
Daan Apeldoorn

Comprehensible Knowledge Base Extraction for
Learning Agents

–
Practical Challenges and
Applications in Games

Dissertation at the Department of Computer Science of
TU Dortmund University

░░

Note on Data Protection

Due to data protection requirements, except for citations/references or for persons who are in
the public eye, names of persons explicitly mentioned in the text have been removed in this
digital/open access version of the work. This especially concerns names mentioned for the purpose
of personal acknowledgments without any implications regarding the author’s appreciation for
these persons.
░░

This work represents the dissertation of Daan Apeldoorn and has been accepted at the
Department of Computer Science of TU Dortmund University, Germany.

Some contents have been published (in similar form) in preliminary works by the author (and
further co-authors). To comply with the copyright requirements of the respective publishers
(IEEE, Springer), copyright remarks are provided in Algorithm 3.3, Figure 4.5 and Figure 5.9
(in addition to referencing the original works).
For IEEE, according to:
https://journals.ieeeauthorcenter.ieee.org/choose-a-publishing-agreement/avoid-infringement-
upon-ieee-copyright/
For Springer, according to:
https://www.springer.com/gp/rights-permissions/obtaining-permissions/882

Figure 3.2 shows an excerpt from an educational exhibit software created by the author for
Z Quadrat GmbH Mainz. Figure 3.3 stems from a teaching software by the author used in
artificial intelligence courses held for Z Quadrat GmbH Mainz.

The sprites of the games shown in Figure 4.1 and Figure 5.7 are the property of the GVGAI
competition and Oryx Design Lab and are allowed to be used in corresponding academic papers,
according to their license files.

Quotations are provided (in addition to referencing the original works) with the author names,
publication years and publisher names (for the initial quotation and for page 127: Rowohlt
Taschenbuch, for page 62: Springer Vieweg).

The work has been created (besides common tools bundled with operating systems) with the help
of free and open source software, mainly: Computer Modern Unicode fonts, Gummi, Inkscape,

, LibreOffice, Lyric Hyphenator, TexMaths.

Printed version published by Mainz, Aachen 2023.

In case any copyright requirements are not handled accordingly, please contact the publisher or
the author.

To my parents and to my wife

„[…] Spielen war immer eine wichtige Methode zur Vorbereitung auf den
Ernstfall. Man sollte es in gezielter Weise verwenden. […] Wer Spiel nur
als Spiel betrachtet und Ernst nur als Ernst, hat beides nicht verstanden!“

taken from: Dietrich Dörner, Die Logik des Mißlingens [27], p. 309
(1992, Rowohlt Taschenbuch)

“[…] Playing has always been an important method for preparing serious
tasks. One should deploy it specifically on purpose. […] Those, who are
looking at games only as games and on serious tasks only as serious tasks,
do not understand both of them!”

taken from: Dietrich Dörner, The Logic of Failing [27], p. 309
(1992, Rowohlt Taschenbuch, translated from German)

Abstract

The need for artificial intelligence systems that are not only capable of mastering
complicated tasks but also of explaining their decisions has massively gained atten-
tion over the last years. Both scientists from machine learning and from knowledge
representation communities seem to increasingly realize this need. At the same time,
this also seems to offer opportunities to further interconnect these two approaches to
artificial intelligence, which were traditionally considered rather disjoint.

This work considers the task of learning knowledge bases from agent behavior in
the context of games, with a special focus on comprehensibility and human-read-
ability. The main overall aims are twofold: First, the learned knowledge should be
represented in an accessible way, such that humans can easily read and comprehend
what was learned by an agent—also in case of more complex learning tasks and
even without having expert knowledge in knowledge representation or logic. Second,
it should be investigated how learning agents themselves can benefit from incorpo-
rating and exploiting such knowledge bases in a learning process.

To achieve comprehensibility and human-readability, approaches will be presented
that organize and process knowledge in a hierarchical way, also incorporating basic
ideas from default logic and answer set programming. While knowledge representation
approaches close to logic can lack comprehensibility and reasoning efficiency when it
comes to larger amounts of knowledge, the approach that will be presented here is not
only easy to understand but also allows for efficient reasoning and revision.

For the incorporation of the approaches into the learning process of agents,
different agent models will be presented and several experiments in the context of
games will be considered for their evaluation. The presented agent models allow for
incorporating knowledge representation approaches with different machine learning
and other techniques (such as monte carlo tree search) and show progress in general
video game artificial intelligence. As a side product, a measure for strategic depth
that is subjectively experienced by (human) agents when playing video games will
be described.

The most essential approaches are implemented in the INTEKRATOR toolbox,
which is not only applicable in the context of games but also shows potential to be
applied in other domains (e. g., in medical informatics). This will be outlined briefly
at the end of this work.

Preface

Preface

The first time I remember getting in touch with the idea of intelligent machines, was
at the age of about twelve, when one of my parents gave me a book by Fritz R.
Glunk et al. with the title “Computer und Roboter” [33]. While being a book for
children on the general topic of computers and robots, it still contains some fasci-
nating stories, e. g., about the famous chess playing Mechanical Turk which was
constructed by Baron von Kempelen in 1769 (and which was in fact controlled by a
small human hidden inside), or the well-known “artificial psychotherapist” ELIZA by
Joseph Weizenbaum. These stories certainly inspired me already in my childhood to
become interested in computers—especially in the field of artificial intelligence.

During my last years at secondary school, my computer science teacher ░░░
 was the first introducing me to the basic ideas behind neural networks and░░░░░

fuzzy logic.

At the beginning of my computer science studies, I became also very interested in
the field of software engineering and later, at the Johannes Gutenberg University of
Mainz, I was lucky to attend the great artificial intelligence lectures by Prof. Dr.

 , where I started focusing my artificial intelligence interests on sub-░░░░ ░░░░░

symbolic learning aspects and, especially, on agent-based approaches. During that
time, also my first publications in the field of software engineering appeared and first
ideas for a multi-agent simulation platform with applications in logistics crossed my
mind (which later became the multi-agent simulation system ABSTRACTSWARM [3]).

At University of Hagen, where I finished my master’s degree, I could further focus
my studies on artificial intelligence and I was able to study a course called “Methoden
der Wissensrepräsentation und -verarbeitung” (“Methods of Knowledge Represen-
tation and Processing”) by Prof. Dr. and Prof. Dr. ░░░░░░ ░░░░ ░░░░░ ░░░

 (and a following seminar), which introduced me to the broad field of knowl░░░░░ -
edge representation and the “symbolic world” of artificial intelligence.

After a short time at University of Koblenz-Landau, I started my PhD studies
in 2015 at TU Dortmund University supervised by Prof. Dr. .░░░░░ ░░░░░░░░

I learned a lot from her, both deepening and widening my knowledge representation
skills and I am very thankful for that.

Getting more and more in touch with symbolic knowledge representation inspired
me to bring closer together both worlds of artificial intelligence (with traditionally

1

Preface

rather disjoint communities) and I started focusing on the explanation of learned
agent behavior by extracting knowledge from learning agents as well as the exploi-
tation of such extracted knowledge during an agent’s learning process.

After the publications [7, 8] on these topics together with my PhD supervisor, a
cooperation with Dr. (formerly at Algorithm Engineering Chair of TU░░░░ ░░░
Dortmund University, at time of writing at Queen Mary University of London and
modl.ai, Copenhagen) emerged, where we used one of the knowledge base extraction
approaches to create a measure for the subjective strategic depth experienced by hu-
mans when playing video games. The work resulted in a paper [11] with promising
results that were presented in New York in 2017 at the conference on Computational
Intelligence in Games (CIG 2017), which connected me to the Artificial Intelligence
in Games community.

I met Jun.-Prof. Dr.-Ing. (from ░░░░░░ ░░░░░ Leibniz University Hannover)
at CIG 2017 and it turned out that the knowledge base extraction approaches also fit
very well to his research in the field of General Video Game Playing Artificial
Intelligence (GVGAI)—a field aiming at the creation of agents that are able to play
different (a priori unknown) video games. Being practically dependent on real-time
capabilities in this field, I was more influenced toward practical applicability of
the developed knowledge extraction approaches. The following fruitful cooperation
with Jun.-Prof. Dr.-Ing. resulted in two further publications░░░░░░ ░░░░░

(a conference paper [26] and a journal article [5]), where the extraction of knowledge
bases was used to learn forward models (i. e., “how a game works”) from a priori
unknown video games. We could show that our approach outperformed other general
video game playing agents.

My current work in the artificial intelligence group of the Medical Informatics
department at the Institute of Medical Biostatistics, Epidemiology and Informatics
(IMBEI) at the University Medical Center of the Johannes Gutenberg University in
Mainz incorporates multi-agent simulations of hospital processes (e. g., for the opti-
mization of a priori unknown scenarios). Moreover, the work also raised interest in
learning knowledge bases from data sets (see [10]). Especially the possibility of au-
tomatically checking the certainty of a knowledge base against a provided data set
was further stimulated in this context.

The efficient knowledge base extraction approach and related approaches that
are yielded by this work resulted in the implementation of the open-source software
INTEKRATOR [38], which allows for applying them not only in the context of games,
but also in other domains (e. g., in medical informatics).

2

Preface

The present work summarizes my experiences from the last years, combining the
topics of agents and knowledge base extraction/exploitation with a general focus on
practical applications and a special focus on applications in games.

Mainz, December 2022
Daan Apeldoorn

3

Preface

4

Acknowledgments

Acknowledgments

Writing a PhD thesis is usually a huge process over a long period of time with a lot of
people being directly or indirectly involved. This is the place where I would like to
thank all of them, starting with some very personal thanks to those people in my life,
with whom I share so many profound experiences and memories:

I would like to thank my family, especially my parents and░░░░░ ░░░░░░
 , who inspired me already as a child (which was certainly one of░░░░░ ░░░░░░

the very first elements of the causal chain leading to this work, see Preface) and who
supported me in my early youth when I really needed their help to find back to the
right way. Without their help, this thesis certainly would not have become reality. My
warmest thanks go to my wife , who really suffered from me spending a huge░░░
amount of the spare time remaining from my regular jobs for my PhD work over the
past years. While this was a very hard time for her (especially during the COVID-19
pandemic, where social contacts were extensively restricted), she never gave up sup-
porting me with all her love and her energy that she could raise besides her own
working obligations.

My very special thanks go to my supervisor Prof. Dr. .░░░░░ ░░░░░░░░

I learned a lot from her and she contributed over a long period of time with many
discussions and advises to this work. I would like to thank her for all the time she
took for me, for fruitful discussions, her valuable advises and for the freedom she gave
to me.

In the following, if not explicitly intended or stated otherwise, all persons ap-
pearing in enumerations will be mentioned in alphabetical order of their surnames,
without any further implications:

My special thanks go to Prof. Dr. for accompanying me over the░░░░░ ░░░░
past years in the context of the TU Dortmund PhD mentoring program with advice
and many motivating words.

My special thanks also go to the further members of the examination board, which
(besides my supervisor) are: My (external) second reviewer Prof. Dr. ,░░░░ ░░░
the examination board’s chair Prof. Dr. , and Prof. Dr. ░░░░ ░░░░░ ░░░░░

. I want to thank them for their work and for supporting me on the last steps░░░░
toward my PhD with their stimulating questions and valuable feedback.

5

Acknowledgments

I would like to thank my additional co-authors, with whom I was able to work and
publish together during my PhD time, which lead to further results and thereby also
contributed to this work (see bibliographic remarks of Section 3.7, Section 4.4 and
Section 5.4): Jun.-Prof. Dr.-Ing. , , ,░░░░░░ ░░░░░ ░░░ ░░░░ ░░░░░ ░░░░
Dr. , and Dr. . ░░░░ ░░░░░░ ░░░░ ░░░

Moreover, I want to thank my proofreaders Dr. , ░░░ ░░░░░ Jun.-Prof. Dr.-Ing.
 , , Dr. , and Dr. ░░░░░░ ░░░░░ ░░░░░ ░░░ ░░░░ ░░░░░░░░ ░░
 for their ambitious proofreading, their valuable feedback and for fruitful░░░░░░

discussions that helped improving the quality of this work.

I am thankful for the working environment at my former working place, the
Chair 1 of the Department of Computer Science at the TU Dortmund University,
which I was able to benefit from during my time as a PhD student there. Besides my
supervisor, I also want to thank my former colleagues at Chair 1, especially the leader
of the chair, Prof. Dr. , as well as the scientific staff members of░░░░░ ░░░░░░
my former working group: , Dr. , , Dr.░░░ ░░░ ░░░░░ ░░░░░ ░░░ ░░░░

 , Dr.-Ing. , , and ░░░░ ░░░░░░░░ ░░░░ ░░░░░░ ░░░ ░░░░░░░ ░░░░
. Moreover, I also want to thank my former colleagues , Dr.░░░░░ ░░░ ░░░░░

 , , , Prof. Dr.-Ing. Dr. h.░░░ ░░░░░░ ░░ ░░ ░░░░ ░░░░░░ ░░░░░ c.
 , Prof. Dr. , Dr. , and Prof. Dr. ░░░░ ░░░░ ░░░ ░░░░░ ░░ ░░░░░░ ░░░░░
, as well as my other former colleagues there. ░░░░

I also want to thank my (current and former) colleagues of my current prima-
ry working place, the Medical Informatics department of the Institute of Medical
Biostatistics, Epidemiology and Informatics (IMBEI) at the University Medical Cen-
ter of the Johannes Gutenberg University Mainz, for creating a stimulating environ-
ment both for my former and my current research, as well as a perspective for
applications and future works. Especially, I would like to thank the director of the
institute, Prof. Dr. , as well as the leader of the Medical Infor░░░░░░ ░░░░ -
matics department, Dr. ░░░░ ░░░░░░ together with ░░░ ░░░░ and Dr. ░░░░
░░░░░░░░ from our AI working group. Moreover, I also want to thank Dr. ░░░░
░░░░░░, ░░░░ ░░░ ░░ ░░, ░░░░░ ░░░░, Dr. ░░░░ ░░░, ░░░░░
░░░░░░░░, ░░░░ ░░░░░░░░, Dr. ░░░░░ ░░░░, Dr. ░░░ ░░░░, as well
as my other colleagues there.

Furthermore, I would like to thank my current second affiliation, the Z Quadrat
GmbH Mainz, especially ░░░ ░░░░ and ░░ ░░░░, as well as ░░░ ░░░░, who
gave me the opportunity to contribute to the realization of several creative edu-
cational works, such as AI-related exhibits (one of which traveled around German and
Austrian cities on board of the exhibition ship MS Wissenschaft in 2019 and finally
made it to the Deutsches Museum Bonn in 2021) and AI-related courses (e. g, at

6

Acknowledgments

the Otto-Schott-Gymnasium in Mainz-Gonsenheim and at institutions of the Human
Help Network Foundation Thailand in Pattaya). I am thankful for being a part of the
company and for all our joint successes during the past years.

Additional thanks go to (ordered chronologically here): ░░ ░░░░ for profound
and stimulating mathematical foundations, ░░░ ░░░░░, who was the first intro-
ducing me to some basic ideas of AI approaches, ░░░░ ░░░░░░░, with whom I
published my very first paper in 2004, Prof. Dr. , who gave the first░░░░ ░░░░░
AI lectures I attended during my bachelor’s studies and who passed away already
in 2005, Prof. Dr. ░░░░░░ ░░░░ for further supporting my AI interests during my
master’s studies, Prof. Dr. for offering me my very first student position░░░ ░░░░
in academia, Prof. Dr. for giving me the opportunity of collecting my░░░░ ░░░
first experiences as a scientific staff member of his former institute at University of
Koblenz-Landau, Prof. Dr. for his ambitious support during my░░░░░ ░░░░░
time in Koblenz, and Prof. Dr. for his motivating words. ░░░░ ░░░░░░

Last but not least, I would like to thank the numerous further people I worked
with and who crossed or partly joined my academic paths during the past years.
These are especially (among many others): , ,░░░ ░░░░░░ ░░░░ ░░░ ░░░░░

 , Dr. , Prof. Dr. , Dr. ░░░░ ░░░░ ░░░ ░░░░░░░ ░░░░░ ░░░░░░ ░░░░░
, , , , Dr. , ░░ ░░░░ ░░░ ░░ ░░░ ░░░░ ░░░░ ░░ ░░░░░░ ░░░ ,░░░░░░

Prof. Dr. ░░░░ ░░░░, ░░░░░ ░░░░, Dr. ░░░ ░░░░, ░░░░ ░░░░, ░░
░░░░░░, Prof. Dr. ░░░ ░░░░, Dr. ░░░░░░ ░░░░░░, Dr. ,░░░░░░ ░░░
Prof. Dr. ░░░░ ░░░░░░░, and Prof. Dr. ░░░ ░░░░░.

My very warm final thanks go to my friends at the Protestant Church Community
of Mainz-Gonsenheim and the Protestant Deanery of Mainz as well as to all my other
friends for patiently and understandingly staying on my side and giving me strength,
although I certainly was neglecting them oftentimes when being “unavailable” and
into my work. I am especially remembering ░░░░░ ░░░░░░, who passed away
during the time of writing the thesis.

I am very thankful for being allowed to share experiences with all these people—
also for those that are not explicitly mentioned here—and I am very sorry, if I forgot
to mention someone, whose name should have been included.

7

Acknowledgments

8

About This Work

About This Work

How can learned agent behavior be explained? Compactly and in a human-readable
way, such that it is also accessible to people not familiar with logic or knowledge
representation approaches?

This work tries to find answers to these questions from a practical point of view in
the context of games.

Games provide an application domain with excellent properties for testing and
evaluating artificial intelligence (AI) approaches—especially regarding learning agents:

• Many games are highly dynamic environments.

• Games are diverse and scalable problems (both in size and complexity).

• Players can be intuitively modeled as agents.

• Games are easily accessible to many people with different backgrounds, which is
a clear advantage when working at the intersection of the traditionally rather
disjoint fields of machine learning and knowledge representation.

Moreover, concepts and approaches that have once successfully been applied in the
context of games, may have the potential to be transferred to other domains as well.

This work focuses on the intuitive and comprehensible extraction of rule-based
knowledge bases from agent behavior, that is learned, e. g., by sub-symbolic (or other)
machine learning approaches—or even human agents. One of the main goals is to be
able to render such extracted knowledge accessible to people with different back-
grounds and who are not necessarily familiar with logic or knowledge representation.

Furthermore, it will be demonstrated that the presented approaches may also serve
as an interface for combining knowledge representation with machine learning and
other techniques in the context of games, e. g., to accelerate learning processes of
agents or to create hybrid symbolic/sub-symbolic learning agents.

More detailed, after providing an introduction in Chapter 1, the foundations as
needed in the following will be introduced in Chapter 2 and related work will be
considered there.

After that, in Chapter 3, a knowledge representation scheme will be described, that
originates from the idea of representing behavior learned by an (artificial or human)
agent in a compact and human-readable way. The described approach is able to

9

About This Work

represent more extensive amounts of knowledge clearly arranged and intuitively
comprehensible, such that it is also accessible to people without deeper knowledge
in logic or knowledge representation. A reasoning algorithm will be described that
allows for efficient reasoning based on the described approach. To underpin the com-
prehensibility and the reasoning efficiency, a study by Krüger, Apeldoorn and Kern-
Isberner [41] will be presented, in which the comprehensibility is evaluated and
compared to a state-of-the-art approach. At the end of Chapter 3, algorithms will be
provided that are able to create such comprehensible representations from data (e. g.,
from learned multi-dimensional weight matrices or from play traces resulting from the
behavior of learning agents).

Chapters 4 and 5 consider applications of the presented approaches: In the recent
years, the presented approaches have been used in numerous different applications,
mostly in the context of learning agent models. Applications comprise:

• estimating the subjective strategic depth of games from human play traces [11],

• detecting and exploiting heuristics from observations in unknown environ-
ments [7, 9],

• learning and revising forward models in a priori unknown video games [5, 26].

In a paper by Kuhn [42], some of the approaches have also been used to extract
and exploit human intuitions for solving job-shop problems.

By outlining the variety of applications (especially in the context of games), be-
sides Chapter 3, both Chapter 4 and Chapter 5 represent the most important chap-
ters of this work. In accordance with my earlier experiences in the field of software
engineering, the agent models considered for the applications here will be designed in
a modular way, such that both the underlying learning approaches and the knowledge
extraction methods can be easily substituted.

Finally, Chapter 6 provides conclusions and an outlook on future work.

The appendix completes the work by referring to the implementation of the most
essential results in the INTEKRATOR toolbox [10, 38] as well as to further online
(video) material accompanying this work.

Most of the contents throughout the chapters are underpinned by comprehensible
(running) examples, also further stressing the practical potential of this work. The
chapters have a transitive linear dependency and can be best followed in their se-
quential order.

10

About This Work

Contents

Preface...1
Acknowledgments...5
About This Work...9
Table of Notations..15
1. Introduction..19

1.1 Motivation...19
1.2 Aims and Scope..21
1.3 Contributions..21
1.4 Remarks on Joint Works...24

2. Foundations of Learning Agents...27
2.1 Basic Agent Model..28

2.1.1 Sensors, Percepts and States...30
2.1.2 Actions...31
2.1.3 State Transitions and Partial Observable Markov Decision Processes......32
2.1.4 Definition of an Agent...35
2.1.5 Agent Behavior..37
2.1.6 Knowledge-Based Agents...41
2.1.7 Learning Agents and the Black Box Problem...42

2.2 Another “Black Box”: Comprehensible Representation of Agent Behavior......47
2.3 Related Approaches..48

2.3.1 Learning Approaches for Structural Insights...50
2.3.2 Comprehensible Representations for Knowledge Learned by Agents........52
2.3.3 Learning and Hybrid Agent Models for Games...54

2.4 Summary...56
3. Knowledge Base Extraction..57

3.1 Definition of HKBs...58
3.1.1 From Non-Deterministic to Deterministic State-Action Sequences...........58
3.1.2 Rules and HKBs..59

3.2 Reasoning for HKBs...62
3.3 HKBs for Knowledge Engineering..64
3.4 Basic Knowledge Base Extraction Approaches...66

3.4.1 Basic Ideas...67
3.4.2 A Preliminary Algorithm...68
3.4.3 Incorporating the Apriori Algorithm...75

11

About This Work

3.5 Advanced Knowledge Base Extraction...80
3.5.1 Advanced HKB Extraction Algorithm..80
3.5.2 Completeness of the Approach..87
3.5.3 Learning HKBs from Numeric Data..91
3.5.4 Handling Higher-Dimensional Data...97

3.6 Summary...99
3.7 Bibliographic Remarks..100

4. Explaining and Analyzing Agent Behavior...103
4.1 Knowledge Base Extraction in Games..104

4.1.1 Selected Games..104
4.1.2 Modeling the State-Action Spaces...106
4.1.3 Resulting HKBs...108

4.2 Subjective Strategic Depth...113
4.2.1 Subjective Strategic Depth Measure..113
4.2.2 Evaluation..117
4.2.3 Results...119

4.3 Summary...121
4.4 Bibliographic Remarks..122

5. Enhancing Learning Agents..125
5.1 Accelerating an Agent’s Learning Process by Knowledge Base Extraction....125

5.1.1 Extracting and Exploiting HKBs during Learning..................................126
5.1.2 A Combined HKB/Reinforcement Learning Agent Model......................134
5.1.3 Integrating A Priori Knowledge through HKBs......................................144

5.2 Forward Model Learning...148
5.2.1 Learning Forward Models of Games..149
5.2.2 Revising Forward Models of Games...156
5.2.3 An Agent Model Combining Learning and Revision...............................161

5.3 Summary...164
5.4 Bibliographic Remarks..164

6. Conclusion and Future Work..167
6.1 Summary of the Results and Conclusions...167
6.2 An Outlook on Future Work...171

Appendix..173
A. Introduction to the InteKRator Toolbox...175

A.1 Basic Interface..175
A.2 Learning...176
A.3 Reasoning...178
A.4 Revision..178
A.5 Checking...179

12

About This Work

B. Online Appendix..181
List of Algorithms..183
List of Figures..184
List of Tables..185
References...187
Index...193

13

About This Work

14

Table of Notations

Table of Notations

Notation Description

 “is defined as”; in algorithms: assignment

 Ordered set

 Action symbol; i. e., a symbol representing an agent’s action.

 Action symbol belonging to a state-action pair or a rule
respectively (in the latter case, is the conclusion of

 Action symbol set; i. e., a set of all action symbols representing
an agent’s possible actions.

 An agent’s decision component that returns an action as decision
for a perceived state

 Knowledge base

 A state-action pair consisting of an agent’s state (according to
its perceived sensor values) and an action that was performed in
that state.

 Probability/relative frequency of an action (according to a state-
action sequence).

 Probability/relative frequency of a (partial) state and an action
(according to a state-action sequence).

 Conditional probability/relative frequency of an action given a
(partial) state.

 A (multi-dimensional) weight matrix, which contains weights for
state-action pair combinations (where one of an agent’s sensors
represents one dimension, with an additional action dimension).

 Short hand for the reasoning algorithm for exception-tolerant
hierarchical knowledge bases (Algorithm 3.1), which returns
one (or more) action(s) inferred from the provided knowledge
base given the perceived state

15

Table of Notations

Notation Description

 The -th level of an exception-tolerant hierarchical knowledge
base (starting with as topmost level); i. e., a set of rules.

 Short hand for i. e., is the -th level of an
exception-tolerant hierarchical knowledge base with being lower
than (see also

 Short hand for i. e., is the -th level of
an exception-tolerant hierarchical knowledge base with being
higher than and lower than (see also

 State-action sequence; i. e., an ordered set of state-action pairs.
In cases where the order is not of importance, it may also refer
to an unordered set of state-action pairs.

 Deterministic state-action sequence; i. e., a state-action sequence,
where pairs with the same state also always have the same
action (but not necessarily vice-versa).

 A sensor symbol representing a value of an agent’s -th sensor.
(It is assumed that every can be uniquely associated with its
corresponding sensor symbol set —in practice, e. g., by a prefix
naming convention for the symbol names.)

 Sensor symbol set; i. e., a set of all symbols representing the
sensor values of an agent’s -th sensor.

 An agent’s (complete) state; i. e., a conjunction of all state sym-
bols representing the values perceived by all sensors of the
agent. (In other words, represents the state an agent is as-
sumed to be in, iff all are known according to the agent’s
sensors.) A state with denotes
a partial state with not all sensors being involved.

 An agent’s state belonging to a state-action pair or a rule
respectively (in the latter case, is the premise of and may
refer to a partial state).

 A state-action conjunction, i. e., used in
the context of forward models to represent an action per-
formed in a state

16

Table of Notations

Notation Description

 Subsequent state information; in the context of forward models,
the information may be partial or may only represent specific
aspects of a subsequent state (e. g., a score change).

 State symbol set; i. e., a set containing the symbols of the sensor
values that describe an agent’s state (set representation of a
state

 State symbol set belonging to a state-action pair or a rule
respectively (the latter is also called premise set, which must not
necessarily contain a symbol for each of the agent’s sensors).

 Tautology symbol, used for empty premises/states.

 Halmos-style finality symbol, used for indicating the end of a
contextual unit (e. g., a definition, an example or a proof).

17

Table of Notations

18

1. Introduction

1. Introduction

1.1 Motivation

In these days, artificial intelligence (AI) experiences a new prominence. With the
ideas of deep and convolutional neural networks in conjunction with the development
of corresponding frameworks, especially the machine learning area has gained a lot
of attraction (again) during the last years. Promoted by impressive applications
for learning agents, like DEEPMIND’s ATARI-playing AI [49] (which learned to play
several ATARI video games without any a priori knowledge) or the renowned
ALPHAGO [60] (which was the first computer program known to beat Lee Sedol, one
of the best go players in the world), sub-symbolic learning approaches seem to be the
ultimate solution in the context of learning agents.

Nevertheless, also the symbolic world of AI did not stand still during the last
years and one can observe some movements toward a fusion of symbolic and sub-
symbolic approaches as the possible next step in AI. Moreover, knowledge represen-
tation approaches have a huge potential to solve several (partly well-known and
sometimes ignored) problems of sub-symbolic approaches and are even known to be
stronger in some aspects:

• First of all, using sub-symbolic machine learning approaches like (deep) neural
networks, the learned knowledge is implicitly encoded in millions of weights and
is therefore usually not comprehensible to humans after the learning process.
This is currently maybe one of the most debated drawbacks of these kinds
of approaches.

• The learning process of common sub-symbolic machine learning approaches for
agents does not appear to be learning in a “human-like” manner: Oftentimes
hundreds or thousands of iterations are needed until adequate learning results
can be observed.

• Using pure sub-symbolic machine learning approaches, usually everything is
learned from scratch, including those parts of the knowledge that are a priori
available. E. g., in the context of an agent that learns to play a game, there is

19

1. Introduction

no obvious possibility to distinguish between learning the rules of the game
(which are usually known in advance) and a good strategy how to play it.

• Machine learning can be accelerated incorporating symbolic knowledge in
several ways: Not only by supporting the learning process with a priori knowl-
edge (as already mentioned before), but also by reincorporating symbolic
knowledge that was extracted or mapped (or otherwise learned) from a sub-
symbolic learning approach during the learning process (e. g., [9, 31]).

• Finally, belief revision (i. e., incorporating new knowledge into an existing
knowledge base), as the “symbolic approach to machine learning”, does not only
seem to be a more natural way of learning in some situations, but can poten-
tially also be much more efficient than sub-symbolic machine learning ap-
proaches: New knowledge can be incorporated properly into what is already
known without the need for thousands of iterations to adapt to the dynamics of
observations. (An efficient belief revision approach geared to practical eligibility
will be presented in Chapter 5.)

Besides this great potential, on the other hand, many symbolic AI approaches suffer
from being inefficient when it comes to practical applications, where fast reasoning
and/or belief revision capabilities are needed.

In the following, these considerations will be examined by investigating methods
that provide possibilities of combining symbolic and sub-symbolic aspects in the
context of learning agents with a focus on practical applicability. For this purpose, a
knowledge representation approach will be described that allows for the extraction of
compact knowledge bases from learned agent behavior as well as for efficient rea-
soning and belief revision on the extracted representations: On the one hand, such an
approach must be lightweight and easily comprehensible—especially when addressing
applications from a different community (e. g., real-time applications such as games).
On the other hand, the approach should be designed in a way that renders it inde-
pendent from a specific underlying machine learning paradigm and thereby allows for
combining it with different machine learning approaches.

The techniques presented here will be underpinned by numerous examples and
their practical applicability will be demonstrated in the context of different appli-
cations in games, starting from the extraction of knowledge up to a modular agent
model incorporating learning with knowledge base extraction, belief revision and
further techniques.

20

1.2 Aims and Scope

1.2 Aims and Scope

This work aims at bringing closer together ideas from machine learning and knowl-
edge representation approaches in the context of agents. This will be addressed with
practical applications in mind: A knowledge base extraction approach will be fleshed
out that is able to learn a knowledge base from data representing the behavior of an
agent. Following common modularization principles, this approach will not rely on a
single sub-symbolic machine learning paradigm (e. g., reinforcement learning with one
specific kind of neural network as function approximator), such that the underlying
learning approach can be exchanged in a modular way.

The provided methods allow for easily combining knowledge representation tech-
niques with machine learning approaches in the context of learning agents, such that

• knowledge learned by agents with common machine learning techniques can be
explicitly represented (e. g., to render it comprehensible to humans),

• agents based on machine learning approaches can benefit from advantages of
knowledge representation, symbolic reasoning and belief revision (e. g., by
exploiting reasoning and belief revision techniques for symbolic knowledge that
becomes explicit during a machine learning process) and,

• an agent model can be elegantly combined by incorporating the former
two aspects.

The major concepts of this work will be implemented in a ready-to-use toolbox [38]
aiming at practical applications in a general way, even beyond the scope of agents.

1.3 Contributions

This work contributes in several ways to the incorporation and practical usage of
knowledge representation in the context of AI and agents in games (cf. [29]). Further-
more, being geared toward practical applicability, the results have also the potential
of being used in other contexts outside the scope of games (which will be outlined at
the end of this work).

The work is mainly based on the nine peer-reviewed papers [5–11, 26, 41], which
have been published over the past years in the context of this dissertation. On seven
of which [5–11], the author appears as first author and on the remaining two [26, 41],
the author appears as second author. The papers have been published on a variety of
international conferences and journals/series, such as the Global Conference on Artifi-

21

1. Introduction

cial Intelligence (GCAI 2016) in Berlin, the yearly conference of the Florida Artificial
Intelligence Research Society (FLAIRS 2017) on Marco Island, the IEEE Conference
on Computational Intelligence and Games (CIG 2017 and 2018) in New York and in
Maastricht (which became the IEEE Conference on Games, COG, in 2019), the
International Symposium on Commonsense Reasoning (COMMONSENSE 2017) in
London, as well as the Multi-disciplinary International Conference on Artificial In-
telligence (MIWAI 2021; held as a virtual/online conference due to the COVID-19
pandemic), among others. Furthermore, publications have also been placed in the
IEEE journal Transactions on Games, as well as in Studies in Health, Technology and
Informatics, the latter is covering medical informatics research. Moreover, a bachelor’s
thesis [40] and a master’s thesis [12] at TU Dortmund University emerged in the
context of this work.

The main contributions that will be described here are the following:

• A comprehensible multi-abstraction-level knowledge representation approach,
which is geared toward learning human-readable knowledge in the context of
agents and which has advanced comprehensibility and reasoning efficiency prop-
erties (Chapter 3):
The described approach is accessible to people without profound knowledge in
the fields of knowledge representation or logic and it can therefore serve for
didactical purposes or for building a bridge between different communities.
Moreover, due to its reasoning efficiency, it is eligible for practical applications
and has been shown to be useful in the context of agents, e. g., in [5–7]. To some
extend, the described approach can be considered similar to the state-of-the-art
approach of answer set programming (ASP) [19], in the sense that it makes use
of similar ideas from default reasoning (e. g., [55]). In a joint study [41] together
with ░░░░░ ░░░░, it was compared to ASP and the ASP solver CLINGO [22].

• A novel measure for the subjective strategic depth experienced by humans when
playing (video) games (Chapter 4):
Several measures for strategic depth of games already existed before. However,
according to [11], these measures are different in what they actually measure
and how the measurement is realized. The approach that will be described here
was developed in a joint work with Dr. in [░░░░ ░░░ 11] and is novel in the
sense that it measures the strategic depth that is subjectively experienced by
players (instead of other properties, such as the computational resources needed,
as described in [11]). To achieve this, the measure that will be described here
relies on the knowledge needed by a human player to successfully play a game.
This knowledge is collected by one of the knowledge base extraction approaches
that were developed in the context of this thesis. Mainly being a side product at

22

1.3 Contributions

first, the measure was later also incorporated in artificial agents to allow them
to estimate the difficulty of their surrounding environment.

• Two agent models integrating (reinforcement) learning and knowledge repre-
sentation (and other state-of-the-art approaches for games) for advanced learn-
ing performance, resulting in a progress in general video game artificial intelli-
gence (GVGAI) [53] (Chapter 5):
Besides investigating the incorporation of knowledge representation and learning
techniques in the context of agents, the main contribution here is an agent
model that allows for combining learning, knowledge representation and other
techniques such as monte carlo tree search (MCTS) [21]. In joint works with
Jun.-Prof. Dr.-Ing. , the resulting agent model was evalu░░░░░░ ░░░░░ -
ated in the context of the GVGAI competition [65] and could outperform other
GVGAI agents. Furthermore, this agent model also allows for exploiting tech-
niques such as MCTS, which are well-established for non-learning GVGAI
agents: Such agents for the so-called “planning track” of the GVGAI competition
usually rely on a known forward model of a game (i. e., the a priori knowledge
how the game works). With this contribution, it is possible to benefit from
established techniques from the GVGAI planning track also in the context of
learning agents (for the “learning track” of the competition), where no forward
model is provided to an agent.

• An educational exhibit consisting of a multi-level game which estimates the dif-
ficulty subjectively experienced by a player and which can teach basic ideas of
knowledge representation in the form of rules and exceptions:
The exhibit makes use of approaches that emerged in the context of this PhD
research [8, 11] and was originally created for the Z Quadrat GmbH.1 It was
accepted for the educational exhibition ship MS Wissenschaft [50] and traveled
around different German and Austrian cities in 2019. It was subsequently select-
ed for the ScienceStation travelling exhibition (a further project of the German
scientific communication organization Wissenschaft im Dialog, WiD) [59] and,
in this context, it was available at several train stations in Germany in 2019.
Finally, it became a selected exhibit of the Deutsches Museum Bonn (German
Museum in Bonn) [24] for its new exhibition on AI [48]. Although only the
underlying approaches (and not the exhibit itself) will be considered directly in
this work, it contributes to education. Moreover, parts of it will be used as an
example in the context of different approaches in this work (see Figure 3.2).

1 Z Quadrat is an educational company mainly focusing on mathematics and computer science
didactics. It is the author’s second affiliation at time of writing.

23

1. Introduction

• The INTEKRATOR toolbox for creating knowledge bases from data by incorpo-
rating machine learning and knowledge representation techniques (Appendix A):
In contrast to other software concerning knowledge representation (such as
the TWEETYPROJECT [66] and CLINGO [22]), the INTEKRATOR toolbox is much
more lightweight and focuses on learning knowledge bases from data. In the
study [41], its reasoning algorithm turned out to be much more efficient than
that of CLINGO. Moreover, it can also be used outside the scope of agents: In a
joint paper with Dr. , it was recently proposed to be used for░░░░ ░░░░░░
the automated creation of expert systems [10].

For distinguishing the author’s parts of the contributions from those of further co-
authors, remarks on joint works are provided in the next section (Section 1.4).

1.4 Remarks on Joint Works

Besides the joint publications together with the author’s PhD supervisor Prof. Dr.
 , this thesis also comprises results that emerged from joint░░░░░ ░░░░░░░░

works with other co-authors. For this purpose, this section briefly summarizes the
joint works with the aim of distinguishing the own contributions from those of others.

From the nine peer-reviewed papers [5–11, 26, 41] that are related to this thesis,
six of them [5, 6, 10, 11, 26, 41] have co-authors besides or in addition to the author’s
PhD supervisor. These will be briefly considered in the following (mainly according to
the order of their appearance):

• The paper [11] emerged from a cooperation with Dr. (formerly░░░░ ░░░

at TU Dortmund University, at time of writing at Queen Mary University of
London and modl.ai, Copenhagen). In this paper, a measure for subjectively
experienced strategic depth in the context of games has been developed, based
on some of the approaches that will be presented here. The measure has been
evaluated in the context of a study involving a survey software which was
especially developed for that purpose. The author contributed mainly to the
development of the strategic depth measure, as well as by developing the survey
software and evaluating the data retrieved from the study. The results have
been incorporated into Section 4.2 as well as Section 5.1.2 (the latter being a
follow-up application by the author). Another follow-up emerging from this
work was the educational exhibit that makes use of the strategic depth measure
(see the second to last bullet point in Section 1.3), which was also developed by
the author. (See also bibliographic remarks in Section 4.4.)

24

1.4 Remarks on Joint Works

• The first author of the paper [41] is . The paper resulted from░░░░░ ░░░░
her bachelor’s thesis, which was co-supervised by Prof. Dr. ░░░░░ ░░░

 and the author. In this work, a comparison has been done between░░░░░
some of the approaches that will be presented here and the state-of-the-art
approach of answer set programming (ASP) [19]. Both a survey as well as ex-
periments have been performed. The author contributed directly to the survey
as well as indirectly to the whole work in the context of co-supervising the
bachelor's thesis. The original work [41] is referenced at several places here.
(See also bibliographic remarks in Section 3.7.)

• The paper [26] and later the journal article [5] both emerged from a joint work
together with Jun.-Prof. Dr.-Ing. (from ░░░░░░ ░░░░░ Leibniz University
Hannover). The first author of the former work is Jun.-Prof. Dr.-Ing. ░░░░░░

, the first author of the latter is the author. In these two publications,░░░░░
some of the approaches presented here are used for learning and exploiting
forward models in the context of general video game artificial intelligence
(GVGAI) [53] and the GVGAI competition [65]. The author’s contributions
mainly comprise the development of the agent model that involves the ap-
proaches presented here as well as the development, integration and evaluation
of a revision algorithm for learned forward models. Parts of these results have
been incorporated in Section 5.2. Moreover, Section 5.2 also refers to and ana-
lyzes some of the results that were mainly provided by Jun.-Prof. Dr.-Ing.

 . (See also bibliographic remarks in Section ░░░░░░ ░░░░░ 5.4.)

• The paper [6] emerged in the context of the author’s work at the Medical
Informatics department of the Institute of Medical Biostatistics, Epidemiology
and Informatics (IMBEI) at the University Medical Center of the Johannes
Gutenberg University Mainz. Co-authors are and Dr. ░░░ ░░░░ ░░░░

. In [░░░░░░ 6], parts of the work that will be presented here are applied for
learning guidelines in the form of rules with exceptions for optimizing hospital
processes by means of agent-based simulations. The author contributed the
learning algorithm (cf. Algorithm 3.3) as well as the first ideas for the proof of
the algorithm’s completeness, which were later incorporated and further elabo-
rated in this work (see Section 3.5.2). (Moreover, the experiments for the agent-
based simulations and their evaluation were also contributed by the author, but
are not part of this thesis.)

• Finally, also the publication [10] with Dr. as co-author░░░░ ░░░░░░
emerged in the context of the author’s work at IMBEI. In this work, the
INTEKRATOR toolbox [38] (an implementation of parts of the thesis work) is
proposed for automatically creating expert systems from data. The author con-

25

1. Introduction

tributed the implementation of the INTEKRATOR toolbox (see Appendix A) as
well as the description of the toolbox’s application in the context of expert
systems. (The latter aspect is only considered roughly in the outlook on future
work here, see Section 6.2.)

Further information on joint works can also be found in the respective biblio-
graphic remarks sections at the end of the chapters 3–5 (i. e., Section 3.7, Section 4.4
and Section 5.4).

26

2. Foundations of Learning Agents

2. Foundations of Learning Agents

The first conceptual ideas of agents already came up in the early beginning of AI
history. However, original research fields on agent-specific topics developed later, like
the field of agent architectures, which emerged first in the mid-1980s (according
to [69], pp. 394–396). Over the decades, the agent paradigm became further estab-
lished and nowadays, agents are a central concept which is widely used in different
fields of AI research. The development of intelligent agents, which are able to act,
adapt, learn and communicate autonomously in an environment, can be considered
one of the central joint objectives of AI research (cf. [14], p. 338).

Agents serve as a comprehensible generic model for autonomous systems with
sensory inputs (“percepts”) and the ability of performing actions within an envi-
ronment. Due to the generality of the model, many different physical and virtual
systems (e. g., robots, software/web services, smartphone devices, etc.) can be con-
sidered agents. The principle of the basic agent model is a useful conceptual frame-
work which can be used for many AI-related technologies and applications. Some
selected examples (among many others) are:

• Autonomous mobile robots [36]:
Equipped with sensors (like cameras or laser scanners) and motors (for per-
forming actions), robots can be able to navigate and perform tasks in a (lim-
ited) environment.

• Games:
A player (partially) perceives the state of a game (e. g., the board, cards or—in
case of a video game—objects or pixels on the screen) and performs moves as
actions. Here, the game represents the environment. In the research field of gen-
eral (video) game playing, as an additional challenge, the game to be played can
be a priori unknown to the game playing agent (see GVGAI competition [52]).

• Agent-based simulations:
In agent-based simulations, agents are simulated as autonomous entities that
can interact cooperatively (or competitively) with each other and with the simu-
lated environment. Examples are the simulation league of the RoboCup soc-
cer competition [56] or systems for simulating public transport networks [34],
trading simulations [44] or for multi-agent modeling of logistics processes [3].

27

2. Foundations of Learning Agents

Apart from technical systems, the agent model can also be applied to animals and
even humans (cf. the second example in the above list with a human player in mind),
which can help to analyze and understand their behavior. (Later, in Chapter 4,
an extended example of analyzing human behavior in the context of games will
be presented.)

Due to its comprehensibility, the basic agent model can also be seen as a didactic
tool to explain different AI approaches (e. g., also Russel and Norvig refer to the idea
of an agent as a unifying concept in their classic book [57], p. viii). Even though
many of the concepts that will be introduced here can in general also be used apart
from agents, the agent model will play a central role in this work for introducing and
explaining the concepts.

At first, the basic agent model (as used throughout this work) will be introduced
and both symbolic and sub-symbolic approaches and their respective challenges will
be discussed in the context of agents (Section 2.1). After that, the problem of re-
presenting complex agent behavior in a compact and human-readable way will be
outlined (Section 2.2). Finally, related approaches will be presented and discussed
(Section 2.3).

2.1 Basic Agent Model

This section provides the main ideas and relevant details of the basic agent model
which is used throughout this work to introduce further concepts. The presentation is
mostly limited to the relevant aspects that are needed here as preliminaries for the
following chapters (especially Chapter 3). The main goal of this section is to be able
to represent deterministic (and non-deterministic) agent behavior in a simple and
adequate way that can be easily used later for the extraction of knowledge bases, as
in Section 3.5 (see Algorithm 3.3).

Due to the generality of the agent model and the diversity of different agent types
and applications, it is hard to provide a sound and complete definition of what ex-
actly an agent is (see, e. g., [14], p. 338 or [70] pp. 4–5). A rather general definition,
which can be found likewise in the literature, is that of a system that is able to act
autonomously in an environment to fulfill its (designated) tasks (cf. [14], p. 339).
Following this idea, as a first approach, an agent and its environment can be modeled
as in Figure 2.1a. The figure shows the basic interaction of an agent with its en-
vironment; similar figures can be found in literature on agents (e. g., [14, 70]) or
robotics [36].

28

2.1 Basic Agent Model

Figure 2.1a (Basic Agent Model) (Source: adapted from [14])

The inputs of an agent are information about its environment in form of
percepts (which are perceived through the agent’s sensors). The outputs
are actions, which are performed by the agent and which can change the
state of the environment. After performing an action, information about
the changed environment can be perceived anew by the agent.

Figure 2.1b (Basic Agent Model: Alternative Representation)
Inputs and outputs of the agent are the same as in Figure 2.1a.
However, this representation of the basic agent model emphasizes that
an agent itself can be considered a part of its environment. This can be
of interest, e. g., if an agent changes its position in the environment by
performing a movement action.

29

Agent Environment

Percepts

Actions

Agent

Environment

Percepts

Actions

2. Foundations of Learning Agents

Although Figure 2.1a is a common and comprehensible visualization of an agent
model’s basic ideas, it lacks outlining explicitly that an agent itself can often be
considered a part of its environment. Since this will be important for most examples
and applications of this work, Figure 2.1b shows an alternative representation, which
emphasizes this idea more explicitly.

Based on the ideas of an agent interacting with its environment, a closer look on
the agent itself will be provided in the following.

2.1.1 Sensors, Percepts and States

In the context of this work, an agent is supposed to have a fixed number of sensors.
The sensor values, that can be perceived by the agent, are represented by the
elements of the sensor symbol sets Every is a finite set, whose elements
represent the distinct values that can be perceived by the agent through its -th
sensor.2 Furthermore, it is assumed that every element can be uniquely asso-
ciated with its corresponding sensor symbol set such that In practice,
this can be achieved by providing a unique symbol name for every (e. g., by a
prefix naming convention where the prefix reflects the respective sensor symbol set).

Note that, depending on the application, an agent may or may not know all
possible sensor values in advance. If an agent does not know all possible sensor values
in advance and a previously unknown sensor value is perceived for the first time, the
corresponding sensor symbol set can be extended by adding a symbol for this newly
perceived value. By this, an agent is able to successively collect representations for all
occurring sensor values, e. g., when exploring a (partially) unknown environment.

A perceived state of an agent can now be represented as a set
with every being a symbol of the corresponding sensor symbol set This
set-theoretic representation is similar to those used in classical planning (see [32],
Section 2.2), except that the symbols here are more tightly coupled to their cor-
responding sensors (e. g., by the aforementioned naming convention). Equivalently
to the set-theoretic representation, a state of an agent can also be denoted
as i. e., a conjunction of all state symbols representing the values per-
ceived by the respective sensors of the agent.

2 This may sound limiting, since it implies that only discrete information can be perceived by the
agent. However, in practical applications, the sensory inputs are often inherently discrete or can
be discretized easily; e. g., a simple light sensor of a robot with 1024 shades of gray or a board
game with a board consisting of discrete cells. (More advanced techniques related to discreti-
zation are considered later in Section 3.5.3.)

30

2.1 Basic Agent Model

In many real-world applications, an agent’s state is incomplete in the sense that it
is oftentimes not possible to cover all of the environment’s (potentially relevant)
aspects with sensors. However, apart from that, the following definition (adapted
from the original definition in [8]) will help to distinguish states that are completely
known according to the sensors of an agent (i. e., where all of the agent’s sensors are
involved) from those that are only partially known (i. e., where only a subset of the
agent’s sensors are involved).

Definition 2.1 (Complete State/Partial State) A complete state is a conjunc-
tion over a state set of sensor symbols that
represent the sensor values currently perceived by an agent through all its sensors
(with being the number of sensors). A partial state is a conjunction
over a subset of a complete state’s state set.

The provided definition will also be relevant later for the concepts and algorithms
that will be considered throughout this work.

2.1.2 Actions

The possible actions that can be performed by an agent are modeled by the finite
action symbol set where every represents a distinct action. The agent model
considered here only allows for performing one action at a time.

In many cases, the action symbol set of an agent is fixed and a priori known.
However, there are also applications imaginable where not all actions are known in
advance (e. g., if the the agent’s possible actions depend on its current state). In such
cases, the action symbol set can be extended by a new, previously unknown action
whenever it becomes available for the first time.

As it is the case for the sensor symbol sets described in Section 2.1.1, in this way,
an agent can successively extend its action symbol set when exploring a (partially)
unknown environment, where not all possible actions are known in advance.

Figure 2.2 provides an abstract visualization of the agent model described so far
including its sensors and possible actions.

31

2. Foundations of Learning Agents

Figure 2.2 (Agent, Sensors, Actions) (Source: a. f. FLAIRS’17 poster by Apeldoorn & Kern-Isberner)

The sensors through which the agent can perceive its environment are represented by the
semicircular areas here, annotated with their corresponding sensor symbol sets. The pos-
sible actions through which the agent can change the state of the environment are re -
presented by the arrows, annotated with the elements from the agent’s action
symbol set

2.1.3 State Transitions and Partial Observable Markov Decision Processes

After having considered states and actions in the previous sections, this section now
considers some basic concepts of transitions from one state to another resulting
from an agent performing actions in its environment. The principal aim here is
to create a simple yet sufficient conceptual base for easily describing the data re-
sulting from an agent’s behavior (as needed later, e. g., in Section 3.5). Although the
well-known framework of Partial Observable Markov Decision Processes (POMDPs)
(see, e. g., [32], pp. 392–393, or [43]) exceeds the amount of generality that is needed
for this aim, the basic concepts will be related to POMDPs here as well, as POMDPs
are a standard framework for similar scenarios.

Basic Concepts of State Transitions

Performing an action in a state results in a state transition to a
successor state The perceived successor state may be equal to its
predecessor If this is the case, then either the environment was not changed by the
action or the agent was not able to observe the state change (in case the environ-
ment is only partially observable for the agent). Usually, an agent’s sensors should be
able to reflect the relevant state changes of its environment (at least partially), other-
wise meaningful reasoning will be difficult to realize.

32

Agent

. . .

Sensors

...

Actions

2.1 Basic Agent Model

Due to the inherent temporal character of state transitions, subsequent states can
also be denoted as where refers to a (discrete) point in time
and refers to the initial state. A state transition can then be denoted as

 (2.1)

meaning that at time in state the action is performed and leads to the
successor state

The following example further explains the agent concepts described so far in the
context of a two-dimensional grid world.3

Figure 2.3 (States, Actions and State Transitions)
An agent (represented by the black circle) navigates in a tiny grid
world, starting in the southwestern corner. In its initial state
the agent performs the action resulting in the state transition

 to the successor state By performing the same
action again in state the agent’s movement is constrained by the
end of the grid world, leading to the successor state

Example 2.1 (States, Actions and State Transitions) An agent in a tiny
grid world (see Figure 2.3) is equipped with two sensors to determine its and
position. The sensor symbol sets are defined as and
(where the southwestern corner of the grid world is assumed to be represented by
and The agent is able move in the four cardinal directions and therefore its
action symbol set is defined as Initially, the agent is
located at the southwestern corner of the grid world and its currently perceived state

3 Grid worlds are traditionally used as examples in various forms in the literature, especially in
the context of Reinforcement Learning (e. g., [62]). However, similar concepts are also used,
e. g., in robotics for localization and path planning in cellular maps (see [36], Section 5.1.2 and
Section 7.4.4). Also in this work, grid worlds will serve as examples in many cases.

33

y0

y1

x0 x1 x2

y0

y1

x0 x1 x2

y0

y1

x0 x1 x2

Free spaceAgent

Perceived states:

Performed actions:

State transitions:

Evironment states:

2. Foundations of Learning Agents

is The agent now performs the action resulting in a state
transition and the agent’s subsequently perceived state is Performing
the same action as subsequent action again now lets the agent remain in
its current state of the environment (due to the end of the grid world constraining the
agent’s movement). Thus the agent’s subsequently perceived state

The example shown in Figure 2.3 represents a deterministic setting, where an
action performed in a state always leads to the same subsequent state. However, state
transitions can also be non-deterministic, i. e., performing an action in a state can
lead to different subsequent states. This can be the case mainly for two reasons:

• Non-deterministic environments: In non-deterministic environments, the state
transition is a stochastic process where the subsequent state resulting from an
action can follow a certain probability distribution. Examples are gambling
machines, like multi-armed bandits, where every arm has its own winning
probability and thus using the arm sometimes results in a win and sometimes in
a loss. Also environments involving multiple agents can be an example for non-
determinism from a single agent’s point of view, since the subsequent state does
not only depend on the action performed by the agent, but also on the actions
of all other agents in the environment.

• Unreliable sensors: Even if the environment itself can be considered deter-
ministic, the values provided by the agent’s sensors can be unreliable due to
inaccuracy or defectiveness. Thereby, an action performed in a certain state can
lead to different perceived subsequent states, even if the subsequent state is
actually the same.

In many real-world applications (like in robotics, games, etc.), both kinds of
non-determinism can occur and often they hardly can be distinguished by an agent.

Partial Observable Markov Decision Processes

Up to this point, some basic concepts for modeling state transitions as a result of
actions performed by an agent in its environment have been considered. This sub-
section now considers Partial Observable Markov Decision Processes (POMDPs), a
general framework for describing such kinds of scenarios which is widely represented
in the literature (e. g., in common planning literature such as [32], or in more recent
works such as [43]). Although POMDPs provide a much larger amount of generality
than needed in the context of this work, they will be briefly considered and related to
the concepts presented here.

34

2.1 Basic Agent Model

Mainly according to the presentations in [32] (Chapter 16, pp. 392–393) and [43],
the basic components of a decision process in the context of a fully observable system
are a set of states, a set of actions and a conditional probability distribution for
the state transitions when actions are performed. A reward distribution can deter-
mine the local short-term quality of an action performed in a state. In addition to
that, in a POMDP, an agent is not able to perceive all relevant information through
its sensors. For this purpose, in a POMDP, the concept of observations is added: An
observation refers to an agent’s perception of an underlying state—however, it might
cover less information than actually relevant for the state. According to [32], in a
POMDP, the agent is only able to access its environment through these observations.
In addition to the conditional probability distribution a POMDP can also
comprise a conditional probability distribution over the observations, i. e., over
what the agent observes when performing an action in a state.

While the conditional probability distribution over the transitions of the
actual states can be considered related to the non-determinism of the environment,

 is more closely related to the reliability of the agent’s sensors (see [43], p. 2, and
cf. the end of the previous subsection).

However, in the remainder of this work, mostly the problem of deciding for the
best action according to an agent’s (learned) knowledge given a single perceived state
(or observation of that state) will be considered. Thus, a simple yet effective approach
for handling both kinds of non-determinism can be the counting of relative frequen-
cies and considering the action with the maximum probability of reaching a goal
given a perceived state (or observation thereof). This will lead later to the concept of
state-action sequences (in Section 2.1.5), which provides a simple yet effective way of
describing the “raw” data of an agent’s behavior in its environment, while abstracting
from the environment’s non-determinism and the partial observability of states. In
such a state-action sequence, a (complete) state will refer to what an agent is able to
observe and the state-action sequence’s non-determinism will be related to the agent’s
action selection only (i. e., whether or not the agent always decides for the same
action when being provided with the same state or observation thereof).

2.1.4 Definition of an Agent

Even if it was stated at the beginning of this chapter (Section 2.1) that it is hard to
find a meaningful definition of an agent (according to agent-related literature), this
section makes the attempt of providing a definition of an agent that at least covers
the basic needs of this work.

35

2. Foundations of Learning Agents

For this purpose, the terms of an agent’s state space, action space and state-action
space will be introduced first.

Definition 2.2 (State Space) The state space of an agent with sensors is
defined as where every is a sensor symbol set containing the
representations of all possible values that can be provided by the agent’s -th sensor.

According to Definition 2.2, the state space of an agent comprises all possible states
that can be distinguished by the agent through its sensors. Similarly, the agent’s
action space can be defined as follows:

Definition 2.3 (Action Space) The action space of a an agent is defined by the
agent’s action symbol set

Combining the agent’s state space and its action space leads to the definition of
the state-action space:

Definition 2.4 (State-Action Space) The state-action space of an agent is
defined as the Cartesian product where is
the agent’s state space and is the agent’s action space.

The state-action space of an agent can reveal information about the problem size
of the setting in which the agent is applied. This can be important, e. g., for choosing
an adequate approach for the agent’s decision-making process. The size of the state-
action space is usually high for many real-world problems.

With this in mind and in accordance with the considerations at the beginning of
Chapter 2, an agent, which satisfies the basic needs of the concepts that will be ex-
plained in the following of this work, can be defined now as follows:

Definition 2.5 (Agent) An agent is a system that acts autonomously in an en-
vironment to fulfill its (designated) tasks by using an integrated decision-making com-
ponent to find an adequate way through its state-action space

What still has to be clarified in the above Definition 2.5, are the term “adequate
way” and the decision-making component The former usually concerns certain
criteria that are expected from the resulting agent behavior. These may refer, e. g., to
some optimizations (like finding the shortest path to a certain goal state) or desired
behavioral properties (like “human-like” decisions or learning behavior). Besides the

36

2.1 Basic Agent Model

computational feasibility, fulfilling such criteria is one of the main challenges of
developing an agent’s decision-making component.

Technically, in the context of Definition 2.5, the results of the decision-making
component depend at least on a currently perceived state , for which an adequate
action (or multiple equivalent actions) will be returned. Therefore, it can also
be referred to the decision-making component as Depending on the kind of the
agent and on the modeling, the decision component can additionally rely on further
parameters (e. g., the agent’s knowledge, based on which the decisions regarding a
currently perceived state will be made—such knowledge can also be learned or
adapted over time in case of an agent with learning capabilities).

Even if some considerations in this work are not directly referring to the agent’s
decision-making component itself, but rather to the representation of the agent’s
behavior resulting from an (possibly unknown) decision-making component: Having
an approach which is able to represent an agent’s behavior adequately, these repre-
sentations can also be exploited for decision-making (as will be considered later in
Chapter 5).

2.1.5 Agent Behavior

An agent’s behavior is determined by the implementation of the agent’s decision-
making component . The decision-making component essentially depends on the
following two aspects:

• an algorithm that is capable of inferring actions for a perceived state

• the agent’s knowledge to which the algorithm refers for inferring the actions.

The agent’s knowledge can either (1) be provided by a knowledge engineer or it
can (2) be learned by the agent itself (e. g., from training data).

In case (1), the knowledge is modeled manually using knowledge representation
techniques and is usually available in a symbolic form: Symbols, each having a special
meaning, e. g., a statement about the environment (like “it is raining” or “the streets
are wet”), can be related to each other, e. g., by simple rules or similar concepts (like
“if it is raining, then the streets are wet”). Inference algorithms in this first case
must be capable of processing symbols, rules and similar concepts and—depending
on the concretely used paradigm—possibly have to deal with contradictory rules,
inconsistencies and the like.

37

2. Foundations of Learning Agents

In case (2), the agent can observe examples of states and corresponding actions,
which are beneficial or disadvantageous to be performed in the respective states. The
agent’s knowledge will be successively built using machine learning techniques and is
then usually available in a numeric form: These can be weights attached to actions,
which indicate how beneficial or disadvantageous an action in a given state is, (e. g.,
by relative frequencies) or parameters of a function which approximates the weight
distribution over the actions in a given state. Here, the inference algorithm usually
deals with numeric computations and/or comparisons to retrieve the approximated
distribution and to select a corresponding action based on it.

In either of the two cases, it is also possible to refrain from focusing on the agent’s
internal decision-making component and to describe the agent behavior externally,
i. e., by only considering the agent’s resulting behavior, without considering how it
was created by the decision-making component.

Naive Approaches

As a first attempt, an agent’s behavior can be described as an action sequence, i. e.,
an ordered multi-set of actions Every element is an action symbol
of the action symbol set resulting from running the agent in its environment.

Example 2.2 (Action Sequence) An agent in an grid world (similar to the
one described in Example 2.1) has to move around a water area to get from a starting
point in the southwestern corner of the grid world to a destination in the
southeastern corner of the grid world (see Figure 2.4). Its action symbol set is

 The agent behavior can be described by an action

sequence as the ordered multi-set

Unfortunately, this first approach of representing agent behavior as an action
sequence suffers from several drawbacks: Besides lacking in abstraction capabilities,
it does not even reveal any information about the relation of actions and states.
Furthermore, it requires the set representing the actions to be ordered to preserve the
meaning of the contained information.

38

2.1 Basic Agent Model

Figure 2.4 (Grid World with Water) (Source: adapted from [7–9, 62])

In this small grid world scenario, an agent has to move around a
water area (a “river”) to get from its starting point to a desti-
nation point . The arrows indicate the agent’s selected actions
for solving the task by considering the most direct path along the
river, resulting in an action sequence.

Another rather naive approach of representing agent behavior in an environment
is to describe it as a state sequence, i. e., an ordered multi-set of states. In the ex-
ample shown in Figure 2.4, this would result in the set where for
every state with and being the respective elements
of the agent’s sensor symbol sets (i. e., Even if this
approach focuses on the agent’s states for representing its behavior, it still suffers
from (partly the same) obvious drawbacks: Besides also lacking in abstraction capa-
bilities (e. g., for answering the question what the agent would do in other states not
present in the state sequence), the actions performed by the agent are only repre-
sented implicitly through the state transitions here. As a consequence, this approach
also strongly relies on the set being ordered.

Representation As State-Action Pairs

Now combining the two approaches of action sequences and state sequences leads to
the idea of representing agent behavior in form of (a sequence of) state-action pairs,
where every pair indicates which action is performed in the corresponding perceived
state. An agent’s behavior can then be represented by a set of such state-action pairs:

Definition 2.6 (State-Action Sequence) A state-action sequence is an ordered
multi-set of state-action pairs , where every state-
action pair consists of a state (with being an
element of the respective sensor value set) and an action which was performed
in state

39

Free space Water

2. Foundations of Learning Agents

Representing agent behavior as a set of state-action pairs already overcomes at
least some of the drawbacks of the aforementioned approaches:

• Both states and actions are represented explicitly.

• By also explicitly relating states and actions, the set representing the state-
action sequence does not even necessarily need to be ordered—at least, if one is
only interested in what the agent decided for the corresponding states. (Note
that this would render the state-action sequence a state-action set, i. e., an
unordered multi-set—however, to keep the intuition of a sequence, it will be
referred here to it as an ordered set, as provided by Definition 2.6.)

Nevertheless, also this approach is still lacking abstraction capabilities, since it
only relates actions to specific single states. (Methods for representing agent behavior
with abstraction techniques are an essential part of this work and will be presented
later in Chapter 3.)

Deterministic vs. Non-Deterministic State-Action Sequences

The state-action sequence representing an agent’s behavior can be either deter-
ministic or non-deterministic. In case of a deterministic state-action sequence
all state-action pairs with the same state also have the same action. In
other words: There do not exist any two state-action pairs with their
states being equal and their corresponding actions being unequal.

In case of a non-deterministic state-action sequence, the set contains state-
action pairs (at least two) having the same state but different actions. This can be
the case for two reasons:

• The agent’s decision-making component is non-deterministic in the sense
that it does not always provide the same decision for the same perceived
state

• Not all of the agent’s sensors are reflected in the states of the agent’s state-
action sequence and therefore it seems to be that agent’s decision-making com-
ponent does not always provide the same decision for the same perceived state.

Both of the two cases can result in a non-deterministic state-action sequence repre-
senting the agent’s behavior.

40

2.1 Basic Agent Model

2.1.6 Knowledge-Based Agents

As already briefly mentioned in the beginning of the previous section, one possibility
of designing an agent’s decision-making component is that of providing a manually
created knowledge base together with an adequate inference algorithm: Based on the
knowledge reflected by the knowledge base, the inference algorithm can decide which
action should be performed given the agent’s perceptions.

By using such knowledge-based approaches, the knowledge is available explicitly in
a symbolic form, where every symbol usually has a specific meaning. This can be,
e. g., an information about the environment, like “it is raining” or “the streets are wet”
as well as an action like “reduce speed”. In the knowledge base, these pieces can then
be related to each other, by rules (or similar concepts), e. g., “if it is raining, then the
streets are wet” or “if the streets are wet, then reduce speed”.

In the context of knowledge-based agents, an inference algorithm must be capable
of processing such information in an efficient way. At first glance, this may sound
trivial, since simple if-then-rules can be easily implemented; however—depending on
the concretely used paradigm—knowledge-based approaches have to deal with contra-
dictory rules, inconsistencies and the like. Even in simple cases, this can lead to
problems, as can be seen in the following example (similar examples can be found in
various forms and from various domains in the literature):

Example 2.3 (Knowledge-based Robot) According to its construction, a robot
is only able to move on smooth surfaces. The robot is equipped with a sensor that is
capable of recognizing different kinds of surfaces. The robot’s knowledge is modeled
with three rules stating that (Rule 1) a smooth surface allows for moving (Rule 2) if
ice is perceived, the robot should immediately stop and (Rule 3) ice is a smooth
surface. More formally, the robots knowledge base may look as follows:

The robot now perceives ice: According to Rule 2, it can be inferred that the robot
has to stop immediately; according to Rule 3, it can be inferred that ice is a surface
and, with that, according to Rule 1 it can be inferred that the robot should move.
Thus, both moving and stopping will be inferred at the same time.

Example 2.3 shows that even in simple cases, modeling knowledge is not a trivial
task: Even if each of the three rules is intuitively correct if considered separately, the
rules lead to contradictory inferences when put together to a knowledge base. It is

41

2. Foundations of Learning Agents

obvious that these kinds of problems grow in more realistic scenarios, where the
modeled knowledge is much more complex.

There are many knowledge representation paradigms that target these kinds of
problems, e. g., default logics (by Reiter [55] or Poole [54]), answer set programming
(ASP) [19] or conditional knowledge bases (with basic ideas of conditionals going
back to de Finetti [23], according to [15], p. 35). Some of which provide a strong
background for investigating and approximating “human-like” inference processes.
However, their inference algorithms can become computational expensive when it
comes to larger knowledge bases. For others, like ASP, rather efficient and ready-to-
use solvers exist (e. g, CLINGO [22]), which renders them potentially suitable for de-
signing decision-making components in the context of agent applications. Since the
concepts that will be presented later in this work are geared to practical applicability
(as needed, e. g, in the context of games, where even real-time inference performance
may be required), especially ASP will be considered more detailed in the related work
section (Section 2.3). (A comparison to ASP can also be found in [41].)

An advantage of using knowledge-based approaches for the creation of an agent’s
decision component is that the knowledge is available in an explicit form: By this,
agent behavior can in principle be modeled in a transparent way. Nevertheless, as can
be seen in Example 2.3 and as will also be shown in detail in Section 2.2, not all
knowledge-based approaches are suitable for modeling larger amounts of knowledge in
a comprehensible way.

2.1.7 Learning Agents and the Black Box Problem

Unlike knowledge-based agents, learning agents follow a different approach: The main
idea here is that the knowledge is not provided a priori to the agent by a knowledge
engineer but the agent has to learn it by itself from scratch. Such agents usually
perform poorly in the beginning by following a trial-and-error principle, and succes-
sively become better over time while observing the (a priori unknown) environment.
For this purpose, learning agents are usually equipped with a “special sensor” that is
able to perceive a (numeric) reward, which provides information on how beneficial the
currently perceived state is or, on how beneficial it is to perform a certain action in a
perceived state, respectively. Such a reward is mostly local, which means that it pro-
vides information about the agent’s current situation rather than providing informa-
tion about its overall behavior regarding a global goal. The perceived rewards can be
used to reinforce weights of state-action pairs, if the action turned out to be beneficial
in the corresponding state. This finally results in a numeric representation of the

42

2.1 Basic Agent Model

learned knowledge (e. g., in form of a weight matrix). Learning agent approaches fol-
lowing these ideas can be roughly embraced by the term reinforcement learning [62].

Using a learning paradigm for an agent’s decision-making component is a good
choice if there is no or only few a priori knowledge about the environment available,
or if the agent should be highly adaptive, e. g., in case the agent’s concrete environ-
ment is not known in advance. (This can be the case, e. g., in general video game
playing artificial intelligence (GVGAI) [53], where games to be played by an agent
may be unknown in advance.4)

One of the major challenges for such learning agents is the problem of optimizing
their behavior toward a global long-term goal, while being provided with local re-
wards for a currently perceived state only. Therefore, it may be beneficial for an agent
to decide for a locally disadvantageous action with a low local reward in a certain
state (even if locally better actions are actually known for that state), to achieve a
long-term goal that maximizes the global reward.5

Another challenge is the so-called exploration-exploitation dilemma (see, e. g., [62]):
Having no a priori knowledge, a learning agent starts in the beginning of the learning
process with random exploration of the environment, following a trial-and-error
principle. As the agent collects more and more information over time about which
action is beneficial in which state, the question is now at which point during the
learning process the agent should stop exploring the environment and start exploiting
the knowledge that was already learned: On the one hand, if the agent starts too
early to exploit the learned knowledge, it can easily get stuck in a local optimum; on
the other hand, if the agent starts too late to exploit the learned knowledge, the
learning process becomes unnecessarily slow.

There exist several reinforcement learning algorithms today that can deal with
both of the aforementioned challenges. In the following, one of the classic algorithms,
Q-learning [68], will be outlined briefly. Even if being developed in the late eighties,
this algorithm is still used nowadays, mostly combined with neural networks in the
context of deep learning approaches (see, e. g., [49] for a successful recent work in
the context of video games). Section 2.2, as well as several experiments later in this
work, will refer to Q-learning again. Besides Q-learning, other similar algorithms exist

4 This especially concerns the learning track of the GVGAI competition [65]; other tracks provide
(partial) information to the agent in advance (e. g., the forward model of a game). Thanks to
Jun.-Prof. Dr.-Ing. for pointing to that. ░░░░░░ ░░░░░

5 A well-known problem of that kind is called the mountain car problem in the literature [62]: An
agent driving a car in a valley has to reach a goal on the top of a hill. Since the car’s motor is
too weak to drive up the hill directly, the agent has to drive backwards in the wrong direction,
upwards the opposite hill, to gain drive for being able to reach the goal.

43

2. Foundations of Learning Agents

(like SARSA [62]), which differ, e. g., in the way how weights are updated for learn-
ing. All approaches presented in this work that incorporate learning agent algorithms
do not depend on a specific learning algorithm and can also be combined with other
machine learning algorithms, that are not further considered here.

Q-Learning

In a common Q-learning setting (see, e. g., [62, 68]), an agent can be considered
to have an -dimensional state-space (where every is the set re-
presenting the possible values of the agent’s -th sensor, see Definition 2.2). The
action space is defined by a set representing the agent’s possible actions (see
Definition 2.3). In addition, the agent is equipped with a special sensor to perceive a
local numeric reward (with that indicates how beneficial a state
is, that is represented by the sensor values Note that the reward is local in
the sense that it only provides information about the local benefit of the state
without considering its contribution to a global long-term goal (e. g., an even more
beneficial goal state). The reward for performing an action in a given state repre-
sented by corresponds to the reward of the resulting successor state: If the
agent performs an action in a state represented by the sensor values
then the reward for will be equal to where represent the
sensor values of the successor state resulting from the state transition
(cf. Formula 2.1), with and being the states that are composed of the sensor
values represented by and respectively (in line with Section 2.1.1).6

To be able to store which action is the best in a perceived state, the agent owns
an -dimensional weight matrix (with where
every weight represents how beneficial it is to perform the action when perceiving

 Starting from a zero matrix, these weights are successively updated during
the learning process, such that over time every weight indicates the global
long-term reward that can be expected from performing action in the state repre-
sented by A weight is updated every time an action has been performed,
when the corresponding reward is perceived, according to the update rule (cf. [68])

 (2.2)

where is the new weight, is the old weight, is the learning rate
and is the discount factor.

6 Note that in a more general setting, it is also imaginable that the reward additionally depends
on a performed action. Thanks to Dr. for pointing to that. ░░░ ░░░░░

44

2.1 Basic Agent Model

When updating a weight, the learning rate determines how much of the new
information gained from the perceived reward is adopted for the new weight. The
discount factor determines the degree to which the knowledge about future states is
considered: The higher is chosen, the more extensively the benefit of future states
will be considered in the newly incorporated information (due to
referring to the best action that can be performed in the subsequent state according
to the so far learned matrix

Furthermore, a Q-learning algorithm usually incorporates an exploration proba-
bility This probability determines in how many cases the agent chooses a random
action instead of choosing the best one according to the so far learned -matrix. The
exploration probability plays an important role, since (if it allows a learning
agent to try out and learn something new, even if it gained already a certain amount
of knowledge about the environment. By this, it prevents the agent from getting stuck
in local optima. The exploration probability is closely related to the exploration-
exploitation dilemma mentioned at the beginning of the Q-learning section and
finding adaptive solutions for this parameter is part of learning agent research. In
very basic agent models, is usually a low constant or it is set to a high value in the
early beginning of the agent’s learning phase (when the agent does not yet know
anything about its environment) and it is then successively discounted when the
agent gains more knowledge over time.

Example 2.4 (Learning Agent in a Grid World) An agent in a grid world
(similar to the one from Example 2.2) has to learn to get from a starting point to a
destination point by avoiding a region of water in the South of the scenario. The
agent has two sensors to determine its and position and is able to perform actions
from the set The cells of the grid world represent the
states having a corresponding local reward distribution and the destination cell
represents the terminal state of the environment that causes a learning episode to end
(see Figure 2.5). Using a Q-learning approach, the agent starts with random ex-
ploration of the environment. Over time, the agent behavior gets more and more
accurate and finally converges to the optimal behavior.

45

2. Foundations of Learning Agents

Figure 2.5 (Q-Learning in a Grid World) (Source: adapted from [7–9, 62])

An agent has to learn to get from a starting point to a destination with the
provided local reward distribution using a Q-learning approach [68]. Having no a priori
knowledge, in the early learning phase, the agent starts to explore the environment
randomly (a). After several dozen of iterations, the agent’s behavior becomes more and
more accurate (b). Finally, the agent behavior converges to the optimum (c).

Neural Networks As Function Approximators

One drawback of the classic Q-learning approach (and similar approaches) is that of
the matrix representation of the weights, whose growing number quickly becomes
unhandy with increasing problem size. To overcome this issue, a successful approach
is to consider the matrix as a function that returns the
corresponding weight for a state-action pair and to learn an approximation of that
function using a neural network. By this, the weight matrix can usually be
represented with much less weights: If modeled adequately, the number of weights
needed for the network can be much smaller than the number of weights that would
be needed for Approaches of this kind have been implemented, e. g., for learning
video games only from observing the pixel matrix of the screen and considering the
game score as reward [49].

Black Box Problem

Besides the function being approximated (which in fact works very well in many
practical applications), a real drawback of using a neural network as function ap-
proximator is that the learned knowledge will be represented by the weights of the
neural network instead of the weights being directly attached to state-action pairs. By
this, the learned knowledge contained in the weights gets a very implicit character

46

-1 (Free space) -100 (Water)

 0 (Terminal state)

Rewards:

(a) (b) (c)

2.1 Basic Agent Model

and thereby becomes inaccessible to humans—even in case of small-sized problems.
This is one manifestation of what is called the black box problem of neural networks in
the literature.

2.2 Another “Black Box”: Comprehensible Representation
of Agent Behavior

As presented in Section 2.1.6, agent behavior can be described by rules that indicate
which actions are performed by the agent in its perceived states. Since neural net-
works (and other machine learning approaches) can lack in transparency, a rule-based
approach seems to be an obvious way of representing agent behavior more trans-
parently, since the rules of the agent’s decisions are accessible in an explicit form (in
contrast to vectors and matrices of numeric weights, which are common represen-
tation schemes for several machine learning approaches).

However, even in smaller scenarios, representing agent behavior as simple rules, like

or, more formally,

does not naturally result in representations that are easy to comprehend by humans.
Whereas the black box problem of neural network approaches is well-known and con-
sidered in current machine learning research (e. g., in the context of tasks related to
image recognition), the “black box” problem of representing agent behavior in a com-
prehensible and human-readable way is less present.

Example 2.5 (A Further “Black Box” Problem) Again, a learning agent in a
grid world (as in Example 2.4) is considered: The agent learns to get from a starting
point to the destination avoiding a region of water in the South of the sce-
nario (see Figure 2.5). Learning is realized by using a basic Q-learning approach [68]
(see Section 2.1.7) with a weight update according to Formula (2.2) and the local
rewards being distributed as provided in Figure 2.5. By this means, the agent learns a
weight for each possible state-action pair, which indicates the long-term global benefit

47

2. Foundations of Learning Agents

of performing the action in the state.7 After several dozen of iterations, the agent
behavior converges to the optimal behavior (as shown in Figure 2.5)—but how can be
described what the agent learned in fact?

As a first naive approach to answer the question resulting from Example 2.5,
simply all rules that can be created directly from the weighted state-action pairs can
be provided (see Figure 2.6). Even if the rules shown in Figure 2.6 represent the
knowledge of the agent’s learned behavior completely, the representation is obviously
far from being comprehensible—especially if considering the simplicity of the task.

To tackle these kinds of issues, one of the central ideas that will be followed in this
work is that of representing knowledge on several levels of abstraction: Higher levels
reflect the represented knowledge in a rougher, more heuristic way, whereas lower
levels reflect the knowledge more concretely, by providing exceptions to the knowledge
on the higher levels. On the one hand, this seems to be in line with generalization and
conditionalization capabilities of human thinking (i. e., adding conditional exceptions
to what is supposed to be known), which can be observed in psychological experi-
ments (e. g, in [27], pp. 210–211).8 On the other hand, it is also close to ideas
from default logic, like justifications (Reiter [55]) or the default negation known from
answer set programming (ASP) [19], while at the same time being less tightly coupled
to logic, which might potentially be of interest, e. g., when being used in interdisci-
plinary working environments.

2.3 Related Approaches

Knowledge representation approaches usually are a good choice when it comes to the
explicit representation of knowledge (in contrast to the implicit representation of nu-
merical methods as described at the end of Section 2.1.7). However, the previous
section (Section 2.2) also showed that the simple use of rules (even if being complete)
does not necessarily lead to a satisfying representation, both regarding compactness
and (as a consequence) readability and comprehensibility for humans.

7 Note that the learning paradigm is not of major interest here and could be replaced by any
other approach (with or without neural network as function approximator) that is capable of
learning the task in form of weighted state-action pairs, where the highest weight indicates the
best action for a provided state.

8 The study in [27] especially expatiates on the negative effects of (over-)generalization and con-
ditionalization in human thinking. However, it also shows that these techniques are intuitively
used by humans for building models, e. g., when trying to comprehend unknown tasks.

48

2.3 Related Approaches

Figure 2.6 (A “Black Box” by Learned Rules)
The figure shows all rules that can be easily created from the weighted state-action
pairs learned by the agent in Example 2.5 using a basic Q-learning approach [68]. (Note
that for state no rules are provided, since this is the terminating goal state.) The
attached weights are the original weights learned by the Q-learning algorithm after
several dozen of iterations. As an example, in the starting state the best action
according to the weights will be and the worse action by far will be (since
this would lead the agent directly into the water, cf. Figure 2.5). The rules could be
easily searched by an inference algorithm to infer which action is the best for a given
state (e. g., the one with the highest weight). However, it is obvious that even if the
learned behavior is simple, the provided rules are hard to comprehend by humans.

This section discusses different existing approaches that are related to the ideas
presented in this work. The outlined approaches will comprise machine learning

49

2. Foundations of Learning Agents

and clustering techniques to gain structural insights into state-action sequences re-
sulting from learned agent behavior (Section 2.3.1), eligible approaches to represent
knowledge learned by agents in a comprehensible way (Section 2.3.2) and a brief
overview over learning and hybrid agent models, focusing on the context of games
(Section 2.3.3).

2.3.1 Learning Approaches for Structural Insights

Numerous machine learning approaches exist that can be used in the context of
agents. Reinforcement learning with neural networks used as function approximators
(see Section 2.1.7) in conjunction with deep learning techniques seem to be one of the
most popular and successful approaches these days (see, e. g., [49]). However, even for
smaller problems, these approaches usually result in large numerical representations
that do not allow for gaining insights into the structural relations induced by the
underlying learning problem (e. g., which of an agent’s percepts are important for
making certain decisions).

In contrast, Bayesian networks (and other probabilistic network approaches) (see,
e. g., [17], Section 8.2.2) are well-suited to reflect structural dependencies among cer-
tain sensors and, moreover, due to their graphical representation, they can be read
rather easily (as long as the number of nodes, i. e., the number of an agent’s sensors,
is not too large). However, although dedicated methods exist that are able to learn
the network’s structure as well [30], usually the structure is provided in advance to
learn the induced conditional probability tables from data. Moreover, the structural
knowledge is represented in a graph-model and not in the form of rules. The struc-
tural knowledge is also reflected on a sensor-level and not on the level of sensor
values, as it will be the case for the approaches presented here (in Chapter 3). This
renders it hard to infer specific aspects of an agent’s behavior from the Bayesian
network’s graph-representation, without also considering the corresponding condi-
tional probability tables.

Decision trees provide the concept of a hierarchical representation, which can be
read top-down to gain an overview over the data of the underlying learning problem.
This can render them a suitable approach, even for higher-dimensional problems, as it
is the case for agents having a larger amount of sensors. In [39], decision trees have
been successfully applied in the context of a Q-learning agent. However, a decision
tree learns a hierarchical representation that primarily focuses on which sensors are
most relevant for splitting the sensory data toward finding good decisions. In con-
trast, the approaches that will be presented here learn a hierarchical representation,
that provides information about which sensor values are most important for making

50

2.3 Related Approaches

good decisions. As it is the case for many other graph-based approaches, both for
Bayesian networks and for decision trees, the comprehensibility and interpretability—
even if being much better than, e. g., for neural networks—may decrease when it
comes to problems with a large number of nodes (as it is often the case for real-
world problems).

An approach from the reinforcement learning domain that involves the idea of
hierarchical abstraction can be found in [63]. There, reinforcement learning is inter-
weaved with a hierarchical structure providing information about different abstraction
levels of primitive actions and higher-level tasks. Such a hierarchical structure can be
considered a decomposition of the underlying learning problem, which can help to re-
duce the state-action space (unlike the approach that will be presented in this work,
where rules are represented hierarchically for being able to generalize over sensory
percepts and actions).

A well-known approach in the context of learning rule-like knowledge from data is
the APRIORI algorithm by Agrawal et al. [1]. This algorithm can be applied e. g., in
the context of recommender systems to learn association rules like

 “People that buy seeds and flower soil usually also buy watering cans.”

Such rules are accompanied by confidence values, that are similar to the rule weights
learned by the approaches that will be presented here (Section 3.4 and Section 3.5).
However, the APRIORI algorithm does not learn a complete knowledge base that com-
prises rules together with their exceptions. It will later be adapted to improve the
knowledge base extraction approach presented in Section 3.4.

To be able to create symbolic knowledge from continuous sensory data as well, a
technique based on k-means clustering (see [61] for an overview) will be used. As a
representative from the field of unsupervised learning, it serves well for detecting
clusters of values in case sensors are providing continuous data (e. g., a temperature
sensor). All values belonging to a found cluster can then be associated with a sym-
bolic sensor value. This approach can also be used in the same way for handling
continuous action spaces. Moreover, it can be used to reduce the number of sensors
(in case the number of sensors is high), by separating the sensors into two clusters (if
possible), of which only the one containing the most relevant sensors will be further
considered. (More details on this will be provided in Section 3.5.3).

51

2. Foundations of Learning Agents

2.3.2 Comprehensible Representations for Knowledge Learned by Agents

Once having gained some structural insights into the nature of a problem, an in-
teresting question is, what renders a knowledge representation approach eligible for
representing such learned knowledge in the context of agents—especially for appli-
cations in games?

One of the most important properties of modern machine learning approaches, like
neural networks and deep learning (as used, e. g., in [49] in the context of agents), is
the ability to generalize (i. e, to be able to make good decisions also on similar or even
unknown states). Thus, generalization can be considered an essential property of a
knowledge representation approach, to be considered eligible for learned knowledge.
Moreover, for agent applications in the context of games (which will be extensively
considered in this work), but also for other agent applications (e. g., in robotics),
efficiency plays an important role (especially concerning reasoning).

Modern machine learning techniques in the context of agents are able to deal with
high-dimensional state-action spaces and thus the results (i. e., the relation between
percepts and actions) usually cannot be expected to be described easily in a compact
and human readable way. This can result in a confusingly large amount of un-
structured knowledge (as could be see already before in the context of a low-dimen-
sional problem in Figure 2.6).

A well-known concept from Reiter’s default logic [55], that can help to reduce the
number of rules in an agent’s knowledge base, is that of defaults: In Reiter’s default
logic, a default is a special rule that is not always applicable when its premise is
satisfied, but requires additional assumptions, called justifications, to be consistent
(i. e., not to be falsified). By this means, instead of creating one single rule for each
case of a large amount of possible cases (which obviously would result in a large
amount of rules), a default rule can be created that covers most of the cases. The
remaining (exceptional) cases can then be excluded through the default rule’s justi-
fications and further rules are only needed to cover the remaining exceptional cases.
This usually results in much less rules.

In answer set programming (ASP) [19], a similar mechanism is provided by a spe-
cial negation operator called default negation (in addition to a common (“strict”)
negation operator (In case a rule’s premise comprises a default negation
either the negation of must be explicitly known or there must be no information
about to satisfy the rule’s premise. In contrast, if a rule’s premise depends on
then the rule’s premise can only be satisfied if the negation of is explicitly known.
Also this approach can be easily exploited to reduce the number of rules for de-
scribing agent behavior, by creating a rule whose premise includes default negations

52

2.3 Related Approaches

to exclude it from being applied in the exceptional cases and by adding further rules
that only handle these exceptional cases.

Both the concept of defaults and that of default negation can be attributed some
kind of generalization capabilities: Since it is possible with these concepts to construct
rules that usually apply, except in some specific cases (e. g., when certain specific
sensor values are perceived by an agent), such rules can also cover a priori unknown
cases (e. g., when new or unknown states are perceived).

Referring to the idea of generalization, one possibility for tackling the problem of
representing an agent’s knowledge about a higher-dimensional state-action space in a
comprehensible way is to rely the agent’s knowledge base more on default-like rules
and as few as possible on rather specific rules. This can result in a more compact and
thereby more comprehensible representation of the agent’s knowledge. However, since
an answer set program can be considered a set of rules, there is no explicit order
among the rules regarding their specificity. This can be a limiting factor regarding
readability and comprehensibility, as more general rules need to explicitly exclude the
more specific cases, by making use of default negations in their premises. The fol-
lowing example of a small answer set program that demonstrates this can be found
in [8] and in similar form in [41]:

Example 2.6 (Default Negation for Generalization) This example considers
the agent behavior that was learned in the grid world in Figure 2.5. The agent is
equipped with two sensors to determine its and position and can perform the
actions (see also Example 2.4). Using a Q-learning
(or similar) approach, the agent learned to get from the starting point in the
southwestern corner of the scenario to the destination in the southeastern corner of
the scenario, avoiding the “river” in the south. The knowledge how to get best from
to (which is contained in the multi-dimensional matrix after learning), can be ex-
pressed by the following answer set program making use of default negation:9

At its starting point the agent perceives and thus the rule
will be the only rule that can be applied and the action “ ” will be concluded
(the rule is not applicable due to not being known, and the rule

9 Note that in answer set programs, rules are traditionally written starting from the conclusion
(head) to the premise (tail) and are terminated by a dot (as usually also the case for other logic
programs; see, e. g., [14], p. 287, for an overview).

53

2. Foundations of Learning Agents

 is not applicable, since is perceived and it requires either
not to be known or to be known). In the following seven states, where will
be perceived, the rule will be applied (since both and do
not occur here) and finally, when is perceived, will be applied (and

 will not, since it requires either not to be known or to
be known).

 also shows generalization capabilities, in case another state that is not part of
the state-action sequence from to is perceived: If, e. g., and is perceived by
the agent, then “ ” will be concluded; any perceived state comprising will result
in the conclusion “ ”.

The rule-based approaches mentioned here do not comprise any weights, e. g., for
reflecting more accurately what has been learned from data (i. e., how strong or
important certain rules are, according to the data from which they were learned).

A generalization of the default-and-exception-rules idea will be presented later in
Chapter 3, which allows for representing rules on several levels of abstraction and
which is tailored to the needs of learning such rules from sensory data. In this
approach, every rule can be considered an exception to a more general rule on a more
general abstraction level. For the approach, also an efficient reasoning algorithm will
be provided.

Unlike ranked default theories, where defaults can be prioritized (see [45] for an
overview), the generalization aspect will be represented more explicitly here with a
strong focus on straight-forward readability of the represented knowledge. Moreover,
the approach presented here additionally incorporates weights to the rules, which can
be considered an “interface” to machine learning approaches, when learning such rep-
resentations from data.

2.3.3 Learning and Hybrid Agent Models for Games

Besides Tesauro’s classic backgammon player TD-GAMMON from the nineties (see,
e. g., [64]), both the more recent success by DEEPMIND’s go player ALPHAGO [60] and
its derivatives as well as the work by Mnih et al. [49] showed that the research for
intelligent agents in games made huge progress (see also Section 1.1). Thus, a ques-
tion might be, whether there is still room for further research in this field today?

While many of the existing approaches tackle the problem of optimizing a single
game, in this work also an agent model will be considered, that is able to learn
multiple a priori unknown games. Optimizing a single game has already been shown

54

2.3 Related Approaches

to work well, e. g., in [49, 60, 64] (among others), whereas learning multiple and a
priori unknown games is a younger discipline—especially in the context of highly
diverse and dynamic real-time games, as in general video game artificial intelligence
(GVGAI) [53] research. Also motivated by strong time constraints in this context (the
learning track rules of the GVGAI competition [65] prior to 2018 limit the playing
time to a maximum of minutes and allow only milliseconds for decision-making,
according to [5], see also Footnote 4 on page 43), especially models are of interest
here, that do not rely on hundreds of thousands of training runs, but are able to
perform in near real-time, both regarding learning and reasoning. The ability of an
agent to quickly learn and adapt to unknown games, without requiring an extensively
large amount of training time, still leaves a lot of room for improvement.

Existing agent models can be roughly distinguished into the following two cate-
gories, along the lines of the planning track and the learning track of the GVGAI
competition (cf. [5]):

• Agent models for the planning track: Agents of the planning track are provided
with a forward model of a (a priori unknown) game (i. e., a model that allows
for forward simulations of the game to extrapolate possible future game states).
Agent models in the context of this track must be able to handle and exploit
such forward models for making meaningful decisions or creating plans (i. e.,
action sequences to reach a desired state). For these purposes, common and
successfully used algorithms are breadth-first search or monte carlo tree search
(MCTS) [21]. Furthermore, as discussed in [5], genetic algorithms may be used
in the context of planning track agent models to evolve eligible action sequences
as plans. A successful representative of a planning track agent is YOLOBOT

(see [53], Section 2.3), which uses a combined approach also involving MCTS.

• Agent models for the learning track: In contrast to the planning track, agent
models in the context of the learning track do not have direct access to a game’s
forward model. This means, that agents based on these models must learn on
their own about the environment and the game mechanics by observing the
state transitions resulting from their actions. One possibility to tackle this
challenge is to use reinforcement learning techniques similar to that being de-
scribed in Section 2.1.7. However, since an agent may be trained in levels
different from those in which it will be used or evaluated later, this would
require the agent to be trained anew every time it is put into another level
(even if it is a level of the same game): Even if the game mechanics may remain
the same, the anatomy of the level (or further parameters of the environment)
may change, rendering the weights of a learned -matrix or an approximating
neural network improper. Following [5], the approach described by İlhan and

55

2. Foundations of Learning Agents

Etaner-Uyar, which combines MCTS with a SARSA reinforcement learning ap-
proach, seems to have a lower performance when it comes to short training
times. As also pointed out in [5], a randomly behaving agent was still one of the
most successful agents in the learning track of the GVGAI competition rounds
of the years 2018 and 2019, which shows that there is a lot of room for further
research in this field.

Another example of a hybrid agent model in the context of a video game from the
recent years is [31], which incorporates sub-symbolic and symbolic approaches: It has
been published nearly the same time as the first publication [7] related to the work
that is presented here, with both results independently indicating that there is a huge
potential for incorporating sub-symbolic and symbolic approaches in the context of
learning agents.10 However, in contrast to the approach that will be presented toward
the end of this work (Section 5.2), the primary scope of [31] is not that of general
video game playing, since only one kind of game is considered there.

2.4 Summary

This chapter presented the basics that are needed throughout this work. It thereby
contributed the definitions around the concept of an agent as considered in this work
as well as preliminary ideas and fundamental problems of learning agents. Moreover it
provided the motivation of the concepts that will be described in the upcoming
chapters by also considering related approaches (Section 2.3).

In the context of learning agents in games, approaches for gaining formal knowl-
edge that provides structural insights into the agent behavior and/or the underlying
problem, seem to be rarely considered. From knowledge representation, well-estab-
lished ideas like default rules are known. However, these approaches can be limited
in human-readability, comprehensibility and efficiency—especially when it comes to
larger amounts of knowledge learned by agents, or in case of high-dimensional data
(i. e., agents having a large number of sensors).

To create hybrid machine learning/knowledge representation agent models for
games, efficient practical approaches are required, that are able to deal with strong
time constraints, both for learning and reasoning. The following chapters will tackle
these issues.

10 The work [7] has been published as a peer-reviewed paper on the 29th of September in 2016,
whereas a first version of [31] appeared as a preprint on arXiv.org on the 18th of September in
2016; a second version appeared there on the 1st of October of the same year.

56

3. Knowledge Base Extraction

3. Knowledge Base Extraction

This chapter explains the concepts of exception-tolerant hierarchical knowledge bases11
(HKBs), a comprehensible approach for representing knowledge compactly as rules
with exceptions. The HKBs developed in the context of this work were originally
designed for the representation of knowledge learned by agents, independently from
an underlying machine learning technique. Due to the arrangement of rules on several
levels of abstraction, larger portions of knowledge can be read top-down on an ade-
quate level of abstraction.

In recent years, HKBs have been developed including learning algorithms to learn
HKBs from data, an efficient reasoning algorithm and a revision approach. The latter
was especially geared to the needs of general video game playing artificial intelligence
(GVGAI): In this context, if an agent has to learn to play different a priori unknown
video games, it may also face belief revision problems (e. g., when being confronted
with new slightly different levels of the same game). Furthermore, in [41], HKBs have
been compared to answer set programming (ASP) [19].

Over the years, HKBs have successfully been used in several applications. The
applications comprise:

• materialization of knowledge learned by agents [8],

• discovery and exploitation of heuristics in unknown environments to accelerate
the learning process of an agent [9],

• measurement of subjectively experienced strategic depth in games [11], and

• learning of approximated forward models in video games [5, 26].

(These applications will be considered in Chapter 4 and Chapter 5.)

Furthermore, HKBs and related applications have been considered in several other
works, especially by researchers in the field of computational intelligence in games,
e. g., in [28, 29, 47]. In Kuhn [42], HKBs were also used to extract and exploit
knowledge about human intuitions for solving job-shop problems, e. g., by improving
genetic algorithms with the extracted knowledge bases. HKBs have also stimulated
bachelor’s and master’s theses [12, 40] and contributed to other’s PhD research [25].

11 Thanks to my PhD supervisor Prof. Dr. for having the idea of adding░░░░░ ░░░░░░░░
the term “exception-tolerant” to the name in order to distinguish it from a different approach
by Borgida and Etherington [18].

57

3. Knowledge Base Extraction

Several results of HKBs from the papers [9, 26] have also been outlined in the chapter
“Learning in GVGAI” (Chapter 5) of the recently published book on GVGAI [53].

In this chapter, foundations and formal definitions for HKBs are provided, mostly
following [8] (Section 3.1). After that, an efficient reasoning algorithm for HKBs is
described, which was proposed in an earlier publication by Apeldoorn and Kern-
Isberner [7] (Section 3.2). HKBs are introduced as a tool for knowledge engineering
(Section 3.3) and two basic algorithms and one advanced algorithm for learning
HKBs in the context of agents are provided (Section 3.4 and Section 3.5); the latter
was published in a more recent paper by Apeldoorn, Hadidi and Panholzer [6].
(Details about contributions are provided in the bibliographic remarks, Section 3.7.)

3.1 Definition of HKBs

This section provides the basic definitions needed for HKBs. It starts from the
preliminary definition of a deterministic state-action sequence in Section 3.1.1 and
closes at the end of Section 3.1.2 with the central definitions for HKBs, according
to [8] (and several other papers making use of these definitions, e. g., [5, 9, 11]).

For this purpose, the agent model described in Section 2.1 is considered and briefly
summarized here again: According to the model, an agent is equipped with sensors
and can perform a fixed number of different actions. Thus, the agent’s discrete
state space is defined as where every is a sensor symbol set
representing all possible values of the agent’s -th sensor. The agent’s action symbol
set represents all possible actions of the agent. Every action performed in a
state with leads to a successor state (see sections 2.1.1
to 2.1.5 for details).

3.1.1 From Non-Deterministic to Deterministic State-Action Sequences

Based on the agent model from Section 2.1, the agent behavior in an environment
can be represented by a state-action sequence, as defined in Definition 2.6 from
Section 2.1.5. For non-deterministic environments (as explained already earlier, at
the end of Section 2.1.5), a state-action sequence may contain pairs
with where and For reasons of sim-
plification, in the following, many considerations will refer to deterministic state-
action sequences instead, which are defined as follows:

58

3.1 Definition of HKBs

Definition 3.1 (Deterministic State-Action-Sequence) A deterministic state-
action sequence is a state-action sequence , where for
every two pairs , implies that .

For a better understanding of deterministic and non-deterministic state-action
sequences, Figure 2.5 from Section 2.1.7 can be considered here again: Figure 2.5 (a),
shows a non-deterministic state-action sequence (with multiple outgoing arrows from
a single grid cell), whereas Figure 2.5 (b) and (c) show deterministic state-action
sequences (with at most one outgoing arrow per grid cell).

To represent agent behavior in a non-deterministic environment, a deterministic
state-action sequence can be created from a state-action sequence by keeping
only those pairs with the best action given a state i. e., those
with (cf. Table of Notations).12 Such a deterministic
state-action sequence can then be considered the representation of the best or “most
common” actions for every state of the environment.

3.1.2 Rules and HKBs

The basic idea of an HKB is to represent a (deterministic) state-action sequence
(see Definition 2.6 and Definition 3.1) in a compact way, which also allows for gen-
eralization. This can be achieved by trying to incorporate only a few of the agent’s
sensors (and sensor values) to express the knowledge contained in For this
purpose, within an HKB, the knowledge is organized on several levels of abstraction,
where the topmost level contains the most general rule(s) (with empty premise(s))
and the bottommost level contains the most specific rules (corresponding to the state-
action pairs contained in Every rule on a lower abstraction level can define an
exception to a more general rule on a higher abstraction level of the HKB. To be able
to define HKBs more formally, at first, two basic kinds of rules have to be distin-
guished (based on the definition of complete states and partial states, Definition 2.1),
mainly following the corresponding definition provided in [8] (and preliminary con-
siderations from [7]):

12 If is not unique, i. e., every is leading to the same maximum conditional
probability/relative frequency one can be chosen randomly.

59

3. Knowledge Base Extraction

Definition 3.2 (Complete Rule/Generalized Rule) Complete rules and gener-
alized rules are of the form (i. e., “if is known, then can be concluded”),
where the premise is either a complete state (in case of a complete rule) or a partial
state (in case of a generalized rule), the conclusion represents an action of the
agent’s action symbol set and is the rule's weight (indicating the “strength”
of the rule).13

Thus, with complete rules, actions can be concluded from a complete state and with
generalized rules, actions can be concluded from a partial state. Based on that (still
following [8]), an HKB can now be defined as follows:

Definition 3.3 (Exception-Tolerant Hierarchical Knowledge Base) An ex-
ception-tolerant hierarchical knowledge base (HKB) is defined as an ordered
set of rule sets, with being the number of state
space dimensions (i. e., the number of an agent’s sensors). Every (non-empty)
set contains generalized rules and the set (when being
non-empty) contains complete rules, such that every premise of a

rule (with being the rule’s premise set) is of length

Furthermore, in the context of HKBs, the terms exception and needed exception
will be of importance and are therefore provided here by the following definitions,
originating from [7, 8]:14

Definition 3.4 (Exception) A rule is an exception to a rule
with premise and action as conclusion, if the premise set
and

Definition 3.5 (Needed Exception) A rule is a needed exception to a
rule with premise action as conclusion and weight if
it is an exception and no other rule exists with premise and
action as conclusion, where and weight

13 Note that when learning HKBs from data (as, e. g., in [8] or later in Section 3.4), the weights of
the rules are usually in Nevertheless, when using HKBs as a knowledge engineering tool,
in principle, no such constraints exist (even if it might be useful to limit the weights to a
certain range).

14 Note that the definitions provided here are slightly more general than those provided in [8],
since here, a rule is also considered an exception to a rule if

60

3.1 Definition of HKBs

The following example illustrates how knowledge can be compactly represented as
an HKB by consequently exploiting the concept of rules and exceptions.

Example 3.1 (HKB for an Agent in a Grid World) In this example, an agent
in a grid world is considered again (similar to Example 2.2 and Example 2.4): The
agent moves from a starting point to a destination point by avoiding a large area
in the middle of the grid world (see the left side of Figure 3.1). Also here, the agent
is equipped with two sensors to determine its and position in the environment
(i. e., its state-space is with and and
the agent is able to perform actions from the set

The right side of Figure 3.1 shows an HKB that describes the agent behavior in-
dicated by the arrows on the left side of Figure 3.1. Starting from the most general
rule on the topmost level the HKB can be read top down in the
following way (the indentations indicate the level on which the rules are located):

“Usually go to east; (according to
 except when is perceived, go to north, or, (according to
 when is perceived, go to south; (according to
 except when and are perceived, go to east.”

(according to

The rule on level serves as a “second order” exception here,
since it is an exception to the rule which is in turn an exception
to the topmost rule on level (according to Definition 3.4). The
rule is also a needed exception here (see Definition 3.5).

Figure 3.1 (HKB for an Agent in a Grid World) (Source: adapted from [11])

On the left, arrows indicate an agent’s movement in a grid world from a starting
point to a destination around a “lake”. On the right, an HKB represents the
agent behavior compactly and comprehensively (in contrast to Figure 2.6). The
rule weights are the conditional relative frequencies of the concluding actions
given the premises, e. g., (See also Example 3.1.)

61

Free space Water

3. Knowledge Base Extraction

3.2 Reasoning for HKBs

Reasoning and the process of retrieving inferences from a knowledge base have a long
tradition in AI research—especially in those fields of knowledge representation that
are closely related to logic. However, many strongly logic-based reasoning approaches
are limited in their efficiency (and even feasibility!) and when it comes to practical
applications, an eligible reasoning approach should be able to provide appropriate
inference results in near real-time. Regarding practical aspects (especially in the
context of robotics), Hertzberg, Lingemann and Nüchter write in their book [36],
pp. 307–308 (2012, Springer Vieweg, translated from German):

“A good inference approach only yields true consequences from provided
knowledge, and that as efficient as possible. […] (Correct and complete
inference in propositional logic is only possible with NP-complete ap-
proaches, first order logic is even undecidable—both are no properties that
can be considered useful for an efficient inference approach.)”

The reasoning algorithm that will be described here, is able to efficiently provide
inferences that exploit the knowledge contained in an HKB at its best. The algorithm
relies on an HKB (representing the current knowledge of an agent) and one or more
piece(s) of supposedly evident information (i. e., the agent’s currently perceived sensor
values). Such a reasoning algorithm was first introduced in [7], where it was used for
an experimental study on agents improving their learning performance by exploiting
knowledge represented by HKBs, which were extracted from the agents’ experiences
during their learning process. Meanwhile, the algorithm has been proven useful in
several further applications (e. g., [5, 6, 9]); some of which are relying on (near) real-
time capability.

More concretely, closely following [7], a reasoning algorithm will be de-
scribed here, that takes an HKB (where contains the most
general rule(s) and contains the most specific rules, i. e., the complete rules) and
the current perceived state of the agent as input and that outputs a set of
inferred actions. The set usually contains only one single action—only in case
multiple equivalent rules with the same maximum weight and different conclusions
exist on a level more than one action can be contained in

When a state is perceived, the reasoning algorithm searches for
the most specific rules whose premises are satisfied by and which have the maxi-
mum weight among all satisfied rules on the same level of abstraction (i. e., rules
with premise where is a subset of the set and

no other rule exists with premise where and

62

3.2 Reasoning for HKBs

The action(s) contained in will then be returned by (in case of the
returned actions are equally good and an agent may select randomly among them).
Algorithm 3.1 formalizes the described reasoning algorithm.

Algorithm 3.1 (Reasoning on HBKs) (Source: adapted from [7])

The algorithm searches the HKB upwards, starting on the most specific
level for the first rule(s) whose premise(s) is/are satisfied by the given state It
returns a set of actions by using the rule(s) with the maximum weight among the
found most specific rule(s). (The algorithm can also be implemented easily in a slightly
modified form for additionally returning the rules that are used for creating

Example 3.2 (Reasoning in a Grid World) This example considers again the
HKB for the agent in the grid world scenario shown in Figure 3.1: For the
starting state the reasoning algorithm (Algorithm 3.1) starts search-
ing on level where only the rule is located, whose premise is
not satisfied by (since cf. line 12 of Algorithm 3.1). Thus, the
algorithm continues searching on level where it finds the rule
whose premise is satisfied (since . Since there isn’t any other rule
with a higher weight on level and a premise satisfied by the state the result
will be and thus the action “ ” can be concluded for
state For another state (the northwestern corner of the grid world),
the result will be (due to the only rule on level being directly
found by the reasoning algorithm). For a third state the reasoning
algorithm will fall back to the most general rule on the level and thus the result
will be

63

3. Knowledge Base Extraction

The reasoning algorithm described here turns out to be rather efficient in practice:
By searching an HKB upwards for one or more firing rule(s), usually only a part of
the rules contained in the HKB has to be considered. Only in case a given state is not
covered by any of the rules on the levels the algorithm has to search through all
rules on all levels of the HKB, until it falls back to the most general level

However, this does not have much impact on the overall performance of the algo-
rithm, since, in practice, if the reasoning algorithm frequently has to fall back to
upper levels of the HKB (or even to the topmost level this means in general that
there are only a few rare exceptional cases occurring in the agent’s environment—
which in turn means that the HKB will most likely be “shallow”, only comprising a
few levels with few exceptions. Thus, even if it happens frequently in this case that
the algorithm has to consider a large portion (or all) of the rules contained in the
HKB, the number of rules that have to be considered will be quite low.

Or, vice versa: Assuming an environment with only a few regularities and hence
with many exceptional cases occurring, a corresponding HKB will most likely com-
prise many levels with a lot of exceptions to reflect this properly. However, in such an
environment, exceptional cases will be more common and thus, it will happen much
more often that the reasoning algorithm finds the corresponding rule(s) on the lower
levels, without considering larger portions of rules on the upper levels of the HKB.

3.3 HKBs for Knowledge Engineering

An HKB (as defined in Section 3.1) can be used as a modeling tool for agent be-
havior. An interesting question is, whether an HKB is able to model every possible
behavior of an agent in an -dimensional state-space, i. e., whether it is always
possible to find an HKB as a model for any deterministic state-action sequence

As a first approach, a simple answer to this question can be provided by con-
sidering a trivial HKB where all levels are empty and the bot-
tommost level contains exactly one complete rule for each state-action
pair For such an HKB, the reasoning algorithm would
obviously return the correct conclusions for every state of a pair
i. e.,

However, this immediately leads to the more elaborate question, whether the repre-
sentation as an HKB has any benefits over the representation of the agent behavior as
a state-action sequence. More concretely: Is it always possible to find an HKB
that completely represents the knowledge contained in with at most as many

64

3.3 HKBs for Knowledge Engineering

rules as the total number of state-action pairs in and which generalizes better
than The following proposition provides an answer to this question.

Proposition 3.1 (Knowledge Engineering Properties of HKBs) For every
deterministic state-action sequence an HKB can be found

(1) that represents completely (i. e.,),

(2) is at least as compact as (i. e.,) and

(3) that generalizes (i. e., can also provide conclusions for states
not contained in any pairs of

Proof Starting from a deterministic state-action sequence following the above
preliminary considerations, an HKB can be easily constructed with
all levels being empty and with one complete rule
(with an arbitrary weight) on level for every pair

For such a trivial HKB, according to Algorithm 3.1, the reasoning algorithm
 will obviously provide the correct conclusion for every by

finding the corresponding rule on the bottommost level for any given
state which satisfies property (1).

Now, it can be assumed that for an arbitrarily selected state-action pair
the corresponding rule is moved to the topmost level by simply replacing its
premise with For the resulting HKB the reasoning algorithm will
then still provide the correct conclusions for every since these rules remain
unchanged on the bottommost level

For no rule will be found now by on level anymore and thus
 will fallback to rule (according to Algorithm 3.1), which also

results in the correct conclusion Due to the rule (with premise being
located on the topmost level now, will also fallback to for any other
state and thus will also be able to infer conclusions from for states that are
not contained in any pairs of which satisfies property (3).

Since level was initially filled with one rule per state-action pair, with
all other levels being empty, and only one rule was moved to level it still holds
for that which satisfies property (2).

In case there are further rules on level with the same concluding action
then all these rules can be removed now from level without losing the com-
pleteness property (property (1)), since will also fall back to the topmost

65

3. Knowledge Base Extraction

rule for all states of the pairs in for which the corresponding action is
equal to Thus, in this case, it even holds that

It is now easily imaginable that the rule-exception principle can be also exploited
on the intermediate levels to gain even more compact represen-
tations, which reflect the inherent logic of the data contained in a state-action
sequence Such an HKB then also has more accurate generalization capabilities,
since can fall back to the next more general rule on a level that
fits well for the state (instead of falling back to the most general rule on level

After having shown that HKBs can be used as a knowledge engineering tool to
represent deterministic state-action sequences in a more compact and generalizing
way, a further interesting questions is, how compact representations can be learned
automatically from (deterministic) state-action sequences. Different algorithms for
that will be presented later in this chapter (Section 3.4 and Section 3.5).

3.4 Basic Knowledge Base Extraction Approaches

This section introduces basic ideas and some first basic approaches for learning
HKBs from data. The task of automatically retrieving a knowledge base from data—
especially from data representing agent behavior in form of a state-action sequence
(see Section 2.1.5)—mainly comprises two aspects:

• extracting a knowledge base that represents the knowledge adequately, and

• providing a representation of the knowledge that is transparent and easily acces-
sible to the reader.

HKBs have eligible properties to satisfy these aspects for the following reasons:

• The knowledge can be represented compactly by exploiting the generalization
possibilities of HKBs together with the concept of exceptions: Rules that cover a
larger amount of the data represented by the HKB can be located on higher,
more general levels, whereas the rules representing some rare cases contained in
the data can be located on the lower, more specific levels.

• Due to the knowledge being organized on several levels of abstraction, HKBs
can be read top-down to the desired degree of detail. By this, the reader can
easily get an overview over the data represented by the HKB without the need
for considering rules that are only covering some rare cases (which seems to be

66

3.4 Basic Knowledge Base Extraction Approaches

in line with some central properties of human thinking; see the last paragraph of
Section 2.2, p. 48).

• The knowledge represented by an HKB is extensively transparent, since usually
only one single rule fires when reasoning is performed for a provided state (see
Algorithm 3.1 and Example 3.2).

• Being only loosely coupled to logic, HKBs are easy to read and therefore also
accessible to people not having expertise in logic (see [41] for a study of the
comprehensibility of HKBs). This is perhaps one of the strongest features of
HKBs, which allows for applying the following approaches in interdisciplinary
working environments (see, e. g., [6]).15

Retrieving knowledge bases from data has numerous applications and can be used,
e. g, to explain what a learning agent has learned [6, 8], to represent how human
agents solve problems [11, 42] or how an agent’s environment works (i. e., the forward
model of the environment) [5, 26], among others.

3.4.1 Basic Ideas

To retrieve a knowledge base in the context of an agent, the knowledge that is im-
plicitly contained in a plain state-action pair representation of the agent’s behavior
(i. e., a state-action sequence, see Section 2.1.5 or a -matrix, see Section 2.1.7) will
be extracted and adequately represented in form of an HKB. For this purpose, some
basic representation criteria will be determined at first, that provide some intuitions
on how the knowledge represented by the HKB should look like (according to [7]):

• Criterion 1: adequately relevant (the knowledge should be restricted to the rele-
vant parts only)

• Criterion 2: adequately generic (equivalent or even better, more general knowl-
edge should be preferred over more specific knowledge)

While the first criterion ensures that irrelevant rules not related to the original
data will not be included in a resulting HKB, the second criterion aims at providing a
compact representation by ensuring that more general rules with shorter premises are
preferred over more specific ones, where possible. Furthermore, by this means, the

15 Being affiliated to a multi-disciplinary research institute with researchers from biostatistics, epi-
demiology, physics and other disciplines, the author was able to experience good receptions of
the approaches by researchers from different fields.

67

3. Knowledge Base Extraction

resulting HKB will have better generalization opportunities, since rules that are more
general cover larger pieces of the agent’s state space (cf. Section 3.3).

These criteria form the base of the following approaches.

3.4.2 A Preliminary Algorithm

In this section, a first approach to extract a knowledge base from a learning agent is
provided. Although the algorithm has some obvious drawbacks (which will be dis-
cussed at the end of this section), it was successfully used in various applications in
the past (e. g., [5, 7, 9, 11, 26, 42]) and may serve as a base for understanding the
more elaborate approaches.

The algorithm takes a (multi-dimensional) weight matrix as input
(with i. e., a weighted state-action pair representation, which contains
a learned weight for every state-action pair of the agent’s state-action space. The
weights could be learned by any machine learning approach that fits the needs of the
task to be learned (e. g., reinforcement learning approaches like Q-learning and the
like, see Section 2.1.7). The algorithm returns an HKB which reflects the learned
knowledge contained in If one is only interested in the knowledge about the best
weighted state-action pairs contained in (i. e., the best learned behavior), only the
best state-action pairs with the highest weight given a state can be considered here,
ignoring the weights of all other state-action pairs.

Following [7, 8], the HKB extraction algorithm performs the following steps:

(1) Normalization of weights:
Every weight is normalized over the action dimension to
a weight16

(2) Creation of rule sets:
All generalized rules (i. e., all rules with and with
set , where is the number of state space dimensions) are created
by aggregating an average weight over all missing state space dimensions
(i. e., over those state space dimensions of which no sensor value symbol is
contained in the premise of the respective rule). (See Example 3.3 for a more
detailed explanation of the aggregation mechanism.) The resulting rules will be

16 Note that the provided formula here corrects the corresponding formula of the original work [7].
Thanks to for pointing to the erroneous formula in [░░░░ ░░░░ 7].

68

3.4 Basic Knowledge Base Extraction Approaches

grouped according to their generality into the different sets of the
HKB (where contains the most general rules and contains the most
specific rules, i. e., the complete rules; see Definition 3.2). The complete rules are
derived directly from the -matrix.

(3) Removal of worse rules:
This step follows the intuition of restricting the resulting HKB to the relevant
knowledge only (which corresponds to Criterion 1, see Section 3.4.1): In all
sets a rule is removed, if another rule exists with the same
partial state as premise and a higher weight. In other words: on every level of
the HKB only the best rules for a given partial state are kept.

(4) Removal of worse more specific rules:
The intuition here is to prefer better/equivalent general over more specific
knowledge where eligible (corresponding to Criterion 2, Section 3.4.1): In all sets

 a rule with premise conclusion and weight is

removed, if a more general rule exists with premise
premise set and with weight

(5) Removal of too specific rules:
In this step, the intuition is to prefer general over specific knowledge, if the
more specific knowledge is not necessarily needed or relevant (which corresponds
to both Criterion 1 and 2 that are provided in Section 3.4.1). In all sets a
rule with premise and conclusion is removed, if a more

general rule exists with the same action as conclusion,
premise with premise set and
with rule not being a needed exception to a rule (see Definition 3.5).

(6) Optional filter steps:
Optionally, filters may be applied to filter out further rules which are helpful to
explain the knowledge contained in but which are not needed for reasoning
later (e. g., since they are never firing given the states contained in or since
other rules exist on the same level of abstraction which would lead to the same
result when reasoning is performed on the extracted knowledge base).

After these steps, the HKB comprises all sets with the extracted rules
representing the knowledge contained in the learned weights of Algorithm 3.2
summarizes the algorithm.

69

3. Knowledge Base Extraction

Algorithm 3.2 (Preliminary Knowledge Base Extraction) (Source: based on [7])

The algorithm starts with Step (1) by normalizing the weights of the matrix to be
in Afterwards, the sets are initially filled with all possible rules by aggregating
the weights according to Step (2). After that, the three main steps of the algorithm,
Step (3) to Step (5), successively remove the worse rules, the worse more specific rules
and the too specific rules. Finally, some optional filter steps may remove further unneeded
rules (e. g., those that are not needed to infer the best actions for the respective complete
states in

In the following, two examples will be provided: The first example (Example 3.3)
originally stems from [7] and helps to understand more detailed how the aggregation
of the weights contained in the matrix is realized in Step (2) of the algorithm.

70

3.4 Basic Knowledge Base Extraction Approaches

After that, a complete example of extracting a knowledge base from an agent’s be-
havior in the context of a simple game will be provided in Example 3.4.

Example 3.3 (Aggregation of Weights) Assuming an agent with a 2-dimen-
sional state space with and and a (normalized)
matrix of weights learned with an arbitrary machine learning approach.
Then the following ten generalized rules are created according to the second step of
the preliminary HKB extraction algorithm (assuming that the agent’s state space has
been explored completely before, such that all possible states are known in

more specific rules

most general rules

Example 3.4 (Basic Knowledge Base Extraction) In this example, an agent
has to navigate a horse from a starting point to a trophy in a two-dimensional horse
race game. The state space is provided by (with sets
and and the action space is provided by the action symbol set

 allowing the agent to navigate and jump over
hurdles (see Figure 3.2). The agent behavior results in the state-action sequence

 that is indicated by the red arrow in Figure 3.2.

71

3. Knowledge Base Extraction

The extraction of a knowledge base to represent the agent behavior is realized by
Algorithm 3.2: After transforming to a sparse -matrix by starting from a zero
matrix and setting the corresponding weights of all state-action pairs contained in
to the algorithm starts with Step (1) by normalizing the weights (which does not
have any effect here, since the matrix only contains zeros and ones at this point).
After that, in Step (2), the algorithm creates all possible rules with a weight
which results in the following initial rule sets on the different levels of the HKB (rules
to be removed in the next step are shaded gray):

Note that the rule weights are denoted in fractions here to outline the relation to
the relative frequencies of the agent’s performed actions: Since the matrix is
initially created from the state-action sequence by only setting the corresponding
weights of all state-action pairs contained in to a rule’s weight corresponds to
the relative frequency of the actions given the (partial) state here.

After that, in Step (3) of the algorithm, all worse (or equivalent) rules are re-
moved, i. e., only those rules having a maximum weight for a given (partial) state are

72

3.4 Basic Knowledge Base Extraction Approaches

kept (by convention, if two rules are equally good by having equal weights, the
preceding one according to the alphabetical order of their concluding actions will
be kept): On the topmost level only the rule with the conclusion is kept,
since this is the overall most frequent action here. On the next more specific
level the rule is removed, since is a less frequent action
than for the partial state For the partial state the rules
and have equal weights and therefore are equally good, thus, by con-
vention, the rule will be removed since precedes according to
the alphabetical order. The same applies for the rules of the partial state This
results in the following rule sets:

In Step (4), the worse (or equivalent) more specific rules are removed, i. e., those
rules, for which a more general rule with a higher weight exists: On level this
affects the rules and since these rules have a lower weight
than the weight of the more general rule on the level On the most
specific level this affects, e. g., the rule since the rule
is more general (due to and is equally good according to its weight.
The same applies for the rules in the right column of level for all of which a more
general rule on level with an equal weight can be found. Thus, the resulting rules
sets are as follows:

Finally, in Step (5), all too specific rules are removed, i. e., all unnecessary rules, for
which a more general rule with the same conclusion exists (and which is not needed
as an exception on the preceding more general level, cf. Definition 3.5). This removes,
e. g., the rule on level since the most general rule already

73

3. Knowledge Base Extraction

provides the same conclusion, but generalizes better. Similarly, this applies to all
other rules on the levels and with the action as conclusion. This results
in the final HKB:

An additional filter step would not have any effect here.

The resulting HKB represents the knowledge of the agent behavior indicated
by the (red) arrow in Figure 3.2 compactly and can be read from top to bottom
(i. e., from general to more specific) as follows:

 “Usually go to the right;
 except when is perceived, jump;
 except when and are perceived, go down.”

Moreover, the reasoning algorithm (Algorithm 3.1) can be applied to every state of
the initial state-action sequence to infer the correct action for each state con-
tained in

Example 3.4 shows that the algorithm presented in this section is able to create
compact knowledge bases with multiple abstraction levels, which explain the structure
of the underlying problem and its solution well in an easy and comprehensible way.
However, even if the presented algorithm has been used successfully (in this or in
slightly modified forms) in several applications like [5, 7, 9, 11, 26, 42], it still has
some major drawbacks:

• In the worst case, the maximum number of rules calculated for an -dimensional
state space on the -th level in Step (2) of the algorithm is

where is the set of all sensor symbol sets (cf. [11], Definition 5).
The total maximum number of rules calculated on all levels in Step (2) of
the algorithm is

 (3.1)

74

3.4 Basic Knowledge Base Extraction Approaches

Thus, the number of rules that are initially created (and later partly removed
by the removal strategies) grow drastically with the number of sensor symbol
sets (see the inner product of Formula (3.1)). This bad runtime behavior has
been overcome in the past in [5, 26], by calculating several HKBs from smaller
sub-spaces of the state-action space and later merging the resulting HKBs to a
complete HKB again. However, a more proper and intuitive solution would be
to exclude unneeded rules as soon as possible in the calculation process. A
corresponding improvement will be presented in Section 3.4.3.

• Another drawback, that is related to the problem of bad runtime behavior, lies
in the disadvantageous calculation order: Since the principle idea of the algo-
rithm is to successively filter out all unneeded rules on all levels of the created
HKB, the algorithm cannot be aborted for quickly getting good intermediate
results, if one is only interested in a rougher representation of the knowledge.

• The third drawback is that the algorithm suffers from a lack of transparency:
Even if it has already been shown in numerous applications that the algorithm
provides proper and useful results, it is not quite clear that a resulting HKB
reflects the knowledge contained in the -matrix (or the state-action sequence
from which the matrix was created) well in any case. This is mainly due to the
removal strategies in Step (3) to Step (5) (line 7–36 of Algorithm 3.2) not being
directly associated with the ideas of the reasoning algorithm (Algorithm 3.1).
Furthermore, starting directly from a -matrix as input additionally contributes
to the nontransparent character of the algorithm. A lack of transparency can be
a serious problem for such an algorithm, especially when being used in critical
applications (e. g., medical applications). In Section 3.5 a more elaborate know-
ledge retrieval algorithm will be provided that overcomes this drawback.

The following section will especially tackle the first mentioned drawback.

3.4.3 Incorporating the APRIORI Algorithm

This section incorporates the APRIORI algorithm by Agrawal et al. [1] into the pre-
liminary HKB extraction approach introduced in the previous section (Algorithm 3.2)
to prevent considering all rules in Step (2) of Algorithm 3.2. This will be achieved by
replacing Step (2) of Algorithm 3.2 with (an adapted form of) the APRIORI algorithm,
according to [8].

Usually, one is interested in a compact representation that properly reflects the
knowledge contained in the weights of the learned matrix Since the
decision making from such a -matrix is determined by the highest weight of an

75

3. Knowledge Base Extraction

action given a state, the corresponding state-action pairs are considered the most
relevant portion of here. For this purpose, a set of state-action pairs will be
created from such that for every state-action pair with the
action is the one with the highest weight in given the state
(with i. e., (Note that does not necessarily need

to be ordered here.)

To meet the set-theoretic aspects of the original APRIORI algorithm, in the fol-
lowing, will be used to denote a complete state be-

longing to a state-action pair as set (cf. Section 2.1.1).

Closely following [8], an adaption of the APRIORI algorithm can now be described,
which replaces Step (2) of Algorithm 3.2 to initially fill the rule sets

Given the set of (the best) state-action pairs, the adapted APRIORI algorithm
starts with short premises having a minimum support (i. e., those partial
states that are contained to some extent in The premises are then successively
extended to longer premises by keeping only those premises that are still having at
least the minimum support of According to [8], also referring to the con-
siderations of the APRIORI algorithm as presented in [14] (p. 148), the support of a
premise with corresponding premise set is calculated as

and the weight of a corresponding rule of the form with premise set
 is calculated as the confidence

More detailed, still following [8], the adapted APRIORI algorithm takes a set of
state-action pairs as input and outputs an initial ordered set of rule sets with
potentially eligible and relevant rules by proceeding as follows:

(1) Create set and add all rules with an empty premise and

(2) Create a set of premise sets and add all (ordered) premise sets of length
 with support

(3) Create set and add for all premise sets all rules with

 and

76

3.4 Basic Knowledge Base Extraction Approaches

(4) Set

(5) Create the set of premise sets of length Combine every two premise sets
 having the first elements in common to create a new

premise set 17 Add the new combined premise set to if

• all -elementary subsets of occur in sets of and,

•

(6) Create set and add for all premise sets all rules with
 and

(7) Set

(8) If continue with Step (5).

After performing these steps, the rule sets contained in are initially filled with
preselected rules that are potentially relevant for the knowledge base to be extracted,
given a minimum support of By selecting the preselection will
be done in a rougher, more heuristic way. This can speed up the knowledge retrieval
even more, at the cost of accidentally skipping rules of potential interest.

Given a minimal support due to the completeness of the original APRIORI
algorithm (cf. [14], p. 152), no premises are dropped too early if they could be of
potential interest later. In the adaption of the algorithm used here, rules with a
confidence of are also not included in the initial rule sets However, this
does not break the completeness of the APRIORI algorithm, since only the rules for
the final sets are skipped (and not the corresponding premises based on which the
APRIORI algorithm is performed).

Example 3.5 (Knowledge Base Extraction and Adapted APRIORI) The grid
world scenario from Example 2.4 (see Figure 2.5) is considered again here, where an
agent with state space (with and and
action space learns to get from a starting point
to a destination with a common Q-learning approach. Using the adapted version
of the APRIORI algorithm as Step (2) of Algorithm 3.2, an HKB will be extracted
now from the agent’s learned -matrix to compactly represent the knowledge about
the best behavior learned by the agent (see Figure 2.5 (c)). Since only the knowledge
about the best behavior is of interest here, the set of the corresponding state-action

17 An additional performance gain may be achieved here in practice since (in contrast of the
original APRIORI algorithm) only those pairs of sets that do not have any sensor values of the
same sensor value set in common have to be considered for combination.

77

3. Knowledge Base Extraction

pairs will
be created at first from the agent’s learned -matrix.

Starting from the state-action pairs that belong to the agent’s best behavior,
the adapted APRIORI algorithm is performed with to initially fill the
ordered set of rule sets with potential relevant rules. After that, contains the
following rules on the different levels of the nascent HKB (rules to be removed in the
next step are shaded gray):

Step (3) of Algorithm 3.2 now removes all worse (or equivalent) rules (as in Ex-
ample 3.4, by convention, if two rules are equally good by having equal weights, the
preceding one according to the alphabetical order of their conclusions will be kept):
On the topmost level and are removed (due to having the
same premise with lower weights than on level is removed
(due to having a higher weight) and is removed (due to the
conclusion of alphabetically preceding After that, contains the
following rules:

78

3.4 Basic Knowledge Base Extraction Approaches

Now, all worse (or equivalent) more specific rules are removed by Step (4) of
Algorithm 3.2: On level is removed (due to the more general rule

 on level having a higher weight); on level is
removed (due to on level being more general and having an equal
weight) and all other rules on level that are shaded gray are removed, since a more
general rule for the respective -coordinates with an equal weight can be found on
level After this step, contains the following rules:

Finally, Step (5) of Algorithm 3.2 removes the too specific rules: On level all
rules with conclusion are removed (due to on level providing the
same conclusion while being more general); on level is removed for
the same reason. This results in the final HKB

The resulting HKB compactly represents the knowledge of the learned agent
behavior shown in Figure 2.5c, stating:

 “Usually go to east;
 except when is perceived, go to north, or,
 when is perceived, go to south.”

It can be easily verified here that the reasoning algorithm (Algorithm 3.1) will infer
the corresponding correct actions for each state from the original state-action se-
quence

The incorporation of the adapted APRIORI algorithm already drastically speeds up
the knowledge retrieval process by avoiding the initial creation of all possible rule
sets. Furthermore, it provides the possibility to even further improve the runtime
behavior by choosing resulting in less accurate “more heuristic” HKBs,
where weaker rules representing rare exception can potentially be missing. However,
this motivates the need for a more advanced knowledge base extraction algorithm,

79

3. Knowledge Base Extraction

that is both rather efficient and complete, while at the same time overcoming the two
remaining drawbacks mentioned at the end of Section 3.4.2: The possibility of inter-
rupting the knowledge retrieval process at any time for immediately getting rougher
preliminary representations and the ability of being transparent throughout the whole
extraction process to increase the confidence in the resulting HKBs.

3.5 Advanced Knowledge Base Extraction

This section presents a knowledge base extraction algorithm that overcomes the
drawbacks of the aforementioned preliminary approaches from Section 3.4, while at
the same time being more transparent. The approaches described here are also suit-
able for higher-dimensional state spaces. The descriptions will partly follow [6].

In contrast to the algorithms from Section 3.4.2 and Section 3.4.3, the main algo-
rithm described here will follow a different approach: Instead of creating initial rule
sets that are successively reduced by different filtering strategies, the presented algo-
rithm fills an HKB from top to bottom until it completely explains the data from
which it was created. This guarantees that the resulting HKB will be complete, in
the sense that the correct actions can be inferred for every state of the original
input sequence.

In the following, the main algorithm will be introduced at first (Section 3.5.1).
After that, it will be shown, that HKBs produced by the algorithm always completely
represent the data from which they are created (Section 3.5.2). This is followed by
extensions that allow for creating HKBs from numeric sensor data (Section 3.5.3) and
for preselecting sensors to handle higher-dimensional data (Section 3.5.4).

3.5.1 Advanced HKB Extraction Algorithm

The algorithm for efficiently extracting an HKB starts from a deterministic state-
action sequence (see Definition 3.1), i. e., a state-action sequence, where no two
state-action pairs in exist with states and
actions Thus, according to such a deterministic state-action sequence, the
action to be selected for a complete state is always the same. This may sound
limiting, since in real applications, state-action sequences are usually not supposed to
be deterministic. However (as it was already mentioned earlier in Section 3.1.1), a
deterministic state-action sequence can be easily obtained from a non-deter-

80

3.5 Advanced Knowledge Base Extraction

ministic state-action sequence by keeping only those pairs with the most
frequent action given a state, i. e.,

 (3.2)

(if is not unique here, i. e., every is leading to the same
maximum one is chosen randomly).

Furthermore, it is assumed that the possible actions are known in advance. If this
is not the case, the set of possible actions can be inferred from the original state-
action sequence by selecting all distinct actions that appear in (Note that
this does not necessarily lead to an agent’s original action space, since not all of the
agent’s possible actions necessarily occur in

Following the explanations from [6], the general idea of the algorithm is, to add on
each level of an initially empty HKB those rules that cover as many state-action pairs
of as possible, starting with the topmost level On each of the more specific
levels, further rules are then successively added as exceptions to the rules of the
previous level(s), until the HKB covers all state-action pairs of —i. e., until the
reasoning algorithm (see Algorithm 3.1) infers for every state-action pair the
corresponding action from the state

More concretely, after rendering the input state-action sequence deterministic ac-
cording to Formula (3.2) (if necessary), which results in the input sequence and
after creating the set of possible actions from (if it is not a priori known), the
algorithm proceeds as follows:

(1) In the first step, the best most general rule with an empty premise
is created, whose concluding action has a relative frequency that is
maximal in among all actions. The rule’s weight is set to the
rule is added to the first rule set and is added as topmost level to the
nascent HKB

(2) Subsequently, the set of all remaining state-action pairs that are currently
not covered by are calculated (i. e., those pairs for which the
reasoning algorithm (see Algorithm 3.1) cannot infer the correct action
from the state .

(3) The counter indicating the current calculated level of is initialized by

(4) The fourth step represents the first part of the algorithm’s main loop:

• If the set of all remaining state-action pairs is empty, the algorithm
terminates here and returns the current HKB

81

3. Knowledge Base Extraction

• Otherwise (if is not empty), rules for the remaining state-action
pairs in are added to the new level by iterating
over A rule with conclusion is created for each subset of
length of a state set associated with a state (see Definition 2.1).
Note that the weight of a rule is calculated as

here and will later (in Step (6)) be set to (An expla-

nation for that will be provided at the end of the stepwise description of
the algorithm.)

(5) In the fifth step, all unused rules on the new calculated (bottommost) level
are removed, by keeping only those rules that are used by the reasoning algo-
rithm (Algorithm 3.1) to infer the actions from the states for all state-
action pairs in —i. e., only those rules are remaining that
have the highest weight among all rules firing given a state. (This step resembles
Step (3) of Algorithm 3.2 or Criterion 1 in Section 3.4.1, respectively.)

(6) The sixth step adapts the weights of all rules from to

 (see Step (4)).

(7) Subsequently, the set of all remaining state-actions pairs that are currently
not covered by are calculated again (similar to Step (2)).

(8) The eighth step removes all unused rules on all levels of the HKB
i. e., those rules that became superfluous either due to the newly added rules on
the level in Step (4) or due to the adaption of the weights in Step (5).
(This step resembles to Step (4) and Step (5) of Algorithm 3.2 or Criterion 2 in
Section 3.4.1, respectively.)

(9) Finally, level is added to the counter indicating the current calculated
level is increased by and the algorithm proceeds with Step (4).

Note that in Step (4) of the algorithm, the weight of a rule is at first calculated
as This follows the intuition that overall more frequent oc-

currences of in have a more “default-like” character and should

therefore be considered on the more general levels of the HKB (Contrariwise, less
frequent occurrences of should rather be considered exceptions on the

more specific levels of By setting the weights to here, it is later

possible to keep the “strongest” rules according to the overall relative frequency, by
considering the rules used by the reasoning algorithm to infer the correct action
(which selects the rules according to the maximum weight in case the premise of
multiple premises is satisfied by a provided state). Later on, in Step (6), the rule

82

3.5 Advanced Knowledge Base Extraction

weights are adapted to since, in the end, it should be easy to

comprehend from the resulting HKB how strong a rule is to infer the correct
action when knowing a (partial) state rather than considering the overall

occurrences of in (The latter information is then represented any-

way by the level on which the rule is located, following the above intuition.) This also
conforms to the representation of the preliminary algorithms from Section 3.4.2 and
Section 3.4.3. Algorithm 3.3 shows a formalization of the algorithm.

Example 3.6 (Advanced HKB Extraction) This example considers again the
horse race game introduced in Example 3.4. Again, the agent has to navigate the
horse from its starting point to the trophy. As in Example 3.4, the agent’s state space
is provided by (with and) and its
action space is provided by the set allowing the
agent to navigate and to jump over hurdles (see Figure 3.2). Also in this example
here, the extraction algorithm will be applied to the state-action sequence

 that is indicated by the (red) arrow in Figure 3.2.

The input state-action sequence is already deterministic (since all state-action
pairs have different states and hence no pairs can exist having the same state but
different actions). Thus, the algorithm will be called with as input.
Furthermore, the set of possible actions is already known and does not need to be
created from

Starting from an empty HKB in the first step, the overall best rule with
an empty premise is added to the topmost level of the HKB, resulting in the
following

(Similar to Example 3.4, also here rule weights are denoted in fractions to outline
that the weights represent the (conditional) relative frequencies of the agent’s per-
formed actions.)

Subsequently, the set of remaining state-action pairs is calculated (Step (2)),
which comprises all state-action pairs for which the reasoning algorithm
does not provide the correct conclusion (where is the current HKB, is the
state and is the corresponding action of a state-action pair Here, the
reasoning algorithm already provides the correct conclusion for all state-action pairs
with action Thus, the only two state-action pairs that remain from the input
sequence are:

83

3. Knowledge Base Extraction

Algorithm 3.3 (Advanced Extraction of HKBs) (Source: adapted from [6])

Rules are created on a level to cover as many state-action pairs as possible. All remain-
ing pairs are then considered on the next level until all pairs are covered by

84

M
at

er
ia

l f
ro

m
: A

pe
ld

oo
rn

, D
.,

H
ad

id
i,

L.
, P

an
ho

lz
er

, T
.:

Le
ar

ni
ng

 B
eh

av
io

ra
l R

ul
es

 f
ro

m
 M

ul
ti-

A
ge

nt
 S

im
ul

at
io

ns
 f
or

 O
pt

im
iz

in
g

H
os

pi
ta

l P
ro

ce
ss

es
, L

N
C
S

12
83

2,
 p

ub
lis

he
d

20
21

, S
pr

in
ge

r

3.5 Advanced Knowledge Base Extraction

After setting the counter that indicates the current level of the HKB to
(Step (3)), rules with a premise of length are added to level (Step (4)).
After this step, looks as follows (also here, rules to be removed in the next
are shaded gray again):

Note that, at this point, the rule weights on level represent the relative frequencies
of a rule’s premise together with the concluding action in the input sequence
rather than the conditional relative frequencies of the concluding action given the
premise. (E. g., for rule and the action occur together in one of
the six state-action pairs in By this, rules whose premise-action-combination
appears more frequently in are kept on the more general levels of the HKB,
whereas rules, whose premise-action-combination appears less frequent, will be rep-
resented as exceptions on the more specific levels (cf. the description in Step (4) of
the algorithm).

In Step (5), the unused rules are now removed, i. e., those rules that either provide
a wrong conclusion or that do not fire at all when applying the reasoning algorithm
to each state of the state-action pairs in If multiple rules with the same
conclusion are firing for a provided state, one of them can be chosen randomly (by
convention, in the following, the preceding one according to the alphabetical order of
its premise will be selected). Here, for both rules
and fire, thus, by convention, is selected (since precedes
according to the alphabetical order). For the rule
is selected for the same reason. For all other pairs in the rules on level will
either not provide the correct conclusion or will not fire at all. After removing the
unused rules on level and after adapting the remaining rules’ weights on that
level to the conditional relative frequencies (Step (6)),

looks as follows:

85

3. Knowledge Base Extraction

Now, the set of remaining state-action pairs is calculated again (Step (7)),
resulting in only one pair not covered by (i. e., for which does
not provide the corresponding conclusion

After removing all unused rules on all levels of (Step (8))—which will
not have any effect here, since all of the three rules fire at least once when applying
to the states of the state-action pairs in the newly calculated level is added
to the HKB and the counter indicating the current level is in-
creased to

In the next iteration, rules with premises of length are added to level
(Step (4)), resulting in a single rule added for the one remaining state-action
pair After this, looks as follows:

In this iteration, no more changes are made to in Step (5) to Step (8)
and the set of remaining pairs will be empty at the end of the iteration:

• Since the premise of the only rule added on the bottommost level reflects a
complete state, it will definitely be used (Step (5)).

• The weights will not be changed, due to

on the bottommost level with (Step (6)).

• The set of remaining pairs will be empty, since for each state of a state-
action pair only the corresponding action will be inferred by the
reasoning algorithm i. e., (Step (7)).

• Since each rule of provides at least once the correct action for a state of
a pair no further rules are removed on all levels of (Step (8)).

Finally, in Step (9), is added to and is increased again by Since is
empty now (due to Step (7)), the algorithm terminates, returning the final ,
that states:

86

3.5 Advanced Knowledge Base Extraction

 “Usually go to the right;
 except when being in a state then go down, or,
 except when being in a state then jump;
 except if being in state then go to the right.”

Also in the example shown here, it can be easily seen that the reasoning algorithm
(Algorithm 3.1) will infer the corresponding actions correctly from each state of a
state-action pair from the original deterministic state-action sequence

Example 3.6 shows, that the algorithm is straightforward and easy to follow by
creating exceptions, exceptions of exceptions (“2nd-order exceptions”), etc. on each
level, starting on the more general levels with the rules that cover the most of the
state-action-pairs.

Remarkably, the resulting HKB differs from the one that was created in the
Example 3.4 for the same scenario and the same agent behavior: In general, HKBs
produced by Algorithm 3.3 have the potential of being a bit less compact than the
ones produced by Algorithm 3.2. This is because Algorithm 3.3 calculates the HKB
from top to bottom (i. e., from general to more specific knowledge) and thereby is not
able to find optimizations that rely on certain more specific rules found later on the
more specific levels: Although, Algorithm 3.3 is able to remove more general rules due
to more specific rules found later in the creation process (see lines 44–49), it is not
able to create rules on more general levels in dependence of rules found on the lower
levels (which would allow for creating an overall more compact HKB). However, the
ability of creating an HKB straightforward from top to bottom renders the algorithm
much more efficient in practice, since it can be interrupted after any iteration, re-
sulting in a rougher still meaningful HKB, instead of always relying on calculating the
HKB as a whole.

3.5.2 Completeness of the Approach

An important question is now, whether Algorithm 3.3 is complete, in the sense that
for an arbitrary deterministic state-action sequence a corresponding HKB
will be provided by the algorithm, such that for each state-action pair
with the reasoning algorithm (Algorithm 3.1) will return the corre-
sponding action for state i. e., This question
will be answered by the following proposition:

87

3. Knowledge Base Extraction

Proposition 3.2 (Completeness of Algorithm 3.3) For every deterministic
state-action sequence Algorithm 3.3 provides an HKB that represents the
knowledge contained in completely, i. e.,

Proof Algorithm 3.3 obviously only terminates if is empty (see line 11—no
further break or return commands are contained in the algorithm). Thus, to show
that Proposition 3.2 holds, it will be argued in the following that

(i) at the end of each iteration, it holds that if
is empty, and

(ii) that, at some point, there will be an iteration, where is guaranteed to be
empty at the end (i. e., the algorithm is guaranteed to terminate).

For the first part (i):

Before the algorithm’s main loop—which is considered the - th iteration of the HKB
to be learned in the following—a single rule with an empty premise is added to the
topmost level of (in Step (1)) and, subsequently (in Step (2)), is assigned a
subset of the state-action pairs of for which After Step (2),
since there is only one rule in only two cases exist here: If all state-action pairs in

 have the same action it holds that and
 is empty. Otherwise (if not all state-action pairs in have the same action),

only one action can be covered by the only rule in and it does not hold that
 and is not empty. Thus, it holds here that

is empty if and only if it holds that

In the algorithm’s main loop, the only step that modifies the set of remaining
state-action pairs is Step (7) (lines 41–42). In that step, is assigned a
subset of all state-action pairs of for which Since
this is the only step modifying and since this step is executed in every iteration
of the main loop without any conditions, after this step, is empty if and only if
it holds that

Subsequently, Step (8) (lines 44–49) potentially removes unused rules on all levels
of Since only unused rules are removed here (i. e., those rules that
were not involved in any of the correct conclusions in
Step (7)), this does not affect the statement that is empty if and only if it holds
that

Step (9) of the algorithm (line 51) guarantees that level is added to since
it is executed in every iteration of the main loop without any conditions.

88

3.5 Advanced Knowledge Base Extraction

Thus, it holds that at the end of every iteration if
(and only if) is empty.

For the second part (ii):

To show that there will be an iteration, at the end of which is guaranteed to be
empty, it will be shown that

(ii-a) at the end of the -th iteration (where is number of sensors), is
guaranteed to be empty, and that

(ii-b) the algorithm will necessarily reach the -th iteration or was empty
before (or is empty in the same iteration).

The second part (ii-b) can be shown easily and will be considered first:

Two cases can be distinguished here: and If the -th iteration
(before the main loop) is the -th iteration and thus (ii-b) holds. Otherwise (if
at the end of the -th iteration, either the termination condition of the algorithm’s
main loop is satisfied, i. e., is empty, and thus (ii-b) holds, or the first iteration
will subsequently start by entering the main loop (line 11), with being initialized
to before. In the main loop, until the termination condition is satisfied, the counter
 is increased by in every further iteration according to line 52. This is guaranteed,

since it is the only line modifying and it is executed without any conditions and no
break/return (or other jump commands) that could skip this line are contained in the
main loop. Thus, it is ensured that the -th iteration, where is either reached
at some point, or the termination condition of the main loop must have been satisfied
before, which is that is empty. In any of the cases, (ii-b) holds.

The first part (ii-a) (i. e., at the end of the -th iteration, is guaranteed to be
empty), holds for the following reasons:

If the -th iteration already represents the -th iteration, then the agent that
created must have had zero sensors and thus the states of the state-action pairs
contained in do not comprise any sensor values (i. e., Due
to being deterministic, all pairs contained in have the same action which
is the one of the conclusion of the only rule added on the topmost level in Step (1) of
the algorithm (lines 1–5). Thus, all actions contained in must be covered by this
rule. Since in Step (2) (in line 8), is assigned a subset of all state-action pairs

 of for which will be assigned the empty
set here, before the -th iteration ends by initializing with The case that the -th
iteration does not represent the -th iteration will be considered in the following.

89

3. Knowledge Base Extraction

The only step that modifies in the algorithm’s main loop is Step (7) (line 42).
There, is assigned a subset of all state-action pairs of for
which Thus, it must be shown here that in the -th
iteration, just before Step (7), it holds that
since in this case, will be assigned the empty set. Since it is the only step that
modifies in the main loop, will remain empty until the end of the iteration,
i. e., until the end of the current run of the main loop. Furthermore, it is guaranteed
that Step (7) (line 42) is executed in every iteration of the main loop, since it has no
conditions and no break/return (or other jump commands) are contained in the algo-
rithm (cf. (ii-b)).

To show this, it will be started at the beginning of the algorithm’s main loop:
In Step (4) (lines 13–30), in the -th iteration, since (according to (ii-b)), only
complete rules (with complete states as premises) are added to the bottommost level

 for each distinct state-action pair . Thus, at the end of Step (4),
contains one complete rule of the form for each distinct state-action
pair with Since is always a subset of the deterministic
input set (according to Step (7)), must also be deterministic (i. e., all pairs

 with the same state have the same action and it is thereby guar-
anteed here that there is exactly one rule for each distinct state action pair
providing the conclusion for the state (according to Algorithm 3.1, which
always uses the best most specific rule). Thus, at the end of Step (4), in the -th
iteration, where it holds that

Due to the rules contained in being complete rules with complete states as
premises and due to being deterministic, none of the rules added to will
fire for a complete state of a pair Thus, if for any it
held in the -th iteration (where that
then this must still hold in the -th iteration. Thus, at the end of Step (4), it holds
that

The subsequent Step (5) (lines 32–34) removes all rules on level that do not
fire for any state of the pairs contained in Since only unused rules are removed
here, after Step (5), it still holds that

In Step (6) (lines 36–39), in the -th iteration (where , according to (ii-b)),
the weights of the rules are adapted from to condi-

tional probabilities Since all rules on the final level are

complete rules, the state in the conditional part is a complete state and due to
being deterministic, it holds that With this, it is

90

3.5 Advanced Knowledge Base Extraction

and thus, no changes are made in this step. Thus, at the end of Step (6), it still holds
that

As a consequence, the subsequent Step (7) will assign the empty set to in the
-th iteration and will remain empty until the end of the iteration (as argued in

the second paragraph of (ii-a)).

By now having shown that (i) and (ii) hold, it is ensured that (latest) after the
-th iteration, Algorithm 3.3 will return a complete knowledge model for a determin-

istic input state-action sequence such that

Note that, even if the is guaranteed to be empty at the end of Algorithm 3.3
(as has been shown in part (ii) here), this does not necessarily mean that will
decrease monotonically after every iteration (depending on the inherent structure con-
tained in the data to which the algorithm is applied).18

3.5.3 Learning HKBs from Numeric Data

All of the aforementioned approaches only work for discrete sensor data, where each
sensor value is represented by an element of the respective sensor symbol set. In
practice, data provided by sensors (and also action data!) may of course be numeric
as well, and can even be (nearly) continuous. For discrete numeric sensors (e. g., a
light sensor of a robot, that is able to distinguish a certain fixed number of shades
of gray), a naive approach would be, to simply associate each numeric sensor value
with a corresponding symbol, e. g.,
(with being equal to the fixed number of shades of gray, which the sensor
is able to distinguish). However, if the number of different numeric values increases
(and especially in the case of (nearly) continuous sensor values), it is obvious that
the naive approach is not always feasible. Furthermore, too fine-grained sensor symbol
sets may result in reduced generalization capabilities of an HKB.

This section briefly outlines a more advanced technique for handling numeric
sensor data. The main idea is to use a clustering approach for creating a sensor
symbol set from the numeric data of a sensor. Each cluster found in the sensor data
then corresponds to one sensor symbol, resulting in a sensor symbol set. By mapping
each value of the numeric data to the sensor symbols (according to their association

18 Thanks to for fruitful discussions, which helped pointing that out. ░░░░ ░░░ ░░ ░░

91

3. Knowledge Base Extraction

with the clusters), results for each numeric value in a corresponding sensor symbol.
The resulting symbols can then appear in the state-action sequence that serves as an
input to one of the knowledge base extraction algorithms that were presented in the
previous sections.

The question is now, how to determine an eligible number of clusters (i. e., the
number of distinct sensor symbols) for the numeric data provided by a sensor?

To answer this question, basically two cases can be distinguished:

• If additional information is available about the sensor or its data, then it may
be desirable to determine the (maximum) number of clusters manually in
advance (e. g., in case the sensor’s purpose implies that the data should be
represented by a specific number of sensor symbols).

• Otherwise, if nothing is known about the sensor or the sensor data, the number
of clusters (i. e., the number sensor symbols used to represent the data) should
be determined automatically.

In the following, the multi-set denotes the raw numeric input data that was
collected by an agent’s sensor. The set represents the sensor symbol set that will
be created from and denotes the resulting output multi-set that will be
created from by replacing each numeric value of with a symbol from
Furthermore, the value denotes a predefined maximum number of clusters
(which in the second of the above cases can be assumed to be equal to since
this would be the maximum number of clusters, with each cluster containing exactly
one single value).

A compact eligible clustering for can now be found by simply performing the
following steps (covering both of the aforementioned cases with for the
second case):

(1) Starting with a minimum number of two clusters, the current number of clusters
 will be set to (Note that the case of one cluster is not further

considered here, since this would result in a single sensor symbol, rendering the
corresponding sensor useless for distinguishing states. In the special case that

 a single cluster can immediately be returned.)

(2) A k-means clustering (see, e. g., [61]) with is performed on Besides
the number of clusters and the multi-set the -means clustering also
needs the initial centroids as input, representing the (initial) mean values of
each cluster. The -th initial centroid (where refers to the first cen-
troid) is calculated here as

92

3.5 Advanced Knowledge Base Extraction

By this means, the initial centroids are distributed equidistantly over the range
of values of here (with the minimum referring to the first and the maxi-
mum referring to the last initial centroid). The values contained in are
then assigned to the clusters (using a nearest neighbor metric) and the centroids
are updated afterwards. The process is iterated, until none of the clusters is
changed anymore. The k-means clustering then results in the clusters containing
the assigned values and also provides the final centroids.

(3) If none of the clusters returned by the k-means clustering from the previous step
is empty, then each cluster will now be associated with a sensor symbol. This
results in the sensor symbol set The mapping of each value to the
sensor symbol of that represents the cluster to which belongs then
results in the multi-set
Otherwise (if one of the clusters returned by the k-means clustering is empty),
it will be immediately stopped here, returning with the assignment from the
previous iteration. (Note that this case cannot occur in the first iteration where

 except for the special case that as described
already at the end of Step (1). This ensures that the returned will always
have a valid assignment in the end.)

(4) If then will be increased by and it is proceeded with Step (2).
Otherwise, is returned with the current assignment of sensor symbols.

After having performed these steps on a data set the resulting set contains
for each numeric value a corresponding symbol of representing the cluster
to which the value belongs. (Note that instead of k-means clustering, also other clus-
tering techniques could be imaginable here.)

In practice, the clusters’ centroids can be attached as annotations to the respective
symbol names of the corresponding This results in a good intuition on what is
represented by a symbol (while at the same time rendering the symbol names unique,
as stipulated at the beginning of Section 2.1.1). In the same way, also the number of
clusters and the represented cluster sizes can be helpful annotations to comprehen-
sibly represent the meaning of symbols learned from numeric data. For annotating
these information, in the following, a naming scheme of the form

 (3.3)

will be used for such learned symbols, where is the name of the symbol that
represents the cluster, is the cluster’s (final) centroid, is the total

93

3. Knowledge Base Extraction

number of clusters, and is the cluster’s size (i. e., the percentage of values of the
set that is covered by the cluster). Such an annotated symbol name then states
that the symbol represents a cluster around the centroid covering percent of
the data. If the number of the represented cluster is also of importance here, then a
numbering can simply be added as suffix to each name (as done for the shades of
gray in the light sensor example at the beginning of this section, i. e.,

 to additionally include this information.

Note that the described approach can also be applied in the same way to numeric
action data (e. g., in case of a (nearly) continuous action space).

The following example demonstrates the learning of an HKB from both numeric
sensor and numeric action data.

94

3.5 Advanced Knowledge Base Extraction

Example 3.7 (Fuzzy-Controlled Robot) A (simulated) robot has to follow an
unknown road (see Figure 3.3). Its one-dimensional numeric state space is provided
by its position on the road in the range where refers to the leftmost
and refers to the rightmost deviation from the road’s center. Its numeric action
space is provided by the robot’s steering, which is also in the range where

 refers to the maximum steering to the left and refers to the maximum steering
to the right. To elegantly master the task using smooth steering actions, the robot
uses a fuzzy controller (see [36], Section 7.3 for a similar task) with five triangular
fuzzy sets for the input state and five for the
output steering action Running the ro-
bot now in this scenario results in a raw data sequence, similar to a state-action
sequence (cf. Definition 2.6), where both states and actions consist of numeric values.
The raw data sequence can therefore be considered a “quasi-state-action sequence”,
where the first element of each pair refers to the robot’s state (its position) and the
second element to the steering action:

(The values are rounded to two digits here; the full length of the raw data sequence
considered in this example is

From the numeric data set for the robot’s states and for its
actions are obtained (where both sets are supposed to be ordered in the sense that the
order of values as provided by is preserved).

Now, the described clustering approach is applied to both sets and
with a predefined maximum number of clusters The learned symbols
associated with the clusters are then named according to the fuzzy sets of the robot’s
fuzzy controller, resulting in the sensor symbol set and the action symbol
set

This leads to the sets and which resemble to the sets and
with each numeric value being replaced by a corresponding symbol of the respective
sets and Since the data sets are both supposed to preserve the order of
values as provided by (see above), a proper state-action sequence can now
easily be constructed from and where the numeric values are replaced by
the learned symbols:

95

3. Knowledge Base Extraction

(Also here, except for the percentage values, the values are rounded to two digits; the
naming of the learned symbols of conforms to the scheme provided in (3.3).)

Finally, Algorithm 3.3 is run on which results in the HKB provided in
Figure 3.4.

Figure 3.4 (HKB for Fuzzy-Controlled Road Following)
The HKB learned in the context of Example 3.7 comprises five
rules. The naming of the rules’ symbols follows the scheme in (3.3).
The rule on the first level states that, usually, the robot has to
steer straight (which resembles to a steering value of
according to the data of the example). The learned action symbol
“ ” represents one of five clusters, which covers of the
data. The level provides exceptions to the rule on level for
cases where the robot perceives a position “ ”, “ ”, “ ”
or “ ” on the road. These four rules resemble to the relation of
the input/output fuzzy sets of the robot’s fuzzy controller.

As can be seen in Figure 3.4, the resulting HKB well reflects the input/output
fuzzy sets of the robot’s fuzzy controller used to navigate the robot on the road and
can be easily read as follows:

“Usually steer straight (about –0.77),
 except when right (about 6.08), then steer left (about –5.82), or,
 except when far right (about 9.53), then hard left (about –8.85), or,
 except when left (about –6.06), then right (about 4.44), or,
 except when far left (about –10.42), then hard right (about 8.83).”

96

3.5 Advanced Knowledge Base Extraction

3.5.4 Handling Higher-Dimensional Data

Although the more advanced knowledge base extraction algorithm presented in
Section 3.5.1 (Algorithm 3.3) is already much faster, it can still run into performance
issues when it comes to higher-dimensional data (e. g., agents having hundreds of
sensors). To cope with this, a possible approach is the preselection of sensors, since
oftentimes only a small subset of the sensors is relevant for making adequate deci-
sions. The question now is, which of an agent’s sensors can be easily omitted without
running a too high risk of ignoring relevant information?

To answer this question (similar as in Section 3.5.3), again two cases can be
distinguished here:

• If there is a priori information available about the sensor data and/or the task
to be learned, it might be eligible to predetermine the number of sensors
to be preselected in advance.

• Otherwise (if no such a priori information is available), the algorithm should be
able to predetermine the number of sensors on its own.

If a preselection of the relevant sensors has to be performed, in both cases, the
sensors will be ordered at first, according to their potential relevance for an HKB.
This relevance is determined from the average relation of the distinct sensor values to
the different actions. More precisely, in the context of a state-action sequence a
simple yet efficient measure for the relevance of an agent’s sensor with a corre-
sponding sensor symbol set can be calculated as

 (3.4)

where and refer to the (conditional) relative frequencies of and
occurring in the state-action pairs of

The intuition here is, that sensors with symbols that often occur with the same
actions have a strong potential for being involved in rules that are able to cover larger
parts of a state action sequence: The first factor of the sum results
in higher values for sensors with symbols that frequently occur together with a cer-
tain action in the data. The second factor of the sum strengthens
sensors with symbols that might serve well to predict that action.

Example 3.8 (Potential Relevance of Sensors) An agent is equipped with
three sensors with the corresponding sensor symbol sets and Each sensor
can provide two sensor values, i. e., and

97

3. Knowledge Base Extraction

The agent is able to perform two different actions, i. e., its action symbol set
is The agent now performs four actions in its environment, resulting
in the state-action sequence shown in Table 3.1.

Table 3.1 (Data for Potential Relevance)
The table shows the state-action sequence of an agent
acting in its environment: For each state-action pair, the
perceived sensor symbols of each of the three sensor are
provided together with the corresponding actions.

Applying the potential relevance measure (3.4) to the three sensors in the context
of the state-action sequence from Table 3.1, results in the following values:

Thus, the sensor’s ordering regarding the potential relevance is:

According to that, the most relevant sensor is the one with the sensor symbol
set whose sensor symbols each explain in average of the data.
Since there are only two actions equally distributed over the four state-action pairs of
the state-action sequence the most relevant sensor with the sensor symbol set
would already suffice here to completely explain the agent’s actions.

The proposed measure (3.4) integrates well with Algorithm 3.3, since it mostly
relies on (conditional) relative frequencies. These can be cached and later reused by
Algorithm 3.3, which can further increase the performance in the context of higher-
dimensional data. (However, also other measures are imaginable here to estimate the
relevance of an agent’s sensors in advance.)

98

3.5 Advanced Knowledge Base Extraction

In the first of the two cases mentioned at the beginning of this section (where the
number of the potentially relevant sensors is manually determined in advance), simply
the sensors with the highest potential relevance will be taken into
account, ignoring the remaining ones.

In the second case (where a predetermined number of potential relevant sen-
sors is not provided), an eligible number of relevant sensors is found automati-
cally by performing a k-means clustering (see [61] for an overview). The clustering
is performed with and with initial centroids and

, where is the set of all sensor symbol
sets. Except for the uncommon case that all of the agent's sensors have the
exact same potential relevance according to (3.4), this will result in a low relevance
cluster (around the final centroid and a high relevance cluster (around the final
centroid After that, the sensors from the resulting cluster around will be taken
into account, ignoring all other sensors from the resulting cluster around

3.6 Summary

HKBs are a multi-abstraction level knowledge representation approach based on the
idea of rules with exceptions (a common concept, which is also known in a similar
way in default logic [55] and answer set programming (ASP) [19]). HKBs seem to be
easy to read (also for non-computer scientists without expert knowledge in logic) and
allow for fast reasoning.

Due to their readability, HKBs are an eligible approach for representing knowledge
learned by agents. Exploiting the idea of rules with exceptions on multiple abstraction
levels, agent behavior can be represented in a compact way (see Proposition 3.1).

Different algorithms have been developed that range from a basic adaption of pre-
liminarily considered criteria (see Section 3.4.1 and Algorithm 3.2) over the incor-
poration of the well-known APRIORI algorithm (see Section 3.4.3) up to an advanced
HKB extraction algorithm (Algorithm 3.3), which is much more efficient and shown
to be complete (see Proposition 3.2). Moreover, in Section 3.5, efforts have been made
to render these approaches applicable to numerical sensory data (Section 3.5.3) as
well as to higher-dimensional data, i. e., agents having a large number of sensors
(Section 3.5.4). (The advanced results have been implemented in the INTEKRATOR
toolbox [38] for practical application, see Appendix A).

The approaches described in this chapter can be considered foundations for inter-
esting applications in the context of agents in games, ranging from explaining learned

99

3. Knowledge Base Extraction

knowledge up to advanced learning skills for agents, which will be presented in the
upcoming chapters.

3.7 Bibliographic Remarks

Some of the work contained in Chapter 3 was previously published in papers with
further co-authors besides the author’s PhD supervisor Prof. Dr. ░░░░░ ░░░

. For this reason, the author’s contributions of the respective papers will be░░░░░
summarized here.

The study [41] is joint work together with and emerged from her░░░░░ ░░░░
bachelor’s thesis [40]. The bachelor’s thesis was co-supervised by the author together
with Prof. Dr. . The author contributed to the work by elabo░░░░░ ░░░░░░░░ -
rating the proposal of the thesis topic, by providing ideas concerning the study
design, by helping to perform the study as well as by writing and improving parts of
the paper [41]. A larger part of this work has been provided by and░░░░░ ░░░░
the corresponding paper is referenced at several places here.

The knowledge base extraction algorithm in Section 3.5 (Algorithm 3.3) was pub-
lished in a joint work [6] together with and Dr. from░░░ ░░░░ ░░░░ ░░░░░░
Medical Informatics department of the Institute of Medical Biostatistics, Epide-
miology and Informatics (IMBEI) at the University Medical Center of the Johannes
Gutenberg University Mainz. In this work, behavioral rules were learned from multi-
agent simulations for optimizing hospital processes. The rules were learned in the
form of HKBs by using the implementation of Algorithm 3.3 in an earlier version of
the INTEKRATOR toolbox [38] (see also Appendix A). It has been shown in [6], that
the learned HKBs can improve the investigated hospital process (and variants of it),
if the agents behavior is based on the learned HKBs. The development of the algo-
rithm (Algorithm 3.3), its inclusion into the paper [6], the completeness consider-
ations (Section 3.5.2) as well as the approaches for learning HKBs from numerical
data (Section 3.5.3) and for handling higher-dimensional data (Section 3.5.4) were de-
veloped and elaborated by the author.19

The most important techniques presented here (especially those from Section 3.5)
are implemented in the INTEKRATOR toolbox [38]. In a joint work [10] together with
Dr. , the ░░░░ ░░░░░░ INTEKRATOR toolbox has recently been proposed for au-
tomatically creating expert systems from data in the context of medical applications.
19 Thanks to my supervisor Prof. Dr. ░░░░░ ░░░░░░░░ for proposing to further elaborate on

the completeness aspect as well as to for a collaboration that helped░░░░ ░░░ ░░ ░░
pointing to the need for being able of handling numeric and higher-dimensional data.

100

3.7 Bibliographic Remarks

The development, the implementation and the maintenance of the INTEKRATOR tool-
box have also been done by the author of this work. (More details on the toolbox can
also be found in Appendix A.)

101

3. Knowledge Base Extraction

102

4. Explaining and Analyzing Agent Behavior

4. Explaining and Analyzing Agent Behavior

Agent behavior, especially that of learning agents, can quickly become a black box:
Even if the resulting behavior seems to be adequate, also in simple environments
it can be hard to understand what an agent has learned (see Section 2.1.7 and
Section 2.2). This, of course, does not primarily affect the operational reliability of an
agent and there are a lot of agent success stories that make use of black box
techniques like neural networks—especially in the context of games (e. g., [49], [60]).
However, it is obvious that there is a need of understanding what an agent has
learned and why it behaves in a certain way (e. g. when thinking of the agent’s trust-
worthiness or when the agent is supposed to perform in an unknown environment
after learning).

Simulations and other techniques may help to visualize an agent’s current behavior
(in case this is possible for the respective problem). But neither do these techniques
really materialize what the agent has learned, nor do they provide any explanations
why the agent behaves in a certain way for the provided percepts.

HKBs, in conjunction with the corresponding extraction algorithms presented in
Section 3.4 and Section 3.5, are an eligible approach to overcome these kinds of
issues, since they are able to materialize knowledge in a rule-based way, while at the
same time offering a hierarchical structure. This allows for reading the knowledge
from the general to the more specific, up to an adequate level of abstraction maxi-
mizing the comprehensibility in the context of the respective learning task. Although
it is obvious that given a certain amount of complexity, even a hierarchical approach
may reach its limits, it still allows for a much better interpretability than a “flat”
collection of rules (as it is the case for many other knowledge representation para-
digms). Furthermore, such a hierarchical representation seems to be in line with the
generalization capabilities of the human thinking (cf. [27], pp. 210–211), while at the
same time incorporating the basic principles of defaults rules with exceptions known
from default logic [55] (see also Section 2.2). (A study on the comprehensibility of
HKBs can be found in [41].)

In this chapter, two aspects of explaining and analyzing learned agent behavior will
be considered in the context of different video games: At first, the behavior of human
agents playing different video games will be materialized as HKBs from their play-
traces and, by this means, it will be shown how HKBs can be used for explaining
knowledge learned in the context of video games (Section 4.1). After that, based on

103

4. Explaining and Analyzing Agent Behavior

these extracted HKBs, it will be described how the complexity of a learned HKB
relates to the subjective strategic depth of a game and a measure for estimating the
difficulty, that was subjectively sensed by human agents while playing, will be de-
scribed (Section 4.2). Some of the results presented in this chapter (especially the
ones from Section 4.2) emerged from a joint work [11] together with Dr. ░░░░ ░░░
(formerly at TU Dortmund University, at the time of writing at Queen Mary Uni-
versity of London and modl.ai, Copenhagen). (See Section 1.4 and the bibliographic
remarks in Section 4.4 for details.)

4.1 Knowledge Base Extraction in Games

This section considers different games from the general video game artificial intelli-
gence (GVGAI) framework by Perez-Liebana et al. [52], to demonstrate and evaluate
the extraction of HKBs for explaining and analyzing knowledge learned in the context
of games.

The GVGAI framework is a widespread framework for general video game playing,
where an agent has to play multiple different (a priori unknown) video games. It
origins from the AI in games community and is also used for international research
competitions on GVGAI [53]. The framework offers a variety of about hundred
different games with five different levels each, which are easily accessible through a
proper programming interface. Being open-source, both the framework and the games
can be easily modified to adapt them for research and other purposes. This renders
the GVGAI framework an eligible test environment for this chapter (and also for the
upcoming Chapter 5).

In the following, several games of different complexity will be selected from the
GVGAI framework and will be briefly described (Section 4.1.1). After that, the state-
action space of the games will be modeled (Section 4.1.2). Finally, the resulting HKBs
extracted from the human playtraces will be presented and the results will be dis-
cussed (Section 4.1.3).

4.1.1 Selected Games

For the extraction of HKBs that will be described in the following sections, two
different levels of three games from the GVGAI framework will be selected (and will
be partly slightly modified, where necessary). The games and their levels are selected
according to an increasing complexity, which allows to study how this complexity is

104

4.1 Knowledge Base Extraction in Games

handled by the HKB extraction algorithm and reflected in the the resulting HKBs.
The selected levels of the games are shown in Figure 4.1 and will be briefly explained
in the following.

Figure 4.1 (GVGAI Games for HKB Extraction) (Source: [52], adapted from [11])

Three diverse games (two levels of each game) have been selected from the GVGAI
framework [52] (and partly slightly modified) for materializing the knowledge contained
in the respective playtraces of a human player as HKBs. The games start from a very
simple one (Camel Race), over a more advanced one requiring basic planning skills
(Run), up to a game where another agent is directly reacting to the player and thus a
more strategic behavior is required (Eighth Passenger). The game mechanics of each
game are described in detail in the text. (The same games will be considered later in
Section 4.2 as well.)

Camel Race The game Camel Race is one of the simplest games of the GVGAI
framework. The player controls the yellow camel in the middle and has to be the first
reaching one of the goals on the right. Higher levels of the game include more com-
plex architectures of the playground with more obstacles or invert the direction of the

105

(a) Camel Race (Level 0) (b) Camel Race (Level 2)

(c) Run (Level 1) (d) Run (Level 2)

(e) Eighth Passenger (Level 0) (f) Eighth Passenger (Level 3)

4. Explaining and Analyzing Agent Behavior

game. Although being simplistic, it can be a hard task for general video game playing
agents, since state-of-the-art techniques like monte carlo tree search (MCTS) [21],
that are widely-used in GVGAI, may fail, due to the goal being located far from the
starting point (which would require a large tree depth).

Run In Run, the player controls a girl that must reach the door in the bottom left
corner (see Figure 4.1 (c) and (d)), before the playground gets flooded by the steadily
progressing water. A key must be collected to be able to open the yellow door, which
incorporates some basic planning elements to the game. As an a priori intuition, this
game seems to have a slightly increased complexity in comparison to Camel Race.

Eighth Passenger In this game, the player controls the elf (see Figure 4.1 (e) on
the bottom left and (d) on the bottom in the middle) and has to reach the goal that
is locked by two doors (in case of Level 0) or one door (in case of Level 1). The doors
can be opened by pushing the button that is indicated by the teal stone in the upper
left area (in case of Level 0) or in the upper right area (in case of Level 3). While
trying to solve the task, the player has to avoid contact with the green orc that
steadily moves toward the player’s position. There are two kinds of tunnels: The blue
ones can only be used by the player to hide from the orc, which renders the orc
invisible at the same time, as long as the player is remaining in the tunnel. The red
ones can only be traversed by the orc. Having multiple different objects to interact
with and due to the orc directly reacting to the player’s position, this game intui-
tively seems to be the most complex of the three games selected here.

4.1.2 Modeling the State-Action Spaces

To be able to apply an HKB extraction algorithm on playtraces resulting from the
described games, the sensory inputs of the player agent as well as its possible actions
will be defined here for each game, according to [11]:

The possible actions are identical for all of the three games and thus the corre-
sponding action symbol set can be defined as

 (4.1)

where are de-
noting the actions according to their obvious meaning and is denoting
that no action is performed in the respective time unit of the game.

106

4.1 Knowledge Base Extraction in Games

The state spaces have to be modeled individually for each game, taking into
account that a state must reflect all information that is relevant to the player. (Note
that the subscripts of the sensor symbol sets used here, will later refer to the prefixes
of the respective sensor symbols—except for the sets concerning the player’s position
whose subscripts have an additional prefix part to distinguish them among the
different games. The additional part will later be omitted for the prefixes of the
sensor symbols).

State Space of the Game Camel Race

For Camel Race, the modeling results in the four-dimensional state space

 (4.2)

where and reflect the position of the player’s
camel and the remaining two dimensions reflect the positions of the pink and the
green camel. Note that only the -position of the pink and the green camel are
considered here, since these camels only move in -direction in this game.

The sizes of the respective sensor symbol sets (which are needed later for cal-
culating the subjective strategic depth) are determined by the game mechanics as
follows: (both bounded by the sur-
rounding walls), and Note that the sets
of the pink and the green camel have a larger size since they move slower than
the player’s camel and therefore the game seems to create more fine-grained “inter-
mediate” states for their movement. Also note that the green camel (at the bottom of
the scenario) moves even slower than the pink one and therefore has even more fine-
grained states—however, since both the pink and the green camel constantly move
toward the goal, the green camel never reaches all of the theoretically possible states
and thus, its state space has the same amount of (more fine-grained) states.

State Space of the Game Run

For the game Run, the state space will also be considered four-dimensional as

where and reflect the position of the player’s avatar
(the girl), reflects the percentage of the water flooding the play-
ground and is a Boolean state dimension used to indicate whether or not the
key has been collected.

107

4. Explaining and Analyzing Agent Behavior

The sizes of the respective sensor symbol sets are determined by the game me-
chanics as follows: (both bounded by
the surrounding walls), (from to in steps)
and (for having the key or not).

State Space of the Game Eighth Passenger

In case of the game Eighth Passenger, the state space is modeled with seven dimen-
sions as

where the and dimensions reflect the position of the
player’s avatar (the elf), and reflect the
position and the previous position of the orc (the latter to be able to encode the
direction of the orc’s current movement) and is a Boolean dimension used to
indicate the state of the door(s) locking the goal (i. e., whether or not the door(s)
is/are currently open).

The sizes of the respective sensor symbol sets determined by the game mechan-
ics are: ,
and (all bounded by the surrounding walls). Note
that the state sets of the orc are smaller than those of the player, since the player is
able to move the elf between two cells of the “grid” whereas the orc can only move
cell-wise.

4.1.3 Resulting HKBs

In this section, HKBs will be extracted from human playtraces of the games that
have been considered in Section 4.1.1 and Section 4.1.2, to provide an impression of
how the HKBs reflect the player’s knowledge about the respective games.

For this purpose, playtraces will be considered state-action sequences (see Defi-
nition 2.6) of the states and actions resulting from the state-action spaces that were
modeled individually for each of the three games in Section 4.1.2. Such playtraces
were recorded from a human player learning to play the three games while playing
the different levels multiple times in random order. The playtraces of the best itera-
tions (i. e., the iterations that took the minimal time to complete the respective level)
were selected to extract the HKBs.20

20 The original data of the recorded playtraces stems from the study in [11] (see also Section 4.2).

108

4.1 Knowledge Base Extraction in Games

The following subsections now consider and discuss the resulting HKBs in detail
(mainly) for one level of each of the three games.

Camel Race

Level 0 of the game Camel Race (see Figure 4.1 (a)) is rather simplistic and it is
obvious that a human player will quickly understand that using only the action

 immediately after the level has started until the goal on the
right is reached will be the best strategy. Thus (maybe after a short initial learning
phase), the resulting HKB will usually only contain one single abstraction level
with the topmost rule i. e.,

 (4.3)

with

However, Level 2 (see Figure 4.1 (b)) will already be more interesting, since the
resulting HKB additionally reflects the exceptions stemming from the obstacles
blocking the way to the goal. Figure 4.2 shows the HKB extracted from the human
player’s playtrace using Algorithm 3.2.

Figure 4.2 (Extracted HKB for Camel Race Level 2)
The HKB resulted from running Algorithm 3.2 on a playtrace by a human
agent playing Level 2 of (a slightly modified version of) the game Camel
Race from the GVGAI framework [52]. Besides the most general rule on
level (stating that the player usually used it com-
prises several exceptions on the levels and that are mostly provided
by the obstacles blocking the direct way to the goal (cf. Figure 4.1 (b)).

As can be seen in Figure 4.2, the player usually uses This be-
havior changes to avoid the obstacles that are blocking the directed way to the goal,
which is reflected by the exception rules on level and (cf. Figure 4.1 (b)).
Remarkably, not all of these exceptions are based on the coordinates of the player’s
avatar, but also on the position of the opponent camels: This is the case, since the

109

4. Explaining and Analyzing Agent Behavior

extraction algorithm learned the HKB from the playtrace data only, without having
any background knowledge. Thus, the algorithm can only statistically estimate, which
dimension (i. e., which sensor) most probably explains an action best.

Furthermore, it can also be seen from the HKB shown in Figure 4.2, that in the
beginning of the game, the player needed some response time after the game started:
This is reflected by the rule on level which indi-
cates that the player did not immediately start, but remained at the starting position
for a couple of time units. (The same can be observed for the rules with a starting
position of one of the other camels as premise and as conclusion—
for the reason provided in the previous paragraph.)

Run

The game Run seems to be slightly more complex than Camel Race, due to the more
elaborate anatomy of the levels. Moreover, the planning aspect of getting the key to
be able to open the door needs some more strategy to be involved. Figure 4.3 shows
the HKB of a human playtrace for Level 2 of the game (cf. Figure 4.1 (d)).

Figure 4.3 (Extracted HKB for Run Level 2)
The HKB resulting from running Algorithm 3.2 on a human playtrace of
Level 2 of the game Run (see Figure 4.1 (d)). Some of the rules rely on the
water progress here, since the algorithm does not involve any background
knowledge about the meaning of sensor values and action. Thus it can only
be determined statistically what explains an action best.

In the HKB shown in Figure 4.3, the rule on the topmost level indicates that
the player mainly moved to the left. This makes sense in an intuitive way, since from
the avatar’s point of view, the goal is located on the left.

110

4.1 Knowledge Base Extraction in Games

The remainder of the knowledge (getting the key, opening the door and navigating
to the goal) is contained on the levels and of the HKB. The two rules

 and on lev-
el describe most of the player’s downward movement on the left and in the center
of the scenario (while the rest of the downward movement is covered by the addi-
tional exception rules on level

Note that, according to the remaining rules on level (and some of the rules on
level the movement to the right (needed in the vertical center of the scenario) is
mostly based on the water progress. Although this relation may be considered
questionable, it is reasonable from the extraction algorithm’s point of view: Since it
has no information about the meaning of certain sensor values and actions, it only
relies on the statistical search for a compact representation in the form of rules and
exceptions. Thus, it uses the water progress in the same way as any other infor-
mation. This leads to several exception rules reflecting the environment’s dynamics
that is induced by the progressing water (similar to the movement of the opponent
camels in the game Camel Race). Later, in Chapter 5, an alternative way of repre-
senting the mechanics of a game using HKBs will be presented (Section 5.2).

Eighth Passenger

With multiple interactive objects like doors and buttons to open these doors, and
with an opponent character being involved (the orc) that traces the player, this game
intuitively seems to be much more complex than the two games that have been con-
sidered before.

Also unlike the two games considered before, the state-action space of Eighth
Passenger comprises more dimensions: For Eighth Passenger the state-action space
is eight-dimensional, whereas the state-action spaces of Camel Race and Run are
both modeled with only five dimensions.

Figure 4.4 shows a corresponding HKBs of a human playtrace of Level 3 of the
game (cf. Figure 4.1 (f)).

The HKB in Figure 4.4 shows that the player mainly moved to the left, as
indicated by the rule on the topmost level Since the goal is located in the left of
the avatar’s starting position (see Figure 4.1 (f)), this intuitively makes sense.

111

4. Explaining and Analyzing Agent Behavior

Figure 4.4 (Extracted HKB for Eighth Passenger Level 3)
The HKB resulting from running Algorithm 3.2 on a human playtrace of
Level 3 of the game Eighth Passenger is much larger than the HKBs for the
games Camel Race and Run. Nevertheless, also here, some details of the
behavior can be seen immediately from the more general levels of the HKB:
E. g., the rule on level implies that the player overall usually used the
action (the goal is located in the upper left corner), or the
first three rules on level which describe the players movement in striking
areas of the level. On level not all of the rules created by Algorithm 3.2
are listed here.

The level of the HKB contains the knowledge about some elementary behavior
performed by the player: This comprises the navigation in the (mostly) fixed anatomy
of the scenario (the first three rules listed on level of the HKB) as well as some
kind of “flight behavior” to escape the orc (e. g., rule
which can be interpreted as “if the orc is located in the bottom area of the scenario,
the player tends to move upward”).

112

4.1 Knowledge Base Extraction in Games

On the more specific levels, the rules are already rather numerous and therefore, on
level only a part of the rules created by Algorithm 3.2 are listed in Figure 4.4.
However, also on these abstraction levels, some interesting relations can be seen, e. g.,
the second to last rule on level

 (which can be interpreted as “if the orc is in the right area of the scenario and
moves to the left, then the player usually also moves to the left”), or the third to
the last rule on
level (which provides a similar statement for the vertical movement of the orc, if it
is additionally known that the door was already opened).

Level finally covers some specific cases related to idle actions that involve
already four of the seven sensors that were used for the modeling of the perceptions
for the game (cf. Section 4.1.2).

Note that this game already shows that—even if the HKB can still be interpreted
to some degree by reading it top-down—naturally, the interpretation becomes harder
with an increasing amount of rules. (Chapter 5 (Section 5.2) will later show an alter-
native way of using HKBs.)

4.2 Subjective Strategic Depth

The previous section showed, how HKBs can be extracted from human playtraces
of different games and how the extracted HKBs can be interpreted. As a first intui-
tion, it could be seen that more complicated games seem to result in larger HKBs.
This section will more deeply consider the relation of an HKB and the difficulty of a
game, especially the difficulty that is subjectively sensed by a player—the so-called
subjective strategic depth, which was introduced in [11].

For this purpose, following [11], a measure will be presented, that models the sub-
jective strategic depth based on the size and the structural properties of an HKB
(Section 4.2.1). After that, the evaluation of the presented measure will be described
(Section 4.2.2) and, finally, the evaluation results will be provided (Section 4.2.3).

4.2.1 Subjective Strategic Depth Measure

This section describes a measure for the strategic depth that is subjectively sensed by
human players when playing a game. The section follows the ideas first introduced
in [11]. Such a measure does not only have to reflect the complexity of a game itself,

113

4. Explaining and Analyzing Agent Behavior

but also individual subjective factors, like the current state of the player’s learning
process or its experience with (this kind of) games.

The main idea of the subjective strategic depth measure described here is, that the
more exceptions are needed to describe the player’s behavior for solving a game, the
higher the subjective strategic depth should be. In other words: A problem that needs
a lot of exceptions to be solved, usually appears more complicated than a problem
that can be solved successfully with a few exceptions only (be it simply due to the
size of the problem or due to its inherent complexity). Moreover, having less experi-
ence in solving a certain (kind of) problem, will more often lead to suboptimal solu-
tions, usually resulting in more (unnecessary) exceptions.

Based on these assumptions, the size and the structure of an HKB (i. e., the num-
ber of exceptions and their depth) will be considered to reflect the subjective strategic
depth, according to the following ideas:

• The size of an HKB potentially grows with the problem size (i. e., the
number of sensors and actions being involved). Its maximum number of levels
is (with being the number of sensors). The maximum number of
rules on each level depends on both the combinations of sensor values
(according to the premise length on that level) and the number of possible
actions

• More specific rules on lower abstraction levels potentially reflect more complex
relations than more general rules on higher abstract levels, since they have
longer premises with more sensor values being involved. Moreover, being more
deeply rooted in the HKB, such rules have a higher potential to represent
higher-order exceptions (i. e., exceptions of exceptions; cf. Definition 3.4).

With these ideas in mind, the subjective strategic depth measure can now be
defined more formally, following [11]:

Definition 4.1 (Subjective Strategic Depth Measure) The measure for repre-
senting the subjective strategic depth sensed by a (human) player agent when playing
a game is defined as a function

 (4.4)

where is an HKB representing the player’s playtrace (i. e., its state-action se-
quence used to win the game), is a set of all sensor symbol sets
needed to describe a player’s state, is the maximum number of levels

114

4.2 Subjective Strategic Depth

of is a constant that determines the impact of exceptions on the overall stra-
tegic depth, and is the -th level of 21

The main idea of the function represented by Formula (4.4) is, to create a weighted
sum over the ratios of the number of rules on each level and the maximum
number of possible rules on that level, according to the modeled state space (see the
fraction at the end of Formula (4.4)). (Note that the maximum number of possible
rules does not depend on the action space here—which makes sense, if only the best
actions for the provided states are considered.)

The ratios in the sum are weighted by the binomial coefficients and the

weights reflecting the impact of the rules according to their level in the HKB:

• The binomial coefficients balance the combinatorial growth of the possible num-
ber of rules on each level, which does not only depend on the number of sensor
values of each sensor, but also on the number of possible sensor combinations
of the sensors needed to describe a players state (see set in Definition 4.1).
(The first level can be considered a special case here, since it always contains
only one rule, according to Algorithm 3.2.)

• The weights model the impact of (higher-order) exceptions on the overall
strategic depth, i. e., it is assumed here, that the impact of exceptions grows
exponentially with the depth of the level on which they are located in the HKB.
(The constant can be used to control the amount of growth on each level of
the HKB; in the study presented in the following section it was considered to
be which reflected the strategic depth rather accurately there).

Note that the presented measure has no upper bound across different games, which
reflects the fact that a game can be arbitrarily complex. However, the measure can be

normalized by dividing it by (cf. [11]), in case one is interested in

the “relative” strategic depth represented by a playtrace in relation to the maximum
strategic depth possible, according to the game’s sensor symbol sets and actions.22

21 Note that Formula (4.4) corrects the corresponding formula of the original definition from [11],
where the binomial coefficients were accidentally missing a “ ” in the upper part. Also note
that the outer sum could start counting from to as well (for omitting the “ ” attached to
the in the formula)—however, to underline the intuition of summing over all levels of the
HKB (starting from the first level this is provided as in the original definition from [11] in
this case.

22 In Section 5.1.2, this will be used to let an artificial agent estimate the potential complexity of
a (partially) unknown environment while exploring it in the context of a learning process.

115

4. Explaining and Analyzing Agent Behavior

In the following example, the subjective strategic depth of two different levels will
be calculated and compared.

Example 4.1 (Calculating and Comparing Strategic Depths) This example
calculates and compares the subjective strategic depths of Level 2 of the game Camel
Race (see Figure 4.1 (b)) and Level 2 of the game Run (see Figure 4.1 (d)), according
to Definition 4.1. For this purpose, the corresponding HKBs (see
Figure 4.2) and (see Figure 4.3) will be considered, which were created
from two human playtraces (of the same person), using Algorithm 3.2. The sizes of
the respective sensor symbol sets are as described in Section 4.1.2.

For Level 2 of Camel Race, the subjective strategic depth is calculated using
the HKB and the set of sensors

After expanding the outer sum by inserting the numbers of rules for each level (with
the last two elements of the sum being due to the corresponding levels and
being empty), it is

Now, the maximum numbers of rules for each level according to the state space will
be inserted (where the first summand will be due to the product in the denomi-
nator being the empty product), resulting in:

116

4.2 Subjective Strategic Depth

The subjective strategic depth of Level 2 of the game Run can be calculated in the
same way, resulting in:

With the
strategic depth sensed by the human player that played both levels will be estimated
to be higher when playing the game of Run (which involves basic planning
capabilities—in contrast to the rather simplistic game of Camel Race, where only
obstacles have to be avoided with a purely reactive behavior).

Having now introduced the main ideas of measuring the strategic depth sensed by
a human player based on rules and exceptions in the form of HKBs, the following
sections will concern the evaluation of the measure.

4.2.2 Evaluation

To evaluate the strategic depth measure from Definition 4.1, a survey was designed,
where human players had to play the six levels shown in Figure 4.1 in random order.
For each individual level, the corresponding playtraces were stored and the players
where asked for their subjectively sensed strategic depth. The stored playtraces
were used later for extracting HKBs (as described in Section 4.2.1) and based on
these extracted HKBs, the respective strategic depth was calculated, according to
Definition 4.1. The calculated strategic depths were then evaluated against the sensed
strategic depths provided by the players. In the following, the individual components
of the survey will be described more detailed.

Survey Software

A special survey software was developed, based on the GVGAI framework [52], for
collecting the data from players. This software allowed the players to play the six
levels from Figure 4.1 in random order (to avoid biases due to learning effects of
the players).

After starting, the survey software first displayed a general description text to the
player (including legal/anonymization hints). Moreover, before each level, an addi-
tional introductory text was displayed, briefly describing the upcoming game.

The software recorded the playtraces of a player individually for each level by only
keeping the best playtrace of each level won by the player. Playtraces in which the
player lost the game were not stored for reasons of comparability: Such playtraces

117

4. Explaining and Analyzing Agent Behavior

might be rather short (independently from the specific game) and the complexity of
the game’s task(s) might not be well reflected by the playtrace, since not being per-
formed successfully. The recorded playtraces were later processed to extract HKBs,
using Algorithm 3.2.

At the end of each level, a slider was displayed to the player and the player was
asked to enter the subjectively sensed strategic depth using the slider. The slider
showed a range of annotated in whole numbers and had a granularity of
resulting in a near-continuous feel.

Participants

For running the survey, eight voluntary players were acquired as participants with an
appropriate affinity for games (one psychologist, one industrial engineer and six com-
puter scientists, see [11]). This ensured that the players were aware of the meaning of
the term “strategic depth” in the context of games.

Note that the number of acquired players might appear to be rather low. However,
since each of the players played six levels and (besides the playtraces) additionally
provided the subjectively sensed strategic depth for each level, in the end, there were
about data points resulting from the survey (minus some few missing
values, that will be considered more detailed in the next section).

Data Processing

The raw data that resulted from the survey can be divided for each player into two
sets, which will be referred to in following as and

The set contains the subjectively sensed strategic depth values that were pro-
vided directly by a player for each level (using the slider).

The set contains the strategic depth values that were calculated from the
recorded playtraces for each level successfully played by a player For this purpose,
an HKB was extracted at first from each recorded playtrace using Algorithm 3.2.
These HKBs were then used to calculate the strategic depth values, according to
Definition 4.1.

For reasons of comparability, the raw values contained in (directly provided by
a player) and those contained in (calculated from the extracted HKBs) were
normalized to a range of This was done by calculating for each and
each the corresponding normalized values

118

4.2 Subjective Strategic Depth

and

 (4.5)

respectively (see [11]).

A problem of this kind of normalization is related to the missing values: In rare
cases, some of the participating players did not play each level successfully, which
resulted in some of the raw data sets being incomplete. Applying the nor-
malization scheme according to Formula (4.5) in these cases could lead to a distortion
of the resulting scales. For this reason, the missing values of a level were imputed by
the average value of the corresponding levels of all other players, before the nor-
malization was performed.

The imputation was done only in the context of the normalization and the imputed
values were not considered further in the evaluation process, to avoid any further
influence on the results. Moreover, with an overall missing value rate of
(see [11]), the effect of the imputation on the results should be considered small here.

4.2.3 Results

This section summarizes the evaluation results of the subjective strategic depth
measure that was presented in Section 4.2.1.

Following [11], the approach of calculating the subjective strategic depth based on
HKBs that are extracted from human playtraces, will be evaluated against the
subjective strategic depth sensed by human players. This evaluation will be done in
the context of the games from Figure 4.1.

More concretely, to quantify the accuracy of the subjective strategic depth mea-
sure, for each level, averaged over all players, the normalized calculated strategic
depth will be compared to the normalized strategic depth that was sensed by the
players. The results of this comparison are visualized in a bar plot that is shown in
Figure 4.5.

As can be seen in Figure 4.5, the subjective strategic depth that was sensed by the
players is well reflected by the measure from Definition 4.1: The measure is especially
able to reflect the different proportions of the subjective strategic depth for the dif-
ferent levels.

119

4. Explaining and Analyzing Agent Behavior

Figure 4.5 (Evaluation of the Strategic Depth Measure) (Source: adapted from [11])

The intuitively estimated strategic depth (left plot), that was directly provided by
the players after each level using a slider, is compared against the calculated stra-
tegic depth (right plot), that was determined by applying the subjective strategic
depth measure from Definition 4.1 to the HKBs extracted from the corresponding
playtraces. The levels correspond to those provided in Figure 4.1. The subjective
strategic depth values have been normalized for both plots to be in a range of
and the values for each level have been averaged over all players. It can be seen that
the subjective strategic depth measure models the strategic depth sensed by the
players well (with a slight tendency for underestimation).

A minor issue (that was already mentioned in [11]) is, that the approach seems to
slightly underestimate the player’s intuitions. According to [11], a possible solution to
that might be to adapt the constant in Formula (4.4).

More detailed, according to the results of the survey, the average deviation of the
measure from the strategic depth sensed by the players is and the av-
erage relative deviation to the strategic depth sensed by the players is
(i. e., Since the different proportions among the levels are well reflected,
most of the deviation amount seems to stem from the overall underestimation of the
measure. By introducing a proportionality factor of (estimated from the ratios
of the calculated strategic depth values and the strategic depth values provided
by the players), the deviation is reduced to and the average relative
deviation is reduced to (i. e.,

It seems that the number of exceptions and their nesting depth needed to describe
a player’s behavior (as provided by the HKBs), can be considered an eligible ap-
proach to model the strategic depth that is subjectively sensed by a human player.
This conforms to the intuition that situations comprising more exceptions (like routes

120

©
 2

01
7

IE
EE

4.2 Subjective Strategic Depth

with multiple branches) are usually considered more complicated than those that can
be described with a small set of simple rules. In the described study, the subjective
strategic depth measure was able to reflect the differences among the levels of diverse
complexity similar to how humans were sensing it. (Later, in Chapter 5, it will also
be shown how artificial agents can benefit from this approach.)

4.3 Summary

Due to the readability properties and the compact hierarchical organization of the
knowledge contained in an HKB, a major application of HKBs is the materialization
of learned knowledge.

Besides having shown application for that in the context of video games from the
GVGAI competition [65] in Section 4.1, this chapter provided a further application
that builds on the concept of HKBs:

By exploiting the hierarchical organization of knowledge in the form of rules with
exceptions, a measure for strategic depth has been presented in Section 4.2, which
resulted from a joint work with Dr. (see Section ░░░░ ░░░ 1.4 and the biblio-
graphic remarks in Section 4.2 for details). This measure allows to estimate the sub-
jectively experienced strategic depth when playing video games. It provided accurate
results for human players when being evaluated against their subjective intuition on
the strategic depth of different games in the study performed in [11].

The concepts of HKBs in games in conjunction with the described measure for
strategic depth resulted later in an exhibit, which traveled around several German
and Austrian cities in 2019 and is still shown at the Deutsches Museum Bonn
(German Museum in Bonn) [24] at time of writing in the context of an exhibition
on AI [48] (see bibliographic remarks in Section 4.4 for details).

In the upcoming Chapter 5, the measure for strategic depth will also be used in an
artificial agent model that allows agents to estimate the complexity of their envi-
ronment from observations and thereby allows them to decide on their own, when to
use rougher heuristics.

121

4. Explaining and Analyzing Agent Behavior

4.4 Bibliographic Remarks

Some of the contents of this chapter (especially those from Section 4.2) have their
origins in a joint work [11] together with the author’s former colleague Dr. ░░░░

 (formerly at TU Dortmund University, at time of writing at Queen Mary Uni░░░ -
versity of London and modl.ai, Copenhagen). This work was originally dedicated to
finding a model for (subjective) strategic depth, but also helped later to further
stimulate the research on HKBs, especially for using them in the context of video
games (as will be shown in Chapter 5). Moreover, it opened doors to the AI in games
research community, resulting in fruitful further works in this field.

In [11], the author’s part mostly concerned the games selection, the modeling of
the state-action spaces for the HKBs in the context of the games and the develop-
ment of the strategic depth measure based on HKBs. Dr. contributed░░░░ ░░░
her knowledge in the field of AI in games by overtaking the part of embedding the
work in the context of related works like [20, 46, 67] and provided some analysis and
relevant conclusions thereof.

Section 4.1 provided some deeper insights into the extraction of HKBs from play-
traces of the GVGAI games as it is the case in [11]. By shifting the focus more
toward the modeling of HKBs in the context of games, this section also serves as a
preliminary work for the upcoming Chapter 5. Besides the correction of the formula
of the strategic depth measure being provided in Section 4.2, the analysis of the
results provided in Section 4.2.3 also introduced some new aspects about the relative
deviation of the measure and the proportionality factor.

Some additional results from [11] were not further considered here, as they are
more closely related to Dr. ’s work (e.░░░░ ░░░ g., regarding automatic game bal-
ancing aspects). This concerns especially the comparison of the subjective strategic
depth measure to the strategic depth calculated from (nearly) perfect playtraces,
which turned out to be much less accurate for predicting the strategic depth sensed
by the players, according to [11].

Finally, parts of the work (especially from Section 4.2.1) have been used as foun-
dation for creating an interactive exhibit, that was developed for the Z Quadrat
GmbH in Mainz, Germany. The exhibit allows users to play different levels of a game
(similar to the one from Figure 3.2). After each level, the knowledge used to solve the
level is provided (in an HKB-like manner) together with an estimation based thereon
which indicates how difficult the level was for the current user. By this means, it can
be used to teach users how knowledge can be represented compactly in the form of
rules with exceptions and allows the users to validate the provided strategic depth

122

4.4 Bibliographic Remarks

estimations against their own subjective intuitions for each level. The exhibit was
accepted for the German exhibition ship MS Wissenschaft [50] and traveled to several
cities of Germany and Austria in 2019. It was then selected for the ScienceStation
traveling exhibition [59] (another project of the German scientific communication
organization Wissenschaft im Dialog, WiD) and was shown at several train stations
in Germany in 2019. Furthermore, it was selected by the Deutsches Museum Bonn
(German Museum in Bonn) [24] for an exhibition on AI [48].23

23 The exhibition was originally planned for 2020 but seemed to be delayed due to the COVID-19
pandemic; it (re)opened at May 29th, 2021 (according to [48]).

123

4. Explaining and Analyzing Agent Behavior

124

5. Enhancing Learning Agents

5. Enhancing Learning Agents

In the previous chapter, the approach of extracting exception-tolerant hierarchical
knowledge bases (HKBs) from playtraces of different games has been used to mate-
rialize the knowledge needed by a (human) player for solving a game. Moreover, this
knowledge was also used for determining a score that reflects the strategic depth that
was subjectively sensed by the player agent (i. e., how “difficult” the game appeared to
the agent).

In this chapter, several of these ideas are now used for enhancing the skills of
learning agents. This is mainly realized by incorporating the ability of extracting
knowledge bases into an artificial agent model.

More detailed, different approaches of incorporating the extraction of HKBs into
the learning process of an agent will be considered: In Section 5.1, a classical re-
inforcement learning process [62, 68] will be accelerated by equipping the learning
agent with the ability of extracting HKBs and by exploiting this knowledge during
the learning process (Section 5.1.1). This approach will then be extended by also
providing the agent with the ability of estimating the difficulty of the unknown
environment in which it is located (Section 5.1.2). After that, the approach of ex-
tracting knowledge bases from a playtrace will be extended for learning the mechanics
of an a priori unknown game (i. e., the forward model), that can later be exploited by
state-of-the-art techniques used, e. g, for AI in games, like monte carlo tree search
(MCTS) [21] (Section 5.2).

5.1 Accelerating an Agent’s Learning Process by
Knowledge Base Extraction

This section incorporates ideas from knowledge base extraction into a classical rein-
forcement learning agent, that is based on approaches as in [62, 68]. During the re-
inforcement learning process, the agent will be able to extract a knowledge base in
the form of an HKB from the knowledge that was learned so far through the under-
lying reinforcement learning approach. The approaches that will be presented here do
not rely on a specific underlying learning paradigm.

125

5. Enhancing Learning Agents

At first, it will be investigated at which point during the learning process the agent
benefits the most from extracting an HKB and exploiting the contained knowledge
(Section 5.1.1). After that, the approach will be completed to an agent model that
is able to decide on its own, when to rely decisions on an HKB that was extracted
from the knowledge learned so far by the underlying reinforcement learning approach
(Section 5.2.2).

The latter will be based on the results from Section 4.2, with the idea in mind
that the agent should rely its decision on an extracted HKB when the strategic depth
is underneath a certain threshold (since in this case, the unknown environment ap-
pears to be simple enough to follow the rougher heuristics of the HKB instead of the
learned knowledge from which it was extracted).

Finally, the HKB-based integration of a priori knowledge in the context of the
agent model from Section 5.1.2 will be considered (Section 5.1.3).

5.1.1 Extracting and Exploiting HKBs during Learning

This section makes first attempts to incorporate the extraction of HKBs (as presented
in Chapter 3) into a classical reinforcement learning agent [62]—i. e., a Q-learning
agent [68] (see Section 2.1.7). By following [7], it will be especially investigated here
whether such learning agents can benefit from extracting and exploiting HKBs. This
leads to the interesting question, at which point during a learning process, the agent’s
benefit will be maximized?

On the one hand, if the extraction will be done too early, the knowledge learned by
the Q-learning approach could still be of poor quality and thus an HKB extracted
from the learning algorithm’s -matrix might result in bad or even wrong rules
and exceptions. On the other hand, if done too late, the Q-learning algorithm might
have solved the problem already, rendering the extraction and exploitation of an
HKB superfluous.

Basic Ideas

In psychology, implicit and explicit knowledge can be distinguished (see [27], p. 65):
While implicit knowledge allows for performing a learned task, explicit knowledge also
allows for materializing the knowledge about the learned task, e. g., by having an
explicit model in mind that explains how to come to a solution. Such knowledge can
be easily verbalized and communicated to others. In [27], p. 65, Dörner underpins this
with the following example (1992, Rowohlt Taschenbuch, translated from German):

126

5.1 Accelerating an Agent’s Learning Process by Knowledge Base Extraction

“A good example of implicit knowledge is the knowledge of a music lover,
which allows him to to say: «I don’t know this, but it’s Mozart», without
being able to tell from what exactly he recognized that it is Mozart.”

Although the music lover in the provided example learned to classify the music cor-
rectly, he is not aware of the features and their respective properties from which the
correct classification can be inferred.24

According to the ideas provided in [7], when a human is being confronted with a
new unknown task to be solved (such as an a priori unknown environment in the case
of an artificial agent), a learning process usually starts with some early attempts and
progresses until the task is learned. At some point during the learning process, the
human learner might not only be able to perform the task to be learned, but also
might start to create a (simplified) explicit model of it, that comprises the knowledge
about how the task can be solved in an explicit form.

In the context of artificial learning agents, sub-symbolic and symbolic approaches
can be distinguished in a similar way: Sub-symbolic approaches like neural networks,
that are used, e. g., as function approximators in reinforcement learning (see sub-
section Neural Networks as Function Approximators of Section 2.1.7), seem to have a
more implicit character, as they often provide good results after learning, but are not
really able to explain what has been learned. The knowledge is implicit in the sense
that it is hidden in the numerous learned weights of the network. In contrast, HKBs
can serve as comprehensible explicit models of learned tasks (see [41] for a study on
the comprehensibility of HKBs) and, at the same time, seem to be able to reflect to
some degree how humans create models, as indicated by the results of Chapter 4 in
the context of games (especially those from Section 4.2).

In the following, it will be investigated, whether a reinforcement learning process
benefits from explicit models in the form of HKBs that are extracted and exploited
by an agent at some point during the learning process. Moreover, it will be inves-
tigated, at which point during a learning process the benefit will be maximized. This
will be done in the context of two reinforcement learning scenarios that can be found
similarly in reinforcement learning literature (e. g., [62]). For the latter, it will also be
necessary to define, when a learning process can be considered completed.

Scenarios of the Experiments

To investigate whether (and if so when) during a learning process an agent can bene-
fit from explicit knowledge, two scenarios will be considered here. In both scenarios,

24 Note that in [27], Dörner also considers the inverse case, where explicit knowledge is available
to a person as “theoretical” knowledge, without the person being able to apply it.

127

5. Enhancing Learning Agents

an agent is located in a two-dimensional grid world environment and has to get from
a starting point to a destination. (Similar scenarios can be found, e. g., in [62] and
have also been considered earlier, in Chapter 2 and Chapter 3 of this work).

Figure 5.1 shows the two grid world scenarios that are relevant for the upcoming
experiments. The scenario that is represented by Figure 5.1 (b) corresponds to that of
Figure 2.5 from Section 2.1.7 and is shown here again for reasons of comparability of
the two scenarios considered here.

The state-action space of the two scenarios shown in Figure 5.1 is the same as
that of the scenario from Figure 2.5: The agent is equipped with two sensors for
determining its and positions in the environment, resulting in the sensor symbol
sets and the action symbol set is

 (see also Example 2.4).

Obviously, the optimal behavior for moving from the starting point to the desti-
nation in case of Scenario (a) of Figure 5.1 is simply to move to east, resulting in the
state-action sequence:

 (5.1)

The optimal behavior of Scenario (b) is slightly more complex, since the agent has
to learn to navigate around the highly negative rewarded area of water in the south of
the scenario (as indicated by the arrows in Figure 2.5 (c)). This results in the state-
action sequence:

128

5.1 Accelerating an Agent’s Learning Process by Knowledge Base Extraction

(5.2)

However, since in the experiments, the environments of both scenarios are a priori
unknown to the agent (with no background knowledge being involved), the reinforce-
ment learning algorithm has to explore larger parts of the environments until it
converges to the optimal policies. This requires numerous runs by the agent from the
starting point to the destination (see Figure 2.5 (a)–(c) for getting an intuition
of the improvement of the policies during the learning process). The number of such
iterations until the reinforcement learning process can be considered completed will
be discussed in detail in the following subsection.

Learning Process

Following [7], a classical reinforcement learning algorithm (Q-learning [68, 62]) will be
used for learning an agent’s multi-dimensional weight matrix by starting from a
zero matrix and updating their weights successively.

For this purpose, multiple runs will be performed for every scenario of Figure 5.1.
In every run, the agent starts from the starting state (point and navigates through
the environment, until it reaches the terminal state (point During a run, after
every action, the agent is rewarded with the reward value of the subsequent state
and the corresponding weight of the -matrix is updated according to Formula (2.2),
as described in the foundations chapter (Chapter 2, see “Q-Learning” subsection of
Section 2.1.7).

For the experiments, the following parameters will be used:

• The learning rate (determining how much of the new information will be
incorporated into the old knowledge with every weight update) will be set
to

• The discount factor (determining the degree to which the knowledge about
future states is considered) will be set to

• An exploration rate of will be used (determining that in percent of
the cases, the agent will perform a random action, even if this is not the best
action according to what was already learned).

Note that the choice of the parameters should not have a large impact on the
experiments, since influencing the learning speed through these parameters would also
influence the quality of the extracted HKBs at a certain point during the learning
process in a similar way. The same argument holds for using alternative or more ad-

129

5. Enhancing Learning Agents

vanced reinforcement learning algorithms (like SARSA [62] or modern approaches like
Q-learning combined with deep convolutional neural networks, as in [49]).

To investigate at which point during the learning process of the Q-learning algo-
rithm, the agent benefits most from extracting an HKB and relying its decisions on
the HKB rather than on the -matrix, it must be defined at first, when a learning
process can be considered completed. At a first glance, this might sound trivial, since
an obvious answer could be to determine the end of a learning process by the first
run, after which the agent found the optimal path to the terminal state. However,
this is problematic, since the learning process also relies on random decisions (to
explore the a priori unknown environment). Thus, the agent might only apparently
behave according to the optimal policy, in case random decisions are involved in
the behavior.

According to [7], a more elaborated idea will be to consider the learning process of
a scenario as completed, if the policy for the optimal path from the starting point
to the destination was found and is not changing anymore.25 Since exploration (i. e.,
performing random sub-optimal actions instead of following the so far learned
maximum weights of the -matrix) is an important prerequisite for changing a
learned policy, the learning process will be considered completed, if the probability
that the learned policy will change is smaller than a certain threshold. This is the
case, if the following inequation holds for a minimal (see [7]):

 (5.3)

where is the exploration rate (i. e., the probability for performing a random
action), is the conditional probability that a sub-optimal action is

performed given that a random action is performed, is the length of the state-action
sequence from the starting point to the destination according to the optimal policy,
is the number of (subsequent) runs and is the threshold for the probability that
exploration was involved in producing the optimal state-action sequence from the
starting point to the destination. The inner term of the inequation’s left side
reflects the probability that the agent randomly performed the optimal path through
the environment; the entire left side of the inequation reflects the
probability, that this occurs in (subsequent) runs.

For the upcoming experiments, will be used, and by solving (5.3), the
respective values of a minimal can be determined for both scenarios of Figure 5.1.
By having determined for each of the scenarios, the average number of runs that
are needed to consider the learning process completed can now be determined by
repeatedly running the learning process for each scenario until the agent shows the
25 In [7], the policy is called stable in this case.

130

5.1 Accelerating an Agent’s Learning Process by Knowledge Base Extraction

optimal path in subsequent runs. The results will then be averaged over
repetitions for each scenario. Table 5.1 summarizes the resulting values of the vari-
ables considered here for each of the two test scenarios from Figure 5.1.

Table 5.1 (Parameters for Learning Agent Experiments) (Source: adapted from [7])

The number of subsequent optimal runs that are needed to consider the learning
process completed in the scenarios from Figure 5.1 are determined from the lengths
of the optimal state-action sequences using inequation (5.3). The average number of
runs is then determined by running each scenario until subsequent optimal runs
were performed (averaged over runs).

Results

Having described now when the learning process of the Q-learning agent can be con-
sidered completed in either of the two scenarios from Figure 5.1, this subsection will
present the results. Still following [7], it will be presented, whether the Q-learning
agent benefits from relying its decisions on explicit knowledge and, if so, at which
point during the learning process the Q-learning agent can benefit most from the
explicit knowledge.

For this purpose, during the Q-learning process, HKBs will be extracted after
completing a run, using Algorithm 3.2:

At the beginning of the learning process, after only a couple of runs have been
performed, many of the weights contained in the agent’s -matrix are still zero (since
the learning process starts from a zero matrix) or the weights represent wrong or
incomplete knowledge (e. g., in case not all actions have already been tried out in a
state). Thus, at the beginning of the learning process, it can be expected, that the
extracted HKBs will be of rather poor quality. As the learning process progresses, the
agent behavior slowly converges to the optimal policy and the extracted HKBs will
become better over time.

At the end of the learning process (i. e., after or runs, respectively; see
Table 5.1), the resulting HKBs will look as provided in Figure 5.2.

131

5. Enhancing Learning Agents

Figure 5.2 (Extracted HKBs after Completed Learning Process) (Source: a. f. [7])

The HKBs shown here represent the knowledge of the optimal state-action sequences
(5.1) and (5.2) from the start to the destination in Scenario (a) and Scenario (b). The
HKB states that the agent should always move to east. states that the agent
should usually move to east, except when is perceived, then the agent should move to
north or, when is perceived, then the agent should move to south (cf. Figure 5.1).

If it will be beneficial to incorporate extracted knowledge in the learning pro-
cess (by relying the agent’s decisions on the extracted HKBs rather than on the

-matrix), there must be a point during the learning process, where the benefit is
maximized: When extracted too early, the HKB can be of poor quality, leading to no
benefit. When done too late, there might be also no benefit, since the optimal path is
found by the Q-learning algorithm itself. Figure 5.3 shows the results by considering
the reward of the agent when navigating through the scenarios.

Figure 5.3 (Results for Incorporating HKBs during Learning) (Source: adapted from [7])

The plots show the average reward of the agent in Scenario (a) and Scenario (b) from
Figure 5.1, when relying its (non-exploration) decisions on the extracted HKBs at some
point during the learning process. It can be seen that in both scenarios, the benefit is
maximized already very early, after approximately to of the learning process.
The end of the plots denotes the performance when no HKBs are involved.

132

: :

(a) (b)

(a) (b)

5.1 Accelerating an Agent’s Learning Process by Knowledge Base Extraction

In Figure 5.3, the x-axis represents the number of runs, after which an HKB has
been extracted and exploited by relying the agent’s decisions on the HKB rather then
on the -matrix. The y-axis represents the average reward collected by the agent
during the simulation. The plot for Scenario (b) shows an overall larger negative
reward, since this scenario has a highly negative rewarded area in the south (see
Figure 5.1 (b)). This is also correspondingly reflected by the scale of the y-axis for
this scenario.

The results presented in Figure 5.3 show clearly that

(1) the agent benefits from relying its decisions on the extracted HKBs (since the
reward is maximized when incorporating HKBs in the learning process) and

(2) the benefit is maximized, if the HKBs are extracted and exploited very early in
the learning process (after of the learning process).

This is because the HKBs allow to fall back to more general rules, in case the
currently perceived sensor values do not satisfy the more specific rules—in contrast to
the -matrix, where such default-like fall back mechanisms do not exist: Either the
agent already learned about the quality of a certain action performed in a specific
state (and subsequent states) by means of exploration, or there will be no information
available on whether or not it is beneficial to perform the action in this state.

Furthermore, it can be seen in Figure 5.3 that the plot for Scenario (b) shows
much more fluctuations (especially in the beginning) than the one from Scenario (a).
This effect can be explained by Scenario (b) being more complex than Scenario (a)
(the agent has to learn to navigate around the “river” in the south of the scenario
here; see Figure 5.1 (b)). Thus, relying the decisions on an HKB requires the HKB to
already contain some of the important rules that let the agent navigate around the
“river”—otherwise this can result in large negative rewards. In an early phase of the
learning process, this in turn depends on the agent’s exploration, i. e., which random
experiences have been made by the agent so far. In a more complex scenario, this can
more easily lead to wrong decisions (especially in the beginning of the learning
process) than in a scenario that follows simpler rules with less exceptions being
involved. Note that the total negative reward is limited here for each of the scenarios,
in case the agent gets stuck in a run due to wrongly learned rules (which could
otherwise lead to infinitely high negative rewards).

Since both scenarios have a simple and clear structure, they can be solved more
easily by extracting and exploiting explicit knowledge in the form of HKBs, which
may serve as a rougher heuristic. Such clear structures seem to appear quite often in
practice—especially in those environments that are designed by (and for) humans:
Such environments are usually also created following simple rules, such as streets,

133

5. Enhancing Learning Agents

that are usually build straight (where possible), or games, whose game mechanics are
designed as simple as possible to realize the intended game play.

In the following section, this will be underpinned by applying the presented
approach to further scenarios, including a game from the GVGAI competition [52].
The approach will also be further developed to an agent model that incorporates both
implicit and explicit knowledge in the form of HKBs: This agent model will also be
able to decide on its own, when to exploit an extracted HKB during a learning pro-
cess, depending on the estimated complexity of the (unknown) environment (based on
the measure from Section 4.2.1).

5.1.2 A Combined HKB/Reinforcement Learning Agent Model

This section presents an agent model according to [9], that extends a reinforcement
learning [62] agent by the capability of extracting and exploiting HKBs during a
continuously progressing learning process.

While the previous experiments from Section 5.1.1 focused on finding out at which
point during the learning process a learning agent can benefit most from extracting
and exploiting an HKB, here, an agent model will be presented that is able to decide
on its own, when to rely the decisions on an HKB rather than on the underlying
learning approach. For this purpose, the agent will be equipped with the ability of
estimating the complexity of an (unknown) environment during the learning process,
by using a normalized version of the strategic depth measure from Section 4.2.1.

More concretely, the agent model presented here will provide the following features:

• It will be able to extract rule-based symbolic knowledge during a reinforcement
learning process (e. g., Q-learning [62, 68]; see also the subsection “Q-Learning”
of Section 2.1.7).

• An agent of that model can estimate the strategic depth of its environment in
dependence of its learning progress and, based on that, it can decide on its own,
when to rely its decisions on an extracted HKB. (The idea here is that the less
complex an environment is, the earlier the agent can rely its decisions on an
extracted HKB, since a rougher HKB will suffice to adequately lead the agent
through the environment.)

• The underlying learning approach can in principle be modularly exchanged by
learning approaches other than Q-learning (e. g, SARSA [62] or a more modern
Q-learning approach with a neural network as function approximator; see the
corresponding subsection of Section 2.1.7).

134

5.1 Accelerating an Agent’s Learning Process by Knowledge Base Extraction

Following [9], the model will be evaluated in the context of different scenarios
(including a game from the GVGAI framework [52]) to show the benefit of the hybrid
approach over classical Q-learning and an HKB-only approach.

Normalized Subjective Strategic Depth Measure

As already briefly mentioned in Section 4.2.1, the measure for subjective strategic
depth provided by Definition 4.1 has no upper bound, since games can in principle be
arbitrarily complex. However, when equipping a learning agent with the capability of
estimating the strategic depth of its (a priori unknown) environment, the measure
should be normalized to be in range since the number of agent sensors can be
assumed to be fixed, which limits the number of levels of an HKB—which in turn
limits the maximum subjective strategic depth possible, according to Formula (4.4).

According to [9], such a normalized version of the subjective strategic depth mea-
sure will be extremely useful here, since it will allow an agent to estimate the sub-
jective strategic depth of an a priori unknown environment in relation to the maxi-
mum subjective strategic depth possible with the agent’s sensor symbol sets
The normalized version of the subjective strategic depth measure is defined as
follows (cf. [9]):

Definition 5.1 (Normalized Subjective Strategic Depth) The normalized
subjective strategic depth perceived by an agent is defined as a function

 (5.4)

where is an HKB representing the agent’s (so far learned) state-action sequence
through its environment, is a set of all sensor symbol sets needed to
describe a state of the agent, is the non-normalized subjective strategic
depth measure (as provided by Definition 4.1), is the maximum num-
ber of levels of and is the same constant as used in (see (4.4)).26

Definition 5.1 provides the possibility of estimating the subjective strategic depth
based on a state-action sequence, that was learned so far by an agent’s underlying
reinforcement learning approach (i. e., how difficult the problem appears to the agent

26 Note that Formula (5.4) slightly differs from the original definition provided in [9], since it
is adapted here to be consistent with Formula (4.4). The latter corrects its original definition
from [11], where a “ ” was accidentally missing in the upper part of the binomial coefficients
(see also Footnote 21 on page 115).

135

5. Enhancing Learning Agents

according to its current learning progress). Since the measure is normalized to the
range of it provides a reference point for this estimation.

At first, as a proof-of-concept, it will be evaluated now, how the subjective stra-
tegic depth evolves during an agent’s reinforcement learning process. This will be
done by considering the hypothesis, that the subjective strategic depth should overall
decrease during a learning process as the agent learns more about the environment.
In the end, it should converge to the “real” strategic depth value of a scenario: Since
the agent learns more and more about its environment, the agent’s behavior (based
on which the strategic depth is calculated) becomes more and more accurate and
thereby approaches the optimal behavior for the environment.

For this purpose, four grid world scenarios of different complexity will be con-
sidered: Three of which have been considered already earlier in this work (e. g., in
Figure 2.5, Figure 3.1 and Figure 5.1); the fourth scenario stems from [11].

Also here, in each of the four scenarios, the agent is equipped with two sensors to
perceive its and its position in the grid world environments. Furthermore, the
agent can choose actions from the action symbol set
to get from the starting point to the destination in the a priori unknown envi-
ronment. A classical Q-learning [62, 68] approach will be used, with the same param-
eters as described in Section 5.1.1 (in subsection “Learning Process”):

• learning rate

• discount factor

• exploration rate

To extract the HKBs, based on which the normalized subjective strategic depth
will be calculated, Algorithm 3.2 will be used. The extraction is done at the end
of each run, after the terminal state is reached by the agent. Each scenario is run
for runs and the results are averaged over repetitions for each scenario.

Figure 5.4 shows the results for measuring the normalized subjective strategic
depth of the Q-learning agent in the different scenarios, while learning about the a
priori unknown environment.

136

5.1 Accelerating an Agent’s Learning Process by Knowledge Base Extraction

Following [9], the following two effects can be observed from Figure 5.4:

• The normalized subjective strategic depth overall decreases as the agent’s learn-
ing process progresses: During the agent’s learning process, its knowledge about
the respective environment increases, and therefore, the corresponding scenario
appears successively simpler to the agent.

• The measured normalized subjective strategic depth in a scenario converges to
the “real” normalized strategic depth of that scenario. (Note that here, “real”

137

5. Enhancing Learning Agents

means the strategic depth calculated from a (nearly) perfect movement of the
agent, assuming that the Q-learning algorithm learns the optimal policy in
the end.)

In case of the fourth scenario (see Figure 5.4 (d)), the normalized subjective
strategic depth decreases less monotonically, since the scenario has straight local path
structures that seem to quickly lead to simple rules. However, the straight local paths
form a more complex structure from a global point of view, which has to be adopted
by the Q-learning algorithm, and consequently by the extracted HKB (cf. [9]).

The results of Figure 5.4 seem to confirm the hypothesis from the beginning of this
subsection: The subjective strategic depth of the agent decreases during its learning
process, as the agent’s knowledge about the environment increases. In the end, it con-
verges to a strategic depth that is calculated from an HKB representing the knowl-
edge of a (nearly) optimal agent behavior in the respective scenario.

Hybrid Agent Model

By knowing from Section 4.2 that the subjective strategic depth measure relates to
what humans sense when playing games, and by having shown in the previous sub-
section that the measure can also be applied in the context of learning agents, this
subsection now describes an agent model, that incorporates the measure together
with both reinforcement learning and reasoning based on extracted HKBs. This will
be realized, by using the subjective strategic depth measure to decide when to rely
the agent’s decisions directly on the reinforcement learning process and when to rely
them on an extracted HKB.

The intuition is as follows here: If at a certain point, the agent realizes (based on
the subjective strategic depth) that its environment seems to be sufficiently simple,
the decision-making will be switched to extracted HKBs. By this, the rules of an
extracted HKB can be exploited as a rougher heuristics through the environment.
This apparently applies better to environments that are based on straight and simple
rules, which renders the subjective strategic depth measure an eligible criterion here.
Especially human-designed environments (like games, street networks, buildings, etc.),
are usually created with a simple and functional design in mind where possible (as al-
ready discussed at the end of the Results subsection of Section 5.1.1).

Note that, during a learning process, both the agent’s so far learned knowledge
about the environment, as well as the strategic depth of the environment itself, must
be taken into account here: In an early phase of the learning process, a simple en-
vironment may appear more complex than it is to the agent, as well as complex envi-
ronment may appear simple, in case the agent spend enough learning time in it. As

138

5.1 Accelerating an Agent’s Learning Process by Knowledge Base Extraction

the subjective strategic depth measure overall decreases during the learning process
(which reflects the agent’s knowledge gain) and converges in the end (which reflects
the “intrinsic” strategic depth of the environment; see Figure 5.4), both aspects seem
to be adequately reflected by the subjective strategic depth measure.

According to [9], the agent model comprises two major parts:

• An initialization part, that is executed every time before a new run starts.

• The agent cycle, which is executed in every time step.

Figure 5.5 visualizes the agent model.

Figure 5.5 (Hybrid Reinforcement Learning/HKB Agent Model) (Source: a. f. [9])

The agent model comprises two major parts: The upper part concerns the initialization,
which is executed every time before a new run starts; the lower part represents the agent
cycle, which is executed in every time step. Components belonging to the reinforcement
learning approach are shaded gray, whereas the HKB heuristics extensions are represented
in white.

In the initialization part, at the beginning of a run, it is decided for the upcoming
run whether the agent will rely its decisions on the weights learned so far by the used
reinforcement learning approach (represented by the -matrix), or on the HKB
extracted thereof. The decision is based on a threshold of the agent’s current

139

5. Enhancing Learning Agents

normalized subjective strategic depth that is calculated from the current
extracted Depending on the outcome of the initialization, in the agent cycle, the
agent either performs a random action (for exploring the environment), or decides to
choose an action based on the learned weights (represented by or the extracted
HKB

Note that the Q-learning approach (gray components in Figure 5.5), can be
replaced in a modular way by any other reinforcement learning approach. This will
neither require to change the overall architecture nor to adapt the HKB extraction. In
general, it can be assumed here, that the earlier the used reinforcement learning
approach converges to the optimal policy, the earlier the knowledge of the extracted
HKB will be of sufficient quality and serve as eligible heuristics.

Following [9], the described agent model from Figure 5.5 will now be evaluated in
the upcoming two subsections: At first, the model will be evaluated in the context of
four grid world scenarios. After that, an additional evaluation in two slightly modified
levels of the game Camel Race from the GVGAI framework [52] (see Figure 4.1 (a)
and (b)) will be provided.

Evaluation in Grid Worlds

This subsection evaluates the agent model described in the previous section by closely
following [9]: An agent instance of the agent model from Figure 5.5 will be run for
runs in each of the four grid world scenarios from Figure 5.4. This experiment will be
repeated times for each scenario and the percentage will be measured, in how
many of the repetitions the optimal path was found during the runs. The state-
action space of the agent is the same as described earlier for the scenarios of
Figure 5.4. As reinforcement learning approach, Q-learning [62, 68] will be used again,
with the same parameters as described at the beginning of Section 5.1.2 in the sub-
section “Normalized Subjective Strategic Depth Measure” (i. e., learning rate
discount factor and exploration rate

To determine when to exploit an extracted HKB as eligible heuristics, a threshold
of will be chosen for the the normalized subjective strategic depth
According to the results from Figure 5.4 (and still following [9]), this means that the
agent will in average try to exploit an extracted HKB after:

• runs, in case of Scenario (a)

• runs, in case of Scenario (b)

• runs, in case of Scenario (c)

(see the crossings of the bound in Figure 5.4).

140

5.1 Accelerating an Agent’s Learning Process by Knowledge Base Extraction

According to [9], for Scenario (b) and Scenario (c), this may appear confusing at
a first glance, since a total number of only runs will be performed: Note that
Figure 5.4 shows the average development of the measure and thus, it can be
expected that there will be single runs during the experiments, where falls below
the threshold before the th run in these scenarios (even if in average this
usually happens later).

In case of Scenario (d), the agent will usually never exploit any heuristics, since the
normalized subjective strategic depth does in average not decrease below
(However, also here it may in principle occur that it does in single runs.) This can be
interpreted as follows, according to [9]: Scenario (d) comprises too many exceptions,
such that an exploitation of heuristics does not make sense from the agent’s point of
view. The sensitivity to this “point of view” is finally what is controlled by the pa-
rameter Higher values render the agent more “heuristics-affine”, whereas lower
values render the agent more “conservative” in the sense that it will need stronger
evidence that it might be beneficial to exploit the extracted HKB as a heuristics.
Note that Scenario (d) is of course a very simple environment from an absolute point
of view. However, the agent measures the subjective strategic depth in a normalized
way, i. e., in relation to the maximum subjective strategic depth possible with the
agent’s number of sensors and the resulting state space (see the denominator of
Formula (5.4)).

Table 5.2 now provides the results of the comparison of the described agent model
against a plain Q-learning agent with the same parameters for the learning compo-
nents (gray components in Figure 5.5).

Table 5.2 (Plain Q-Learning vs HKB Approach) (Source: a. f. [9])

A plain Q-learning [62, 68] agent is compared to the agent model from
Figure 5.5 in the context of the four grid world scenarios shown in
Figure 5.4: The results are provided for a threshold of and for
an HKBs-only approach (see footnote on page 142), where the weights
of the -matrix are never considered directly for action selection. The
agent model clearly outperforms plain Q-learning in scenarios (a)–(c).

141

5. Enhancing Learning Agents

The results shown in Table 5.2 comprise a plain Q-learning agent, an agent using
extracted HKBs as heuristics (see Figure 5.5) and, for reasons of comparison, an
HKBs-only version of the latter.27 The HKBs-only version always relies its decisions
on the HKB-heuristics and never considers the -matrix directly for any action se-
lection (i. e., in the initialization phase in Figure 5.5, the branch for “Set HKB action
selection” is always selected).

The results show that the plain Q-learning agent rarely manages to reach the
target point within runs in Scenario (a) and Scenario (b) (only in about
and of the cases, respectively). As for Scenario (c) and Scenario (d), plain
Q-learning was never able to reach the target point within runs. This is a typical
agent behavior in the context of reinforcement learning approaches, since the a priori
unknown environment needs to be explored without the possibility of distinguishing
between simpler or more complex environments.

The heuristics approach based on HKBs clearly outperforms the results of the
plain Q-learning approach: Using a threshold of the agent reaches in more
than two-thirds of the cases the target point within runs in case of Scenario (a).
This performance gain naturally decreases, as the scenarios become more complex,
since it will take longer until the extracted HKBs are of sufficient quality to be
exploited. However, even in Scenario (b) and Scenario (c), the agent reaches the
target in about and of the cases (whereas the plain Q-learning agent
reaches the target only in about and of the cases in the respective scenarios).
(Only in Scenario (d), none of the approaches were able to reach the target within
runs. Note that, according to Figure 5.4 (d), will rarely fall below the threshold
here and thus the extracted HKBs can rarely be exploited in this scenario.)

In case of the heuristics-only approach, the results are worse (but still better than
the plain Q-learning approach in the considered scenarios): According to [9], this
seems to be the case, since the agent starts too early to rely its action selection on
the HKBs (which may contain a lot of wrong rules in the beginning of the learning
process). This can counteract the adequate exploration of the environment, which
underpins the usefulness of applying an adaptive decision criterion when to exploit
the extracted HKBs, as provided by the measure

Evaluation in a GVGAI Game

After having evaluated the proposed agent model from Figure 5.5 in different grid
world scenarios of increasing complexity, this subsection will now additionally evalu-
ate the agent model in the context of more dynamic scenarios, following [9]. For this

27 Thanks to an anonymous reviewer of the original paper [9] for proposing the idea of evaluating
also against a version of the agent model that relies its decisions only on the HKB heuristics.

142

5.1 Accelerating an Agent’s Learning Process by Knowledge Base Extraction

purpose, the two (slightly modified) levels of the game Camel Race from the GVGAI
framework [52], that were shown already in Figure 4.1 (a) and (b), will be considered
as environments here.

As described already earlier in Chapter 4 (see Section 4.1.1), in the selected (and
slightly modified) levels of the game Camel Race, the agent controls the yellow camel
in the middle and has to be the first reaching the goals on the right (see Figure 4.1).
The state-action space of the agent for the game Camel Race will be the same as
described earlier in Section 4.1.2: The action space will be defined as in Formula (4.1)
and state space will be the same as provided by Formula (4.2). As reward, in the
upcoming experiments, the agent will perceive the current distance in x-direction to
the fastest opponent camel.

Even if the game of Camel Race seems to be quite simple, it comprises interesting
aspects regarding its dynamics, according to [9]: Due to the time-dependent move-
ment of the opponent camels in the environment, the agent oftentimes perceives new
and previously unseen states. Thus, larger parts of the state-action space have to be
explored by the agent to learn the respective weights of the -matrix, although the
game could be won quite easily, e. g., by just moving to the right, in case of the
first level. This renders the game Camel Race an eligible test environment for the
upcoming experiments.

Similar to the evaluation in the context of the grid world scenarios and still fol-
lowing [9], runs will be performed for each of the two levels and it will be meas-
ured, in how many percent of the cases, the agent is able to reach the goal within
repetitions of the respective experiment. Also here, plain Q-learning is compared
against the agent model from Figure 5.5 with the extracted HKBs being exploited in
dependence of the measure and against the HKBs-only approach (where the agent
always exploits the extracted HKBs as heuristics). The parameters of the agent model
are the same as for the experiments in the context of the grid worlds (i. e., learning
rate discount factor exploration rate and the threshold for
the measure is set to the value

Table 5.3 shows the results for the two levels of the game Camel Race shown in
Figure 4.1 (a) and (b).

143

5. Enhancing Learning Agents

Table 5.3 (Q-Learning vs HKB Approach in a Game) (Source: a. f. [9])

The plain Q-learning agent and the agent model from Figure 5.5 with
the same parameters as in Table 5.2 are compared here in the context of
two levels of the game Camel Race from the GVGAI framework [52].
The table shows the percentage of repetitions in which the agent
was able to reach the goal within runs. The agent model involving
HKBs clearly outperforms plain Q-learning by reaching the goal in more
than percent of the cases in both levels.

As can be seen in Table 5.3, the agent using plain Q-learning is not able to reach
the goal within runs in any of the repetitions. By using the agent model from
Figure 5.5 with a threshold of the agent model clearly outperforms plain
Q-learning by reaching the goal in more than of the cases in both levels. In
contrast to the grid worlds, the HKBs-only approach performs even better here:
According to [9], this seems to be the case, since the considered levels allow for
rougher heuristics than most of the grid worlds: Although the game comprises—in
contrast to the grid worlds—dynamics and can be considered more complex in this
sense, the goal can be reached much easier than in the grid world scenarios, since it is
not located in a single corner of the environment. Instead, the game can be won by
just reaching the right side of the screen, which can be achieved already with a poor
HKB as heuristics.

The results presented in this section show that the agent model clearly out-
performs plain Q-learning in the context of the presented experiments. These results
are accompanied by an online (video) appendix (Appendix B), where the two ap-
proaches are compared visually.

5.1.3 Integrating A Priori Knowledge through HKBs

This section finally provides some intuitions on how HKBs can be used to integrate a
priori knowledge in a reinforcement learning process. For this purpose, it will be
referred again to the agent model described in Section 5.1.2 (see also Figure 5.5).

144

5.1 Accelerating an Agent’s Learning Process by Knowledge Base Extraction

Basic Integration Approach

To integrate heuristics as a priori knowledge, an agent instance of the agent model
from Figure 5.5 can simply start with a predefined HKB that represents the a priori
known heuristics. Furthermore, it must be ensured that the agent starts with HKB
action selection in this case, to rely its decisions on the provided a priori knowledge in
the first run (see the right side of the initialization phase in Figure 5.5).

When combining symbolic a priori knowledge with a reinforcement learning
approach, an interesting question is, how the a priori knowledge can be properly
reflected in the weights of the underlying learning approach. This is not a trivial
question since the reward distribution of the environment could (at least partly) be
unknown to the knowledge engineer who is defining the a priori knowledge. As a
consequence, the provided a priori knowledge can even contradict the rewards
returned by the environment, e. g., in case it is exploited as heuristics and contributes
well to reach a long-term goal, but leads to locally bad rewards in some situations.
Furthermore, the used learning approach could not allow for the direct manipulation
of the weights, e. g., in case a neural network is used as function approximator for
approximating the -matrix (as it is usually the case in modern deep reinforcement
learning approaches, e. g., [49]).

The presented agent model from Section 5.1.2 avoids these problems by not
explicitly manipulating the weights of the -matrix to incorporate the knowledge:
Performing actions based on an HKB simply leads to normal updates of the weights,
as needed by the underlying learning approach (see Figure 5.5). By this, the update
mechanism is not influenced numerically by the provided a priori knowledge, besides
the rewards perceived through the environment when performing actions according to
the HKB. Thus, the rewards perceived from the environment as a consequence of
decisions derived from the a priori knowledge are incorporated the same way by the
learning approach as without any knowledge being involved. This basically leads to
the following three cases:

(1) The heuristics described by the a priori knowledge fit well to both the long-term
goal of the agent and local rewards:
For those states that are visited by the agent in the first runs, the provided a
priori knowledge will be properly reflected in the corresponding weights of the
underlying learning approach.

(2) The heuristics described by the a priori knowledge are good in the sense of a
long-term goal but contradict local rewards:
In this case, the agent learns about the environment according to the underlying
learning approach until a policy derived from the weights outperforms the

145

5. Enhancing Learning Agents

policy derived from the heuristics. If this is the case, the new (refined) heuristics
are extracted from the best policy found and the heuristics and the learning
approach are consistent again.

(3) The provided a priori knowledge is bad (or even wrong):
In this case, performing actions according to this knowledge will usually lead to
bad local rewards in the visited states of the first run(s) (and will not get
significantly better over multiple iterations, in case the provided heuristics even
contradict the long-term goal). Thus, the agent will avoid these states in
upcoming runs which will successively lead to a better overall performance and
can finally result in finding other, better heuristics (cf. Figure 5.6).

Advanced Integration

As a further extension, one could also be interested in incorporating the provided a
priori knowledge into a larger portion of the weights than only those concerned by
one single state-action trace of the first run in which the a priori knowledge was
exploited (as described in the previous section).

Here, an intuitive idea is to additionally exploit the provided a priori knowledge in
all states in which no meaningful decision could be made by the learning approach—
i. e., in all new, previously unseen states and in all those states in which the weights
of all possible actions are equal. This triggers the update mechanism of the under-
lying reinforcement learning approach with the reward returned by the environment
for those actions selected according to the a priori knowledge. Depending on how
well the heuristics resulting from the a priori knowledge comply with the reward
distribution of the environment, these updates are then a (more or less) adequate
initialization of the corresponding weights of the learning approach. This reflects
the a priori knowledge in the reinforcement learning approach as far as it is com-
patible with the reward distribution of the environment. Furthermore, as the number
of unknown states usually decreases during the learning process, the provided a priori
knowledge gets less influence on the overall behavior of the agent, whereas the refined
knowledge representing the heuristics found by the agent itself gets more influence
over time.

Nevertheless, since this extension requires access to the information whether or not
a state is visited for the first time, it could possibly not be combined with all sub-
symbolic learning approaches.

Figure 5.6 shows the evolution of a priori knowledge provided as HKB during a
learning process of an agent based on the agent model from Figure 5.5. The agent is
run in the context of the third level of the game Camel Race (see Figure 4.1 (b)) with

146

5.1 Accelerating an Agent’s Learning Process by Knowledge Base Extraction

the same state-action space and reward as in the last subsection of Section 5.1.2 (see
also (4.1) and (4.2) in Section 4.1.2).

Figure 5.6 (Knowledge Evolution during Learning Process)
An agent based on the agent model from Figure 5.5 is considered here in a
slightly modified version of the game Camel Race from the GVGAI framework
(see Figure 4.1 (b)): To demonstrate how the knowledge evolves, the agent is
intentionally provided with contra-intuitive a priori knowledge consisting of the
heuristic to move to the left. The advanced integration approach described in
the corresponding subsection of Section 5.1.3 is used here. The figure shows the
evolution of the HKB over the first runs. It can be seen that the a priori
knowledge develops quickly toward the correct heuristic to move to the right,
which is then successively refined.

147

5. Enhancing Learning Agents

To demonstrate the development of the knowledge during the learning process, in
Figure 5.6, the agent starts with an HKB as a priori knowledge that represents the
contra-intuitive heuristic to move to the left (cf. Figure 4.1 (b)). After a few runs, the
HKB already starts evolving toward the intuitive knowledge of moving to the right:
At first, the top level rule changes to and the intuitive knowledge
of moving to the right is contained in the form of exceptions on the more specific
levels of the HKB (see Run 5 in Figure 5.6). Several runs later, the movement to
the right is learned as a general rule, which is then successively refined with ex-
ceptions (and exceptions of exceptions) in the following (see Run 10 and Run 15 in
Figure 5.6).

5.2 Forward Model Learning

In the previous section (Section 5.1), it has been shown how the learning process of
an agent based on a reinforcement learning approach can be accelerated to solve a
single task (e. g., a level of a game). The idea there was to learn an (optimal) be-
havior or policy in the respective environment. This complies with other successful
approaches in reinforcement learning from the recent years—especially in the context
of games (e. g., [49]).

However, these kinds of approaches have a drawback in generality, when it comes
to problems like general video game playing [52, 53], where the task is not to learn to
play a single (level of a) game, but to learn to play multiple different a priori un-
known games. The GVGAI competition [65] aims at stimulating research in this field
and results might also be interesting for the development of more general AI ap-
proaches in other areas.

Regarding the task of general video game playing, the GVGAI competition can
be mainly divided into two tracks:

• a planning track, and

• a learning track.

In the former, an agent is provided with a forward model of the game, i. e., the
agent knows the game mechanics in advance and can thereby perform forward
simulations of a game to find good decisions and/or plans to win the game. Algo-
rithms like monte carlo tree search (MCTS) [21] and their derivatives are a popular
choice here.

148

5.2 Forward Model Learning

In the latter, no forward model is a priori provided to the agent. Depending on the
rules of the competition’s current round, an agent is, e. g., trained on three levels of
an a priori unknown game and is then evaluated on two other levels of the same
game. As a consequence, it is not sufficient to optimize a certain level using a
common learning algorithm—instead, the agent must learn how to play the game,
i. e., both the game mechanics and the strategy how to master it.

According to these requirements, this section follows a different approach than the
the approaches presented in Section 5.1: Instead of learning and representing an
(optimal) behavior or policy of an agent, here, a forward model of the game will be
learned and represented as an HKB. Such an HKB describes the mechanics of the
game (i. e., “how things work”) and can be used by the agent to perform forward
simulations of the game for estimating the best next action, by using eligible algo-
rithms known from the planning track (like MCTS [21]).28

5.2.1 Learning Forward Models of Games

This section addresses the issue of learning forward models in the context of a priori
unknown games from the GVGAI framework [52]. To be able to learn forward models
of such games, the same basic agent model as described in Section 2.1 will be
considered as a foundation. In contrast to former approaches that were presented
earlier here, this means that the agent is equipped with sensors, where each sensor
provides values of one dimension from a general state space. Since the game to be
played is not known in advance, the corresponding sensor symbol sets
comprise rather abstract symbols, such as types of objects near the agent’s avatar
(distinguished by numeric identifiers) as well as symbols about the avatar’s position
or the game’s score. No concrete game-specific information are provided here. The
agent’s action symbol set is defined similarly as in Section 4.1.2 (see Formula 4.1),
with an additional generic action which is usually used (depending on
the game) for non-navigation actions:29

 (5.5)

28 This approach was first proposed in a joint work by Jun.-Prof. Dr.-Ing. ░░░░░░ ░░░░░
(from Leibniz University Hannover) and the author. The approach was also mentioned in the
book on GVGAI [53]—see bibliographic remarks in Section 5.4 for details.

29 Note that, in the GVGAI framework [52], another action exists, which
allows an agent to immediately exit a level in the training phase. Since this is not directly rele-
vant for the learning problem of playing different games, it is not explicitly considered here.

149

5. Enhancing Learning Agents

HKBs as Forward Models

Learning a forward model in the form of an HKB is different from learning an HKB
that represents a behavior or a policy (as described in Section 5.1): An HKB repre-
senting a behavior or a policy maps a perceived state to an action, whereas an HKB
representing a forward model maps a perceived state and an action (a state-action
conjunction) to an information describing certain changes of a resulting subsequent
state. For this purpose, the definition of a rule, as provided in Section 3.1.2 (cf.
Definition 3.2), has to be adapted here, following [5, 26]:

Definition 5.2 (Forward Model Complete/Generalized Rule) Forward model
complete rules and forward model generalized rules are of the form
(i. e., “if and are known, then can be concluded”), where is either a complete
state (in case of a forward model complete rule) or a partial state (in case of a forward
model generalized rule), represents an action of the agent’s action symbol set

 represents (a part of) the changes leading to the subsequent state (resulting from
action being performed in state and is the rule’s weight (indicating the
“strength” of the rule).30

Note that the related definitions 3.3–3.5 from Section 3.1.2 can be considered com-
patible to Definition 5.2 by simply adapting the rules’ premises and conclusions ac-
cordingly there.

To learn an HKB as forward model from observations using the extraction algo-
rithms described in Section 3.4 and Section 3.5, an additional filter step will be per-
formed at the end of the extraction algorithms for removing all rules whose
premises do not contain an action and therefore do not comply with Definition 5.2.

Meta-HKB

According to [5, 26], in the context of diverse games, several different aspects of the
game mechanics can be of importance. To properly reflect these different aspects, one
separate HKB for one aspect of the game mechanics will be considered here. These
HKBs then form a meta-HKB representing the forward model. Following [5], the
selected aspects of the game mechanics that are covered by the different HKBs are:

• Movement (The HKB represents the knowledge about the
possible movement of the agent’s avatar depending on the relative position of
surrounding other objects in a game (like obstacles, etc.).31

30 In [5, 26], forward model rules are simply called modified rules.

150

5.2 Forward Model Learning

• Scoring (This HKB represents knowledge about relative score changes
depending on the interaction with other objects in a game (like objects that can
be collected for benefit).

• Winning/Losing (represents knowledge about winning or losing a
game when interacting with certain objects (e. g., an exit or a checkered flag).

Each of the three HKBs for the different aspects of a game’s mechanics will be
created by merging several smaller HKBs, to accelerate the extraction process. This
will be described in detail in the following subsection.

Accelerating HKB Creation by Merging Smaller HKBs

In the context of games—and especially in the context of the GVGAI competition—
performance plays an important role. For this purpose, instead of learning one HKB
as a complete forward model for one aspect of a game’s mechanics, for each HKB of
the meta-HKB described in the previous subsection, multiple smaller HKBs will be
learned here, as proposed in [5, 26]. Each of the smaller HKBs covers only a part of
the agent’s state-action space. This reduces the number of dimensions that need to be
considered by the extraction algorithm, which helps increasing the extraction per-
formance. The resulting smaller HKBs are then merged to create the complete HKB
that represents the respective aspect of a game’s mechanics.

The merging of the smaller HKBs to create the complete HKB that represents one
aspect of the game’s mechanics can be done efficiently by iterating over the levels of
the smaller HKBs and merging the single levels. In case a rule with the same premise
and conclusion exists in multiple smaller HKBs, the one with the lower weight will
be adopted.

The following example demonstrates the creation of the HKB which de-
scribes the knowledge about the score changes of the game to be learned (i. e., which
actions result in which score changes considering the orientation of the agent’s avatar
and the types of objects currently surrounding it). The creation process is very simi-
lar for the other two HKBs of the meta-HKB (and as described in
the previous subsection. (The example can be found similarly in [5] and [26].)

31 Note that knowledge about the movement depending on the absolute position of game objects
are not considered here, since, according to the ideas of general video game playing, the agent
might be trained in levels that are different from the ones used for evaluation. Thus, the levels’
anatomy (like bounding walls or obstacles) may change, even in case of static objects.

151

5. Enhancing Learning Agents

Example 5.1 (Merging of Smaller HKBs for Scoring) To create the HKB
 that describes the knowledge about the game’s scoring mechanism, according

to [5, 26], one possibility would be to apply the knowledge base extraction algorithm
from Section 3.4.2 (Algorithm 3.2) to a seven-dimensional input matrix

 (5.6)

with and The set
 is a set of object type symbols identifying the different object types in a game,

 is a set of symbols representing the different possible orientations of the agent’s
avatar, set contains the agent’s action symbols (see Formula (5.5)) and is a
set of symbols describing the score changes of a game. Every element of repre-
sents the relative frequency of a score change, when performing a certain action in a
given state (i. e., the agent avatar’s orientation and the types of objects above, below,
to the left and to the right of the agent’s avatar).

However, instead of creating the complete HKB directly from the seven-
dimensional matrix four smaller HKBs and
can be created. Each of these smaller HKBs will consider (besides the agent’s actions
and the orientation of the avatar) only the type of the corresponding object above,
below, to the left or to the right of the agent’s avatar. The smaller HKBs can be
created more efficiently by applying Algorithm 3.2 to a corresponding reduced version
of the input matrix, where the dimensions for all other surrounding objects are omit-
ted (resulting in four instead of seven dimensions for each matrix). In case of
the corresponding reduced input matrix will look as follows:

with and as in (5.6).

After having extracted each of the four smaller HKBs from the reduced matrices
using Algorithm 3.2 (including the optional filter step for removing all rules without
actions in their premises), the resulting HKBs are merged to create the complete
HKB by iterating over the levels of the smaller HKBs and merging the single
levels. (In case of multiple rules on the same level having the same premise and con-
clusion, the rule with the minimal weight is kept.)

As already mentioned before, the HKBs for the knowledge about the movement
and for the knowledge about winning/losing a game can be created in a similar way.
By this means, the knowledge base extraction process can be accelerated extensively.

152

5.2 Forward Model Learning

Demonstration in the Context of the GVGAI Framework

To demonstrate the approach of learning a forward model of an a priori unknown
game using HKBs, in this subsection, the game Butterflies from the GVGAI frame-
work [52] will be considered as an example. The rules that are most relevant for the
upcoming considerations will be quickly outlined first.

In this game, the agent controls an avatar represented by a fairy, that has to
collect butterflies by touching them. The butterflies emerge from hives. Trees serve as
obstacles and to delimit the bounds of a level. Collecting a butterfly increases the
agent’s score and the game is won if all butterflies are collected. Figure 5.7 shows one
of the game’s levels.

The game shown in Figure 5.7 comprises three different types of objects that can
be perceived by the agent in the surrounding area of its avatar. These are:

• butterflies (which increase the score when being collected and which lead to
winning the game if all are collected)

• hives (which emit butterflies)

• trees (which prevent the avatar’s movement)

The different types of objects are distinguished by numeric identifiers.

Furthermore, besides the current position of the agent’s avatar, the agent is also
able to perceive the game’s overall state, i. e., whether or not the game has been won.

153

5. Enhancing Learning Agents

Since the game is a priori unknown to the agent, the agent has to learn the
mentioned game mechanics on its own. For this purpose, the agent starts with
random exploration by performing random actions, to learn relative frequencies for
the states and the resulting subsequent states. The relative frequencies are collected
in corresponding (reduced) matrices, as described in the previous subsection (see
Example 5.1). After that, Algorithm 3.2 is applied to each of the matrices (including
the additional filter step to remove all rules without having an action in their pre-
mises) and the resulting HKBs are merged. This is done for every aspect of the
game mechanics, as described earlier in the subsection “Meta-HKB” of this section.
Figure 5.8 shows the resulting learned HKBs for all three aspects of the meta-HKB
after a short training phase.

As can be seen in Figure 5.8, after a short learning phase, the agent learned HKBs
for the three aspects of the game’s forward model that represent the game mechanics
compactly and in a way that is easy to comprehend.

Figure 5.8 (a) represents the game’s forward model regarding the movement of the
agent’s avatar. The topmost rule on level of the HKB was
not learned correctly here, since it states that usually (when performing no action),
the agent’s avatar moves to the left—which is obviously incorrect. This could be the
case, since the agent might have experienced more examples of moving to the left
than of no movement in the short learning phase. However, this has no further impact
here, since on level of there are exceptions for each of the four relevant
movement actions, which reflect the game’s movement mechanics correctly and
completely. Level of contains the (second order) exceptions concerning the
obstacles in the game (trees and hives). If one of these objects (represented by object
types 0 and 3) is in the adjoining environment above, below, to the left or to the right
of the agent’s avatar, no movement can be performed by the corresponding actions.

Figure 5.8 (b) represents the game’s scoring system, i. e., how the agent can in-
crease the score with the avatar. The HKB was properly learned and reflects
the scoring mechanics perfectly: The topmost rule on level states
that usually, there is no score change (which covers most of all cases, as indicated by
the rule’s weight of This is because the agent usually only gets points when
collecting butterflies by intention (i. e., by performing the corresponding action when
a butterfly is around). Level is empty here, since butterflies can usually not be
collected by just moving around. Only in case a butterfly is in the direct environment
above, below to the left or to the right of the agent’s avatar, the agent can increase
the score by performing the action for the corresponding direction. This is stated on
the bottommost level of

154

5.2 Forward Model Learning

Figure 5.8 (Forward Model for Butterflies) (Source: adapted from [5])

The learned forward model for the GVGAI game Butterflies from
Figure 5.7 is shown here after a short training phase. The three HKBs
represent the three different aspects of the game mechanics: (a) how the
movement works ((b) how to score (and (c) how the
game can be won (In level reflects the coordinate
changes depending on the agent’s actions, whereas level contains the
exceptions depending on different obstacles above, below, to the left or
to the right of the agent’s avatar (object types 0 and 3). states
that usually the score does not change, except when an object of type 5
(butterfly) is around and a corresponding action is performed.
does not provide useful information, since the agent never won the
game in the short training phase (

In Figure 5.8 (c), the HKB represents the knowledge about how to win or
lose the game. comprises only the topmost level which contains the only

155

(a)

(b)

(c)

5. Enhancing Learning Agents

rule that the game is always lost. This is the case, since the agent never managed to
win the game during the short learning phase. Thus, no further knowledge about the
mechanics how to win or lose the game could be learned here.

As has been presented here, the proposed approach results in a forward model
comprising different aspects of a game. Such a model can later be used to let the
agent forward simulate a game, even if the game mechanics are unknown in advance
to the agent. By this means, algorithms like Monte Carlo Tree Search (MCTS) [21],
that are well-known from the GVGAI planning track, can be used by the agent to
forward-simulate a game for determining good actions.

However, since the presented approach does not always provide perfect forward
models (depending on the agent’s experiences during the learning phase, cf.
and since the environment may change after learning, a mechanism should be pro-
vided, that allows the agent for quickly adapting a learned forward model, when
experiencing inconsistencies in its current environment (e. g., in a new level of the
same game). In the context of the GVGAI competition [65], this can easily occur,
since (depending on the rules of the competition’s current round) the agent may be
trained in other levels than those used for evaluation.

In knowledge representation, such kinds of problems can be tackled by belief re-
vision approaches. This will now be considered in the context of HKB forward models
in the following section.

5.2.2 Revising Forward Models of Games

Belief revision is a traditional field of knowledge representation, concerning the incor-
poration of new pieces of information into existing knowledge. In this sense, belief
revision can be considered (with some respect) a “symbolic way of machine learning”.
Besides common challenges that are usually tackled by belief revision approaches,
such as avoiding potential inconsistencies or the question which parts of the knowl-
edge are affected when a piece of information has to be forgotten (see, e. g., [13] for
an overview), a further interesting aspect in relation to learning agents lies in the
observation that revising knowledge seems to have the potential of being much faster
than “relearning” it on a sub-symbolic or statistical level: In the case of revision, the
new information is usually assured to be immediately available after performing the
revision. In contrast, sub-symbolic approaches often need many iterations until an
agent gets “convinced” that formerly learned knowledge is no longer valid, since
numeric weights (e. g., relative frequencies and the like) are usually adapted stepwise
during a sub-symbolic learning process.

156

5.2 Forward Model Learning

In the context of the GVGAI competition [65], where a learning agent may be
evaluated in other levels than those being trained in during a short evaluation phase,
a faster adaption mechanism is essential for quickly adapting to the changes of a new
unknown level. At the same time, larger parts of the knowledge that were learned
before about the general game mechanics should be preserved. For this purpose and
to further extent the capabilities of HKBs as a knowledge representation paradigm for
learning agents in games, a simple yet effective revision approach for HKB forward
models is presented and applied here in the context of games. (An evaluation of the
approach against common quality criteria for revision approaches is provided in [5].)

Due to the origins of the idea of creating a revision approach for HKBs with
respect to the requirements of the GVGAI competition (see also the bibliographic re-
marks in Section 5.4 for details), the revision algorithm was designed to be used in
(nearly) real-time environments and therefore has to be extremely lightweight and
efficient. The algorithm is based on the idea of adding, removing or exchanging an
exception in a forward model HKB in case the reasoning algorithm (see
Algorithm 3.1 in Section 3.2) provides a wrong result compared to what is observed
by the agent.

Note that here, consists of forward model rules (see Definition 5.2) and,
consequently, is provided with a state-action conjunction
(representing a state and and action performed in that state) as input, and returns an
information about the resulting subsequent state (instead of an action). Thus, the
forward model represented by has to be revised, if the returned information
about the subsequent state does not conform to the corresponding information
about the real subsequent state of the agent’s environment after performing action
(i. e., if

To determine whether or not a conclusion inferred from an HKB does not conform
to the corresponding information about the real subsequent state the revision
algorithm uses at most two calls to the reasoning algorithm. (For a closer study on
the efficiency of the HKB reasoning algorithm, see Krüger et al. [41].)

Whether an exception is added, removed or exchanged in the existing knowledge
base depends on the level of an HKB on which the rule causing the wrong
conclusion is located (according to [26]):

• If a rule that causes the wrong conclusion for a given state-action con-
junction and the subsequent state information is not
located on level , a new exception will be added on level

• Otherwise, if is located on level a new exception is only added, if
removing the wrong exception on level does not cause the reasoning algo-

157

5. Enhancing Learning Agents

rithm to provide the correct conclusion. (In other words: The rule is exchanged,
if removing it would not lead already to the desired conclusion.)

By this, it will be avoided that, in case of multiple revisions, the number of rules
on the most specific level of the HKB successively increases over time, until it
degenerates to a trivial HKB (cf. Section 3.3).

Algorithm 5.1 formalizes the described approach.

Algorithm 5.1 (Revision Algorithm for HKBs) (Source: adapted from [26])

The algorithm calls the reasoning algorithm (Algorithm 3.1) to determine whether the
HKB leads to the wrong conclusion about the subsequent state for the given state-action
conjunction. A new exception is added on the most specific level if the wrong conclusion is
produced by a rule firing on a more general level. Otherwise, an exception is removed if
the removal causes the reasoning algorithm to infer the correct conclusion, or exchanged
(i. e., added again after removal), if the reasoning algorithm still infers the wrong conclu-
sion after the removal.

To assure that Algorithm 5.1 provides HKBs that adequately represent both the
new information and the knowledge that has already been known before, a corre-
sponding evaluation of the algorithm can be found in [5].

The following example will demonstrate the ideas of Algorithm 5.1 in the context
of a fictive more difficult level of the game Butterflies from Figure 5.7):

Example 5.2 (Revising a Forward Model: Changes) After having learned the
forward model from Figure 5.8 in the context of several levels of the game Butterflies
(as shown in Figure 5.7), an agent is assumed to play a (fictive) more difficult level of
the game. There, collecting butterflies increases the score by just one (instead of two).

158

5.2 Forward Model Learning

Starting from the learned forward model HKB for scoring32

from Figure 5.8 (b), it is assumed that the agent is in a state with a butterfly (object
of type 5) being above its avatar, which is represented by the sensor symbol
For the avatar’s orientation, the neutral sensor symbol is provided, since
the game mechanics of the game Butterflies do not require to distinguish different
orientations of the avatar (i. e., the avatar simply moves in the corresponding direc-
tion when performing an action). Furthermore, it is assumed that the agent decides
to perform for a score increase of two by collecting the butterfly (ac-
cording to After performing the action, the agent observes the subsequent
state and remarks that the score increased by only one (instead of the expected in-
crease of two, as stated by the corresponding rule
of

The forward model HKB will now be revised using Algorithm 5.1 with
 the state-action conjunction

and the observed new subsequent state information as input: Since
it is (see lines 1–2 of Algorithm 5.1), and since the firing rule

 providing the wrong conclusion is not located on
the bottommost level of the HKB (see lines 4–5 of Algorithm 5.1), a new rule re-
flecting the change will be added on the bottommost level of the HKB (see line 6 of
Algorithm 5.1). After that, the revised version of returned by the algorithm
will be

 (5.7)

and will provide the correct inference now.

32 Note that the HKB is denoted here as ordered set of sets, similar to Formula (4.3) on page 109.

159

5. Enhancing Learning Agents

Note that, since the avatar’s orientation is not relevant in the game of Butterflies,
it might appear cumbersome that an exception is created here on the bottommost
level of the HKB, instead of exchanging the rule
However, in general video game playing, it should not be assumed that such a
property will remain unused in other levels of a game: As an example, a new level
could introduce a butterfly net as a new object, which has to be used in the direction
of the avatar’s current orientation to be able to catch a butterfly.

The following example will consider revision in the case of a new object:

Example 5.3 (Revising a Forward Model 2: New Object) Continuing with
the revised version from Example 5.2 (see (5.7)), it is assumed here, that the
agent plays an even more difficult (fictive) version of the game Butterflies, where a
new type of object appears: hornets. Hornets decrease the score by one, when being
touched by the agent’s avatar. Also here (as in Example 5.2), the agent’s orientation
is not of relevance and thus only the neutral sensor symbol is provided for
the corresponding sensor.

The agent is assumed now to be in a state with one of the new hornet objects
(object of type 6) above its avatar and the agent performs the action
Since the agent does not know anything about hornets, for the corresponding
state-action conjunction , the reasoning algorithm

 (Algorithm 3.1) falls back to the most general rule and thus no score
change will be expected. After having performed the action, the agent observes the
subsequent state and remarks that the score decreased by one (instead of no score
change, as expected).

Thus, the forward model HKB will be revised again using Algorithm 5.1
with and the observed new
subsequent state information as input. This results in the HKB

 (5.8)

160

5.2 Forward Model Learning

for which provides the correct conclusion both for
 as well as for (from

Example 5.2).

In case the agent will now play a level again where a collected butterfly increased
the score by two, instead of one (e. g., as in one of the levels from which the original
forward model HKBs from Figure 5.8 were learned), and assuming the same situation
as in Example 5.2 with a butterfly above the agent’s avatar and the agent performing

 a revision of from Example 5.3 (see (5.8)) using Algorithm 5.1
would simply remove the rule

Note that by this means, the number of rules is reduced, which may prevent the
forward model HKB from steadily growing on the bottommost level through multiple
subsequent revisions. Furthermore, note that the knowledge is selectively changed by
Algorithm 5.1, without affecting other parts of the knowledge that were previously
learned (like the knowledge about the hornets or the original common scoring me-
chanics of the game that was learned before).

5.2.3 An Agent Model Combining Learning and Revision

In Section 5.1.2 a hybrid HKB/reinforcement learning agent model was described,
which supports an underlying reinforcement learning approach with the extraction
and exploitation of found rules in the state-action space. Similarly, here an agent
model will be described that integrates the learning of a game’s forward model, the
exploitation of the forward model and the possibility of revising it with environment
changes in the context of the GVGAI framework [52].

However, the agent model presented here differs from the one that was described in
Section 5.1.2 (see Figure 5.5), as it aims not at accelerating a learning process with
found rules, but at making it possible to learn to play different a priori unknown
games by means of HKBs. Furthermore, by learning a forward model, the agent mo-
del contributes to bridge the gap between the GVGAI learning track and the GVGAI
planning track, by offering the possibility of applying common techniques used by the
GVGAI planning community (such as monte carlo tree search, MCTS [21]) also in the
learning track (see the beginning of Section 5.2).

According to [5] and following ideas from the GVGAI competition [65], the agent
model is separated into the agent’s training phase and the agent’s evaluation phase:
The former realizes the learning of the forward model, whereas the latter concerns the
exploitation and revision of the learned model. Figure 5.9 shows the agent model.

161

5. Enhancing Learning Agents

Figure 5.9 (Learning and Revision Agent Model) (Source: a. f. [26])

According to [5], in the training phase (left side of the figure), the agent
performs random exploration and collects data about the environment
for learning the forward model HKBs. At the end of the training phase,
the agent creates the forward model HKBs from the data collected so
far. When being evaluated (right side of the figure), the agent revises
the forward model HKBs if they are not able to explain observations
made in the evaluation environment.

The process described by the agent model from Figure 5.9 usually starts in the
training phase (cf. [5]): In this phase, the agent explores the environment through
random actions to collect data about the game. At the end of the training phase, the
forward model HKBs are created (see Section 5.2.1).33

33 In the GVGAI competition, the training phase could be rather short in the past (e. g., five
minutes in the competition’s round of 2017). However, for the presented approach, only about

 seconds of training time were used in the context of several different games for learning
eligible forward model HKBs from the collected data (see [5, 26]).

162

©
 2

01
8/

20
21

 IE
EE

5.2 Forward Model Learning

The subsequent evaluation phase usually comprises new levels of the game that
were not seen by the agent during the training phase. These new levels can involve
changed circumstances, like new objects or a different anatomy of the level. In this
phase, after every action, the agent observes whether the changes of the environment
fit to the forward model HKBs that were learned and created at the end of the
training phase: If a state change cannot be explained by the corresponding learned
forward model HKB, then this HKB is revised with the observed changes using
Algorithm 5.1 (as described in Example 5.2 and Example 5.3). The agent’s decision-
making is then based on the (revised) forward model HKBs using techniques like
MCTS [21] for performing forward simulations of the game to determine the possibly
best next action.

The agent model presented here integrates machine learning, knowledge represen-
tation and revision. Moreover, it allows to incorporate established techniques known
from the computational intelligence in games community (such as MCTS [21]), which
are commonly used in the GVGAI planning track. The GVGAI framework represents
a challenging environment here, since agent models must be very responsive (40 mil-
liseconds per decision, as described in [5]).

The presented agent model performed well in experiments made in the context of
the GVGAI framework [52] and outperformed several previous agents, that were
participating earlier in the GVGAI competition [65]: According to the results in [5],
the presented agent model (with MCTS being used for decision making based on the
learned HKB forward model) dominated four previously participating agents regard-
ing the average reached game score in five out of ten diverse games from a training
set of the GVGAI competition. Only three of the other competing agents were able to
dominate the presented agent model (each of which in only one of the ten games).
This resulted in the agent model being the best among the considered competitors. It
increased the overall performance by according to the used scoring system in
comparison to the second best agent (which was the one by İlhan and Etaner-Uyar,
see the description of the learning track agents in Section 2.3.3). The evaluation de-
tails of the presented agent model can be found in [5, 26].

As a further result, the agent model also allows to inspect the learned forward
model HKBs, which may help to explain what the agent learned and can contribute
to better understand the learned agent behavior as well as the decision-making.

163

5. Enhancing Learning Agents

5.3 Summary

This chapter presented two HKB-based agent models that incorporate learning tech-
niques and decision making based on symbolic knowledge. Analyses and evaluations
of the benefits of this incorporation were provided in the context of grid world sce-
narios and different games from the GVGAI competition [65].

It was shown in Section 5.1 that incorporating the HKB extraction algorithms into
an agent’s learning process can speed up learning. Depending on how eligible the
exploitation of heuristics is for the underlying problem, this can be beneficial already
in the first – of the learning process. Moreover, Section 5.1 showed, that these
approaches can also help to master games that are in principle easy to solve but
typically cause problems for common algorithms (see Table 5.3 and Appendix B).

In Section 5.2, an HKB-based agent model was described that incorporates
learning, the exploitation of learned symbolic knowledge and the revision of such
knowledge in the context of new levels of the same game. The agent model was
developed in the context of a joint work together with Jun.-Prof. Dr.-Ing. ░░░░░░

 (see bibliographic remarks in Section ░░░░░ 5.4). It contributed to general video
game artificial intelligence (GVGAI) [53] by enabling the use of state-of-the-art meth-
ods known from the GVGAI competition’s planning track (such as monte carlo tree
search, MCTS [21]) in the context of the competition’s learning track as well, where
no forward model of the game is provided to an agent. By this means, the per-
formance in the learning track could be increased by about compared to the
best agent model of one of the GVGAI competition’s previous rounds at that time
(see [5, 26] for a detailed evaluation).

5.4 Bibliographic Remarks

Section 5.2 has its origins in the field of general video game playing [53] and resulted
from joint works with Jun.-Prof. Dr.-Ing. (from ░░░░░░ ░░░░░ Leibniz Uni-
versity Hannover). In our joint works [5, 26], HKBs were used to enable agents to
quickly learn forward models of different video games from the general video game
artificial intelligence (GVGAI) competition [65].

As described earlier, in this setting, agents were first trained on several levels of a
game and were then evaluated on different levels of the same game. In the training
phase, means of machine learning were used to statistically learn the forward model
of the game, whereas in the evaluation phase, due to time constraints from the

164

5.4 Bibliographic Remarks

GVGAI competition, it was not possible to perform a statistical “relearning” in case
changes of the game where noticed by the agent. For this purpose, the revision algo-
rithm provided in Section 5.2.2 of this chapter was implemented to let the agent react
quickly to changes of the environment, while still considering the knowledge learned
in the training phase.

The cooperation resulted in a conference paper [26], where HKBs were first in-
troduced together with revision algorithm as an efficient knowledge representation
paradigm for general video game playing. As an extension to this work, the journal
article [5] has been published in the IEEE journal Transactions on Games at the end
of 2020 (date of early access). Besides a formalization of the revision algorithm and
further extended contents, this work also provides intuitions for the validation of the
revision algorithm against an adapted version of the basic postulates by Alchourrón,
Gärdenfors and Makinson [2, 35].

In the context of the cooperation, the author’s work focused on the representation
of the learned forward models as HKBs and their integration to an agent model, as
well as on the development of the revision approach and its validation. The work by
Jun.-Prof. Dr.-Ing. focused on the exploitation of the learned░░░░░░ ░░░░░
(and revised) forward models using search algorithms like monte carlo tree search
(MCTS) [21] and the study of the resulting agent model in the context of different
games from the GVGAI framework by Perez-Liebana et al.

165

5. Enhancing Learning Agents

166

6. Conclusion and Future Work

6. Conclusion and Future Work

After having studied the concept of hierarchical knowledge bases (HKBs) in different
applications in the context of games (and related scenarios), this chapter summarizes
the results of this work and provides the conclusions (Section 6.1). After that, an
outlook on possible future work will be outlined, which also comprises some further
hints to applications outside the scope of games (Section 6.2).

6.1 Summary of the Results and Conclusions

This work investigated ideas for extracting knowledge bases from learning agents, to
be able to explain their behavior in a comprehensible way. Moreover, it was investi-
gated, how the exploitation of such extracted knowledge can contribute to increase an
agent’s learning capabilities.

To achieve these goals, different algorithms have been described, which allow for
learning an entire knowledge base that represents the behavior learned by an agent.
The need for a compact representation of the resulting knowledge led to the concept
of HKBs: These knowledge bases have been designed to represent the knowledge in
the form of rules with exceptions on different levels of abstraction. Thereby, HKBs
are not only a compact representation paradigm but are also easy to read and intui-
tively comprehensible to people not having a strong background in logic (the com-
prehensibility of HKBs has been studied in [41]). HKBs have been developed with
simplicity in mind, both regarding comprehensibility, reasoning and revision efficiency.
This renders them especially useful in the context of (near) real-time environments,
such as games (and related domains).

More detailed, the main results of this work can be summarized as follows:

• HKBs as an intuitive and comprehensible knowledge representation approach:
With HKBs (Section 3.1), an approach has been developed that is able to com-
pactly represent the behavior of agents. The resulting representations show
some interesting properties regarding comprehensibility (see also [41]) and
thereby are also potentially accessible to people without a strong background
in logic.

167

6. Conclusion and Future Work

• Different extraction approaches to learn comprehensible representations in the
form of HKBs from data:
A preliminary approach and its extension based on the APRIORI algorithm by
Agrawal et al. [1], as well as a more elaborate algorithm have been developed to
learn HKBs from data (Section 3.4 and Section 3.5). The latter is more trans-
parent than its precursors and able to produce eligible (rougher) HKBs when
being stopped before finishing the extraction. It has been shown that the algo-
rithm is complete for deterministic state-action sequences of an agent. Using
these algorithms, the behavior of different agents, that learned to act mean-
ingful in the context of games (and similar scenarios) could be explained
(Section 4.1).

• Efficient reasoning and revision algorithms for the resulting HKBs:
Both the reasoning algorithm (Section 3.2) for HKBs and the revision algorithm
for forward model HKBs (Section 5.2.2) are efficient enough to be used by
agents in (near) real-time environments, such as games. The efficiency of the
reasoning algorithm has also been considered in [41].

• Two hybrid agent models incorporating learning and knowledge representation:

– A hybrid machine learning/knowledge representation agent model that ac-
celerates an agent’s reinforcement learning process:
The concepts of HKBs and the corresponding extraction algorithms have
been incorporated into an agent model to increase the learning speed of
a reinforcement learning agent (Section 5.1). The approach conforms to
common modularization criteria from software engineering, since the in-
corporation of the HKBs and the extraction algorithms are independent
from the underlying reinforcement learning approach, that is used for the
machine learning part. Thereby, the presented HKB approaches are com-
binable with different reinforcement learning approaches.

– An agent model incorporating learning, exploitation and revision of forward
models in the context of a priori unknown environments (games):
In the joint works [5, 26] with Jun.-Prof. Dr.-Ing. ░░░░░░ ░░░░░
(from Leibniz University Hannover), the ideas of HKBs could be suc-
cessfully adapted to be able to learn forward models (i. e., “how things
work”) of a priori unknown environments in the context of video games
(Section 5.2). The representations of such forward models could be learned
and exploited efficiently to be applied in the (near) real-time framework for
general video game playing (GVGAI) by Perez-Liebana et al. By this
means, it was possible to apply state-of-the-art algorithms from the
GVGAI planning community (like monte carlo tree search, MCTS [21]) in

168

6.1 Summary of the Results and Conclusions

case no forward model of the game is provided to the agent, which in-
creased the performance over other agents in the learning track’s previous
rounds of the GVGAI competition (see Section 5.3 and [5, 26]). The results
contributed to the incorporation of knowledge representation techniques
and other approaches from the AI in games community and were men-
tioned in the book on general video game artificial intelligence [53].

• The InteKRator toolbox for using HKBs in practice:
Since this work is strongly geared toward practical aspects, an important result
is the implementation of the most relevant approaches into the INTEKRATOR
toolbox [38]. Besides the idea of making the approaches accessible to a broader
community, it can also be considered a proof-of-concept for their practical
usefulness. The toolbox is implemented in JAVA as an open source library/
command line applications. It allows for learning HKBs from data and for
efficiently performing reasoning and revision on HKBs. Furthermore, it is also
possible to combine these techniques with continuous numeric sensory data.
INTEKRATOR was meanwhile also used outside the scope of games, e. g., in
medical informatics (for hospital logistics/process optimization research) [6] or
for educational purposes at the Summer School in Bioinformatics and High-
Dimensional Statistics [37] at the Institute of Medical Biostatistics, Epide-
miology and Informatics (IMBEI) of the University Medical Center of the
Johannes Gutenberg University Mainz in 2020. In a more recent joint work at
IMBEI [10], the INTEKRATOR toolbox has also been proposed for automatically
creating expert systems from data (see bibliographic remarks in Section 3.7).

• As a side product, a model for subjectively experienced strategic depth:
As a further result emerging from HKBs, a model for the strategic depth that
is subjectively experienced by humans when playing games was developed in a
joint work [11] with Dr. (formerly at TU Dortmund University, at░░░░ ░░░
the time of writing at Queen Mary University of London and modl.ai, Copen-
hagen). This result served as a foundation for an interactive educational exhibit
that was created for the company Z Quadrat GmbH in Mainz, Germany. With
this exhibit, users can play different levels of a game and evaluate the strategic
depth estimates of the algorithm against their personal feeling. Moreover, users
can learn about knowledge representation, by inspecting HKBs representing the
knowledge of their playtraces. The exhibit was accepted at the German exhi-
bition ship MS Wissenschaft [50] and was shown in a large number of German
and Austrian cities in 2019. It was later selected for the ScienceStation traveling
exhibition (another project of the German scientific communication organization
Wissenschaft im Dialog, WiD) [59] and, in this context, it was shown at several

169

6. Conclusion and Future Work

train stations in Germany in 2019. It was furthermore selected by the Deutsches
Museum Bonn (German Museum in Bonn) [24] for an exhibition on AI [48].

The concepts resulting from this work stimulated bachelor’s and master’s theses
(e. g, [40, 12]), partly contributed to other’s PhD work [25] and resulted in further
joint works by the author [6] as well as by others [42].

Besides the opportunity of growing this work in stimulating environments and
thereby getting in touch with ambitious scientists and students over time (see Section
“Acknowledgments” for details), further possible reasons for that are:

• Reasoning for HKBs (as well as revision) is lightweight and very efficient, and
can therefore be used in (near) real-time environments (cf. [41]). This distin-
guishes HKBs from several other knowledge representation approaches and ren-
ders HKBs an eligible approach for agents, especially in the context of games.

• The proposed learning/extraction algorithms create HKBs with rule weights
representing conditional probabilities —a concept widely-
used both in knowledge representation and other communities. Together with
the created HKBs being compact (in case the intrinsic structure of the input
data allows for a compact representation) and complete (for deterministic data
in case of the advance extraction algorithm), this renders HKB extraction a
sound and easily interpretable way for getting insights into data (such as state-
action sequences produced by agents).

• With the INTEKRATOR toolbox, the concepts are available in a well-documented
and easy to use open source software, that can be used both stand-alone and as
a programming library (also outside the scope of games; first experiences have
been made, e. g., in medical informatics).

• The representation of knowledge in the form of rules with exceptions appears
to be “natural” and easily accessible, also to people outside the knowledge
representation community (cf. [41]). This is underpinned by the educational
interest in HKBs (as shown, e. g., in the context of the exhibit that was men-
tioned earlier).34

With the aforementioned points, the work contributed to the practical usage of
combined machine learning/knowledge representation approaches in the context of
agents, with applications especially (but not solely) in games. This may help to fur-
ther establish the usage of such approaches in the AI in games community (see [53]),

34 The author’s personal experiences of explaining the basic ideas of HKBs to many people in
different contexts (e. g., to AI classes at school [4], to non-computer science researchers and
students [37] or to diverse communities at exhibitions) also conforms to that.

170

6.1 Summary of the Results and Conclusions

and hopefully also to other communities. Some first attempts to that will be briefly
outlined in the following section.

6.2 An Outlook on Future Work

Despite the results provided in the previous section (Section 6.1), there are further
ideas that might be interesting to be considered for future work. Some of these ideas
will be briefly outlined here.

An important and still open question in the context of this work is when a machine
learning approach should be used and when an agent should preferably rely on a
revision approach for adapting to changes in the environment. In Section 5.1, it was
shown that the exploitation of symbolic knowledge can vastly improve the perfor-
mance of an agent (at least if the environments allows for such exploitation, which is
assumed to be usually the case for meaningful environments) and that this usually
helps early in the learning process. However, these sections do not state anything
about when to revise the extracted HKBs. Moreover, in Section 5.2, it was described
that meaningful forward models of unknown environments can be learned quickly
using HKBs in conjunction with a corresponding learning algorithm. Even if this
approach already incorporates revision, the decision when to perform revision instead
of relying on the machine learning approach was implied by the switch between the
training and evaluation phase of the GVGAI competition’s framework [65]. The in-
corporation of a mechanism that lets an agent decide this on its own (e. g., from ob-
serving the environment) into an agent model as shown in Figure 5.9, could be an
interesting next improvement here.

From a more theoretical point of view, it could be interesting to have a closer look
on the complexity of the presented algorithms. Although the efficiency of the algo-
rithms and the resulting performance gain in the context of learning agents has been
shown already in several experiments in Section 5.1 and Section 5.2 (the latter re-
presenting a near real-time setting) as well as in the study [41]: Having a closer look
on it from a complexity theoretical point of view could further underpin these results.
Furthermore, HKBs in conjunction with the reasoning algorithm (Algorithm 3.1)
could be investigated regarding its inference properties. Although this work already
showed the functionality and usefulness in several different contexts, it might be in-
teresting to interconnect it more tightly with logic-based approaches. In [8] and [40],
it had already been outlined that it is in principle possible to translate HKBs into
answer set programs, which can be considered a first step in this direction. Since it
has been shown in [41] that reasoning for HKBs can outperform reasoning for answer

171

6. Conclusion and Future Work

set programs, it could also be beneficial to consider the inverse direction (i. e., trans-
lating answer set programs to HKBs).

As the introductory citation in the beginning of this work states that games might
be interesting subjects to prepare for “real-world problems”, one of the most inter-
esting future works might be the transfer of the concepts and approaches mentioned
here to other domains outside the scope of games. First attempts to this have already
been made in medical informatics in the context of multi-agent simulations for op-
timizing hospital processes [6]. There, a hospital process involving patients, doctors
and nurses has been simulated to learn behavioral rules in the form of HKBs for the
different individuals participating in the process. The HKBs have been learned using
an earlier version of the INTEKRATOR toolbox [38] (see also Appendix A) and have
been further processed manually to simplify and adapt them. More recently, in [10],
INTEKRATOR has also been proposed for the automated creation of expert systems
from data in the medical context. This shows the potential of the work also for fur-
ther applications outside the scope of games.

172

Appendix

Appendix

173

Appendix

174

A. Introduction to the InteKRator Toolbox

A. Introduction to the INTEKRATOR Toolbox

This part of the appendix serves as a basic introduction to the INTEKRATOR toolbox.
The INTEKRATOR toolbox implements the most important results of this work to be
used in practice. It is intended as a lightweight toolbox geared toward being used in
the context of agent applications, however, it can also be used in other areas outside
the scope of agents. The toolbox has recently been accepted for publication in the
context of automatically learning expert systems from medical data [10], showing that
this work’s results can also be transferred to other applications. The content pre-
sented here represents a selection of the most important features of the INTEKRATOR
toolbox, mainly following [38].

After providing some general information about the interface (Section A.1), the
main features of the learning module (Section A.2) will be presented. After that, the
usage of the inference module (Section A.3) and the revision module (Section A.4)
will be explained. Finally, the checking functionality for analyzing the knowledge
quality will be described (Section A.5).

A.1 Basic Interface

The INTEKRATOR toolbox is written in the JAVA programming language. According
to [38], it can be both used as a command line application (for calling it manually or
as an external process) and as a JAVA library. The library is extensively documented
using JAVADOC (see, e. g., [16], Chapter 7, pp. 203–208). The toolbox is lightweight,
consisting only of a single .jar-file without any external dependencies. By this means,
it can be easily integrated into other applications (such as web applications). The
command line interface is geared toward usability and efficiency. It operates on simple
text files and also allows for calling the toolbox as an external process from other
(non-JAVA) applications.

Following [38], the basic command structure of the INTEKRATOR toolbox is

 (A.1)

where is the input file to be processed according to the
 is an optional output file to which the results are written in addition to

175

A. Introduction to the InteKRator Toolbox

the standard out (if provided) and indicates that multiple
 sequences can be used for sequential processing with a single call.

The following sections will provide information on how the look in
detail depending on the respective use case. The parameters and their respective
options are similar to the interface offered by the corresponding methods when using
the JAVA library instead.

A.2 Learning

Learning is implemented using the results from Section 3.5 (especially Algorithm 3.3
and the extensions from Section 3.5.3 and Section 3.5.4).

According to [38], to learn an HKB from a state-action sequence, each line of the
file provided by from (A.1) must contain state-action pairs of the form

 (separated by space characters), where describe an agent’s
state in which action has been performed. The from (A.1) are of
the form

where represent one or more optional learning parameters, that can be
used in arbitrary order as well as in combination (if not otherwise stated). Some of
the most important ones will be described here, following [38] (a more complete list
can be found in [38]):

•
Ensures that the resulting HKB has a top level rule (even if not needed for any
of the state-action pairs of the input data to infer the action from the state).

•
Ensures that the resulting HKB includes all rules learned from data (even those
that are not needed for any of the state-action pairs of the input data to infer
the action from the state).

•
Discretizes columns containing numeric data by clustering (see Section 3.5.3).35

– If the optional is provided, each column (where denotes the
first column) will be discretized to at most sensor symbols, each repre-

35 The possibly unusual appearing syntax of the curly bracket after the column number can be
considered a “funnel” that concentrates the numeric values to learned sensor symbols.

176

A.2 Learning

senting one cluster. Multiple can be provided, one for each numeric
column that should be discretized.

– If the optional is provided, must be a comma-sepa-
rated list of names (without space characters). Each column (where
denotes the first column) will be discretized to a maximum number of
clusters according to the number of names provided, and the names will
be used for the resulting sensor symbols representing the clusters. Mul-
tiple can be provided, one for each numeric column that should
be discretized.

– If the -option is provided, additional information about the number of
clusters and the percentage covered by a specific cluster symbol will be
provided for each column (see (3.3) in Section 3.5.3). Multiple columns
can be provided, one for each numeric column for which additional infor-
mation should be provided.

In either of the three cases here, the -keyword can be used for to refer
to all columns.

•
Only the most potentially relevant sensors are considered for learning to accel-
erate the learning process in case of higher-dimensional data (see Section 3.5.4).
If the optional is provided, only the most potentially relevant sensors are
considered. Otherwise is determined automatically from data using a clus-
tering approach (as described at the end of Section 3.5.4).

•
Only state-action pairs from the input state-action sequence are randomly
selected for learning. If is provided, percent of the state-action pairs are
randomly selected instead. Sampling can drastically speed up the learning pro-
cess, but may result in incomplete HKBs (i. e., it might not be possible to infer
the correct action from the state of each state-action pair from the original
state-action sequence, even if the original state-action sequence was deter-
ministic; see Definition 3.1). However, might be used subsequently to
evaluate the quality of the resulting HKB (see Section A.5). In case of the
original state-action sequence being deterministic, completeness of the learned
HKB can be ensured by revising it subsequently with every state-action pair of
the original state-action sequence (see Section A.4). However, this will probably
result in a less compact representation with additional exceptions on the most
specific level.

177

A. Introduction to the InteKRator Toolbox

A.3 Reasoning

The reasoning approach of the INTEKRATOR toolbox is based on the results from
Section 3.2 (especially Algorithm 3.1).

To infer one or more action(s) from a provided state and a learned (or manually
created) HKB, according to [38], the HKB must be contained in the from
(A.1). The from (A.1) must be of the form

where is an optional parameter for providing additional explanatory information
and represents the state from which the action(s) will be inferred.

The parameter must be of the form (separated by space charac-
ters). If the optional parameter is provided, then the rule(s), based on which the
results are inferred, will also be provided.

If more than one action is provided as result, still following [38], this means that
these actions are equally good according to the HKB of the

A.4 Revision

Revision is based on Algorithm 5.1. However, the INTEKRATOR toolbox implements
the revision approach in a more general way, which allows to revise any HKB (not
only those representing forward models of games; cf. Section 5.2.2).

To revise a learned (or manually created) HKB, according to [38], the HKB must
be contained in the from (A.1) and the from (A.1) must be of
the form

where is a state-action pair representing the new knowledge that has to be
integrated in the HKB.

The parameter must be of the form (separated by space charac-
ters) and states that it should be possible to infer action from state
after revision.

Note that, in principle, INTEKRATOR also allows for performing revision on levels
other than the most specific one (in case the state provided in is not a complete

178

A.4 Revision

state). However, even if this is technically possible in the same way, it does neither
conform to Algorithm 5.1 (where revision is only done on the most specific level), nor
is the validation of the revision approach done in [5] guaranteed to hold in this case.
For this reason, the INTEKRATOR toolbox provides a warning, if revision is not done
on the most specific level (as far as this can be determined from the HKB to be
revised). Also here, might be used subsequently to evaluate the impact of the
revision on the overall quality of the resulting HKB (see Section A.5).

A.5 Checking

To check the quality of a learned (or manually created) HKB, it is possible to perform
a check of the HKB against a state-action sequence. In this case, it is measured for
how many of the state-action pairs contained in the state-action sequence the action
is correctly inferred from the corresponding state.

According to [38], the from (A.1) must be the HKB to be checked and the
 from (A.1) must be of the form

where is an optional parameter resulting in more detailed results if provided
and is the state-action sequence against which the HKB is checked.

Every line in must be a state-action pair of the form If the
 option is provided, the percentage of state-action pairs that are correctly

covered by the HKB is in addition shown individually for every action.

179

A. Introduction to the InteKRator Toolbox

180

B. Online Appendix

B. Online Appendix

This part of the appendix refers to the online appendix that accompanies this work.
There, especially videos will be provided to further underpin some of the presented
results in a visual way.

The online appendix can be accessed through [51] or by scanning the code pro-
vided in Figure B.1.

Figure B.1 (Access to Online Appendix) (Source: created using [58])

Common software can be used to scan the code as an alternative way
to access the online appendix.

181

B. Online Appendix

182

List of Algorithms

List of Algorithms

Algorithm 3.1 (Reasoning on HBKs) (Source: adapted from [7])...63

Algorithm 3.2 (Preliminary Knowledge Base Extraction) (Source: based on [7])...........................70

Algorithm 3.3 (Advanced Extraction of HKBs) (Source: adapted from [6])...................................84

Algorithm 5.1 (Revision Algorithm for HKBs) (Source: adapted from [26]).................................158

183

List of Figures

List of Figures

(Note that “a. f.” is used in some cases to abbreviate the term “adapted from”.)

Figure 2.1a (Basic Agent Model) (Source: adapted from [14])..29

Figure 2.1b (Basic Agent Model: Alternative Representation)...29

Figure 2.2 (Agent, Sensors, Actions)

(Source: a. f. FLAIRS’17 poster by Apeldoorn & Kern-Isberner)...32

Figure 2.3 (States, Actions and State Transitions)...33

Figure 2.4 (Grid World with Water) (Source: adapted from [7–9, 62])...39

Figure 2.5 (Q-Learning in a Grid World) (Source: adapted from [7–9, 62])...................................46

Figure 2.6 (A “Black Box” by Learned Rules)...49

Figure 3.1 (HKB for an Agent in a Grid World) (Source: adapted from [11])................................61

Figure 3.2 (Horse Racing Game)

(Source: a. f. exhibit software by the author for Z Quadrat GmbH)...72

Figure 3.3 (Road Following Task)

(Source: a. f. teaching software by the author used for Z Quadrat GmbH)....................................94

Figure 3.4 (HKB for Fuzzy-Controlled Road Following)...96

Figure 4.1 (GVGAI Games for HKB Extraction) (Source: [52], adapted from [11]).....................105

Figure 4.2 (Extracted HKB for Camel Race Level 2)...109

Figure 4.3 (Extracted HKB for Run Level 2)..110

Figure 4.4 (Extracted HKB for Eighth Passenger Level 3)...112

Figure 4.5 (Evaluation of the Strategic Depth Measure) (Source: adapted from [11])..................120

Figure 5.1 (Grid Worlds for Learning with Explicit Knowledge) (Source: a. f. [7]).......................128

Figure 5.2 (Extracted HKBs after Completed Learning Process) (Source: a. f. [7])......................132

Figure 5.3 (Results for Incorporating HKBs during Learning) (Source: adapted from [7])..........132

Figure 5.4 (Subjective Strategic Depth during Learning) (Source: adapted from [9])..................137

Figure 5.5 (Hybrid Reinforcement Learning/HKB Agent Model) (Source: a. f. [9]).....................139

Figure 5.6 (Knowledge Evolution during Learning Process)...147

Figure 5.7 (Butterflies Game) (Source: GVGAI framework [52])..153

Figure 5.8 (Forward Model for Butterflies) (Source: adapted from [5])..155

Figure 5.9 (Learning and Revision Agent Model) (Source: a. f. [26])..162

Figure B.1 (Access to Online Appendix) (Source: created using [58])..181

184

List of Tables

List of Tables

Table of Notations...15

Table 3.1 (Data for Potential Relevance)..98

Table 5.1 (Parameters for Learning Agent Experiments) (Source: adapted from [7])...................131

Table 5.2 (Plain Q-Learning vs HKB Approach) (Source: a. f. [9])...141

Table 5.3 (Q-Learning vs HKB Approach in a Game) (Source: a. f. [9]).......................................144

185

List of Tables

186

References

References

[1] Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., Verkamo, A. I.: Fast Discovery of
Association Rules. In: Fayyad, U. M., Piatetsky-Shapiro, G., Smyth, P., Uthurusamy, R.
(eds.) Advances in Knowledge Discovery and Data Mining, pp. 307–328. The MIT Press,
Cambridge, Massachusetts, 1996.

[2] Alchourrón, C., Gärdenfors, P., Makinson, D.: On the Logic of Theory Change: Partial Meet
Contraction and Revision Functions. Journal of Symbolic Logic, 50(2):510–530, 1985.

[3] Apeldoorn, D.: AbstractSwarm – A Generic Graphical Modeling Language for Multi-Agent
Systems. In: Klusch, M., Thimm, M., Paprzycki, M. (eds.) Multiagent System Technologies –
11th German Conference, MATES 2013, Koblenz, Germany, September 16-20, 2013
Proceedings, pp. 180–192. Springer, Berlin, Heidelberg, 2013.

[4] Apeldoorn, D.: KI in der Schule – Teil 1: Einführung in die künstliche Intelligenz. LOG IN –
Informatische Bildung und Computer in der Schule, 195/196:126–131, 2021.

[5] Apeldoorn, D., Dockhorn, A.: Exception-Tolerant Hierarchical Knowledge Bases for Forward
Model Learning. IEEE Transactions on Games, 13(3):249–262, 2021.

[6] Apeldoorn, D., Hadidi, L., Panholzer, T.: Learning Behavioral Rules from Multi-Agent
Simulations for Optimizing Hospital Processes. In: Chomphuwiset, P., Kim, J., Pawara, P.
(eds.) Multi-disciplinary Trends in Artificial Intelligence – 14th International Conference,
MIWAI 2021, Virtual Event, July 2–3, 2021, Proceedings, pp. 14–26. Springer, Cham, 2021.

[7] Apeldoorn, D., Kern-Isberner, G.: When Should Learning Agents Switch to Explicit
Knowledge? In: GCAI 2016. 2nd Global Conference on Artificial Intelligence. EPiC Series in
Computing, vol. 41, pp. 174–186. EasyChair Publications, 2016.

[8] Apeldoorn, D., Kern-Isberner, G.: Towards an Understanding of What is Learned: Extracting
Multi-Abstraction-Level Knowledge from Learning Agents. In: Rus, V., Markov, Z. (eds.)
Proceedings of the Thirtieth International Florida Artificial Intelligence Research Society
Conference, pp. 764–767. AAAI Press, Palo Alto, 2017.

[9] Apeldoorn, D., Kern-Isberner, G.: An Agent-Based Learning Approach for Finding and
Exploiting Heuristics in Unknown Environments. In: Gordon, A. S., Miller, R., Turán, G.
(eds.) Proceedings of the Thirteenth International Symposium on Commonsense Reasoning,
London, UK, November 6-8, 2017. CEUR Workshop Proceedings (Vol-2052), Aachen, 2018.

[10] Apeldoorn, D., Panholzer, T.: Automated Creation of Expert Systems with the InteKRator
Toolbox. Studies in Health Technology and Informatics, 283:46–55, 2021.

[11] Apeldoorn, D., Volz, V.: Measuring Strategic Depth in Games Using Hierarchical Knowledge
Bases. In: 2017 IEEE Conference on Computational Intelligence and Games (CIG), pp. 9–16.
IEEE, Piscataway, 2017.

[12] Barbi, M.: Erlernen von Wissensbasen mittels Reinforcement Learning und Neuronalen
Netzen. Master’s thesis, Technische Universität Dortmund, Dortmund, 2017.

187

References

[13] Beierle, C., Bock, T., Kern-Isberner, G., Ragni, M., Sauerwald, K.: Kinds and Aspects of
Forgetting in Common-Sense Knowledge and Belief Management. In: Trollmann, F., Turhan,
A.-Y. (eds.) KI 2018: Advances in Artificial Intelligence, pp. 366–373. Springer International
Publishing, Cham, 2018.

[14] Beierle, C., Kern-Isberner, G.: Methoden wissensbasierter Systeme – Grundlagen,
Algorithmen, Anwendungen (4. Auflage). Vieweg+Teubner, Wiesbaden, 2008.

[15] Beierle, C., Kutsch, S., Sauerwald, K.: Compilation of Conditional Knowledge Bases for
Computing C-Inference Relations. In: Ferrarotti, F., Woltran, S. (eds.) Foundations of
Information and Knowledge Systems, pp. 34–54. Springer International Publishing, Cham,
2018.

[16] Bloch, J.: Effective Java (Second Edition). Addison-Wesley, Upper Saddle River, Boston,
Indianapolis, San Francisco, New York, Toronto, Montreal, London, Munich, Paris, Madrid,
Capetown, Sydney, Tokyo, Singapore, Mexico City, 2008.

[17] Borgelt, C., Braune, C., Kruse, R.: Unsicheres, impräzises und unscharfes Wissen. In: Görz,
G., Schmid, U., Braun, T. (eds.) Handbuch der Künstlichen Intelligenz (6. Auflage), pp. 279–
341. De Gruyter Oldenbourg, Berlin, Boston, 2020.

[18] Borgida, A., Etherington, D. W.: Hierarchical Knowledge Bases and Efficient Disjunctive
Reasoning. In: Brachman, R. J., Levesque, H. J., Reiter, R. (eds.) Proceedings of the First
International Conference on Principles of Knowledge Representation and Reasoning, pp. 33–
43. Morgan Kaufmann Publishers, San Francisco, 1989.

[19] Brewka, G., Eiter, T., Truszczyński, M.: Answer Set Programming at a Glance. Commun.
ACM, 54(12):92–103, 2011.

[20] Browne, C.: Elegance in Game Design. IEEE Transactions on Computational Intelligence and
AI in Games, 4(3):229–240, 2012.

[21] Browne, C. B., Powley, E., Whitehouse, D., Lucas, S. M., Cowling, P. I., Rohlfshagen, P.,
Tavener, S., Perez, D., Samothrakis, S., Colton, S.: A Survey of Monte Carlo Tree Search
Methods. IEEE Transactions on Computational Intelligence and AI in Games, 4(1):1–43,
2012.

[22] Clingo – A Grounder and Solver for Logic Programs: https://github.com/potassco/clingo.
Visited on Oct 24th, 2020.

[23] de Finetti, B.: La prévision : ses lois logiques, ses sources subjectives. Ann. Inst. Henri
Poincaré, 7(1):1–68, 1937.

[24] Deutsches Museum Bonn: https://www.deutsches-museum.de/bonn. Visited on Feb 8th,
2021.

[25] Dockhorn, A.: Prediction-based Search for Autonomous Game-Playing. PhD thesis, Otto-
von-Guericke-Universität Magdeburg, Magdeburg, 2020.

[26] Dockhorn, A., Apeldoorn, D.: Forward Model Approximation for General Video Game
Learning. In: Browne, C., Winands, M. H. M., Liu, J., Preuss, M. (eds.) Proceedings of the
2018 IEEE Conference on Computational Intelligence and Games (CIG’18), pp. 425–432.
IEEE, Piscataway, 2018.

188

References

[27] Dörner, D.: Die Logik des Mißlingens – Strategisches Denken in komplexen Situationen.
Rowohlt Taschenbuch, Reinbek bei Hamburg, 1992.

[28] Duarte, F. F.: Review of Recent Work on Computational Intelligence in Games. In: Rua, R.,
Silva, V., Muhammad, S., Duarte, F. (eds.) MAPiS 2019 – First MAP-i Seminar
Proceedings, pp. 6–14. UA Editora, Aveiro, 2019.

[29] Eichhorn, C., Volz, V., Niland, R., Schendekehl, T.: A Vision on Analysing Approaches for
Knowledge Representation and Reasoning Using Computer Games. In: Beierle, C., Kern-
Isberner, G., Ragni, M., Stolzenburg, F. (eds.) Proceedings of the 6th Workshop on
Dynamics of Knowledge and Belief (DKB-2017) and the 5th Workshop KI & Kognition
(KIK-2017) co-located with 40th German Conference on Artificial Intelligence (KI 2017),
Dortmund, Germany, September 26, 2017, pp. 31–42. CEUR Workshop Proceedings (Vol-
1928), Aachen, 2017.

[30] Fierens, D.: Learning Directed Probabilistic Logical Models from Relational Data (Het leren
van gerichte probabilistisch-logische modellen uit relationele gegevens). PhD thesis, Lirias,
Katholieke Universiteit Leuven, Leuven, 2008.

[31] Garnelo, M., Arulkumaran, K., Shanahan, M.: Towards Deep Symbolic Reinforcement
Learning. arXiv:1609.05518 [cs.AI], 2016.

[32] Ghallab, M., Nau, D., Traverso, P.: Automated Planning – Theory and Practice. Morgan
Kaufmann Publishers, Amsterdam, Boston, Heidelberg, London, New York, Oxford, Paris,
San Diego, San Francisco, Singapore, Sydney, Tokyo, 2004.

[33] Glunk, F. R., Illustrated by Rosenzweig, F., Piel, A.: Computer und Roboter. Loewe,
Bindlach, 1993.

[34] Greulich, C., Edelkamp, S., Gath, M.: Agent-Based Multimodal Transport Planning in
Dynamic Environments. In: Timm, I. J., Thimm, M. (eds.) KI 2013: Advances in Artificial
Intelligence – 36th Annual German Conference on AI, Koblenz, Germany, September 16-20,
2013 Proceedings, pp. 74–85. Springer, Berlin, Heidelberg, 2013.

[35] Hansson, S. O.: Logic of Belief Revision. In: Zalta, E. N. (ed.) The Stanford Encyclopedia of
Philosophy. 2017.

[36] Hertzberg, J., Lingemann, K., Nüchter, A.: Mobile Roboter – Eine Einführung aus Sicht der
Informatik. Springer Vieweg, Berlin, Heidelberg, 2012.

[37] IMBEI Summer School in Bioinformatics and High-Dimensional Statistics: https://
www.unimedizin-mainz.de/transmed/training-program/training-in-scientific-skills/summer-
school-in-bioinformatics-and-high-dimensional-statistics.html. Visited on May 29th, 2021.

[38] InteKRator Toolbox: https://gitlab.com/dapel1/intekrator_toolbox. Visited on Oct 15th,
2020.

[39] Junges, R., Klügl, F.: Learning Tools for Agent-Based Modeling and Simulation. Künstliche
Intelligenz, 27:273–280, 2013.

[40] Krüger, C.: Statistische Evaluation unterschiedlicher Repräsentationsformen für die
Wissensextraktion aus Reinforcement Learning. Bachelor’s thesis, Technische Universität
Dortmund, Dortmund, 2016.

189

References

[41] Krüger, C., Apeldoorn, D., Kern-Isberner, G.: Comparing Answer Set Programming and
Hierarchical Knowledge Bases Regarding Comprehensibility and Reasoning Efficiency in the
Context of Agents. In: Proceedings of the 30th International Workshop on Qualitative
Reasoning (QR 2017) at International Joint Conference on Artificial Intelligence (IJCAI
2017) in Melbourne, Australia. Northwestern University, Evanston, Illinois, 2017.

[42] Kuhn, I.: Heuristische Optimierung durch menschliche Intuition – Das Beste aus zwei
Welten. In: Becker, M. (ed.) SKILL 2019 – Studierendenkonferenz Informatik, pp. 97–108.
Gesellschaft für Informatik e. V., 2019.

[43] Kurniawati, H.: Partially Observable Markov Decision Processes (POMDPs) and Robotics.
arXiv:2107.07599 [cs.RO], 2021.

[44] Kutschinski, E., Polani, D., Uthmann, T.: A Decentralized Agent-Based Platform For
Automated Trade and Its Simulation. Computing in Economics and Finance 2000, No 276,
Society for Computational Economics, 2000.

[45] Lang, J.: Twenty-Five Years of Preferred Subtheories. In: Eiter, T., Strass, H., Truszczyński,
M., Woltran, S. (eds.) Advances in Knowledge Representation, Logic Programming, and
Abstract Argumentation – Essays Dedicated to Gerhard Brewka on the Occasion of His 60th
Birthday, pp. 157–172. Springer, Cham, 2015.

[46] Lantz, F., Isaksen, A., Jaffe, A., Nealen, A., Togelius, J.: Depth in Strategic Games. In:
Kiekintveld, C., Wingate, D. (eds.) The Workshops of the Thirty-First AAAI Conference on
Artificial Intelligence: Technical Reports WS-17-01 – WS-17-15, pp. 967–974. AAAI Press,
Palo Alto, 2017.

[47] Lucas, S. M., Dockhorn, A., Volz, V., Bamford, C., Gaina, R. D., Bravi, I., Perez-Liebana,
D., Mostaghim, S., Kruse, R.: A Local Approach to Forward Model Learning: Results on the
Game of Life Game. arXiv:1903.12508 [cs.AI], 2019.

[48] Mission KI – erleben . verstehen . mitgestalten: https://www.deutsches-museum.de/bonn/
information/aktuell/veranstaltungen-2021/mission-ki. Visited on May 29th, 2021.

[49] Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., Riedmiller,
M.: Playing Atari with Deep Reinforcement Learning. arXiv:1312.5602 [cs.LG], 2013.

[50] MS Wissenschaft – The Floating Science Centre: https://ms-wissenschaft.de. Visited on Feb
8th, 2021.

[51] Online Appendix to Knowledge Base Extraction for Learning Agents: https://gitlab.com/kb-
extraction-for-learning-agents/online-appendix. Visited on Sep 10th, 2021.

[52] Perez-Liebana, D., Liu, J., Khalifa, A., Gaina, R. D., Togelius, J., Lucas, S. M.: General
Video Game AI: A Multitrack Framework for Evaluating Agents, Games, and Content
Generation Algorithms. IEEE Transactions on Games, 11(3):195–214, 2019.

[53] Perez-Liebana, D., Lucas, S. M., Gaina, R. D., Togelius, J., Khalifa, A., Liu, J.: General
Video Game Artificial Intelligence. Morgan & Claypool Publishers, San Rafael, 2019.

[54] Poole, D.: A Logical Framework for Default Reasoning. Artificial Intelligence, 36(1):27–47,
1988.

[55] Reiter, R.: A Logic for Default Reasoning. Artificial Intelligence, 13(1–2):81–132, 1980.

[56] RoboCup Soccer Simulation League: https://ssim.robocup.org. Visited on Mar 21st, 2020.

190

References

[57] Russel, S. J., Norvig, P.: Artificial Intelligence: A Modern Approach (Third Edition). Pearson
Education, Harlow, 2016.

[58] Scannable Code Generator: https://goqr.me. Visited on Sep 10th, 2021.

[59] ScienceStation – Wissenschaft im Bahnhof: https://www.wissenschaft-im-dialog.de/projekte/
sciencestation. Visited on May 29th, 2021.

[60] Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., van den Driessche, G.,
Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman, S., Grewe, D.,
Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap, T., Leach, M., Kavukcuoglu, K.,
Graepel, T., Hassabis, D.: Mastering the Game of Go with Deep Neural Networks and Tree
Search. Nature, 529:484–489, 2016.

[61] Steinley, D.: K-means clustering: A half-century synthesis. British Journal of Mathematical
and Statistical Psychology, 59(1):1–34, 2006.

[62] Sutton, R. S., Barto, A. G.: Reinforcement Learning: An Introduction (Second Edition). The
MIT Press, Cambridge, Massachusetts, 2018.

[63] Sutton, R. S., Precup, D., Singh, S.: Between MDPs and semi-MDPs: A framework for
temporal abstraction in reinforcement learning. Artificial Intelligence, 112(1):181–211, 1999.

[64] Tesauro, G.: Temporal Difference Learning and TD-Gammon. Communications of the ACM,
38(3):58–68, 1995.

[65] The General Video Game AI Competition: http://www.gvgai.net. Visited on Apr 17th, 2021.

[66] TweetyProject: https://tweetyproject.org. Visited on Dec 7th, 2021.

[67] Volz, V., Rudolph, G., Naujoks, B.: Demonstrating the Feasibility of Automatic Game
Balancing. In: Friedrich, T. (ed.) GECCO‘16: Proceedings of the 2016 Genetic and
Evolutionary Computation Conference, pp. 269–276. Association for Computing Machinery,
New York, 2016.

[68] Watkins, C. J. C. H.: Learning from Delayed Rewards. King’s College, Cambridge, 1989.

[69] Wooldridge, M.: An Introduction to MultiAgent Systems (Second Edition). John Wiley &
Sons, Chichester, 2009.

[70] Wooldridge, M.: Intelligent Agents (Second Edition). In: Weiss, G. (ed.) Multiagent Systems
(Intelligent Robotics and Autonomous Agents), pp. 3–50. The MIT Press, Cambridge, 2013.

191

References

192

Index

Index

A
Action  31-33, 60

Sequence  38
Space  36
Symbol Set  31, 33, 36, 106

Agent  27, 35, 36
Behavior  37, 45, 47, 64, 103
Knowledge-based  41
Learning  42, 45, 125
Model  28, 54, 58, 134, 161

Answer Set Programming  22, 42, 48, 52
Apriori Algorithm  51, 75

Confidence  76
Support  76

Artificial Intelligence  19
Sub-symbolic  19
Symbolic  19

ASP  22, 42, 48, 52
Solver  22

B
Bayesian Network  50
Black Box  42, 46, 47, 103

C
Clustering  51, 91

Centroid  92
K-means  51, 92, 99

Completeness  88

D
Decision Tree  50
Decision-making Component  36, 37, 41

Non-deterministic  40
Default  52

Logic  42, 48, 52
Negation  48, 52

E
Environment  28, 32, 34, 36

Non-deterministic  34, 59
Exception  59, 60

Needed  60
Exhibit  23, 122
Exploration-exploitation Dilemma  43, 45

F
Forward Model  55, 148

Learning  149
Revision  157

Fuzzy Controller  95

G
Game  27
General Video Game Artificial Intelligence  55

Framework  104
Generalization  52, 53, 59, 66
Grid World  33, 45, 61, 63
GVGAI  27, 55

Competition  27, 55
Framework  104
Game  104

H
Higher-dimensional Data  97
HKB  57, 58, 60

Extraction  68, 80
Knowledge Engineering  64
Reasoning Algorithm  62, 63
Trivial  64

I
InteKRator  24, 175

K
Knowledge Base  57

Exception-Tolerant Hierarchical  57, 60

193

Index

Extraction  57, 66
Knowledge Representation  19, 48

M
Machine Learning  19, 50, 52

Unsupervised  51
MCTS  23, 55, 148
Monte Carlo Tree Search  23, 55, 148

N
Neural Network  19, 21, 46, 50, 127

Convolutional  19
Deep Learning  50
Function Approximator  21, 46, 50

Numeric Action Data  94
Numeric Sensor Data  91

P
Percept  30
Playtrace  106

Human  104, 108
POMDP  32, 34

Q
Q-learning  44, 46, 126

Discount Factor  44, 129
Exploration Probability  45
Exploration Rate  129
Learning Rate  44, 129
Update Rule  44

R
Reasoning  62
Reinforcement Learning  21, 43, 55, 125

Hierarchical  51
Reward  42

Global  43
Local  42

Robot  27
Fuzzy-Controlled  95

Rule  47, 52, 59
Association  51
Complete  60
Generalized  60
Premise Set  60

S
Sensor  30

Numeric Data  91
Potential Relevance  97
Preselection  97
Symbol Name  30, 93
Symbol Set  30, 33, 36, 107
Unreliable  34
Value  30, 36, 50

Simulation  27
State  30, 32, 33, 36

Complete  31, 60
Partial  31, 60
Sequence  39
Space  36, 107
Transition  32, 33

State-Action Pair  39
State-action Sequence  39

Deterministic  40, 58, 59, 80
Non-deterministic  40, 59

State-action Set  40
State-Action Space  36
Subjective Strategic Depth  22, 113

Measure  22, 113, 114

W
Weight Matrix  43, 44

194

Index

195

	Preface
	Acknowledgments
	About This Work
	Table of Notations
	1. Introduction
	1.1 Motivation
	1.2 Aims and Scope
	1.3 Contributions
	1.4 Remarks on Joint Works

	2. Foundations of Learning Agents
	2.1 Basic Agent Model
	2.1.1 Sensors, Percepts and States
	2.1.2 Actions
	2.1.3 State Transitions and Partial Observable Markov Decision Processes
	2.1.4 Definition of an Agent
	2.1.5 Agent Behavior
	2.1.6 Knowledge-Based Agents
	2.1.7 Learning Agents and the Black Box Problem

	2.2 Another “Black Box”: Comprehensible Representation of Agent Behavior
	2.3 Related Approaches
	2.3.1 Learning Approaches for Structural Insights
	2.3.2 Comprehensible Representations for Knowledge Learned by Agents
	2.3.3 Learning and Hybrid Agent Models for Games

	2.4 Summary

	3. Knowledge Base Extraction
	3.1 Definition of HKBs
	3.1.1 From Non-Deterministic to Deterministic State-Action Sequences
	3.1.2 Rules and HKBs

	3.2 Reasoning for HKBs
	3.3 HKBs for Knowledge Engineering
	3.4 Basic Knowledge Base Extraction Approaches
	3.4.1 Basic Ideas
	3.4.2 A Preliminary Algorithm
	3.4.3 Incorporating the Apriori Algorithm

	3.5 Advanced Knowledge Base Extraction
	3.5.1 Advanced HKB Extraction Algorithm
	3.5.2 Completeness of the Approach
	3.5.3 Learning HKBs from Numeric Data
	3.5.4 Handling Higher-Dimensional Data

	3.6 Summary
	3.7 Bibliographic Remarks

	4. Explaining and Analyzing Agent Behavior
	4.1 Knowledge Base Extraction in Games
	4.1.1 Selected Games
	4.1.2 Modeling the State-Action Spaces
	4.1.3 Resulting HKBs

	4.2 Subjective Strategic Depth
	4.2.1 Subjective Strategic Depth Measure
	4.2.2 Evaluation
	4.2.3 Results

	4.3 Summary
	4.4 Bibliographic Remarks

	5. Enhancing Learning Agents
	5.1 Accelerating an Agent’s Learning Process by Knowledge Base Extraction
	5.1.1 Extracting and Exploiting HKBs during Learning
	5.1.2 A Combined HKB/Reinforcement Learning Agent Model
	5.1.3 Integrating A Priori Knowledge through HKBs

	5.2 Forward Model Learning
	5.2.1 Learning Forward Models of Games
	5.2.2 Revising Forward Models of Games
	5.2.3 An Agent Model Combining Learning and Revision

	5.3 Summary
	5.4 Bibliographic Remarks

	6. Conclusion and Future Work
	6.1 Summary of the Results and Conclusions
	6.2 An Outlook on Future Work

	Appendix
	A. Introduction to the InteKRator Toolbox
	A.1 Basic Interface
	A.2 Learning
	A.3 Reasoning
	A.4 Revision
	A.5 Checking

	B. Online Appendix
	List of Algorithms
	List of Figures
	List of Tables
	References
	Index

