VO}_2\mbox{max 52} \pm \\ \mbox{3.3 ml} \cdot \mbox{kg}^{-1} \cdot \\ \mbox{min}^{-1} \end{array}$	21.8 ± 1.2	NR, Singapore	2 x 4 km walking SS at 5.3 km/h with 30 kg load (in between 15 min rest period)	Environmenta l chamber; 32°C, 70% RH	<u>Pre- + mid-exercise</u> : ingestion of water at 29°C (TN) or ice-slurry (ICE) 10 min before exercise, at 15 and 30 min of each work cycle, and during rest period in serial aliquots (6 x 200 mL)				~		•		~		
Thomas et al. 2019	Crosssover, counterbalanc ed	10 (M)	NR, level 3 athletes $(VO_2max 56.2 \pm 6.6 \text{ ml} \cdot \text{kg}^{-1} \cdot \text{min}^{-1})$	$\begin{array}{c} 30.5 \\ \pm \ 5.8 \end{array}$	NR, UK	46 min INT running	Laboratory; 34.4 ± 1.4 °C, 36.3 ± 4.6 % RH	<u>30-min pre-exercise:</u> ingestion of 7.5 g/kg sports drink at $23.4 \pm 0.2^{\circ}$ C (TN) or $-0.5 \pm 0.4^{\circ}$ C (ICE) in serial aliquots (3 x 2.5 g/kg) - sports drink contained 0.75 g/kg CHO			•	✓	~	✓	✓	✓	✓	
Watkins et al. 2018	Crosssover, randomited	11 (M)	NR, physically active	$\begin{array}{c} 20 \pm \\ 2 \end{array}$	NR, UK	45 min INT walking exercise wearing protective clothing (~17 kg)	Environmenta l chamber; 49.6 ± 0.8 °C; $15.4 \pm 1.2\%$ RH				✓	✓		✓	✓	✓	✓	
Zimmerm ann & Landers 2015	Crosssover, randomited	9 (F)	Team sport athletes, trained	21 ± 1.2	NR, Australia	2 x 36 min INT cycling sprint protocol (in between 6 min recovery)	Climate chamber; 33.1 ± 0.1°C, 60.3 ± 1.5% RH	<u>30-min pre-exercise:</u> ingestion of 6.8 g/kg water at 25°C (TN) or -0.5°C (ICE) in serial aliquots (150-200 g servings)		✓		~		✓		~	~	
Zimmerm ann et al. 2017a	Crosssover, randomited	10 (F)	Cyclists/triathlet es, NR	28± 6	NR, Australia	800 kJ cycling TT	Environmenta l chamber; 34.9 ± 0.3°C, 49.8 ± 3.5% RH	<u>30-min pre-exercise:</u> ingestion of 7 g/kg of water at $0.5 \pm 0.5^{\circ}$ C (ICE) or $22.0 \pm 2.0^{\circ}$ C (TN) in serial aliquots (each 200 g at consistent time points)	✓	✓	✓	~		✓	✓	~	~	

Zimmerm	Crosssover,	10	NR, active	$23 \ \pm$	NR,	60 min cycling SS	Climate	30-min pre-exercise: ingestion of 7 g/kg	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
ann et al.	counterbalanc	(M)	(VO ₂ peak 48.5	3	Australia	at 55 VO2peak	chamber; 35.0	water at ~0°C (ICE) or ~22°C (TN) in serial						
2017b	ed		\pm 3.6 ml \cdot kg ⁻¹ \cdot				$\pm 0.3^{\circ}C, 50.2$	aliquots (each 200 g at consistent time						
			min ⁻¹)				$\pm2.1\%~RH$	points)						

Note. ¹ ICE: beverages with a temperature $\leq 2^{\circ}$ C and studies stating that "ice-slurry" was ingested; COLD: beverages with a temperature >2 and $\leq 10^{\circ}$ C; TN: beverages with a temperature >10 and $\leq 37^{\circ}$ C and studies stating that "tepid" or "room temperature" drinks were ingested; WARM: beverages with a temperature > 37^{\circ}C and $\leq 50^{\circ}$ C. ² ticks in brackets: quantitative data not reported. Abbreviations: $\checkmark =$ data could be used in meta-analysis, (\checkmark) = data could not have been used for meta-analysis, F = female, BLa = blood lactate, CHO = carbohydrates, CON = control group, GXT = graded exercise test, HR = heart rate, INT = intermittent, M = male, MEN = menthol, MPO = mean power output, MR = mouth rinse, MVC = maximal voluntary contraction, NR = not reported, PLA = placebo group, RH = relative humidity, RPE = rate of perceived exertion, SR = sweat rate, $T_c = \text{core/rectal/gastrointestinal temperature}$, TC = thermal comfort, TS = thermal sensation, T_{sk} = skin temperature, TT = time trial, TTE = time to exhaustion, VO₂max = maximum oxygen consumption, WBGT = wet-bulb globe temperature; Wmax = maximum Watt

References

Aldous, J. W. F., Chrismas, B. C. R., Akubat, I., Stringer, C. A., Abt, G., & Taylor, L. (2019). Mixed-methods pre-match cooling improves simulated soccer performance in the heat. *European Journal of Sport Science*, *19*(2), Article 2.

https://doi.org/10.1080/17461391.2018.1498542

- Alhadad, S. B., Low, I. C. C., & Lee, J. K. W. (2021). Thermoregulatory responses to ice slurry ingestion during low and moderate intensity exercises with restrictive heat loss. *Journal of Science and Medicine in Sport*, *24*(1), 105–109. https://doi.org/10.1016/j.jsams.2020.07.002
- Bain, A. R., Lesperance, N. C., & Jay, O. (2012). Body heat storage during physical activity is lower with hot fluid ingestion under conditions that permit full evaporation. *Acta Physiologica (Oxford, England)*, 206(2), 98–108. https://doi.org/10.1111/j.1748-1716.2012.02452.x

- Brade, C., Dawson, B., & Wallman, K. (2014). Effects of different precooling techniques on repeat sprint ability in team sport athletes. *European Journal of Sport Science*, *14*(sup1), S84–S91. https://doi.org/10.1080/17461391.2011.651491
- Burdon, C. A., Hoon, M. W., Johnson, N. A., Chapman, P. G., & O'Connor, H. T. (2013). The effect of ice slushy ingestion and mouthwash on thermoregulation and endurance performance in the heat. *International Journal of Sport Nutrition and Exercise Metabolism*, 23(5), 458–469. https://doi.org/10.1123/ijsnem.23.5.458
- Burdon, C. A., Ruell, P., Johnson, N., Chapman, P., O'Brien, S., & O'Connor, H. T. (2015). The effect of ice-slushy consumption on plasma vasoactive intestinal peptide during prolonged exercise in the heat. *Journal of Thermal Biology*, 47, 59–62. https://doi.org/10.1016/j.jtherbio.2014.11.005
- Burdon, C., O'Connor, H., Gifford, J., Shirreffs, S., Chapman, P., & Johnson, N. (2010). Effect of drink temperature on core temperature and endurance cycling performance in warm, humid conditions. *Journal of Sports Sciences*, 28(11), 1147–1156. https://doi.org/10.1080/02640414.2010.489197
- Byrne, C., Owen, C., Cosnefroy, A., & Lee, J. K. W. (2011). Self-paced exercise performance in the heat after pre-exercise cold-fluid ingestion. *Journal of Athletic Training*, 46(6), 592–599. https://doi.org/10.4085/1062-6050-46.6.592

- Flood, T. R., Waldron, M., & Jeffries, O. (2017). Oral L-menthol reduces thermal sensation, increases work-rate and extends time to exhaustion, in the heat at a fixed rating of perceived exertion. *European Journal of Applied Physiology*, *117*(7), 1501–1512. https://doi.org/10.1007/s00421-017-3645-6
- Gavel, E. H., Logan-Sprenger, H. M., Good, J., Jacobs, I., & Thomas, S. G. (2021). Menthol Mouth Rinsing and Cycling Performance in Females Under Heat Stress. *International Journal of Sports Physiology and Performance*, *16*(7), 1014–1020. https://doi.org/10.1123/ijspp.2020-0414

Gerrett, N., Jackson, S., Yates, J., & Thomas, G. (2017). Ice slurry ingestion does not enhance self-paced intermittent exercise in the heat. *Scandinavian Journal of Medicine & Science in Sports*, 27(11), Article 11. https://doi.org/10.1111/sms.12744

- Gibson, O. R., Wrightson, J. G., & Hayes, M. (2019). Intermittent sprint performance in the heat is not altered by augmenting thermal perception via L-menthol or capsaicin mouth rinses. *European Journal of Applied Physiology*, 119(3), 653–664. https://doi.org/10.1007/s00421-018-4055-0
- Hailes, W. S., Cuddy, J. S., Cochrane, K., & Ruby, B. C. (2016). Thermoregulation During Extended Exercise in the Heat: Comparisons of Fluid Volume and Temperature. *Wilderness & Environmental Medicine*, 27(3), 386–392. https://doi.org/10.1016/j.wem.2016.06.004
- Hue, O., Monjo, R., Lazzaro, M., Baillot, M., Hellard, P., Marlin, L., & Jean-Etienne, A. (2013). The effect of time of day on cold water ingestion by high-level swimmers in a tropical climate. *International Journal of Sports Physiology and Performance*, 8(4), 442–451. https://doi.org/10.1123/ijspp.8.4.442

- Hue, O., Monjo, R., & Riera, F. (2015). Imposed Cold-water Ingestion during Open Water Swimming in Internationally Ranked Swimmers. *International Journal of Sports Medicine*, *36*(11), 941–946. https://doi.org/10.1055/s-0035-1548812
- Ihsan, M., Landers, G., Brearley, M., & Peeling, P. (2010). Beneficial effects of ice ingestion as a precooling strategy on 40-km cycling time-trial performance. *International Journal of Sports Physiology and Performance*, 5(2), 140–151. https://doi.org/10.1123/ijspp.5.2.140
- Iwata, R., Kawamura, T., Hosokawa, Y., Chang, L., Suzuki, K., & Muraoka, I. (2020). Differences between sexes in thermoregulatory responses and exercise time during endurance exercise in a hot environment following pre-cooling with ice slurry ingestion. *Journal of Thermal Biology*, 94, 102746. https://doi.org/10.1016/j.jtherbio.2020.102746
- James, C. A., Richardson, A. J., Watt, P. W., Gibson, O. R., & Maxwell, N. S. (2015). Physiological responses to incremental exercise in the heat following internal and external precooling. *Scandinavian Journal of Medicine & Science in Sports*, 25 Suppl 1, 190–199. https://doi.org/10.1111/sms.12376
- Jeffries, O., Goldsmith, M., & Waldron, M. (2018). L-Menthol mouth rinse or ice slurry ingestion during the latter stages of exercise in the heat provide a novel stimulus to enhance performance despite elevation in mean body temperature. *European Journal of Applied Physiology*, *118*(11), Article 11. https://doi.org/10.1007/s00421-018-3970-4

- Lamarche, D. T., Meade, R. D., McGinn, R., Poirier, M. P., Friesen, B. J., & Kenny, G. P. (2015). Temperature of Ingested Water during Exercise Does Not Affect Body Heat Storage. *Medicine and Science in Sports and Exercise*, 47(6), 1272–1280. https://doi.org/10.1249/MSS.00000000000533
- Lee, J. K. W., Maughan, R. J., & Shirreffs, S. M. (2008). The influence of serial feeding of drinks at different temperatures on thermoregulatory responses during cycling. *Journal of Sports Sciences*, *26*(6), 583–590. https://doi.org/10.1080/02640410701697388
- Lee, J. K. W., & Shirreffs, S. M. (2007). The influence of drink temperature on thermoregulatory responses during prolonged exercise in a moderate environment. *Journal of Sports Sciences*, *25*(9), 975–985. https://doi.org/10.1080/02640410600959947
- Lee, J. K. W., Shirreffs, S. M., & Maughan, R. J. (2008). Cold drink ingestion improves exercise endurance capacity in the heat. *Medicine and Science in Sports and Exercise*, 40(9), 1637–1644. https://doi.org/10.1249/MSS.0b013e318178465d
- Morris, N. B., Bain, A. R., Cramer, M. N., & Jay, O. (2014). Evidence that transient changes in sudomotor output with cold and warm fluid ingestion are independently modulated by abdominal, but not oral thermoreceptors. *Journal of Applied Physiology (Bethesda, Md.: 1985)*, *116*(8), 1088–1095. https://doi.org/10.1152/japplphysiol.01059.2013
- Morris, N. B., Coombs, G., & Jay, O. (2016). Ice Slurry Ingestion Leads to a Lower Net Heat Loss during Exercise in the Heat. *Medicine & Science in Sports & Exercise*, 48(1), Article 1. https://doi.org/10.1249/MSS.00000000000746

- Naito, T., Haramura, M., Muraishi, K., Yamazaki, M., & Takahashi, H. (2020). Impact of Ice Slurry Ingestion During Break-Times on Repeated-Sprint Exercise in the Heat. *Sports Medicine International Open*, *4*(02), Article 02. https://doi.org/10.1055/a-1139-1761
- Nakamura, D., Muraishi, K., Hasegawa, H., Yasumatsu, M., & Takahashi, H. (2020). Effect of a cooling strategy combining forearm water immersion and a low dose of ice slurry ingestion on physiological response and subsequent exercise performance in the heat. *Journal of Thermal Biology*, 89, 102530. https://doi.org/10.1016/j.jtherbio.2020.102530
- Ng, J., Dobbs, W. C., & Wingo, J. E. (2019). Effect of Ice Slurry Ingestion on Cardiovascular Drift and V'O2max during Heat Stress. *Medicine & Science in Sports & Exercise*, 51(3), 582–589. https://doi.org/10.1249/MSS.000000000001794
- Ng, J., Wingo, J. E., Bishop, P. A., Casey, J. C., & Aldrich, E. K. (2018). Ice Slurry Ingestion and Physiological Strain During Exercise in Non-Compensable Heat Stress. *Aerospace Medicine and Human Performance*, *89*(5), 434–441. https://doi.org/10.3357/AMHP.4975.2018
- Onitsuka, S., Zheng, X., & Hasegawa, H. (2020). Ice slurry ingestion before and during exercise inhibit the increase in core and deep-forehead temperatures in the second half of the exercise in a hot environment. *Journal of Thermal Biology*, *94*, 102760. https://doi.org/10.1016/j.jtherbio.2020.102760
- Parton, A. J., Waldron, M., Clifford, T., & Jeffries, O. (2021). Thermo-behavioural responses to orally applied 1-menthol exhibit sex-specific differences during exercise in a hot environment. *Physiology & Behavior*, 229, 113250. https://doi.org/10.1016/j.physbeh.2020.113250

- Pryor, R. R., Suyama, J., Guyette, F. X., Reis, S. E., & Hostler, D. (2015). The effects of ice slurry ingestion before exertion in Wildland firefighting gear. Prehospital Emergency Care: Official Journal of the National Association of EMS Physicians and the National Association of State EMS Directors, 19(2), 241–246. https://doi.org/10.3109/10903127.2014.959221
- Saldaris, J. M., Landers, G. J., & Lay, B. S. (2020). Physical and perceptual cooling: Improving cognitive function, mood disturbance and time to fatigue in the heat. *Scandinavian Journal of Medicine & Science in Sports*, *30*(4), Article 4. https://doi.org/10.1111/sms.13623
- Schulze, E., Daanen, H. A. M., Levels, K., Casadio, J. R., Plews, D. J., Kilding, A. E., Siegel, R., & Laursen, P. B. (2015). Effect of thermal state and thermal comfort on cycling performance in the heat. *International Journal of Sports Physiology and Performance*, 10(5), 655–663. https://doi.org/10.1123/ijspp.2014-0281
- Siegel, R., Maté, J., Watson, G., Nosaka, K., & Laursen, P. B. (2011). The influence of ice slurry ingestion on maximal voluntary contraction following exercise-induced hyperthermia. *European Journal of Applied Physiology*, *111*(10), 2517–2524. https://doi.org/10.1007/s00421-011-1876-5
- Siegel, R., Maté, J., Watson, G., Nosaka, K., & Laursen, P. B. (2012). Pre-cooling with ice slurry ingestion leads to similar run times to exhaustion in the heat as cold water immersion. *Journal of Sports Sciences*, *30*(2), 155–165. https://doi.org/10.1080/02640414.2011.625968

- Snipe, R. M. J., & Costa, R. J. S. (2018). Does the temperature of water ingested during exertional-heat stress influence gastrointestinal injury, symptoms, and systemic inflammatory profile? *Journal of Science and Medicine in Sport*, 21(8), 771–776. https://doi.org/10.1016/j.jsams.2017.12.014
- Stanley, J., Leveritt, M., & Peake, J. M. (2010). Thermoregulatory responses to ice-slush beverage ingestion and exercise in the heat. *European Journal of Applied Physiology*, *110*(6), 1163–1173. https://doi.org/10.1007/s00421-010-1607-3
- Stevens, C. J., Thoseby, B., Sculley, D. V., Callister, R., Taylor, L., & Dascombe, B. J. (2016). Running performance and thermal sensation in the heat are improved with menthol mouth rinse but not ice slurry ingestion: Running performance and thermal sensation. *Scandinavian Journal* of Medicine & Science in Sports, 26(10), 1209–1216. https://doi.org/10.1111/sms.12555
- Tabuchi, S., Horie, S., Kawanami, S., Inoue, D., Morizane, S., Inoue, J., Nagano, C., Sakurai, M., Serizawa, R., & Hamada, K. (2021). Efficacy of ice slurry and carbohydrate–electrolyte solutions for firefighters. *Journal of Occupational Health*, 63(1). https://doi.org/10.1002/1348-9585.12263
- Takeshima, K., Onitsuka, S., Xinyan, Z., & Hasegawa, H. (2017). Effect of the timing of ice slurry ingestion for precooling on endurance exercise capacity in a warm environment. *Journal of Thermal Biology*, *65*, 26–31. https://doi.org/10.1016/j.jtherbio.2017.01.010
- Tay, C. S., Lee, J. K. W., Teo, Y. S., Q.Z. Foo, P., Tan, P. M. S., & Kong, P. W. (2016). Using gait parameters to detect fatigue and responses to ice slurry during prolonged load carriage. *Gait & Posture*, 43, 17–23. https://doi.org/10.1016/j.gaitpost.2015.10.010

- Thomas, G., Cullen, T., Davies, M., Hetherton, C., Duncan, B., & Gerrett, N. (2019). Independent or simultaneous lowering of core and skin temperature has no impact on self-paced intermittent running performance in hot conditions. *European Journal of Applied Physiology*, *119*(8), 1841–1853. https://doi.org/10.1007/s00421-019-04173-y
- Watkins, E. R., Hayes, M., Watt, P., & Richardson, A. J. (2018). Practical pre-cooling methods for occupational heat exposure. *Applied Ergonomics*, 70, 26–33. https://doi.org/10.1016/j.apergo.2018.01.011
- Zimmermann, M., Landers, G. J., & Wallman, K. E. (2017). Crushed Ice Ingestion Does Not Improve Female Cycling Time Trial Performance in the Heat. *International Journal of Sport Nutrition and Exercise Metabolism*, 27(1), 67–75. https://doi.org/10.1123/ijsnem.2016-0028
- Zimmermann, M., Landers, G., Wallman, K. E., & Saldaris, J. (2017). The Effects of Crushed Ice Ingestion Prior to Steady State Exercise in the Heat. *International Journal of Sport Nutrition and Exercise Metabolism*, 27(3), 220–227. https://doi.org/10.1123/ijsnem.2016-0215
- Zimmermann, M. R., & Landers, G. J. (2015). The effect of ice ingestion on female athletes performing intermittent exercise in hot conditions. *European Journal of Sport Science*, *15*(5), 407–413. https://doi.org/10.1080/17461391.2014.965751