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Zusammenfassung

m6A-mRNA-Modifikationen spielen eine essentielle Rolle in der Regula-
tion von mRNA. Eine wichtige Funktion von m6A ist der Abbau von m6A-
mRNA über das YTHDF2-Protein. Um genau zu verstehen, welche m6A-
modifizierten mRNAs abgebaut werden, ist es entscheidend, die Modifika-
tion mit hoher Genauigkeit transkriptomweit zu identifizieren. Obwohl m6A
üblicherweise mit antikörperbasierten Methoden nachgewiesen wird, hat
sich gezeigt, dass diese Verfahren aufgrund mangelnder Antikörperselektiv-
itäten einige Einschränkungen aufweisen. Um dies zu verbessern, haben wir
uns im ersten Teil dieser Arbeit auf den genauen Nachweis der Modifika-
tion konzentriert. Wir haben einige Limitierungen des m6A-Nachweises mit
dem miCLIP-Protokoll überwunden und ein verbessertes miCLIP2-Protokoll
etabliert. Dieses haben wir mit einer umfangreichen Bioinformatik-Pipeline
und einem maschinellen Lernklassifikator gekoppelt, was die genaue Iden-
tifizierung von m6A transkriptomweit in Nukleotidauflösung ermöglicht.
Unter Verwendung unserer neuen m6A Annotation haben wir im zweiten
Projekt eine neue Rolle von m6A-Modifikationen in der X-zu-Autosom-
Dosiskompensation identifiziert. Weibliche und männliche Zellen haben ein
aktives X-Chromosom. Dies führt zu einem Ungleichgewicht zwischen dem
einen X-Chromosom und den Autosomen, welche in zwei Kopien vorhan-
den sind. Um dieses Ungleichgewicht auszugleichen, wird vermutet, dass
X-chromosomale Gene stärker exprimiert werden und somit ähnliche Ex-
pressionsniveaus wie autosomale Gene erreichen. Es hat sich gezeigt, dass
X-chromosomale Transkripte eine höhere Halbwertszeit haben als autoso-
male Transkripte, doch es ist nicht bekannt, wie dies erreicht wird. In dieser
Arbeit zeigen wir, dass X-chromosomale Transkripte deutlich weniger m6A-
Modifikationen haben und dadurch stabiler sind als autosomale Transkripte.
Bei Verringerung von m6A werden autosomale Transkripte stabiler und erre-
ichen ähnliche Stabilitäten wie die X-chromosomalen Transkripte. Unsere Ar-
beit bietet eine verbesserte Methode für den transkriptomweiten Nachweis
von m6A sowie neue Einblicke in eine globale Funktion der Modifikation bei
der Regulierung von Genexpression.
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Abstract

m6A mRNA modifications play a crucial role in mRNA metabolism, in-
cluding the degradation of m6A-mRNA via the YTHDF2 reader protein. To
specifically understand which mRNAs are degraded in an m6A-dependent
way, it is essential to locate the modification in a high-confidence and
transcriptome-wide manner. m6A is commonly detected with antibody-
based methods. These approaches have been shown to suffer several lim-
itations due to insufficient antibody selectivities. To investigate the distri-
bution of m6A, we focused in the first part of this work on improving the
accurate detection of the modification. We specifically overcame limitations
of m6A detection using the miCLIP protocol and established an improved
miCLIP2 protocol. This was specifically coupled with an extensive bioinfor-
matic pipeline and a machine learning classifier, allowing the accurate detec-
tion of m6A transcriptome-wide in a single-nucleotide resolution. Using this
novel high-confidence annotation, we present in the second part of the work
a novel role of m6A modifications in X-to-autosome dosage compensation.
X-to-autosome dosage compensation aims to balance the gene expression
of autosomes and the X chromosome: While the X chromosome is present
in one copy, autosomes are present in two copies. It has been proposed
that X-chromosomal genes are upregulated and reach similar expression lev-
els as autosomal genes. It has been shown that X-chromosomal transcripts
have higher half-lives than autosomal transcritps, however, how this is ac-
complished is not known. Here, we show that X-chromosomal transcripts
are significantly depleted of m6A and thereby more stable than autosomal
transcripts. When depleting m6A, autosomal transcripts become more stable
and reach similar stabilities as the X-chromosomal transcripts. Collectively,
our work firstly provides an enhanced tool for the detection of m6A in a
transcriptome-wide manner and, secondly, gives novel insights into a global
function of the modification in the regulation of gene expression.
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Chapter 1

Introduction

1.1 Chromosomes

Genetic information of cells is stored within the deoxyribonucleic acid
(DNA). In order to protect and efficiently pack this information, DNA in eu-
karyotic cells is wrapped around specific proteins that are called histones,
and further organized into chromatin. Chromatin folds into nucleosomes and
finally into chromosomes (reviewed in Felsenfeld and Groudine, 2003).
Human cells carry 23 chromosome pairs, of which 22 are autosomal chromo-
somes. Autosomes exist in pairs that are homologous and carry between 750
and 2,900 genes (Nurk et al., 2022). The 23rd pair of chromosomes are sex
chromosomes. Sex chromosomes differ between females and males (hetero-
morphic sex chromosomes): While females carry two X chromosomes that
are homologous (homogametic), males carry one X chromosome and one Y
chromosome (heterogametic). In fact, the Y chromosome encodes the master
sex determination gene SRY, which confers maleness (Andrew et al., 1990;
reviewed in Schafer and Goodfellow, 1996; Arnold, 2009).

1.1.1 Sex chromosome evolution

The mammalian X and Y chromosomes evolved from a pair of homologous
autosomes over the past 200-300 million years after the mammalian ances-
tor diverged from the ancestor of birds and reptiles (Muller, 1914; Lahn and
Page, 1999; reviewed in Livernois et al., 2012; Sangrithi and Turner, 2018).
Accordingly, genes on the mammalian sex chromosomes have homologous
genes on autosomes in outgroup species. For example, homologous genes
of the eutherian (example given (e.g.) human or mouse) X chromosome are
located on chromosome 1 and 4 in chicken (Ross et al., 2005; Bellott et al.,
2010; reviewed in Sangrithi and Turner, 2018). X-linked genes that are ho-
mologous to chromosome 4 in chicken are present in all eutherian mammals
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and belong therefore to the X conserved region (XCR). However, some hu-
man genes that are homologous to chromosome 1 in chicken are not located
on the X chromosome in other mammalian species and therefore are more re-
cent evolutionary "arrivals". Those genes belong to the X added region (XAR)
(reviewed in Sangrithi and Turner, 2018; Livernois et al., 2012) (Figure 1.1).

Common Ancestor

Human MouseChicken

X AX AZ A

Z W 1 4 X Y X Y

New genes
XAR
XCR

FIGURE 1.1: Mammalian sex chromosome evolution. The eutherian mammalian sex
chromosomes evolved from a pair of ancestral autosomes into X and Y. While some
regions on the X chromosome are recent arrivals (black), other genes are homologous
to genes on chromosome 1 in chicken (X-added region (XAR), green) or to chromo-
some 4 in chicken (X-conserved region (XCR), orange). Adapted from Sangrithi and
Turner, 2018.

It is hypothesized that the ancestral autosomes (proto-X and proto-Y)
evolved into a X and Y chromosome when the proto-Y chromosome acquired
the sex determining region, the SRY locus (‘sex-determining region on the Y
chromosome’), which drives e.g. testis determination. After the acquisition
of SRY and further sex-specific genes, recombination with the X chromosome
started to become suppressed and led to a degeneration of the Y chromosome
(Charlesworth, 1991; reviewed in Bachtrog, 2013). Only a small region on the
Y chromosome is able to recombine with the X chromosome, the pseudoauto-
somal region (Burgoyne, 1982). Thus, the Y chromosome carries low numbers
of genes, less than 80 protein-coding genes, and is relatively small compared
to the X chromosome (Skaletsky et al., 2003; reviewed in Bachtrog, 2013). In
contrast, the X chromosome carries around 800 protein-coding genes (Ross
et al., 2005). Since females carry two gene-rich X chromosomes and males a
single X chromosome, an imbalance in genetic dosage is possible and might
need to be compensated. This is underlined by studies showing that expres-
sion of both sets of X-chromosomal genes is lethal in early development in
mice (Takagi and Abe, 1990; Marahrens et al., 1997).
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1.1.2 X-chromosome inactivation to harmonize gene expres-

sion between males and females

To compensate gene expression differences due to heteromorphic sex chro-
mosomes, one X chromosome is randomly inactivated during development
in female eutherian mammals. X chromosome inactivation was discovered
over 60 years ago, when a dense structure in female nuclei was observed,
which was reffered to as the Barr body (Barr and Bertram, 1949) and sub-
sequently was recognized being the inactive X chromosome (Ohno and
Hauschka, 1960; Russell, 1961; Lyon, 1961). Hence, genes on one X chromo-
some are silenced and as a result both females and males carry one active X
chromosome per cell. This mechanism is known as X chromosome inactiva-
tion and became intensely studied over the years (reviewed in Augui et al.,
2011; Loda et al., 2022).
In eutherian mammals, X chromosome inactivation is initiated in the early
stage of development and triggered by the dosage of the X inactivation cen-
ter (Xic), which is present in two copies in females (Rastan, 1983; Rastan and
Robertson, 1985). The Xic contains the master regulator of X chromosome in-
activation (Xist), a non-coding RNA whose expression is sufficient to induce
silencing of the chromosome from which it is expressed (Brockdorff et al.,
1991; Borsani et al., 1991; Brown et al., 1991; Wutz and Jaenisch, 2000). Xist
is monoallelically expressed, upregulated along with X chromosome inacti-
vation and during this process able to coat the X chromosome from which it
is expressed (reviewed in Loda et al., 2022). Once Xist has initiated silencing,
multiple mechanisms that then maintain X chromosome inactivation have
been described, such as gene silencing through (repressive) DNA methyla-
tions (e.g. Norris et al., 1991; Gendrel et al., 2012), histone modifications (e.g.
Keohane et al., 1996; Żylicz et al., 2019), formation of supramolecular com-
plexes (Markaki et al., 2021), as well as re-organization of the X chromosome,
leading to a nuclear compartment that is silenced (Splinter et al., 2011; Gior-
getti et al., 2016, reviewed in Loda et al., 2022).
Interestingly, X chromosome inactivation is not limited to one X chromo-
some: Individuals with several X chromosomes (e.g. three or four X chro-
mosomes (XXX or XXXX)) have been shown to inactivate all X chromosomes
except for a single one, indicating that a "counting" mechanism is in place
which ensures that only a single X chromosome is active per cell (Jacobs and
Strong, 1959; reviewed in Avner and Heard, 2001; Jégu et al., 2017).
Importantly, a number of genes can escape X chromosome inactivation and
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become expressed from both X chromosomes (escapees) (Lyon, 1962; Carrel
and Willard, 2005; reviewed in Heard and Disteche, 2006). In humans, about
15-20% of X-chromosomal genes have been described to be able to escape X
chromosome inactivation (Carrel and Willard, 2005; Tukiainen et al., 2017);
while in mice, only around 3% have been described as escapees (Yang et al.,
2010; Berletch et al., 2015).

1.1.3 X-to-autosome dosage compensation

Males and females carry one active X chromosome. This is one copy less than
autosomes, which are present in two copies. Consequently, this leads to an-
other layer of dosage imbalance (Figure 1.2). Imbalance in X chromosomal
gene dosage can lead to a number of different developmental defects (re-
viewed in Basilicata and Keller Valsecchi, 2021). The need for a balanced X-
to-autosome dosage becomes especially apparent when considering that sex
chromosomes have evolved from a pair of ancestral autosomes. This raises
the question, "How can X-chromosomal genes expressed from one chromosome keep
up with autosomal genes?" or more specifically, "How did the regulation of X-
chromosomal gene expression change over the course of evolution when genes were
only expressed from one copy?".

XX

XY X Y

A A

A A � A A

A A

Xi
♀
♂

X

FIGURE 1.2: The two layers of dosage compensation. To equalize heterogametic sex
chromosomes between males and females, one X chromosome is inactivated in fe-
male cells. Then, to equalize expression between the one active X chromosome and
two active autosomes, the X chromosome is upregulated.

In 1966, Susumu Ohno formulated what is known as "Ohno’s Hypothesis":
while autosomal genes are expressed from two chromosome copies, the sin-
gle active X chromosome is in an upregulated state, leading to higher ex-
pression levels of X-chromosomal genes that are comparable and compati-
ble with those of autosomal genes (Figure 1.2) (Ohno, 1966). The advent of
high-throughput and genome-wide approaches allowed the investigation of
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Ohno’s hypothesis in mammals over the past years. Microarray and RNA seq
data allow for powerful and detailed expression analysis, and several stud-
ies have challenged the hypothesis of X chromosome upregulation. On the
one hand, different studies have claimed that X-to-autosome ratios (X:A ra-
tios) are close to 0.5 indicating that X-chromosomal genes are not expressed
in equal amounts (e.g. Xiong et al., 2010; Lin et al., 2012). On the other hand,
many other studies reported X:A ratios close to 1 and supported Ohno’s hy-
pothesis (e.g. Deng et al., 2011; Lin et al., 2011).

1.1.4 X-to-autosome dosage compensation mechanisms

Several X-to-autosome dosage compensation mechanisms on the transcrip-
tional and post-transcriptional level have been described so far. Among
them, X chromosome upregulation has been shown to be supported by
higher transcriptional initiation due to higher RNA polymerase II occupan-
cies and more activating histone modifications on X-chromosomal genes
(Yildirim et al., 2012; Deng et al., 2013). Furthermore, elevated transcriptional
burst frequencies of X-chromosomal genes have been reported. Importantly,
increased burst frequencies were not observed in undifferentiated female
mouse embryonic stem cells that harbor two active X chromosomes, indi-
cating that this mechanism can act as a molecular switch that is turned on
when needed (Larsson et al., 2019; Lentini et al., 2022).
Faucillion and Larsson (2015) motivated their study on X chromosome up-
regulation based on the hypothesis that the "progressive degeneration of the
proto Y-chromosome must have led to evolutionary pressure at all levels to compen-
sate for losses of functional gene copies." (Faucillion and Larsson, 2015). This
suggests that although many studies have focused on elevated transcription
rates of X-chromosomal genes and elevated translation rates, RNA stabil-
ity and protein stability should also play a role in X chromosome upregu-
lation. Indeed, Faucillion and Larsson (2015) showed that X-chromosomal
transcripts have longer mRNA half-lives and higher ribosome densities. Both
these characteristics of X-chromosomal transcrips have also been observed
in other studies (Deng et al., 2013; Wang et al., 2020b). Consequently, X-to-
autosome dosage compensation is achieved through various mechanisms,
both on the transcriptional as well as post-transcriptional level.
While several mechanisms have been described for transcriptional X chro-
mosome upregulation, it is largely unknown how higher RNA stabilities of
X-chromosomal transcripts are achieved (Deng et al., 2013). In 2009, a study
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showed that X-chromosomal transcripts harbor lower numbers of premature
translation termination codons (PTC) which can generally be introduced into
a transcript by mis-splicing events. These PTCs lead to the degradation of a
transcript via the nonsense-mediated decay (NMD) pathway. Due to lower
numbers of PTCs on the X chromosome, transcripts are less degraded and
thus more stable (Yin et al., 2009). However, no further studies have shed
light on differential mRNA stability of autosomal and X-chromosomal tran-
scripts. This raises an interesting question on how post-transcriptional mech-
anisms can selectively recognize and act on X-chromosomal transcripts.

1.2 RNA as a regulator of gene expression

The central dogma of molecular biology, first stated by Crick (1958), describes
the translation of genetic information from DNA into functional proteins via
an RNA intermediate. This is not working in a one-to-one manner, meaning
that each step in this process harbors opportunities for regulation, leading
to genes that are expressed to different levels. The term "gene expression"
therefore refers to the idea that the translation of one gene into a protein is
dynamically regulated. One way of regulation is the modification of DNA or
RNA bases, or protein amino acids. More recently, the field of mRNA modi-
fications has undergone several breakthroughs for the detection of modifica-
tions leading to a heavily studied and rapidly evolving research field.

1.2.1 Epitranscriptomics: RNA modifications as a regulator

of RNA

RNA modifications are chemical alterations ("decorations") of the RNA nu-
cleotides that influence the fate of an RNA molecule. To date, more than 150
different RNA modifications have been identified, with numerous different
functions in the regulation of RNA turnover (Boccaletto and Bagiński, 2021;
reviewed in Jonkhout et al., 2017). The advent of high-throughput sequenc-
ing techniques allowed the transcriptome-wide detection of mRNA modifi-
cations (Dominissini et al., 2012; Meyer et al., 2012) and thus led to a rapidly
evolving research field known as Epitranscriptomics (He, 2010; Saletore et al.,
2012). Due to its direct role in gene expression, several mRNA modifications
have been identified to play important roles in human diseases and thus have
become a focus of RNA therapeutics and drug discovery research (reviewed
in Jonkhout et al., 2017; Cayir, 2022; Barbieri and Kouzarides, 2020).
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1.2.2 N6-methyladenosine

The most abundant internal mRNA modification is N6-methyladenosine and
was identified to be present in mRNAs over 4 decades ago (Desrosiers et al.,
1974; Perry et al., 1975). In mammals, estimations of m6A modifications on
transcripts reached from 1-3 modifications per RNA molecule (Perry and Kel-
ley, 1976; Wei et al., 1975; Dominissini et al., 2012; Meyer et al., 2012). Due to
its abundance, Desrosieres hypothesized already in 1974 that m6A plays an
essential role in cellular processes. Accordingly, m6A has been shown to be
involved in various different functions in the cell, including splicing, nuclear
export, translation as well as RNA degradation (reviewed in Murakami and
Jaffrey, 2022). Interestingly, recent work has suggested that m6A modification
numbers were largely underestimated, with new estimations up to 13 mod-
ifications per transcript (Uzonyi et al., 2023; Tegowski et al., 2022; Liu et al.,
2022).

1.2.3 m6A deposition

m6A on mRNA is co-transcriptionally deposited by a methyltransferase
"writer" complex and S-adensosylmethionine (SAM) serves as the methyl
donor (Bokar et al., 1994; Śledź and Jinek, 2016; reviewed in Jia et al., 2013).
The writer complex is estimated to be 1,000 kilodalton large and is comprised
of several proteins (reviewed in Garcias Morales and Reyes, 2021). Three pro-
teins, METTL3, METTL14 and WTAP form the core writer complex. METTL3
is the catalytically active subunit and it has been shown that the protein con-
tains a conserved DPPW (Asp-Pro-Pro-Trp) motif in loop 1 of the methyl-
transferase domain which is coordinating the adenine group of the accep-
tor mRNA substrate (Śledź and Jinek, 2016). METTL14 stabilizes METTL3
and binds to RNA, but is catalytically inactive (Liu et al., 2014; Wang et al.,
2016a; Wang et al., 2016b). Together with WTAP, which was shown to local-
ize the complex into nuclear speckles (Ping et al., 2014), they form the core
writer complex (Schöller et al., 2018) (Figure 1.3). Additional proteins of the
complex play roles in the stability, localization, substrate binding or catalytic
efficiency (reviewed in Garcias Morales and Reyes, 2021).
Since METTL3 has been shown to be the catalytically active subunit re-
quired for m6A deposition, many studies have targeted the gene in knock-
out (KO) or knock-down (KD) experiments. However, depleting Mettl3 is
lethal in early embryonic development in mice (Geula et al., 2015) and most
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FIGURE 1.3: m6A is deposited by a methyltransferase complex of which METTL3
METTL14 and WTAP form the core complex. It can be removed again by eraser pro-
teins such as FTO and ALKBH5. The biological role is carried out by reader proteins
that influence the fate of the mRNA.

successful METTL3 KO in human and mouse cells have shown a substan-
tial remaining percentage of m6A in cells (Poh et al., 2022). This was first
suggested to be METTL3-independent m6A sites, however, more recently, a
study showed that many METTL3 KO cells harbor a specific METTL3 iso-
form that is still catalytically active and responsible for the majority of re-
maining m6A in METTL3 KO cells (Poh et al., 2022). Importantly, a small
molecule inhibitor targeting the DPPW motif of METTL3 has recently been
shown to successfully inhibit m6A deposition (Yankova et al., 2021). This in-
hibitor is drastically facilitating the research of m6A by overcoming the limi-
tations of METTL3 KO or KD studies.

1.2.4 m6A location in mRNAs

m6A is deposited in a specific sequence within a DRACH (D = A, G or T; R =
A or G; H = A, C or U) motif and is enriched around stop codons (Dimock and
Stoltzfus, 1977; Wei et al., 1976; Dominissini et al., 2012; Meyer et al., 2012). It
has been suggested that not all DRACH motifs are methylated and that m6A
deposition is non-random and regulated not only through sequence content
(Dominissini et al., 2012; Meyer et al., 2012).
The non-random pattern of m6A modifications prompted the hypothesis that
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mechanisms must be in place that guide positions on transcripts that are sup-
posed to be methylated. In 2019, a study showed that a specific histone mod-
ification, H3K36me3, is co-occurring on DNA positions that are later m6A
methylated positions on RNA (Huang et al., 2019). It was shown that changes
in the histone modifications led to alterations of m6A modifications on RNAs.
Together with the finding that METTL14 binds H3K36me3, they hypothe-
sized that the H3K36me3 could mark m6A deposition by interacting with
the m6A methylttansferase complex (Huang et al., 2019).
Another recent article has shown that m6A deposition is influenced by the
proximity to a splice junction. While positions close to a splice junction are
less modified, all other positions carry m6A modifications (Uzonyi et al.,
2023). Another recent paper described a similar model, in which a core com-
ponent of the exon junction complex, EIF4A3, blocks the binding and m6A
deposition of METTL3 to exon-exon boundaries. Regions that are depleted
in the exon junction complex, such as long internal exons or the last exon of
a transcript are thus more accessible to METTL3 and more methylated (Yang
et al., 2022). These findings could explain the characteristic enrichment of
m6A around the stop codon, which has been observed for nearly a decade
(Dominissini et al., 2012; Meyer et al., 2012; Linder et al., 2015).

1.2.5 m6A dynamics and removal

One finding that raised interest for the epitranscriptomic field is that m6A
is a dynamic modification that is reversible (Jia et al., 2011). This suggests
that the modification is dynamically modulated in a signal-dependent man-
ner (reviewed in Mauer and Jaffrey, 2018). Two "eraser" proteins have been
identified so far: fat mass and obesity-associated protein (FTO) (Jia et al.,
2011) as well as alpha-ketoglutarate-dependent dioxygenase alkB homolog 5
(ALKBH5) (Zheng et al., 2013). While ALKBH5 has been shown to demethy-
late m6A in several studies, FTO was recently identified to rather demethy-
late a similar modification, m6Am (Mauer et al., 2017; reviewed in Lesbirel
and Wilson, 2019).
m6A methylation is non-stoichiometric: not all transcripts harbor m6A at
the same positions but only a fraction of transcripts can be methylated (re-
viewed in Tuck, 1992; Meyer and Jaffrey, 2014). It is tempting to speculate
that m6A stoichiometry is driven by an active and permanent m6A removal,
however, it has been suggested over the years that m6A removal is a rather
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rare event and not influencing m6A dynamics in a broad manner. The non-
stoichiometric nature of m6A is suggested to be driven by the writer complex
(reviewed in Mauer and Jaffrey, 2018; Lesbirel and Wilson, 2019).

1.2.6 m6A functions via reader proteins

The function of m6A is carried out by RNA-binding proteins that specifically
recognize the modification ("reader" proteins). To date, several different
proteins have been shown to selectively bind m6A and change mRNA fate in
a specific manner. Among them, the YTH-domain containing proteins are the
most prominent and well-studied m6A readers. Additionally, IGF2BP1 and
HuR have been described as m6A readers (Huang et al., 2018; Visvanathan
et al., 2018), however, if they directly recognize m6A or indirectly via other
co-factors has been discussed in the field. mRNA stability (reviewed in Boo
and Kim, 2020), mRNA export (reviewed in Lesbirel and Wilson, 2019) and
splicing (Xiao et al., 2016) as well as mRNA translation (reviewed in Meyer,
2019b) are among the processes that have been shown to be influenced
by m6A (reviewed in Jiang et al., 2021). In this thesis, I will focus on YTH
domain-containing m6A reader proteins and their function in RNA stability.

1.2.7 YTH domain-containing proteins

YT521-B-homology domain (YTH)-containing proteins contain a close to
140 amino acids RNA-binding domain that is highly conserved among the
proteins (Stoilov et al., 2002). This YTH domain has been shown to rec-
ognize and bind m6A (Xu et al., 2014; Zhu et al., 2014). Three different
YTH-domain-containing protein categories have been identified: the YTH
domain-containing protein 1 (YTHDC1) and YTH domain-containing pro-
tein 2 (YTHDC2) and the YTH domain-containing family (YTHDF proteins).
YTHDC1 was described to have several different functions upon m6A recog-
nition, such as functions in splicing (Xiao et al., 2016) as well as nuclear export
of m6A-mRNA (Roundtree et al., 2017). Interestingly, YTHDC1 has also been
shown to play a role in X chromosome inactivation (Patil et al., 2016). More
specifically, Xist is highly m6A methylated and recruits YTHDC1. This bind-
ing of YTHDC1 to Xist promotes the repression of X-chromosomal genes.
This shows that m6A plays an important role in gene expression regulation
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by recruiting specific reader proteins that influence cellular processes. In con-
trast to YTHDC1, YTHDC2 is the most distinct protein to the other YTH pro-
teins (reviewed in Patil et al., 2018; Liao et al., 2018). It has been reported to
regulate mammalian spermatogenesis in an m6A-dependent manner (Hsu
et al., 2017) but whether it really binds m6A has also been challenged (Patil
et al., 2016; reviewed in Patil et al., 2018).
The three YTHDF proteins (YTHDF1/2/3) have highly conserved sequences
(reviewed in Patil et al., 2018). Early studies of the YTHDF proteins have
suggested that the three cytoplasmic proteins have independent roles, such
as YTHDF1 in influencing translation (Wang et al., 2015), YTHDF2 promoting
m6A-RNA degradation (Wang et al., 2014) and YTHDF3 acting together with
both proteins in translation and mRNA degradation (Shi et al., 2017; Li et al.,
2017). This is in contrast to studies that have suggested similar functions for
all three proteins (Du et al., 2016; reviewed in Patil et al., 2018). More recently,
two studies have further supported the hypothesis of a unified function of
YTHDF proteins showing that the three YTHDF proteins bind to the same
m6A-modified mRNAs and that the proteins act together in promoting the
degradation of m6A-modified mRNAs (Zaccara and Jaffrey, 2020; Lasman et
al., 2020).

1.2.8 mRNA degradation via YTHDF proteins

Early studies reported that m6A sites influence mRNA stability (Wang et al.,
2014; Schwartz et al., 2014). Further, it was shown that YTHDF2 localizes into
processing bodies (P bodies) (Wang et al., 2014; Ries et al., 2019) in which
mRNAs are degraded (Sheth and Parker, 2003). These findings have set the
ground of the nowadays prominent function of m6A: mRNA degradation.
One leading question in the field is how m6A and YTHDF proteins mechanis-
tically drive mRNA degradation. So far, YTHDF proteins have been linked to
three different mRNA degradation pathways in an m6A-dependent manner
(Figure 1.4) (Gibbs and Chanfreau, 2022).
Firstly, it was reported that YTHDF2 interacts with CCR4-NOT transcription
complex subunit 1 (CNOT1) and recruits the Carbon Catabolite Repression-
Negative On TATA-less (CCR4-NOT) deadenylase complex, which then in-
duces deadenylation of m6A-mRNAs (Du et al., 2016). Secondly, it has been
shown that in presence of a specific binding motif for the heat-responsive
protein 12 (HRSP12), m6A-mRNAs bound by YTHDF2 can be degraded
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FIGURE 1.4: Three different mRNA degradation mechanisms have been linked to
YTHDF2 and m6A-mRNA, endonucleolytic cleavage with the RNase P/MRP com-
plex, deadenylation via the CCR4-NOT complex and decapping of the mRNA via
UPF1. Adapted from Gibbs and Chanfreau, 2022

through endonucleolytic cleavage (Park et al., 2019). Thirdly and most re-
cently, a novel mRNA decay pathway has been linked to m6A and YTHDF2
(Boo et al., 2022). YTHDF2 has been previously shown to interacts with
the RNA-decay factor Up-frameshift protein 1 (UPF1) (Schweingruber et al.,
2016). Boo and colleagues could now show that YTHDF2 directly interacts
with UPF1 and leads to the degradation of m6A-mRNA. This is accomplished
by the recruitment of enzymes that initiate de-capping and thereby mRNA
decay (Boo et al., 2022). Even though mRNA degradation of m6A-modified
mRNAs is a prominent function of m6A and the YTHDF proteins, it is not
clear if all m6A-mRNAs are degraded or if there is a specific subset of mRNAs
that are preferably degraded. This raises the interesting question: "Which mR-
NAs are marked with m6A to be degraded and why?"

1.3 m6A detection methods

To globally identify functions of m6A, the accurate and transcriptome-wide
identification of the modification is essential. Even though m6A was discov-
ered nearly 50 years ago, detection limitations have hindered the field from
transcriptome-wide analysis of the function and distribution of the modifi-
cation (Fu and He, 2012).
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The development of m6A-specific antibodies (Bringmann and Lührmann,
1987), coupled with advances in next-generation sequencing (NGS) has given
rise to novel methods that allow a broad and transcriptome-wide characteri-
zations of m6A: two similar techniques that were developed in 2012, m6A-seq
and MeRIP seq, are based on m6A-specific antibodies that first enrich mod-
ified mRNAs and then high-throughput sequencing is used to identify the
region of the modification. These studies identified thousands of m6A sites
transcriptome-wide, demonstrating that m6A is an ubiquitous modification
and paving the road for the field of m6A Epitranscriptomics (Dominissini et al.,
2012; Meyer et al., 2012).

1.3.1 miCLIP to detect m6A

MeRIP seq and m6A-seq enrich for m6A modified mRNAs and allowed a
transcriptome-wide mapping of m6A. However, the exact position of the
modification cannot be determined by these protocols, since they only give
information about m6A in a 24-100 nucleotide window (Dominissini et
al., 2012). The need for transcriptome-wide m6A annotations in a single-
nucleotide resolution gave rise to the development of Ultraviolet (UV) cross-
linking-based approaches (reviewed in Moshitch-Moshkovitz et al., 2022).
One of these approaches is m6A-individual nucleotide resolution cross-
linking and immunoprecipitation (miCLIP) (Linder et al., 2015).
In miCLIP, an m6A antibody is crosslinked to poly(A) RNA using UV-light,
leading to a covalent bond of the antibody and its target-RNA. This com-
plex is then purified. After adapter ligation, the antibody-RNA complex is
digested using proteinase K. The antibody is not fully digested but leaves a
small polypeptide on the RNA at the position where the crosslink happened.
In the next step, the RNA is reverse transcribed into complementary DNA
(cDNA). During this process, the remaining polypeptide on the RNA causes
the reverse-transcriptase to mostly truncate at this position (Figure 1.5). Of
note, depending on the m6A antibody used, the remaining peptide may also
cause the reverse transcriptase to pass over (rather than truncate) over the
position of the crosslink and remaining peptide. This introduces a mismatch
after the position of the crosslink. After polymerase chain reaction (PCR) am-
plification and high-throughput sequencing, the first position of each read
will be the truncation position of the reverse transcriptase (RT), or, in case of
a pass-over of the transcriptase, the position of the crosslink can be detected
through a mismatch (König et al., 2010; Linder et al., 2015). This protocol is



14

followed by an extensive bioinformatic analysis to identify the position of
m6A.

m6A
AAAAA

m6A

UV-light induced crosslinking of
m6A antibody to poly(A) RNA

IP and antibody digestion,
reverse transcription

NGSiCLIP

Computational
identification

of m6A

RT

FIGURE 1.5: m6A detection using miCLIP. Poly(A) RNA is incubated with an m6A-
specific antibody, which is crosslinked to its target mRNA using UV light. After
antibody digestion and reverse transcription by the reverse transcriptase (RT), the
amplified library can be sequenced and positions of m6A can be detected.

1.3.2 Limitations of miCLIP

Since its development, miCLIP has been suffering from several limitations:
one of them is the need for high-input materials. This makes the protocol
exclusive for samples where high amounts of materials are available. Fur-
ther, high background signals due to limited antibody specificity have been
reported. This is partially due to cross-reactivities of the antibody with for
example other modifications like m6Am (McIntyre et al., 2020). Furthermore,
miCLIP does not provide information about the quantity of transcripts that
are carrying a specific m6A site: there is no stoichiometric information. Since
m6A has been proposed to be a low-stoichiometric modification, the need for
quantitative m6A detection has been pointed out.

1.3.3 Bioinformatic approaches to enhance the m6A detection

from miCLIP data

An important part of NGS-based mapping methods such as miCLIP is the
bioinformatic analysis to accurately identify the signal from the produced
data. This implies to balance the identification of the signal and maximiz-
ing the results while minimizing error rates or false positives. In miCLIP, the
first steps of the analysis include quality controls, mapping of the sequences
to a reference genome and removing PCR duplicates in the data (Busch et al.,
2020; Hawley and Jaffrey, 2019). To identify positions in the transcriptome



15

that are significantly enriched in crosslinking events, specific algorithms de-
signed for the detection of signal in CLIP data can be applied (peak calling,
reviewed in Chakrabarti et al., 2018). Peak calling detects positions or re-
gions that are significantly enriched in signal compared to the background
signal surrounding those positions. Even though peak calling enriches for
positions with high signals (peaks), it is important to further filter these iden-
tified peaks, since some of them can stem from unspecific antibody binding,
cross-reactivities with other modifications, or general crosslinking biases (re-
viewed in Chakrabarti et al., 2018). To overcome unspecific signal leading
to false positives, the miCLIP protocol only considers identified peaks at
adenosines and further filters them for the location within a DRACH motif
(Hawley and Jaffrey, 2019). This does not ensure that the signal of these sites
stems from true m6A sites, and further, excludes the possibility that some
rare m6A sites could be occurring outside of DRACH motifs. It will be of
interest to overcome these limitations to improve the detection of m6A in a
transcriptome-wide manner.
Limitations in the experimental detection of m6A have given rise to comple-
mentary computational methods. Machine learning algorithms can support
or complement bioinformatic analysis in identifying patterns in data that
lead to predictions with high accuracies. Based on previously detected m6A
sites, machine learning-based methods have been established to predict m6A
sites. While 26 m6A-predictors were developed until 2021, only five were
based on high quality, single-nucleotide resolution datasets. Since one major
caveat of training a machine learning classifier is the quality of the training
dataset, many tools only reached poor prediction performances (reviewed in
Chen et al., 2020).

1.3.4 Antibody-free m6A detection

Limitations of antibody-based m6A detection methods has stimulated the
development of antibody-free m6A detection methods. Several different ap-
proaches have been published so far. One method makes use of a RNase
called MazF, which is able to cleave unmodified ACA motifs, but does not act
on modified ACA motifs (Mazter-seq, Garcia-Campos et al., 2019; m6A-REF-
seq, Chen et al., 2022). The limitation of this method is the exclusive detection
of m6A sites within ACA motifs. Further studies have focused on detecting
m6A through reader or writer proteins: in DART-seq, the YTH domain of
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YTHDF2 was fused to apolipoprotein B mRNA editing enzyme catalytic sub-
unit 1 (APOBEC1), which is a cytidine to uridine (C-to-U) deaminase, leading
to the positions that are close to the protein binding site to have the character-
istic C-to-U pattern (Meyer, 2019a). This method has been recently brought to
single-cell level (Tegowski et al., 2022). Further approaches that base on the
eraser protein FTO or the methyl-donor SAM have been established (Wang
et al., 2020a; Shu et al., 2020; reviewed in Moshitch-Moshkovitz et al., 2022).
These methods are limited to the detection of m6A sites that are recognized
by the specific protein. Most recently, two novel methods that are based on
the deamination of only unmethylated adenosines were developed (GLORI,
Liu et al., 2022; eTAM-seq, Xiao et al., 2023). These techniques allow the ac-
curate detection and at the same time stoichiometric quantification of m6A
without antibodies.
RNA modification detection has also been developed in the field of direct
RNA sequencing (dRNA seq): Oxford Nanopore Technologies dRNA seq
is fundamentally different from other sequencing techniques: it directly se-
quences the native RNA by passing it through a membrane-embedded pro-
tein pore. During this passing, disruptions in ion currents can be identified,
which make it possible to detect the nucleotide sequence based on the spe-
cific current pattern (Deamer et al., 2016). Importantly, these currents are dif-
ferent if an RNA base is modified, and in case of m6A, can be read out as
an error profile. Several different machine learning algorithms have been es-
tablished to detect m6A from dRNA seq data (Pratanwanich et al., 2021; re-
viewed in Furlan et al., 2021). Several antibody-free methods have been de-
veloped, however, antibody-based m6A detection is still the most commonly
used method to identify m6A transcriptome-wide.

1.4 Aim of this thesis

m6A mRNA modifications have been shown to be important key players in
many cellular processes. For many identified functions of m6A it is still un-
clear how or which individual modification is influencing process changes in
detail. This lack of understanding is due to the limitations of an accurate de-
tection of m6A. Therefore, to study m6A in more detail, this work aims to en-
hance the detection of m6A. Then, using a high confidence m6A annotation,
we investigate the role of m6A-mediated mRNA stability in X-to-autosome
dosage compensation.
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In the first part of this thesis, we aim to overcome limitations of m6A detec-
tion using the miCLIP protocol. Coupling an enhanced experimental proto-
col with an extensive bioinformatic analysis as well as a machine learning
classifier will allow to accurately predict m6A sites from miCLIP data. This
will significantly enhance the detection of m6A and allow to learn more about
the positioning and distribution about the modification.
In the second chapter, we aim to use the novel high-confidence m6A anno-
tation to investigate the m6A distribution of transcripts of autosomal versus
X-chromosomal transcripts. By comparing the distribution of m6A sites of
X-chromosomal and autosomal transcripts, we tackle the questions if m6A is
differentially distributed in a chromosome-wide manner. Then, using RNA
sequencing experiments as well as RNA half-live measurements, we aim to
understand if differential RNA stabilities of X-chromosomal and autosomal
transcripts are mediated by m6A RNA modifications. Collectively, this work
will help to provide a comprehensive and high-confidence m6A annotation
in a transcriptome-wide and single-nucleotide resolution, as well as investi-
gate a novel role of the modification in the regulation of gene expression.
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Chapter 2

Publication 1: Deep and accurate
detection of m6A RNA
modifications using miCLIP2 and
m6Aboost machine learning.

2.1 Summary

m6A is the most abundant internal mRNA modification and plays a role
in many processes in the cell. One established method to detect the mod-
ification is miCLIP (m6A individual-nucleotide resolution UV crosslinking
and immunoprecipitation). While miCLIP allows for the transcriptome-wide
m6A detection in a single-nucleotide resolution, it suffers from several limi-
tations, such as high input materials and high background noises in the data.
To overcome these limitations we present miCLIP2, which is an enhanced
protocol that results in high-complexity libraries while using less input ma-
terial. We couple the protocol with an extensive bioinformatical pipeline and
specifically identify unspecific background signals by comparing miCLIP2
WT with miCLIP2 Mettl3 KO data. Using the resulting high-confidence m6A
annotation, we train a machine learning classifier that specifically learns the
miCLIP2 footprint of true m6A sites. Using this classifier, we can predict m6A
signal of miCLIP2 data in a high-confidence manner without the need of a
complementary Mettl3 KO experiment.

2.2 Zusammenfassung

m6A ist die am häufigsten vorkommende interne mRNA-Modifikation und
spielt in vielen Prozessen in der Zelle eine Rolle. Eine etablierte Methode zur
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Detektion der Modifikation ist miCLIP (m6A individual-nucleotide resolu-
tion UV crosslinking and immunoprecipitation). miCLIP ermöglicht die tran-
skriptomweite m6A-Detektion in Nukleotid-Auflösung, aber diese Methode
leidet aber auch unter mehreren Einschränkungen, wie zum Beispiel ho-
hes benötigtes Inputmaterial sowie starkem unspezifischem Hintergrundsig-
nal in den Daten. Um diese Einschränkungen zu überwinden, stellen wir
miCLIP2 vor, ein verbessertes Protokoll, das mit weniger Inputmaterial zu
hochkomplexen Libraries führt. Wir koppeln das Protokoll mit einer um-
fangreichen bioinformatischen Pipeline und identifizieren gezielt unspezi-
fische Hintergrundsignale durch den Vergleich von miCLIP2 WT mit mi-
CLIP2 Mettl3 KO-Daten. Anhand der daraus resultierenden hoch zuverläs-
sigen m6A-Annotation trainieren wir einen maschinellen Lernklassifikator,
der speziell den miCLIP2-Fußabdruck echter m6A-Stellen lernt. Mit diesem
Klassifikator können wir das m6A-Signal von miCLIP2-Daten mit hoher
Zuverlässigkeit vorhersagen, ohne dass ein komplementäres Mettl3 KO-
Experiment benötigt wird.

2.3 Statement of contribution

In this work I contributed to the miCLIP2 analysis pipeline for the process-
ing of sequencing reads and detecting initial signals as well as differential
methylation analysis. Further, I contributed to the computational validation
of predicted m6A sites in human datasets by comparing them to RBP-
binding data and other m6A annotations. I participated in all project and
paper-related meetings and developed ideas and directions of the project. I
contributed to the manuscript preparation and revision in all stages.

Supervisor confirmation:



Published online 22 June 2021 Nucleic Acids Research, 2021, Vol. 49, No. 16 e92
https://doi.org/10.1093/nar/gkab485

Deep and accurate detection of m6A RNA
modifications using miCLIP2 and m6Aboost machine
learning
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ABSTRACT

N6-methyladenosine (m6A) is the most abundant in-
ternal RNA modification in eukaryotic mRNAs and
influences many aspects of RNA processing. miCLIP
(m6A individual-nucleotide resolution UV crosslink-
ing and immunoprecipitation) is an antibody-based
approach to map m6A sites with single-nucleotide
resolution. However, due to broad antibody reactiv-
ity, reliable identification of m6A sites from miCLIP
data remains challenging. Here, we present miCLIP2
in combination with machine learning to significantly
improve m6A detection. The optimized miCLIP2 re-
sults in high-complexity libraries from less input ma-
terial. Importantly, we established a robust compu-
tational pipeline to tackle the inherent issue of false
positives in antibody-based m6A detection. The anal-
yses were calibrated with Mettl3 knockout cells to
learn the characteristics of m6A deposition, includ-
ing m6A sites outside of DRACH motifs. To make

our results universally applicable, we trained a ma-
chine learning model, m6Aboost, based on the ex-
perimental and RNA sequence features. Importantly,
m6Aboost allows prediction of genuine m6A sites in
miCLIP2 data without filtering for DRACH motifs or
the need for Mettl3 depletion. Using m6Aboost, we
identify thousands of high-confidence m6A sites in
different murine and human cell lines, which provide
a rich resource for future analysis. Collectively, our
combined experimental and computational method-
ology greatly improves m6A identification.

INTRODUCTION

The epitranscriptome collectively describes modifications in
RNA and has emerged as a crucial and complex mecha-
nism for the post-transcriptional regulation of gene expres-
sion. Pervasively occurring in all three kingdoms of life, N6-
methyladenosine (m6A) is the most prevalent internal mod-
ification on mRNA (1,2). The emerging interest in RNA
modifications revealed m6A as an essential regulator in al-

*To whom correspondence should be addressed. Tel: +49 69 798 42506; Email: kathi.zarnack@bmls.de
Correspondence may also be addressed to Julian König. Email: j.koenig@imb-mainz.de
†The authors wish it to be known that, in their opinion, the first three authors should be regarded as joint First Authors. The order of the first authors was determined
by lottery.

C© The Author(s) 2021. Published by Oxford University Press on behalf of Nucleic Acids Research.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article/49/16/e92/6307904 by Institut für R

echt und W
irtschaft user on 28 February 2023



e92 Nucleic Acids Research, 2021, Vol. 49, No. 16 PAGE 2 OF 19

most all aspects of mRNA metabolism and uncovered di-
verse physiological functions (3–8).

m6A is a dynamic modification. It is deposited by writers,
recognized by readers and removed by erasers. The writing
of m6A in mRNA is mainly carried out by a highly con-
served, multicomponent methyltransferase complex that
catalyzes the conversion of adenosine to m6A. The methyl-
transferase like 3 (METTL3) acts as the catalytically ac-
tive subunit, possessing an S-adenosylmethionine (SAM)
binding domain (MTA-70 like domain) with the conserved
catalytic DPPW motif (Asp-Pro-Pro-Trp) (9). It installs
m6A by transferring a methyl group of a SAM donor to
targeted adenosines (10). While methyltransferase like 14
(METTL14) is catalytically inactive, it forms a stable het-
erodimer with METTL3; simultaneously facilitating RNA
interaction and increasing the catalytic activity of METTL3
(9,11). Additionally, different methyltransferases were iden-
tified as m6A writers which mainly add m6A to U2 and U6
snRNAs, lncRNA or pre-mRNA (12–14). In mRNA, m6A
enriches in a DRACH ([G/A/U][G>A]m6AC[U>A>C])
consensus sequence and occurs in thousands of transcripts,
with an average of one to three m6A sites per mRNA tran-
script (15–17). However, only a fraction of DRACH mo-
tifs contain an m6A modification. Furthermore, m6A was
found to cluster predominantly within the coding sequence
in long internal exons, nearby stop codons and in the 3′
UTR (15,16).

In order to fully capture and understand the cellular im-
pact of m6A, it is essential to precisely locate the mod-
ification. Although m6A had been identified over four
decades ago, only recent technological breakthroughs al-
lowed a transcriptome-wide mapping of m6A (15,16,18,19).
Antibody-based immunoprecipitation followed by high-
throughput sequencing (m6A-seq, m6A-MeRIP) enabled
mapping of m6A within a ∼100 nucleotide (nt) window and
paved the way to further understand and dissect the cel-
lular and physiological functions of m6A (15,16). Further
improvements in 2015 led to an individual-nucleotide reso-
lution UV crosslinking and immunoprecipitation (iCLIP)-
based method, called m6A iCLIP (miCLIP), which al-
lows the transcriptome-wide mapping of individual m6A
residues at single-nucleotide resolution (17).

Despite the novel and important insights these epitran-
scriptomic sequencing methods uncovered, they also suf-
fered several limitations. A critical disadvantage is the
required high amount of input material, which makes
transcriptome-wide m6A detection exclusionary for sam-
ples with limited input material. Hence, sequencing low in-
put samples using the aforementioned techniques may lead
to over-amplified libraries with a high PCR duplication
rate and low complexity. Moreover, it is broadly observed
that miCLIP data comprise a lot of background signal due
to limited antibody specificity, which makes computational
analysis for m6A-site identification challenging (20–23).

Here, we present the optimized miCLIP2 protocol, along
with the machine learning-based analysis tool m6Aboost
to overcome these limitations. Experimental improvements
comprise two separately ligated adapters, two independent
cDNA amplification steps and a bead-based size selection
(24). These advances result in high-complexity miCLIP2 li-
braries using less input material at less effort. We performed

miCLIP2 in murine embryonic stem cells (mESC), using
wild-type (WT) and Mettl3 knockout (KO) cells to identify
peaks that are significantly depleted upon Mettl3 KO and
validated selected m6A sites by an orthogonal method. The
resulting high-confidence m6A sites within DRACH and
non-DRACH motifs were used to train a machine learn-
ing model, named m6Aboost, which recognizes the specific
characteristics of m6A sites in miCLIP2 data. We applied
m6Aboost to multiple miCLIP2 datasets from human and
mouse. Thus, our new miCLIP2 protocol in combination
with our m6Aboost machine learning model allow to glob-
ally predict m6A sites in miCLIP2 datasets independently
of a Mettl3 KO.

MATERIALS AND METHODS

LC–MS/MS analysis of m6A levels

The experiments were performed as described in (25). Ri-
bonucleoside (A, m6A) standards, ammonium acetate, and
LC/MS grade acetonitrile were purchased from Sigma-
Aldrich. 13C9-A was purchased from Silantes, GmbH (Mu-
nich, Germany). 2H3-m6A was obtained from TRC, Inc.
(Toronto, Canada). All solutions were prepared using ultra-
pure water (Barnstead GenPure xCAD Plus, Thermo Sci-
entific). 0.1–1 �g of poly(A)+ RNA was degraded to nu-
cleosides with 0.003 U nuclease P1 (Roche), 0.01 U snake
venom phosphodiesterase (Worthington), and 0.1 U alka-
line phosphatase (Fermentas). Separation of the nucleo-
sides from the digested RNA samples was performed with
an Agilent 1290 UHPLC system equipped with RRHD
Eclipse Plus C18 (95Å, 2.1 × 50 mm, 1.8 �m, Zor-
bax, USA) with a gradient of 5 mM ammonium acetate
(pH 7, solvent A) and acetonitrile (solvent B). Separa-
tions started at a flow rate of 0.4 ml/min and linearly in-
creased to 0.5 ml/min during first 7 min. Then, washing
and re-conditioning was done at 0.5 ml/min for an addi-
tional 3 min and linearly decrease to 0.4 ml/min during
the last minute. The gradients were as follows: solvent B
linear increase from 0 to 7% for first 3 min, followed by
isocratic elution at 7% solvent B for another 4 min; then
switching to 0% solvent B for last 4 min, to recondition
the column. Quantitative MS/MS analysis was performed
with an Agilent 6490 triple quadrupole mass spectrome-
ter in positive ion mode. Details of the method and instru-
ment settings are described in (26). MRM transitions used
in this study were 269.2→137.2 (A), 278.2→171.2 (13C9-
A), 282.1→150.1 (m6A) and 285.1→153.1 (2H3-N6-mrA).
Quantification of all samples utilized biological triplicates,
and averaged values of m6A normalized to A, with the re-
spective standard deviation are shown.

Cell culture and RNA samples

The HEK293T cell line was cultured in Dulbecco’s Mod-
ified Eagle Medium (DMEM, Life Technologies) con-
taining 10% fetal bovine serum (FBS, Life Technologies),
1% L-glutamine (Life Technologies) and 1% penicillin-
streptomycin (Life Technologies) at 37◦C with 5% CO2.
All cell lines were monitored for mycoplasma contami-
nation. Anaplastic thyroid carcinoma-derived C643 cells
(CLS, RRID:CVCL 5969) were cultured on 15 cm dishes
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in DMEM (Thermo Fisher Scientific) supplemented with
GlutaMAX (Thermo Fisher Scientific) and 10% FBS at
37◦C and 5% CO2.

Mouse embryonic stem cells (mESC) with wild-type
and Mettl3 KO genotype were taken from a previous
publication (27) and cultured under FBS/LIF conditions
as described therein. RAW 264.7 cells (ATCC, Wesel,
Germany, TIB-71) were cultured in DMEM (Thermo
Fisher Scientific, 12430054) supplemented with 10% heat
inactivated FBS (Biochrom, Berlin, Germany, S0613)
and 1× penicillin/streptomycin (Thermo Fisher Scientific,
15140–122).

m6A depletion by METTL3 inhibitor treatment

For m6A validation in HEK293T cells using SELECT,
m6A was depleted by using the METTL3 inhibitor
STM2457 (STORM Therapeutics) (28). STM2457 was
titrated to test for optimal m6A depletion quantified by
liquid chromatography–tandem mass spectrometry (LC–
MS/MS). To this end, HEK293T cells were treated with
2–20 �M STM2457 in DMSO 0.05–0.2% (v/v) or DMSO
alone 0.2% (v/v) as a negative control. After 16 h of treat-
ment, the cells were washed with ice-cold PBS and collected
on ice.

RNA isolation and poly(A) selection

For RNA extraction from HEK293T and mESC cells, cells
were washed in ice-cold PBS and collected on ice for the
isolation of total RNA using the RNeasy Plus Mini Kit
(Qiagen) following the manufacturer’s recommended proto-
col. For C643 and RAW 264.7 cells, cells were washed with
PBS, and total RNA was extracted using TRIzol reagent
(Thermo Fisher Scientific) according to the manufacturer’s
instructions. Prior to isolation of poly(A)+ RNA, total
RNA samples were treated with DNase I (New England Bi-
olabs) according to the manufacturer’s protocol, and sub-
sequently cleaned up again by using TRIzol LS (Thermo
Fisher Scientific).

For HEK293T and C643 cells, poly(A)+ RNA was ex-
tracted using Oligo d(T)25 Magnetic Beads using the man-
ufacturer’s recommended protocol (Thermo Fisher Scien-
tific, 61002). Poly(A)+ concentration was measured using
Qubit™ RNA HS Assay Kit (Thermo Fisher Scientific). For
RAW 264.7 cells, poly(A)+ RNA was extracted by incu-
bating 100 �g total RNA with 200 �l Dynabeads solution
(Dynabeads mRNA Direct Purification Kit, Thermo Fisher
Scientific, 61012) and purified following the manufacturer’s
protocols.

The quality of poly(A)+ RNA was ensured using High
Sensitivity RNA ScreenTapes for the 2200 TapeStation sys-
tem (Agilent). If a predominant peak for ribosomal RNA
was still detectable, an additional round of poly(A) selec-
tion was performed, resulting in one round of selection for
mESC and RAW 264.7 cells, and two rounds for HEK293T
and C643 cells.

RNA fragmentation

Poly(A)+ RNA was fragmented using RNA fragmentation
reagents from Thermo Fisher Scientific. 1 �g of poly(A)+

RNA was filled up to 22 �l with H2O for each condition.
1 �l of 0.1–0.4× diluted fragmentation buffer was added
(always prepared freshly). The mixture was incubated for
7–12 min at 70◦C in thermomixer at 1,100 rpm and put im-
mediately on ice. 1 �l of 0.1–0.4× diluted STOP solution
was added. The solution was mixed and placed back on ice
until use. Time of fragmentation and dilution of fragmen-
tation reaction solutions were optimized prior to miCLIP2
experiments for each new batch of RNA.

miCLIP2 experiments

All miCLIP2 experiments were performed with rabbit anti-
m6A antibody purchased from Synaptic Systems (order
number 202 003).

UV crosslinking and immunoprecipitation. 50 �l of protein
A Dynabeads (Dynal, 100.02) were magnetically separated,
washed two times in 900 �l IP buffer (50 mM Tris, pH 7.4,
100 mM NaCl, 0.05% NP-40) and then resuspended in 50
�l IP buffer and put at 4◦C until use. 6 �g of m6A antibody
was added to the 24 �l of fragmented RNA and rotated
for 2 h at 4◦C. The IP mixture was placed on a parafilm-
coated dish and UV irradiated with 2 × 150 mJ/cm2 of UV
254 nm. The mixture was placed back into the tube, another
500 �l of IP buffer and 50 �l of washed protein A beads
were added. The mixture was rotated at 4◦C for 1 h. The
beads were magnetically separated and the supernatant was
discarded. The beads were washed two times with high-salt
wash (50 mM Tris–HCl, pH 7.4, 1 M NaCl, 1 mM EDTA,
1% Igepal CA-630 [Sigma I8896], 0.1% SDS, 0.5% sodium
deoxycholate). The second wash was rotated for at least 1
min at 4◦C. Subsequently, the beads were washed two times
with PNK buffer (20 mM Tris–HCl, pH 7.4, 10 mM MgCl2,
0.2% Tween-20) and resuspended in 1 ml PNK buffer (the
samples can be left at 4◦C until ready to proceed).

3′ End RNA dephosphorylation. The beads were magnet-
ically separated and resuspended in 20 �l of 3′ end RNA
dephosphorylation mixture (4 �l 5× PNK pH 6.5 buffer,
0.5 �l PNK [New England Biolabs; with 3′ phosphatase ac-
tivity], 0.5 �l RNasin, 15 �l water). The mixture was incu-
bated for 20 min at 37◦C in a thermomixer at 1,100 rpm.
The beads were washed once with PNK buffer, once with
high-salt wash (rotate wash for at least 1 min at 4◦C) and
again washed two times with PNK buffer.

L3 DNA linker ligation. The supernatant was magneti-
cally removed and the beads were resuspended in 20 �l of
L3 DNA linker ligation mixture (8 �l water, 5 �l 4× lig-
ation buffer, 1 �l RNA ligase [New England Biolabs], 0.5
�l RNasin [N2615, Promega GmbH], 1.5 �l pre-adenylated
DNA linker L3-App [20 �M; 5′-/rApp/AGATCGGAAG
AGCGGTTCAG/ddC/-3′], 4 �l PEG400 [202398, Sigma]).
The mixture was incubated overnight at 16◦C at 1,100 rpm
in a thermomixer. Subsequently, 500 �l of PNK buffer was
added. The beads were washed two times with 1 ml high-
salt buffer and two times with 1 ml PNK buffer. After the
first wash, the mixture was transferred to a new tube.
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5′ End labelling. The beads were magnetically separated
and 4 �l of hot PNK mix (0.2 �l PNK [New England Bio-
labs], 0.4 �l 32P-� -ATP, 0.4 �l 10× PNK buffer [New Eng-
land Biolabs], 3 �l H2O) was added and incubated for 5
min at 37◦C in a thermomixer at 1,100 rpm. Next, the su-
pernatant was removed and 20 �l of 1× NuPAGE loading
buffer (4× stock was mixed with water and reducing agent
and antioxidant was used to avoid potential interference of
antibodies) was added to the beads and incubated at 70◦C
for 5 min.

SDS-PAGE and nitrocellulose transfer. The beads were
magnetically separated and the eluate was loaded on a 4–
12% NuPAGE Bis-Tris gel (Invitrogen). 0.5 l of 1× MOPS
running buffer (Invitrogen) was used. Additionally, 5 �l of a
pre-stained protein size marker was loaded. The gel was run
for 50 min at 180 V. The dye front was cut and discarded as
solid radioactive waste. For transferring the protein–RNA
complexes to a Protan BA85 Nitrocellulose Membrane, a
Novex wet transfer apparatus was used according to the
manufacturer’s instructions. The transfer was performed for
1 h at 30 V in 1× transfer buffer with 10% methanol. After
the transfer, the membrane was rinsed in 1× PBS buffer.
Afterwards, it was wrapped in saran wrap and exposed to a
Fuji film at 4◦C for 30 min, 1 h, or overnight. The film was
exposed to a Typhoon phosphoimager.

RNA isolation. The protein-RNA complexes were isolated
by using the autoradiograph as a mask by cutting the re-
spective regions out of the nitrocellulose membrane. The
fragments were placed in a 1.5 ml tube and 10 �l proteinase
K (Roche, 03115828001) in 200 �l PK buffer (100 mM Tris–
HCl, pH 7.4, 50 mM NaCl, 10 mM EDTA) was added and
incubated at 37◦C for 20 min at 1,100 rpm. 200 �l of PK
buffer + 7 M urea (100 mM Tris–HCl pH 7.4, 50 mM NaCl)
was added and incubated at 37◦C for 20 min at 1,100 rpm.
The solution was collected and added together with 400 �l
phenol/chloroform (Sigma P3803) to a 2 ml Phase Lock
Gel Heavy tube (713-2536, VWR). The mixture was incu-
bated for 5 min at 30◦C at 1,100 rpm. The phases were sep-
arated by spinning for 5 min at 13,000 rpm at room temper-
ature. Next, the aqueous layer was transferred into a new
tube. Precipitation was performed by addition of 0.75 �l
glycoblue (Ambion, 9510), 40 �l 3 M sodium acetate pH
5.5 and addition of 1 ml 100% ethanol. After mixing, the
mixture was placed at –20◦C overnight. The mixture was
spun for 20 min at 15,000 rpm at 4◦C. After removing the
supernatant, the pellet was washed with 0.9 ml 80% ethanol
and spun again for 5 min. After removing the supernatant,
the pellet was resuspended in 5 �l H2O and transferred to a
PCR tube.

Reverse transcription. RT primers and dNTPs (1 �l primer
Rtclip2.0 [5′-GGATCCTGAACCGCT-3′], 0.5 pmol/�l
and 1 �l dNTP mix, 10 mM) were added to the resuspended
pellet and incubated in a thermocycler (70◦C, 5 min, 25◦C
hold until RT mix is added). After adding the RT mix (7 �l
H2O, 4 �l 5× RT buffer [Invitrogen], 1 �l 0.1 M DTT, 0.5 �l
RNasin, 0.5 �l Superscript III) the mixture was incubated
in a thermocycler (25◦C, 5 min; 42◦C, 20 min; 50◦C, 40 min;
80◦C, 5 min; 4◦C, hold). 1.65 �l of 1 M NaOH was added

and incubated at 98◦C for 20 min. Subsequently, 20 �l of
1 M HEPES-NaOH pH 7.3 was added. This will eliminate
radioactivity from strongly labelled samples after the next
step and prevent RNA from interfering with subsequent re-
actions.

Silane clean-up. For bead preparation: 10 �l MyONE
Silane beads were magnetically separated per sample and
the supernatant was removed. The beads were washed with
500 �l RLT buffer and resuspended in 93 �l RLT buffer.
For cDNA binding the beads in 93 �l were added to each
sample. After mixing, 111.6 �l of 100% ethanol was added.
The mixture was carefully mixed and incubated for 5 min at
RT. After incubation, the mixture was again mixed and in-
cubated for 5 min further. After magnetically separating the
beads and removing the supernatant, 1 ml of 80% ethanol
was added and the mixture was transferred to a new tube.
The beads were washed twice in 80% ethanol. The beads
were magnetically separated and the supernatant was re-
moved. The tube was briefly mixed in a picoFuge and the
remaining supernatant was removed. The beads were air-
dried for 5 min at RT. The beads were resuspended in 5 �l
H2O and incubated for 5 min at RT before performing the
on-bead ligation. Radioactivity should be removed. If ra-
dioactivity is still detected, continue in hot-lab area.

Ligation of 5′ linker to cDNA (on-bead). The linker was
prepared by heating the linker mix (2 �l L##clip2.0 (10 �M
stock) 1 �l 100% DMSO) for 2 min at 75◦C and keeping it
on ice afterwards for > 1 min. The DNA linker L##clip2.0
has the sequence 5′-/5Phos/NNNNXXXXXXNNNNNA
GATCGGAAGAGCGTCGTG/3ddC/-3′, where N’s are
the 4-nt and 5-nt random nucleotides from the unique
molecular identifier (UMI) and X’s are the 6-nt the sample-
specific experimental barcode given in Supplementary Ta-
ble S1. After adding the linker mix to the bead containing
sample, the ligation mixture (2.0 �l 10× RNA Ligase Buffer
[with DTT; New England Biolabs], 0.2 �l 0.1 M ATP, 9.0
�l 50% PEG 8000, 0.3 �l H2O, 0.5 �l high conc. RNA Lig-
ase [New England Biolabs]) was pipetted on ice. To ensure
homogeneity, the ligation-master-mix was mixed by flick-
ing and spinning it down and was subsequently added with
the linker-sample-mix. After vigorous stirring, another 1
�l RNA ligase was added to each sample and mixed by
stirring. The mixture was incubated at RT at 1,100 rpm
overnight.

Silane cleanup of linker-ligated cDNA. Per sample, 5 �l
MyONE Silane beads were prepared. The MyONE Silane
clean-up was performed as described in the previous Silane
clean-up step with following modification: After washing
the beads in 500 �l RLT, the beads were resuspended in 60
�l RLT buffer and added to the already bead-containing
sample. After the precipitation was performed as previously
described, the dried beads were resuspended in 22.5 �l H2O.

First PCR amplification. The PCR mixture (2.5 �l primer
mix 1st PCR [P5Solexa s, 5′-ACACGACGCTCTTCCG
ATCT-3′ and P3Solexa s, 5′-CTGAACCGCTCTTCCG
ATCT-3], 10 �M each, 25 �l Phusion High Fidelity PCR
Master Mix [New England Biolabs, M0531S] was prepared
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and added to the 22.5 �l of sample from the previous step.
A 6-cycle PCR was performed in a thermocycler (98◦C, 30
s; 6× [98◦C, 10 s; 65◦C, 30 s; 72◦C, 30 s]; 72◦C, 3 min; 16◦C,
hold).

First ProNex size selection. In order to remove primer and
primer-dimers, a bead-based size selection was performed
prior to preparative PCRs. In addition to the samples, 50 �l
of ‘Ultra Low Range Ladder’ (ULR, Thermo Fisher Scien-
tific) will be size selected in parallel to monitor ProNex size
selection efficiency. ProNex chemistry was adjusted to RT
by keeping it for 30 min at RT. 50 �l of ULR-Phusion mix
(1.2 �l ULR Ladder, 28.8 �l H2O, 30 �l Phusion PCR mas-
termix [New England Biolabs] and the samples were mixed
with 147.5 �l ProNex chemistry. This is a 1:2.95 (v/v) ra-
tio of sample:beads. This was optimized in previous exper-
iments (24). The mixture was mixed ten times by pipetting
and incubated for 10 min at RT. The sample-bead mixture
was placed on a magnetic stand for 2 min and the super-
natant was removed. While leaving the bead on the mag-
netic stand, 200 �l ProNex wash buffer was added to the
sample. The buffer was incubated for 60 s before removal.
The washes were repeated for a total of two washes. After
removal of the supernatant, the beads were air-dried for 8–
10 min (< 60 min) until cracking starts. The beads were
eluted in 23 �l H2O. After 5 min of incubation, the mix-
ture was returned to the magnetic stand for 1 min and the
supernatant was carefully transferred to a new tube. The
size selection efficiency was monitored for the ULR sam-
ple on a High Sensitivity D1000 TapeStation Kit. For com-
parison, the selected and unselected ULR Phusion mix was
analyzed. The 75-nt/50-nt ladder fragment ratio was com-
pared which should be around 2.5.

Optimize PCR amplification. In order to prevent
over-amplification of the library, the PCR cycle has
to be optimized to a minimum. Therefore, opti-
mize PCR amplification reactions have to be per-
formed for each sample with each 6 and 10 cycles.
The PCR mixture (0.5 �l primer mix P5Solexa [5′-
AATGATACGGCGACCACCGAGATCTACACTCT
TTCCCTACACGACGCTCTTCCGATCT-3′]/P3Solexa
[5′-CAAGCAGAAGACGGCATACGAGATCGGTCT
CGGCATTCCTGCTGAACCGCTCTTCCGATCT-3′],
10 �M each, 5 �l Phusion High Fidelity PCR Master Mix
[New England Biolabs, M0531S], 3.5 �l water) was added
to 1 �l of the pre-amplified library. The PCR reaction was
performed in a thermocycler (98◦C, 30 s; 6 or 10× (98◦C,
10 s; 65◦C, 30 s; 72◦C, 30 s); 72◦C, 3 min; 16◦C, hold). 2
�l of the amplified library was run on a High Sensitivity
D1000 Kit in a TapeStation system. Repeat this step until
libraries are seen without over-amplification.

Preparative PCR. From previous results of the PCR cy-
cle optimization, the minimum of PCR cycles was used to
amplify 1

2 of the library. Here, 2.5 times more concentrated
cDNA is used, therefore one cycle less is needed than in the
preliminary PCR. The PCR mix (8 �l H2O, 2 �l primer
mix P5Solexa/P3Solexa, 10 �M each, 20 �l Phusion HF
Mix [New England Biolabs]) was added to 10 �l cDNA.
The PCR was performed in a thermocycler using the same

program as in the optimization PCR with the optimized cy-
cle number. 2 �l of the amplified library was run on a High
Sensitivity D1000 Kit in a TapeStation system. If the results
looked fine, the second half of the library was also amplified
and combined with the first half. Finally, the concentration
under the peak was determined using TapeStation software,
and replicates were combined either in equal molarities or
equal volumes.

Second size selection by ProNex. Before submitting the
samples for sequencing, another round of bead-based size
selection was performed to remove residual primers. This
ProNex size selection was performed as described above
with the following modifications: After ULR preparation,
the samples and beads were mixed in a 1:2.4 (v/v) ratio of
sample:beads. This was optimized in previous experiments
in (24). After the incubation and washing steps, the dried
beads were eluted in 20 �l H2O. Again, for comparison the
selected and unselected ULR Phusion mix was analyzed as
described previously. The 100-nt/75-nt ladder fragment ra-
tio should be around 4.5.

SELECT experiments to validate m6A modifications

We used the elongation and ligation-based qPCR ampli-
fication method SELECT (29) to independently test for
m6A modifications at several putative m6A sites identi-
fied from our miCLIP2 data. Experiments for mESC cells
were performed with RNA from mESC WT cells and
compared to RNA from mESC Mettl3 KO cells. Experi-
ments for HEK293T cells were performed with RNA from
cells treated with 20 �M METTL3 inhibitor STM2457
(STORM Therapeutics) (28) or DMSO alone as control
(see above).

Normalization of input RNA. For Mettl3 KO or METTL3
inhibitor-treated cell lines, the amount of m6A is greatly re-
duced. Due to m6A-mediated RNA degradation or stabi-
lization processes, absence of m6A may influence the abun-
dance of specific transcripts. To ensure usage of same RNA
amounts, Qubit (Thermo Fisher Scientific) with Qubit™
RNA HS Assay Kit (Thermo Fisher Scientific) was used to
precisely measure RNA concentrations. To ensure usage of
equal amounts of transcripts, qPCR experiments were per-
formed for normalization of input RNA amounts in WT
versus m6A-depleted cell lines.

Elongation and ligation-based qPCR amplification. For the
quantitative real-time PCR (qPCR)-based validation of a
presumed m6A site (termed X site), two primers (Up and
Down primer) were designed flanking the site of interest.
To precisely measure RNA concentrations before each ex-
periment, Qubit™ RNA HS Assay Kit (Thermo Fisher Sci-
entific) was used. An influence of m6A on transcript stabil-
ity may lead to a difference in transcript abundance upon
Mettl3 KO. Therefore, qPCR for the respective transcript
was performed and the amount of total RNA for each
SELECT experiment was normalized. To further moni-
tor usage of equal amounts of input material, an Up and
Down primer were designed flanking an adjacent nucleotide
(termed N site). N sites between X-8 and X+4 were used as
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input control. According to the previously published SE-
LECT method, 20 ng of poly(A)+ RNA was used per ex-
periment. The RNA was mixed in a total volume of 17 �l
in 1xCutSmart buffer containing 40 nM Up primer, 40 nM
Down primer and 5 �M dNTPs. The RNA and primers
were annealed by incubation in a thermocycler (90◦C to
40◦C with a decrease of –10◦C after 1 min, then left at
40◦C for 6 min). 0.02 U Bst 2.0 DNA polymerase, 0.5 U
SplintR ligase and 10 nmol ATP in a volume of 3 �l in
1× CutSmart buffer was added and incubated at 40◦C for
20 min. After denaturation at 80◦C for 20 min, the mixture
was kept at 4◦C. Using the Applied Biosystems ViiA7 Real-
Time PCR system, qPCR was performed. The 20 �l qPCR
reaction mixture contained 2 �l of the final reaction mix-
ture after denaturation, 0.2 nM per qPCR primer, 2x Lu-
minaris HiGreen Lox Rox (Thermo Fisher Scientific) and
ddH2O. The quantitative qPCR reaction condition was run
as follows: 95◦C, 5 min; (95◦C, 10 s; 60◦C, 35 s) x 40 cy-
cles; 95◦C, 15 s; 60◦C, 1 min; 95◦C, 15 s (collect fluores-
cence at a ramping rate of 0.05◦C/s); 4◦C hold. qPCR data
analysis was performed using QuantStudio Real-Time PCR
Software v1.3. All experiments were performed in three
technical replicates (separate SELECT reactions). Oligonu-
cleotides used for SELECT are listed in Supplementary
Table S2.

RT-PCR quantification of intron retention isoforms

Reverse transcription followed by polymerase chain reac-
tion (RT-PCR) was performed to validate changes in iso-
form frequencies of selected transcripts (Ythdc1, Mif4gd)
comparing Mettl3 KO and WT mESCs. Cells were grown
on irradiated CF1 mouse embryonic fibroblasts (A34181,
Gibco) under normal FCS/LIF conditions, as described
before (27). Total RNA was isolated from feeder-depleted
mESCs using the RNeasy Plus Kit after removal of ge-
nomic DNA with gDNA eliminator columns (Qiagen).
Random hexamer primers were used to reverse transcribe
1 �g of total RNA into cDNA using the RevertAid First
Strand cDNA Synthesis Kit (Thermo Fisher Scientific) in
a thermocycler at 65◦C for 5 min, 25◦C for 5 min, 42◦C
for 60 min, 45◦C for 10 min, and 70◦C for 5 min. Three-
primer PCR reactions were performed with OneTaq DNA
Polymerase (New England Biolabs) in a 25 �l reaction, ac-
cording to the recommended protocol, using 0.5 �l cDNA
as template, a shared forward primer located in the up-
stream exon and two isoform-specific reverse primers in
the intron (IR) and the downstream exon (spliced), re-
spectively. All three primers were used in a final concen-
tration of 200 nM each, rendering the shared primer as
a rate-limiting factor in the reaction. Primer sequences
were: Ythdc1 shared (5′-CCATCCCGTCGAGAACCAG-
3′), Ythdc1 IR (5′-CCAACGTGACCATGTGAAATCC-
3′), Ythdc1 exonic (5′-TGGTCTCTGGTGAAACTCAG
G-3′), Mif4gd shared (5′-CCTGAGAGTCTGAGCAGG
GA-3′), Mif4gd IR (5′-AAGCCTTGGCCTCTATGTGC-
3′) and Mif4gd exonic (5′-AGCCGTCCCGGATTAGGA
TA-3′). The PCR reaction was carried out in a thermocycler
at 94 ◦C for 30 s, 30 cycles of [94◦C for 30 s, 55◦C (Mif4gd)
or 54◦C (Ythdc1) for 1 min, 68◦C for 1 min] and final ex-
tension at 68◦C for 5 min. PCR products were analyzed by

capillary gel electrophoresis on the TapeStation 2200 system
using D1000 ScreenTapes (Agilent) according to the man-
ufacturer’s recommendations. Band intensities were quanti-
fied using the TapeStation Analysis Software and frequency
was calculated as the relative proportion of IR and spliced
transcript abundance.

miCLIP2 read processing

Multiplexed miCLIP2 libraries were sequenced as 91-nt or
92-nt single-end reads on an Illumina NextSeq500 sequenc-
ing system including a 6-nt sample barcode as well as 5-
nt+4-nt unique molecular identifiers (UMIs).

Initial data processing was done as described in Chap-
ters 3 and 4.1 of (30) for iCLIP data. In short, after check-
ing the sequencing qualities with FastQC (v0.11.8) (https://
www.bioinformatics.babraham.ac.uk/projects/fastqc/) and
filtering reads based on sequencing qualities (Phred score)
of the barcode region (FASTX-Toolkit v0.0.14) (http:
//hannonlab.cshl.edu/fastx toolkit/), seqtk v1.3 (https://
github.com/lh3/seqtk/), reads were de-multiplexed based on
the experimental barcode (positions 6 to 11 of the reads)
and adapter sequences were removed from the read ends
(Flexbar v3.4.0) (31). UMIs were trimmed as well and
added to the read names. Reads shorter than 15 nt were
removed from further analysis. Individual samples were
then mapped to the respective genome (assembly version
GRCh38.p12 for all human samples, GRCm38.p6 for all
mouse samples) and its annotation (GENCODE release
31 for all human samples, GENCODE release M23 for all
mouse samples) (32) using STAR (v2.7.3a) (33). When run-
ning STAR (with parameter --outSAMattributes All), up
to 4% mismatches were allowed per read, soft-clipping was
prohibited on the 5′ end of reads and only uniquely map-
ping reads were kept for further analysis. Following map-
ping, sorted BAM files were indexed (SAMtools v1.9) (34)
and duplicate reads were removed (UMI-tools v1.0.0) (35).
Reads were defined duplicates if their 5′ ends map to the
same position and strand in the genome and they have iden-
tical UMIs.

After removing duplicates, all mutations found in reads
were extracted using the Perl script parseAlignment.pl of
the CLIP Tool Kit (CTK, v1.1.3) (36). The list of all found
mutations specifies the mutations, their locations in the
genome as well as the names of the reads in which they were
found. The list was filtered for C-to-T mutations using basic
Bash commands and kept in BED file format as described
in (37). Based on the filtered list of C-to-T mutations, de-
duplicated reads were separated into two BAM files hold-
ing reads with and without C-to-T mutation, respectively,
using SAMtools and basic Bash commands. The BAM file
of reads without C-to-T mutation was transformed to a
BED file using bedtools bamtobed (BEDTools v2.27.1) (38)
and considering only the 5′ mapping position of each read.
Afterwards, the BED file was sorted and summarized to
strand-specific bedGraph files which were shifted by one
base pair upstream (since this nucleotide is considered as the
cross-linked nucleotide) using bedtools genomecov (BED-
Tools v2.27.1). Similarly, the BED files of C-to-T muta-
tions were also sorted and summarized to strand-specific
bedGraph files using bedtools genomecov. Finally, all bed-
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Graph files were transformed to bigWig track files using
bedGraphToBigWig of the UCSC tool suite (v365) (39).

The code for miCLIP2 data processing as described
here is available from two recent data analysis publications
(30,37).

Peak calling, transcript assignment and relative signal
strength

BAM files with reads without C-to-T mutation were used
for peak calling with PureCLIP (v1.3.1) (40) individually on
each replicate for each condition. PureCLIP significant sites
per replicate were then filtered for presence in at least two
replicates for a given condition (PureCLIP peaks in Sup-
plementary Table S1). For assigning a host gene to each
PureCLIP peak, transcript annotations were taken from
GENCODE (release 31, GRCh38.p12 for human and re-
lease M23, GRCm38.p6 for mouse), and filtered for a tran-
script support level ≤ 3 and support level ≤ 2. For over-
lapping transcripts, the longest annotation was chosen. We
next assigned the miCLIP2 peaks to the transcripts.

In order to calculate the relative signal strengths of all
peaks within a transcript, we calculated the mean number of
truncation events for all peaks in the same transcript. Then,
we divided the individual truncation read number of each
peak by the mean of the peak strength in the corresponding
transcript, leading to a value representing the relative peak
strength.

Differential methylation analysis to identify Mettl3-
dependent m6A sites

Similar to iCLIP, the miCLIP2 signal is strongly influenced
by the underlying transcript abundance (41,42). Therefore,
when applying DESeq2 (43) collectively to all peaks (one-
run), any change of transcript abundance will lead to in-
correct fold change and FDR estimations, resulting in false
positive calls in down-regulated genes. We tested four dif-
ferent approaches to overcome this, namely separately run-
ning DESeq2 on peaks of individual genes (gene-wise) or
groups of genes with similar abundance change (bin-based),
by building a combined DESeq2 model on peak signals and
transcript counts using interaction terms (2-factor) as well
as by using DEXSeq (dexseq-run) (44) instead of DESeq2.
The different approaches are explained in more detail in the
Supplementary Material. The best performance was seen
for the bin-based approach, which was used for all following
analyses.

Training and evaluation of the machine learning model
m6Aboost

Based on the log2-transformed fold change (log2FC) and
the false discovery rate (FDR) from the bin-based differen-
tial methylation analysis between WT and Mettl3 KO cells,
we used peaks at A to compile a positive (log2FC < 0, FDR
≤ 0.01; n = 11,707) and negative (log2FC ≥ 0, FDR > 0.5; n
= 42,090) set. Both were combined and then randomly split
into a training set (80%) and an independent test set (20%).

We then extracted 27 features, including the nucleotide se-
quence in a 21-nt window around the central A, the tran-
script region as well as the relative signal strength (log2)
and the number of associated C-to-T transitions (log2). We
initially tested three different machine learning algorithms
(AdaBoost, support vector machine [SVM], random forest)
and evaluated their performance based on precision-recall
curves and area under the curve (AUC) as well as by com-
paring F1-score, Matthews correlation coefficient (MCC),
precision, accuracy, sensitivity and specificity on the inde-
pendent test set. Based on these measures, we selected the
AdaBoost-based predictor, which we named m6Aboost (see
Supplementary Material, Section B for details).

RNA-seq read processing

RNA sequencing (RNA-seq) libraries were sequenced
on an Illumina NextSeq500 as 84-nt single-end reads,
yielding 31–35 million reads per sample. Basic sequenc-
ing quality checks were applied to all reads using
FastQC (v0.11.8) (https://www.bioinformatics.babraham.
ac.uk/projects/fastqc/). Reads were mapped to the mouse
genome (assembly version GRCm38.p6) and its annotation
based on GENCODE release M23 using STAR (v2.6.1b)
(33). When running STAR, up to 4% mismatches were al-
lowed per read and only one location was kept for multi-
mapping reads. Coverage tracks for visualization were ob-
tained by merging BAM files for each condition using
SAMtools (v1.11). Coverage was calculated with bamCov-
erage (v3.5.0) from the deepTools suite (45) using RPGC
normalization and --effectiveGenomeSize calculated by fa-
Count of the UCSC tool suite (v377).

For differential gene expression analysis, mapped reads
were counted with htseq-count (v0.12.4, -s reverse) (46) into
gene annotation based on GENCODE release M23. Dif-
ferential expression analysis was performed with DESeq2
(v1.30.0) (43) using the method ‘apeglm’ for shrinkage of
log2-transformed fold changes.

Intron retention (IR) analysis was done with IRFinder
(v1.3.0) (47) using built-in script analysisWithLowRepli-
cates.pl for differential analysis (48). We adapted some built-
in filtering steps by overwriting line 179 of analysisWith-
LowReplicates.pl into:

my $ok = ($pA[8] > 0 || $pB[8] > 0) && ($pA[19]
> 0 || $pB[19] > 0) && separatedAB(\@repsIR, $repsA,
$repsB);

and line 186 into:
if (($pA[8] > 0 || max($pA[16],$pA[17]) > 0) &&

($pB[8] > 0 || max($pB[16],$pB[17]) > 0)) {
For downstream analysis, IR events were filtered for IR-

ratio ≥ 0.03 in at least one condition and mean IntronDepth
≥ 3. P values were corrected using Benjamini-Hochberg ad-
justment.

Overlap with MAZTER-seq

Processed MAZTER-seq data from (21) were downloaded
from Gene Expression Omnibus (GEO) via accession num-
ber GSE122956. The m6A sites therein were filtered for a
difference in MazF cleavage efficiency > 0.1 between WT
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and Mettl3 KO, yielding a total of 580 reliably identified
m6A sites from mESC cells. Two hundred of these (34.5%)
overlapped at single-nucleotide resolution with the 4,464
predicted m6A sites at ACA from our mESC miCLIP2 data.

YTHDF1 iCLIP processing and overlap with predicted m6A
sites

YTHDF1 iCLIP reads were quality filtered and processed
as in Busch et al. (30), used tools versions are as described
above for miCLIP2. For peak calling with PureCLIP (40)
reads from the four replicates were merged. Resulting peaks
were filtered to be present in at least two out of four repli-
cates. To generate binding sites, peaks closer than 4 nt
were merged, allowing no overlapping binding sites. Finally,
binding sites were centred at the position with the highest
truncation read number as described in (30). All predicted
m6A sites were aligned and spanned with a 21-nt window
to count the presence of YTHDF1 binding sites in that
area.

RESULTS

The miCLIP2 protocol allows profiling of m6A RNA modifi-
cations

In order to allow for deep m6A profiling, we combined the
miCLIP procedure with our recently optimized iCLIP2 pro-
tocol, termed miCLIP2 (Figure 1A) (17,24). Experiments
were performed with poly(A)+ RNA from mouse embry-
onic stem cells (mESCs). We first performed two consecu-
tive rounds of poly(A)+ RNA enrichment for total RNA
samples (Supplementary Figure S1A) and optimized the
RNA fragmentation time required for each sample (Supple-
mentary Figure S1B). The RNA was then incubated with an
m6A-specific antibody (Synaptic Systems), which was pre-
viously shown to yield highest truncation efficiency in mi-
CLIP experiments (Figure 1A) (17). After optimizing UV
irradiation (254 nm twice with 150 mJ/cm2 strength; Sup-
plementary Figure S1C), crosslinked antibody-RNA com-
plexes were immunoprecipitated using protein A beads. Co-
purified RNAs were 3′dephosphorylated with T4 polynu-
cleotide kinase (PNK) prior to first adapter ligation (L3-
APP) and radioactive labelling. After SDS-PAGE gel
and transfer, the respective nitrocellulose membrane frag-
ment was excised (Supplementary Figure S1D). Transferred
RNA was recovered by proteinase K treatment, leaving a
polypeptide at the crosslinking site. Reverse transcription
generally truncates at this polypeptide, thus encoding the
positional information about m6A sites within resulting
cDNA fragments (17,49). The residual readthrough events
usually incorporate C-to-T transitions (17), which provide
additional confidence for truncation-identified crosslink
sites (see below). After bead-based clean-up and second
linker ligation, a pre-amplification PCR (6 cycles) was em-
ployed to minimize loss of information by potential mate-
rial loss in the following steps. This was followed by size se-
lection to remove primer dimers and a second PCR which
was optimized for a minimal number of PCR cycles to ob-
tain sufficient material for sequencing (here 11 cycles). Af-
ter a second size selection to remove remaining primers, the

library was subjected to high-throughput sequencing (Sup-
plementary Figure S1E).

The majority of miCLIP2 peaks are not sensitive to Mettl3
KO

In order to test whether miCLIP2 peaks are dependent on
Mettl3, we performed miCLIP2 experiments (n = 3 repli-
cates) from wild-type (WT) as well as Mettl3 knockout (KO)
mESCs. The latter lack the primary m6A methyltransferases
Mettl3 and hence, lost most of m6A mRNA methylation
(Figure 1B) (27,50). Reads with C-to-T transitions (6%)
were removed for later usage (Supplementary Table S1).
The remaining reads corresponded to a total of 261 mil-
lion putative truncation events (Supplementary Table S1).
Peak calling on the data from WT mESC cells identified
> 500,000 peaks that exceeded the local background signal
(peaks on all samples are reported in Supplementary Table
S1). The number of truncation events in called peaks were
highly reproducible between replicates (Figure 1C and Sup-
plementary Figure S2A). To allow for quantitative compar-
isons between transcripts, we calculated the relative signal
strength of all peaks, which was independent of the underly-
ing transcript abundance (see Materials and Methods; Sup-
plementary Figure S2B).

Analysis of the underlying sequence showed that most
peaks resided on uridine rather than adenosine and only
25% of these adenosines were part of a DRACH motif (Fig-
ure 1D–G), reflecting UV crosslinking biases and limited
antibody specificity as reported previously (20,21). Never-
theless, the strongest peaks frequently coincided with AC
and were located precisely on the A nucleotide (Supplemen-
tary Figure S2C). We noted an additional enrichment of AC
downstream of the peaks. However, these particular peaks
did not harbor a DRACH motif and their signal was not
reduced in the Mettl3 KO, indicating that they are part of
the unspecific background signal of the employed antibody
or m6A sites independent of Mettl3 (Supplementary Fig-
ure S2C). Importantly, peaks at A, AC and DRACH motifs
were specifically lost in the Mettl3 KO, supporting that mi-
CLIP2 detects Mettl3-dependent m6A modifications (Fig-
ure 1E–G and Supplementary Figure S2D). In addition to
the putative m6A sites, we observed an accumulation of mi-
CLIP2 truncation events at transcript start sites which did
not respond to the Mettl3 KO (Supplementary Figure S2E
and F). This likely reflected the related RNA modification
N6,2′-O-dimethyladenosine (m6Am) which is known to re-
side at 5′ cap structures and is also recognized by the m6A-
specific antibody (17). Overall, the high amount of non-
specific background and cross-reactivity in the miCLIP2
data required more precise measures to define true Mettl3-
dependent m6A sites.

Differential methylation analysis detects Mettl3-dependent
m6A sites at DRACH and non-DRACH motifs

In order to learn about the features of genuine m6A sites
in the miCLIP2 data, we sought to extract all miCLIP2
peaks that significantly changed in the Mettl3 KO mESCs.
However, changes at individual peaks were overshadowed
by massive shifts in gene expression in Mettl3 KO cells, with
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Figure 1. The optimized miCLIP2 protocol produces high complexity libraries with high reproducibility. (A) An overview of the miCLIP2 protocol. (B)
mESC Mettl3 KO cells show a significant depletion of m6A on mRNAs. m6A levels measured by liquid chromatography-tandem mass spectrometry (LC-
MS/MS) for poly(A)+ RNA from WT and Mettl3 KO mESCs. Quantification of m6A as percent of A in mRNA. Error bars indicate standard deviation
of mean (s.d.m.), n = 3. (C) miCLIP2 data are highly reproducible between replicates. Pairwise comparison of the miCLIP2 truncation reads within peaks
from two miCLIP2 replicates from WT and Mettl3 KO mESCs. Pearson correlation coefficients (r) and associated P values are given. Additional replicates
are shown in Supplementary Figure S2A. (D) Most peaks are located at uridines and adenines. Pie chart representing the nucleotide distribution of all
miCLIP2 WT peaks. (E) The majority of peaks are unchanged in a Mettl3 KO miCLIP2 experiment, indicating high background signal. Scatterplot of
the log2-transformed relative signal strength (corrected for transcript abundance) of all miCLIP2 peaks in WT and Mettl3 KO mESC. Peaks located at
an A are highlighted in green. Dotted lines indicate diagonal and 4-fold change. (F) DRACH motifs are enriched at miCLIP2 WT peaks. Metaprofile
of DRACH motifs around aligned miCLIP2 peaks (position 0). Percentage of DRACH motifs (counted at position of A within DRACH) around the
miCLIP2 peaks of WT and Mettl3 KO mESCs are shown. (G) Mettl3 KO miCLIP2 signal is reduced at specific positions in the Nip7 3′ UTR. Genome
browser view of miCLIP2 data (blue) from WT and Mettl3 KO mESCs and fold change between conditions (grey). Identified miCLIP2 peaks (black bars)
and m6Aboost-predicted m6A sites (green arrowheads) are given. Zoom-ins (bottom) show more detailed views of an exonic region without m6A sites and
a 3′ UTR region with three m6A sites.
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more than 2,809 genes altered at least 2-fold in compari-
son to WT mESCs (false discovery rate [FDR] ≤ 0.01; Fig-
ure 2A). These massive shifts in the underlying transcript
abundances meant that miCLIP2 read counts at individual
peaks could not be compared directly. In order to overcome
this shortcoming, we tested several strategies for differential
methylation analysis to account for the substantial gene ex-
pression changes in the Mettl3 KO cells (see Supplementary
Material, Section A). Best performance was achieved with
the bin-based approach, in which genes were stratified ac-
cording to their expression change upon Mettl3 KO (Figure
2B and Supplementary Figure S3A-C). All miCLIP2 peaks
within the genes of the same bin, i.e., with a similar change
in gene expression, were then tested collectively using DE-
Seq2 (43) (see Supplementary Material, Section A). As ex-
pected, the changing peaks almost exclusively showed a loss
of miCLIP2 signal in the Mettl3 KO (Figure 2C), and 85.3%
of these downregulated peaks were located at A (Figure
2D), supporting that our differential methylation analysis
enriched for m6A sites. From these, we compiled a stringent
set of 11,707 sites at A with reduced signal in the Mettl3 KO
(log2-transformed fold change [log2FC] < 0, FDR ≤ 0.01),
which served as ‘positive set’ of true m6A sites in the follow-
ing analyses (see Supplementary Material, Section A). As
previously described, the positive sites accumulated nearby
stop codons and in 3′ UTRs, and the underlying sequences
resembled the DRACH motif (16,51) (Figure 2E and F),
supporting that they indeed represented Mettl3-dependent
m6A sites. For comparison, we selected a ‘negative set’ of
42,090 peaks that were also located at A but unchanged or
even mildly increased upon Mettl3 KO (log2FC ≥ 0, FDR
> 0.5) and hence represented the nonspecific background in
the data.

Among the DRACH motifs identified in the positive
set, the most frequent pentamer was GGACT, followed
by GAACT and AGACT (17) (Figure 2G). Surprisingly,
however, we also detected 741 m6A sites (6.3%) at non-
DRACH motifs (non-DRACH m6A). While most of these
non-DRACH motifs still contained the AC dinucleotide
(52), some also diverged from this, such as GGATT (Fig-
ure 2G). We used SELECT (single-base elongation- and
ligation-based qPCR amplification) (29) as an orthogonal
antibody-independent m6A detection method to test the re-
liability of our approach. To this end, we compared SE-
LECT qPCR amplification curves from WT versus Mettl3
KO samples for an exemplary non-DRACH m6A site from
the positive set, located in the last exon of the Trim27
gene (A at position chr13:21192298:+, GGATT). Indeed,
we detected Mettl3-dependent methylation at A in the
GGATT motif, reflected in a reduced efficiency of the
qPCR amplification when the m6A mark is present (Fig-
ure 2H). As a control, we tested an adjacent A in the
same gene (position chr13:21192294:+), which remained
unchanged upon Mettl3 KO (Supplementary Figure S3D).
We similarly validated two out of two additional non-
DRACH m6A sites in the genes Palm3 (chr8:84029842:+,
GTACT) and Hic2 (chr16:17257755:+, GGACG) (Figure
2H and Supplementary Figure S3D). For comparison, we
also confirmed three out of three m6A sites at bona fide
DRACH motifs in the genes Eif4ebp1 (chr8:27275332:+,
TGACT), Ccnt2 (chr1:127802764:+, GAACA) and Phb2

(chr6:124716745:+, GAACT) (Figure 2I and Supplemen-
tary Figure S3D).

DRACH motifs were also present at 1,043 peaks (2.5%)
in the negative set. The miCLIP2 signal at these peaks did
not decrease in the Mettl3 KO, indicating that the anti-
body may show a residual background activity against the
DRACH motif itself. SELECT experiments for two out of
two selected sites in the genes Nanog (chr6:122711605:+)
and Zfp710 (chr7:8008671:+) confirmed that the respective
A indeed did not carry an N6-methyl modification (Figure
2J).

All together, we defined a positive set of > 10,000 m6A
sites, that are modified in a Mettl3-dependent manner. In
addition to canonical DRACH motifs, we identified a frac-
tion of m6A modifications at non-DRACH motifs which
show the same characteristics and Mettl3 dependency as
m6A sites at DRACH motifs.

Machine learning allows to reliably predict m6A sites from
miCLIP2 data

To allow for m6A detection independently of an accompa-
nying KO dataset, we built a predictive machine learning
model to discriminate true m6A sites from background sig-
nal in the miCLIP2 data (Figure 3A). For model training,
we combined the positive (n = 11,707) and negative (n =
42,090) sets identified in the differential methylation anal-
ysis upon Mettl3 KO. The unbalanced setup was chosen
to reflect the predominance of nonspecific background in
the miCLIP2 data (Figure 1D–G). We randomly split the
data into a training set (80%) and an independent test set
(20%). The input variables for training included 10-nt flank-
ing nucleotide sequence to either side of A, the transcript
region and the relative signal strength. We further added,
as orthogonal information, the number of coinciding C-to-
T transitions in the read-through reads, which we initially
removed from the data (Figure 3B, see Supplementary Ma-
terial, Section B).

We tested three different machine learning algorithms,
which consistently reached high predictive accuracy (sup-
port vector machine, random forest, and adaptive boosting
[AdaBoost]; Supplementary Figure S4A–E, see Supplemen-
tary Material, Section B). Following a series of benchmarks,
we chose the AdaBoost-based predictor, which we named
m6Aboost. AdaBoost is a boosting ensemble algorithm
that weights the input for each iteration by the misclassifica-
tion errors from previous iterations, and thereby improves
the accuracy of the final predictions (53). The error rate
of m6Aboost on the independent test set reached 0.99%,
with > 99% area under the curve (AUC) in a precision–
recall curve (Figure 3C and Supplementary Figure S4A and
D). Evaluation on an independent test set showed that 99%
of sites were correctly classified (Figure 3D). The perfor-
mance was confirmed by five-fold cross-validation (Sup-
plementary Figure S4C). The highest informative content
was attributed to the immediate sequence around the mod-
ified A nucleotide, the relative signal intensity of peaks,
and orthogonal information on C-to-T transitions (Figure
3B). Baseline models trained only on sequence informa-
tion (position –10 to +10; ‘sequence-only’) or experimen-
tal features (relative signal strength, C-to-T transitions, and

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article/49/16/e92/6307904 by Institut für R

echt und W
irtschaft user on 28 February 2023



PAGE 11 OF 19 Nucleic Acids Research, 2021, Vol. 49, No. 16 e92

Figure 2. Differential peak analysis allows to identify true m6A sites from miCLIP2 data. (A) Mettl3 KO causes drastic changes in gene expression. Volcano
plot shows negative log2-transformed fold change (log2FC) of gene expression between Mettl3 KO and WT against log10-transformed false discovery rate
(FDR). Significantly changing genes are highlighted in red (FDR ≤ 0.01). (B) The bin-based approach for differential methylation analysis outperforms
other tested strategies. Number of identified peaks at A (x-axis) and fraction of peaks at A (y-axis) are given for different approaches (see Supplementary
Material, Section A). Curves were generated by step-wise increases in stringency (FDR). FDR ≤ 0.01 is marked for each approach. (C) Most changing
peaks go down upon Mettl3 KO. Comparison of log2FC in miCLIP2 signal per peak between Mettl3 KO and WT (y-axis) against reads per peak (log2-
transformed, x-axis). Significantly regulated peaks are highlighted in red (|log2FC| > 1, FDR ≤ 0.01). (D) Most significantly downregulated peaks are
located at adenosines. Pie chart represents nucleotide distribution of downregulated peaks. (E) Sequence motifs of peaks in the positive (top) and negative
(bottom) set. Logos show relative frequency of nucleotides at positions –3 to +3 around central A. (F) Peaks in the positive set accumulate around stop
codons. Density plot shows distribution of peaks in scaled transcript regions. UTR, untranslated region, CDS, coding sequence. (G) The most frequent
pentamers include non-DRACH motifs. Number of peaks (positive set) located at specific pentamer at DRACH (orange) and non-DRACH (olive) motifs.
(H–J) Selected m6A sites were validated by SELECT experiments. Exemplary real-time fluorescence amplification curves (normalized reporter value, �Rn)
and quantifications of threshold cycle (CT) values (technical replicates) for mESC WT versus Mettl3 KO samples are shown for m6A sites at non-DRACH
(H) and DRACH (I) motifs as well as unmodified DRACH motifs with a miCLIP2 peak (J). Neighboring unmodified A nucleotides as control for each
tested site are given in Supplementary Figure S3D. *** P value < 0.001, * P < 0.05, ns, not significant, two-sided Student’s t-test, n = 3.
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Figure 3. The machine learning classifier m6Aboost reliably predicts m6A sites from miCLIP2 data. (A) Overview of the machine learning approach. First,
miCLIP2 WT and Mettl3 KO datasets are analyzed for differential methylation to identify Mettl3-dependent m6A sites. The resulting positive and negative
sets are used to extract features and train a machine learning classifier. The model is validated on an independent test set. Finally, the model can be applied
to new miCLIP2 datasets to classify the miCLIP2 peaks as modified m6A sites versus unmodified background signal. (B) Highest informative content lies
in the nucleotide sequence, the relative signal strength of the peak and the number of C-to-T transitions. Bar plot shows the features used for m6Aboost
prediction and their associated importance ranking. UTR, untranslated region, CDS, coding sequence. (C) m6Aboost outperforms baseline models trained
only on sequence (sequence-only) or experimental features (feature-only). Precision-recall curve shows performance of m6Aboost compared to baseline
models with the corresponding area under the curve (AUC). Precision and recall when solely filtering for DRACH motifs are shown for comparison (blue
dot). (D) m6Aboost achieves 99% accuracy on an independent test set. Bars visualize composition of independent test set (n = 10,760) from positive (22%)
and negative (78%) peaks (top) and the resulting m6Aboost predictions (bottom). In total, 10,658 peaks (99%) were correctly predicted, while 102 peaks
were misclassified. TNs, true negatives, TPs, true positives, FNs, false negatives, FPs, false positives.

transcript region; ‘feature-only’) achieved worse classifica-
tion results (Figure 3C), supporting that both types of fea-
tures are required for optimal performance. Consistently,
our m6Aboost outperformed a simple filter for DRACH
motifs (Figure 3C, blue dot).

m6Aboost predicts m6A sites also in lowly expressed tran-
scripts

To test the algorithm on a complete miCLIP2 dataset,
we applied m6Aboost to all peaks on A nucleotides in
the mESC WT miCLIP2 data (n = 117,142). In total,
m6Aboost extracted 25,456 putative m6A sites in 9,363
genes (Figure 4A). These included 11,548 sites from our ini-
tial positive set (98.6% of positive set) plus 13,908 additional
m6A sites. The latter were enriched in lowly expressed genes
and most likely failed to reach significance in the differen-
tial methylation analysis due to low read counts (Supple-
mentary Figure S4F). The miCLIP2 signal in all sites co-
herently went down in the Mettl3 KO (94% with log2FC <
–1; Figure 4B), supporting that they are indeed true m6A
sites.

Of note, 1,813 out of 25,456 (7.1%) predicted m6A sites
resided at non-DRACH motifs (Figure 4A). These non-
DRACH m6A sites showed an enrichment nearby stop
codons similar to the positive set and the vast majority were
depleted in the Mettl3 KO (Figure 4C and D), supporting
that predicted non-DRACH sites are indeed true m6A sites.
On the other hand, m6Aboost predicted that not all peaks
at DRACH motifs corresponded to true m6A sites. Indeed,
about half of these sites did not respond to Mettl3 KO and

distributed similarly to the negative set (Figure 4D and Sup-
plementary Figure S4G), suggesting that the m6A-specific
antibody shows a residual activity towards the unmodified
DRACH motif. The other half had low read counts and
preferentially resided in lowly expressed genes (Supplemen-
tary Figure S4G), possibly leading to their misclassification.
Importantly, m6Aboost associates a prediction score with
each site that allows to minimize the number of false posi-
tives, at the expense of false negatives, by tightening the pre-
diction score threshold (Supplementary Figure S4H and I).
Altogether, we conclude that m6Aboost efficiently discrimi-
nates relevant signal from nonspecific background, offering
a reliable prediction of genuine m6A sites from miCLIP2
data.

As an orthogonal support, we compared our pre-
dicted m6A sites to those detected by the antibody-
independent method MAZTER-seq in the same cell line
(21). MAZTER-seq relies on the methylation-sensitive
RNase MazF which cleaves at unmethylated ACA mo-
tifs. We found that 34.5% of the reliably identified m6A
sites from MAZTER-seq (200 out of 580 sites) were also
present in our data, further supporting the validity of our
approach.

For comparison, we also performed miCLIP2 experi-
ments on poly(A)+ RNA from RAW 264.7 cells, a mouse
macrophage cell line (three biological replicates, 29.8 mil-
lion truncation events on average). Out of 462,073 miCLIP2
peaks, m6Aboost identified a total of 19,301 m6A sites
(Supplementary Table S1). Overlay with the mESC data
showed that a third of the predicted m6A sites were shared
between both cell lines, rising to about 50% when focussing

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article/49/16/e92/6307904 by Institut für R

echt und W
irtschaft user on 28 February 2023



PAGE 13 OF 19 Nucleic Acids Research, 2021, Vol. 49, No. 16 e92

Figure 4. m6A sites occur at non-DRACH motifs and accumulate in retained introns. (A) m6Aboost predicts m6A sites at DRACH and non-DRACH
motifs in mESC WT miCLIP2 data. Inner circle of donut chart shows occurrence of DRACH (n = 28,760, 24.6%) and non-DRACH (n = 88,382, 75.4%)
motifs for all miCLIP2 peaks at A. Outer circle shows m6Aboost prediction results (marked in red) with 23,643 m6A sites and 5,117 unmodified sites
at DRACH (82.2% and 17.8%, respectively, of all peaks at DRACH) as well as 1,813 m6A sites and 86,569 unmodified sites at non-DRACH (2.1% and
97.9%, respectively, of all peaks at non-DRACH). (B) Predicted m6A sites (n = 25,456) go down upon Mettl3 KO, whereas predicted unmodified sites (n
= 91 686) remain unchanged. Density plot shows distribution of log2-transformed fold changes in miCLIP2 signal between Mettl3 KO and WT samples.
Positive and negative set are shown for comparison. (C) m6A sites at non-DRACH motifs (n = 1,813) show a similar accumulation at stop codons as the
positive set. Visualization as in Figure 2F. (D) m6Aboost predicts that not all peaks at DRACH motifs are m6A sites. Scatter plot and histograms show
fold change in miCLIP2 signal (log2-transformed, y-axis) against number of reads per peak (log2-transformed, x-axis) for 5,117 peaks at DRACH motifs
(light blue) that are predicted to be unmodified by m6Aboost. Predicted m6A sites at non-DRACH motifs (olive) are shown for comparison. (E) Most
m6A sites are shared between two mouse cell lines. Venn diagram shows overlap of predicted m6A sites in expressed genes (TPM ≥ 20, n = 4,490) from
mESC WT and RAW 264.7 cells. Venn diagram without expression filter is shown in Supplementary Figure S5E. (F) Overlap of m6A sites between two
mouse cell lines increases in higher expressed genes. TPM threshold representing the gene expression (x-axis) against the Jaccard index (y-axis). Numbers
of overlapping m6A sites are shown as comparison (blue). (G) m6A sites accumulate towards the 5′ splice sites of introns. Metaprofile shows density of
m6A sites along scaled introns (n = 3,509 m6A sites on 1,465 different introns). Coverage of RNA-seq reads on the same introns is shown for comparison
(blue). SS, splice site. (H) Intron retention (IR) is globally reduced in the Mettl3 KO cells. Scatter plot shows fold change in relative IR (%IR, y-axis)
against mean normalized RNA-seq reads on the introns across all samples (x-axis) for 4,925 measured IR events. 401 significantly changed IR events are
highlighted in red (FDR ≤ 0.05). (I) Introns harboring m6A sites show a significant trend towards IR reduction. Violin plot compares fold changes in %IR
for retained introns with (n = 4,098) and without (n = 827) m6A sites. P value < 2.22e–16, Wilcoxon rank-sum test. (J) IR is reduced in the Mif4gd and
Ythdc1 transcripts. Genome browser views of RPGC-normalized RNA-seq coverage are shown for merged replicates from WT and Mettl3 KO mESCs.
Predicted m6A sites are indicated with green arrowheads. IR events validated in (K) are highlighted. (K) Frequency of Ythdc1 and Mif4gd IR isoforms
is lower in Mettl3 KO mESCs. Semiquantitative three-primer RT-PCR to quantify isoform frequencies in WT and Mettl3 KO cells, with shared forward
and isoform-specific reverse primers displayed next to corresponding PCR products in capillary gel electrophoresis (top). Quantification of relative band
intensities (bottom) is displayed as mean ± s.d.m., n = 3, unpaired two-sided Student’s t-test.
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on genes that were highly expressed in both cell lines (TPM
≥ 20 or more; Figure 4E and F and Supplementary Figure
S5E).

m6A depletion triggers efficient splicing of retained introns

Since our miCLIP2 data was generated for poly(A)-selected
RNA, most identified m6A sites were located in exons. How-
ever, we also detected a number of m6A sites in retained in-
trons. Interestingly, the intronic m6A sites showed a strong
accumulation towards the 5′ splice sites (Figure 4G), sug-
gesting that they might impact intron splicing. Indeed, using
IRFinder (47), we could identify 401 significantly changed
intron retention (IR) events in the RNA-seq data of Mettl3
KO mESCs (change in IR [|�IR|] > 3%, FDR < 0.05; Fig-
ure 4H and I). 384 out of 401 significantly changed introns
showed reduced coverage in the Mettl3 KO, as seen for in-
tron 5 in Mif4gd and intron 11 in Ythdc1 (Figure 4J), in-
dicating increased splicing efficiency. Isoform-specific semi-
quantitative RT-PCR confirmed a lower frequency of the
Ythdc1 and Mif4gd isoforms with retained introns in Mettl3
KO mESCs (Figure 4K). This trend was also reflected in a
global reduction in IR across the transcriptome, as 4,563
out of 4,925 measured IR events (92.7%) showed a �IR <
0 (Figure 4H). Generally, introns harboring m6A modifi-
cations showed a significant trend towards more IR reduc-
tion compared to unmodified introns (Figure 4I), indicating
that modifications on retained introns may directly influ-
ence splicing efficiency.

m6Aboost can be applied to predict m6A sites in human cells

To test m6Aboost on miCLIP2 data from a different species,
we performed miCLIP2 experiments with poly(A)+ RNA
from human HEK293T cells (n = 4 replicates with 30 mil-
lion truncation events on average, Supplementary Figure
S1F and G). Starting from > 788,758 miCLIP2 peaks,
m6Aboost identified 36,556 m6A sites in 7,552 genes, cor-
responding to 21% of all peaks at A (Supplementary Table
S1). The m6A sites occurred with a median of three sites per
gene and accumulated around stop codons (Figure 5A and
Supplementary Figure S5A), mirroring the distribution in
the mouse cells.

We used SELECT to validate the presence of m6A mod-
ifications in HEK293T cells in an antibody-independent
manner (29). In order to deplete m6A, we employed a spe-
cific METTL3 inhibitor (STM2457, STORM Therapeu-
tics) (28), which progressively reduced the relative m6A lev-
els with increasing concentration, down to 22% (Supple-
mentary Figure S5B). We then compared SELECT qPCR
amplification curves from inhibitor-treated HEK293T cells
against DMSO control samples for three exemplary m6A
sites. This confirmed the presence of m6A in two out
of three sites in the genes DDIT4 (chr10:72275034:+)
and RHOB (chr2:20448702:+) (Figure 5B). As a control,
we tested adjacent A sites in the same genes which re-
mained unchanged upon METTL3 inhibition (DDIT4:
chr10:72275038:+; RHOB: chr2:20448698:+; Supplemen-
tary Figure S5C). A third putative m6A site could not be
validated (ABT1: chr6:26598621:+).

As an independent line of evidence, we overlapped the
m6Aboost-predicted m6A sites with binding sites of the cy-
toplasmic m6A reader protein YTHDF1 from published
iCLIP data (54). Metaprofiles showed a sharp peak in
YTHDF1 binding precisely at the predicted m6A sites at
DRACH motifs (Figure 5C and D and Supplementary Fig-
ure S5D). Although less pronounced, we detected consider-
able YTHDF1 binding also at predicted m6A sites at non-
DRACH motifs, further supporting that these indeed rep-
resent genuine m6A sites.

We compared our predicted m6A sites in HEK293T with
published validated m6A sites in the same cell line by the
antibody-independent method SCARLET that uses thin-
layer chromatography (52). We found that all m6A sites with
> 5% methylation in HEK293T cells were also present in
our data, whereas sites that were not validated by SCAR-
LET (< 5% methylation) were not detected by miCLIP2
(Supplementary Table S3). To further support the predicted
m6A sites, we compared our miCLIP2 data with published
miCLIP and m6ACE-seq data for the same cell line (51,55).
m6A-Crosslinking-Exonuclease-sequencing (m6ACE-seq)-
seq is a recently developed tool which incorporates 5′ to
3′ exoribonuclease treatment after m6A-antibody crosslink-
ing to increase the resolution and omit radioactive gel elec-
trophoresis (55). We found that almost half of our m6A sites
overlapped at single-nucleotide level with at least one fur-
ther dataset (Figure 5E). The remaining sites occurred on
lowly expressed genes, but still showed an m6A-typical dis-
tribution along transcripts and overlapped with YTHDF1
binding (Figure 5F and G and Supplementary Figure S5F).
This suggests that these m6A sites were missed in other stud-
ies due to experimental variability and technical limitations
rather than lack of modification.

As a second human cell line, we performed miCLIP2 ex-
periments on poly(A)+ RNA from C643 cells, a human thy-
roid cancer cell line (three biological replicates, Supplemen-
tary Table S1). Here, m6Aboost predicted a total of 18,789
m6A sites. Comparison with HEK293T showed that sim-
ilar to mouse, 50.7% of all m6A sites on highly expressed
genes were shared between HEK293T and C643 cells (TPM
≥ 20 or higher; Figure 5H and I and Supplementary Figure
S5E), an estimate that is stable with increasing expression.
We therefore conclude that about half of all m6A modifi-
cations are constitutively present in different cell types in
human and mouse.

miCLIP2 allows to map m6A sites from low input material

Most current protocols for antibody-based m6A detection
start from 5 to 10 �g of poly(A)+ mRNA (37,56). In our
standard setup, we use just 1 �g, from which we obtain more
than 30 million unique miCLIP2 reads on average with low
PCR duplication rates (Supplementary Table S1). However,
when working with scarce material such as tissue samples,
the amount of extractable RNA is often limited. We there-
fore tested whether miCLIP2 can be applied with even lower
RNA input. To this end, we used poly(A)+ mRNA from
mouse heart tissue samples and titrated the amount of in-
put RNA down to 50 ng. The resulting miCLIP2 libraries
contained 2–50 million truncation events (Supplementary
Table S1).
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Figure 5. m6Aboost predicts 36,556 m6A sites from HEK293T miCLIP2 data. (A) Predicted m6A sites are located around the stop codon. Visualization
as in Figure 2F. (B) Selected m6A sites were validated by SELECT with HEK293T cells treated with METTL3 inhibitor (STM2457) or DMSO control.
Visualization as in Figure 2H. Neighboring unmodified A nucleotides as control are given in Supplementary Figure S5C. *** P value < 0.001, ** P < 0.01,
two-sided Student’s t-test, n = 3. (C) Predicted m6A sites overlap with YTHDF1 binding sites. Genome browser view of the gene CCDC85B shows crosslink
events from published YTHDF1 iCLIP data for HEK293T together with miCLIP2 signal (merge of four replicates) and m6Aboost-predicted m6A site
(green arrowhead) from our HEK293T miCLIP2 data. (D) YTHDF1 precisely binds at the predicted m6A sites. Percentage of m6A sites (position 0) with
YTHDF1 binding sites (y-axis) in a 21-nt window are given for predicted m6A sites at DRACH (yellow) and non-DRACH (green), as well as predicted
unmodified sites (grey). (E) Predicted m6A sites from HEK293T miCLIP2 overlap with published m6A data. Venn diagram shows single-nucleotide overlap
with miCLIP and m6ACE-seq data (m6A antibody by Synaptic Systems and Abcam, respectively). Note that m6A sites in Boulias et al., 2019 had been
filtered for DRACH motifs. (F, G) Analysis of m6A sites that are unique to one of the three datasets compared in (E). (F) Unique m6A sites accumulate
around stop codons. Visualization as in Figure 2F. (G) Unique m6A sites are enriched in YTHDF1 binding sites. Visualization as in (D). (H) Most m6A
sites are shared between two different human cell lines. Venn diagram shows overlap of predicted m6A sites in expressed genes (TPM ≥ 20, n = 3,298)
from HEK293T and C643 cells. A Venn diagram without expression filter is shown in Supplementary Figure S5E. (I) More m6A sites are shared between
two human cell lines in higher expressed genes. TPM threshold representing the gene expression (x-axis) against the Jaccard index (y-axis). Numbers of
overlapping m6A sites are shown as comparison (blue).

We found that even with these small amounts of input
RNA, the miCLIP2 signals were still reproducible at nu-
cleotide level (Figure 6A and Supplementary Figure S5G).
As expected, the sensitivity of miCLIP2 progressively de-
creased with lower input material. The precision, however,
was hardly compromised, since the identified sites were
highly overlapping at all concentrations (Figure 6B). More-
over, m6A sites from all RNA input concentrations were
consistently enriched at DRACH motifs and nearby stop
codons (Figure 6C and D). Together, these results suggest
that our approach can be used to identify m6A modifica-
tions even from a limited amount of input RNA.

DISCUSSION

Knowledge on the precise location of m6A sites is essen-
tial to unravel the molecular effects and biological func-

tions of this universal RNA modification. With the ad-
vent of next-generation sequencing, new experimental pro-
tocols allow for a systematic mapping of m6A sites, often
with single-nucleotide resolution (57). Although alterna-
tive methods recently became available (21,22,58,59), the
most widely used approaches rely on a set of available an-
tibodies against the modified nucleotide (57). These meth-
ods suffer from the broad reactivity of these antibodies,
which cross-react with unmodified adenosines or related
modifications such as m6Am, thereby generating excessive
false positives (17). Moreover, many protocols require high
amounts of starting material, or target only a restricted sub-
set of m6A sites that occur for instance in a specific se-
quence context (21,22,37,56). In this study, we tackle these
limitations by combining the optimized miCLIP2 proto-
col and the machine learning model m6Aboost to reliably
map m6A modifications at high resolution and depth. Our
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Figure 6. miCLIP2 allows to map m6A sites from low input material (A)
m6Aboost predicts overlapping m6A sites from miCLIP2 data for different
RNA input concentrations. Example genome browser view of the Oat gene
shows miCLIP2 signals and corresponding m6Aboost predictions (green
arrowheads) for 1 �g, 300 ng, 100 ng and 50 ng of input RNA. (B) The ma-
jority of m6A sites predicted from low-input libraries overlap with the 1 �g
input library. Overview of the overlap of predicted m6A sites from different
concentrations. (C) All predicted sites from different concentrations resem-
ble a DRACH motif. Sequence logo of the predicted m6A sites from mi-
CLIP2 from different RNA input concentrations including the surround-
ing four nucleotides. (D) Predicted m6A sites from miCLIP2 with different
RNA input concentrations cluster around the stop codon. Visualization as
in Figure 2F.

approach builds on three major experimental and compu-
tational innovations that are critical for its efficiency and
accuracy.

First, we improved the efficiency of the experimental mi-
CLIP2 protocol by incorporating the recently published
iCLIP2 library preparation (24), including separately lig-
ated adapters, two rounds of PCR amplification and a bead-
based clean-up strategy. This reduces the processing time to
just four days and provides high-complexity datasets with-
out PCR duplicates. With this setup, we now routinely ob-
tain more than 30 million unique miCLIP2 reads from 1 �g
input RNA – twenty times less than in the original protocol
(17). The moderate duplication rate (Supplementary Table
S1) indicates the miCLIP2 libraries in this study were not
sequenced to saturation, suggesting that many more m6A
sites could still be identified from the same libraries. More-

over, it is possible to obtain reproducible data down to 100
ng and less of input RNA. The reduced input requirement
will be particularly useful for studies on nascent RNA or
clinical samples and in vivo disease models where starting
material is limiting.

Second, we tackled the high false positive rate from the
m6A-specific antibodies, which is inherent to antibody-
based approaches, through the direct comparison with
Mettl3 KO cells. Using a custom-tailored differential
methylation analysis strategy, we identified >10 000 Mettl3-
dependent m6A sites in the WT mESC miCLIP2 data that
constituted the positive set of high-confidence m6A sites
for subsequent model training (see below). Of note, we find
that m6A modifications occur outside of DRACH motifs
(6.3% of all predicted m6A sites) and validate selected m6A
sites at non-DRACH motifs using an orthogonal antibody-
independent method. Similar motifs were previously re-
ported and recently confirmed in direct RNA sequenc-
ing data (Oxford Nanopore Technologies) (17,60). Impor-
tantly, since the m6A sites at non-DRACH motifs were in-
cluded in the m6Aboost model training, similar sites can be
readily identified in future miCLIP2 experiments. In addi-
tion, we propose that the sequence composition of the high-
confidence m6A sites from the differential methylation anal-
ysis (Figure 2E), captured for instance in a position weight
matrix, could be used to filter other datasets in a more ef-
fective way. Moreover, our strategies to account for changes
in transcript abundance in order to identify differentially
methylated sites will be applicable for other RNA modi-
fications, such as 5-methylcytosine (m5C) in m5C-miCLIP
(57,61).

Third, we trained a machine learning model, termed
m6Aboost, to accurately extract Mettl3-dependent m6A
sites from any miCLIP2 dataset. Several machine learning
approaches have been developed to predict m6A sites from
the primary RNA sequences (62–64). However, most exist-
ing models were trained on data of limited resolution and
size, and consequently perform poorly for single-nucleotide
predictions. Here, we apply machine learning to predict
m6A sites in miCLIP2 data based on a high-confidence pos-
itive set of Mettl3-dependent m6A sites. We therefore tackle
the inherent problem of false positives that impair most
antibody-based m6A detection protocols (57). The resulting
m6Aboost model allows to transfer our gained knowledge
to other miCLIP datasets without the need for an accom-
panying Mettl3 KO, which is not feasible in many biologi-
cal settings. Because m6Aboost allows for m6A sites at non-
DRACH motifs and sorts out false positive miCLIP2 sig-
nals, even at DRACH, it outperforms the commonly used
DRACH motif filter (37,51,59). The stringency against false
positives can be tuned according to the requirements of the
user by adjusting the prediction score of m6Aboost.

We note that our model was trained on miCLIP2 data
that was obtained with a specific m6A antibody (Synap-
tic Systems). It is known that certain biochemical features
such as the truncation rate at the crosslinked antibody and
the distribution of C-to-T transitions vary with each anti-
body (17,57). We envision that our machine learning model
can be retrained on data for other antibodies against m6A
and other RNA modifications that can be mapped via mi-
CLIP2, if an accompanying depletion dataset is available.
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This includes the related RNA modification m6Am, which
is present in the miCLIP2 data due to cross-reactivity of the
m6A antibody, and could be recognized and specifically dis-
criminated from m6A after retraining upon depletion of the
m6Am-specific methyltransferase PCIF1 (51,65).

In this study, we generated m6A profiles for four human
and mouse cell lines that will serve as a resource for fu-
ture studies. Comparing the methylation profiles revealed
that about half of all m6A sites are shared between cell
lines in either species. Moreover, we confirm that m6A is
mainly deposited around stop codons and within the 3′
UTR (15,16). Interestingly, we also observe an accumula-
tion near the 5′ splice sites of retained introns. Further, our
data indicates that m6A can promote intron retention. Pre-
vious studies rather described an increase in intron reten-
tion events in Mettl3 KO mESC cells (27), or in null mutants
of the Mettl3 orthologue Ime4 in Drosophila melanogaster
(4,66,67). In contrast, a recent study found that TARBP2-
dependent m6A deposition in introns prevents splice fac-
tor recruitment and efficient intron excision (68), in line
with our observations. This adds a new angle to the con-
troversy surrounding the impact of m6A modifications on
alternative splicing. While some studies reported on exten-
sive splicing alterations upon Mettl3 depletion, others re-
butted a strong connection between m6A and splicing (69–
72). Consistent with the latter view, we generally observe
very few changes in cassette exon splicing in the Mettl3 KO
mESCs. Intron retention, however seemed to be systemi-
cally affected, with retained introns being spliced more effi-
ciently throughout the transcriptome of Mettl3 KO cells.

In essence, the combination of miCLIP2 and m6Aboost
allows for a deep and accurate detection of m6A sites. Our
study illustrates how artificial intelligence helps to eliminate
background signals in order to decode high-throughput
data and thereby aids to improve the precise analysis of m6A
sites with nucleotide resolution.
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Supplementary	Methods	

A.	Differential	methylation	analysis	

In	 order	 to	 discriminate	 true	m6A	 sites	 from	 background	 in	 the	miCLIP2	 data,	 we	
compared	 miCLIP2	 profiles	 from	 wildtype	 (WT)	 and	Mettl3	 knockout	 (KO)	 mouse	
embryonic	 stem	 cells	 (mESCs)	 which	 deplete	 m6A	 modifications	 from	 mRNAs	
(Figure	1B).	 However,	 this	 analysis	 was	 confounded	 by	 broad	 changes	 in	 gene	
expression	 in	 response	 to	 the	 Mettl3	 KO,	 which	 resulted	 in	 5,372	 differentially	
regulated	 genes	 including	 3,005	 up-	 and	 2,367	 down-regulated	 genes	 (false	
discovery	rate	[FDR]	≤	0.01;	Figure	2A).	Since	the	miCLIP2	signal,	similar	like	regular	
iCLIP	 (1,2),	 is	 strongly	 dependent	 on	 the	 underlying	 transcript	 abundance	
(Supplementary	 Figure	 S2B,	 top	 panel),	 this	 means	 that	 if	 not	 corrected	 for,	
differential	 analysis	 will	 erroneously	 pick	 up	 many	 peaks	 with	 reduced	 signal	 in	
downregulated	genes.	 In	order	 to	 illustrate	this,	we	applied	DESeq2	(3)	collectively	
to	 all	 peaks	 in	 the	dataset	 (approach	 termed	one-run)	which	 thus	 tests	 each	peak	
independently	 and	 omits	 the	 underlying	 transcript	 level	 changes.	 These	 and	 all	
following	analyses	are	based	on	miCLIP2	truncation	reads	in	peaks	identified	by	peak	
calling	 with	 PureCLIP	 (4)	 (see	 Methods).	 As	 expected,	 the	 changes	 in	 transcript	
abundance	 were	 mirrored	 in	 estimated	 fold	 changes	 in	 miCLIP2	 signal	 of	 the	
associated	 peaks,	 such	 that	 almost	 all	 peaks	 in	 strongly	 downregulated	 genes	
(log2FC	 <	 -3.5)	went	 down	 in	 the	Mettl3	 KO,	whereas	 peaks	 in	 upregulated	 genes	
tended	to	go	up	(Supplementary	Figure	S3A,	left).	

In	 order	 to	 overcome	 this,	 we	 tested	 three	 different	 approaches	 based	 on	 (i)	
separately	 running	 DESeq2	 on	 the	 peaks	 of	 each	 gene	 (gene-wise),	 (ii)	 combining	
peaks	 for	 groups	 of	 genes	 with	 similar	 abundance	 change	 (bin-based),	 and	 (iii)	
adopting	 DEXSeq	 (dexseq-run)	 (5)	 instead	 of	 DESeq2	 (Supplementary	 Figure	 S3A).	
The	three	approaches	worked	as	follows:	

Gene-wise	approach.	Here,	we	ran	an	 individual	DESeq2	analysis	 for	each	gene.	To	
this	 end,	 we	 first	 assigned	 all	 peaks	 to	 their	 host	 gene	 based	 on	 GENCODE	 gene	
annotation	 (release	 M23)	 (6).	 Overlapping	 genes	 were	 resolved	 by	 the	 genes’	
support	level	and	length,	prioritising	better	support	and	longer	genes.	All	peaks	of	a	
given	gene	were	then	used	for	a	collective	DESeq2	analysis.	

Bin-based	approach.	A	disadvantage	of	 testing	 for	 individual	genes,	as	 in	the	gene-
wise	 approach	 and	 in	dexseq-run	 below,	 is	 that	 it	 relies	 on	 a	 sufficient	 number	 of	
peaks	 per	 gene	 to	 estimate	 the	 required	 parameters,	 such	 as	 the	 dispersion,	
correctly.	In	order	to	overcome	this,	we	stratified	all	genes	based	on	their	expression	
changes	 upon	Mettl3	 KO	 into	 equally	 sized	 bins.	 We	 then	 collectively	 tested	 the	
signal	 changes	 of	 the	 peaks	 from	 all	 genes	 within	 each	 bin	 using	 DESeq2.	 Gene	
expression	changes	were	calculated	on	the	total	number	of	miCLIP2	truncation	reads	
in	each	gene,	acquired	by	htseq-count	with	default	parameters	(7)	using	GENCODE	



gene	annotation.	Comparison	with	a	parallel	DESeq2	analysis	on	matching	RNA-seq	
data	 for	 the	 same	 samples	 showed	 a	 high	 correlation	 of	 log2FC	 values	
(Supplementary	 Figure	 S3B),	 supporting	 that	 the	 summed	 miCLIP2	 signal	 on	 the	
genes	allows	for	a	reliable	estimation	of	gene	expression	changes.	We	next	used	the	
miCLIP2-derived	log2FC	values	to	stratify	all	genes	into	equal	bins	(width	of	Δlog2FC	
=	 0.3,	 47	 bins;	 Supplementary	 Figure	 S3C).	 Subsequently,	 we	 applied	 DESeq2	
collectively	to	all	peaks	from	all	genes	of	the	same	bin.	

2-factor	 approach.	 In	 this	 approach,	 we	 built	 a	 combined	 DESeq2	 model	 on	 the	
miCLIP2	signal	in	the	peaks	and	the	summed	miCLIP2	signal	on	the	genes	as	a	proxy	
for	 gene	 expression.	 To	 account	 for	 gene	 expression	 changes,	 we	 tested	 for	 an	
interaction	 term	 for	 the	 peak	 signals	 and	 gene	 counts	 (design	 =	 ~condition	 +	
condition:geneExpression)	to	the	design	formula	of	the	DESeq2	model.	

Dexseq-run.	 We	 adopted	 DEXSeq	 (5)	 (version	 1.36.0),	 an	 R/Bioconductor	 package	
that	 was	 developed	 to	 test	 for	 alternative	 splicing	 in	 RNA-seq	 data.	 Originally,	
DEXSeq2	models	RNA-seq	read	counts	in	exonic	bins,	which	are	grouped	by	genes,	in	
a	 generalised	 linear	 model	 to	 test	 for	 differential	 exon	 abundance.	 Additional	
parameters	 in	 the	 model	 account	 for	 congruent	 changes	 across	 the	 exons	 of	 the	
same	 gene	 to	 estimate	 changes	 in	 overall	 gene	 expression.	 To	 run	DEXSeq	on	 the	
miCLIP2	 data,	 we	 treated	 each	 peak	 as	 an	 exonic	 bin	 and	 grouped	 them	 by	 their	
assigned	 host	 gene.	 DEXSeq	 was	 then	 run	 with	 the	 formula	 “~sample	 +	 peak	 +	
condition:peak”.	

We	 benchmarked	 the	 performance	 of	 the	 different	 approaches	 based	 on	 the	
assumptions	that	true	m6A	sites	should	reside	at	A	and	show	reduced	miCLIP2	signal	
in	 the	Mettl3	 KO	 cells.	 To	 this	 end,	we	 compared	 the	 differential	 peaks	 identified	
with	increasing	stringency	(FDR)	with	respect	to	the	total	number	(yield)	and	fraction	
(precision)	at	A	(Figure	2B).	With	more	stringent	FDR	thresholds,	the	proportion	of	
significantly	 differential	 peaks	 at	 A	 continuously	 increased	 for	 all	 approaches.	 The	
best	performance	was	 seen	 for	 the	bin-based	 approach,	which	yielded	 the	highest	
number	of	significant	peaks	with	the	highest	proportion	at	A	at	most	FDR	thresholds	
(Figure	2B).	Besides	its	accuracy,	the	bin-based	approach	also	showed	the	best	run-
time	performance	by	consuming	just	1%	of	CPU	time	compared	to	the	gene-wise	or	
dexseq-run	approaches.	

With	 the	 bin-based	 approach	 at	 a	 threshold	 of	 FDR	 <	 0.01,	 we	 identified	 total	 of	
14,282	significantly	differential	peaks,	out	of	which	13,912	peaks	(97.4%)	went	down	
upon	Mettl3	 KO	 (Figure	 2C).	 11,862	 (85.3%)	 of	 the	 decreased	 peaks	 resided	 at	 A	
(Figure	 2D).	 These	 were	 further	 filtered	 for	 the	 following	 analyses	 as	 described	
below.	

 	



B.	AdaBoost	machine	learning	to	identify	true	m6A	sites	

Compiling	the	positive	and	negative	sets	

We	next	sought	to	build	a	machine	learning	classifier	to	distinguish	true	m6A	signals	
from	 background	 in	 any	 miCLIP2	 datasets,	 without	 accompanying	 Mettl3	 KO.	
Starting	from	the	reduced	peaks	at	A	from	the	differential	methylation	analysis	(bin-
based	approach,	FDR	≤	0.01,	 log2FC	<	0),	we	calculated	the	frequency	of	pentamer	
motifs	at	the	putative	modification	site	and	removed	155	peaks	(1.3%)	with	the	most	
rarely	occurring	pentamers	(present	in	less	than	four	peaks).	This	yielded	a	stringent	
positive	set	of	11,707	peaks	that	were	treated	as	true	m6A	sites,	including	10,966	at	
DRACH	(93.7%)	and	741	at	non-DRACH	motifs	(6.3%).	

For	the	corresponding	negative	set,	we	required	that	peaks	were	not	depleted	and	
did	not	 show	significant	 regulation	upon	 the	Mettl3	 KO	and	hence	are	 likely	 to	be	
part	 of	 the	 nonspecific	 background	 in	 the	 miCLIP2	 data.	 Based	 on	 the	 bin-based	
approach,	we	 filtered	 for	peaks	at	A	with	 log2FC	≥	0	and	FDR	>	0.5.	This	yielded	a	
negative	 set	of	42,090	peaks,	 including	1,043	at	DRACH	 (2.5%)	and	41,047	at	non-
DRACH	motifs	 (97.5%).	 The	 unbalanced	 ratio	 of	 roughly	 4:1	 between	 the	 negative	
and	the	positive	set	reflected	the	observed	contribution	of	true	m6A	sites	among	all	
miCLIP2	peaks	(Figure	4A).	

We	combined	the	positive	and	negative	set	and	then	randomly	selected	80%	of	the	
sites	as	our	training	set.	The	remaining	20%	of	the	sites	were	kept	as	an	independent	
test	set.	

Feature	selection	

For	all	peaks	 in	the	training	and	test	set,	we	extracted	the	following	positional	and	
experimental	features:	

(i)	Surrounding	nucleotide	sequence:	We	used	a	21-nt	window	around	the	putatively	
modified	A	nucleotide.	This	is	less	than	what	is	used	by	most	existing	algorithms	that	
predict	m6A	sites	solely	on	sequence	information,	including	the	popular	tools	SRAMP	
and	DeepM6ASeq	(8-10).	

(ii)	Transcript	region:	Since	m6A	sites	accumulate	in	certain	transcript	regions	(11,12)	
(Figure	2F),	we	included	their	location	within	5’	UTR,	CDS	and	3’	UTR	as	features	for	
the	prediction.	Transcript	annotations	were	taken	from	GENCODE	(release	M23)	and	
filtered	 for	 a	 transcript	 support	 level	 ≤	 3	 and	 support	 level	 ≤	 2.	 Since	 the	 same	
position	 can	 residue	 in	 different	 regions	 of	 different	 isoforms,	 we	 separately	
extracted	whether	a	peak	overlapped	with	at	least	one	5’	UTR,	CDS	and	3’	UTR,	and	
then	used	this	information	as	three	features	for	the	prediction.	

(iii)	 Relative	 signal	 strength:	 In	 our	 initial	 characterisation	of	 the	miCLIP2	data,	we	
found	that	the	relative	signal	strength	offered	means	to	enrich	for	putative	m6A	sites	
(Supplementary	Figure	S2C).	The	relative	signal	strength	is	calculated	as	the	number	



of	truncation	events	in	each	peak	divided	by	the	mean	number	of	truncation	events	
for	 all	 peaks	 in	 the	 same	 gene	 (see	 Methods).	 For	 the	 prediction,	 values	 were	
increased	by	a	pseudo-count	of	1	and	then	log2-transformed.	

(iv)	C-to-T	transitions:	It	was	previously	shown	that	in	the	case	of	readthrough,	C-to-
T	 transitions	 appear	 at	 the	 sites	of	m6A	modifications	 (13).	We	 therefore	 included	
the	 number	 of	 C-to-T	 transitions	 1	 nt	 downstream	 of	 each	 peak	 as	 orthogonal	
feature	 from	 the	miCLIP2	data.	The	values	were	 increased	by	a	pseudo-count	of	1	
and	then	log2-transformed.	

The	importance	of	the	features	in	the	final	m6Aboost	model	is	shown	in	Figure	3B.	

Machine	learning	approaches	tested	for	m6A	site	prediction	from	miCLIP2	data		

We	 initially	 tested	 three	 different	 machine	 learning	 algorithms.	 (i)	 AdaBoost:	
Adaptive	boosting	(AdaBoost)	formulated	by	Yoav	Freund	and	Robert	Schapire	(14)	is	
one	 of	 the	 most	 widely	 known	 boosting	 algorithms.	 This	 tree	 boosting	 algorithm	
combines	decision	stumps	(weak	learners)	and	turns	them	into	a	strong	learner	via	
applying	the	boosting	method.	Moreover,	AdaBoost	performs	exceptionally	well	for	
dichotomous	tasks.	In	this	project,	we	used	the	R	package	adabag	(15)	to	construct	
the	AdaBoost-based	m6A	predictor	m6Aboost.	(ii)	Support	vector	machine	(SVM)	is	a	
popular	machine	 learning	algorithm	in	bioinformatics	which	transfers	the	data	to	a	
higher	dimension	and	then	finds	the	hyperplanes	to	best	classify	the	samples.	It	was	
previously	used	for	the	prediction	of	mammalian	m6A	modification	sites	(16,17).	 In	
this	 project,	 we	 used	 an	 interface	 (e1071)	 of	 LIBSVM	 (18)	 in	 the	 R	 language	 to	
construct	the	SVM-based	predictor.	(iii)	Random	Forest	(RF)	is	a	decision	tree-based	
algorithm	which	shows	an	excellent	performance	in	supervised	learning.	It	is	used	in	
SRAMP	(8),	one	of	the	earliest	and	most	commonly	used	m6A	predictors.	We	used	an	
R	package	of	randomForest	(19)	to	build	the	RF-based	m6A	predictor.	

For	 all	 three	 classifiers,	 we	 evaluated	 the	 prediction	 performance	 on	 the	
independent	 test	 set	 using	 precision-recall	 (PR)	 curves	 (Figure	 3C	 and	
Supplementary	 Figure	 S4B).	 We	 also	 calculated	 sensitivity,	 specificity,	 accuracy,	
precision,	 F1-score	 and	 Matthews	 correlation	 coefficient	 (MCC)	 (Supplementary	
Figure	S4A)	as	follows:	

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  𝑅𝑒𝑐𝑎𝑙𝑙 =  !"
!"!!"

	 	 (1)	

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  !"
!"!!"

		 	 	 (2)	

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  !"!!"
!"!!"!!"!!"

 	 	 	 (3)	

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = !"
!"!!"

 	 	 	 	 (4)	

𝐹1 =  2 ∗  !"#$%&%'( ∗ !"#$%%
!"#$%&%'(!!"#$%%

 	 	 	 (5)	



MCC	=	 !" ∗ !"!!"∗!"
!"!!" !"!!" (!"!!")(!"!!")

	 	 (6)	

where	TP,	TN,	FP	and	FN	represent	the	counts	of	true	positive,	true	negative,	false	
positive	and	false	negative	predictions,	respectively.	For	m6Aboost,	we	additionally	
employed	5-fold	cross-validation	using	the	area	under	the	curve	(AUC)	of	PR	curves	
and	 receiver	 operating	 characteristic	 (ROC)	 curves	 to	 measure	 the	 prediction	
performance	(Supplementary	Figure	S4C).	We	also	tested	a	variant	of	the	AdaBoost	
model	that	was	trained	and	tested	on	a	balanced	setup	(Supplementary	Figure	S4A).	
For	 this,	 we	 randomly	 subsampled	 the	 negative	 set	 to	 11,707	 sites	 to	 match	 the	
positive	 set.	 Based	 on	 the	 employed	 measures,	 we	 selected	 the	 AdaBoost-based	
predictor	m6Aboost	(Supplementary	Figure	S4D).	

Normalisation	of	numerical	features	

Application	of	 the	machine	 learning	model	 to	new	datasets	 requires	 that	 the	data	
were	generated	by	the	same	protocol	and	thus	show	an	independent	and	identical	
distribution.	The	m6Aboost	model	includes	two	numerical	features	from	the	miCLIP2	
data,	 namely	 relative	 signal	 strength	 and	 C-to-T	 transitions,	 which	 could	
systematically	 vary	 between	 experiments.	 Since	 in	 the	 training	 set,	 both	 features	
approximated	a	Poisson	distribution	(Supplementary	Figure	S4E),	we	normalised	the	
values	of	each	features	in	the	input	samples	by	the	ratio	of	the	mean	for	this	feature	
between	the	input	dataset	and	the	training	set.	

	 	



Supplementary	Figures	

	

Supplementary	 Figure	 S1.	 miCLIP2	 library	 preparation.	 A-C.	 Optimisation	 of	 the	
miCLIP2	 protocol.	A.	Ribosomal	 RNA	 is	 fully	 depleted	 after	 two	 rounds	 of	 poly(A)	
selection.	 Electropherogram	 illustrating	 poly(A)	 enrichment	 for	 1	 µg	 total	 RNA	 of	
HEK293T	cells	after	one	(1x,	blue)	and	two	(2x,	red)	rounds	of	poly(A)	selection.	B.	
An	 incubation	 time	of	8	min	 results	 in	optimal	RNA	 fragmentation.	 For	an	optimal	
RNA	fragment	spectrum	between	50-200	nt,	fragmentation	periods	of	4-18	minutes	
were	compared.	C.	Autoradiograph	illustrating	comparison	of	RNA	crosslinked	to	the	
m6A	 antibody	 at	 different	 irradiation	 doses	 in	 mJ/cm²	 at	 254	 nm	 UV	 light.	 The	
expected	molecular	weight	of	the	m6A	antibody	is	50	kDa.	D-G.	Visualisation	of	the	
miCLIP2	 libraries	 from	 mouse	 embryonic	 stem	 cells	 (mESCs)	 (D,E)	 and	 human	
HEK293T	 cells	 (F,G).	 D.	 Autoradiograph	 illustrating	 radioactively	 labelled	 m6A-
antibody-RNA	complexes	from	wild-type	(WT)	and	Mettl3	knockout	(KO)	mESCs.	The	
expected	molecular	weight	of	 the	anti-m6A	antibody	 is	50	kDa	 for	 the	heavy-chain	
and	 25	 kDa	 for	 the	 light	 chain.	 Excised	 regions	 are	 indicated	 with	 dotted	 lines.	
E.	Final	miCLIP2	pooled	 library	of	three	biological	replicates	each	for	mESC	WT	and	
mESC	Mettl3	KO.	Note	that	the	final	library	contained	independent	samples	from	an	
unrelated	 experiment	 that	 were	 multiplexed	 for	 high-throughput	 sequencing.	
F.	Autoradiograph	 illustrating	 radioactively	 labelled	 m6A-antibody-RNA	 complexes	
from	HEK293T	cells.	Excised	regions	are	indicated	with	dotted	lines.	G.	Final	miCLIP2	
pooled	library	of	four	biological	replicates	from	HEK293T	cells.	Note	that	the	pooled	
library	also	includes	material	from	an	additional	experiment	which	is	not	part	of	this	
study.		

	 	



	

Supplementary	Figure	S2.	Data	quality.	A.	miCLIP2	libraries	are	highly	reproducible	
between	replicates.	Pairwise	comparison	of	truncation	read	counts	within	peaks	for	
all	replicates	from	WT	and	Mettl3	KO	mESCs	are	shown	as	an	extension	of	Figure	1C.	
Pearson	 correlation	 coefficients	 (r)	 and	 associated	 P	 values	 are	 given.	 B.	 Relative	
signal	 strength	 corrects	 for	 the	 effect	 of	 gene	 expression	 on	 the	 miCLIP2	 signal.	
Scatter	 plots	 show	 correlation	 between	miCLIP2	 truncation	 reads	 (top)	 or	 relative	
signal	 strength	 (bottom)	 and	 expression	 of	 the	 respective	 gene	 (in	 transcripts	 per	
million,	TPM,	 log2)	 for	all	peaks	 from	 the	WT	miCLIP2	data.	Colour	gradient	 shows	
point	density.	Pearson	correlation	coefficients	(r)	and	associated	P	values	are	given.	
C.	Stronger	peaks	are	more	often	located	at	AC	dinucleotides	than	weaker	peaks.	AC	



dinucleotide	 content	 in	 a	 21-nt	window	 around	 the	 10%	 strongest	 peaks	 (relative	
signal	strength)	compared	to	the	10%	weakest	peaks	from	miCLIP2	WT	data.	D.	Less	
peaks	are	 located	at	AC	dinucleotides	 in	 the	Mettl3	KO	miCLIP2	data.	Dinucleotide	
distribution	 of	 all	 peaks	 from	 the	 miCLIP2	 WT	 (orange)	 and	 Mettl3	 KO	 (blue)	
experiment.	E.	Transcript	start	sites	(TSS)	accumulate	miCLIP2	WT	signal	which	is	not	
reduced	upon	Mettl3	KO.	miCLIP2	truncation	events	in	a	101-nt	window	relative	to	
the	TSS	 from	WT	(upper,	orange)	and	Mettl3	KO	 (lower,	blue)	data.	F.	miCLIP2	WT	
signal	enriches	around	predicted	m6A	sites	and	is	depleted	in	the	Mettl3	KO.	miCLIP2	
truncation	events	 in	a	101-nt	window	relative	 to	 the	predicted	m6A	sites	 from	WT	
(upper,	orange)	and	Mettl3	KO	(lower,	blue)	data.	

	 	



	

Supplementary	Figure	S3.	Differential	methylation	analysis	and	validation.	A.	The	
bin-based	 approach	 allows	 to	 correct	 for	 expression	 changes	 between	 WT	 and	
Mettl3	 KO.	 For	 each	 tested	 differential	 methylation	 method,	 the	 fold	 change	 of	
genes	upon	Mettl3	KO	(y-axis)	and	the	estimated	fold	change	 in	the	miCLIP2	signal	
upon	 the	Mettl3	 KO	 (x-axis)	 are	 compared.	The	one-run	 approach,	which	does	not	
correct	 for	 gene	expression	 changes,	 is	 shown	 for	 comparison.	B.	Changes	 in	 gene	
expression	can	be	estimated	from	the	miCLIP2	data.	Comparison	of	fold	changes	of	
genes	 (n=14,989)	 calculated	 from	 the	miCLIP2	data	 (x-axis)	 and	matching	RNA-seq	
data	(y-axis).	Pearson	correlation	coefficients	(r)	and	associated	P	value	are	given.	C.	
For	the	bin-based	approach,	genes	were	stratified	based	on	their	expression	changes	
upon	 Mettl3	 KO	 (log2-transformed	 fold	 change)	 into	 equal-width	 bins	 (width	 of	
Δlog2FC	=	0.3,	highlighted	 in	orange).	The	peaks	on	all	genes	within	each	bin	were	
then	 collectively	 tested	 for	 differential	 methylation.	 D.	 Complemental	 control	
positions	of	unmodified	A	sites	neighbouring	the	validates	m6A	sites	at	non-DRACH	
(olive	background)	and	DRACH	(orange	background)	motifs	(Figure	2H	and	I)	as	well	



as	 two	 unmodified	 sites	 (grey)	 at	 a	 DRACH	motif	 (Figure	 2J).	 Exemplary	 real-time	
fluorescence	 amplification	 curves	 (normalised	 reporter	 value,	 ΔRn)	 and	
quantification	 of	 threshold	 cycle	 (CT)	 values	 (technical	 replicates)	 for	 SELECT	
experiments	with	mESC	WT	versus	Mettl3	KO	samples	are	shown	for	neighbouring	
unmodified	 A	 nucleotides	 (gene	 name	 and	 genomic	 coordinates	 given	 above).	 ns,	
not	significant,	two-sided	Student’s	t-test,	n=3.	
	 	



	

Supplementary	 Figure	 S4.	 Machine	 learning	 to	 predict	 m6A	 sites	 from	 miCLIP2	
data.	A.	Performance	measures	to	compare	four	different	machine	learning	models.	
Accuracy,	 F1-score,	 Matthews	 correlation	 coefficient	 (MCC),	 precision,	 sensitivity	
and	 specificity	 (see	 Supplementary	 Material)	 are	 given	 for	 models	 based	 on	
AdaBoost	 (m6Aboost),	 support	 vector	machine	 (SVM)	 and	 random	 forest	 (RF).	 An	
AdaBoost	 models	 trained	 on	 a	 balanced	 test	 set	 is	 shown	 for	 comparison.	
B.	Precision-recall	 curves	 for	 the	 support	 vector	 machine	 (SVM;	 left)	 and	 random	
forest	 (right)	 models.	 PR	 curve	 for	 m6Aboost	 is	 shown	 in	 Figure	 3C.	 The	
corresponding	 area	 under	 the	 curve	 (AUC)	 is	 given.	 C.	 Results	 of	 five-fold	 cross-
validation	 for	 m6Aboost.	 AUC	 are	 given	 for	 receiver	 operating	 characteristic	
(AUROC)	 and	 precision	 recall	 curve	 (AUPRC).	D.	 Progressive	 training	 of	m6Aboost.	
Graph	displays	misclassification	(y-axis)	per	 iteration	of	 training	 (x-axis).	Total	error	
rate	(orange),	false	positive	rate	(yellow)	and	false	negative	rate	(green)	are	shown.	
E.	 Log2-transformed	 relative	 signal	 strength	 values	 (top)	 and	C-to-T	 transitions	 per	
peak	 follow	 a	 Poisson	 distribution.	 Cullen	 and	 Frey	 graphs	 compare	 square	 of	
skewness	 (x-axis)	 against	 kurtosis	 (y-axis)	 of	 the	 two	 experimental	 features	
(observation	and	100	bootstrapped	values)	against	normal,	negative	binominal	and	
Poisson	distribution.	F.	m6A	sites	that	are	predicted	by	m6Aboost	but	not	part	of	the	
positive	set	preferentially	occur	in	lowly	expressed	genes.	Top,	boxplot	shows	gene	
expression	 values	 (in	 transcripts	 per	million,	 TPM)	 for	 4,292	 genes	with	m6A	 sites	
from	the	positive	set	against	5,640	genes	which	exclusively	harbour	m6A	sites	 that	



were	 only	 predicted	 by	 m6Aboost.	 P	 value	 <	 2.2e-16,	 Wilcoxon	 rank-sum	 test.	
Bottom,	 boxplot	 compares	 number	 of	 miCLIP2	 reads	 (log2-transformed)	 in	 11,707	
m6A	sites	from	the	positives	set	against	13,908	m6A	sites	that	were	only	predicted	by	
m6Aboost.	 P	 value	 <	 2.2e-16,	 Student’s	 t-test.	 G.	 Scatter	 plot	 and	 associated	
histograms	 show	 fold	 change	 in	 miCLIP2	 signal	 (log2-transformed,	 x-axis)	 against	
number	 of	 miCLIP2	 reads	 per	 peak	 (log2-transformed,	 y-axis)	 for	 5,117	 peaks	 at	
DRACH	motifs	(yellow)	that	are	predicted	to	be	unmodified	by	m6Aboost.	m6A	sites	
predicted	by	m6Aboost	 (red)	are	shown	for	comparison.	H.	m6Aboost	associates	a	
probability	with	each	predicted	m6A	site	which	can	be	used	to	filter	more	stringently.	
Density	of	predicted	m6A	sites	identified	with	various	probability	scores	against	the	
log2-transformed	fold	change	between	WT	and	Mettl3	KO	of	the	corresponding	sites.	
Results	of	different	prediction	scores	are	shown	(score	[s]	=	0.5,	red,	s=0.7,	dashed,	
s=0.4,	 dotted)	 and	 filtering	 for	 a	 DRACH	 motif	 only	 (orange),	 as	 well	 as	 the	
distribution	 of	 unmodified	 sites.	 I.	 The	m6Aboost	 prediction	 score	 correlates	with	
the	change	in	miCLIP2	signal	upon	Mettl3	KO.	Scatterplot	showing	log2-transformed	
fold	 change	 in	miCLIP2	 read	 counts	 in	WT	 versus	Mettl3	 KO	mESC	 (y-axis)	 against	
m6Aboost	prediction	score	(x-axis).	

	 	



	

Supplementary	 Figure	 S5.	 m6A	 sites	 predicted	 in	 miCLIP2	 data	 from	 human	
HEK293T	and	mouse	heart	tissue.	A.	Most	genes	carry	up	to	three	m6A	sites.	Barplot	
shows	the	number	of	genes	(y-axis)	with	the	given	number	of	m6A	sites	(x-axis)	in	the	
miCLIP	 data	 from	 mESC	 WT	 (orange)	 and	 HEK293T	 (blue)	 cells.	 B.	 Titration	 with	
increasing	concentrations	of	 the	METTL3	 inhibitor	 (STM2457)(20)	on	HEK293T	cells	
shows	a	gradual	reduction	of	m6A	 levels	on	mRNAs.	m6A	 levels	measured	by	 liquid	
chromatography-tandem	 mass	 spectrometry	 (LC-MS/MS)	 for	 poly(A)+	 RNA	 from	
untreated	 (DMSO)	and	2	µM,	5	µM,	10	µM	and	20	µM	STM2457-treated	HEK293T	
cells.	 Quantification	 of	 m6A	 as	 percent	 of	 A	 in	 RNA.	 Error	 bars	 indicate	 standard	
deviation	of	mean	(s.d.m.),	n	=	3.	C.	Complementary	control	positions	of	unmodified	
A	sites	neighbouring	the	validates	m6A	sites	from	HEK293T	cells	 in	the	genes	RHOB	
and	 DDIT4	 (Figure	 5B).	 Exemplary	 real-time	 fluorescence	 amplification	 curves	
(normalised	 reporter	 value,	 ΔRn)	 and	 quantification	 of	 threshold	 cycle	 (CT)	 values	
(technical	 replicates)	 for	 SELECT	 experiments	 with	 untreated	 (DMSO)	 versus	
STM2457-treated	 samples	 are	 shown	 for	 neighbouring	 unmodified	 A	 nucleotides	
(gene	 name	 and	 genomic	 coordinates	 given	 above).	 ns,	 not	 significant,	 two-sided	
Student’s	t-test,	n=3.	D.	The	most	frequent	pentamers	at	m6Aboost-predicted	m6A	
sites	 in	 HEK293T	 include	 DRACH	 and	 non-DRACH	 motifs.	 Same	 as	 Figure	 2G	 for	
predicted	m6A	 sites	 from	HEK293T	 cells.	 E.	 About	 half	 of	 all	m6A	 sites	 are	 shared	
between	 the	 two	 cell	 lines.	 Venn	 diagram	 as	 Figure	 4E	 (mouse)	 and	 Figure	 5H	
(human)	 for	m6A	 sites	 on	 all	 genes	 (not	 filtered	 for	 expression).	 F.	m6A	 sites	 that	



were	only	found	in	one	out	of	three	datasets	from	HEK293T	cells	(this	study,	(21,22))	
are	 located	 in	 lowly	 expressed	 genes.	 Boxplot	 summarises	 expression	 of	 genes	 (in	
transcripts	 per	 million,	 TPM,	 log2)	 harbouring	 m6A	 sites	 unique	 to	 one	 dataset.	
G.	miCLIP2	 data	 from	 different	 amounts	 of	 RNA	 input	 are	 reproducible.	 Pairwise	
comparison	 of	 truncation	 read	 counts	 within	 peaks	 for	 miCLIP2	 libraries	 from	
decreasing	 amounts	 of	 RNA	 input	 material	 from	 mouse	 heart	 tissue.	 Pearson	
correlation	coefficients	(r)	and	associated	P	values	are	given.	

 	



Supplementary	Tables	

Supplementary	 Table	 S1.	 Summary	 of	 miCLIP2	 experiments.	 Table	 includes	
information	on	all	 conducted	miCLIP2	experiments	 including	sample	names,	cell	or	
tissue	type,	and	employed	barcodes.	It	further	specifies	number	of	uniquely	mapped	
reads,	how	many	of	those	were	truncation	reads	(no	C-to-T	transition)	or	harboured	
C-to-T	transitions.	For	each	condition,	the	number	of	 identified	PureCLIP	peaks	and	
m6Aboost-predicted	m6A	sites	are	given.	[provided	as	Excel	file]	

Supplementary	Table	S2.	Oligonucleotides	used	in	SELECT	experiments	in	Figure	2H-
J	and	5B	and	Supplementary	Figure	S3D	and	S5C.	qPCR	oligonucleotides	for	target	
genes	 were	 used	 for	 normalisation	 of	 input	 material.	 Names	 indicate	 target	 and	
position	 relative	 to	 targeted	 m6A	 site.	 Oligonucleotides	 were	 designed	
complementary	anneal	to	RNA	leaving	a	gap	at	targeted	m6A	site	or	adjacent	A	site	
(UP	and	DOWN	probe).	Lowercase	letters	represent	adapter	sequences	for	qPCR	as	
described	 in	 (23).	 Uppercase	 letters	 represent	 complementary	 sequence	 to	 target	
site.	Phos	indicates	5’	phosphorylation. 	

Name	 Sequence	[5’	-	3’]	
qPCR_fwd	for	SELECT	 ATGCAGCGACTCAGCCTCTG	
qPCR_rev	for	SELECT	 TAGCCAGTACCGTAGTGCGTG	
m6A	sites	from	mESC:	
Eif4ebp1_qPCR_fwd	

	
ACTCACCTGTGGCCAAAACA	

Eif4ebp1_qPCR_rev	 TTGTGACTCTTCACCGCCT	
Eif4ebp1_m6A_UP	 tagccagtaccgtagtgcgtgGGGAGGGTGTGAGTGAGA	G	
Eif4ebp1-m6A_DOWN	 [Phos]CATTCCCCTGCAGTAGCAGcagaggctgagtcgctgcat	
Eif4ebp1_m6A-4	UP	 tagccagtaccgtagtgcgtgGGGTGTGAGTGAGAGTCAT	
Eif4ebp1_m6A-4	DOWN	 [Phos]CCCCTGCAGTAGCAGCTCGcagaggctgagtcgctgcat	
Ccnt2_qPCR_fwd	 GGGCAACGTCTCAATGTCTCT	
Ccnt2_qPCR_rev	 AAGCTTTCGAGCCTGCTCTT	
Ccnt2_m6A_UP	 tagccagtaccgtagtgcgtgGCCCATGCTTGTGCTGCTG	
Ccnt2_m6A_DOWN	 [Phos]TCTGCATGGGCAGCTAGATcagaggctgagtcgctgcat	
Ccnt2_m6A+2_UP	 tagccagtaccgtagtgcgtgCGGCCCATGCTTGTGCTGC	
Ccnt2_m6A+2_DOWN	 [Phos]GTTCTGCATGGGCAGCTAGcagaggctgagtcgctgcat	
Phb2_qPCR_fwd	 ATCCGTGTTCACCGTGGAAG	
Phb2_qPCR_rev	 ACCAGGGGATCCTGAAGTGA	
Phb2_m6A_UP	 tagccagtaccgtagtgcgtgGAGGGCAGATACAGAAAAG	
Phb2_m6A_DOWN	 [Phos]CCATCACATGATGCCTGGGcagaggctgagtcgctgcat	
Phb2_m6A-4_UP	 tagccagtaccgtagtgcgtgGCAGATACAGAAAAGTCCA	
Phb2_m6A-4_DOWN	 [Phos]CACATGATGCCTGGGGCAGcagaggctgagtcgctgcat	
Trim27_qPCR_fwd	 GGAGGGCTTCAAGGAGCAAA	
Trim27_qPCR_rev	 AGCTGCTCAAACTCCCAGAC	
Trim27_m6A_UP	 tagccagtaccgtagtgcgtgACAATGACACTGCCCAGAA	
Trim27_m6A_DOWN	 [Phos]CCATTCTGGGGGGCTGAGGcagaggctgagtcgctgcat	
Trim27_m6A-4_UP	 tagccagtaccgtagtgcgtgTGACACTGCCCAGAATCCA	
Trim27_m6A-4_DOWN	 [Phos]TCTGGGGGGCTGAGGTCACcagaggctgagtcgctgcat	

[continued	on	next	page]	
	 	



Supplementary	 Table	 S2.	Oligonucleotides	used	 in	 SELECT	experiments	 (continued	
from	previous	page).	

	
Name	 Sequence	[5’	-	3’]	
Palm3_qPCR_fwd	 TACAGCTGTTGCAAAGTGCG	
Palm3_qPCR_rev	 CACATCAGTCGGGGCGGTA	
Palm3_m6A_UP	 tagccagtaccgtagtgcgtgTGGGGGACCCTCTCGCTCAG		
Palm3_m6A_DOWN	 [Phos]ACAGGGCTCAGGCTTACTGcagaggctgagtcgctgcat	
Palm3_m6A-8_UP	 tagccagtaccgtagtgcgtgCTCTCGCTCAGTACAGGGC	
Palm3_m6A-8_DOWN	 [Phos]CAGGCTTACTGGCTGCCCCcagaggctgagtcgctgcat	
Hic2_qPCR_fwd	 CTGGCAGGCACCTGAGGTAA	
Hic2_qPCR_rev	 AGCTGTAGCAGGAGCTGTTT	
Hic2_m6A_UP	 tagccagtaccgtagtgcgtgTGCCAGCAGTACCCACTCG	
Hic2_m6A_DOWN	 [Phos]CCAGGGCCAAAGGGCTTGCcagaggctgagtcgctgcat	
Hic2_m6A+3_UP	 tagccagtaccgtagtgcgtgCTATGCCAGCAGTACCCAC	
Hic2_m6A+3_DOWN	 [Phos]CGTCCAGGGCCAAAGGGCTcagaggctgagtcgctgcat	
Unmodified	DRACH	sites:	
Nanog_qPCR_fwd	

	
ACCTGAGCTATAAGCAGGTTAAGAC	

Nanog_qPCR_rev	 CCCTGGGGATAGCTGCAATG	
Nanog_nom6A_UP	 tagccagtaccgtagtgcgtgCAGGACTTGAGAGCTTTTG	
Nanog_nom6A_DOWN	 [Phos]TTGGGACTGGTAGAAGAATcagaggctgagtcgctgcat	
Nanog_nom6A+2_UP	 tagccagtaccgtagtgcgtgCTCAGGACTTGAGAGCTTT	
Nanog_nom6A+2_DOWN	 [Phos]GTTTGGGACTGGTAGAAGAacagaggctgagtcgctgcat	
Zfp710_qPCR_fwd	 TACCGCAGCCAGCTACAAAA	
Zfp710_qPCR_rev	 CTCCTTCACACCCTTGTGGG	
Zfp710_nom6A_UP	 tagccagtaccgtagtgcgtgGTTTGCTTCTGCACGAAGG	
Zfp710_nom6A_DOWN	 [Phos]CTTGAAGCAGATGTGGCACcagaggctgagtcgctgcat	
Zfp710_nom6A-3_UP	 tagccagtaccgtagtgcgtgTGCTTCTGCACGAAGGTCT	
Zfp710_nom6A-3_DOWN	 [Phos]GAA	GCA	GAT	GTG	GCA	CTG	Gcagaggctgagtcgctgcat	
m6A	sites	from	HEK293T:	
DDIT4_qPCR_fwd	
DDIT4_qPCR_rev	

	
TCGTCGTCCACCTCCTCTTC	
GGTAAGCCGTGTCTTCCTCC	

DDIT4_m6A_UP	 tagccagtaccgtagtgcgtgCTTGGGCCAGAGTCGTGAG	
DDIT4_m6A_DOWN	 [Phos]CCAGGCGCAGCACGAGGGTcagaggctgagtcgctgcat	
DDIT4_m6A+4_UP	 tagccagtaccgtagtgcgtgGGATCTTGGGCCAGAGTCG	
DDIT4_m6A+4_DOWN	 [Phos]GAGTCCAGGCGCAGCACGAcagaggctgagtcgctgcat	
RHOB_qPCR_fwd	 CAGTAAGGACGAGTTCCCCG	
RHOB_qPCR_rev	 GTCCACCGAGAAGCACATGA	
RHOB_m6A_UP	 tagccagtaccgtagtgcgtgAAGCTGTGTCCTCCCCAAG	
RHOB_m6A_DOWN	 [Phos]CAGTTGCAAATGTCTTCCCcagaggctgagtcgctgcat	
RHOB_m6A-4_UP	 tagccagtaccgtagtgcgtgTGTGTCCTCCCCAAGTCAG	
RHOB_m6A-4_DOWN	 [Phos]TGCAAATGTCTTCCCCAGGcagaggctgagtcgctgcat	
Not	validated	site:	 	
ABT1_qPCR_fwd	 AAGAAACGGGTAGTGCCAGG	
ABT1_qPCR_rev	 GTCTCACGAACCGGTCCTC	
ABT1_m6A_UP	 tagccagtaccgtagtgcgtgAGTCCCTGACAAGGGAAGG	
ABT1_m6A_DOWN	 CCCTCCATGCTCTCTGAGGcagaggctgagtcgctgcat	
ABT1_m6A-4_UP	 tagccagtaccgtagtgcgtgCCTGACAAGGGAAGGTCCC	
ABT1_m6A-4_DOWN	 CCATGCTCTCTGAGGGTGGccagaggctgagtcgctgcat	



Supplementary	Table	S3.	Overlap	of	predicted	m6A	sites	and	SCARLET-validated	sites	
in	HEK293T	cells	taken	from	(24).	m6A	sites	with	>5%	modification	are	shown	in	bold.	
Genomic	coordinates	are	relative	to	human	genome	version	GRCh38.p13.	

Genomic	
coordinate	

Motif	 Percent	methylation	
according	to	SCARLET	

Predicted	by	m6Aboost	
for	HEK293T	miCLIP2	

Chr11:65500276	 GGACU	 0.41	 yes	

Chr11:65500338	 GGACU	 0.51	 yes	

Chr11:65500372	 GGACU	 0.13	 yes	

Chr11:65500435	 AGACU	 0.03	 no	
Chr11:65500445	 AGACA	 0.02	 no	

Chr11:65500459	 GAACC	 0.03	 no	

Chr11:65500481	 GGACU	 0.07	 yes	
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Chapter 3

Publication 2: RNA stability
controlled by m6A methylation
contributes X-to-autosome dosage
compensation in mammals.

3.1 Summary

X-to-autosome dosage compensation is a mechanism that is in place to bal-
ance the gene expression of one active X chromosome compared to gene
products of two active copies of autosomes. Different mechanisms driving
X-to-autosome dosage compensation have been identified. Among them, it
has been shown that X-chromosomal transcripts reach higher stabilities than
autosomal transcripts. How this is accomplished is unknown. m6A is the
most abundant internal mRNA modification and has been shown to play
a role in mRNA degradation. Here, we identify that X-chromosomal tran-
scripts are significantly depleted in m6A sites and thereby are less degraded
and reach higher stabilities than autosomal transcripts. When depleting m6A,
we can show that autosomal transcripts become more stable, which indicates
that m6A globally destabilizes those transcripts. Hence, we present m6A as a
novel player that mediates X-to-autosome dosage compensation by destabi-
lizing autosomal transcripts in a selective manner.

3.2 Zusammenfassung

Die X-zu-Autosom-Dosierungs Kompensation ist ein Mechanismus, der die
Genexpression eines aktiven X-Chromosoms zu den Genprodukten von
zwei aktiven Kopien der Autosomen ausgleicht. Es wurden verschiedene
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Mechanismen entdeckt, die den X-zu-Autosom-Dosierungsausgleich be-
wirken. Unter anderem wurde gezeigt, dass X-chromosomale Transkripte
eine höhere Stabilität als autosomale Transkripte erreichen. Wie dies erre-
icht wird, ist unbekannt. m6A ist die häufigste interne mRNA-Modifikation
und es wurde gezeigt, dass sie eine Rolle im mRNA-Abbau spielt. In diesem
Teil der Arbeit können wir zeigen, dass X-chromosomale Transkripte deut-
lich weniger m6A-Modifikationen als autosomale Trankripte aufweisen und
dadurch weniger abgebaut werden sowie eine höhere Stabilität erreichen.
Wenn m6A in den Zellen verringert wird können wir zeigen, dass auto-
somale Transkripte stabiler werden, was darauf hindeutet, dass m6A diese
Transkripte global destabilisiert. Folglich präsentieren wir m6A als neuen
Faktor, der den X-zu-Autosom-Dosierungsausgleich vermittelt, indem er au-
tosomale Transkripte auf selektive Weise destabilisiert.

3.3 Statement of contribution

In this project I performed the majority of bioinformatic analysis for this
project. I performed all analysis regarding the quantification of m6A sites on
transcripts of different chromosomes, analysis of RNA sequencing and DNA
sequencing data as well as all SLAM seq analysis. Furthermore, I contributed
to the design of the study and interpretation of results and participated
in all project related meetings. I contributed to the text and figures of the
manuscript and was involved in all steps of the manuscript preparation and
revision.

This paper has been accepted for publication in Nature Structural & Molec-
ular Biology on the 6th of April 2023.
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Abstract 19 

In mammals, X-chromosomal genes are expressed from a single copy since males 20 
(XY) possess a single X chromosome, while females (XX) undergo X inactivation. To 21 
compensate for this reduction in dosage compared to two active copies of autosomes, 22 
it has been proposed that genes from the active X chromosome exhibit dosage 23 
compensation. However, the existence and mechanism of X-to-autosome dosage 24 
compensation are still under debate. Here, we show that X-chromosomal transcripts 25 
are reduced in m6A modifications and more stable compared to their autosomal 26 
counterparts. Acute depletion of m6A selectively stabilises autosomal transcripts, 27 
resulting in perturbed dosage compensation in mouse embryonic stem cells. We 28 
propose that higher stability of X-chromosomal transcripts is directed by lower levels 29 
of m6A, indicating that mammalian dosage compensation is partly regulated by 30 
epitranscriptomic RNA modifications.  31 



Main text 32 

Sex chromosomes evolved from a pair of autosomes. During this process, the 33 
chromosome only present in the heterogametic sex (i.e., the Y chromosome in male 34 
mammals) acquires mutations, undergoes recurrent chromosomal rearrangements 35 
and eventually becomes highly degenerated, gene-poor and heterochromatic1. 36 
Consequently, the X chromosome and most of its genes are present in a single copy 37 
in males, whereas two X chromosomes are present in females. To equalise expression 38 
between sexes in eutherian female mammals, one randomly chosen X chromosome 39 
is inactivated (Xi) early in development at around the implantation stage. Therefore, 40 
XY males and XiXa females exhibit an imbalance of gene dosage between sex 41 
chromosomes and autosomes, which are present in one and two active copies, 42 
respectively2. To restore the balance between X chromosomes and autosomes, 43 
Susumu Ohno hypothesised that the expression of X-chromosomal genes is 44 
upregulated by two-fold3. Indeed, there are several mechanisms conceivable for how 45 
this could be achieved. For instance, previous studies proposed that higher RNA 46 
polymerase II occupancy as well as more activating epigenetic marks and gains in 47 
chromatin accessibility on the X chromosome play a role in dosage compensation4-7. 48 
Additionally, higher RNA stability of X-chromosomal transcripts was observed6,8. 49 
There is evidence that nonsense-mediated mRNA decay (NMD) targets are enriched 50 
for autosomal transcripts9, which could partially explain the higher RNA stability of X-51 
chromosomal transcripts. Another recent study proposed that dosage compensation 52 
could also be mediated by elevated translation of X-chromosomal transcripts10. 53 
Eventually, dosage compensation may only be required for a certain subset of 54 
transcripts which are dosage-sensitive, for instance, if stoichiometry with transcripts 55 
from other chromosomes is necessary for proper complex formation11. Some dosage-56 
sensitive transcripts may also be protected from the degeneration process occurring 57 
on the Y chromosome and thus, be retained in two copies12. However, Ohno’s 58 
hypothesis is still under investigation and both transcriptional and post-transcriptional 59 
mechanisms could play a role or act together10,13-17. If the latter would be the case, 60 
this creates the conundrum of how the chromosomal origin of a transcript is 61 
“remembered” in downstream steps of gene expression that occur at the RNA level. 62 

RNA modifications are increasingly recognised for their role in post-transcriptional 63 
gene regulation. By their “epitranscriptomic” nature, they have the potential to bridge 64 
DNA context to mRNA fate. N6-methyladenosine (m6A) is the most abundant internal 65 
mRNA modification, with estimates ranging from one up to thirteen modifications 66 
present per transcript18-21. Conserved adenine methyltransferases, such as Mettl3, co-67 
transcriptionally modify nascent mRNAs in the nucleus. The majority of m6A sites 68 
occur within a DRACH motif (i.e., [G/A/U][G>A]m6AC[U>A>C]) with GGACH as the 69 
predominantly methylated sequence22-24. m6A-methylated transcripts recruit different 70 
reader proteins. Most prominently, Ythdf proteins (Ythdf1, 2 and 3) reduce the stability 71 
of m6A-modified transcripts in the cytoplasm by promoting their degradation25-27. 72 



Hence, m6A modifications affect mRNA fate in the cytoplasm upon their deposition in 73 
the nucleus. 74 

Here, we show that m6A RNA modifications play a key role in X-to-autosome dosage 75 
compensation. We find that the m6A content is reduced in transcripts from the X 76 
chromosome, leading to more stable transcripts and longer half-lives. This is crucial 77 
to equalise the imbalance in gene dosage between autosomes and the X 78 
chromosome.  79 



Results 80 

Autosomal transcripts are stabilised by m6A depletion 81 

One of the most prominent functions of m6A lies in regulating mRNA levels via 82 
promoting RNA decay25. Since it has been proposed that X-chromosomal transcripts 83 
are more stable than autosomal transcripts6,8, we hypothesised that m6A-mediated 84 
RNA stability may be involved in X-to-autosome dosage compensation. To investigate 85 
this, we first confirmed the chromosomal differences in RNA stability in published 86 
mRNA half-lives from mouse embryonic stem cells (mESC), measured by thiol(SH)-87 
linked alkylation for the metabolic sequencing of RNA (SLAM-seq)28. Indeed, 88 
transcripts originating from the X chromosome had significantly longer half-lives than 89 
autosomal transcripts (Extended Data Fig. 1A). 90 

To investigate the direct impact of m6A depletion, we employed the small molecule 91 
inhibitor STM2457 that specifically targets the major mRNA m6A methyltransferase 92 
Mettl329. We corroborated in a time course experiment that the m6A levels showed a 93 
strong reduction already after 3 hours (h) and reached the low point after 6 h of inhibitor 94 
treatment (Extended Data Fig. 1B). Compared to a Mettl3 knock-out (KO), this acute 95 
m6A depletion enabled us to investigate the immediate response to m6A depletion, 96 
while minimising secondary effects30. Expression analysis of marker genes31 and 97 
qPCR validations showed that the pluripotent state of the mESC remained unimpaired 98 
throughout the treatment (Extended Data Fig. 1C,D). 99 

To determine the effect of m6A depletion on mRNA half-lives, we performed SLAM-100 
seq in m6A-depleted and control conditions (6 h STM2457-treated or DMSO-treated 101 
as control, Fig. 1A and Extended Data Fig. 2A,B). We achieved a stable s4U 102 
incorporation rate of 1.36% after 24 h of labelling, which gradually decreased upon 103 
washout (Extended Data Fig. 2C). By fitting the SLAM-seq data using an exponential 104 
decay model and filtering for expression and a sufficient goodness-of-fit (see 105 
Methods)28, we obtained half-life estimates for 7,310 transcripts (Table S1, Fig. 1B,C 106 
and Extended Data Fig. 2D,E). The estimated half-lives in the control condition 107 
correlated well with previously published mRNA half-lives28 (Extended Data Fig. 2F). 108 

Consistent with the role of m6A in destabilising transcripts25,32, the median half-life of 109 
mRNAs significantly increased upon acute m6A depletion (Fig. 1B,C). Using high-110 
confidence m6A sites, which we had previously mapped in the same cell line using 111 
miCLIP2 (m6A individual-nucleotide resolution UV crosslinking and 112 
immunoprecipitation) and m6Aboost33, we confirmed that in control conditions, 113 
transcripts with m6A sites showed significantly shorter half-lives than unmethylated 114 
transcripts28 (Fig. 1D). Furthermore, the transcripts with m6A sites were significantly 115 
stabilised upon acute m6A depletion (8% median increase), whereas unmethylated 116 
transcripts were largely unaffected (0.3% median decrease, Fig. 1E). 117 



Having ensured the high quality of our dataset, we turned to chromosomal differences 118 
in mRNA stability. X-chromosomal transcripts had significantly longer half-lives than 119 
autosomal transcripts under control conditions (Extended Data Fig. 2G, left). 120 
Importantly, the half-lives of autosomal transcripts significantly increased after acute 121 
m6A depletion (5% median increase), whereas the stability of X-chromosomal 122 
transcripts remained unchanged (0.2% median decrease, Fig. 1F). Transcripts on all 123 
autosomes responded similarly, while the X chromosome was the only chromosome 124 
that appeared excluded from this increase (Fig. 1G and Extended Data Fig. 2G). 125 
These results indicated that m6A-mediated RNA stability could play a direct role in X-126 
to-autosome dosage compensation in mESC. To further support this, we reanalysed 127 
published mRNA half-lives for wild-type (WT) and Mettl3 KO mESC34 and observed 128 
the same difference in RNA stabilisation between X-chromosomal and autosomal 129 
transcripts (Fig. 1H). The difference between m6A-depleted and Mettl3 KO condition 130 
may result from chromosomal differences or from compensatory mechanisms after KO 131 
generation, such as induced expression of alternatively spliced Mettl3 isoforms30. 132 
Collectively, the intersection between our experiments and published data 133 
conclusively shows that m6A modifications destabilise autosomal transcripts, while X-134 
chromosomal transcripts are largely excluded from such regulation. 135 

X-chromosomal transcripts are less affected by m6A depletion 136 

To test whether the chromosomal differences in RNA stability contribute to balancing 137 
expression levels between X chromosome and autosomes, we performed RNA-seq 138 
experiments to measure the transcript expression levels after m6A depletion (24 h 139 
STM2457, Extended Data Fig. 3A and Table S2). The degree of upregulation 140 
correlated with the number of m6A sites, such that the most heavily methylated 141 
transcripts showed the strongest upregulation (Extended Data Fig. 3C). Strikingly, we 142 
observed a marked difference in the response to m6A depletion between X-143 
chromosomal and autosomal transcripts. On autosomes, we found more upregulated 144 
genes relative to the X chromosome, whereas the X-chromosomal transcripts showed 145 
by far the lowest median fold change of all chromosomes (Fig. 2A). Between 146 
autosomes, observed changes were very similar, suggesting that transcripts on all 147 
autosomes were equally affected by acute m6A depletion.  148 

To directly assess the balance between X-chromosomal and autosomal transcript 149 
levels, we determined the X-chromosomal-to-autosomal (X:A) expression ratio5,35. In 150 
DMSO-treated cells, the median X:A ratio approximated 1 when excluding silent or 151 
lowly expressed genes, illustrating that X-to-autosome dosage compensation is 152 
functional in male mESC (Extended Data Fig. 3D,E). Importantly, the X:A ratio 153 
significantly went down in the m6A-depleted conditions, indicating that m6A depletion 154 
leads to an imbalance in X-to-autosome dosage compensation (Fig. 2B). We note that 155 
the X:A ratio does not reach 0.5, suggesting that m6A acts in addition to other 156 
regulatory mechanisms in X-to-autosome dosage compensation. 157 



The differential effects of m6A depletion on X-chromosomal and autosomal genes was 158 
further supported in a time course RNA-seq experiment with 3 to 12 h STM2457 159 
treatment (Extended Data Fig. 1B,C and Table S2). Of note, autosomal transcripts 160 
showed a distinct response from X-chromosomal transcripts already after 6 h of m6A 161 
depletion, which persisted throughout 9 h and 12 h treatment (Fig. 2C and Extended 162 
Data Fig. 4A,B). This was validated by qPCR for five autosomal and five X-163 
chromosomal transcripts after 9 h of m6A depletion (Extended Data Fig. 4C). The 164 
clear separation of X-chromosomal and autosomal transcripts at around 6 h was in 165 
line with the observed mRNA stability changes after the same treatment duration (Fig. 166 
1G) and supported a direct effect of m6A in transcript destabilisation.  167 

Next, we investigated whether m6A similarly regulates X-chromosomal transcripts in 168 
humans. To this end, we performed RNA-seq of primary human fibroblasts (male) after 169 
9 h of m6A depletion (Fig. 2D and Extended Data Fig. 5A). As in mESC, we observed 170 
a clear separation of X chromosome and autosomes, such that X-chromosomal 171 
transcripts displayed significantly lower changes (Fig. 2D). This was further 172 
corroborated by RNA-seq data upon m6A depletion in human HEK293T (female), 173 
C643 (male) and RPE1 (female) cells, which consistently demonstrated the same 174 
effect across all cell types (Extended Data Fig. 5A,B). Similar to mESC, we found 175 
X:A expression ratios close to 1 for human fibroblasts and RPE1 cells, whereas higher 176 
median X:A ratios were obtained for HEK293T and C643 cells, possibly due to 177 
aneuploidies (Fig. 2E). Importantly, the X:A ratio went significantly down in all cases 178 
in response to m6A depletion, indicating that m6A depletion results in an imbalance of 179 
X-chromosomal to autosomal transcript expression. We conclude that the same 180 
mechanism we observe in mouse is also active in humans, whereby autosomal and 181 
X-chromosomal transcripts are differentially affected by m6A depletion. Our data thus 182 
supports a conserved role for m6A in X-to-autosome dosage compensation in 183 
mammals. 184 

m6A is reduced on transcripts from the X chromosome 185 

Our RNA-seq data showed that autosomal transcripts are more susceptible to m6A 186 
depletion compared to X-chromosomal transcripts. To test whether these differences 187 
are driven by differential methylation levels, we analysed the distribution of m6A sites 188 
across chromosomes in male mESC using miCLIP2 data33. Since m6A detection in 189 
miCLIP2 experiments partially depends on the underlying RNA abundance33, we 190 
quantified m6A sites within expression bins (Extended Data Fig. 6A). Remarkably, 191 
74.5% of all transcripts with intermediate expression (bins #4-8) harboured at least 192 
one m6A site, with an average of 1-5 m6A sites per transcript. In contrast, on lowly 193 
expressed transcripts (bins #1-3), we found no m6A sites in most cases, most likely 194 
due to detection limits (Fig. 3A and Extended Data Fig. 6B). 195 

Intriguingly, separation by chromosomes revealed a significantly lower level of m6A 196 
modifications on X-chromosomal transcripts, which were reduced by almost half 197 
compared to the genomic average (56% remaining, Fig. 3B). In contrast, transcripts 198 



on all autosomes showed similar numbers of m6A sites (Fig. 3C and Extended Data 199 
Fig. 6C). For further quantification, we calculated the average fold change in m6A 200 
numbers on a given chromosome relative to all chromosomes. Importantly, this 201 
confirmed that all autosomes showed a similar level of m6A modifications and that X-202 
chromosomal transcripts were unique in carrying less m6A (Fig. 3D and Extended 203 
Data Fig. 6D). As a control, we ensured that this observation was independent of 204 
differences in the numbers or lengths of transcripts between chromosomes (see 205 
Methods, Extended Data Fig. 6E,F). We observed the same reduction in m6A levels 206 
on X-chromosomal transcripts in recently published m6A-seq2 data from mESC36 (Fig. 207 
3E).  208 

This phenomenon was not restricted to mESC, since we found a similar reduction in 209 
m6A levels on X-chromosomal transcripts in high-confidence m6A sites from mouse 210 
heart (female) samples and mouse macrophages (male)33 (Fig. 3F). The distinct m6A 211 
patterns also extend to human cells, since human HEK293T (female) and C643 (male) 212 
cells displayed a consistent reduction of X-chromosomal m6A sites (Fig. 3G). The 213 
strength of the reduction was to some degree tissue- and species-dependent. 214 
Collectively, we find that X-chromosomal transcripts show fewer m6A modifications 215 
than autosomal transcripts across different tissues and cell lines from mouse and 216 
human, further supporting that m6A-mediated dosage compensation is a conserved 217 
mechanism. 218 

Reduced m6A levels are due to GGACH motif depletion 219 

m6A in mammals occurs mainly in a DRACH consensus sequence, with GGACH being 220 
the most frequently methylated DRACH motif23,24. To test whether sequence 221 
composition plays a role in the observed differences in m6A levels between 222 
chromosomes, we counted the occurrence of GGACH motifs for transcripts on all 223 
chromosomes. Remarkably, transcripts on the X chromosome harboured significantly 224 
fewer GGACH motifs in their coding sequence (CDS) and 3’ untranslated region (3’ 225 
UTR) than autosomal transcripts (Fig, 4A and Extended Data Fig. 7A). Within 3’ 226 
UTRs, autosomal transcripts contained on average 3.1 GGACH per kilobase of 227 
sequence, while this value dropped to 1.7 in X-chromosomal transcripts. This suggests 228 
that the lower levels of m6A modifications in X-chromosomal transcripts are intrinsically 229 
encoded by lower numbers of GGACH motifs. To further investigate this, we compared 230 
strongly and weakly methylated DRACH motifs (Extended Data Fig. 7B). While the 231 
strong DRACH motifs were depleted on X-chromosomal transcripts, the weak DRACH 232 
motifs were equally abundant on X-chromosomal and autosomal transcripts 233 
(Extended Data Fig. 7C,D). This supports that the lower m6A levels on X-234 
chromosomal transcripts are a consequence of a reduced number of strongly 235 
methylated DRACH motifs. In addition, we observed that among the GGACH motifs 236 
that are present, the fraction that was methylated in mESC was slightly lower in X-237 
chromosomal compared to autosomal transcripts (Fig. 4B and Extended Data Fig. 238 
7E-G), possibly indicating that methylation efficiency of GGACH motifs is also reduced 239 



on the X chromosome. To investigate whether this is accompanied by less binding of 240 
Mettl3 to X-chromosomal genes, we analysed published Mettl3 ChIP-seq data from 241 
mESC37. We observed slightly fewer Mettl3 peaks on the X chromosome, indicating 242 
that the co-transcriptional recruitment of Mettl3 to X-chromosomal genes may be 243 
reduced (Extended Data Fig. 8A). 244 

Previous reports suggested that X-to-autosome dosage compensation may be more 245 
relevant for certain gene sets than others. For instance, housekeeping genes have 246 
been suggested to rely more heavily on upregulation than tissue-specific genes or 247 
recently and independently evolved genes on the X chromosome5,38,39. However, we 248 
did not observe significant differences in GGACH motifs for different gene sets 249 
suggested from literature (Extended Data Fig. 8B). Furthermore, X-chromosomal 250 
genes that have been reported to escape X chromosome inactivation (escaper genes) 251 
did not show a significant difference in GGACH motifs, suggesting that they are equally 252 
depleted in m6A sites as other X-chromosomal genes40. Nonetheless, judging from 253 
general variability in GGACH motif content, not all X-chromosomal genes appeared to 254 
be equally dependent on dosage compensation. To further dissect this, we performed 255 
gene ontology (GO) analyses on the 200 genes with least GGACH motifs, revealing 256 
functionalities related to nucleosomes/DNA packaging and ribosomes as most 257 
significantly enriched (Extended Data Fig. 8C). Indeed, X-chromosomal genes 258 
encoding for ribosomal proteins and histones harboured almost no GGACH motifs and 259 
thereby clearly differed from their autosomal counterparts (Extended Data Fig. 8D), 260 
suggesting that proteostasis of these important cellular complexes may be controlled 261 
by differential X-to-autosomal m6A methylation. This fits with previous reports showing 262 
that the majority of the Minute phenotypes in Drosophila are caused by 263 
haploinsufficiency of ribosomal proteins41 and that ribosomal protein stoichiometry is 264 
tightly controlled in the mouse brain42. 265 

Next, we wanted to investigate whether GGACH motifs evolved in a sex chromosome-266 
specific manner. Sex chromosomes are derived from ancestral autosomes. If the 267 
selective upregulation of X-chromosomal genes occurs by the reduction of GGACH 268 
motifs, outgroup species in which these genes are located on autosomes should not 269 
display such a motif disparity. For mammals, chicken is an informative outgroup to 270 
investigate the evolution of sex chromosome expression patterns, since the ancestral 271 
eutherian X chromosome corresponds to chromosomes 1 and 4 in chicken43. 272 
Consequently, the orthologs of X-chromosomal mouse genes are located on 273 
autosomes in chicken and are not subjected to sex chromosome-linked evolutionary 274 
changes17 (Fig. 4C,D). It will be interesting to generate m6A maps in different 275 
mammalian species to disentangle the contribution of m6A to the evolution of 276 
mammalian dosage compensation. This will also enable the investigation of X-277 
chromosomal regions of different evolutionary origin such as X-added region (XAR), 278 
X-conserved region (XCR) and pseudoautosomal region (PAR). 279 



To investigate whether the reduction of GGACH motifs on the X chromosome in mouse 280 
is a sex chromosome-linked feature, we compared the GGACH motif content in 281 
chicken genes that are orthologous to mouse X-chromosomal or autosomal genes. Of 282 
note, given that almost all of these genes reside on autosomes in chicken (Fig. 4D), 283 
we observed no difference in GGACH content irrespective of whether the orthologs in 284 
mouse located to autosomes or the X chromosome (Fig. 4E). This parity of GGACH 285 
motifs in the chicken orthologs indicated that the reduced number of GGACH motifs 286 
on the mouse X chromosome has evolved specifically as a characteristic of a sex 287 
chromosome, in line with the resulting need for X-to-autosome dosage compensation. 288 

m6A contributes to dosage compensation in both sexes 289 

The finding that GGACH motifs are less abundant on the X chromosome suggests that 290 
reduced m6A levels are an intrinsic feature of X-chromosomal transcripts, which 291 
occurs in both sexes independently of X chromosome dosage. To analyse this, we 292 
performed RNA-seq experiments in female mESC in which both X chromosomes are 293 
still active and hence dosage compensation is not required. Female mESC were 294 
cultured under standard conditions to ensure maintenance of their naive state of 295 
pluripotency32. Since female mESC in cell culture are prone to lose one X 296 
chromosome, clonal populations of XX and X0 cells were derived from a given culture 297 
plate as matched controls44-46. We performed m6A depletion (9 h) on 20 colonies and 298 
then determined their chromosome content by DNA-seq to choose three XX and three 299 
X0 colonies for RNA-seq analyses (Extended Data Fig. 9A-C). Expression analysis 300 
revealed that in female mESC with two X chromosomes, the median X:A ratio rose 301 
above 1, indicating that with two active X chromosomes, genes reach higher levels of 302 
expression than autosomes (Fig. 4G). This supports that one X chromosome is 303 
sufficient to obtain a median X:A ratio of 1, whereas two active X chromosomes lead 304 
to an excess of X-chromosomal gene expression. Again, the X:A ratio significantly 305 
went down upon m6A depletion, further supporting that the depletion of m6A impairs 306 
X-to-autosome dosage compensation. 307 

We found that in both XX and X0 colonies, X-chromosomal transcripts significantly 308 
differed in their response to m6A depletion compared to autosomal transcripts (Fig, 4F 309 
and Extended Data Fig. 9D). Subsequently, we identified m6A sites in female bulk 310 
mESC using miCLIP233. In line with our RNA-seq results, and similar to male mESC, 311 
female mESC showed a lower m6A content on X-chromosomal transcripts (Fig. 4H, 312 
Table S3). This indicated that although both X chromosomes are still active in female 313 
mESC, the cells may be able to tolerate higher levels of X-chromosomal transcripts 314 
during very early development. The reduced X-chromosomal m6A content in female 315 
mESC further supported our finding that the reduced m6A levels are intrinsically 316 
encoded in the GGACH motif content. Altogether, our results indicate that m6A-317 
dependent destabilisation of autosomal transcripts also occurs in female mESC prior 318 
to X chromosome inactivation.  319 



Discussion 320 

X-chromosomal genes are expressed from only one active chromosome copy in mice 321 
and humans. To balance the genetic input between dual-copy autosomal and single-322 
copy X-chromosomal transcripts, Susumo Ohno hypothesised over 50 years ago that 323 
compensating mechanisms are required for balancing gene expression3. Here, we 324 
uncover that differential m6A methylation adds a layer of complexity to X-to-autosomal 325 
dosage compensation in eutherian mammals. This causes a global destabilisation of 326 
m6A-containing autosomal transcripts, while X-chromosomal transcripts bypass this 327 
regulatory mechanism (Fig. 5). Importantly, we show that the inhibition of m6A 328 
methylation predominantly stabilises autosomal transcripts and thereby affects the X-329 
to-autosome balance of gene expression. 330 

Several sex chromosome-compensating mechanisms identified so far, including X 331 
inactivation in mammals, XX dampening in Caenorhabditis elegans and X-332 
chromosomal upregulation in Drosophila melanogaster, act on the chromatin 333 
environment of the sex chromosomes and have been shown to influence RNA 334 
polymerase II occupancy and transcription of X-chromosomal genes7,16,47-52. On top, 335 
RNA-regulatory mechanisms were described as X-to-autosome dosage compensation 336 
pathways. These include a higher RNA stability and translational efficiency of X-337 
chromosomal transcripts as well as an enrichment of NMD targets and miRNA 338 
targeting sites among autosomal transcripts4,6,8-10,53,54. 339 

In contrast to the previously described regulatory mechanisms, m6A-mediated dosage 340 
compensation acts globally at the epitranscriptomic level and adds an additional layer 341 
of regulation to X-to-autosome dosage compensation. Importantly, by inhibiting m6A 342 
methylation, we can interfere experimentally with this process, thereby partly 343 
disrupting X-to-autosomal dosage compensation. We propose that m6A-mediated 344 
dosage compensation is co-transcriptionally initiated in the nucleus, where m6A 345 
deposition is catalysed22, and then executed in the cytoplasm, where m6A-modified 346 
transcripts are presumably degraded25-27. Multiple reasons are conceivable why 347 
mammals evolved an epitranscriptomic mechanism for dosage compensation. For 348 
instance, such a mechanism might be most compatible with the epigenetically installed 349 
X chromosome inactivation in females. In contrast, installing two epigenetic pathways 350 
that antagonistically affect the two X chromosomes at the same time might be more 351 
difficult to evolve. Interestingly, X chromosome inactivation has also been shown to 352 
depend on m6A methylation of the non-coding RNA Xist55, suggesting that dosage 353 
compensation and X chromosome inactivation might be coordinated. Furthermore, 354 
RNA-based gene regulation is often used for fine-tuning gene expression56. This 355 
meets the needs of dosage compensation where maximally a two-fold regulation is 356 
required. Hence, m6A regulation might be ideally suited to establish and maintain small 357 
changes. Finally, RNA-based mechanisms offer an elegant means to uncouple X-to-358 
autosome dosage compensation from other levels of gene expression regulation. 359 
Since it globally affects all X-chromosomal and autosomal transcripts that are 360 



expressed at a given moment, it facilitates genetic equilibrium between chromosomes 361 
without interfering with transcriptional regulation per se, whereby for instance, cell 362 
type-specific regulation remains unaffected. 363 

Our data suggest that differential m6A methylation evolved via a loss and/or gain of 364 
m6A consensus motifs (GGACH) on X-chromosomal and autosomal transcripts during 365 
mammalian sex chromosome evolution, respectively. This means that m6A dosage 366 
compensation is hardcoded in the individual transcripts and consistently acts on both 367 
male and female cells. On top of this, there could be mechanisms that globally 368 
modulate m6A methylation on X-chromosomal or autosomal transcripts, such as Mettl3 369 
recruitment via the chromatin mark H3K36me357 or a local sequestration of Mettl3 via 370 
Line-1 transposons that are heavily m6A-methylated and enriched on the X 371 
chromosome58,59. Moreover, the m6A-mediated effects may be linked to the previously 372 
suggested role of NMD in X-to-autosome dosage compensation9, since the NMD key 373 
factor UPF1 was found to associate with YTHDF260. 374 

An exciting question for future research is how the hardcoding of m6A-mediated 375 
dosage compensation evolved. Here, the short and redundant m6A consensus 376 
sequence could enable its easy generation or removal. However, why would evolution 377 
globally select for m6A sites to differentially affect transcripts from different 378 
chromosomes? We think that using predominantly hardcoded m6A sites allows to 379 
globally modulate dosage compensation, for instance via the overall methylation levels 380 
or the expression of the m6A reader proteins that control RNA decay under certain 381 
conditions. Even though m6A levels appear to be relatively stable between tissues in 382 
mice and humans61, it will be interesting to decipher how dosage compensation is 383 
globally modulated in different tissues, developmental stages or pathological 384 
conditions.  385 
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Figure Legends 413 

Figure 1. X-chromosomal transcripts are more stable upon m6A depletion. A. 414 
Experimental setup for SLAM-seq experiment. B, C. Transcripts (n = 7,310) in B. 415 
control and C. m6A-depleted conditions show a median half-life of 3.2 h and 3.5 h, 416 
respectively (P value = 5.25e-29, two-tailed Wilcoxon signed-rank test). Median s4U 417 
content for all transcripts shown in black. D. Transcripts with m6A sites have 418 
significantly shorter half-lives (P value = 2.17e-18, two-tailed Wilcoxon rank-sum test). 419 
Cumulative fractions of transcripts with given half-lives for transcripts with (n = 2,342, 420 
green) or without (n = 4,967, black) m6A sites. E. Transcripts with m6A sites (n = 2,342) 421 
significantly increase in half-life upon m6A depletion (8% median increase, P value = 422 
1.07e-61, two-tailed Wilcoxon signed-rank test), unmethylated transcripts (n = 4,967) 423 
were largely unaffected (0.3% median decrease, P value = 3.186e-05) (same gene 424 
set in both conditions). Mean half-life in each group is shown as red dot. Boxes 425 
represent quartiles, centre lines denote medians, and whiskers extend to most 426 
extreme values within 1.5x interquartile range. F. Half-lives of autosomal transcripts 427 
significantly increase upon m6A depletion (P value = 3.03e-31, two-tailed Wilcoxon 428 
signed-rank test), while X-chromosomal transcripts remain unchanged (P value = 429 
0.2121, two-tailed Wilcoxon signed-rank test). Distribution of half-lives for autosomal 430 
(n = 7,069) and X-chromosomal transcripts (n = 241) (same gene set in both 431 
conditions). Mean half-life in each group is shown as red dot. Boxes as in E. G. X-432 
chromosomal transcripts show the lowest half-life increase upon m6A depletion (P 433 
value = 0.005486, mean difference in log2-fold changes = -0.0945, linear mixed model, 434 
two-tailed t-test on fixed effects, see Methods). Median fold change (log2) in mRNA 435 
half-lives for each chromosome in m6A-depleted over control conditions. H. Same as 436 
G for half-lives from Mettl3 KO over WT mESC34 (P value = 0.000225, X-chromosomal 437 
vs. autosomal transcripts, mean difference in log2-transformed fold changes = -438 
0.22057). The absolute differences between m6A depletion and Mettl3 KO conditions 439 
may result from differences in the experimental setup, including the mode of Mettl3 440 
inactivation and the method to determine transcript half-lives. 441 

Figure 2. X-chromosomal transcripts are more stable and less upregulated upon 442 
m6A depletion. A. X-chromosomal transcripts are less upregulated upon m6A 443 
depletion in male mESC (P value = 1.86e-17, two-tailed Wilcoxon rank-sum test). 444 
Cumulative fraction of transcripts (RPKM > 1) on individual autosomes (grey) and the 445 
X chromosome (orange) that show a given expression fold change (log2, RNA-seq) 446 
upon m6A depletion (STM2457, 24 h). Mean expression changes for all autosomes 447 
are shown as black line. Effect sizes (blue) shown the shift in medians, expressed as 448 
percent of the average interquartile range of autosomal and X-chromosomal genes 449 
(IQR, see Methods). B. X:A expression ratios show a significant reduction upon m6A 450 
depletion (P = 1.4e-15 two-tailed t-test of linear contrasts in mixed effect Gaussian 451 
model in log-scale). C. Differential effects on autosomal and X-chromosomal 452 
transcripts occur already after 6 h of m6A depletion. Median fold changes (log2) of 453 
transcripts from autosomes (n = 19, grey) and the X chromosome (n = 1, orange) 454 



estimated by RNA-seq at different timepoints of m6A depletion (STM2457, 3, 6, 9 and 455 
12 h). Boxes represent quartiles, centre lines denote medians, and whiskers extend 456 
to most extreme values within 1.5x interquartile range. D. Same as A. for human 457 
primary fibroblasts (STM2457, 9 h). P value = 6.24e-06, two-tailed Wilcoxon rank-sum 458 
test. Effect sizes are shown as the shift in medians of the two distributions, expressed 459 
as percent of the average IQR of autosomal and X-chromosomal genes (see 460 
Methods). E. Same as B for human cell lines. (P value = 0.0000803 [human 461 
fibroblasts], P value = 0.0000379 [HEK293T], P value = 0.0003284 [C643], P value = 462 
0.0002982 [RPE1]. P values were calculated as in A, multiple testing correction. 463 

Figure 3. m6A sites are reduced on transcripts from the X chromosome. A. The 464 
number of detected m6A sites varies with the expression level. Mean m6A sites per 465 
transcript were quantified for transcripts with each expression bin (n = 12,034 466 
transcripts, see Extended Data Fig. 6A for n in each bin). Error bars indicate 95% 467 
confidence interval. B. X-chromosomal transcripts harbour less m6A sites across 468 
expression levels. Visualisation as in A for transcripts from the X chromosome 469 
(orange, n = 389 transcripts) compared to the mean of all chromosomes (grey). 470 
Numbers of transcripts in expression bins are shown in Extended Data Fig. 6C. 471 
Significance values for bins #3-8 are indicated by asterisks (autosomes vs. X 472 
chromosome, two-tailed Wald tests in a generalized linear model for negative binomial 473 
data, multiple testing correction, ns, not significant, *P value < 0.05, **P value < 0.01, 474 
exact values given in Source Data). C. The m6A content of transcripts from 475 
chromosome 11 (n = 1,031 transcripts) follows the mean of all chromosomes across 476 
all expression levels. Visualisation as in A. for transcripts from chromosome 11 (black) 477 
compared to the mean of all chromosomes (grey). Analyses for individual 478 
chromosomes are shown in Extended Data Fig. 6C. D-G. X-chromosomal transcripts 479 
exhibit significantly less m6A sites in D male mESC (P = 4.1e-09, generalised linear 480 
model for negative binominal data), E published m6A-seq2 data from mESC36, F 481 
mouse heart samples (P = 8.34e-11) and macrophages (P value = 1.38e-08), and G 482 
human HEK293T (P = 0.000203) and C643 cell lines (P value = 0.001030). Mean fold 483 
change (log2) of m6A sites per transcript on respective chromosomes relative to all 484 
chromosomes (Extended Data Fig. 6D). For mouse data, transcripts of intermediate 485 
expression (bins #3-8) are used. For HEK293T data, bins #4-9, and for C643 data, 486 
bins #5-10 were used. X-chromosomal and autosomal transcripts are shown in grey 487 
and orange, respectively. Chromosomes 11 and X are labelled for comparison with B 488 
and C. P values for comparisons autosomal vs. X-chromosomal transcripts as in B. 489 

  490 



Figure 4. Reduced m6A on X-chromosomal transcripts is intrinsically encoded. 491 
A. GGACH motifs (normalised to region length) in different transcript regions of 492 
autosomal (grey) and X-chromosomal transcripts (orange) in mouse (P value = 1.38e-493 
29 [CDS, n = 16,631 annotations], P value = 1.06e-40 [3‘ UTR, n  = 16,484 494 
annotations] and 0.2707 [5’ UTR, n = 16,490 annotations], two-tailed Wilcoxon rank-495 
sum test). B. Methylation levels of GGACH motifs are slightly reduced on X-496 
chromosomal transcripts. Fraction of m6A sites per chromosome with methylation in 497 
miCLIP2 data from male mESC. Boxes represent quartiles, centre lines denote 498 
medians, and whiskers extend to most extreme values within 1.5x interquartile range. 499 
C. Location of mouse X-chromosomal orthologs in human, opossum, and chicken D. 500 
Percentage of orthologs of X-chromosomal or autosomal genes in mouse that are 501 
located on autosomes or sex chromosomes in human, opossum, and chicken. 502 
E.  GGACH motifs in transcripts (exons) from mouse genes and corresponding 503 
orthologs in chicken, opossum, and human (n = 6,520). Orthologs to mouse X-504 
chromosomal and autosomal genes are indicated in orange and grey, respectively 505 
(two-tailed Wilcoxon rank-sum test, ns, not significant, *P value < 0.05, **P value < 506 
0.01, ***P value < 0.001, P value = 1.2e-18 [mouse], 2.7e-06 [human], 0.001227 507 
[opossum], 0.8602 [chicken]). Boxes as in A. F. Effects of m6A depletion on autosomal 508 
and X-chromosomal transcripts in XX and X0 clones of female mESC (P value = 509 
1.64e-12 and 3.5e-11, respectively, two-tailed Wilcoxon rank-sum test, Extended 510 
Data Fig. 9A-C). Median fold changes (log2) of transcripts from autosomes (n = 19, 511 
grey) and the X chromosome (n = 1, orange) estimated by RNA-seq after m6A 512 
depletion (STM2457, 9 h). Boxes as in A. G. X:A expression ratios are significantly 513 
reduced upon m6A depletion (P value  = 4.12e-15 [mESC], P value  = 2.06e-11 [female 514 
mESC XX], P value  = 1.08e-10 [female mESC X0]. P values as in Fig. 2B, multiple 515 
testing correction). H. Median fold change (log2) of m6A sites per transcript on 516 
respective chromosome relative to all chromosomes (P = 0.0018, autosomal (grey) vs. 517 
X-chromosomal (orange) transcripts, two-tailed Wald test in generalised linear mixed 518 
model for negative binominal data). 519 

Figure 5. The role of m6A in X-to-autosome dosage compensation. m6A acts as a 520 
selective degradation signal on autosomal transcripts and thereby contributes to X-to-521 
autosome dosage compensation. Transcripts from the autosomes are transcribed 522 
from two active chromosomes, leading to higher transcript copy numbers per 523 
autosomal gene than for X-chromosomal genes. m6A is selectively enriched on 524 
transcripts from autosomes, leading to their destabilisation and degradation. Since 525 
m6A is not enriched on X-chromosomal transcripts, this leads to an equal dosage 526 
between autosomal and X-chromosomal transcripts. m6A thereby contributes to X-to-527 
autosome dosage compensation.  528 
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  684 



Methods 685 

Cell culture  686 

All cell culture was performed in a humidified incubator at 37°C and 5% CO2. All cell 687 
lines were routinely monitored for mycoplasma contamination. 688 

Parental male and female mouse embryonic stem cells (mESC)32,44 were provided by 689 
Dan Dominissini (Tel Aviv University, Israel) and Edith Heard (EMBL Heidelberg, 690 
Germany). mESC lines were further authenticated by RNA-seq. Standard tissue 691 
culture was performed in 2i/LIF medium. Briefly 235 ml of each DMEM/F12 and 692 
neurobasal (Gibco, 21331020, 21103049) was mixed with 7.5 ml BSA solution (7.5%, 693 
Thermo Fisher Scientific, 11500496), 5 ml penicillin-streptomycin (P/S, Thermo Fisher 694 
Scientific, 10378016), 2 mM L-Glutamin (Thermo Fisher Scientific, 25030024), 100 µM 695 
β-mercaptoethanol (Gibco, 21985023), 5 ml mM nonessential amino acids (Gibco, 696 
11140050), 2.5 ml N2 supplement (Gibco, 17502048), 5 ml B27 supplement (Gibco, 697 
17504044), 3 µM CHIR99021 (Sigma, SML1046), 1 µM PD 0325901 (Biomol, 13034-698 
1), 10 ng/ml LIF (IMB Protein Production core facility). Cell culture dishes were coated 699 
using 0.1% gelatine (Sigma, ES-006-B). The medium was exchanged every day and 700 
cells were passaged every second day. Single colonies of female mESC were picked 701 
under the microscope using a pipette tip and cultured under standard conditions in 96-702 
wells until confluency was reached. 703 

HEK293T (ATCC, CRL-3216) and C643 (CLS, RRID:CVCL_5969) cells were cultured 704 
in DMEM (Thermo Fisher Scientific, 21969035) supplemented with 10% fetal bovine 705 
serum (FBS, Pan Biotech, P40-47500), 1% penicillin/streptomycin (P/S, Thermo 706 
Fisher Scientific, 10378016) and 1% L-Glutamine. RPE1 (ATCC, CRL-4000) cells 707 
were cultured in DMEM/F12 (Thermo Fisher Scientific, 21331020) supplemented with 708 
10% FBS (Pan Biotech, P40-47500), 1% P/S (Thermo Fisher Scientific, 10378016), 709 
1% L-Glutamine and 0.04% Hygromycin B (Fisher scientific, 10453982).  710 

Human primary dermal fibroblasts were provided by Susann Schweiger (University 711 
Medicine Mainz, Germany). Cells were grown in IMDM media (Thermo Fisher 712 
Scientific, 12440053) supplemented with 15% FBS and 1% P/S. 713 

Primary human dermal fibroblasts derivation 714 

Primary human dermal fibroblasts were isolated from skin punch biopsies obtained in 715 
the Children's Hospital of the University Medical Center in Mainz as previously 716 
described with small adjustment62. Briefly, 4 mm skin biopsies were processed in small 717 
pieces and transferred into a 6-well plate coated with 0.1% gelatine. DMEM (Thermo 718 
Fisher Scientific, 21969035) supplemented with 20% fetal bovine serum (FBS, Pan 719 
Biotech, P40-47500) and 1% penicillin/streptomycin (P/S, Thermo Fisher Scientific, 720 
10378016) was used for culturing the skin biopsies and medium was exchanged every 721 
other day. After 3-4 weeks, when the 6-well plate was full of dermal fibroblasts that 722 



migrated out of the skin biopsies, cells were transferred to T75 flasks and cultured in 723 
standard conditions. Human dermal fibroblasts were further expanded or frozen in 724 
liquid nitrogen for long-term storage. Ethical approval by the local ethical committee 725 
was obtained (No. 4485), and consent for research use in an anonymised way was 726 
given. 727 

Mettl3 inhibitor treatment 728 

For acute m6A depletion in mESC, the Mettl3 inhibitor STM2457 (STORM 729 
Therapeutics) was used. Cells were treated with medium supplemented with 20 µM 730 
STM2457 in DMSO 0.2% (v/v) or with DMSO 0.2% (v/v) alone as control. m6A 731 
depletion was monitored by liquid chromatography with tandem mass spectrometry 732 
(LC-MS/MS). After 3-24 h of treatment, cells were washed twice with ice-cold 1x PBS 733 
and collected on ice for further analysis 734 

RNA isolation and poly(A) selection 735 

Cells were washed twice with ice-cold 1x PBS and collected on ice. For total RNA 736 
isolation, the RNeasy Plus Mini Kit (Qiagen, 74136) was used following the 737 
manufacturer’s instructions. For poly(A) selection, Oligo d(T)25 Magnetic Beads 738 
(Thermo Fisher Scientific, 61002) were used following the manufacturer’s instructions.  739 

qPCR 740 

For quantification of mRNA levels, 500 ng total RNA was reverse transcribed into 741 
cDNA using the RevertAid Reverse Transcriptase (Thermo Fisher Scientific, 742 
10161310) using Oligo(dT)18 primer (Thermo Fisher Scientific, SO131) following the 743 
manufacturer’s instructions. In accordance to the manufacturer’s instruction, qPCR 744 
reactions were performed in technical triplicates using the Luminaris HiGreen qPCR 745 
Master Mix, low ROX (Thermo Fisher Scientific, K0971) with forward and reverse 746 
primer (0.3 µM each) and 2 µl of 1:10 diluted cDNA as template. All qPCR reactions 747 
were run on a ViiA 7 Real-Time PCR System (Applied Biosystems). All qPCR primers 748 
are listed in Table S4. 749 

LC/MS-MS 750 

LC/MS-MS experiments were performed as described in 33. Quantification of all 751 
samples utilised biological duplicates and averaged values of m6A normalised to A, 752 
with the respective standard deviations shown. 753 

SLAM-seq 754 

Cell viability for optimisation 755 

For determining the 10% maximal inhibitory concentration in a determined time 756 
window (IC10,ti), the Cell Viability Titration Module from LeXogen (059.24) was used 757 



following the manufacturer’s recommended protocol. In brief, 5,000 cells were plated 758 
in a 96-well plate one day prior to the experiment. Cells were incubated for 24 h with 759 
media supplemented with varying s4U concentrations. For optimal incorporation, the 760 
s4U-supplemented media were exchanged every 3 h. Cell viability was assessed using 761 
the CellTiter-Glo Luminescent Cell Viability Assay Kit from Promega (G7570) following 762 
the manufacturer's recommended protocol. The luminescence was measured using 763 
Tecan Infinite M200 Pro plate reader. Cell doubling time of male mESC in the presence 764 
of 100 µM s4U was 13.3 h as determined by cell counting. 765 

SLAM-seq experiment 766 

mRNA half-lives were determined by SLAM-seq using the Catabolic Kinetics LeXogen 767 
Kit (062.24). In brief, mESC were seeded one day prior to the experiment in a 24-well 768 
plate to reach full confluency, according to the doubling time, at the time of sample 769 
collection. The metabolic labelling was performed by addition of 100 µM s4U to the 770 
mESC medium for 24 h. The medium was exchanged every 3 h. After the metabolic 771 
labelling, cells were washed twice with 1x PBS and fresh medium was supplemented 772 
with a 100x excess of uridine. At timepoints increasing in a 1.5x rate, medium was 773 
removed and cells were directly lysed in TRIzol (Thermo Fisher Scientific,15596026) 774 
reagent in reducing conditions. Total RNA was resuspended in the elution buffer 775 
provided by the Lexogen catabolic kit. The iodoacetamide treatment was performed 776 
using 5 µg of RNA. The library preparation for sequencing was performed using the 777 
QuantSeq 3‘ mRNA-Seq Library Prep Kit for Illumina (FWD) from Lexogen following 778 
the recommended protocol.   779 

For stable m6A depletion, STM2457 or DMSO was supplemented 6 h prior to the 780 
uridine chase. The media for the uridine chase were supplemented with STM2457 and 781 
DMSO for continuous m6A depletion. 782 

SLAM-seq library preparation 783 

Library preparation for next-generation sequencing was performed with QuantSeq 784 
3 ́mRNA-Seq Library Prep Kit FWD (Lexogen, 015) following the manufacturer’s 785 
standard protocol (015UG009V0252). Prepared libraries were profiled on a 2100 786 
Bioanalyzer (Agilent Technologies) and quantified using the Qubit dsDNA HS Assay 787 
Kit, in a Qubit 2.0 Fluorometer (Life Technologies). All samples were pooled together 788 
in equimolar ratio and sequenced on an Illumina NextSeq 500 sequencing device 789 
using three High Output flow cells as 84 nt single-end reads. 790 

Data processing 791 

Published SLAM-seq data was taken from 28. 3’ UTR annotations were taken from 28 792 
and filtered to match the GENCODE annotation63 release M23. Non-overlapping 793 
annotations were discarded.   794 



Raw data was quality checked using FastQC (v0.11.8) 795 
(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Sequencing data was 796 
processed using SLAM-DUNK (v0.4.3)64 with the following parameters: Mapping was 797 
performed allowing multiple mapping to up to 100 genomic positions for a given read 798 
(-n 100). Reads were filtered using SLAM-DUNK -filter with default parameters. For 799 
annotation of single nucleotide polymorphisms (SNPs), all unlabelled samples were 800 
merged and SNPs were called using SLAM-DUNK snp with default parameters and -801 
f 0.2. Transition rates were calculated using SLAM-DUNK count with default 802 
parameters, providing the SNP annotation of unlabelled samples (-v). If more than one 803 
3’ UTR per gene remained, they were collapsed using SLAM-DUNK collapse64. Only 804 
genes on canonical chromosomes 1-19 and X were considered. 805 

Principle component analysis 806 

Principal component analysis (PCA) of SLAM-seq data was performed by estimating 807 
size factors based on read counts using the R/Bioconductor package DESeq265  808 
(v1.26.0) in an R environment (v3.6.0). PCA was the performed based on the number 809 
of T-to-C reads per gene for 500 genes with the highest variance, corrected by the 810 
estimated size factors. 811 

Incorporation rate 812 

s4U incorporation rates were calculated by dividing the number of T-to-C conversions 813 
on T’s per 3’ UTR by the overall T coverage. 814 

Half-life calculation 815 

To calculate mRNA half-lives, T-to-C background conversion rates (no s4U labelling) 816 
were subtracted from T-to-C conversion rates of s4U-labelled data. Only 3’ UTRs with 817 
reads covering over 100 T’s (T-coverage > 100) were kept (Extended Data Fig. 2D). 818 
For each timepoint, T-to-C conversion rates were normalised to the timepoint after 24 819 
h s4U labelling (i.e., the onset of the uridine chase) which corresponds to the highest 820 
amount of s4U incorporation in the RNA (24 h s4U labelling, T0) and fitted using an 821 
exponential decay model for a first-order reaction using the lm.package (as described 822 
in 28, adapted from 66). Half-lives > 18 h (1.5 times of the last timepoint) and < 0.67 h 823 
as well as fitted values with a residual standard error > 0.3 were filtered out (Extended 824 
Data Fig. 2E). Only transcripts with a valid half-life calculation in both conditions were 825 
kept for further analysis. For statistical analysis of half-life fold changes, see 826 
Supplementary Methods. 827 

RNA-seq library preparation and data processing 828 

RNA-seq library preparation 829 

RNA-seq library preparation was performed with Illumina’s Stranded mRNA Prep 830 
Ligation Kit following Stranded mRNA Prep Ligation Reference Guide (June 2020) 831 



(Document # 1000000124518 v00). Libraries were profiled on a 2100 Bioanalyzer 832 
(Agilent technologies) and quantified using the Qubit dsDNA HS Assay Kit (Thermo 833 
Fisher Scientific, Q32851), in a Qubit 2.0 Fluorometer (Life technologies) following the 834 
manufacturer’s recommended protocols. Samples were pooled in equimolar ratios and 835 
sequenced on an Illumina NextSeq 500 sequencing device with one or two dark cycles 836 
upfront as 79, 80 or 155 nt single-end reads. 837 

Data processing 838 

Basic quality controls were done for all RNA-seq samples using FastQC (v0.11.8) 839 
(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Prior to mapping, 840 
possibly remaining adapter sequences were trimmed using Cutadapt67 (v1.18). A 841 
minimal overlap of 3 nt between read and adapter was required and only reads with a 842 
length of at least 50 nt after trimming (--minimum-length 50) were kept for further 843 
analysis. For samples sequenced with only one dark cycle at the start of the reads, 1 844 
nt was trimmed in addition at their 5' ends (--cut 1). 845 

Reads were mapped using STAR68 (v2.7.3a) allowing up to 4% of the mapped bases 846 
to be mismatched (--outFilterMismatchNoverLmax 0.04 --outFilterMismatchNmax 847 
999) and with a splice junction overhang (--sjdbOverhang) of 1 nt less than the 848 
maximal read length. Genome assembly and annotation of GENCODE63 release 31 849 
(human) or release M23 (mouse) were used during mapping. In the case that ERCC 850 
spike-ins were added during library preparation, their sequences and annotation 851 
(http://tools.thermofisher.com/content/sfs/manuals/ERCC92.zip) were used in 852 
combination with those from GENCODE. Subsequently, secondary hits were removed 853 
using SAMtools69 (v1.9). Exonic reads per gene were counted using featureCounts 854 
from the Subread tool suite70 (v2.0.0) with non-default parameters --donotsort -s2. 855 

Differential gene expression analysis 856 

Differential gene expression between conditions was performed using the 857 
R/Bioconductor package DESeq2 (v1.34.0) (57) in an R environment (v4.1.2; 858 
https://www.R-project.org/). DESeq2 was used with significance threshold of adjusted 859 
P value < 0.01 (used also for optimising the independent filtering). Since normalisation 860 
to total transcript abundance can introduce biases, especially when the majority of 861 
genes are affected by the treatment, we included spike-ins in our initial RNA-seq 862 
dataset. As an alternative normalisation strategy to spike-ins, we tested 100 randomly 863 
chosen genes without any m6A sites but noticeable expression (reads per kilobase of 864 
transcript per million mapped reads [RPKM] > 10) for normalisation. To validate this 865 
normalisation approach, the calculated fold changes were compared with spike-in 866 
normalised data. Since the correlation between both normalisation strategies was very 867 
high, we used the 100 genes for normalisation in all further analyses (Extended Data 868 
Fig. 3B). For RNA seq expression change analysis see supplementary methods and 869 
Table S5. 870 



miCLIP2 871 

miCLIP2 experiments were performed as described in 33. For a detailed description of 872 
analyses, see Supplementary Methods. 873 

Quantification of m6A sites in transcripts 874 

m6A sites from miCLIP2 for male mESC, mouse heart samples, mouse macrophages, 875 
human HEK293T, and C643 cells were taken from 33 (Gene Expression Omnibus 876 
[GEO] accession number GSE163500). m6A sites were predicted using m6Aboost as 877 
described in 33. For miCLIP2 mouse heart data, only m6A sites that were predicted by 878 
m6Aboost in both considered datasets (1 µg and 300 ng) were considered for the 879 
analysis. 880 

Comparison of m6A sites per transcripts 881 

Numbers of m6A were counted for each protein-coding transcript. Only transcripts on 882 
canonical chromosomes 1-19 and X were considered. To account for expression 883 
differences, transcripts were stratified according to their expression levels based on 884 
the respective miCLIP2 data. Expression levels were estimated using htseq-count71 885 
(v0.11.1) and genome annotation of GENCODE63 release M23 on the truncation reads 886 
from miCLIP2 data (noC2T reads)33. The derived transcript per million (TPM) values 887 
for all replicates (n = 3) were averaged, log10-transformed and then used to stratify all 888 
transcripts into 12 equal-width bins (step size of log10(TPM) = 0.25), collecting all 889 
transcripts with log10(TPM) < 0.5 or > 3 into the outer bins (Extended Data Fig. 6A). 890 
A minimum of TPM > 1 was set. For each expression bin, the mean and 95% 891 
confidence interval of the number of m6A sites per transcript were calculated (Fig. 3A-892 
C and Extended Data Fig. 6C). To estimate the fold change of m6A sites per 893 
chromosome compared to all other chromosomes (Fig. 3D,F,G), only transcripts with 894 
intermediate expression (bins #3-8) were taken into account (mouse). For HEK293T 895 
data, bins #4-9, and for C643 data, bins #5-10 were used. For each bin, the difference 896 
of m6A levels of the respective chromosome to all chromosomes was calculated. For 897 
this, the mean m6A sites on transcripts of the respective chromosome was divided by 898 
the mean number of m6A sites on transcripts of all chromosomes in the given bin (e.g., 899 
orange dots [X chromosome] over grey dots [all transcripts] in Fig. 3B). This resulted 900 
in a fold change of m6A sites of the respective chromosome over all chromosomes for 901 
each of the six considered bins (Extended Data Fig. 6D). For comparison with other 902 
chromosomes (Fig. 3D,F,G), the mean fold change per chromosome over all 903 
expression bins was calculated (Extended Data Fig. 6D, red dot). 904 

Control for transcript length biases 905 

To exclude biases from different transcript lengths, we repeated the analysis using 906 
only m6A sites within a 201-nt window (-50 nt to +150 nt) around the stop codon, where 907 
a large fraction of m6A sites accumulate23. To obtain stop codon positions, transcript 908 



annotations from GENCODE63 release M23 were filtered for the following parameters: 909 
transcript support level ≤ 3, level ≤ 2 and the presence of a Consensus Coding 910 
Sequence (CCDS) ID (ccdsid). If more than one transcript per gene remained, the 911 
longer isoform was chosen. Repeating the analyses with this subset as described 912 
above supported our observation that X-chromosomal transcripts harbour fewer m6A 913 
sites is not influenced by differences in transcript lengths (Extended Data Fig. 6E).  914 

Subsampling of transcripts in expression bins  915 

To account for potential biases from different numbers of transcripts in the expression 916 
bins for each chromosome, we randomly picked 30 genes for each expression bin 917 
(using bins #3-5, 90 genes in total) and calculated the fold change of m6A content on 918 
transcripts for each chromosome compared to all other chromosomes as described 919 
above. The procedure was repeated 100 times. The distribution of resulting fold 920 
change values supports that X-chromosomal transcripts harbour fewer m6A sites, 921 
irrespective of the number of transcripts considered (Extended Data Fig. 6F). 922 

Statistical analysis of m6A sites in transcripts 923 

See Supplementary Methods and Table S6. 924 

Analysis of published m6A-seq2 data 925 

Published m6A-seq2 data for wildtype (WT) and Mettl3 KO mESC were retrieved from 926 
36. We used the so-called gene index, i.e., the ratio of m6A IP values over IP, for whole 927 
genes as a measure of the transcripts methylation level as described in 36 (Fig. 3E). 928 
Chromosome locations of the genes (n = 6,278) were assigned using the provided 929 
gene name via the R/Bioconductor package biomaRt in an R environment72,73. 930 

DRACH motif analyses 931 

GGACH motifs in mouse transcripts 932 

Mouse transcript annotations from GENCODE63 release M23 were filtered for the 933 
following parameters: transcript support level ≤ 3, level ≤ 2 and the presence of a 934 
CCDS ID. If more than transcript annotation remained for a gene, the longest transcript 935 
was chosen. Different transcript regions (3’ UTR, 5’ UTR, CDS) were grouped per 936 
gene and GGACH motifs were counted per base pair in different transcript regions, 937 
e.g., the sum of GGACH motifs in CDS fragments of a given gene, divided by sum of 938 
CDS fragment lengths. 939 

GGACH motifs in chicken, opossum and human orthologs 940 

Orthologs of mouse genes in chicken (Gallus gallus), human (Homo sapiens) and 941 
opossum (Monodelphis domestica) were retrieved from the orthologous matrix (OMA) 942 
browser74 (accessed on 21/03/2022, for opossum 28/07/22). Only 1-to-1 orthologs 943 



were kept. Genes were filtered to have orthologs in all three species (n = 6,520). Then, 944 
numbers of GGACH motifs per base pair of all protein-coding exons were quantified 945 
based on GENCODE annotation (release 31)63 for human and ENSEMBL annotation 946 
(release 107, genome assembly GRCg6a)75 for chicken and opossum annotation 947 
(ASM229v1). GGACH motifs per base pair were quantified and visualised as 948 
described above. 949 

Estimation of methylation levels 950 

See Supplementary Methods. 951 

GGACH in gene sets from literature 952 

Independently evolved gene sets and genes with or without ortholog on the human X 953 
chromosome were taken from 39. Escaper genes were taken from 16. Testis-specific 954 
genes were taken from 5. Genes from the X-added region (XAR) and X-conserved 955 
region (XCR) were annotated by identifying X-chromosomal genes in mouse with the 956 
location of chicken orthologs on chromosome 1 (XAR) and chromosome 4 (XCR). 957 

ChIP-seq analysis 958 

ChIP-seq peaks were obtained from 37. The numbers of peaks per chromosome were 959 
divided by chromosome lengths. To calculate the peak ratio per chromosome 960 
compared to all other chromosomes, the normalised peak number per chromosome 961 
was divided by the median peak number of all chromosomes.  962 

GO analysis 963 

GO term enrichment were performed using the enrichGO function of clusterProfiler76 964 
(v.4.2.2). Cellular components (ont=”CC”) were enriched using a P value cutoff of 0.01, 965 
a q value cutoff of 0.05 and P values were corrected using Benjamini-Hochberg 966 
correction (pAdjustMethod = "BH").  967 

DNA-seq to determine copy number variation 968 

See Supplementary Methods.  969 

Statistics & Reproducibility  970 

All statistical analyses were performed using R. All boxplots shown in this study are 971 
defined as follows: Boxes represent quartiles, centre lines denote medians, and 972 
whiskers extend to most extreme values within 1.5x interquartile range. All statistical 973 
tests performed in this study were two-tailed. All indicated replicate numbers refer to 974 
independent biological replicates. No statistical method was used to predetermine 975 
sample size. The experiments were not randomised. No data were excluded from the 976 
analysis unless stated otherwise. The Investigators were not blinded to allocation 977 
during experiments and outcome assessment. 978 



Data availability 979 

All high-throughput sequencing datasets generated in this study were submitted to the 980 
Gene Expression Omnibus (GEO) under the SuperSeries accession GSE203653 981 
(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?&acc=GSE203653). RNA-seq data 982 
for human primary fibroblasts are available via the EGA European Genome-Phenome 983 
Archive under the accession number EGAS00001007112. 984 

Code availability statement 985 
The scripts used to process the files are accessible under the GitHub repository 986 
located at: github.com/crueckle/Rueckle_et_al_2023.  987 
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Figure 1. X-chromosomal transcripts are more stable upon m6A depletion. A. Experimental 
setup for SLAM-seq experiment. B, C. Transcripts (n = 7,310) in B. control and C. m6A-depleted 
conditions show a median half-life of 3.2 h and 3.5 h, respectively (P value = 5.25e-29, two-tailed 
Wilcoxon signed-rank test). Median s4U content for all transcripts shown in black. D. Transcripts 
with m6A sites have significantly shorter half-lives (P value = 2.17e-18, two-tailed Wilcoxon 
rank-sum test). Cumulative fractions of transcripts with given half-lives for transcripts with (n = 
2,342, green) or without (n = 4,967, black) m6A sites. E. Transcripts with m6A sites (n = 2,342) 
significantly increase in half-life upon m6A depletion (8% median increase, P value = 1.07e-61, 
two-tailed Wilcoxon signed-rank test), unmethylated transcripts (n = 4,967) were largely unaf-
fected (0.3% median decrease, P value = 3.186e-05) (same gene set in both conditions). Mean 
half-life in each group is shown as red dot. Boxes represent quartiles, centre lines denote medi-
ans, and whiskers extend to most extreme values within 1.5x interquartile range. F. Half-lives of 
autosomal transcripts significantly increase upon m6A depletion (P value = 3.03e-31, two-tailed 
Wilcoxon signed-rank test), while X-chromosomal transcripts remain unchanged (P value = 
0.2121, two-tailed Wilcoxon signed-rank test). Distribution of half-lives for autosomal (n = 7,069) 
and X-chromosomal transcripts (n = 241) (same gene set in both conditions). Mean half-life in 
each group is shown as red dot. Boxes as in E. G. X-chromosomal transcripts show the lowest 
half-life increase upon m6A depletion (P value = 0.005486, mean difference in log2-fold changes 
= -0.0945, linear mixed model, two-tailed t-test on fixed effects, see Methods). Median fold 
change (log2) in mRNA half-lives for each chromosome in m6A-depleted over control conditions. 
H. Same as G for half-lives from Mettl3 KO over WT mESC34 (P value = 0.000225, X-chromo-
somal vs. autosomal transcripts, mean difference in log2-transformed fold changes = -0.22057). 
The absolute differences between m6A depletion and Mettl3 KO conditions may result from differ-
ences in the experimental setup, including the mode of Mettl3 inactivation and the method to 
determine transcript half-lives.
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Figure 2. X-chromosomal transcripts are more stable and less upregulated upon m6A 
depletion. A. X-chromosomal transcripts are less upregulated upon m6A depletion in male 
mESC (P value = 1.86e-17, two-tailed Wilcoxon rank-sum test). Cumulative fraction of tran-
scripts (RPKM > 1) on individual autosomes (grey) and the X chromosome (orange) that show a 
given expression fold change (log2, RNA-seq) upon m6A depletion (STM2457, 24 h). Mean 
expression changes for all autosomes are shown as black line. Effect sizes (blue) shown the 
shift in medians, expressed as percent of the average interquartile range of autosomal and 
X-chromosomal genes (IQR, see Methods). B. X:A expression ratios show a significant reduc-
tion upon m6A depletion (P = 1.4e-15 two-tailed t-test of linear contrasts in mixed effect Gaussian 
model in log-scale). C. Differential effects on autosomal and X-chromosomal transcripts occur 
already after 6 h of m6A depletion. Median fold changes (log2) of transcripts from autosomes (n  
= 19, grey) and the X chromosome (n = 1, orange) estimated by RNA-seq at different timepoints 
of m6A depletion (STM2457, 3, 6, 9 and 12 h). Boxes represent quartiles, centre lines denote 
medians, and whiskers extend to most extreme values within 1.5x interquartile range. D. Same 
as A. for human primary fibroblasts (STM2457, 9 h). P value = 6.24e-06, two-tailed Wilcoxon 
rank-sum test. Effect sizes are shown as the shift in medians of the two distributions, expressed 
as percent of the average IQR of autosomal and X-chromosomal genes (see Methods). E. Same 
as B for human cell lines. (P value = 0.0000803 [human fibroblasts], P value = 0.0000379 [HEK-
293T], P value = 0.0003284 [C643], P value = 0.0002982 [RPE1]. P values were calculated as 
in A, multiple testing correction.
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Figure 3. m6A sites are reduced on transcripts from the X chromosome. A. The number of 
detected m6A sites varies with the expression level. Mean m6A sites per transcript were quanti-
fied for transcripts with each expression bin (n = 12,034 transcripts, see Extended Data Fig. 6A 
for n in each bin). Error bars indicate 95% confidence interval. B. X-chromosomal transcripts 
harbour less m6A sites across expression levels. Visualisation as in A for transcripts from the X 
chromosome (orange, n = 389 transcripts) compared to the mean of all chromosomes (grey). 
Numbers of transcripts in expression bins are shown in Extended Data Fig. 6C. Significance 
values for bins #3-8 are indicated by asterisks (autosomes vs. X chromosome, two-tailed Wald 
tests in a generalized linear model for negative binomial data, multiple testing correction, ns, not 
significant, *P value < 0.05, **P value < 0.01, exact values given in Source Data). C. The m6A 
content of transcripts from chromosome 11 (n = 1,031 transcripts) follows the mean of all chro-
mosomes across all expression levels. Visualisation as in A. for transcripts from chromosome 11 
(black) compared to the mean of all chromosomes (grey). Analyses for individual chromosomes 
are shown in Extended Data Fig. 6C. D-G. X-chromosomal transcripts exhibit significantly less 
m6A sites in D male mESC (P = 4.1e-09, generalised linear model for negative binominal data), 
E published m6A-seq2 data from mESC36, F mouse heart samples (P = 8.34e-11) and mac-
rophages (P value = 1.38e-08), and G human HEK293T (P = 0.000203) and C643 cell lines (P 
value = 0.001030). Mean fold change (log2) of m6A sites per transcript on respective chromo-
somes relative to all chromosomes (Extended Data Fig. 6D). For mouse data, transcripts of 
intermediate expression (bins #3-8) are used. For HEK293T data, bins #4-9, and for C643 data, 
bins #5-10 were used. X-chromosomal and autosomal transcripts are shown in grey and orange, 
respectively. Chromosomes 11 and X are labelled for comparison with B and C. P values for 
comparisons autosomal vs. X-chromosomal transcripts as in B.
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Figure 4. Reduced m6A on X-chromosomal transcripts is intrinsically encoded. A. GGACH 
motifs (normalised to region length) in different transcript regions of autosomal (grey) and 
X-chromosomal transcripts (orange) in mouse (P value = 1.38e-29 [CDS, n = 16,631 annota-
tions], P value = 1.06e-40 [3‘ UTR, n  = 16,484 annotations] and 0.2707 [5’ UTR, n = 16,490 
annotations], two-tailed Wilcoxon rank-sum test). B. Methylation levels of GGACH motifs are 
slightly reduced on X-chromosomal transcripts. Fraction of m6A sites per chromosome with 
methylation in miCLIP2 data from male mESC. Boxes represent quartiles, centre lines denote 
medians, and whiskers extend to most extreme values within 1.5x interquartile range. C. Loca-
tion of mouse X-chromosomal orthologs in human, opossum, and chicken D. Percentage of 
orthologs of X-chromosomal or autosomal genes in mouse that are located on autosomes or sex 
chromosomes in human, opossum, and chicken. E.  GGACH motifs in transcripts (exons) from 
mouse genes and corresponding orthologs in chicken, opossum, and human (n = 6,520). 
Orthologs to mouse X-chromosomal and autosomal genes are indicated in orange and grey, 
respectively (two-tailed Wilcoxon rank-sum test, ns, not significant, *P value < 0.05, **P value < 
0.01, ***P value < 0.001, P value = 1.2e-18 [mouse], 2.7e-06 [human], 0.001227 [opossum], 
0.8602 [chicken]). Boxes as in A. F. Effects of m6A depletion on autosomal and X-chromosomal 
transcripts in XX and X0 clones of female mESC (P value = 1.64e-12 and 3.5e-11, respectively, 
two-tailed Wilcoxon rank-sum test, Extended Data Fig. 9A-C). Median fold changes (log2) of 
transcripts from autosomes (n = 19, grey) and the X chromosome (n = 1, orange) estimated by 
RNA-seq after m6A depletion (STM2457, 9 h). Boxes as in A. G. X:A expression ratios are signifi-
cantly reduced upon m6A depletion (P value  = 4.12e-15 [mESC], P value  = 2.06e-11 [female 
mESC XX], P value  = 1.08e-10 [female mESC X0]. P values as in Fig. 2B, multiple testing 
correction). H. Median fold change (log2) of m6A sites per transcript on respective chromosome 
relative to all chromosomes (P = 0.0018, autosomal (grey) vs. X-chromosomal (orange) tran-
scripts, two-tailed Wald test in generalised linear mixed model for negative binominal data).
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Figure 5. The role of m6A in X-to-autosome dosage compensation. m6A acts as a selective 
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leading to higher transcript copy numbers per autosomal gene than for X-chromosomal genes. 
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tosome dosage compensation.
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Extended Data Figure Legends 
 

Extended Data Figure 1. Mettl3 inhibitor treatment of mouse embryonic stem 
cells (mESC) depletes m6A levels. A. X-chromosomal transcripts are more stable 
than autosomal transcripts (median half-life = 3.72 h [autosomes] vs. 4.35 h [X 
chromosome], P value = 1.02e-05, two-sided Wilcoxon rank-sum test). Distribution of 
half-lives from published SLAM-seq data for mESC for transcripts on each individual 
chromosome. Dashed red line and red box indicate median and inter-quartile range of 
X-chromosomal transcripts, respectively, for comparison. Boxes represent quartiles, 
centre lines denote medians, and whiskers extend to most extreme values within 1.5x 
interquartile range. B. Time course experiments shows that treatment of male mESC 
with the Mettl3 inhibitor (STM2457, 20 µM) results in a gradual reduction of m6A levels 
on mRNAs. m6A levels were measured by liquid chromatography-tandem mass 
spectrometry (LC-MS/MS) for poly(A)+ RNA from m6A-depleted (STM2457, 3-24 h) 
and control conditions. Quantification of m6A as percent of A in poly(A)+ RNA. n = 2 
independent biological replicates. C. Expression levels of marker genes confirm the 
pluripotent state of the male mESC throughout the time course experiment. Gene 
expression levels (RNA-seq) are shown as reads per kilobase of transcript per million 
mapped reads (RPKM, mean over all replicates, log10) in m6A-depleted (STM2457, 3-
24 h) and control conditions. D. Quantitative real-time PCR (qPCR) to quantify 
expression changes of stem cell marker genes in m6A-depleted (STM2457, 9 h) and 
control conditions. Normalised CT values (∆CT, normalised to Gapdh expression) are 
compared between conditions. Fold changes are displayed as mean ± s.d.m., two-
sided Student’s t-test on log2-transformed data, n = 4 independent biological samples, 
ns, not significant. P value = 0.8 [Sox2]; 0.96 [Nanog].  
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Extended Data Figure 2. SLAM-seq measures mRNA half-lives in mESC. A. Cell 
viability assessed for male mESC cultured with s4U for 24 h in varying concentrations 
(x-axis, log2-transformed). Viability of labelled cells in relation to unlabelled cells is 
shown as mean ± s.d.m., n = 3 biologically independent samples. IC10,24h is indicated 
as dashed line. B. Principal component analysis of SLAM-seq replicates based on 
numbers of reads with T-to-C conversions. Principal component (PC) 1 and PC2 (left) 
separate the different timepoints of the experiment (colours), PC3 and PC4 (right), 
separate control and m6A-depleted conditions (symbols). C. T-to-C conversions on T’s 
by the overall T coverage per 3’ UTR. Maximum s4U rate is achieved after 24 h of 
labelling (T0) and steadily decreases after s4U washout and uridine chase (T1-T7). 
Unlabelled samples (No s4U) are shown for comparison. n = 21,527 UTRs with 
incorporation rates per replicate. Boxes represent quartiles, centre lines denote 
medians, and whiskers extend to most extreme values within 1.5x interquartile range. 
D. Expression estimates based on log10-transformed coverage on T’s per 3’ UTR 
(mean over all replicates and timepoints per condition). Only 3’ UTRs with SLAM-seq 
reads covering at least 100 T’s (indicated by dotted line) were used for subsequent 
fitting. E. Cumulative distribution of the goodness-of-fit (residual standard error, RSE) 
of half-lives calculated from SLAM-seq data. Dotted lines indicate filtering cut-off (RSE 
> 0.3). F. Correlation of half-lives determined in this study (male mESC, control 
condition) with previously published half-lives in male mESC (two-sided Pearson 
correlation coefficient [R] = 0.8, P value < 2.2e-16). G. Distribution of half-lives of 
transcripts on individual chromosomes in control (left) or m6A-depleted conditions 
(right). In control conditions, half-lives of X-chromosomal transcripts differ significantly 
from autosomal transcripts (median half-life 3.19 h [autosomes] vs. 3.57 [X 
chromosome], P value = 7.63e-05, two-sided Wilcoxon rank-sum test). In m6A-
depleted conditions, autosomal transcript half-lives approximate X-chromosomal 
transcript half-lives in control conditions (P value = 0.06228, two-sided Wilcoxon rank-
sum test). Red lines and boxes indicate median and interquartile range, respectively, 
of half-lives of X-chromosomal transcripts in control conditions. Boxes as in C. 
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Extended Data Figure 3. RNA-seq upon m6A depletion reveals upregulation of 
autosomal but not X-chromosomal transcripts. A. Principal component analysis 
indicates high reproducibility of RNA-seq data for male mESC in control and m6A-
depleted conditions (STM2457, 24 h, 4 replicates per condition, total of 398 million 
uniquely mapped reads). Replicate number given next to each data point. B. 
Correlation of expression fold changes (log2) of RNA seq data in m6A-depleted 
(STM2457, 24 h) over control conditions using normalisation to ERCC spike-ins (x-
axis) or 100 randomly chosen genes without m6A sites (y-axis, see Methods; two-sided 
Pearson correlation coefficient [R] = 1, P value < 2.2e-16). C. Upregulation upon m6A 
depletion increases with the number of m6A sites in the transcripts. Distribution of fold 
changes (log2) in m6A-depleted (STM2457, 24 h) over control conditions in expressed 
transcripts (transcripts per million [TPM] > 1, based on total miCLIP2 signal) stratified 
by their number of m6A sites. Numbers of transcripts in each category are indicated 
above. Boxes represent quartiles, centre lines denote medians, and whiskers extend 
to most extreme values within 1.5x interquartile range. D. Cumulative distribution of 
expressed autosomal (grey) and X-chromosomal (orange) transcripts (RPKM > 1) with 
a given expression level (RPKM, x-axis). The expression distributions of X-
chromosomal and autosomal transcripts are largely identical, supporting a X:A ratio 
close to 1 across the full expression range. For comparison, a theoretical doubling of 
the X-chromosomal expression is shown (orange, dotted) which would exceed 
autosomal expression levels. E. Median X-to-autosome (X:A) expression ratios 
increase with higher RPKM cut-offs (>0 , n [genes] = 26,291, ≥0.25, n = 13,795, ≥0.5 
n = 12,255, ≥1 , n = 10,849). Median X:A ratios for male mESC and 95% confidence 
intervals are given.  
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Extended Data Figure 4. Time-course RNA-seq upon m6A depletion reveals 
upregulation of autosomal genes after 6 h of inhibitor treatment. A. Principal 
component analyses of RNA-seq replicates of control and m6A-depleted male mESC 
at different time points (STM2457, 3-12 h) based on numbers of reads or the 500 
genes with highest variance across all samples for a given time point. Replicate 
number given next to each data point. B. After 6 h of m6A depletion, X-chromosomal 
transcripts show significantly lower fold changes (log2) compared to autosomal 
transcripts (P value = 0.48 [3 h], P value = 1.02e-12 [6 h], P value = 5.12e-10 [9 h], P 
value = 1.69e-08 [12 h], two-sided Wilcoxon rank-sum test). Cumulative fraction of 
transcripts on individual autosomes (grey) and the X chromosome (orange) that show 
a given expression fold change (log2, RNA-seq) at different timepoints of m6A 
depletion (STM2457, 3-12 h) in male mESC. Mean expression changes for all 
autosomes are shown as black line. Effect sizes (blue) show the shift in medians, 
expressed as percent of the average interquartile range (IQR) of autosomal and X-
chromosomal genes (see Methods). C. qPCR to quantify expression changes of five 
autosomal (left) and five X-chromosomal (right) transcripts in control and m6A-
depleted (STM2457, 9 h) male mESC cells. Normalised CT values (∆CT, normalised 
to Gapdh expression) are compared between conditions. Fold changes are displayed 
as mean ± s.d.m., two-sided Student’s t-test on log2-transformed data, n = 4 
biologically independent samples, *P value < 0.05, **P value < 0.01, ***P value < 
0.001, ns, not significant. P value = 0.00017 [Rab11fip5], 8.57e-07 [Tubb3], 8.08e-08 
[Phax], 0.049 [Faap100], 1.46e-06 [Tstp2]; 0.56 [Itm2a], 0.001 [Hnrnph2], 0.95 [Ssr4], 
0.007 [Plp1], 0.01 [Fmr1]. 
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Extended Data Figure 5. RNA-seq upon m6A depletion reveals upregulation of 
autosomal transcripts in human cell lines. A. Principal component analyses for 
replicates of RNA-seq experiments under m6A-depleted and control conditions for 
human primary fibroblasts (STM2457, 9 h), HEK293T cells, C643 cells and RPE1 cells 
(STM2457, 24 h). Replicate number given next to each data point. B. X-chromosomal 
transcripts show significantly lower fold changes upon m6A depletion than autosomal 
transcripts (P value = 6.92e-06 [HEK293T, n = 12,856 of autosomal transcripts, n = 
443 of X-chromosomal transcripts], P value = 4.53e-05 [C643, n = 11,109 of autosomal 
transcripts, n = 383 of X-chromosomal transcripts], P value = 0.0001901 [RPE1, n = 
10,732 of autosomal transcripts, n = 347 of X-chromosomal transcripts], Wilcoxon 
rank-sum test). Cumulative fraction of transcripts on individual autosomes (grey) and 
the X chromosome (orange) that show a given fold change (log2) in m6A-depleted 
(STM2457, 24 h) over control conditions for HEK293T, C643, and RPE1 cells. Mean 
expression changes for all autosomes are shown as black line. Effect sizes (blue) 
shown the shift in medians, expressed as percent of the average IQR of autosomal 
and X-chromosomal genes (see Methods).   
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Extended Data Figure 6. X-chromosomal transcripts harbour less m6A sites than 
autosomal transcripts in male mESC. A. Transcripts were stratified into 12 bins (#1-
12) according to their expression in male mESC (transcripts per million [TPM, log10], 
see Methods). x-axis depicts boundaries between bins (in TPM). Bin number (#) and 
number of transcripts therein are given below and above each bar, respectively. Bins 
#3-8 that were used for quantifications of m6A sites per transcripts are highlighted in 
black. B. Quantification of m6A for each transcript in the different expression bins of 
autosomal (grey) and X-chromosomal (orange) transcripts. Boxes represent quartiles, 
centre lines denote medians, and whiskers extend to most extreme values within 1.5x 
interquartile range. C. Quantification of m6A sites per transcript for all mouse 
chromosomes. Data points indicate mean number of m6A sites per transcript and 95% 
confidence interval (left y-axis) in each expression bin (x-axis, bins as defined in A.) 
for all chromosomes (chromosome name and total number of expressed transcripts 
given above). Grey bars indicate the percentage of transcripts in each expression bin 
(right y-axis) relative to all expressed transcripts on the chromosome. Absolute 
numbers of transcripts in each bin are given above the bars. Only genes with a mean 
TPM > 1 over all samples were considered. D. Fold change (log2, grey dots) in mean 
m6A sites per transcripts for expression bins #3-8 (n of mean of expression bins = 6) 
on an individual chromosome over the mean m6A sites per transcripts across all 
chromosomes. Red dots indicate mean fold change of the six bins on the given 
chromosome. Boxes as in B. E. Same as D. using only m6A sites in a fixed window 
around stop codons (-50 nt to +150 nt) to exclude confounding effects of transcript 
length differences. Boxes as in B. F. Same as C. after randomly subsampling n = 30 
genes from expression bins #3-5 to exclude potential biases from different numbers 
of transcripts in the expression bins for each chromosome. Shown is the distribution 
of mean m6A sites per transcript for each chromosome from 100 repeats of 
subsampling. Boxes as in B. 
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Extended Data Figure 7. The number of GGACH motifs and their methylation 
level are reduced on X-chromosomal transcripts compared to autosomal 
transcripts. A. X-chromosomal transcripts harbour fewer GGACH motifs than 
autosomal transcripts. Distribution of GGACH (H = [A|C|U]) per kilobase (kb) transcript 
sequence for individual chromosomes (corresponding to Fig. 4A). Boxes represent 
quartiles, centre lines denote medians, and whiskers extend to most extreme values 
within 1.5x interquartile range. B. Distribution of m6A sites from mESC miCLIP2 data 
across different DRACH motifs. Barplot shows the number of m6A sites for a given 
type of DRACH motif in mESC. The five most often methylated (“strong”) and least 
often methylated (“weak”) DRACH motifs are labelled below. C. Autosomal transcripts 
harbour more frequently methylated DRACH motifs in CDS and 3’ UTR. Quantification 
of strong DRACH motifs in different transcript regions (normalised to region length) of 
autosomal (grey) and X-chromosomal transcripts (orange) in mouse. CDS n of 
annotations = 16,631, 3‘ UTR n of annotations = 16,484 and 5’ UTR n of annotations 
= 16,490. Boxes as in A. D. Autosomal transcripts harbour similar numbers of the least 
methylated DRACH motifs (“weak”) in CDS and 3’ UTR. Quantification of the five least 
methylated DRACH motifs as in (C.). CDS n of annotations = 16,631, 3‘ UTR n of 
annotations = 16,484 and 5’ UTR n of annotations = 16,490. Boxes as in A. E-G. The 
methylation level of GGACH motifs in male mESC, i.e., the percentage of GGACH 
motifs that are methylated, is slightly reduced in X-chromosomal transcripts (F.), 
compared to transcripts across all chromosomes (E.) or from chromosome 11 (G.). To 
take into account only GGACH motifs in transcript regions with sufficient expression, 
GGACH motifs in transcripts were stratified into bins by the local miCLIP2 read 
coverage (see Methods) and overlayed with m6Aboost-predicted m6A sites from the 
same data. Dashed red line indicates local linear regression to estimate the 
methylation level (shown in Fig. 4B), i.e., the point at which the slope drops below 
0.01. Dashed grey lines in F and G show estimated GGACH methylation level for 
transcripts across all chromosomes (E.) for comparison.  
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Extended Data Figure 8. The number of GGACH motifs is reduced on transcripts 
encoding histones and ribosomal proteins. A. The X chromosome harbours fewer 
Mettl3 ChIP-seq peaks. The number of published ChIP-seq peaks (normalised by 
chromosome length) per chromosome relative to peaks on all other chromosomes 
(log2). B. Different gene sets on the X-chromosome are similarly depleted in GGACH 
motifs. Quantification of GGACH motifs of all autosomal or X-chromosomal genes is 
compared to the following gene sets: escaper genes, independently evolved genes, 
genes with or without orthologs on the human X chromosome, testis-specific genes or 
genes residing in the X-added region (XAR) and X-conserved region (XCR). Numbers 
of genes are given in the figure (n). Boxes represent quartiles, centre lines denote 
medians, and whiskers extend to most extreme values within 1.5x interquartile range. 
C. X-chromosomal genes with low GGACH motif numbers are associated with DNA 
packaging or the cytosolic ribosome. Gene ontology (GO) enrichment analysis of the 
200 genes with the lowest density of GGACH motifs on the X chromosome. P values 
were calculated by overrepresentation analysis (see Methods). D. Histone and 
ribosomal protein-encoding genes on the X chromosome are depleted in GGACH 
motifs. Quantification of GGACH motifs for histone-encoding and ribosomal protein-
encoding genes on autosomes or on the X chromosome. Numbers of genes are given 
in the figure (n). Boxes as in B. 
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Extended Data Figure 9. X-chromosomal and autosomal transcripts differ in 
their response to m6A depletion in both XX or X0 clones of female mESC. A. The 
majority of clones lost one copy of the X chromosome (X0). 20 single colonies of 
female mESC were picked and cultured under standard conditions until confluency 
was reached. To determine chromosome copy number, DNA-seq reads were counted 
into 100 kb bins along the chromosome and divided by the median mapped reads of 
all bins along the genome. Shown is the distribution of the resulting ratios for the bins 
on each chromosome. Six clones that were selected for RNA-seq in control and m6A-
depleted (STM2457, 9 h) condition are highlighted in green. Boxes represent quartiles, 
centre lines denote 50th percentiles (medians), and whiskers extend to most extreme 
values within 1.5x interquartile range. B. Principal component analysis of RNA-seq 
replicates from female X0 (left) and XX (right mESC clones under m6A-depleted 
(STM2457, 9 h) and control conditions. Analysis based on numbers of reads for the 
500 genes with highest variance across all samples. C. Expression levels (RNA-seq) 
of marker genes confirm the pluripotent state of the female XX and X0 mESC under 
m6A-depleted (STM2457, 9 h) and control conditions. Expression is shown as RPKM 
(mean over replicates, log10). D. X-chromosomal transcripts are less upregulated than 
autosomal transcripts upon m6A depletion in female X0 and XX mESC (P value = 
3.51e-11 [mESC X0], P value = 1.64e-12 [mESC XX], two-sided Wilcoxon rank-sum 
test). Cumulative fraction of transcripts (RPKM > 1) on individual autosomes (grey) 
and the X chromosome (orange) that show a given expression fold change (log2, RNA-
seq) upon m6A depletion (STM2457, 9 h). Mean expression changes for all autosomes 
are shown as black line. Effect sizes (blue) shown the shift in medians, expressed as 
percent of the average IQR of autosomal and X-chromosomal transcripts (see 
Methods).  
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Supplementary Methods 
 
SLAM-seq 

Statistical analysis of half-life fold changes 

The influence of chromosome type on log2-transformed fold changes in mRNA half-
lives upon m6A depletion (Fig. 1G) or Mettl3 KO (Fig. 1H) was analysed using a 
categorical Gaussian linear mixed model. Distributional assumptions (normal 
distribution and homoscedasticity) were checked with Q-Q plots and by comparing 
empirical standard deviations. The factor chromosome type (autosome / X 
chromosome) was implemented as a fixed effect. To account for differences between 
individual chromosomes, the factor chromosome number (1 - 19, X) was included as 
a random effect. We used the R packages lme4 (v1.1.29) and lmerTest (v3.1.3). In 
both datasets, the fits of the random effect's variance were singular, meaning that the 
effect of individual chromosomes was negligible compared to the effect of 
chromosome type and that autosomal log2-transformed fold changes could be pooled 
to form one group. Inference using Wald tests in the resulting models is equivalent to 
unpaired Student’s t-tests for autosomal and X-chromosomal log2-transformed fold 
changes. 

 

Analysis of expression changes (RNA-seq)  

For comparison of expression changes between groups, log2-transformed fold 
changes were used. Only genes with a mean RPKM > 1 over all samples were 
considered. Effect sizes between groups were calculated as follows: The median log2-
transformed fold change of all autosomal genes was subtracted from the median log2-
transformed fold change of all X-chromosomal genes. This value was divided by the 
mean interquartile range (IQR) of both distributions, reported as the corresponding 
IQR of the median shift. The median shifts and IQR values for all datasets are 
summarised in Table S5. 

Median X:A expression ratios were calculated using the pairwiseCI package in R using 
’Median.ratio’ with 10,000 bootstrap replications as described before1. We used 
categorical weighted mixed-effect Gaussian models for the analysis of RPKM levels 
in different cell lines (mESC male / XX / X0 and human fibroblasts / HEK293T / C643 
/ RPE1). We fitted the models with the R package lme42 (v1.1.29) and performed 
statistical inference with the R packages lmerTest3 (v3.1.3) and emmeans (v1.8.0). A 
separate model was fitted for each cell line. The response variable was log-
transformed mean RPKM values, filtered for mean values > 1. The factors treatment 
(DMSO and STM2457) and chromosome type (autosomal and X) were implemented 
as fixed effects. The factor gene ID was implemented as a random effect to account 
for the correlation of RPKM values belonging to the same gene. We used inverse 
variance weighting to account for heteroscedasticity. We used tests based on the 
multivariate t-distribution to assess for both treatments if the RPKM log-ratio between 
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X-chromosomal and autosomal genes was different from 1 and if the ratios were 
different between treatments. The P values are adjusted for multiple testing per model. 

 

miCLIP2 to map m6A sites 

miCLIP2 experiment 

miCLIP2 experiments in female mESC were performed as described in 4 using 1 µg 
of input material per replicate. For all experiments, the m6A-specific polyclonal 
antibody from SynapticSystems (cat. 202 003) was used. 6 µg m6A-specific antibody 
was used per 1 µg of RNA. 

The miCLIP2 libraries were sequenced on an Illumina NextSeq 500 sequencing 
machine as 92-nt single-end reads including a 6-nt sample barcode as well as 5+4-nt 
unique molecular identifiers (UMIs) yielding between 32 and 46 million reads. Basic 
quality controls were done using FastQC (v0.11.8) 
(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/) and reads were filtered 
based on sequencing qualities (Phred score) in the barcode and UMI regions using 
the FASTX-Toolkit (v0.0.14) (http://hannonlab.cshl.edu/fastx_toolkit/) and seqtk (v1.3) 
(https://github.com/lh3/seqtk/). Flexbar5 (v3.4.0) was used to de-multiplex reads based 
on the sample barcode on positions 6 to 11 of the reads. Subsequently, UMI and 
barcode regions as well as adapter sequences were trimmed from read ends using 
Flexbar requiring a minimal overlap of 1 nt of read and adapter and adding UMIs to 
the read names. Reads shorter than 15 nt were removed from further analysis. The 
downstream analysis was done as described in Chapters 3.4 and 4.1 of Busch et al.6 
with an additional step to remove reads directly mapped to the chromosome ends. 
Those reads do not have an upstream position and, thus, no crosslink position can be 
extracted. Genome assembly and annotation of GENCODE7 (release M23) were used 
during mapping with STAR8 (v2.7.3a). Information on possibly occurring mutations 
was collected through the MD tag by running STAR with option "--outSAMattributes 
All". 

After removing duplicates, all mutations found in reads were extracted using the Perl 
script parseAlignment.pl of the CLIP Tool Kit9 (CTK, v1.1.3). The list of all found 
mutations was filtered for C-to-T mutations using basic Bash commands and kept in 
BED file format as described in 10. Reads in this list (i.e., reads with C-to-T mutations) 
were removed from the de-duplicated BAM file using SAMtools11 (v1.9) and basic 
Bash commands. The resulting BAM file with the truncation reads (noC2T) was 
transformed to a BED file using bedtools bamtobed12 (BEDTools v2.27.1) considering 
only the 5′ mapping position of each read. Afterwards, the BED file was sorted and 
summarised to strand-specific bedGraph files, which were shifted by one base pair 
upstream (since this nucleotide is considered as the cross-linked nucleotide) using 
bedtools genomecov (BEDtools v2.27.1). All bedGraph files were transformed to 
bigWig track files using bedGraphToBigWig of the UCSC tool suite13 (v365). 
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m6A sites were predicted as described in 4. In brief, peaks were called on noC2T reads 
(BAM files) using PureCLIP14 (v1.3.1) and filtered for the presence in 3 out of 4 
replicates. Then, m6A sites were predicted using the machine learning model 
m6Aboost which we previously trained to discriminate m6A sites from background in 
miCLIP2 data, based on data from Mettl3 KO and control mESC. A detailed description 
of the method can be found in 4. 

Statistical analysis of m6A sites in transcripts 

To analyse the m6A sites in autosomes and the X chromosome, stratified by 
expression bins, a categorical generalized linear model for negative binomial data was 
fitted using the core R routine glm.nb (R version 4.1.2). The factors chromosome type 
(autosome / X chromosome) and expression bin (#3-8), as well as their interaction, 
were implemented. Based on visual assessment of the fits and on chi-squared tests 
for goodness of fit, the negative binomial model was selected in preference to a 
Poisson model. For each expression bin, Wald tests were used to test the difference 
between autosomes and the X chromosome. The P values were corrected for multiple 
testing (FWER-control) using the single step method implemented in the R package 
multcomp (v1.4.19). 

To analyse the general influence of the factor chromosome type on m6A sites, 
categorical generalized linear mixed models for negative binomial data were fitted 
using the R packages lme4 (v1.1.29) and lmerTest (v3.1.3). The factor chromosome 
type was implemented as a fixed main effect. The influences of expression bins and 
chromosome number were included as random effects. For the analysis of the mouse 
data sets, expression bins #3-8 were considered (Figs. 3D,F and 4G). Bins #4-9 were 
analysed in the HEK293T data set and bins #5-10 were analysed in the C643 data set 
(Fig. 3G). For each data set, the negative binomial models were preferable to Poisson 
models (visual assessment and chi-squared tests for fit of distribution). For the mouse 
heart data set, the likelihood ratio test and AIC comparison showed that the random 
effect chromosome number was not necessary to explain the data. The model was 
therefore fitted for the factors chromosome type and expression bin. The influence of 
the factor chromosome type on the m6A counts was tested with Wald tests. The fitted 
values and 95% confidence intervals (Wald type) of the fold changes (log2) of expected 
m6A counts in X-chromosomal over autosomal transcripts for all figures are reported 
in Table S6. 

Estimation of methylation levels 

Transcript annotations were taken from GENCODE (genome release M23, release 
31), selecting one transcript per gene with the following hierarchy: (i) highest transcript 
support level, (ii) highest gene support level, and (iii) longest transcript. GGACH motifs 
were identified in each transcript using the R/Bioconductor package Biostrings 
(v2.59.2) and grep. To take into account only GGACH motifs in transcript regions with 
sufficient expression, we calculated the local read coverage in the miCLIP2 data. For 
this, the truncation reads from miCLIP2 data (noC2T reads) were converted into a 
single nucleotide coverage using bamCoverage (v3.5.1) from the deepTools suite15. 
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The local read coverage was estimated as the median single nucleotide coverage in 
a 21-nt window centred on each GGACH motif. The GGACH motifs were binned by 
their log2-transformed local coverage, adding a pseudo-count of 1 before log2 
transformation. Within each bin, the percentage of GGACH motifs harbouring high-
confidence m6A sites predicted by m6Aboost was calculated. Since m6A detection 
partly depends on expression, this value increases steadily with increasing expression 
bins and then levels off at a certain methylation level. To determine this, a local linear 
regression curve was fitted using loess.smooth and used to identify the point at which 
the slope drops below 0.01 (Extended Data Fig. 7E,F,G). The corresponding 
percentage of GGACH motifs with an m6A site was used as an estimate of the 
methylation level on a given chromosome. If the slope for a given chromosome did not 
drop below 0.01 due to coverage limitations, the percentage of methylated GGACH 
motifs at the transition point between bins #11 and #12 was taken to estimate the 
methylation level for this chromosome. 

DNA-seq to determine chromosome copy numbers 

DNA isolation 

Cells were washed twice with ice-cold 1x PBS and collected on ice. For DNA isolation, 
the PureLink Genomic DNA MINI Kit (Invitrogen, 10593245) was used following the 
manufacturer’s instructions.  

DNA-seq library preparation 

DNA-seq library preparation was performed by using genomic DNA, which was 
sheared with a Covaris E220 focused ultrasonicator. NGS library preparation was 
performed using half of the reaction of NEBNext Ultra II DNA Library Prep Kit for 
Illumina Version 6.0, 3/20 following the manufacturer’s recommended protocol. 
Libraries were profiled on a 2100 Bioanalyzer (Agilent technologies) and quantified 
using the Qubit dsDNA HS Assay Kit, in a Qubit 2.0 Fluorometer (Life technologies). 
All samples were pooled in equimolar ratio and sequenced on an Illumina NextSeq500 
sequencing device using a Mid Output flow cell as 159-nt single-end reads. 

DNA-seq data processing 

Basic quality controls were done for all DNA-seq samples using FastQC (v0.11.8) 
(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Possibly remaining 
adapter sequences were trimmed using Cutadapt16 (v2.4) prior to mapping. A minimal 
overlap of 3 nt between reads and adapter was required and only reads with a length 
of at least 20 nt after trimming (--minimum-length 20) were kept for further analysis. 
Reads were mapped from start to end (--end-to-end) using Bowtie217 (v2.3.4.3) 
without allowing any mismatches in a seed alignment (-N 0) of length 31 (-L 31). 
Additional parameters specifying the behaviour of multi-seed alignments were set as 
-i S,1,0.50 -D 20 -R 3. Genome assembly of GENCODE7 release 31 (human) or 
release M23 (mouse) were used during mapping. Subsequently, multi-mapping or low-
quality alignments were removed using SAMtools11 (v1.9). Since sequencing of DNA 
samples was very shallow, detected duplicates are very likely PCR duplicates rather 
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than real duplicates. Thus, they were removed using Picard (v2.20.3) 
(https://github.com/broadinstitute/picard). 

To determine copy number variations, mapped reads were counted in 100 kilobase 
bins for each chromosome and normalised by library size. The ratio for each bin was 
calculated by dividing the number of mapped reads per bin by the median of mapped 
reads of all bins and chromosomes. Only the canonical chromosomes 1-19 and X 
were considered. 

 
Supplementary Tables 
 
Table S1. Half-lives measured by SLAM-seq in male mESC under m6A-depleted 
(STM2457) and control conditions. Half-lives for control and m6A-depleted 
conditions are given for each gene with the corresponding residual standard error 
which indicates the goodness of the fit (see Methods). Additionally, the mean T 
coverage over all replicates and samples which was used for expression estimations 
is given for each condition. 
 
Table S2. Summary of SLAM-seq, RNA-seq, and DNA-seq experiments 
conducted in this study. Table summarises the numbers of reads for all high-
throughput sequencing experiments conducted in this study. For RNA-seq and DNA-
seq experiments, the numbers of total sequenced reads and uniquely mapped reads 
are given. For SLAM-seq, the numbers of sequenced and retained read (SLAM-
DUNK) are given. For miCLIP2, the numbers of uniquely mapped reads and reads 
after duplicate removal are given.  
 
Table S3. Identified m6A sites for miCLIP2 data on bulk female mESC. Table 
provides information on all m6Aboost-predicted m6A sites (n = 33,371) in the miCLIP2 
data performed on bulk female mESC. Coordinates are given in a bed file-compatible 
format, i.e., as 0-based, right-open intervals. 
 
Provided as worksheets in Excel file Supplementary Tables. 
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Table S4. List of qPCR primers used to validate RNA expression upon m6A 
depletion in male mESC. Oligonucleotides used as primers for qPCR experiments in 
Extended Data Figs. 1D and 4C are given. For each oligonucleotide, the sequence 
and target transcript are given together with the primer orientation (forward or reverse).  
 

Name Sequence 5' - 3' Transcript Orientation 

qPCR_mNanog-for CCTCCAGCAGATGCAAGA
ACTC 

Nanog Forward 

qPCR_mNanog-rev CTTCAACCACTGGTTTTT
CTGCC 

Nanog Reverse 

qPCR_mSox2-for ACAGATGCAACCGATGCA
CC 

Sox2 Forward 

qPCR_mSox2-rev TGGAGTTGTACTGCAGGG
CG 

Sox2 Reverse 

Plp1_qPCR_for CCAGAATGTATGGTGTTC
TCCC 

Plp1 Forward 

Plp1_qPCR_rev GGCCCATGAGTTTAAGGA
CG 

Plp1 Reverse 

Fmr1_qPCR_for GGTCAAGGAATGGGTCGA
GG 

Fmr1 Forward 

Fmr1_qPCR_rev AGTTCGTCTCTGTGGTCA
GAT 

Fmr1 Reverse 

Ssr4_qPCR_for ACCACAGATCACCCCTTC
TTAC 

Ssr4 Forward 

Ssr4_qPCR_rev CCACTAACGTCGGCATAA
AGAG 

Ssr4 Reverse 

Hnrnph2_qPCR_for GGAGGGGTTCGTGGTGAA
G 

Hnrnph2 Forward 

Hnrnph2_qPCR_rev GAACACCTGATGTGCCAT
TTTG 

Hnrnph2 Reverse 

Itm2a_qPCR_for TTGCCTCATACTTATGTG
GTTCG 

Itm2a Forward 

Itm2a_qPCR_rev GCGGAAGGATTTTCGGTT
GTTG 

Itm2a Reverse 

(Continued on next page) 
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Table S4. List of qPCR primers used to validate RNA expression upon m6A 
depletion in male mESC. (Continued from previous page) 
 

Name Sequence 5' - 3' Transcript Orientation 

Rab11fip5_qPCR_for CTCTGGACGAGGTCTTCC
G 

Rab11fip5 Forward 

Rab11fip5_qPCR_rev TGTTCCGTGTGAACTGGA
TGG 

Rab11fip5 Reverse 

Tubb3_qPCR_for TAGACCCCAGCGGCAACT
AT 

Tubb3 Forward 

Tubb3_qPCR_rev GTTCCAGGTTCCAAGTCC
ACC 

Tubb3 Reverse 

Phax_qPCR_for CGATGACGATTGCTCTCT
TTGG 

Phax Forward 

Phax_qPCR_rev CGCATCTTGATTCTGTTC
CTGG 

Phax Reverse 

Faap100_qPCR_for GGACGCGAGTTCGTCTAT
GTG 

Faap100 Forward 

Faap100_qPCR_rev ACAGGACGTAGAGTGCCC
T 

Faap100 Reverse 

Tpst2_qPCR_for CGTGCTGTGTAACAAGGA
CC 

Tpst2 Forward 

Tpst2_qPCR_rev CGTCACGCACCATTAGCA
G 

Tpst2 Reverse 

qPCR_mGapdh-for TCACCACCATGGAGAAGG
C 

Gapdh Forward 

qPCR_mGapdh-rev CCCTTTTGGCTCCACCCT Gapdh Reverse 
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Table S5. Additional information for estimated effect sizes. Effect sizes for 
comparisons of fold changes between groups, e.g., differences in expression fold 
changes upon m6A depletion between X-chromosomal and autosomal transcripts 
(Fig. 2A) are reported as the difference in medians of both distributions, divided by the 
mean interquartile range (IQR) of both distributions (see Methods). This table 
summarises the corresponding values for all effect sizes reported in this study, 
including the corresponding figure, the dataset analysed, the median shift between X-
chromosomal and autosomal transcripts, the effect size, and the IQRs of distributions. 
 
Figure Dataset Effect 

size 
Median 
shift 

IQR 
Chr X 

IQR 
autosomes 

Fig. 2A mESC male RNA-
seq  

34% 0.11 0.31 0.35 

Fig. 2D Human primary 
fibroblasts RNA-seq 

19% 0.08 0.4 0.47 

Extended 
Data Fig. 
4B 

mESC male (3 h 
STM2457) RNA-seq 

2% 0.0045 0.21 0.25 

Extended 
Data Fig. 
4B 

mESC male (6 h 
STM2457) RNA-seq 

27% 0.09 0.29 0.34 

Extended 
Data Fig. 
4B 

mESC male (9 h 
STM2457) RNA-seq 

22% 0.08 0.36 0.35 

Extended 
Data Fig. 
4B 

mESC male (12 h 
STM2457) RNA-seq 

21% 0.07 0.35 0.35 

Extended 
Data Fig. 
5B 

Human HEK293T 
RNA-seq 

17% 0.07 0.4 0.46 

Extended 
Data Fig. 
5B 

Human C643 RNA-
seq 

19% 0.097 0.52 0.49 

Extended 
Data Fig. 
5B 

Human RPE1 RNA-
seq 

18% 0.08 0.44 0.43 

Extended 
Data Fig. 
9D 

mESC female X0 
RNA-seq 

24% 0.08 0.33 0.33 

Extended 
Data Fig. 
9D 

mESC female XX 
RNA-seq 

26% 0.08 0.31 0.32 
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Table S6. Additional information for statistical analyses of m6A sites in 
transcripts. To analyse the general influence of the chromosome type on the number 
of m6A sites in transcripts, categorical generalised linear mixed models for negative 
binomial data were fitted to the data (see Methods “Statistical analyses of m6A sites in 
transcripts”). This table summarises the fitted values and 95% confidence intervals 
(Wald type) of the fold changes (log2) of expected m6A counts in X-chromosomal over 
autosomal transcripts as well as the two-tailed Wald test P values. The confidence 
intervals and P values in this table are not corrected for multiple testing. 
 
Figure Fold change 

(log2) 
95% confidence 
interval 

P value 

Fig. 3D 
(male mESC) 

-0.8178638 [-1.0904474, -0.5452803] 4.1e-09 

Fig. 3F (heart) -1.586387 [-2.065105, -1.107670] 8.34e-11 
Fig. 3F 
(macrophages) 

-1.0423472 [-1.4023045, -0.6823898] 1.38e-08 

Fig. 3G 
(HEK293T) 

-0.5777994 [-0.8826179, -0.2729808] 0.000203 

Fig. 3G (C643) -0.6506555 [-1.0391719, -0.2621391] 0.001030 
Fig. 4H 
(bulk female 
mESC) 

-0.6324775 [-1.0297596, -0.2351954] 0.0018 
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Chapter 4

Discussion

In this work, we improved the accurate detection of m6A modifications and
discovered a novel role of the modification in the regulation of gene expres-
sion. We overcame several limitations of the m6A detection by improving the
experimental miCLIP protocol as well as coupling it with an extensive bioin-
formatic pipeline and machine learning classifier. Using the resulting new
high-confidence m6A annotations, we discovered a novel role of the modifi-
cation in X-to-autosome dosage compensation.
In Chapter 2 (publication 1), we developed an enhanced miCLIP2 proto-
col and were able to distinguish true m6A signal from unspecific back-
ground signals in the data. We could identify over 20,000 m6A modifications
transcriptome-wide in a single-nucleotide resolution. Using this annotation,
we discovered in Chapter 3 (publication 2) that X-chromosomal transcripts
are significantly depleted of the modification and that those transcripts are
therefore more stable than m6A-rich autosomal transcripts. We thereby pro-
vide new insights into a novel X-to-autosome dosage compensation that acts
on a post-transcriptional level. Collectively, we enhanced the detection of
m6A modifications and described a novel role of the modification in X-to-
autosome dosage compensation, which will be discuss in the following sec-
tion.

4.1 An improved miCLIP2 protocol allows for the

accurate detection of m6A

Transcriptome-wide m6A detection has been a challenge for several years.
Ten years ago, the first high-throughput m6A detection methods have been
established (Dominissini et al., 2012; Meyer et al., 2012). These techniques
paved the way for a rapidly-evolving m6A research field. The development
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of miCLIP in 2015 (Linder et al., 2015) allowed the transcriptome-wide detec-
tion of m6A in a single-nucleotide resolution, but also suffered several limi-
tations such as high costs, high input materials and high background signals
due to insufficient m6A-antibody specificity (McIntyre et al., 2020; Meyer,
2019a; Garcia-Campos et al., 2019). To overcome these limitations, firstly, we
modified the miCLIP protocol and adapted the recently developed iCLIP2
protocol which uses lower input materials and produces high-complexity li-
braries at less costs (Buchbender et al., 2020). Secondly, we performed mi-
CLIP2 in mouse embryonic stem cell (mESC) WT as well as Mettl3 KO cells
to differentially identify signals that are lost in the Mettl3 KO (Geula et al.,
2015). This allowed us to specifically distinguish true m6A sites from un-
specific background signals stemming from, for example, antibody cross-
reactivities. Our identified high confidence m6A sites were mostly located
within DRACH motifs as well as around the stop codon as described before
(Dominissini et al., 2012; Meyer et al., 2012; Linder et al., 2015). Thirdly, we
used the identified high-confidence m6A sites to train a machine learning
classifier based on the footprint of true m6A sites in miCLIP2 datasets. We
applied the machine learning classifier to human miCLIP2 datasets which
resulted in a m6A prediction which was largely overlapping with previously
identified m6A sites (Boulias et al., 2019; Koh et al., 2019). Thus, our classifier
can be applied to new miCLIP2 datasets and specifically distinguish between
the signal of true m6A sites and unspecific background signal. Without this
machine learning classifier, it is only possible to filter out background signal
in the data by comparing it to complementary experiments that were con-
ducted in cells lacking m6A. This was for a long time a limiting factor, since
generating METTL3 KO has been challenging (Geula et al., 2015; Poh et al.,
2022, see subsection 1.2.3). Further, the machine learning classifier also over-
comes the limitations of the high background signals in the miCLIP2 data.
It is specifically able to distinguish m6A signal from unspecific background
signals. This enhances the detection of m6A and makes the use of a comple-
mentary METTL3 KO dataset obsolete.

4.1.1 The m6A code

m6A is deposited in a DRACH-sequence dependent manner. In fact, previous
miCLIP protocols have filtered for signals only at positions within DRACH
motifs and excluded all other signals as background (Linder et al., 2015;
Hawley and Jaffrey, 2019). Due to comparing miCLIP2 signals from mESC
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WT as well as Mettl3 KO samples, we identified positions that are signifi-
cantly depleted of signals in the Mettl3 KO independently of the underlying
sequence motif. This revealed that some m6A signals are located outside of
DRACH motifs. Importantly, non-DRACH motifs have also been identified
in Oxford Nanopore Technologies sequencing-based m6A detection data as
well as recent antibody-independent m6A detections (Pratanwanich et al.,
2021; Liu et al., 2022). This indicates that m6A can, in rare cases, occur outside
of DRACH motifs and that filtering miCLIP signal only for DRACH motifs
excludes those m6A sites which are detected by our novel machine learning
classifier.
The DRACH motif encodes for several different sequence motifs. It is com-
monly observed that not all DRACH motifs are methylated in a similar man-
ner, but that some motifs carry more often m6A sites than others (Linder et
al., 2015; Pratanwanich et al., 2021; Liu et al., 2022). It remains unclear why
some motifs are more likely to be modified and whether different DRACH
motifs are important for different functions of m6A. One possible explanation
could be a stronger sequence preference by the methyltransferease complex
towards specific DRACH motifs.
One question about the m6A deposition in the field remains: Is there an m6A-
determining code beyond the DRACH motif? In addition to the sequence pref-
erence of m6A within the DRACH motifs, m6A is specifically enriched in
specific locations of the transcript: our novel annotation resembles the previ-
ously identified m6A pattern that accumulates around the stop-codon (Do-
minissini et al., 2012; Meyer et al., 2012; Schwartz et al., 2014). Furthermore,
a recent study detected that m6A occurs within m6A-clusters that are spe-
cific enrichments of several m6A sites in a close window. These m6A clusters
were also enriched around the stop-codon and shown to be influencing RNA
stability as well as translation (Liu et al., 2022). This demonstrates that in ad-
dition to a sequence preference within a subset of specific DRACH motifs,
m6A is also preferably deposited in specific regions of the transcripts. Con-
sequently, further factors determining m6A deposition might contribute to
the decision of m6A deposition. Recently, it was shown that a 50 nucleotides
downstream motif of the m6A site contributes to the m6A deposition deci-
sion. However, which factors are influenced by this motif and how the motif
deposition is regulated remains unclear (Luo et al., 2022).
In contrast, another recent study proposed a model in which no underlying
additional sequence to the DRACH motif or other structure influences the
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m6A methylation. They propose that rather all methylation motifs are methy-
lated except for those close to a splice junction (Uzonyi et al., 2023). This
would be resembling DNA methylations, which are often methylating all tar-
get sequences by default, unless hindered (Uzonyi et al., 2023; Hsieh, 2000).
This observation was supported by Yang et al., 2023, who have identified that
the m6A deposition by METTL3 is hindered by the exon-junction complex.
Therefore, m6A modifications accumulate in long exons and in the last exon
around the stop codon (Yang et al., 2022). Furthermore, it has been suggested
that the histone modification H3K36me3 plays an important role in marking
the positions for the m6A deposition globally (Huang et al., 2019). Addition-
ally, post-translational modifications of METTL3 or WTAP have been shown
to influence the methyltransferase activity (Du et al., 2018; Sun et al., 2020).
It will be interesting to dissect if the m6A deposition is influenced by sev-
eral different factors such as histone modifications, internal sequence motifs
or by the exon architecture of a transcript. Investigating different transcript
constructions in reporter assays would allow to understand the influencing
factors of m6A deposition further.

4.1.2 m6A quantities on mRNAs: largely underestimated?

Recently, besides miCLIP2, several novel m6A-detection techniques have
been developed. With these techniques, new estimations of m6A sites have
been far higher than previous ones: our m6A estimations using m6Aboost
range between 20,000-40,000 m6A sites, which was slightly higher than pre-
vious estimations of 10,00-15,000 m6A sites using miCLIP or other techniques
(Dominissini et al., 2012; Meyer et al., 2012; Linder et al., 2015). New studies
however, are describing over 100,000 m6A sites on mRNAs suggesting that
previous reports have massively underestimated the m6A content on mR-
NAs (Uzonyi et al., 2023; Tegowski et al., 2022; Liu et al., 2022). One pos-
sible reason for such underestimations could be the lack of signal-detection
in lowly expressed transcripts (McIntyre et al., 2020). Lowly expressed tran-
scripts lead to low numbers of sequencing reads and techniques that rely
on e.g. peak calling do not detect signals in those transcripts and hence, no
m6A is detected. This underestimation becomes apparent when we quanti-
fied m6A sites with regard to their expression levels in the second part of our
project: lowly expressed transcripts had less m6A sites predicted than higher
expressed transcripts. This is in line with previous estimations that a suffi-
cient read coverage is necessary to reliably identify m6A in a transcript using
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m6Aseq (McIntyre et al., 2020). Hence, it is indeed likely that a large fraction
of m6A sites is not detected when using miCLIP or m6A-seq/MeRIP seq.
New quantifications of m6A are not only higher than estimations based on
miCLIP or m6A-seq/MeRIP seq but also higher than the first estimations
from the 1970s. Those estimations were not based on high-throughput se-
quencing data or antibody enriched datasets and were in the range of 1-2
m6A sites per mRNA (Desrosiers et al., 1974; Wei et al., 1975; Perry and Kel-
ley, 1976). A possible explanation for this has been described recently: al-
though early analyses were not influenced by detection biases due to mRNA
expression, these studies have based their m6A estimations on the assump-
tion that m6A is a stoichiometric modification. However, later it has been
shown that m6A is non-stoichiometric: m6A sites are only modified in a small
subset of mRNAs of one kind and therefore many more positions can be
modified in a low-stoichiometric manner (reviewed in Murakami and Jaffrey,
2022). Thus, early estimations reached only from 1-2 m6A sites per mRNA,
but it is likely that m6A numbers per transcript are much higher than previ-
ously thought (Uzonyi et al., 2023).

4.1.3 miCLIP2 and m6Aboost: remaining limitations and the

need of a gold standard of m6A detection

Despite improving the detection of m6A using miCLIP2, the method still suf-
fers from limitations. One major drawback of deep-sequencing-based tech-
niques is the reliance on transcript abundance. Therefore, m6A numbers re-
main underestimated in lowly expressed transcripts (McIntyre et al., 2020).
Furthermore, miCLIP2 does not give information about the stoichiometry of
m6A. m6A is a low-stoichiometric modification and there is a need for the
individual quantification of m6A sites (reviewed in Murakami and Jaffrey,
2022). Using miCLIP2, it is only possible to obtain a binary information if
a nucleotide was modified or unmodified lacking quantitative information.
Other methods are able to detect the stoichiometry of different m6A sites
(e.g. Garcia-Campos et al., 2019; Liu et al., 2022). Using this information, it
would be interesting to investigate the miCLIP2 data in more detail. Looking
at a subset of m6A sites that have been shown by other detection methods to
be low-stoichiometric could reveal a different pattern of those sites miCLIP2
data and might indicate that we can estimate m6A stoichiometry in miCLIP2
data to a small extent. Another limitation is that our machine-learning clas-
sifier is specifically trained and suited for specific data that was produced by
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the miCLIP2 protocol. Different m6A antibodies introduce a variety of trun-
cation and mutation patterns (Linder et al., 2015) and m6Aboost might not
reach similarly high performances when miCLIP2 is performed using differ-
ent antibodies. Additionally, m6Aboost was trained on mESC data and might
therefore not be as well-suited for the detection of m6A data derived from
different species in which the m6A distribution can be different, such as in
Drosophila, where m6A has been shown to be mostly located in 5’UTRs (Kan
et al., 2017). One possibility to overcome this limitation would be to train
m6Aboost on additional data obtained by performing miCLIP2 data using
different antibodies or in different species.
m6A research is a rapidly evolving research field with numerous new
insights each month (226 new publications on pubmed 2022/11/1-
2022/11/30). Despite the enormous numbers of studies on m6A and datasets
that quantify the modification in different cell types and conditions, it re-
mains difficult to compare m6A quantifications of different studies among
each other due to the usage of a wide repertoire of different detection meth-
ods. Since antibody-based m6A detection has been shown to suffer from
several limitations, novel antibody-free techniques have been developed re-
cently. However, antibody-based methods such as MeRIP seq and miCLIP2
still remain the most commonly used techniques (McIntyre et al., 2020) ow-
ing to the fact that many antibody-free methods have their own set of limita-
tions. For example, the recently developed MAZTER-seq relies on a restric-
tion enzyme which exclusively detects ACA motifs and thereby is restricted
to those m6A sites that lie within this motif (Garcia-Campos et al., 2019). An-
other antibody-free technique, DART-seq, is based on the fusion of the YTH-
domain to APOBEC which specifically introduces C-to-U mutations close to
the YTH-domain-recognized m6A sites, allowing for the detection of m6A.
This method has the limitation of only detecting m6A sites that are recog-
nized by YTH-domains (Meyer, 2019a).
More recent techniques however might overcome the limitations of antibody-
based methods as well as limitations of antibody-free detection methods.
Two very recently developed techniques are GLORI (Liu et al., 2022) and
eTAM-seq (Xiao et al., 2023), both based on deamination of unmodified
adenosines and thereby detecting all modified m6A sites transcriptome-wide
without the need for antibodies, restriction enzymes or fusion proteins. These
techniques are promising new directions in the field and could potentially
become the gold standard for m6A detection. Furthermore, m6A detection
by direct RNA sequencing of the Oxford Nanopore Technologies is a rapidly
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evolving field (Furlan et al., 2021). Several groups have developed machine
learning or deep learning-based algorithms to specifically identify m6A in
direct RNA sequencing data (e.g. Cozzuto et al., 2020; Pratanwanich et al.,
2021). m6A detection from direct RNA overcomes experimental preparation
steps such as cDNA synthesis, RNA fragmentation or PCR amplifications
and also allows the detection of several RNA modifications at the same time
(Mateos et al., 2022; Moshitch-Moshkovitz et al., 2022). This will not only
advance the detection of m6A but of the entire epitranscriptomic landscape
of RNAs. Collectively, many m6A-related studies published rely on different
m6A detection methods. This makes it difficult to compare m6A annotations
of different studies to each other. Finding the gold standard for the detec-
tion of m6A is still an ongoing process but will benefit the field and make
m6A-based studies more comparable among each other.

4.2 A novel regulator of X-to-autosome dosage

compensation

To compensate for sex chromosome dimorphism, one X chromosome is ran-
domly inactivated in female eutherian mammals. This leads to one active
X chromosome in both females and males, while autosomal chromosomes
are present in two copies. To compensate for this, Ohno’s hypothesis states
that the X chromosome is upregulated which leads to X-chromosomal genes
reaching similar expression levels as autosomal genes (Ohno, 1966). The ad-
vent of high-throughput sequencing techniques allowed to test this hypoth-
esis. Controversially, several studies have been conducted and showed con-
flicting evidence. While some studies calculate a X-to-autosome ratio (X:A
ratio) close to 0.5 and state that X-to-autosome dosage compensation (X:A
DC) does not exist (Xiong et al., 2010; Lin et al., 2012), others have shown
that X:A DC is in place and that the X:A ratio is close to 1 (Nguyen and Dis-
teche, 2006; Borensztein et al., 2017; Deng et al., 2011; Lin et al., 2011).

4.2.1 Bioinformatical challenges: Does X-to-autosome

dosage compensation exist?

The conflicting evidences of X:A ratios have left an open question whether
X:A DC is in place or not. Using our expression data, we could show that
X:A ratios are similar to 1 and that X-to-autosome dosage compensation is
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in place in male mESCs, as well as different human cell lines. This is sup-
ported by several recent studies which have shown that calculating X:A ex-
pression ratios is strongly influenced by a subset of genes on the X chro-
mosome: tissue-specific genes such as testis-specific genes that are enriched
on the X chromosome and not expressed in somatic cells (Khil et al., 2004;
Mueller et al., 2008). Thus, when calculating the X:A ratios in cell types in
which those genes are not expressed, the X:A ratios are close to 0.5 due to
many genes on the X chromosome with a low expression value. However,
when calculating the X:A ratio only based on expressed genes, the ratio is
close to 1, indicating that X-chromosomal transcripts have similar expression
levels as autosomal ones and that X:A DC is in place. This shows that correct
filtering of expression datasets is crucial for a correct X:A ratio calculation.
Several studies have addressed this and shown that X-to-autosome dosage
compensation is in place (Deng et al., 2011; Kharchenko et al., 2011; Yildirim
et al., 2012; Sangrithi et al., 2017).
Additionally, we also observed that the X-to-autosome ratio is above 1 in fe-
male mESCs with two active X chromosomes. This indicates that also before
X chromosome inactivation dosage compensation is in place. This is in con-
trast to other studies that have shown that X chromosome upregulation is
triggered by X chromosome inactivation (see subsection 4.2.5). Collectively,
we and others have shown that the X:A ratio is close to 1 and that Ohno’s
hypothesis holds true when applying sufficient parameters to filter out un-
expressed genes.

4.2.2 X-to-autosome dosage compensation: a multiple-layer

mechanisms

How is the upregulation of X-chromosomal transcripts accomplished? Sev-
eral X:A DC mechanisms have been identified so far. Among them, increased
transcription rates of X-chromosomal genes as well as higher translational
efficiencies of X-chromosomal transcripts have been described (see subsec-
tion 1.1.4). Thus, X:A DC is not driven by the alteration of one mechanism
but rather an orchestrated combination of different processes that are al-
tered for X-chromosomal genes and transcripts. Our finding supports this hy-
pothesis by complementing previously identified X:A DC mechanisms. Al-
though higher X-chromosomal transcript stabilities have been described pre-
viously, the underlying mechanisms was unknown (Deng et al., 2013; Faucil-
lion and Larsson, 2015). We could show that through depleted m6A sites on
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X-chromosomal transcripts, they are selectively stabilized and reach higher
half-lives. Therefore, we present m6A as a novel regulator of X-to-autosome
dosage compensation. Of note, while the initial hypothesis by Ohno (Ohno,
1966) as well as several identified mechanisms support the upregulation of X-
chromosomal genes, we identified a mechanism that promotes an autosomal
downregulation. Thus, we can now update the current model that mainly
focuses on X chromosome upregulation into an extended new model that
includes both, X chromosome upregulation as well as an autosomal down-
regulation to balance X-to-autosome gene expression. This is in line with the
hypothesis that a gradual degeneration of the Y chromosome and an evolv-
ing X chromosome inactivation must have led to a selective pressure at all
levels of gene expression to acquire and ensure dosage compensation (Fau-
cillion and Larsson, 2015). Of note, the effect size of m6A-driven RNA stabil-
ity does not account for the entire effect size of X chromosome upregulation,
indicating that X:A DC is indeed achieved through several different layers
altering the gene expression of X-chromosomal genes.

4.2.3 Mechanisms behind m6A-mediated mRNA decay

A depletion of m6A motifs (GGACH, H = A, C or T) on X-chromosomal
transcripts accounts for higher transcript stabilities, the underlying mech-
anisms however are not clear yet. Since m6A acts as a global degradation
signal, we hypothesize that X-chromosomal transcripts are less prone to be-
ing degraded through the m6A-dependent mRNA degradation pathway. To
date, three m6A-dependent mRNA degradation mechanisms have been de-
scribed (see subsection 1.2.8; Gibbs and Chanfreau, 2022). If the depletion
of m6A on X-chromosomal transcripts inhibits all three degradation mecha-
nisms equally remains to be explored.
One degradation pathway that has been linked to YTHDF2 m6A-mRNA
degradation is mediated by UPF1, a key player in NMD. NMD is triggered
by premature termination of translation, which is induced by premature
termination codons (PTCs) (reviewed in Kervestin and Jacobson, 2012). X-
chromosomal transcripts have been shown to harbor lower numbers of PTC-
induced NMD target sites (Yin et al., 2009). It was suggested that this might
lead to less PTC-induced NMD of X-chromosomal transcripts. This is sup-
ported by the observation that upon UPF1 KD, the X:A ratio is perturbed,
indicating that UPF1-mediated mRNA degradation affects X-chromosomal
transcripts differently than autosomal transcripts and plays a role in X:A DC
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(Yin et al., 2009). Although m6A-mediated binding of YTHDF2 has been con-
nected to UPF1-mediated mRNA degradation, it has been shown at the same
time that this is an NMD-independent mechanism (Boo et al., 2022). There-
fore, it remains unclear if the depletion of PTCs from X-chromosomal tran-
scripts plays a role in the m6A-mediated mRNA degradation via UPF1 or
if it could be a separate mechanism that evolved independently to increase
X-chromosomal transcript stabilities.
Two additional YTHDF2-related m6A-mRNA degradation mechanisms have
been identified. It is unclear if also the HRSP12-mediated, and CCR4/NOT-
mediated mRNA degradation play a role in higher X-chromosomal stabil-
ities. To investigate this, it would be interesting to quantify the specific
HRSP12 binding motifs which have been shown to guide HRSP12 recruit-
ment and m6A-dependent endoribonucleolytic cleavage (Park et al., 2019).
This could shed light on whether X-chromosomal genes are depleted of this
motif and therefore less bound by HRSP12. Collectively, it will be an interest-
ing future research field to identify the mechanisms underlying the selective-
m6A mediated degradation of X-chromosomal transcripts.

4.2.4 Motif depletion guiding less m6A sites

We showed that lower numbers of m6A on X-chromosomal transcripts are
guided by an intrinsically ("hard-coded") mechanism of low numbers of a
subset of DRACH motifs, the GGACH motifs on X-chromosomal genes. A
subset of motifs within the DRACH motif family is more often methylated
than others. The five most often methylated DRACH motifs are depleted
from X-chromosomal genes, while the five motifs that are the least often
methylated motifs are not depleted. This indicates on the one hand that
a specific evolutionary pressure led to a depletion of strongly methylated
DRACH motifs on X-chromosomal transcripts. On the other hand, this could
also suggest that the most often methylated DRACH motifs are especially
important for transcript stability and other motifs might carry out different
functions that do not play a role in X:A DC and are therefore not depleted
on X-chromosomal genes. To ivestigate this further, one could mutate differ-
ent methylated DRACH motifs on a transcript and evaluate which DRACH
motif mutation have an effect on transcript stability.
It was previously shown that m6A sites within the coding sequence (CDS) as
well as the 3’ untranslated region (3’UTR) have an effect on mRNA stability,
while m6A located in the 5’ untranslated region (5’UTR) of transcripts has
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less effect on transcript stability (Herzog et al., 2017). Consistently, we could
show that GGACH motifs are depleted CDS and 3’UTR, while it is not de-
pleted in the 5’UTR. This further indicates that m6A sites located in CDS and
3’UTR indeed influence transcript stability.
We confirmed that GGACH motif depletion of X-chromosomal genes arose in
a sex-chromosome-specific manner. Dosage compensation evolved indepen-
dently in different species: for example, in Drosophila, females do not undergo
X chromosome inactivation, but an X chromosome upregulation in males
(reviewed in Gelbart and Kuroda, 2009). Investigating whether m6A is also
contributing to X:A DC in Drosophila via the upregulation of X-chromosomal
genes could shed light on the conservation of the function of m6A in dosage
compensation.
In addition to the depletion of GGACH motifs guiding less m6A on X-
chromosomal transcripts, it is possible that other mechanisms also ensure
lower methylation levels of the X chromosome. For example, METTL3 could
be less recruited to the X chromosome than other chromosomes. This could
be mediated by a depleted number of H3K36me3 methylations which have
been shown to recruit METTL14 to methylate mRNAs (Huang et al., 2019).
A quantification of the methylation levels on the X chromosome versus au-
tosomes could shed light on such a mechanism. Furthermore, it has been
recently shown that members of the exon junction complex block METTL3-
mediated m6A methylation (Yang et al., 2022). To investigate this further, one
could analyze the binding of the exon junction complex in existing datasets
(e.g. Saulière et al., 2012) and whether it is different on X-chromosomal tran-
scripts and could thereby play a role in lower numbers of m6A sites on those
transcripts.

4.2.5 Is dosage compensation always active?

In early developmental states, both X chromosomes are active in female cells.
Logically, X:A DC would not be necessary if two X chromosomes are active.
This raises the question if X-to-autosome dosage compensation is always in
place or specifically activated when needed, after X chromosome inactiva-
tion. We showed that m6A-mediated dosage compensation is hard coded via
a depletion of GGACH motifs on X-chromosomal genes. Thus, this mecha-
nism is most likely active at all times. This was supported by our X:A ex-
pression calculations in female mESC that have two active X chromosomes.
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Here, we calculated an X:A ratio of over 1, indicating that two active X chro-
mosomes lead to higher gene expression levels than two active autosomal
chromosomes. As a consequence, a dosage excess in females before X chro-
mosome inactivation occurs, which was previously hypothesized to be toler-
ated (reviewed in Snell and Turner, 2018). This is in line with previous stud-
ies that have shown that X:A DC is active before X chromosome inactivation
(Lin et al., 2007; Borensztein et al., 2017), but in contrast with others that have
shown that X chromosome upregulation is "switched on" when needed, and
thus the expression of the active X chromosome increases after X chromo-
some inactivation (Lentini et al., 2022). This might be due to the fact that
X:A DC is a multi-layer process and some of the mechanisms are hard-coded
and always active while other mechanisms can be specifically switched on
followed by individual triggers.

4.2.6 Dosage compensation more important for some genes?

Some genes escape X chromosome inactivation and stay expressed from
both X chromosomes. These "escapees" would therefore not need an X:A DC
mechanism. In our data, escapees showed a significant depletion of GGACH
motifs, similar to other genes on the X chromosome. This indicates that the
m6A mediated dosage compensation also applies to those genes. Why are es-
caper genes subjected to X:A DC? Escaper genes have been shown to escape
X chromosome inactivation in a tissue-specific and cell-type specific manner
(Berletch et al., 2015). Therefore, it is possible that X chromosome upregula-
tion for escaper genes has to be individually modulated in different tissues.
It is an ongoing question in the field whether all X-chromosomal genes are
similarly affected by dosage compensation or if X:A DC is more important
for certain subgroups of genes. For example, it has been suggested that X:A
DC is of little importance for genes on the X chromosome that are tissue-
specific or independently evolved genes (Deng et al., 2011; Mueller et al.,
2013). In our analysis, we did not find a difference in GGACH motif con-
tent in the sequence of different gene groups of the X chromosome, such as
conserved genes, recently evolved genes or testis-specific genes. This indi-
cates that dosage compensation is equally important for differently evolved
genes on the X chromosome. When screening X-chromosomal genes for par-
ticularly low numbers of GGACH motifs, we detected an enrichment of ri-
bosomal genes as well as histone genes. Interestingly, for histone genes, we
could also detect a depletion of GGACH motifs on autosomal genes showing



139

that not only X-chromosomal histone genes might lack m6A modifications
but also histone genes located on autosomes. Histone mRNAs do not carry
a poly(A) tail like other mRNAs, instead, they carry a conserved stem loop
at their transcript end (reviewed in Marzluff et al., 2008). This stem loop is
recognized by a specific protein which recruits UPF1 to induce mRNA decay
(reviewed in Schoenberg and Maquat, 2012). Since histone mRNAs have the
specific stem loop mediated recruitment of UPF1, it is possible that they do
not need an m6A-mediated recruitment of degradation factors via YTHDF2.
This could explain why histone mRNAs lack DRACH motifs.

4.2.7 m6A - a regulator of both layers of dosage compensa-

tion?

Dosage compensation is a two layer process. To compensate genetical differ-
ences between females and males, one X chromosome is inactivated in fe-
males. Then, to compensate the imbalance of one active chromosome to the
two copies of autosomes, the X chromosome is upregulated. In this work,
we have identified m6A as a contributor to X-to-autosome dosage compen-
sation. m6A has also been identified to contribute to X chromosome inactiva-
tion (Patil et al., 2016). The long non coding RNA Xist is regulating X chro-
mosome inactivation and harbors several m6A modifications (Linder et al.,
2015; Nesterova et al., 2019). These modifications were suggested to recruit
YTHDC1 to Xist, and that this is a required step in X chromosome inactiva-
tion (Patil et al., 2016). While the exact mechanism of m6A and YTHDFC1 in X
chromosome inactivation remains to be identified, it has been confirmed that
m6A is playing a role in X chromosome inactivation (Coker et al., 2020). This
indicates that m6A is also playing a role in both layers of dosage compensa-
tion. This could indicate that X chromosome inactivation and upregulation
are a coordinated event that might be achieved through a cross-talk of m6A.

4.3 Conclusion and Outlook

In this work, we presented an improved method to detect m6A mRNA modi-
fications in a transcriptome-wide and single-nucleotide resolution. Addition-
ally, our work provides comprehensive annotations of m6A sites for humans
and mice across different cell-lines. Recently, a large number of novel tech-
niques for the detection of m6A have been developed, with each new tech-
nique overcoming limitations of previously presented methods. With novel
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techniques at hand, it will only be a question of time to find a m6A detection
method that overcomes current limitations and will become the gold stan-
dard applied by the vast majority of researchers in the field. While m6A is
the best studied mRNA modification, continuous ongoing research will also
focus on the detection of functions of other mRNA modifications or cross-
talks of different modifications. This will shed light on the open questions of
the deposition of m6A within different DRACH motifs or which other factors
might influence the deposition.
By presenting a novel function of m6A in the global regulation of X-to-
autosome dosage compensation, we have discovered a before unknown
function of m6A. This highlights the importance of mRNA modifications and
their potency in gene-expression regulation. Future directions will detangle
the exact mechanisms that drive m6A-related mRNA degradation. One cru-
cial question to answer will be whether UPF1 is the main player in m6A-
mediated X-to-autosome dosage compensation or if other degradation mech-
anisms are acting differently on X-chromosomal transcripts. In line with this
question, it will be interesting to investigate if the depletion of m6A from X-
chromosomal transcripts indeed leads to less binding and thus less degrada-
tion mediated by YTHDF2. It would be crucial to validate this hypothesis by
performing YTHDF2 KD or KO experiments to investigate if X-chromosomal
transcripts are differentially affected by the loss of the protein.
X-to-autosome dosage compensation has been explained by a set of differ-
ent molecular mechanisms, of which some have been identified to work in
a highly dynamic manner and others to be hard coded. Future work will in-
vestigate how different X:A DC mechanisms orchestrate X:A DC and resolve
some unanswered questions about the dynamics of the mechanism itself as
well as the cross-talk of X chromosome inactivation and X chromosome up-
regulation.
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List of Abbreviations

3’UTR 3 prime untranslated region
5’UTR 5 prime untranslated region
ALKBH5 Alpha-ketoglutarate-dependent dioxygenase alkB ho-

molog 5
APOBEC1 Apolipoprotein B mRNA editing enzyme catalytic

subunit 1
C Cytidine
CCR4-NOT Carbon Catabolite Repression—Negative On TATA-

less
cDNA Complementary Deoxyribonucleic acid
CNOT1 CCR4-NOT transcription complex subunit 1
DART-seq Deamination adjacent to RNA modification targets
DNA Deoxyribonucleic acid
DPPW motif Aspartic acid, proline, proline, tryptophan motif
DRACH D = adenine, guanine or thymine; R = adenine or gua-

nine; H = adenine, cytosine or thymine
dRNA seq Direct RNA sequencing
e.g. Example given
EIF4A3 Eukaryotic translation initiation factor 4A3
eTAM-seq TadA-assisted N6-methyladenosine sequencing
FTO Fat mass and obesity-associated protein
GLORI Glyoxal and nitrite-mediated deamination of un-

methylated adenosines
H3K36me3 Histone three lysine 36 trimethylation
HuR Hu-antigen R
iCLIP Individual-nucleotide-resolution cross-linking and

immunoprecipitation
IGF2BP1 Insulin like growth factor 2 mRNA binding protein 1
KD Knock down
KO Knock out
m6A N6-methyladenosine
m6A-seq m6A sequencing
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METTL3 Methyltransferase like 3
METTL14 Methyltransferase like 14
meRIP-seq Methylated RNA immunoprecipitation sequencing
miCLIP m6A individual-nucleotide-resolution cross-linking

and immunoprecipitation
mRNA Messenger ribonucleic acid
NGS Next-generation sequencing
NMD Nonsense-mediated decay
P bodies Processing bodies
PCR Polymerase chain reaction
PTC premature translation termination codons
RNA Ribonucleic acid
RNA seq RNA sequencing
RT Reverse transcriptase
SAM S-adensosylmethionine
SLAM seq Thiol(SH)-linked alkylation for the metabolic se-

quencing of RNA
Sry Sex-determining region on the Y chromoome
U Uridine
UPF1 Up-frameshift protein 1
UV Ultraviolet
WTAP Wilms’ tumor 1-associating protein
X:A ratios X-to-autosome ratios
XAR X added region
XCR X conserved region
Xic X-linked locus
Xist X-inactive specific transcript
YTHDC YTH domain-containing protein
YTHDF YT521-B homology domain-containing family
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