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To my parents and to my wife





„[…] Spielen war immer eine wichtige Methode zur Vorbereitung auf den  
Ernstfall. Man sollte es in gezielter Weise verwenden. […] Wer Spiel nur  
als Spiel betrachtet und Ernst nur als Ernst, hat beides nicht verstanden!“

taken from: Dietrich Dörner, Die Logik des Mißlingens [27], p. 309
(1992, Rowohlt Taschenbuch)

“[…] Playing has always been an important method for preparing serious  
tasks. One should deploy it specifically on purpose. […] Those, who are  
looking at games only as games and on serious tasks only as serious tasks,  
do not understand both of them!”

taken from: Dietrich Dörner, The Logic of Failing [27], p. 309
(1992, Rowohlt Taschenbuch, translated from German)





Abstract

The need for artificial intelligence systems that are not only capable of mastering 
complicated tasks but also of explaining their decisions has massively gained atten-
tion over the last years. Both scientists from machine learning and from knowledge 
representation communities seem to increasingly realize this need. At the same time, 
this also seems to offer opportunities to further interconnect these two approaches to 
artificial intelligence, which were traditionally considered rather disjoint. 

This work considers the task of learning knowledge bases from agent behavior in 
the context of games,  with a special  focus on comprehensibility and human-read-
ability. The main overall aims are twofold: First, the learned knowledge should be 
represented in an accessible way, such that humans can easily read and comprehend 
what  was learned by an agent—also in  case of  more complex learning tasks and
even without having expert knowledge in knowledge representation or logic. Second, 
it should be investigated how learning agents themselves can benefit from incorpo-
rating and exploiting such knowledge bases in a learning process. 

To achieve comprehensibility and human-readability, approaches will be presented 
that organize and process knowledge in a hierarchical way, also incorporating basic 
ideas from default logic and answer set programming. While knowledge representation 
approaches close to logic can lack comprehensibility and reasoning efficiency when it 
comes to larger amounts of knowledge, the approach that will be presented here is not 
only easy to understand but also allows for efficient reasoning and revision. 

For  the  incorporation  of  the  approaches  into  the  learning  process  of  agents, 
different agent models will be presented and several experiments in the context of 
games will be considered for their evaluation. The presented agent models allow for 
incorporating knowledge representation approaches with different machine learning 
and other techniques (such as monte carlo tree search) and show progress in general 
video game artificial intelligence. As a side product, a measure for strategic depth 
that is subjectively experienced by (human) agents when playing video games will
be described. 

The  most  essential  approaches  are  implemented  in  the  INTEKRATOR toolbox, 
which is not only applicable in the context of games but also shows potential to be 
applied in other domains (e. g., in medical informatics). This will be outlined briefly 
at the end of this work. 





Preface

Preface

The first time I remember getting in touch with the idea of intelligent machines, was 
at the age of about twelve, when one of my parents gave me a book by Fritz R. 
Glunk et al. with the title “Computer und Roboter” [33]. While being a book for 
children on the general topic of computers and robots, it still contains some fasci-
nating  stories,  e. g.,  about  the  famous  chess  playing  Mechanical  Turk  which  was 
constructed by Baron von Kempelen in 1769 (and which was in fact controlled by a 
small human hidden inside), or the well-known “artificial psychotherapist” ELIZA by 
Joseph Weizenbaum. These stories certainly inspired me already in my childhood to 
become interested in computers—especially in the field of artificial intelligence. 

During  my last  years  at  secondary school,  my computer  science  teacher  ░░░ 
 was the first introducing me to the basic ideas behind neural networks and░░░░░  

fuzzy logic. 

At the beginning of my computer science studies, I became also very interested in 
the field of software engineering and later, at the Johannes Gutenberg University of 
Mainz, I was lucky to attend the great artificial intelligence lectures by Prof. Dr. 

 , where I started focusing my artificial intelligence interests on sub-░░░░ ░░░░░

symbolic  learning aspects  and, especially,  on agent-based approaches.  During that 
time, also my first publications in the field of software engineering appeared and first 
ideas for a multi-agent simulation platform with applications in logistics crossed my 
mind (which later became the multi-agent simulation system ABSTRACTSWARM [3]).

At University of Hagen, where I finished my master’s degree, I could further focus 
my studies on artificial intelligence and I was able to study a course called “Methoden 
der  Wissensrepräsentation  und  -verarbeitung”  (“Methods  of  Knowledge  Represen-
tation and Processing”) by Prof. Dr.   and Prof. Dr.  ░░░░░░ ░░░░ ░░░░░ ░░░ 

 (and a following seminar), which introduced me to the broad field of knowl░░░░░ -
edge representation and the “symbolic world” of artificial intelligence. 

After a short time at University of Koblenz-Landau, I started my PhD studies
in 2015 at TU Dortmund University supervised by Prof. Dr.  .░░░░░ ░░░░░░░░

I learned a lot from her, both deepening and widening my knowledge representation 
skills and I am very thankful for that. 

Getting more and more in touch with symbolic knowledge representation inspired 
me to bring closer together both worlds of artificial intelligence (with traditionally 
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rather disjoint communities)  and I started focusing on the explanation of learned 
agent behavior by extracting knowledge from learning agents as well as the exploi-
tation of such extracted knowledge during an agent’s learning process. 

After the publications [7,  8] on these topics together with my PhD supervisor, a 
cooperation with Dr.   (formerly at Algorithm Engineering Chair of TU░░░░ ░░░  
Dortmund University, at time of writing at Queen Mary University of London and 
modl.ai, Copenhagen) emerged, where we used one of the knowledge base extraction 
approaches to create a measure for the subjective strategic depth experienced by hu-
mans when playing video games. The work resulted in a paper [11] with promising 
results that were presented in New York in 2017 at the conference on Computational  
Intelligence in Games (CIG 2017), which connected me to the Artificial Intelligence 
in Games community. 

I met Jun.-Prof. Dr.-Ing.   (from ░░░░░░ ░░░░░ Leibniz University Hannover) 
at CIG 2017 and it turned out that the knowledge base extraction approaches also fit 
very  well  to  his  research  in  the  field  of  General  Video  Game Playing  Artificial  
Intelligence (GVGAI)—a field aiming at the creation of agents that are able to play 
different (a priori unknown) video games. Being practically dependent on real-time 
capabilities  in  this  field,  I  was  more  influenced  toward  practical  applicability  of
the developed knowledge extraction approaches.  The following fruitful  cooperation 
with  Jun.-Prof.  Dr.-Ing.    resulted  in  two  further  publications░░░░░░ ░░░░░

(a conference paper [26] and a journal article [5]), where the extraction of knowledge 
bases was used to learn  forward models (i. e.,  “how a game works”)  from a priori 
unknown video games. We could show that our approach outperformed other general 
video game playing agents. 

My current  work in the artificial  intelligence group of  the Medical  Informatics 
department at the Institute of Medical Biostatistics, Epidemiology and Informatics 
(IMBEI) at the University Medical Center of the Johannes Gutenberg University in 
Mainz incorporates multi-agent simulations of hospital processes (e. g., for the opti-
mization of a priori unknown scenarios). Moreover, the work also raised interest in 
learning knowledge bases from data sets (see [10]). Especially the possibility of au-
tomatically checking the certainty of a knowledge base against a provided data set 
was further stimulated in this context. 

The  efficient  knowledge  base  extraction  approach  and  related  approaches  that
are yielded by this work resulted in the implementation of the open-source software 
INTEKRATOR [38], which allows for applying them not only in the context of games, 
but also in other domains (e. g., in medical informatics). 
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The present work summarizes my experiences from the last years, combining the 
topics of agents and knowledge base extraction/exploitation with a general focus on 
practical applications and a special focus on applications in games. 

Mainz, December 2022
Daan Apeldoorn
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About This Work

About This Work

How can learned agent behavior be  explained?  Compactly and in a  human-readable 
way, such that it  is also  accessible to people not familiar with logic or knowledge  
representation approaches? 

This work tries to find answers to these questions from a practical point of view in 
the context of games. 

Games provide an application domain with excellent properties for testing and 
evaluating artificial intelligence (AI) approaches—especially regarding learning agents:

• Many games are highly dynamic environments. 

• Games are diverse and scalable problems (both in size and complexity). 

• Players can be intuitively modeled as agents. 

• Games are easily accessible to many people with different backgrounds, which is 
a clear advantage when working at the intersection of the traditionally rather 
disjoint fields of machine learning and knowledge representation. 

Moreover, concepts and approaches that have once successfully been applied in the 
context of games, may have the potential to be transferred to other domains as well. 

This  work focuses  on the  intuitive and  comprehensible extraction of  rule-based 
knowledge bases from agent behavior, that is learned, e.  g., by sub-symbolic (or other) 
machine learning approaches—or even human agents. One of the main goals is to be 
able  to render such extracted knowledge accessible to people  with different back-
grounds and who are not necessarily familiar with logic or knowledge representation. 

Furthermore, it will be demonstrated that the presented approaches may also serve 
as an interface for combining knowledge representation with machine learning and 
other techniques in the context of games, e.  g., to accelerate learning processes of 
agents or to create hybrid symbolic/sub-symbolic learning agents. 

More detailed, after providing an introduction in Chapter  1, the foundations as 
needed in the following will  be introduced in Chapter  2 and related work will be 
considered there. 

After that, in Chapter 3, a knowledge representation scheme will be described, that 
originates from the idea of representing behavior learned by an (artificial or human) 
agent  in  a compact  and human-readable  way.  The described approach is  able  to 
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represent  more  extensive  amounts  of  knowledge  clearly  arranged  and  intuitively 
comprehensible, such that it is also accessible to people without deeper knowledge
in logic or knowledge representation. A reasoning algorithm will be described that 
allows for efficient reasoning based on the described approach. To underpin the com-
prehensibility and the reasoning efficiency, a study by Krüger, Apeldoorn and Kern- 
Isberner  [41]  will  be  presented,  in  which  the  comprehensibility  is  evaluated  and 
compared to a state-of-the-art approach. At the end of Chapter 3, algorithms will be 
provided that are able to create such comprehensible representations from data (e.  g., 
from learned multi-dimensional weight matrices or from play traces resulting from the 
behavior of learning agents). 

Chapters 4 and 5 consider applications of the presented approaches: In the recent 
years, the presented approaches have been used in numerous different applications, 
mostly in the context of learning agent models. Applications comprise: 

• estimating the subjective strategic depth of games from human play traces [11],

• detecting  and  exploiting  heuristics  from  observations  in  unknown  environ-
ments [7, 9], 

• learning and revising forward models in a priori unknown video games [5, 26]. 

In a paper by Kuhn [42], some of the approaches have also been used to extract 
and exploit human intuitions for solving job-shop problems. 

By outlining the variety of applications (especially in the context of games), be-
sides Chapter 3, both Chapter 4 and Chapter 5 represent the most important chap-
ters of this work. In accordance with my earlier experiences in the field of software 
engineering, the agent models considered for the applications here will be designed in 
a modular way, such that both the underlying learning approaches and the knowledge 
extraction methods can be easily substituted.

Finally, Chapter 6 provides conclusions and an outlook on future work. 

The appendix completes the work by referring to the implementation of the most 
essential  results in the  INTEKRATOR toolbox [10,  38] as well  as to further online 
(video) material accompanying this work. 

Most of the contents throughout the chapters are underpinned by comprehensible 
(running) examples, also further stressing the practical potential of this work. The 
chapters have a transitive linear dependency and can be best followed in their se-
quential order. 
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Table of Notations

Table of Notations

Notation Description

 “is defined as”; in algorithms: assignment 

 Ordered set

 Action symbol; i. e., a symbol representing an agent’s action. 

 Action symbol belonging to a state-action pair   or a rule   
respectively (in the latter case,  is the conclusion of  

 Action symbol set; i. e., a set of all action symbols representing 
an agent’s possible actions. 

 An agent’s decision component that returns an action as decision 
for a perceived state  

 Knowledge base

 A state-action pair consisting of an agent’s state (according to 
its perceived sensor values) and an action that was performed in 
that state. 

 Probability/relative frequency of an action (according to a state-
action sequence). 

 Probability/relative frequency of a (partial) state and an action 
(according to a state-action sequence). 

 Conditional probability/relative frequency of an action given a 
(partial) state. 

 A (multi-dimensional) weight matrix, which contains weights for 
state-action pair combinations (where one of an agent’s sensors 
represents one dimension, with an additional action dimension). 

 Short  hand for  the  reasoning  algorithm for  exception-tolerant 
hierarchical  knowledge  bases  (Algorithm  3.1),  which  returns
one (or more) action(s)  inferred from the provided knowledge
base  given the perceived state  
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Table of Notations

Notation Description

 The  -th level  of  an exception-tolerant  hierarchical  knowledge 
base (starting with  as topmost level); i. e., a set of rules. 

 Short  hand for    i. e.,   is  the  -th  level  of  an 
exception-tolerant hierarchical knowledge base with  being lower 
than  (see also  

 Short hand for   i. e.,  is the -th level of 
an exception-tolerant hierarchical knowledge base with   being 
higher than  and lower than  (see also  

 State-action sequence; i. e., an ordered set of state-action pairs. 
In cases where the order is not of importance, it may also refer 
to an unordered set of state-action pairs. 

 Deterministic state-action sequence; i. e., a state-action sequence, 
where  pairs  with  the  same  state  also  always  have  the  same 
action (but not necessarily vice-versa).

 A sensor symbol representing a value of an agent’s  -th sensor. 
(It is assumed that every  can be uniquely associated with its 
corresponding sensor symbol set —in practice, e. g., by a prefix 
naming convention for the symbol names.)

 Sensor  symbol  set;  i. e.,  a  set  of  all  symbols  representing the 
sensor values of an agent’s -th sensor. 

 An agent’s (complete) state; i. e., a conjunction of all state sym-
bols  representing the values perceived by all  sensors of the 
agent. (In other words,   represents the state an agent is as-
sumed to be in,  iff all   are known according to the agent’s 
sensors.) A state  with  denotes 
a partial state with not all sensors being involved. 

 An agent’s state belonging to a state-action pair   or a rule   
respectively (in the latter case,  is the premise of  and may 
refer to a partial state). 

 A state-action conjunction, i. e.,   used in 
the  context  of  forward  models  to  represent  an  action   per-
formed in a state  
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Notation Description

 Subsequent state information; in the context of forward models, 
the information may be partial or may only represent specific 
aspects of a subsequent state (e. g., a score change). 

 State symbol set; i. e., a set containing the symbols of the sensor 
values  that  describe  an  agent’s  state  (set  representation  of  a 
state  

 State symbol set belonging to a state-action pair  or a rule  
respectively (the latter is also called premise set, which must not 
necessarily contain a symbol for each of the agent’s sensors). 

 Tautology symbol, used for empty premises/states. 

 Halmos-style finality symbol,  used for indicating the end of a 
contextual unit (e. g., a definition, an example or a proof). 

17



Table of Notations

18



1. Introduction

1. Introduction

1.1 Motivation

In these days,  artificial  intelligence (AI) experiences a new prominence. With the 
ideas of deep and convolutional neural networks in conjunction with the development 
of corresponding frameworks, especially the  machine learning area has gained a lot
of  attraction  (again)  during  the  last  years.  Promoted  by  impressive  applications
for learning agents, like  DEEPMIND’s  ATARI-playing AI [49] (which learned to play 
several  ATARI video  games  without  any  a  priori  knowledge)  or  the  renowned 
ALPHAGO [60] (which was the first computer program known to beat Lee Sedol, one 
of the best go players in the world), sub-symbolic learning approaches seem to be the 
ultimate solution in the context of learning agents. 

Nevertheless,  also the  symbolic world of  AI did not stand still  during the last
years and one can observe some movements toward a fusion of symbolic and sub-
symbolic approaches as the possible next step in AI. Moreover,  knowledge represen-
tation approaches  have  a  huge  potential  to  solve  several  (partly  well-known  and 
sometimes ignored) problems of sub-symbolic approaches and are even known to be 
stronger in some aspects: 

• First of all, using sub-symbolic machine learning approaches like (deep) neural 
networks, the learned knowledge is implicitly encoded in millions of weights and 
is therefore usually not comprehensible to humans after the learning process. 
This  is  currently  maybe one  of  the most  debated drawbacks of  these  kinds
of approaches. 

• The learning process of common sub-symbolic machine learning approaches for 
agents does not appear to be learning in a “human-like” manner: Oftentimes 
hundreds or thousands of iterations are needed until adequate learning results 
can be observed. 

• Using  pure  sub-symbolic  machine  learning  approaches,  usually  everything  is 
learned from scratch, including those parts of the knowledge that are a priori 
available. E. g., in the context of an agent that learns to play a game, there is 
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no obvious possibility to distinguish between learning the rules of  the game 
(which are usually known in advance) and a good strategy how to play it. 

• Machine  learning  can  be  accelerated  incorporating  symbolic  knowledge  in 
several ways: Not only by supporting the learning process with a priori knowl-
edge  (as  already  mentioned  before),  but  also  by  reincorporating  symbolic 
knowledge that was extracted or mapped (or otherwise learned) from a sub-
symbolic learning approach during the learning process (e. g., [9, 31]). 

• Finally,  belief  revision  (i. e.,  incorporating  new  knowledge  into  an  existing 
knowledge base), as the “symbolic approach to machine learning”, does not only 
seem to be a more natural way of learning in some situations, but can poten-
tially  also  be  much  more  efficient  than  sub-symbolic  machine  learning  ap-
proaches:  New knowledge can be incorporated properly into what is  already 
known without the need for thousands of iterations to adapt to the dynamics of 
observations. (An efficient belief revision approach geared to practical eligibility 
will be presented in Chapter 5.) 

Besides this great potential, on the other hand, many symbolic AI approaches suffer 
from being inefficient when it comes to practical applications, where fast reasoning 
and/or belief revision capabilities are needed. 

In the following, these considerations will be examined by investigating methods 
that  provide  possibilities  of  combining  symbolic  and  sub-symbolic  aspects  in  the 
context of learning agents with a focus on practical applicability. For this purpose, a 
knowledge representation approach will be described that allows for the extraction of 
compact knowledge bases from learned agent behavior as well as for efficient rea-
soning and belief revision on the extracted representations: On the one hand, such an 
approach must be lightweight and easily comprehensible—especially when addressing 
applications from a different community (e. g., real-time applications such as games). 
On the other hand, the approach should be designed in a way that renders it inde-
pendent from a specific underlying machine learning paradigm and thereby allows for 
combining it with different machine learning approaches. 

The techniques presented here will  be underpinned by numerous examples and 
their practical applicability will  be demonstrated in the context of different appli-
cations in games, starting from the extraction of knowledge up to a modular agent 
model  incorporating  learning  with  knowledge  base  extraction,  belief  revision  and 
further techniques. 
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1.2 Aims and Scope

This work aims at bringing closer together ideas from machine learning and knowl-
edge representation approaches in the context of agents. This will be addressed with 
practical applications in mind: A knowledge base extraction approach will be fleshed 
out that is able to learn a knowledge base from data representing the behavior of an 
agent. Following common modularization principles, this approach will not rely on a 
single sub-symbolic machine learning paradigm (e. g., reinforcement learning with one 
specific kind of  neural network as  function approximator), such that the underlying 
learning approach can be exchanged in a modular way. 

The provided methods allow for easily combining knowledge representation tech-
niques with machine learning approaches in the context of learning agents, such that

• knowledge learned by agents with common machine learning techniques can be 
explicitly represented (e. g., to render it comprehensible to humans), 

• agents based on machine learning approaches can benefit from advantages of 
knowledge  representation,  symbolic  reasoning  and  belief  revision  (e. g.,  by 
exploiting reasoning and belief revision techniques for symbolic knowledge that 
becomes explicit during a machine learning process) and, 

• an  agent  model  can  be  elegantly  combined  by  incorporating  the  former
two aspects. 

The major concepts of this work will be implemented in a ready-to-use toolbox [38] 
aiming at practical applications in a general way, even beyond the scope of agents. 

1.3 Contributions

This work contributes in several ways to the incorporation and practical usage of 
knowledge representation in the context of AI and agents in games (cf. [29]). Further-
more, being geared toward practical applicability, the results have also the potential 
of being used in other contexts outside the scope of games (which will be outlined at 
the end of this work). 

The work is mainly based on the nine peer-reviewed papers [5–11, 26,  41], which 
have been published over the past years in the context of this dissertation. On seven 
of which [5–11], the author appears as first author and on the remaining two [26, 41], 
the author appears as second author. The papers have been published on a variety of 
international conferences and journals/series, such as the Global Conference on Artifi-
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cial Intelligence (GCAI 2016) in Berlin, the yearly conference of the Florida Artificial  
Intelligence Research Society (FLAIRS 2017) on Marco Island, the IEEE Conference 
on Computational Intelligence and Games (CIG 2017 and 2018) in New York and in 
Maastricht  (which  became the  IEEE Conference  on Games,  COG, in  2019),  the 
International Symposium on Commonsense Reasoning (COMMONSENSE 2017) in 
London, as well as the  Multi-disciplinary International Conference on Artificial In-
telligence (MIWAI 2021; held as a virtual/online conference due to the COVID-19 
pandemic), among others.  Furthermore,  publications have also been placed in the 
IEEE journal Transactions on Games, as well as in Studies in Health, Technology and  
Informatics, the latter is covering medical informatics research. Moreover, a bachelor’s 
thesis [40] and a master’s thesis [12] at TU Dortmund University emerged in the 
context of this work. 

The main contributions that will be described here are the following: 

• A  comprehensible  multi-abstraction-level  knowledge  representation  approach, 
which is geared toward learning human-readable knowledge in the context of 
agents and which has advanced comprehensibility and reasoning efficiency prop-
erties (Chapter 3):  
The described approach is accessible to people without profound knowledge in 
the fields of knowledge representation or logic and it can therefore serve for 
didactical  purposes  or  for  building  a  bridge  between  different  communities. 
Moreover, due to its reasoning efficiency, it is eligible for practical applications 
and has been shown to be useful in the context of agents, e.  g., in [5–7]. To some 
extend, the described approach can be considered similar to the state-of-the-art 
approach of answer set programming (ASP) [19], in the sense that it makes use 
of similar ideas from default reasoning (e. g., [55]). In a joint study [41] together 
with ░░░░░ ░░░░, it was compared to ASP and the ASP solver CLINGO [22]. 

• A novel measure for the subjective strategic depth experienced by humans when 
playing (video) games (Chapter 4):  
Several measures for strategic depth of games already existed before. However, 
according to [11], these measures are different in what they actually measure 
and how the measurement is realized. The approach that will be described here 
was developed in a joint work with Dr.   in [░░░░ ░░░ 11] and is novel in the 
sense that it measures the strategic depth that is subjectively experienced by 
players (instead of other properties, such as the computational resources needed, 
as described in [11]). To achieve this, the measure that will be described here 
relies on the knowledge needed by a human player to successfully play a game. 
This knowledge is collected by one of the knowledge base extraction approaches 
that were developed in the context of this thesis. Mainly being a side product at 
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first, the measure was later also incorporated in artificial agents to allow them 
to estimate the difficulty of their surrounding environment. 

• Two agent  models  integrating (reinforcement)  learning and knowledge repre-
sentation (and other state-of-the-art approaches for games) for advanced learn-
ing performance, resulting in a progress in general video game artificial intelli-
gence (GVGAI) [53] (Chapter 5):  
Besides investigating the incorporation of knowledge representation and learning 
techniques in the context  of  agents,  the main contribution here is  an agent 
model that allows for combining learning, knowledge representation and other 
techniques such as  monte carlo tree search (MCTS) [21]. In joint works with 
Jun.-Prof.  Dr.-Ing.  , the resulting agent model was evalu░░░░░░ ░░░░░ -
ated in the context of the GVGAI competition [65] and could outperform other 
GVGAI agents. Furthermore, this agent model also allows for exploiting tech-
niques  such  as  MCTS,  which  are  well-established  for  non-learning  GVGAI 
agents: Such agents for the so-called “planning track” of the GVGAI competition 
usually rely on a known forward model of a game (i.  e., the a priori knowledge 
how the game works).  With this contribution, it  is  possible  to benefit from 
established techniques from the GVGAI planning track also in the context of 
learning agents (for the “learning track” of the competition), where no forward 
model is provided to an agent. 

• An educational exhibit consisting of a multi-level game which estimates the dif-
ficulty subjectively experienced by a player and which can teach basic ideas of 
knowledge representation in the form of rules and exceptions:  
The exhibit makes use of approaches that emerged in the context of this PhD 
research [8,  11] and was originally created for the  Z Quadrat GmbH.1 It was 
accepted for the educational exhibition ship MS Wissenschaft [50] and traveled 
around different German and Austrian cities in 2019. It was subsequently select-
ed for the ScienceStation travelling exhibition (a further project of the German 
scientific communication organization  Wissenschaft im Dialog, WiD) [59] and, 
in this context, it was available at several train stations in Germany in 2019. 
Finally, it became a selected exhibit of the Deutsches Museum Bonn (German 
Museum in Bonn) [24] for its new exhibition on AI [48]. Although only the 
underlying approaches (and not the exhibit itself) will be considered directly in 
this work, it contributes to education. Moreover, parts of it will be used as an 
example in the context of different approaches in this work (see Figure 3.2). 

1 Z Quadrat is an educational company mainly focusing on mathematics and computer science 
didactics. It is the author’s second affiliation at time of writing. 
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• The INTEKRATOR toolbox for creating knowledge bases from data by incorpo-
rating machine learning and knowledge representation techniques (Appendix A):
In  contrast  to  other  software  concerning  knowledge  representation  (such  as
the TWEETYPROJECT [66] and CLINGO [22]), the INTEKRATOR toolbox is much 
more lightweight and focuses on learning knowledge bases from data. In the 
study [41], its reasoning algorithm turned out to be much more efficient than 
that of CLINGO. Moreover, it can also be used outside the scope of agents: In a 
joint paper with Dr.  , it was recently proposed to be used for░░░░ ░░░░░░  
the automated creation of expert systems [10]. 

For distinguishing the author’s parts of the contributions from those of further co-
authors, remarks on joint works are provided in the next section (Section 1.4). 

1.4 Remarks on Joint Works

Besides the joint publications together with the author’s PhD supervisor Prof. Dr. 
 ,  this thesis also comprises results that emerged from joint░░░░░ ░░░░░░░░  

works with other co-authors. For this purpose, this section briefly summarizes the 
joint works with the aim of distinguishing the own contributions from those of others. 

From the nine peer-reviewed papers [5–11,  26,  41] that are related to this thesis, 
six of them [5, 6, 10, 11, 26, 41] have co-authors besides or in addition to the author’s 
PhD supervisor. These will be briefly considered in the following (mainly according to 
the order of their appearance): 

• The paper [11] emerged from a cooperation with Dr.   (formerly░░░░ ░░░

at TU Dortmund University, at time of writing at Queen Mary University of 
London and modl.ai, Copenhagen). In this paper, a measure for subjectively 
experienced strategic depth in the context of games has been developed, based 
on some of the approaches that will be presented here. The measure has been 
evaluated  in  the  context  of  a  study  involving  a  survey  software  which  was 
especially developed for that purpose. The author contributed mainly to the 
development of the strategic depth measure, as well as by developing the survey 
software and evaluating the data retrieved from the study. The results have 
been incorporated into Section 4.2 as well as Section 5.1.2 (the latter being a 
follow-up application  by  the  author).  Another  follow-up emerging  from this 
work was the educational exhibit that makes use of the strategic depth measure 
(see the second to last bullet point in Section 1.3), which was also developed by 
the author. (See also bibliographic remarks in Section 4.4.) 
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• The first author of the paper [41] is  . The paper resulted from░░░░░ ░░░░  
her  bachelor’s  thesis,  which  was  co-supervised  by  Prof.  Dr.   ░░░░░ ░░░ 

 and the author. In this work, a comparison has been done between░░░░░  
some of  the approaches that  will  be presented here and the state-of-the-art 
approach of  answer set programming (ASP) [19]. Both a survey as well as ex-
periments have been performed. The author contributed directly to the survey 
as well  as indirectly to the whole work in the context of  co-supervising the 
bachelor's  thesis.  The original work [41] is  referenced at several  places here.
(See also bibliographic remarks in Section 3.7.) 

• The paper [26] and later the journal article [5] both emerged from a joint work 
together with Jun.-Prof. Dr.-Ing.   (from ░░░░░░ ░░░░░ Leibniz University 
Hannover). The first author of the former work is Jun.-Prof. Dr.-Ing. ░░░░░░ 

, the first author of the latter is the author. In these two publications,░░░░░  
some of  the approaches presented here are  used for  learning and exploiting 
forward  models  in  the  context  of  general  video  game  artificial  intelligence 
(GVGAI)  [53]  and the GVGAI competition [65].  The author’s  contributions 
mainly  comprise  the  development  of  the  agent  model  that  involves  the  ap-
proaches presented here as well as the development, integration and evaluation 
of a revision algorithm for learned forward models. Parts of these results have 
been incorporated in Section 5.2. Moreover, Section 5.2 also refers to and ana-
lyzes  some  of  the  results  that  were  mainly  provided  by  Jun.-Prof.  Dr.-Ing. 

 . (See also bibliographic remarks in Section ░░░░░░ ░░░░░ 5.4.) 

• The paper  [6]  emerged  in  the  context  of  the author’s  work at  the Medical 
Informatics department of the Institute of Medical Biostatistics, Epidemiology 
and Informatics  (IMBEI)  at  the University Medical  Center  of  the Johannes 
Gutenberg  University  Mainz.  Co-authors  are    and  Dr.  ░░░ ░░░░ ░░░░ 

. In [░░░░░░ 6], parts of the work that will be presented here are applied for 
learning guidelines in the form of rules with exceptions for optimizing hospital 
processes  by  means  of  agent-based  simulations.  The  author  contributed  the 
learning algorithm (cf. Algorithm 3.3) as well as the first ideas for the proof of 
the algorithm’s completeness, which were later incorporated and further elabo-
rated in this work (see Section 3.5.2). (Moreover, the experiments for the agent-
based simulations and their evaluation were also contributed by the author, but 
are not part of this thesis.) 

• Finally,  also  the  publication  [10]  with  Dr.    as  co-author░░░░ ░░░░░░  
emerged  in  the  context  of  the  author’s  work  at  IMBEI.  In  this  work,  the 
INTEKRATOR toolbox [38] (an implementation of parts of the thesis work) is 
proposed for automatically creating expert systems from data. The author con-
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tributed the implementation of the INTEKRATOR toolbox (see Appendix A) as 
well  as the description of  the toolbox’s  application in the context of  expert 
systems. (The latter aspect is only considered roughly in the outlook on future 
work here, see Section 6.2.) 

Further  information on joint works can also  be found in the respective biblio-
graphic remarks sections at the end of the chapters 3–5 (i. e., Section 3.7, Section 4.4 
and Section 5.4). 
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2. Foundations of Learning Agents

The first conceptual ideas of  agents already came up in the early beginning of AI 
history. However, original research fields on agent-specific topics developed later, like 
the  field  of  agent  architectures,  which  emerged  first  in  the  mid-1980s  (according
to [69], pp. 394–396). Over the decades, the agent paradigm became further estab-
lished and nowadays, agents are a central concept which is widely used in different 
fields of AI research. The development of intelligent agents, which are able to act, 
adapt, learn and communicate autonomously in an environment, can be considered 
one of the central joint objectives of AI research (cf. [14], p. 338). 

Agents  serve  as  a  comprehensible  generic  model  for  autonomous  systems with 
sensory  inputs  (“percepts”)  and the  ability  of  performing actions  within  an  envi-
ronment. Due to the generality of the model, many different physical  and virtual 
systems (e. g., robots, software/web services, smartphone devices, etc.) can be con-
sidered agents. The principle of the basic agent model is a useful conceptual frame-
work which can be used for many AI-related technologies and applications.  Some 
selected examples (among many others) are: 

• Autonomous mobile robots [36]:  
Equipped with sensors (like cameras or laser scanners) and motors (for per-
forming actions), robots can be able to navigate and perform tasks in a (lim-
ited) environment. 

• Games:  
A player (partially) perceives the state of a game (e.  g., the board, cards or—in 
case of a video game—objects or pixels on the screen) and performs moves as 
actions. Here, the game represents the environment. In the research field of gen-
eral (video) game playing, as an additional challenge, the game to be played can 
be a priori unknown to the game playing agent (see GVGAI competition [52]). 

• Agent-based simulations:  
In agent-based simulations, agents are simulated as autonomous entities that 
can interact cooperatively (or competitively) with each other and with the simu-
lated environment.  Examples are the simulation league of  the  RoboCup soc-
cer competition [56] or systems for simulating public transport networks [34], 
trading simulations [44] or for multi-agent modeling of logistics processes [3]. 
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Apart from technical systems, the agent model can also be applied to animals and 
even humans (cf. the second example in the above list with a human player in mind), 
which  can  help  to  analyze  and understand their  behavior.  (Later,  in  Chapter  4,
an  extended  example  of  analyzing  human behavior  in  the  context  of  games  will
be presented.) 

Due to its comprehensibility, the basic agent model can also be seen as a didactic 
tool to explain different AI approaches (e. g., also Russel and Norvig refer to the idea 
of an agent as a unifying concept in their classic book [57], p. viii). Even though 
many of the concepts that will be introduced here can in general also be used apart 
from agents, the agent model will play a central role in this work for introducing and 
explaining the concepts. 

At first, the basic agent model (as used throughout this work) will be introduced 
and both symbolic and sub-symbolic approaches and their respective challenges will 
be discussed in the context of agents (Section  2.1). After that, the problem of re-
presenting complex agent behavior in a compact and human-readable way will  be 
outlined (Section  2.2). Finally,  related approaches will  be presented and discussed 
(Section 2.3). 

2.1 Basic Agent Model

This section provides the main ideas and relevant details of the basic agent model 
which is used throughout this work to introduce further concepts. The presentation is 
mostly limited to the  relevant aspects that are needed here as preliminaries for the 
following chapters (especially Chapter 3). The main goal of this section is to be able 
to represent deterministic (and non-deterministic) agent behavior in a simple and 
adequate way that can be easily used later for the extraction of knowledge bases, as 
in Section 3.5 (see Algorithm 3.3). 

Due to the generality of the agent model and the diversity of different agent types 
and applications, it is hard to provide a sound and complete definition of what ex-
actly an agent is (see, e. g., [14], p. 338 or [70] pp. 4–5). A rather general definition, 
which can be found likewise in the literature, is that of a system that is able to act  
autonomously in an  environment to fulfill  its  (designated) tasks (cf. [14],  p. 339). 
Following this idea, as a first approach, an agent and its environment can be modeled 
as in Figure  2.1a. The figure shows the basic interaction of an agent with its en-
vironment; similar  figures can be found in literature on agents (e.  g.,  [14,  70])  or 
robotics [36]. 
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2.1 Basic Agent Model

 

Figure 2.1a (Basic Agent Model) (Source: adapted from [14])

The inputs of an agent are information about its environment in form of 
percepts (which are perceived through the agent’s sensors). The outputs 
are actions, which are performed by the agent and which can change the 
state of the environment. After performing an action, information about 
the changed environment can be perceived anew by the agent. 

 

 

Figure 2.1b (Basic Agent Model: Alternative Representation)
Inputs  and  outputs  of  the  agent  are  the  same  as  in  Figure  2.1a. 
However, this representation of the basic agent model emphasizes that 
an agent itself can be considered a part of its environment. This can be 
of interest, e. g., if an agent changes its position in the environment by 
performing a movement action. 

 

29

Agent Environment

Percepts

Actions

Agent

Environment

Percepts

Actions



2. Foundations of Learning Agents

Although Figure  2.1a is a common and comprehensible visualization of an agent 
model’s  basic  ideas,  it  lacks outlining explicitly  that an agent itself  can often be 
considered a part of its environment. Since this will be important for most examples 
and applications of this work, Figure 2.1b shows an alternative representation, which 
emphasizes this idea more explicitly. 

Based on the ideas of an agent interacting with its environment, a closer look on 
the agent itself will be provided in the following. 

2.1.1 Sensors, Percepts and States

In the context of this work, an agent is supposed to have a fixed number of  sensors. 
The  sensor  values,  that  can  be  perceived  by  the  agent,  are  represented  by  the 
elements of the sensor symbol sets  Every  is a finite set, whose elements 
represent the distinct values that can be perceived by the agent through its  -th 
sensor.2 Furthermore, it is assumed that every element   can be uniquely asso-
ciated with its corresponding sensor symbol set  such that  In practice, 
this can be achieved by providing a unique symbol name for every  (e. g., by a 
prefix naming convention where the prefix reflects the respective sensor symbol set). 

Note  that,  depending  on  the  application,  an  agent  may or  may  not  know all 
possible sensor values in advance. If an agent does not know all possible sensor values 
in advance and a previously unknown sensor value is perceived for the first time, the 
corresponding sensor symbol set can be extended by adding a symbol for this newly 
perceived value. By this, an agent is able to successively collect representations for all 
occurring sensor values, e. g., when exploring a (partially) unknown environment. 

A perceived  state of an agent can now be represented as a set   
with every   being a symbol of the corresponding sensor symbol set   This
set-theoretic representation is similar to those used in classical  planning (see [32], 
Section 2.2),  except that the symbols here are more tightly coupled to their  cor-
responding sensors  (e. g.,  by the aforementioned naming convention).  Equivalently
to  the  set-theoretic  representation,  a  state   of  an  agent  can  also  be  denoted
as  i. e., a conjunction of all state symbols representing the values per-
ceived by the respective sensors of the agent. 

2 This may sound limiting, since it implies that only discrete information can be perceived by the 
agent. However, in practical applications, the sensory inputs are often inherently discrete or can 
be discretized easily; e. g., a simple light sensor of a robot with 1024 shades of gray or a board 
game with a board consisting of discrete cells. (More advanced techniques related to discreti-
zation are considered later in Section 3.5.3.) 
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In many real-world applications, an agent’s state is incomplete in the sense that it 
is  oftentimes  not  possible  to  cover  all  of  the  environment’s  (potentially  relevant) 
aspects  with sensors.  However,  apart  from that,  the following definition (adapted 
from the original definition in [8]) will help to distinguish states that are completely 
known according to the sensors of an agent (i. e., where all of the agent’s sensors are 
involved) from those that are only partially known (i.  e., where only a subset of the 
agent’s sensors are involved).

Definition 2.1 (Complete State/Partial State) A complete state is a conjunc-
tion   over  a  state set   of  sensor  symbols   that 
represent the sensor values currently perceived by an agent through all its sensors 
(with   being the number of sensors). A  partial state is a conjunction   
over a subset  of a complete state’s state set.

The provided definition will also be relevant later for the concepts and algorithms 
that will be considered throughout this work. 

2.1.2 Actions

The possible  actions that can be performed by an agent are modeled by the finite 
action symbol set  where every  represents a distinct action. The agent model 
considered here only allows for performing one action at a time. 

In many cases, the action symbol set of an agent is fixed and a priori known. 
However, there are also applications imaginable where not all actions are known in 
advance (e. g., if the the agent’s possible actions depend on its current state). In such 
cases, the action symbol set can be extended by a new, previously unknown action 
whenever it becomes available for the first time. 

As it is the case for the sensor symbol sets described in Section 2.1.1, in this way, 
an agent can successively extend its action symbol set when exploring a (partially) 
unknown environment, where not all possible actions are known in advance. 

Figure  2.2 provides an abstract visualization of the agent model described so far 
including its sensors and possible actions. 
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Figure 2.2 (Agent, Sensors, Actions) (Source: a. f. FLAIRS’17 poster by Apeldoorn & Kern-Isberner)

The sensors through which the agent can perceive its environment are represented by the 
semicircular areas here, annotated with their corresponding sensor symbol sets. The pos-
sible actions through which the agent can change the state of the environment are re -
presented by the arrows, annotated with the elements  from the agent’s action 
symbol set  

 

2.1.3 State Transitions and Partial Observable Markov Decision Processes

After having considered states and actions in the previous sections, this section now 
considers  some  basic  concepts  of  transitions  from one  state  to  another  resulting
from an  agent  performing  actions  in  its  environment.  The  principal  aim here  is
to create a simple yet sufficient conceptual base for easily describing the data re-
sulting from an agent’s behavior (as needed later, e. g., in Section 3.5). Although the
well-known framework of  Partial Observable Markov Decision Processes (POMDPs)
(see, e. g., [32], pp. 392–393, or [43]) exceeds the amount of generality that is needed 
for this aim, the basic concepts will be related to POMDPs here as well, as POMDPs 
are a standard framework for similar scenarios. 

Basic Concepts of State Transitions 

Performing an action  in a state  results in a state transition to a 
successor state   The perceived successor state   may be equal to its 
predecessor  If this is the case, then either the environment was not changed by the 
action  or the agent was not able to observe the state change (in case the environ-
ment is only partially observable for the agent). Usually, an agent’s sensors should be 
able to reflect the relevant state changes of its environment (at least partially), other-
wise meaningful reasoning will be difficult to realize. 
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Due to the inherent temporal character of state transitions, subsequent states can 
also be denoted as  where  refers to a (discrete) point in time 
and  refers to the initial state. A state transition can then be denoted as 

  (2.1)

meaning that at time   in state   the action   is performed and leads to the 
successor state  

The following example further explains the agent concepts described so far in the 
context of a two-dimensional grid world.3 

 

Figure 2.3 (States, Actions and State Transitions)
An agent  (represented by the black circle)  navigates  in  a  tiny   grid 
world, starting in the southwestern corner. In its initial state  
the agent performs the action   resulting in the state transition 

 to the successor  state   By performing the same 
action  again in state  the agent’s movement is constrained by the 
end of the grid world, leading to the successor state  

 

Example 2.1 (States, Actions and State Transitions) An agent in a tiny  
grid world (see Figure  2.3) is equipped with two sensors to determine its   and   
position. The sensor  symbol sets are defined as   and  
(where the southwestern corner of the grid world is assumed to be represented by  
and   The agent is  able move in the four cardinal directions and therefore its
action symbol set is defined as  Initially, the agent is 
located at the southwestern corner of the grid world and its currently perceived state 

3 Grid worlds are traditionally used as examples in various forms in the literature, especially in 
the context of  Reinforcement Learning (e. g., [62]). However, similar concepts are also used, 
e. g., in robotics for localization and path planning in cellular maps (see [36], Section 5.1.2 and 
Section 7.4.4). Also in this work, grid worlds will serve as examples in many cases. 
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is  The agent now performs the action  resulting in a state 
transition and the agent’s subsequently perceived state is   Performing 
the same action  as subsequent action again now lets the agent remain in 
its current state of the environment (due to the end of the grid world constraining the 
agent’s movement). Thus the agent’s subsequently perceived state 

The example  shown in  Figure  2.3 represents  a  deterministic setting,  where  an 
action performed in a state always leads to the same subsequent state. However, state 
transitions can also be  non-deterministic, i. e., performing an action in a state can 
lead to different subsequent states. This can be the case mainly for two reasons: 

• Non-deterministic environments:  In non-deterministic environments,  the state 
transition is a stochastic process where the subsequent state resulting from an 
action  can  follow  a  certain  probability  distribution.  Examples  are  gambling 
machines,  like  multi-armed  bandits,  where  every  arm  has  its  own  winning 
probability and thus using the arm sometimes results in a win and sometimes in 
a loss. Also environments involving multiple agents can be an example for non-
determinism from a single agent’s point of view, since the subsequent state does 
not only depend on the action performed by the agent, but also on the actions 
of all other agents in the environment. 

• Unreliable sensors:  Even  if  the  environment  itself  can  be  considered  deter-
ministic, the values provided by the agent’s sensors can be unreliable due to 
inaccuracy or defectiveness. Thereby, an action performed in a certain state can 
lead to different perceived subsequent states,  even if  the subsequent state is 
actually the same. 

In  many  real-world  applications  (like  in  robotics,  games,  etc.),  both  kinds  of
non-determinism can occur and often they hardly can be distinguished by an agent. 

Partial Observable Markov Decision Processes 

Up to this point, some basic concepts for modeling state transitions as a result of 
actions performed by an agent in its environment have been considered. This sub-
section now considers  Partial Observable Markov Decision Processes (POMDPs), a 
general framework for describing such kinds of scenarios which is widely represented 
in the literature (e. g., in common planning literature such as [32], or in more recent 
works such as [43]). Although POMDPs provide a much larger amount of generality 
than needed in the context of this work, they will be briefly considered and related to 
the concepts presented here. 
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Mainly according to the presentations in [32] (Chapter 16, pp. 392–393) and [43], 
the basic components of a decision process in the context of a fully observable system 
are a set of states, a set of actions and a conditional probability distribution  for 
the state transitions when actions are performed. A reward distribution can deter-
mine the local short-term quality of an action performed in a state. In addition to 
that, in a POMDP, an agent is not able to perceive all relevant information through 
its sensors. For this purpose, in a POMDP, the concept of observations is added: An 
observation refers to an agent’s perception of an underlying state—however, it might 
cover less information than actually relevant for the state. According to [32], in a 
POMDP, the agent is only able to access its environment through these observations. 
In addition to the conditional  probability distribution   a  POMDP can also 
comprise a conditional probability distribution   over the observations, i. e., over 
what the agent observes when performing an action in a state. 

While  the conditional probability distribution   over the transitions of  the 
actual states can be considered related to the non-determinism of the environment, 

 is more closely related to the reliability of the agent’s sensors (see [43], p. 2, and 
cf. the end of the previous subsection). 

However, in the remainder of this work, mostly the problem of deciding for the 
best action according to an agent’s (learned) knowledge given a single perceived state 
(or observation of that state) will be considered. Thus, a simple yet effective approach 
for handling both kinds of non-determinism can be the counting of relative frequen-
cies and considering the action with the maximum probability of reaching a goal 
given a perceived state (or observation thereof). This will lead later to the concept of 
state-action sequences (in Section 2.1.5), which provides a simple yet effective way of 
describing the “raw” data of an agent’s behavior in its environment, while abstracting 
from the environment’s non-determinism and the partial observability of states. In 
such a state-action sequence, a (complete) state will refer to what an agent is able to 
observe and the state-action sequence’s non-determinism will be related to the agent’s 
action selection only (i. e.,  whether or not the agent always decides for the same 
action when being provided with the same state or observation thereof). 

2.1.4 Definition of an Agent

Even if it was stated at the beginning of this chapter (Section 2.1) that it is hard to 
find a meaningful definition of an agent (according to agent-related literature), this 
section makes the attempt of providing a definition of an agent that at least covers 
the basic needs of this work. 
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For this purpose, the terms of an agent’s state space, action space and state-action 
space will be introduced first. 

Definition  2.2 (State  Space) The state space   of an agent with   sensors is 
defined as   where every   is a sensor  symbol set containing the 
representations of all possible values that can be provided by the agent’s -th sensor.  

According to Definition 2.2, the state space of an agent comprises all possible states 
that can be distinguished by the agent through its sensors.  Similarly,  the agent’s 
action space can be defined as follows: 

Definition 2.3 (Action Space) The action space of a an agent is defined by the 
agent’s action symbol set 

Combining the agent’s state space and its action space leads to the definition of 
the state-action space: 

Definition  2.4 (State-Action  Space) The  state-action  space  of  an  agent  is 
defined as the Cartesian product  where  is 
the agent’s state space and  is the agent’s action space.

The state-action space of an agent can reveal information about the problem size 
of the setting in which the agent is applied. This can be important, e.  g., for choosing 
an adequate approach for the agent’s decision-making process. The size of the state-
action space is usually high for many real-world problems. 

With this in mind and in accordance with the considerations at the beginning of 
Chapter 2, an agent, which satisfies the basic needs of the concepts that will be ex-
plained in the following of this work, can be defined now as follows: 

Definition 2.5 (Agent) An agent is a system that acts autonomously in an  en-
vironment to fulfill its (designated) tasks by using an integrated decision-making com-
ponent  to find an adequate way through its state-action space 

What still has to be clarified in the above Definition 2.5, are the term “adequate 
way” and the decision-making component   The former usually  concerns certain 
criteria that are expected from the resulting agent behavior. These may refer, e.  g., to 
some optimizations (like finding the shortest path to a certain goal state) or desired 
behavioral properties (like “human-like” decisions or learning behavior). Besides the 
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computational  feasibility,  fulfilling  such  criteria  is  one  of  the  main  challenges  of 
developing an agent’s decision-making component. 

Technically,  in the context of  Definition  2.5,  the results of the decision-making 
component  depend at least on a currently perceived state , for which an adequate 
action  (or multiple equivalent actions) will be returned. Therefore, it can also 
be referred to the decision-making component as  Depending on the kind of the 
agent and on the modeling, the decision component can additionally rely on further 
parameters (e. g., the agent’s knowledge, based on which the decisions regarding a 
currently perceived state   will  be made—such knowledge can also be learned or 
adapted over time in case of an agent with learning capabilities). 

Even if some considerations in this work are not directly referring to the agent’s 
decision-making  component  itself,  but  rather  to  the  representation  of  the  agent’s 
behavior  resulting from an (possibly unknown) decision-making component: Having 
an approach which is able to represent an agent’s behavior adequately, these repre-
sentations can also be exploited for decision-making (as will be considered later in 
Chapter 5). 

2.1.5 Agent Behavior

An agent’s behavior is  determined by the implementation of the agent’s  decision-
making component .  The decision-making component essentially depends on the 
following two aspects: 

• an algorithm that is capable of inferring actions for a perceived state

• the agent’s knowledge to which the algorithm refers for inferring the actions. 

The agent’s knowledge can either (1) be provided by a knowledge engineer or it 
can (2) be learned by the agent itself (e. g., from training data). 

In case (1), the knowledge is modeled manually using knowledge representation 
techniques and is usually available in a symbolic form: Symbols, each having a special 
meaning, e. g., a statement about the environment (like “it is raining” or “the streets 
are wet”), can be related to each other, e. g., by simple rules or similar concepts (like 
“if  it  is  raining,  then  the streets are wet”).  Inference algorithms in this first  case
must be capable of processing symbols, rules and similar concepts and—depending
on the concretely used paradigm—possibly have to deal with contradictory rules, 
inconsistencies and the like. 
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In case (2), the agent can observe examples of states and corresponding actions, 
which are beneficial or disadvantageous to be performed in the respective states. The 
agent’s knowledge will be successively built using machine learning techniques and is 
then usually available in a numeric form: These can be weights attached to actions, 
which indicate how beneficial or disadvantageous an action in a given state is, (e. g., 
by relative frequencies) or parameters of a function which approximates the weight 
distribution over the actions in a given state. Here, the inference algorithm usually 
deals with numeric computations and/or comparisons to retrieve the approximated 
distribution and to select a corresponding action based on it. 

In either of the two cases, it is also possible to refrain from focusing on the agent’s 
internal decision-making component and to describe the agent behavior  externally, 
i. e., by only considering the agent’s resulting behavior, without considering how it 
was created by the decision-making component. 

Naive Approaches 

As a first attempt, an agent’s behavior can be described as an action sequence, i. e., 
an ordered multi-set of actions  Every element is an action symbol 
of the action symbol set  resulting from running the agent in its environment. 

Example 2.2 (Action Sequence) An agent in an  grid world (similar to the 
one described in Example 2.1) has to move around a water area to get from a starting 
point   in  the southwestern  corner  of  the grid  world  to a destination   in  the 
southeastern  corner  of  the  grid  world  (see  Figure  2.4).  Its  action  symbol  set  is 

 The agent behavior can be described by an action 

sequence as the ordered multi-set 

Unfortunately,  this  first  approach  of  representing  agent  behavior  as  an  action 
sequence suffers from several drawbacks: Besides lacking in abstraction capabilities,
it  does  not even reveal any information about the relation of  actions and states. 
Furthermore, it requires the set representing the actions to be ordered to preserve the 
meaning of the contained information. 

38



2.1 Basic Agent Model

 

Figure 2.4 (Grid World with Water) (Source: adapted from [7–9, 62])

In this small grid world scenario, an agent has to move around a 
water area (a “river”) to get from its starting point  to a desti-
nation point  . The arrows indicate the agent’s selected actions 
for solving the task by considering the most direct path along the 
river, resulting in an action sequence. 

 

Another rather naive approach of representing agent behavior in an environment
is to describe it as a  state  sequence, i. e., an ordered multi-set of states. In the ex-
ample shown in Figure 2.4, this would result in the set   where for 
every state    with   and   being the respective elements
of the agent’s sensor symbol sets (i. e.,   Even if this 
approach focuses on the agent’s states for representing its behavior, it still suffers 
from (partly the same) obvious drawbacks: Besides also lacking in abstraction capa-
bilities (e. g., for answering the question what the agent would do in other states not 
present in the state sequence), the actions performed by the agent are only repre-
sented implicitly through the state transitions here. As a consequence, this approach 
also strongly relies on the set  being ordered. 

Representation As State-Action Pairs 

Now combining the two approaches of action sequences and state sequences leads to 
the idea of representing agent behavior in form of (a sequence of) state-action pairs, 
where every pair indicates which action is performed in the corresponding perceived 
state. An agent’s behavior can then be represented by a set of such state-action pairs: 

Definition 2.6 (State-Action Sequence) A state-action sequence is an ordered 
multi-set  of  state-action  pairs  ,  where  every  state-
action pair   consists of a state   (with   being an 
element of the respective sensor value set) and an action  which was performed 
in state 
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Representing agent behavior as a set of state-action pairs already overcomes at 
least some of the drawbacks of the aforementioned approaches: 

• Both states and actions are represented explicitly. 

• By also explicitly  relating states and actions,  the set representing the state-
action sequence does not even necessarily need to be ordered—at least, if one is 
only interested in what the agent decided for the corresponding states. (Note 
that  this  would  render  the  state-action sequence  a  state-action set,  i. e.,  an 
unordered multi-set—however, to keep the intuition of a sequence, it will be 
referred here to it as an ordered set, as provided by Definition 2.6.) 

Nevertheless,  also  this approach is  still  lacking abstraction capabilities,  since it 
only relates actions to specific single states. (Methods for representing agent behavior 
with abstraction techniques are an essential part of this work and will be presented 
later in Chapter 3.) 

Deterministic vs. Non-Deterministic State-Action Sequences 

The  state-action  sequence  representing  an  agent’s  behavior  can  be  either  deter-
ministic or  non-deterministic. In case of a deterministic state-action sequence  
all  state-action pairs   with the  same state  also  have the same action.  In
other words: There do not exist any two state-action pairs   with their 
states   being equal and their corresponding actions   being unequal. 

In case of a non-deterministic state-action sequence, the set   contains state-
action pairs (at least two) having the same state but different actions. This can be 
the case for two reasons: 

• The agent’s decision-making component  is non-deterministic in the sense 
that  it  does  not  always  provide  the  same  decision  for  the  same  perceived
state  

• Not all of the agent’s sensors are reflected in the states of the agent’s state-
action sequence and therefore it seems to be that agent’s decision-making com-
ponent does not always provide the same decision for the same perceived state. 

Both of the two cases can result in a non-deterministic state-action sequence repre-
senting the agent’s behavior. 
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2.1.6 Knowledge-Based Agents

As already briefly mentioned in the beginning of the previous section, one possibility 
of designing an agent’s  decision-making component is that of providing a manually 
created knowledge base together with an adequate inference algorithm: Based on the 
knowledge reflected by the knowledge base, the inference algorithm can decide which 
action should be performed given the agent’s perceptions. 

By using such knowledge-based approaches, the knowledge is available explicitly in 
a symbolic form, where every symbol usually has a specific meaning. This can be, 
e. g., an information about the environment, like “it is raining” or “the streets are wet” 
as well as an action like “reduce speed”. In the knowledge base, these pieces can then 
be related to each other, by rules (or similar concepts), e. g., “if it is raining, then the 
streets are wet” or “if the streets are wet, then reduce speed”. 

In the context of knowledge-based agents, an inference algorithm must be capable 
of processing such information in an efficient way. At first glance, this may sound 
trivial, since simple if-then-rules can be easily implemented; however—depending on 
the concretely used paradigm—knowledge-based approaches have to deal with contra-
dictory rules,  inconsistencies  and the like.  Even in simple cases,  this can lead to 
problems, as can be seen in the following example (similar examples can be found in 
various forms and from various domains in the literature): 

Example 2.3 (Knowledge-based Robot) According to its construction, a robot 
is only able to move on smooth surfaces. The robot is equipped with a sensor that is 
capable of recognizing different kinds of surfaces. The robot’s knowledge is modeled 
with three rules stating that (Rule 1) a smooth surface allows for moving (Rule 2) if  
ice is perceived, the robot should immediately stop and (Rule 3) ice is a smooth 
surface. More formally, the robots knowledge base may look as follows: 

  

The robot now perceives ice: According to Rule 2, it can be inferred that the robot 
has to stop immediately; according to Rule 3, it can be inferred that ice is a surface 
and, with that, according to Rule 1 it can be inferred that the robot should  move. 
Thus, both moving and stopping will be inferred at the same time.

Example 2.3 shows that even in simple cases, modeling knowledge is not a trivial 
task: Even if each of the three rules is intuitively correct if considered separately, the 
rules lead to contradictory inferences when put together to a knowledge base. It is 
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obvious that  these  kinds of  problems grow in  more realistic  scenarios,  where  the 
modeled knowledge is much more complex. 

There are many knowledge representation paradigms that target these kinds of 
problems, e. g.,  default logics (by Reiter [55] or Poole [54]),  answer set programming 
(ASP) [19]  or  conditional  knowledge bases (with basic  ideas of  conditionals  going
back to de Finetti [23], according to [15], p. 35). Some of which provide a strong 
background  for  investigating  and  approximating  “human-like”  inference  processes. 
However,  their  inference  algorithms can become computational  expensive  when it 
comes to larger knowledge bases. For others, like ASP, rather efficient and ready-to-
use solvers exist (e. g, CLINGO [22]), which renders them potentially suitable for de-
signing decision-making components in the context of agent applications. Since the 
concepts that will be presented later in this work are geared to practical applicability 
(as needed, e. g, in the context of games, where even real-time inference performance 
may be required), especially ASP will be considered more detailed in the related work 
section (Section 2.3). (A comparison to ASP can also be found in [41].) 

An advantage of using knowledge-based approaches for the creation of an agent’s 
decision component is that the knowledge is available in an explicit form: By this, 
agent behavior can in principle be modeled in a transparent way. Nevertheless, as can 
be seen in Example  2.3 and as will also be shown in detail in Section  2.2, not all 
knowledge-based approaches are suitable for modeling larger amounts of knowledge in 
a comprehensible way. 

2.1.7 Learning Agents and the Black Box Problem

Unlike knowledge-based agents, learning agents follow a different approach: The main 
idea here is that the knowledge is not provided a priori to the agent by a knowledge 
engineer but the agent has to learn it by itself from scratch. Such agents usually 
perform poorly in the beginning by following a trial-and-error principle, and succes-
sively become better over time while observing the (a priori unknown) environment. 
For this purpose, learning agents are usually equipped with a “special sensor” that is 
able to perceive a (numeric) reward, which provides information on how beneficial the 
currently perceived state is or, on how beneficial it is to perform a certain action in a 
perceived state, respectively. Such a reward is mostly local, which means that it pro-
vides information about the agent’s current situation rather than providing informa-
tion about its overall behavior regarding a global goal. The perceived rewards can be 
used to reinforce weights of state-action pairs, if the action turned out to be beneficial 
in the corresponding state. This finally results in a numeric representation of the 
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learned knowledge (e. g., in form of a weight matrix). Learning agent approaches fol-
lowing these ideas can be roughly embraced by the term reinforcement learning [62]. 

Using a learning paradigm for an agent’s decision-making component is a good 
choice if there is no or only few a priori knowledge about the environment available, 
or if the agent should be highly adaptive, e. g., in case the agent’s concrete environ-
ment is not known in advance. (This can be the case, e. g., in  general video game 
playing artificial intelligence (GVGAI) [53], where games to be played by an agent 
may be unknown in advance.4) 

One of the major challenges for such learning agents is the problem of optimizing 
their behavior toward a global long-term goal, while being provided with local re-
wards for a currently perceived state only. Therefore, it may be beneficial for an agent 
to decide for a locally disadvantageous action with a low local reward in a certain 
state (even if locally better actions are actually known for that state), to achieve a 
long-term goal that maximizes the global reward.5 

Another challenge is the so-called exploration-exploitation dilemma (see, e. g., [62]): 
Having no a priori knowledge, a learning agent starts in the beginning of the learning 
process  with  random  exploration  of  the  environment,  following  a  trial-and-error 
principle. As the agent collects more and more information over time about which 
action is beneficial in which state, the question is now at which point during the 
learning process the agent should stop exploring the environment and start exploiting 
the knowledge that was already learned: On the one hand, if the agent starts too 
early to exploit the learned knowledge, it can easily get stuck in a local optimum; on 
the other hand, if the agent starts too late to exploit the learned knowledge, the 
learning process becomes unnecessarily slow. 

There exist  several  reinforcement learning algorithms today that can deal  with 
both of the aforementioned challenges. In the following, one of the classic algorithms, 
Q-learning [68], will be outlined briefly. Even if being developed in the late eighties, 
this algorithm is still used nowadays, mostly combined with neural networks in the 
context of deep learning approaches (see, e. g., [49] for a successful recent work in
the context of video games). Section 2.2, as well as several experiments later in this
work, will refer to Q-learning again. Besides Q-learning, other similar algorithms exist 

4 This especially concerns the learning track of the GVGAI competition [65]; other tracks provide 
(partial) information to the agent in advance (e. g., the forward model of a game). Thanks to 
Jun.-Prof. Dr.-Ing.   for pointing to that. ░░░░░░ ░░░░░

5 A well-known problem of that kind is called the mountain car problem in the literature [62]: An 
agent driving a car in a valley has to reach a goal on the top of a hill. Since the car’s motor is 
too weak to drive up the hill directly, the agent has to drive backwards in the wrong direction, 
upwards the opposite hill, to gain drive for being able to reach the goal. 
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(like SARSA [62]), which differ, e. g., in the way how weights are updated for learn-
ing. All approaches presented in this work that incorporate learning agent algorithms 
do not depend on a specific learning algorithm and can also be combined with other 
machine learning algorithms, that are not further considered here. 

Q-Learning 

In a common Q-learning setting (see,  e. g.,  [62,  68]),  an agent can be considered
to have an -dimensional state-space  (where every  is the set re-
presenting the possible  values  of  the agent’s  -th  sensor,  see  Definition  2.2).  The
action  space  is  defined  by a  set   representing  the  agent’s  possible  actions  (see
Definition 2.3). In addition, the agent is equipped with a special sensor to perceive a 
local numeric reward  (with  that indicates how beneficial a state 
is, that is represented by the sensor values  Note that the reward is local in 
the  sense  that  it  only  provides  information  about  the  local  benefit  of  the  state 
without considering its contribution to a global long-term goal (e.  g., an even more 
beneficial goal state). The reward for performing an action  in a given state repre-
sented by  corresponds to the reward of the resulting successor state: If the 
agent performs an action  in a state represented by the sensor values  
then the reward for   will  be equal  to   where   represent  the
sensor values of the successor state resulting from the state transition 
(cf. Formula 2.1), with  and  being the states that are composed of the sensor 
values represented by  and  respectively (in line with Section 2.1.1).6 

To be able to store which action is the best in a perceived state, the agent owns
an  -dimensional  weight matrix  (with    where 
every weight represents how beneficial it is to perform the action  when perceiving 

 Starting from a zero matrix, these weights are successively updated during 
the learning process, such that over time every weight  indicates the global 
long-term reward that can be expected from performing action  in the state repre-
sented by   A weight is updated every time an action has been performed, 
when the corresponding reward is perceived, according to the update rule (cf. [68]) 

  (2.2)

where  is the new weight,  is the old weight,  is the learning rate 
and  is the discount factor. 

6 Note that in a more general setting, it is also imaginable that the reward additionally depends 
on a performed action. Thanks to Dr.   for pointing to that. ░░░ ░░░░░
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When updating a weight, the learning rate   determines how much of the new 
information gained from the perceived reward is adopted for the new weight. The 
discount factor  determines the degree to which the knowledge about future states is 
considered: The higher  is chosen, the more extensively the benefit of future states 
will be considered in the newly incorporated information (due to   
referring to the best action that can be performed in the subsequent state according 
to the so far learned matrix  

Furthermore,  a Q-learning algorithm usually  incorporates  an  exploration proba-
bility  This probability determines in how many cases the agent chooses a random 
action instead of choosing the best one according to the so far learned -matrix. The 
exploration probability plays an important role, since (if   it allows a learning 
agent to try out and learn something new, even if it gained already a certain amount 
of knowledge about the environment. By this, it prevents the agent from getting stuck 
in local  optima.  The exploration probability is  closely related to the  exploration-
exploitation  dilemma mentioned  at  the  beginning  of  the  Q-learning  section  and 
finding adaptive solutions for this parameter is part of learning agent research. In 
very basic agent models,  is usually a low constant or it is set to a high value in the 
early beginning of the agent’s learning phase (when the agent does not yet know 
anything about  its  environment)  and it  is  then successively  discounted when the 
agent gains more knowledge over time. 

Example  2.4 (Learning Agent in a  Grid World) An agent in a grid world 
(similar to the one from Example 2.2) has to learn to get from a starting point  to a 
destination point  by avoiding a region of water in the South of the scenario. The 
agent has two sensors to determine its  and  position and is able to perform actions 
from the set  The cells of the grid world represent the 
states having a corresponding local reward distribution and the destination cell   
represents the terminal state of the environment that causes a learning episode to end 
(see Figure  2.5).  Using a Q-learning approach,  the agent starts  with random ex-
ploration of the environment. Over time, the agent  behavior gets more and more 
accurate and finally converges to the optimal behavior.
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Figure 2.5 (Q-Learning in a Grid World) (Source: adapted from [7–9, 62])

An agent has to learn to get from a starting point   to a destination   with the 
provided local reward distribution using a Q-learning approach [68]. Having no a priori 
knowledge, in the early learning phase, the agent starts to explore the environment 
randomly (a). After several dozen of iterations, the agent’s behavior becomes more and 
more accurate (b). Finally, the agent behavior converges to the optimum (c). 

 

Neural Networks As Function Approximators 

One drawback of the classic Q-learning approach (and similar approaches) is that of 
the matrix representation of  the weights,  whose growing number quickly becomes 
unhandy with increasing problem size. To overcome this issue, a successful approach 
is to consider the   matrix as a function   that returns the 
corresponding weight for a state-action pair and to learn an approximation of that 
function  using  a  neural  network.  By  this,  the  weight  matrix   can  usually  be 
represented with much less weights: If modeled adequately, the number of weights 
needed for the network can be much smaller than the number of weights that would 
be needed for  Approaches of this kind have been implemented, e.  g., for learning 
video games only from observing the pixel matrix of the screen and considering the 
game score as reward [49]. 

Black Box Problem 

Besides the function   being approximated (which in fact works very well in many 
practical applications), a real drawback of using a  neural network as  function ap-
proximator is that the learned knowledge will be represented by the weights of the 
neural network instead of the weights being directly attached to state-action pairs. By 
this, the learned knowledge contained in the weights gets a very implicit character 
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and thereby becomes inaccessible to humans—even in case of small-sized problems. 
This is one manifestation of what is called the black box problem of neural networks in 
the literature. 

2.2 Another “Black Box”: Comprehensible Representation
of Agent Behavior

As presented in Section 2.1.6, agent behavior can be described by rules that indicate 
which actions are performed by the agent in its perceived states. Since neural net-
works (and other machine learning approaches) can lack in transparency, a rule-based 
approach seems to be an obvious way of representing agent behavior more trans-
parently, since the rules of the agent’s decisions are accessible in an explicit form (in 
contrast to vectors and matrices of numeric weights, which are common represen-
tation schemes for several machine learning approaches). 

However, even in smaller scenarios, representing agent behavior as simple rules, like

  

or, more formally, 

  

does not naturally result in representations that are easy to comprehend by humans. 
Whereas the black box problem of neural network approaches is well-known and con-
sidered in current machine learning research (e. g., in the context of tasks related to 
image recognition), the “black box” problem of representing agent behavior in a com-
prehensible and human-readable way is less present. 

Example 2.5 (A Further “Black Box” Problem) Again, a learning agent in a 
grid world (as in Example 2.4) is considered: The agent learns to get from a starting 
point   to the destination   avoiding a region of water in the South of the sce-
nario (see Figure 2.5). Learning is realized by using a basic Q-learning approach [68] 
(see Section  2.1.7) with a weight update according to Formula (2.2) and the local 
rewards being distributed as provided in Figure 2.5. By this means, the agent learns a 
weight for each possible state-action pair, which indicates the long-term global benefit 
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of performing the action in the state.7 After several dozen of iterations, the agent 
behavior converges to the optimal behavior (as shown in Figure 2.5)—but how can be  
described what the agent learned in fact?

As a  first  naive  approach  to  answer  the question  resulting from Example  2.5, 
simply all rules that can be created directly from the weighted state-action pairs can 
be provided (see Figure  2.6). Even if the rules shown in Figure  2.6 represent the 
knowledge of the agent’s learned behavior completely, the representation is obviously 
far from being comprehensible—especially if considering the simplicity of the task. 

To tackle these kinds of issues, one of the central ideas that will be followed in this 
work is that of representing knowledge on several levels of abstraction: Higher levels 
reflect the represented knowledge in a rougher, more heuristic way, whereas lower 
levels reflect the knowledge more concretely, by providing exceptions to the knowledge 
on the higher levels. On the one hand, this seems to be in line with generalization and 
conditionalization capabilities of human thinking (i. e., adding conditional exceptions 
to what is supposed to be known), which can be observed in psychological experi-
ments  (e. g,  in  [27],  pp.  210–211).8 On  the  other  hand,  it  is  also  close  to  ideas
from default logic, like justifications (Reiter [55]) or the default negation known from 
answer set programming (ASP) [19], while at the same time being less tightly coupled 
to logic,  which might potentially be of interest, e. g., when being used in interdisci-
plinary working environments. 

2.3 Related Approaches

Knowledge representation approaches usually are a good choice when it comes to the 
explicit representation of knowledge (in contrast to the implicit representation of nu-
merical  methods as described at the end of Section  2.1.7). However, the previous 
section (Section 2.2) also showed that the simple use of rules (even if being complete) 
does not necessarily lead to a satisfying representation, both regarding compactness 
and (as a consequence) readability and comprehensibility for humans. 

7 Note that the learning paradigm is not of major interest here and could be replaced by any 
other approach (with or without neural network as function approximator) that is capable of 
learning the task in form of weighted state-action pairs, where the highest weight indicates the 
best action for a provided state.

8 The study in [27] especially expatiates on the negative effects of (over-)generalization and con-
ditionalization in human thinking. However, it also shows that these techniques are intuitively 
used by humans for building models, e. g., when trying to comprehend unknown tasks. 
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Figure 2.6 (A “Black Box” by Learned Rules)
The figure shows all  rules that can be easily created from the weighted state-action 
pairs learned by the agent in Example 2.5 using a basic Q-learning approach [68]. (Note 
that for state  no rules are provided, since this is the terminating goal state.) The 
attached weights  are  the  original  weights  learned by  the  Q-learning  algorithm after 
several dozen of iterations. As an example, in the starting state  the best action 
according to the weights will be  and the worse action by far will be  (since 
this would lead the agent directly into the water, cf. Figure  2.5). The rules could be 
easily searched by an inference algorithm to infer which action is the best for a given 
state (e. g., the one with the highest weight). However, it is obvious that even if the 
learned behavior is simple, the provided rules are hard to comprehend by humans. 

 

This section discusses different existing approaches that are related to the ideas 
presented  in  this  work.  The  outlined  approaches  will  comprise  machine  learning
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and clustering techniques to gain structural insights into state-action sequences re-
sulting from learned agent behavior (Section  2.3.1), eligible approaches to represent 
knowledge learned by agents in a comprehensible way (Section  2.3.2) and a brief 
overview over learning and hybrid agent models, focusing on the context of games 
(Section 2.3.3). 

2.3.1 Learning Approaches for Structural Insights

Numerous  machine learning approaches  exist  that  can  be  used  in  the  context  of 
agents. Reinforcement learning with neural networks used as function approximators 
(see Section 2.1.7) in conjunction with deep learning techniques seem to be one of the 
most popular and successful approaches these days (see, e. g., [49]). However, even for 
smaller problems, these approaches usually result in large numerical representations 
that do not allow for gaining insights into the structural relations induced by the 
underlying learning problem (e. g., which of an agent’s percepts are important for 
making certain decisions). 

In contrast, Bayesian networks (and other probabilistic network approaches) (see, 
e. g., [17], Section 8.2.2) are well-suited to reflect structural dependencies among cer-
tain sensors and, moreover, due to their graphical representation, they can be read 
rather easily (as long as the number of nodes, i. e., the number of an agent’s sensors, 
is not too large). However, although dedicated methods exist that are able to learn 
the network’s structure as well [30], usually the structure is provided in advance to 
learn the induced conditional probability tables from data. Moreover, the structural 
knowledge is represented in a graph-model and not in the form of rules. The struc-
tural  knowledge is  also  reflected on a sensor-level  and not on the level  of  sensor 
values, as it will be the case for the approaches presented here (in Chapter 3). This 
renders it hard to infer specific aspects of an agent’s behavior from the Bayesian 
network’s  graph-representation,  without  also  considering  the  corresponding  condi-
tional probability tables. 

Decision trees provide the concept of a  hierarchical representation, which can be 
read top-down to gain an overview over the data of the underlying learning problem. 
This can render them a suitable approach, even for higher-dimensional problems, as it 
is the case for agents having a larger amount of sensors. In [39], decision trees have 
been successfully applied in the context of a Q-learning agent. However, a decision 
tree learns a hierarchical representation that primarily focuses on which sensors are 
most relevant for splitting the sensory data toward finding good decisions. In con-
trast, the approaches that will be presented here learn a hierarchical representation, 
that provides information about which sensor values are most important for making 
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good decisions. As it is the case for many other graph-based approaches, both for 
Bayesian networks and for decision trees, the comprehensibility and interpretability—
even if  being much better than, e. g.,  for neural networks—may decrease when it 
comes to problems with a large number of nodes (as it is often the case for real-
world problems). 

An approach from the reinforcement learning domain that involves the idea of 
hierarchical abstraction can be found in [63]. There, reinforcement learning is inter-
weaved with a hierarchical structure providing information about different abstraction 
levels of primitive actions and higher-level tasks. Such a hierarchical structure can be 
considered a decomposition of the underlying learning problem, which can help to re-
duce the state-action space (unlike the approach that will be presented in this work, 
where rules are represented hierarchically for being able to generalize over sensory 
percepts and actions). 

A well-known approach in the context of learning rule-like knowledge from data is 
the APRIORI algorithm by Agrawal et al. [1]. This algorithm can be applied e. g., in 
the context of recommender systems to learn association rules like

 “People that buy seeds and flower soil usually also buy watering cans.” 

Such rules are accompanied by confidence values, that are similar to the rule weights 
learned by the approaches that will be presented here (Section 3.4 and Section 3.5). 
However, the APRIORI algorithm does not learn a complete knowledge base that com-
prises rules together with their exceptions. It will later be adapted to improve the 
knowledge base extraction approach presented in Section 3.4. 

To be able to create symbolic knowledge from continuous sensory data as well, a 
technique based on k-means clustering (see [61] for an overview) will be used. As a 
representative  from the field  of  unsupervised learning,  it  serves  well  for  detecting 
clusters of values in case sensors are providing continuous data (e.  g., a temperature 
sensor). All values belonging to a found cluster can then be associated with a sym-
bolic sensor value. This approach can also be used in the same way for handling 
continuous action spaces. Moreover, it can be used to reduce the number of sensors 
(in case the number of sensors is high), by separating the sensors into two clusters (if 
possible), of which only the one containing the most relevant sensors will be further 
considered. (More details on this will be provided in Section 3.5.3). 
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2.3.2 Comprehensible Representations for Knowledge Learned by Agents

Once having gained some structural insights into the nature of a problem, an in-
teresting question is, what renders a knowledge representation approach eligible for 
representing such learned knowledge in the context of agents—especially for appli-
cations in games? 

One of the most important properties of modern machine learning approaches, like 
neural networks and deep learning (as used, e. g., in [49] in the context of agents), is 
the ability to generalize (i. e, to be able to make good decisions also on similar or even 
unknown states). Thus,  generalization can be considered an essential property of a 
knowledge representation approach, to be considered eligible for learned knowledge. 
Moreover, for agent applications in the context of games (which will be extensively 
considered in this work),  but also for other agent applications (e. g.,  in robotics), 
efficiency plays an important role (especially concerning reasoning). 

Modern machine learning techniques in the context of agents are able to deal with 
high-dimensional state-action spaces and thus the results (i.  e., the relation between 
percepts and actions) usually cannot be expected to be described easily in a compact 
and  human  readable  way.  This  can  result  in  a  confusingly  large  amount  of  un-
structured knowledge (as could be see already before in the context of a low-dimen-
sional problem in Figure 2.6). 

A well-known concept from Reiter’s default logic [55], that can help to reduce the 
number of rules in an agent’s knowledge base, is that of defaults: In Reiter’s default 
logic, a default is a special rule that is not always applicable when its premise is 
satisfied, but requires additional assumptions, called  justifications, to be consistent 
(i. e., not to be falsified). By this means, instead of creating one single rule for each 
case of a large amount of possible cases (which obviously would result in a large 
amount of rules), a default rule can be created that covers most of the cases. The 
remaining (exceptional) cases can then be excluded through the default rule’s justi-
fications and further rules are only needed to cover the remaining exceptional cases. 
This usually results in much less rules. 

In answer set programming (ASP) [19], a similar mechanism is provided by a spe-
cial negation operator called default negation (  in addition to a common (“strict”) 
negation operator (  In case a  rule’s premise comprises a default negation   
either the negation of   must be explicitly known or there must be no information 
about  to satisfy the rule’s premise. In contrast, if a rule’s premise depends on  
then the rule’s premise can only be satisfied if the negation of  is explicitly known. 
Also this approach can be easily exploited to reduce the number of  rules for de-
scribing agent behavior, by creating a rule whose premise includes default negations 
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to exclude it from being applied in the exceptional cases and by adding further rules 
that only handle these exceptional cases. 

Both the concept of defaults and that of default negation can be attributed some 
kind of generalization capabilities: Since it is possible with these concepts to construct 
rules that  usually apply, except in some specific cases (e. g., when certain specific 
sensor values are perceived by an agent), such rules can also cover a priori unknown 
cases (e. g., when new or unknown states are perceived). 

Referring to the idea of generalization, one possibility for tackling the problem of 
representing an agent’s knowledge about a higher-dimensional state-action space in a 
comprehensible way is to rely the agent’s knowledge base more on default-like rules 
and as few as possible on rather specific rules. This can result in a more compact and 
thereby more comprehensible representation of the agent’s knowledge. However, since 
an answer set program can be considered a set of rules, there is no explicit order 
among the rules regarding their specificity. This can be a limiting factor regarding 
readability and comprehensibility, as more general rules need to explicitly exclude the 
more specific cases, by making use of default negations in their premises. The fol-
lowing example of a small answer set program that demonstrates this can be found
in [8] and in similar form in [41]: 

Example 2.6 (Default Negation for Generalization) This example considers 
the agent behavior that was learned in the grid world in Figure  2.5. The agent is 
equipped with two sensors to determine its   and   position and can perform the 
actions   (see also Example  2.4). Using a Q-learning 
(or similar)  approach, the agent learned to get from the starting point   in the 
southwestern corner of the scenario to the destination  in the southeastern corner of 
the scenario, avoiding the “river” in the south. The knowledge how to get best from  
to  (which is contained in the multi-dimensional matrix  after learning), can be ex-
pressed by the following answer set program  making use of default negation:9 

  
     
    

At its starting point  the agent perceives   and  thus the rule   
will be the only rule that can be applied and the action “ ” will be concluded 
(the rule   is  not applicable due to   not being known, and the rule

9 Note that in answer set programs, rules are traditionally written starting from the conclusion 
(head) to the premise (tail) and are terminated by a dot (as usually also the case for other logic 
programs; see, e. g., [14], p. 287, for an overview).
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 is not applicable, since  is perceived and it requires either  
not to be known or   to be known). In the following seven states, where   will
be perceived, the rule  will be applied (since both  and  do 
not occur here) and finally, when  is perceived,   will be applied (and 

 will not, since it requires either  not to be known or  to 
be known). 

 also shows generalization capabilities, in case another state that is not part of 
the state-action sequence from  to  is perceived: If, e. g.,  and  is perceived by 
the agent, then “ ” will be concluded; any perceived state comprising  will result 
in the conclusion “ ”.

The rule-based approaches mentioned here do not comprise any weights, e. g., for 
reflecting  more  accurately  what  has been learned from data (i.  e.,  how strong or 
important certain rules are, according to the data from which they were learned). 

A generalization of the default-and-exception-rules idea will be presented later in 
Chapter  3, which allows for representing rules on several levels of abstraction and 
which  is  tailored  to  the  needs  of  learning  such  rules  from sensory  data.  In  this 
approach, every rule can be considered an exception to a more general rule on a more 
general abstraction level. For the approach, also an efficient reasoning algorithm will 
be provided. 

Unlike  ranked default theories, where defaults can be prioritized (see [45] for an 
overview), the generalization aspect will be represented more explicitly here with a 
strong focus on straight-forward readability of the represented knowledge. Moreover, 
the approach presented here additionally incorporates weights to the rules, which can 
be considered an “interface” to machine learning approaches, when learning such rep-
resentations from data. 

2.3.3 Learning and Hybrid Agent Models for Games

Besides Tesauro’s classic backgammon player  TD-GAMMON from the nineties (see, 
e. g., [64]), both the more recent success by DEEPMIND’s go player ALPHAGO [60] and 
its derivatives as well as the work by Mnih et al. [49] showed that the research for 
intelligent agents in games made huge progress (see also Section 1.1). Thus, a ques-
tion might be, whether there is still room for further research in this field today? 

While many of the existing approaches tackle the problem of optimizing a single 
game, in this work also an agent model will  be considered, that is  able to learn 
multiple a priori unknown games. Optimizing a single game has already been shown 
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to work well, e. g., in [49,  60,  64] (among others), whereas learning multiple and a 
priori  unknown games is  a younger discipline—especially in the context of  highly 
diverse and dynamic real-time games, as in general video game artificial intelligence 
(GVGAI) [53] research. Also motivated by strong time constraints in this context (the 
learning track rules of the GVGAI competition [65] prior to 2018 limit the playing 
time to a maximum of  minutes and allow only  milliseconds for decision-making, 
according to [5], see also Footnote  4 on page  43), especially models are of interest 
here, that do not rely on hundreds of thousands of training runs, but are able to 
perform in near real-time, both regarding  learning and  reasoning. The ability of an 
agent to quickly learn and adapt to unknown games, without requiring an extensively 
large amount of training time, still leaves a lot of room for improvement. 

Existing agent models can be roughly distinguished into the following two cate-
gories, along the lines of the  planning track and the  learning track of the GVGAI 
competition (cf. [5]): 

• Agent models for the planning track: Agents of the planning track are provided 
with a forward model of a (a priori unknown) game (i. e., a model that allows 
for forward simulations of the game to extrapolate possible future game states). 
Agent models in the context of this track must be able to handle and exploit 
such forward models for making meaningful decisions or creating plans (i.  e., 
action sequences to reach a desired state). For these purposes, common and 
successfully used algorithms are breadth-first search or monte carlo tree search 
(MCTS) [21]. Furthermore, as discussed in [5], genetic algorithms may be used 
in the context of planning track agent models to evolve eligible action sequences 
as  plans.  A successful  representative of  a  planning track agent  is  YOLOBOT

(see [53], Section 2.3), which uses a combined approach also involving MCTS. 

• Agent models for the learning track: In contrast to the planning track, agent 
models in the context of the learning track do not have direct access to a game’s 
forward model. This means, that agents based on these models must learn on 
their own about the environment and the game mechanics by observing the 
state  transitions  resulting  from their  actions.  One  possibility  to  tackle  this 
challenge is to use  reinforcement learning techniques similar to that being de-
scribed  in  Section  2.1.7.  However,  since  an  agent  may  be  trained  in  levels 
different  from those  in  which it  will  be used or  evaluated later,  this  would 
require the agent to be trained anew every time it is put into another level 
(even if it is a level of the same game): Even if the game mechanics may remain 
the same, the anatomy of the level (or further parameters of the environment) 
may change, rendering the weights of a learned -matrix or an approximating 
neural network improper. Following [5], the approach described by  İlhan and 
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Etaner-Uyar, which combines MCTS with a SARSA reinforcement learning ap-
proach, seems to have a lower performance when it comes to short  training 
times. As also pointed out in [5], a randomly behaving agent was still one of the 
most successful agents in the learning track of the GVGAI competition rounds 
of the years 2018 and 2019, which shows that there is a lot of room for further 
research in this field. 

Another example of a hybrid agent model in the context of a video game from the 
recent years is [31], which incorporates sub-symbolic and symbolic approaches: It has 
been published nearly the same time as the first publication [7] related to the work 
that is presented here, with both results independently indicating that there is a huge 
potential for incorporating sub-symbolic and symbolic approaches in the context of 
learning agents.10 However, in contrast to the approach that will be presented toward 
the end of this work (Section  5.2), the primary scope of [31] is not that of  general 
video game playing, since only one kind of game is considered there. 

2.4 Summary

This chapter presented the basics that are needed throughout this work. It thereby 
contributed the definitions around the concept of an agent as considered in this work 
as well as preliminary ideas and fundamental problems of learning agents. Moreover it 
provided  the  motivation  of  the  concepts  that  will  be  described  in  the  upcoming 
chapters by also considering related approaches (Section 2.3). 

In the context of learning agents in games, approaches for gaining formal knowl-
edge that provides structural insights into the agent behavior and/or the underlying 
problem, seem to be rarely considered. From knowledge representation, well-estab-
lished ideas like  default rules are known. However, these approaches can be limited
in human-readability, comprehensibility and efficiency—especially when it comes to 
larger amounts of knowledge learned by agents, or in case of high-dimensional data 
(i. e., agents having a large number of sensors). 

To  create  hybrid  machine  learning/knowledge  representation  agent  models  for 
games, efficient practical approaches are required, that are able to deal with strong 
time constraints, both for learning and reasoning. The following chapters will tackle 
these issues. 

10 The work [7] has been published as a peer-reviewed paper on the 29th of September in 2016, 
whereas a first version of [31] appeared as a preprint on arXiv.org on the 18th of September in 
2016; a second version appeared there on the 1st of October of the same year. 
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3. Knowledge Base Extraction

This chapter explains the concepts of exception-tolerant hierarchical knowledge bases11 
(HKBs), a comprehensible approach for representing knowledge compactly as rules 
with exceptions. The HKBs developed in the context of this work were originally 
designed for the representation of knowledge learned by agents, independently from 
an underlying machine learning technique. Due to the arrangement of rules on several 
levels of abstraction, larger portions of knowledge can be read top-down on an ade-
quate level of abstraction. 

In recent years, HKBs have been developed including learning algorithms to learn 
HKBs from data, an efficient reasoning algorithm and a revision approach. The latter 
was especially geared to the needs of general video game playing artificial intelligence 
(GVGAI): In this context, if an agent has to learn to play different a priori unknown 
video games, it may also face belief revision problems (e.  g., when being confronted 
with new slightly different levels of the same game). Furthermore, in [41], HKBs have 
been compared to answer set programming (ASP) [19]. 

Over the years,  HKBs have successfully been used in several  applications.  The 
applications comprise: 

• materialization of knowledge learned by agents [8], 

• discovery and exploitation of heuristics in unknown environments to accelerate 
the learning process of an agent [9], 

• measurement of subjectively experienced strategic depth in games [11], and

• learning of approximated forward models in video games [5, 26].

(These applications will be considered in Chapter 4 and Chapter 5.) 

Furthermore, HKBs and related applications have been considered in several other 
works, especially by researchers in the field of  computational intelligence in games, 
e. g.,  in  [28,  29,  47].  In  Kuhn [42],  HKBs were  also  used  to  extract  and exploit 
knowledge about human intuitions for solving job-shop problems, e.  g., by improving 
genetic algorithms with the extracted knowledge bases. HKBs have also stimulated 
bachelor’s and master’s theses [12, 40] and contributed to other’s PhD research [25]. 

11 Thanks to my PhD supervisor Prof. Dr.   for having the idea of adding░░░░░ ░░░░░░░░  
the term “exception-tolerant” to the name in order to distinguish it from a different approach 
by Borgida and Etherington [18].
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Several results of HKBs from the papers [9, 26] have also been outlined in the chapter 
“Learning in GVGAI” (Chapter 5) of the recently published book on GVGAI [53]. 

In this chapter, foundations and formal definitions for HKBs are provided, mostly 
following [8] (Section  3.1). After that, an efficient reasoning algorithm for HKBs is 
described,  which was proposed in an earlier  publication by Apeldoorn and Kern- 
Isberner [7] (Section 3.2).  HKBs are introduced as a tool for knowledge engineering 
(Section  3.3)  and two  basic  algorithms  and  one  advanced  algorithm for  learning 
HKBs in the context of agents are provided (Section 3.4 and Section 3.5); the latter 
was  published  in  a  more  recent  paper  by  Apeldoorn,  Hadidi  and  Panholzer  [6]. 
(Details about contributions are provided in the bibliographic remarks, Section 3.7.)

3.1 Definition of HKBs

This  section  provides  the  basic  definitions  needed  for  HKBs.  It  starts  from the 
preliminary definition of a deterministic state-action sequence in Section  3.1.1 and 
closes at the end of Section  3.1.2 with the central definitions for HKBs, according
to [8] (and several other papers making use of these definitions, e. g., [5, 9, 11]). 

For this purpose, the agent model described in Section 2.1 is considered and briefly 
summarized here again: According to the model, an agent is equipped with  sensors 
and  can  perform a  fixed  number  of  different  actions.  Thus,  the  agent’s  discrete
state space is  defined as   where every   is  a sensor symbol set 
representing all possible values of the agent’s -th sensor. The agent’s action symbol 
set  represents all possible actions of the agent. Every action  performed in a 
state   with   leads to a successor state   (see sections  2.1.1
to 2.1.5 for details). 

3.1.1 From Non-Deterministic to Deterministic State-Action Sequences

Based on the agent model from Section  2.1, the agent behavior in an environment
can  be  represented  by  a  state-action  sequence,  as  defined  in  Definition  2.6 from 
Section  2.1.5.  For non-deterministic environments (as explained already earlier,  at
the end of Section  2.1.5), a state-action sequence   may contain pairs   
with   where  and  For reasons of sim-
plification,  in  the following,  many considerations will  refer  to  deterministic state-
action sequences instead, which are defined as follows: 
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Definition 3.1 (Deterministic State-Action-Sequence) A deterministic state-
action sequence is a state-action sequence , where for 
every two pairs ,  implies that .

For  a  better  understanding  of  deterministic  and  non-deterministic state-action 
sequences, Figure 2.5 from Section 2.1.7 can be considered here again: Figure 2.5 (a), 
shows a non-deterministic state-action sequence (with multiple outgoing arrows from 
a single grid cell),  whereas Figure  2.5 (b) and (c) show deterministic state-action 
sequences (with at most one outgoing arrow per grid cell). 

To represent agent behavior in a  non-deterministic environment, a deterministic 
state-action sequence  can be created from a state-action sequence  by keeping 
only those pairs  with the best action  given a state  i. e., those  
with  (cf. Table of Notations).12 Such a deterministic 
state-action sequence can then be considered the representation of the best or “most 
common” actions for every state of the environment. 

3.1.2 Rules and HKBs

The basic idea of an HKB is to represent a (deterministic) state-action sequence  
(see Definition 2.6 and Definition 3.1) in a compact way, which also allows for  gen-
eralization. This can be achieved by trying to incorporate only a few of the agent’s 
sensors  (and sensor  values)  to  express  the knowledge contained in   For  this 
purpose, within an HKB, the knowledge is organized on several levels of abstraction, 
where the topmost level contains the most general  rule(s) (with empty premise(s)) 
and the bottommost level contains the most specific rules (corresponding to the state-
action pairs contained in  Every rule on a lower abstraction level can define an 
exception to a more general rule on a higher abstraction level of the HKB. To be able 
to define HKBs more formally, at first, two basic kinds of rules have to be distin-
guished (based on the definition of complete states and partial states, Definition 2.1), 
mainly following the corresponding definition provided in [8] (and preliminary con-
siderations from [7]): 

12 If  is not unique, i. e., every  is leading to the same maximum conditional 
probability/relative frequency  one  can be chosen randomly. 
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Definition 3.2 (Complete Rule/Generalized Rule) Complete rules and gener-
alized rules are of the form  (i. e., “if  is known, then  can be concluded”), 
where the premise  is either a complete state (in case of a complete rule) or a partial 
state (in case of a generalized rule), the conclusion  represents an action of the 
agent’s action symbol set  and  is the rule's weight (indicating the “strength” 
of the rule).13

Thus, with complete rules, actions can be concluded from a complete state and with 
generalized rules, actions can be concluded from a partial state. Based on that (still 
following [8]), an HKB can now be defined as follows:

Definition  3.3 (Exception-Tolerant Hierarchical Knowledge Base) An  ex-
ception-tolerant  hierarchical  knowledge  base (HKB)  is  defined  as  an  ordered
set   of   rule  sets,  with   being  the  number  of  state
space  dimensions  (i. e.,  the  number  of  an  agent’s  sensors).  Every  (non-empty)
set   contains  generalized rules and  the  set   (when  being
non-empty)  contains  complete rules,  such  that  every  premise   of  a

rule  (with  being the rule’s premise set) is of length 

Furthermore, in the context of HKBs, the terms  exception and  needed exception 
will be of importance and are therefore provided here by the following definitions, 
originating from [7, 8]:14 

Definition 3.4 (Exception) A rule   is an  exception to a rule   
with premise   and action   as conclusion, if the  premise set  
and 

Definition 3.5 (Needed Exception) A rule  is a needed exception to a 
rule  with premise  action  as conclusion and weight  if 
it is an  exception and no other rule   exists with premise   and 
action  as conclusion, where   and weight 

13 Note that when learning HKBs from data (as, e. g., in [8] or later in Section 3.4), the weights of 
the rules are usually in  Nevertheless, when using HKBs as a knowledge engineering tool, 
in principle, no such constraints exist (even if it might be useful to limit the weights to a 
certain range). 

14 Note that the definitions provided here are slightly more general than those provided in [8], 
since here, a rule  is also considered an exception to a rule  if  
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The following example illustrates how knowledge can be compactly represented as 
an HKB by consequently exploiting the concept of rules and exceptions. 

Example 3.1 (HKB for an Agent in a Grid World) In this example, an agent 
in a grid world is considered again (similar to Example  2.2 and Example  2.4): The 
agent moves from a starting point  to a destination point  by avoiding a large area 
in the middle of the grid world (see the left side of Figure 3.1). Also here, the agent
is equipped with two sensors to determine its   and   position in the environment 
(i. e., its state-space is  with  and  and 
the agent is able to perform actions from the set  

The right side of Figure 3.1 shows an HKB that describes the agent behavior in-
dicated by the arrows on the left side of Figure 3.1. Starting from the most general 
rule  on the topmost level  the HKB can be read top down in the 
following way (the indentations indicate the level on which the rules are located): 

“Usually go to east; (according to 
       except when    is perceived, go to north, or, (according to 
       when    is perceived, go to south; (according to 
               except when   and   are perceived, go to east.”

(according to 

The rule  on level  serves as a “second order” exception here, 
since it is an exception to the rule  which is in turn an exception
to the topmost rule   on level   (according to Definition  3.4). The 
rule  is also a needed exception here (see Definition 3.5).

 

Figure 3.1 (HKB for an Agent in a Grid World) (Source: adapted from [11])

On the left, arrows indicate an agent’s movement in a grid world from a starting 
point to a destination around a “lake”. On the right, an HKB  represents the 
agent behavior compactly and comprehensively (in contrast to Figure 2.6). The 
rule weights are the conditional relative frequencies of the concluding actions 
given the premises, e. g.,  (See also Example 3.1.) 
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3.2 Reasoning for HKBs

Reasoning and the process of retrieving inferences from a knowledge base have a long 
tradition in AI research—especially in those fields of knowledge representation that 
are closely related to logic. However, many strongly logic-based reasoning approaches 
are limited in their efficiency (and even feasibility!) and when it comes to practical 
applications, an eligible reasoning approach should be able to provide appropriate 
inference  results  in  near  real-time.  Regarding  practical  aspects  (especially  in  the 
context of robotics),  Hertzberg,  Lingemann and Nüchter write in their book [36],
pp. 307–308 (2012, Springer Vieweg, translated from German):

“A good inference approach only yields true consequences from provided  
knowledge, and that as efficient as possible.  […] (Correct and complete  
inference  in  propositional  logic  is  only  possible  with  NP-complete  ap-
proaches, first order logic is even undecidable—both are no properties that  
can be considered useful for an efficient inference approach.)”

The reasoning algorithm that will be described here, is able to efficiently provide 
inferences that exploit the knowledge contained in an HKB at its best. The algorithm 
relies on an HKB (representing the current knowledge of an agent) and one or more 
piece(s) of supposedly evident information (i. e., the agent’s currently perceived sensor 
values). Such a reasoning algorithm was first introduced in [7], where it was used for 
an experimental study on agents improving their learning performance by exploiting 
knowledge represented by HKBs, which were extracted from the agents’ experiences 
during their learning process. Meanwhile, the algorithm has been proven useful in 
several further applications (e. g., [5, 6, 9]); some of which are relying on (near) real-
time capability. 

More concretely, closely following [7], a reasoning algorithm  will be de-
scribed here, that takes an HKB  (where  contains the most 
general rule(s) and  contains the most specific rules, i. e., the complete rules) and 
the current perceived state  of the agent as input and that outputs a set  of 
inferred actions.  The set   usually  contains only  one  single  action—only in  case 
multiple equivalent rules with the same maximum weight and different conclusions 
exist on a level  more than one action can be contained in  

When a state   is perceived, the reasoning algorithm searches for 
the most specific rules  whose premises are satisfied by  and which have the maxi-
mum weight among all satisfied rules on the same level of abstraction (i. e., rules   
with premise   where   is  a subset of  the set   and

no other  rule   exists  with premise   where   and  
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The action(s) contained in   will then be returned by   (in case of   the
returned actions are equally good and an agent may select randomly among them). 
Algorithm 3.1 formalizes the described reasoning algorithm. 

 

  

Algorithm 3.1 (Reasoning on HBKs) (Source: adapted from [7])

The algorithm   searches the HKB  upwards, starting on the most specific 
level  for the first rule(s) whose premise(s) is/are satisfied by the given state  It 
returns a set  of actions by using the rule(s) with the maximum weight among the 
found most specific rule(s). (The algorithm can also be implemented easily in a slightly 
modified form for additionally returning the rules that are used for creating  

 

Example 3.2 (Reasoning in a Grid World) This example considers again the 
HKB   for  the agent  in  the grid  world  scenario  shown in  Figure  3.1:  For  the 
starting state  the reasoning algorithm  (Algorithm 3.1) starts search-
ing on level  where only the rule  is located, whose premise is 
not satisfied by  (since  cf. line 12 of Algorithm 3.1). Thus, the 
algorithm continues searching on level  where it finds the rule  
whose premise is satisfied (since  . Since there isn’t any other rule 
with a higher weight on level  and a premise satisfied by the state  the result 
will  be   and  thus  the  action  “ ”  can  be  concluded  for
state  For another state  (the northwestern corner of the grid world), 
the result will be  (due to the only rule on level  being directly 
found by the reasoning algorithm). For a third state   the reasoning 
algorithm will fall back to the most general rule on the level  and thus the result 
will be 
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The reasoning algorithm described here turns out to be rather efficient in practice: 
By searching an HKB upwards for one or more firing rule(s), usually only a part of 
the rules contained in the HKB has to be considered. Only in case a given state is not 
covered by any of the rules on the levels  the algorithm has to search through all 
rules on all levels of the HKB, until it falls back to the most general level  

However, this does not have much impact on the overall performance of the algo-
rithm, since, in practice, if the reasoning algorithm frequently has to fall  back to 
upper levels of the HKB (or even to the topmost level  this means in general that 
there are only a few rare exceptional cases occurring in the agent’s environment—
which in turn means that the HKB will most likely be “shallow”, only comprising a 
few levels with few exceptions. Thus, even if it happens frequently in this case that 
the algorithm has to consider a large portion (or all) of the rules contained in the 
HKB, the number of rules that have to be considered will be quite low. 

Or, vice versa: Assuming an environment with only a few regularities and hence 
with many exceptional cases occurring, a corresponding HKB will most likely com-
prise many levels with a lot of exceptions to reflect this properly. However, in such an 
environment, exceptional cases will be more common and thus, it will happen much 
more often that the reasoning algorithm finds the corresponding rule(s) on the lower 
levels, without considering larger portions of rules on the upper levels of the HKB. 

3.3 HKBs for Knowledge Engineering

An HKB (as defined in Section  3.1) can be used as a modeling tool for agent  be-
havior. An interesting question is, whether an HKB is able to model  every possible 
behavior  of  an  agent  in  an  -dimensional  state-space,  i. e.,  whether  it  is  always 
possible to find an HKB as a model for any deterministic state-action sequence  

As a first approach, a simple answer to this question can be provided by con-
sidering a  trivial HKB   where all  levels   are empty and the bot-
tommost  level   contains  exactly  one  complete  rule  for  each  state-action
pair   For  such  an  HKB,  the  reasoning  algorithm   would 
obviously return the correct conclusions   for every state   of a pair  
i. e.,  

However, this immediately leads to the more elaborate question, whether the repre-
sentation as an HKB has any benefits over the representation of the agent behavior as 
a state-action sequence. More concretely: Is it always possible to find an HKB  
that completely represents the knowledge contained in   with at most as many 

64



3.3 HKBs for Knowledge Engineering

rules as the total number of state-action pairs in   and which  generalizes better 
than  The following proposition provides an answer to this question. 

Proposition  3.1 (Knowledge Engineering Properties of HKBs) For every 
deterministic state-action sequence  an HKB  can be found

(1) that represents  completely (i. e., ),

(2) is at least as compact as  (i. e., ) and

(3) that  generalizes  (i. e.,   can also provide conclusions for states   
not contained in any pairs of  

Proof Starting from a deterministic state-action sequence  following the above 
preliminary considerations, an HKB  can be easily constructed with 
all levels  being empty and with one complete rule  
(with an arbitrary weight ) on level  for every pair  

For  such  a  trivial  HKB,  according  to  Algorithm  3.1,  the  reasoning  algorithm 
 will obviously provide the correct conclusion   for every   by 

finding  the  corresponding  rule   on  the  bottommost  level   for  any  given
state  which satisfies property (1). 

Now, it can be assumed that for an arbitrarily selected state-action pair  
the corresponding rule  is moved to the topmost level   by simply replacing its 
premise with  For the resulting HKB  the reasoning algorithm  will 
then still provide the correct conclusions for every   since these rules remain 
unchanged on the bottommost level  

For  no rule will be found now by  on level  anymore and thus 
 will fallback to rule   (according to Algorithm  3.1), which also 

results in the correct  conclusion   Due to the rule   (with premise   being 
located on the topmost level  now,  will also fallback to  for any other 
state  and thus will also be able to infer conclusions from  for states  that are 
not contained in any pairs of  which satisfies property (3). 

Since level  was initially filled with one rule per state-action pair, with 
all other levels being empty, and only one rule was moved to level   it still holds
for  that  which satisfies property (2). 

In case there are further rules on level  with the same concluding action  
then all these rules can be removed now from level   without losing the  com-
pleteness property (property (1)), since  will also fall back to the topmost 
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rule  for all states  of the pairs in  for which the corresponding action is 
equal to  Thus, in this case, it even holds that  

It is now easily imaginable that the rule-exception principle can be also exploited 
on  the  intermediate  levels   to  gain  even  more  compact  represen-
tations,  which  reflect  the  inherent  logic  of  the  data  contained  in  a  state-action 
sequence  Such an HKB then also has more accurate generalization capabilities, 
since  can fall back to the next more general rule on a level  that 
fits well for the state  (instead of falling back to the most general rule on level  

After having shown that HKBs can be used as a knowledge engineering tool to 
represent deterministic state-action sequences in a more compact and generalizing 
way, a further interesting questions is, how compact representations can be learned 
automatically  from (deterministic)  state-action  sequences.  Different  algorithms for 
that will be presented later in this chapter (Section 3.4 and Section 3.5). 

3.4 Basic Knowledge Base Extraction Approaches

This  section  introduces  basic  ideas  and  some  first  basic  approaches  for  learning
HKBs from data. The task of automatically retrieving a knowledge base from data—
especially from data representing agent behavior in form of a state-action sequence 
(see Section 2.1.5)—mainly comprises two aspects: 

• extracting a knowledge base that represents the knowledge adequately, and

• providing a representation of the knowledge that is transparent and easily acces-
sible to the reader. 

HKBs have eligible properties to satisfy these aspects for the following reasons: 

• The knowledge can be represented  compactly by exploiting the generalization 
possibilities of HKBs together with the concept of exceptions: Rules that cover a 
larger amount of the data represented by the HKB can be located on higher, 
more general levels, whereas the rules representing some rare cases contained in 
the data can be located on the lower, more specific levels. 

• Due to the knowledge being organized on several levels of abstraction, HKBs 
can be read top-down to the desired degree of detail. By this, the reader can 
easily get an overview over the data represented by the HKB without the need 
for considering rules that are only covering some rare cases (which seems to be 
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in line with some central properties of human thinking; see the last paragraph of 
Section 2.2, p. 48). 

• The knowledge represented by an HKB is extensively transparent, since usually 
only one single rule fires when reasoning is performed for a provided state (see 
Algorithm 3.1 and Example 3.2). 

• Being only loosely coupled to logic, HKBs are  easy to read and therefore also 
accessible to people not having expertise in logic (see [41] for a study of the 
comprehensibility of HKBs). This is perhaps one of the strongest features of 
HKBs, which allows for applying the following approaches in interdisciplinary 
working environments (see, e. g., [6]).15 

Retrieving knowledge bases from data has numerous applications and can be used, 
e. g, to explain what a learning agent has learned [6,  8],  to represent how human 
agents solve problems [11, 42] or how an agent’s environment works (i. e., the forward 
model of the environment) [5, 26], among others. 

3.4.1 Basic Ideas

To retrieve a knowledge base in the context of an agent, the knowledge that is im-
plicitly contained in a plain state-action pair representation of the agent’s behavior 
(i. e., a state-action sequence, see Section 2.1.5 or a -matrix, see Section 2.1.7) will 
be extracted and adequately represented in form of an HKB. For this purpose, some 
basic representation criteria will be determined at first, that provide some intuitions 
on how the knowledge represented by the HKB should look like (according to [7]): 

• Criterion 1: adequately relevant (the knowledge should be restricted to the rele-
vant parts only)

• Criterion 2: adequately generic (equivalent or even better, more general knowl-
edge should be preferred over more specific knowledge)

While the first criterion ensures that irrelevant rules not related to the original 
data will not be included in a resulting HKB, the second criterion aims at providing a 
compact representation by ensuring that more general rules with shorter premises are 
preferred over more specific ones, where possible. Furthermore, by this means, the

15 Being affiliated to a multi-disciplinary research institute with researchers from biostatistics, epi-
demiology, physics and other disciplines, the author was able to experience good receptions of 
the approaches by researchers from different fields. 
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resulting HKB will have better generalization opportunities, since rules that are more 
general cover larger pieces of the agent’s state space (cf. Section 3.3). 

These criteria form the base of the following approaches. 

3.4.2 A Preliminary Algorithm

In this section, a first approach to extract a knowledge base from a learning agent is 
provided. Although the algorithm has some obvious drawbacks (which will be dis-
cussed at the end of this section), it was successfully used in various applications in 
the past (e. g., [5,  7,  9,  11,  26,  42]) and may serve as a base for understanding the 
more elaborate approaches. 

The algorithm takes a (multi-dimensional) weight matrix  as input 
(with  i. e., a weighted state-action pair representation, which contains 
a learned weight for every state-action pair of the agent’s state-action space. The 
weights could be learned by any machine learning approach that fits the needs of the 
task to be learned (e. g., reinforcement learning approaches like Q-learning and the 
like, see Section 2.1.7). The algorithm returns an HKB  which reflects the learned 
knowledge contained in  If one is only interested in the knowledge about the best 
weighted state-action pairs contained in  (i. e., the best learned behavior), only the 
best state-action pairs with the highest weight given a state can be considered here, 
ignoring the weights of all other state-action pairs. 

Following [7, 8], the HKB extraction algorithm performs the following steps:

(1) Normalization of weights:
Every weight  is normalized over the action dimension to 
a weight16

  

(2) Creation of rule sets:
All  generalized  rules  (i. e.,  all  rules   with   and  with
set , where  is the number of state space dimensions) are created 
by aggregating an average weight   over all  missing state space dimensions 
(i. e., over those state space dimensions   of which no sensor value symbol is 
contained in the premise of the respective rule). (See Example  3.3 for a more 
detailed explanation of the aggregation mechanism.) The resulting rules will be 

16 Note that the provided formula here corrects the corresponding formula of the original work [7]. 
Thanks to   for pointing to the erroneous formula in [░░░░ ░░░░ 7].
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grouped according to their generality into the different sets  of the 
HKB (where   contains the most general rules and   contains the most 
specific rules, i. e., the complete rules; see Definition 3.2). The complete rules are 
derived directly from the -matrix. 

(3) Removal of worse rules:
This step follows the intuition of restricting the resulting HKB to the relevant 
knowledge only (which corresponds to Criterion 1,  see  Section  3.4.1):  In  all
sets   a rule   is removed, if another rule   exists with the same 
partial state as premise and a higher weight. In other words: on every level of 
the HKB only the best rules for a given partial state are kept. 

(4) Removal of worse more specific rules:
The  intuition  here  is  to  prefer  better/equivalent  general  over  more  specific 
knowledge where eligible (corresponding to Criterion 2, Section 3.4.1): In all sets 

 a rule  with premise  conclusion  and weight  is 

removed, if  a more general  rule   exists with premise   
premise set  and with weight  

(5) Removal of  too specific rules:
In this step, the intuition is to prefer general over specific knowledge, if the 
more specific knowledge is not necessarily needed or relevant (which corresponds 
to both Criterion 1 and 2 that are provided in Section 3.4.1). In all sets  a 
rule  with premise  and conclusion  is removed, if a more 

general  rule   exists  with  the  same  action   as  conclusion, 
premise   with premise set   and 
with rule  not being a needed exception to a rule  (see Definition 3.5). 

(6) Optional filter steps:
Optionally, filters may be applied to filter out further rules which are helpful to 
explain the knowledge contained in  but which are not needed for reasoning 
later (e. g., since they are never firing given the states contained in  or since 
other rules exist on the same level of abstraction which would lead to the same 
result when reasoning is performed on the extracted knowledge base). 

After  these steps,  the HKB comprises  all  sets   with the extracted rules 
representing the knowledge contained in  the learned weights  of   Algorithm  3.2 
summarizes the algorithm. 
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Algorithm 3.2 (Preliminary Knowledge Base Extraction) (Source: based on [7])

The algorithm starts with Step (1) by normalizing the weights of the matrix   to be
in  Afterwards, the sets  are initially filled with all possible rules by aggregating 
the weights according to Step (2).  After that,  the three main steps of the algorithm,
Step (3) to Step (5), successively remove the  worse rules, the  worse more specific rules 
and the too specific rules. Finally, some optional filter steps may remove further unneeded 
rules (e. g., those that are not needed to infer the best actions for the respective complete 
states in  

 

In the following, two examples will be provided: The first example (Example 3.3) 
originally stems from [7] and helps to understand more detailed how the aggregation 
of the weights contained in the matrix   is realized in Step (2) of the algorithm. 
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After that, a complete example of extracting a knowledge base from an agent’s be-
havior in the context of a simple game will be provided in Example 3.4. 

Example  3.3 (Aggregation of Weights) Assuming an agent with a 2-dimen-
sional state space  with  and  and a (normalized) 
matrix  of weights learned with an arbitrary machine learning approach. 
Then the following ten generalized rules are created according to the second step of 
the preliminary HKB extraction algorithm (assuming that the agent’s state space has 
been explored completely before, such that all possible states are known in  

 

more specific rules

most general rules

 

Example 3.4 (Basic Knowledge Base Extraction) In this example, an agent 
has to navigate a horse from a starting point to a trophy in a two-dimensional horse 
race game. The state space is provided by   (with sets   
and   and the action space is  provided by the action symbol  set 

 allowing the agent to navigate and jump over 
hurdles (see Figure 3.2). The agent behavior results in the state-action sequence 

 
 that is indicated by the red arrow in Figure 3.2. 
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The extraction of a knowledge base to represent the agent behavior is realized by 
Algorithm 3.2: After transforming  to a sparse -matrix by starting from a zero 
matrix and setting the corresponding weights of all state-action pairs contained in  
to  the algorithm starts with Step (1) by normalizing the weights (which does not 
have any effect here, since the matrix  only contains zeros and ones at this point). 
After that, in Step (2), the algorithm creates all possible rules with a weight   
which results in the following initial rule sets on the different levels of the HKB (rules 
to be removed in the next step are shaded gray): 

  

Note that the rule weights  are denoted in fractions here to outline the relation to 
the  relative  frequencies  of  the  agent’s  performed  actions:  Since  the  matrix   is 
initially created from the state-action sequence  by only setting the corresponding 
weights of all state-action pairs contained in  to  a rule’s weight corresponds to 
the relative frequency of the actions given the (partial) state here. 

After that, in Step (3) of the algorithm, all  worse (or equivalent) rules are re-
moved, i. e., only those rules having a maximum weight for a given (partial) state are 
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kept  (by convention,  if  two rules  are  equally  good  by  having  equal  weights,  the 
preceding one according to the alphabetical  order of  their concluding actions will
be kept): On the topmost level  only the rule with the conclusion  is kept, 
since  this  is  the  overall  most  frequent  action  here.  On  the  next  more  specific
level   the  rule   is  removed,  since   is  a  less  frequent  action
than   for the partial state   For the partial state   the rules  
and   have equal weights and therefore are equally good, thus,  by con-
vention, the rule  will be removed since  precedes  according to 
the alphabetical order. The same applies for the rules of the partial state   This 
results in the following rule sets: 

  

In Step (4), the worse (or equivalent) more specific rules are removed, i. e., those 
rules, for which a more general rule with a higher weight exists: On level   this 
affects the rules   and   since these rules have a lower weight 
than the weight of the more general rule   on the level   On the most 
specific level  this affects, e. g., the rule  since the rule  
is more general (due to  and is equally good according to its weight. 
The same applies for the rules in the right column of level  for all of which a more 
general rule on level  with an equal weight can be found. Thus, the resulting rules 
sets are as follows: 

  

Finally, in Step (5), all too specific rules are removed, i. e., all unnecessary rules, for 
which a more general rule with the same conclusion exists (and which is not needed 
as an exception on the preceding more general level, cf. Definition 3.5). This removes, 
e. g., the rule  on level  since the most general rule  already 
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provides  the same conclusion,  but generalizes  better.  Similarly,  this applies  to all 
other rules on the levels  and  with the action  as conclusion. This results 
in the final HKB: 

  

An additional filter step would not have any effect here.

The  resulting  HKB represents  the  knowledge  of  the  agent  behavior  indicated
by the (red) arrow in Figure  3.2 compactly and can be read from top to bottom
(i. e., from general to more specific) as follows: 

                “Usually go to  the right;
                         except when    is perceived,  jump;
                               except when  and  are perceived, go down.” 

Moreover, the reasoning algorithm (Algorithm 3.1) can be applied to every state of 
the initial state-action sequence   to infer the correct action for each state con-
tained in 

Example  3.4 shows that the algorithm presented in this section is able to create 
compact knowledge bases with multiple abstraction levels, which explain the structure 
of the underlying problem and its solution well in an easy and comprehensible way. 
However, even if the presented algorithm has been used successfully (in this or in 
slightly modified forms) in several applications like [5,  7,  9,  11,  26,  42], it still has 
some major drawbacks: 

• In the worst case, the maximum number of rules calculated for an -dimensional 
state space on the -th level  in Step (2) of the algorithm is 

  

where  is the set of all sensor symbol sets (cf. [11], Definition 5).
The total maximum number of rules  calculated on all levels in Step (2) of 
the algorithm is

  (3.1)
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Thus, the number of rules that are initially created (and later partly removed 
by the removal strategies) grow drastically with the number of sensor symbol 
sets (see the inner product of Formula (3.1)). This bad runtime behavior has 
been overcome in the past in [5, 26], by calculating several HKBs from smaller 
sub-spaces of the state-action space and later merging the resulting HKBs to a 
complete HKB again. However, a more proper and intuitive solution would be 
to exclude unneeded rules  as  soon as possible  in  the calculation process.  A 
corresponding improvement will be presented in Section 3.4.3. 

• Another drawback, that is related to the problem of bad runtime behavior, lies 
in the disadvantageous calculation order: Since the principle idea of the algo-
rithm is to successively filter out all unneeded rules on all levels of the created 
HKB, the algorithm cannot be aborted for quickly getting good intermediate 
results, if one is only interested in a rougher representation of the knowledge. 

• The third drawback is that the algorithm suffers from a lack of transparency: 
Even if it has already been shown in numerous applications that the algorithm 
provides proper and useful results, it is not quite clear that a resulting HKB 
reflects the knowledge contained in the -matrix (or the state-action sequence 
from which the matrix was created) well in any case. This is mainly due to the 
removal strategies in Step (3) to Step (5) (line 7–36 of Algorithm 3.2) not being 
directly associated with the ideas of the reasoning algorithm (Algorithm  3.1). 
Furthermore, starting directly from a -matrix as input additionally contributes 
to the nontransparent character of the algorithm. A lack of transparency can be 
a serious problem for such an algorithm, especially when being used in critical 
applications (e. g., medical applications). In Section 3.5 a more elaborate know-
ledge retrieval algorithm will be provided that overcomes this drawback. 

The following section will especially tackle the first mentioned drawback. 

3.4.3 Incorporating the APRIORI Algorithm

This section incorporates the APRIORI algorithm by Agrawal et al. [1] into the pre-
liminary HKB extraction approach introduced in the previous section (Algorithm 3.2) 
to prevent considering all rules in Step (2) of Algorithm 3.2. This will be achieved by 
replacing Step (2) of Algorithm 3.2 with (an adapted form of) the APRIORI algorithm, 
according to [8]. 

Usually, one is interested in a compact representation that properly reflects the 
knowledge contained in the weights of the learned matrix  Since the 
decision making from such a  -matrix is  determined by the highest weight of an 
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action given a state,  the corresponding state-action pairs are considered the most 
relevant portion of  here. For this purpose, a set of state-action pairs  will be 
created from  such that for every state-action pair  with  the
action  is the one with the highest weight in  given the state  
(with  i. e.,  (Note that  does not necessarily need 

to be ordered here.) 

To meet the set-theoretic aspects of the original  APRIORI algorithm, in the fol-
lowing,  will be used to denote a complete state  be-

longing to a state-action pair  as set (cf. Section 2.1.1). 

Closely following [8], an adaption of the APRIORI algorithm can now be described, 
which replaces Step (2) of Algorithm 3.2 to initially fill the rule sets  

Given the set  of (the best) state-action pairs, the adapted APRIORI algorithm 
starts with short  premises having a minimum  support  (i. e.,  those partial 
states that are contained to some extent in  The premises are then successively 
extended to longer premises by keeping only those premises that are still having at 
least the minimum support of   According to [8], also referring to the con-
siderations of the APRIORI algorithm as presented in [14] (p. 148), the support of a 
premise  with corresponding premise set  is calculated as

 

and the weight  of a corresponding rule  of the form  with premise set 
 is calculated as the confidence

 

More detailed, still  following [8],  the adapted  APRIORI algorithm takes a set of 
state-action pairs   as input and outputs an initial ordered set of rule sets with 
potentially eligible and relevant rules  by proceeding as follows: 

(1) Create  set   and  add  all  rules   with  an  empty  premise    and 
 

(2) Create a set of premise sets  and add all (ordered) premise sets  of length 
 with support  

(3) Create set  and add for all premise sets  all rules  with  

 and  
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(4) Set  

(5) Create the set   of premise sets of length  Combine every two premise sets 
 having  the  first   elements  in  common  to  create  a  new 

premise set 17 Add the new combined premise set  to  if

• all -elementary subsets of  occur in sets of  and, 

•  

(6) Create  set   and  add  for  all  premise  sets   all  rules   with 
  and  

(7) Set  

(8) If  continue with Step (5). 

After performing these steps, the rule sets contained in  are initially filled with 
preselected rules that are potentially relevant for the knowledge base to be extracted, 
given a minimum support of  By selecting  the preselection will 
be done in a rougher, more heuristic way. This can speed up the knowledge retrieval 
even more, at the cost of accidentally skipping rules of potential interest.

Given a minimal support  due to the completeness of the original APRIORI 
algorithm (cf. [14], p. 152), no premises are dropped too early if they could be of 
potential  interest  later.  In the adaption of  the algorithm used here,  rules  with a 
confidence of  are also not included in the initial rule sets  However, this 
does not break the completeness of the  APRIORI algorithm, since only the rules for 
the final  sets are skipped (and not the corresponding premises based on which the 
APRIORI algorithm is performed). 

Example 3.5 (Knowledge Base Extraction and Adapted APRIORI) The grid 
world scenario from Example 2.4 (see Figure 2.5) is considered again here, where an 
agent with state space  (with  and  and 
action space   learns to get from a starting point  
to a destination  with a common Q-learning approach. Using the adapted version
of the  APRIORI algorithm as Step (2) of Algorithm  3.2, an HKB will be extracted
now from the agent’s learned -matrix to compactly represent the knowledge about 
the best behavior learned by the agent (see Figure 2.5 (c)). Since only the knowledge 
about the best behavior is of interest here, the set of the corresponding state-action 

17 An additional performance gain may be achieved here in practice since (in contrast of the 
original APRIORI algorithm) only those pairs of sets that do not have any sensor values of the 
same sensor value set in common have to be considered for combination.
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pairs   will 
be created at first from the agent’s learned -matrix. 

Starting from the state-action pairs  that belong to the agent’s best behavior, 
the adapted  APRIORI algorithm is performed with   to initially fill the 
ordered set of rule sets  with potential relevant rules. After that,  contains the 
following rules on the different levels of the nascent HKB (rules to be removed in the 
next step are shaded gray): 

  

Step (3) of Algorithm 3.2 now removes all worse (or equivalent) rules (as in Ex-
ample 3.4, by convention, if two rules are equally good by having equal weights, the 
preceding one according to the alphabetical order of their conclusions will be kept): 
On the topmost level   and  are removed (due to having the 
same premise with lower weights than  on level   is removed 
(due to   having a higher weight) and   is removed (due to the 
conclusion of  alphabetically preceding  After that,  contains the 
following rules: 
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Now, all  worse  (or  equivalent)  more specific  rules  are  removed by Step (4)  of 
Algorithm  3.2:  On level    is  removed (due to the more general  rule 

 on  level   having  a  higher  weight);  on  level    is 
removed (due to   on level   being more general and having an equal 
weight) and all other rules on level  that are shaded gray are removed, since a more 
general rule for the respective  -coordinates with an equal weight can be found on 
level  After this step,  contains the following rules: 

  

Finally, Step (5) of Algorithm 3.2 removes the too specific rules: On level   all 
rules with conclusion  are removed (due to  on level   providing the 
same conclusion while being more general); on level   is removed for 
the same reason. This results in the final HKB  

  

The resulting HKB  compactly represents the knowledge of the learned agent 
behavior shown in Figure 2.5c, stating: 

                “Usually go to east;
                         except when    is perceived, go to north, or,
                         when  is perceived, go to south.”

It can be easily verified here that the reasoning algorithm (Algorithm 3.1) will infer
the corresponding correct  actions for each state from the original  state-action se-
quence 

The incorporation of the adapted APRIORI algorithm already drastically speeds up 
the knowledge retrieval process by avoiding the initial creation of all possible rule 
sets.  Furthermore,  it  provides the possibility to even further improve the runtime 
behavior by choosing   resulting in less accurate “more heuristic” HKBs, 
where weaker rules representing rare exception can potentially be missing. However, 
this motivates the need for a more advanced knowledge base extraction algorithm, 
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that is both rather efficient and complete, while at the same time overcoming the two 
remaining drawbacks mentioned at the end of Section 3.4.2: The possibility of inter-
rupting the knowledge retrieval process at any time for immediately getting rougher 
preliminary representations and the ability of being transparent throughout the whole 
extraction process to increase the confidence in the resulting HKBs. 

3.5 Advanced Knowledge Base Extraction

This  section  presents  a  knowledge  base  extraction algorithm that  overcomes  the 
drawbacks of the aforementioned preliminary approaches from Section  3.4, while at 
the same time being more transparent. The approaches described here are also suit-
able for higher-dimensional state spaces. The descriptions will partly follow [6]. 

In contrast to the algorithms from Section 3.4.2 and Section 3.4.3, the main algo-
rithm described here will follow a different approach: Instead of creating initial rule 
sets that are successively reduced by different filtering strategies, the presented algo-
rithm fills an HKB from top to bottom until it completely explains the data from 
which it was created. This guarantees that the resulting HKB will be complete, in
the sense  that  the correct  actions can be inferred for  every state  of  the original
input sequence. 

In the following, the main algorithm will be introduced at first (Section  3.5.1). 
After that, it will be shown, that HKBs produced by the algorithm always completely 
represent the data from which they are created (Section  3.5.2). This is followed by 
extensions that allow for creating HKBs from numeric sensor data (Section 3.5.3) and 
for preselecting sensors to handle higher-dimensional data (Section 3.5.4). 

3.5.1 Advanced HKB Extraction Algorithm

The algorithm for efficiently extracting an HKB starts from a  deterministic state-
action sequence  (see Definition 3.1), i. e., a state-action sequence, where no two 
state-action pairs   in  exist with states  and 
actions   Thus, according to such a deterministic state-action sequence, the 
action  to  be  selected  for  a  complete  state  is  always  the  same.  This  may  sound 
limiting, since in real applications, state-action sequences are usually not supposed to 
be deterministic. However (as it was already mentioned earlier in Section  3.1.1), a 
deterministic  state-action sequence   can be  easily  obtained from a non-deter-
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ministic state-action sequence  by keeping only those pairs  with the most 
frequent action given a state, i. e., 

  (3.2)

(if   is  not  unique  here,  i. e.,  every   is  leading  to  the  same 
maximum  one  is chosen randomly). 

Furthermore, it is assumed that the possible actions are known in advance. If this 
is not the case, the set of possible actions  can be inferred from the original state-
action sequence   by selecting all distinct actions that appear in   (Note that 
this does not necessarily lead to an agent’s original action space, since not all of the 
agent’s possible actions necessarily occur in  

Following the explanations from [6], the general idea of the algorithm is, to add on 
each level of an initially empty HKB those rules that cover as many state-action pairs 
of  as possible, starting with the topmost level  On each of the more specific 
levels,  further rules  are  then successively added as  exceptions to the rules of  the 
previous level(s), until the HKB covers all state-action pairs of  —i. e., until the 
reasoning algorithm (see Algorithm 3.1) infers for every state-action pair  the 
corresponding action  from the state  

More concretely, after rendering the input state-action sequence deterministic ac-
cording to Formula (3.2) (if necessary), which results in the input sequence  and 
after creating the set of possible actions  from  (if it is not a priori known), the 
algorithm proceeds as follows: 

(1) In the first step, the best most general rule  with an empty premise 
is created, whose concluding action   has a relative frequency   that is 
maximal in  among all actions. The rule’s weight is set to  the 
rule is added to the first rule set   and  is added as topmost level to the 
nascent HKB  

(2) Subsequently, the set  of all remaining state-action pairs that are currently 
not covered by  are calculated (i. e., those pairs  for which the 
reasoning algorithm   (see Algorithm  3.1) cannot infer the correct action   
from the state . 

(3) The counter indicating the current calculated level of  is initialized by  

(4) The fourth step represents the first part of the algorithm’s main loop: 

• If the set  of all remaining state-action pairs is empty, the algorithm 
terminates here and returns the current HKB  
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• Otherwise  (if   is  not  empty),  rules  for  the  remaining  state-action
pairs   in   are added to the new level   by iterating 
over  A rule with conclusion  is created for each subset  of 
length  of a state set  associated with a state  (see Definition 2.1). 
Note that the weight of a rule   is calculated as   

here and will later (in Step (6)) be set to  (An expla-

nation for that will be provided at the end of the stepwise description of 
the algorithm.)

(5) In the fifth step, all unused rules on the new calculated (bottommost) level  
are removed, by keeping only those rules that are used by the reasoning algo-
rithm  (Algorithm 3.1) to infer the actions  from the states  for all state-
action pairs   in  —i. e.,  only those rules  are remaining that 
have the highest weight among all rules firing given a state. (This step resembles 
Step (3) of Algorithm 3.2 or Criterion 1 in Section 3.4.1, respectively.) 

(6) The sixth step adapts the weights of all rules from   to 

 (see Step (4)). 

(7) Subsequently, the set  of all remaining state-actions pairs that are currently 
not covered by  are calculated again (similar to Step (2)). 

(8) The eighth step removes all unused rules on all levels of the HKB  
i. e., those rules that became superfluous either due to the newly added rules on 
the level   in Step (4) or due to the adaption of the weights in Step (5). 
(This step resembles to Step (4) and Step (5) of Algorithm 3.2 or Criterion 2 in 
Section 3.4.1, respectively.) 

(9) Finally, level  is added to  the counter indicating the current calculated 
level is increased by  and the algorithm proceeds with Step (4). 

Note that in Step (4) of the algorithm, the weight of a rule  is at first calculated 
as   This follows the intuition that overall more frequent oc-

currences  of   in   have  a  more  “default-like”  character  and  should 

therefore be considered on the more general levels of the HKB  (Contrariwise, less 
frequent occurrences of   should rather be considered exceptions on the 

more specific levels of  By setting the weights to  here, it is later 

possible to keep the “strongest” rules according to the overall relative frequency, by 
considering the rules used by the reasoning algorithm  to infer the correct action 
(which selects the rules according to the maximum weight in case the premise of 
multiple premises is satisfied by a provided state). Later on, in Step (6), the rule 
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weights are adapted to  since, in the end, it should be easy to 

comprehend from the resulting HKB  how strong a rule  is to infer the correct 
action  when knowing a (partial) state  rather than considering the overall 

occurrences of   in   (The latter information is then represented any-

way by the level on which the rule is located, following the above intuition.) This also 
conforms to the representation of the preliminary algorithms from Section 3.4.2 and 
Section 3.4.3. Algorithm 3.3 shows a formalization of the algorithm. 

Example 3.6 (Advanced HKB Extraction) This example considers again the 
horse race game introduced in Example  3.4. Again, the agent has to navigate the 
horse from its starting point to the trophy. As in Example 3.4, the agent’s state space 
is  provided by   (with   and  ) and its 
action space is provided by the set  allowing the 
agent to navigate and to jump over hurdles (see Figure  3.2). Also in this example 
here,  the extraction algorithm will  be applied to the state-action sequence  

 
 that is indicated by the (red) arrow in Figure 3.2. 

The input state-action sequence  is already deterministic (since all state-action 
pairs have different states and hence no pairs can exist having the same state but 
different  actions).  Thus,  the  algorithm will  be  called  with   as  input. 
Furthermore, the set of possible actions  is already known and does not need to be 
created from  

Starting from an empty HKB  in the first step, the overall best rule with 
an empty premise is added to the topmost level   of the HKB, resulting in the 
following  

  

(Similar to Example 3.4, also here rule weights  are denoted in fractions to outline 
that the weights represent the (conditional) relative frequencies of the agent’s per-
formed actions.) 

Subsequently, the set of remaining state-action pairs  is calculated (Step (2)), 
which comprises all state-action pairs for which the reasoning algorithm  
does not provide the correct conclusion  (where  is the current HKB,  is the 
state and   is the corresponding action of a state-action pair   Here, the 
reasoning algorithm already provides the correct conclusion for all state-action pairs 
with action  Thus, the only two state-action pairs that remain from the input 
sequence  are: 
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Algorithm 3.3 (Advanced Extraction of HKBs) (Source: adapted from [6])

Rules are created on a level  to cover as many state-action pairs as possible. All remain-
ing pairs are then considered on the next level  until all pairs are covered by  
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After setting the counter that indicates the current level of the HKB to   
(Step (3)), rules with a premise of length   are added to level   (Step (4)). 
After this step,  looks as follows (also here, rules to be removed in the next 
are shaded gray again): 

  

Note that, at this point, the rule weights on level  represent the relative frequencies 
of a rule’s premise together with the concluding action in the input sequence   
rather than the  conditional relative frequencies of the concluding action  given the 
premise. (E. g., for rule   and the action  occur together in one of 
the six state-action pairs in   By this, rules whose premise-action-combination 
appears more frequently in   are kept on the more general levels of the HKB, 
whereas rules, whose premise-action-combination appears less frequent, will be rep-
resented as exceptions on the more specific levels (cf. the description in Step (4) of 
the algorithm). 

In Step (5), the unused rules are now removed, i. e., those rules that either provide 
a wrong conclusion or that do not fire at all when applying the reasoning algorithm  
to  each  state  of  the  state-action  pairs  in   If  multiple  rules  with  the  same 
conclusion are firing for a provided state, one of them can be chosen randomly (by 
convention, in the following, the preceding one according to the alphabetical order of 
its premise will be selected). Here, for  both rules  
and  fire, thus, by convention,  is selected (since  precedes  
according to the alphabetical order). For  the rule  
is selected for the same reason. For all other pairs in  the rules on level  will 
either not provide the correct conclusion or will not fire at all. After removing the 
unused rules on level   and after adapting the remaining rules’ weights on that
level  to  the  conditional  relative  frequencies   (Step  (6)),   

looks as follows: 
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Now, the set of remaining state-action pairs   is calculated again (Step (7)), 
resulting in only one pair not covered by  (i. e., for which  does 
not provide the corresponding conclusion  

  

After removing all unused rules on all levels of  (Step (8))—which will 
not have any effect here, since all of the three rules fire at least once when applying  
to the states of the state-action pairs in the newly calculated level  is added 
to the HKB   and the counter indicating the current level  is  in-
creased to  

In the next iteration, rules with premises of length  are added to level   
(Step  (4)),  resulting  in  a  single  rule  added  for  the  one  remaining  state-action
pair  After this,  looks as follows: 

  

In this iteration, no more changes are made to  in Step (5) to Step (8) 
and the set of remaining pairs  will be empty at the end of the iteration:

• Since the premise of the only rule added on the bottommost level  reflects a 
complete state, it will definitely be used (Step (5)). 

• The weights will not be changed, due to  

on the bottommost level with  (Step (6)). 

• The set of remaining pairs will be empty, since for each state   of a state-
action pair   only the corresponding action   will be inferred by the 
reasoning algorithm  i. e.,  (Step (7)). 

• Since each rule of  provides at least once the correct action  for a state of 
a pair  no further rules are removed on all levels of  (Step (8)). 

Finally, in Step (9),  is added to  and  is increased again by  Since  is 
empty now (due  to  Step  (7)),  the  algorithm terminates,  returning  the  final  ,
that states: 
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                “Usually go to  the right;
                         except when being  in a state    then go down, or,
                         except when being  in a state    then jump;
                               except if being in state  then go to the right.” 

Also in the example shown here, it can be easily seen that the reasoning algorithm  
(Algorithm  3.1) will infer the corresponding actions correctly from each state of a 
state-action pair from the original deterministic state-action sequence 

Example  3.6 shows, that the algorithm is straightforward and easy to follow by 
creating exceptions, exceptions of exceptions (“2nd-order exceptions”), etc. on each 
level, starting on the more general levels with the rules that cover the most of the 
state-action-pairs. 

Remarkably,  the  resulting  HKB differs  from the  one  that  was  created  in  the 
Example  3.4 for the same scenario and the same agent behavior: In general, HKBs 
produced by Algorithm 3.3 have the potential of being a bit less compact than the 
ones produced by Algorithm 3.2. This is because Algorithm 3.3 calculates the HKB 
from top to bottom (i. e., from general to more specific knowledge) and thereby is not 
able to find optimizations that rely on certain more specific rules found later on the 
more specific levels: Although, Algorithm 3.3 is able to remove more general rules due 
to more specific rules found later in the creation process (see lines 44–49), it is not 
able to create rules on more general levels in dependence of rules found on the lower 
levels (which would allow for creating an overall more compact HKB). However, the 
ability of creating an HKB straightforward from top to bottom renders the algorithm 
much more efficient in practice, since it can be interrupted after any iteration, re-
sulting in a rougher still meaningful HKB, instead of always relying on calculating the 
HKB as a whole. 

3.5.2 Completeness of the Approach

An important question is now, whether Algorithm 3.3 is complete, in the sense that 
for an arbitrary deterministic state-action sequence   a corresponding HKB  
will  be  provided  by  the  algorithm,  such  that  for  each  state-action  pair  
with  the reasoning algorithm  (Algorithm 3.1) will return the corre-
sponding action   for state   i. e.,   This question 
will be answered by the following proposition: 
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Proposition  3.2 (Completeness of  Algorithm  3.3) For  every  deterministic 
state-action sequence   Algorithm 3.3 provides an HKB  that represents the 
knowledge contained in  completely, i. e.,  

Proof Algorithm 3.3 obviously only terminates if   is empty (see line 11—no 
further break or return commands are contained in the algorithm). Thus, to show 
that Proposition 3.2 holds, it will be argued in the following that 

(i) at the end of each iteration, it holds that  if  
is empty, and

(ii) that, at some point, there will be an iteration, where  is guaranteed to be 
empty at the end (i. e., the algorithm is guaranteed to terminate). 

For the first part (i): 

Before the algorithm’s main loop—which is considered the - th iteration of the HKB 
to be learned in the following—a single rule  with an empty premise is added to the 
topmost level of  (in Step (1)) and, subsequently (in Step (2)),  is assigned a 
subset of the state-action pairs of  for which  After Step (2), 
since there is only one rule in  only two cases exist here: If all state-action pairs in 

 have the same action  it holds that  and 
 is empty. Otherwise (if not all state-action pairs in  have the same action), 

only one action can be covered by the only rule in   and it does not hold that 
 and  is not empty. Thus, it holds here that  

is empty if and only if it holds that  

In the algorithm’s  main loop,  the only step that modifies the set of remaining 
state-action pairs   is Step (7) (lines 41–42).  In that step,   is  assigned a 
subset of all state-action pairs of   for which   Since 
this is the only step modifying  and since this step is executed in every iteration 
of the main loop without any conditions, after this step,  is empty if and only if 
it holds that  

Subsequently, Step (8) (lines 44–49) potentially removes unused rules on all levels 
of   Since only  unused rules  are  removed here (i. e.,  those  rules  that
were not involved in any of the correct conclusions   in 
Step (7)), this does not affect the statement that  is empty if and only if it holds 
that  

Step (9) of the algorithm (line 51) guarantees that level  is added to  since 
it is executed in every iteration of the main loop without any conditions. 
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Thus, it holds that at the end of every iteration  if 
(and only if)  is empty. 

For the second part (ii): 

To show that there will be an iteration, at the end of which  is guaranteed to be 
empty, it will be shown that 

(ii-a) at  the end  of  the  -th  iteration  (where   is  number  of  sensors),   is 
guaranteed to be empty, and that 

(ii-b) the algorithm will  necessarily  reach the  -th iteration or   was empty 
before (or is empty in the same iteration). 

The second part (ii-b) can be shown easily and will be considered first:

Two cases can be distinguished here:  and  If  the -th iteration 
(before the main loop) is the -th iteration and thus (ii-b) holds. Otherwise (if  
at the end of the -th iteration, either the termination condition of the algorithm’s 
main loop is satisfied, i. e.,  is empty, and thus (ii-b) holds, or the first iteration 
will subsequently start by entering the main loop (line 11), with   being initialized
to  before. In the main loop, until the termination condition is satisfied, the counter 
 is increased by  in every further iteration according to line 52. This is guaranteed, 

since it is the only line modifying  and it is executed without any conditions and no 
break/return (or other jump commands) that could skip this line are contained in the 
main loop. Thus, it is ensured that the -th iteration, where  is either reached 
at some point, or the termination condition of the main loop must have been satisfied 
before, which is that  is empty. In any of the cases, (ii-b) holds. 

The first part (ii-a) (i. e., at the end of the -th iteration,  is guaranteed to be 
empty), holds for the following reasons: 

If  the  -th  iteration already represents  the  -th iteration,  then the agent  that 
created  must have had zero sensors and thus the states of the state-action pairs 
contained in  do not comprise any sensor values (i. e.,  Due 
to  being deterministic, all pairs contained in  have the same action  which 
is the one of the conclusion of the only rule added on the topmost level in Step (1) of 
the algorithm (lines 1–5). Thus, all actions contained in  must be covered by this 
rule. Since in Step (2) (in line 8),   is assigned a subset of all state-action pairs 

 of  for which   will be assigned the empty 
set here, before the -th iteration ends by initializing  with  The case that the -th 
iteration does not represent the -th iteration will be considered in the following. 
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The only step that modifies  in the algorithm’s main loop is Step (7) (line 42). 
There,   is assigned a subset of all state-action pairs   of   for 
which   Thus, it  must be shown here that in the  -th 
iteration, just before Step (7), it holds that  
since in this case,  will be assigned the empty set. Since it is the only step that 
modifies  in the main loop,  will remain empty until the end of the iteration, 
i. e., until the end of the current run of the main loop. Furthermore, it is guaranteed 
that Step (7) (line 42) is executed in every iteration of the main loop, since it has no 
conditions and no break/return (or other jump commands) are contained in the algo-
rithm (cf. (ii-b)). 

To show this, it will  be started at the beginning of the algorithm’s main loop:
In Step (4) (lines 13–30), in the -th iteration, since  (according to (ii-b)), only 
complete rules (with complete states as premises) are added to the bottommost level 

 for each distinct state-action pair . Thus, at the end of Step (4),  
contains one complete rule  of  the form   for each distinct  state-action
pair  with  Since  is always a subset of the deterministic 
input set  (according to Step (7)),  must also be deterministic (i. e., all pairs 

 with the same state   have the same action   and it is thereby guar-
anteed here that there is exactly one rule for each distinct state action pair  
providing the conclusion   for  the state   (according to Algorithm  3.1,  which 
always uses the best most specific rule). Thus, at the end of Step (4), in the  -th 
iteration, where  it holds that  

Due to the rules contained in   being  complete rules with  complete states as 
premises and due to  being deterministic, none of the rules added to  will 
fire for a complete state of a pair  Thus, if for any  it 
held in the -th iteration (where  that  
then this must still hold in the -th iteration. Thus, at the end of Step (4), it holds 
that  

The subsequent Step (5) (lines 32–34) removes all rules on level  that do not 
fire for any state of the pairs contained in  Since only unused rules are removed 
here, after Step (5), it still holds that  

In Step (6) (lines 36–39), in the -th iteration (where , according to (ii-b)), 
the weights of the rules  are adapted from  to condi-

tional probabilities   Since all rules on the final level   are 

complete rules, the state in the conditional part is a complete state and due to  
being deterministic, it holds that  With this, it is 
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and thus, no changes are made in this step. Thus, at the end of Step (6), it still holds 
that  

As a consequence, the subsequent Step (7) will assign the empty set to  in the 
-th iteration and  will remain empty until the end of the iteration (as argued in 

the second paragraph of (ii-a)). 

By now having shown that (i) and (ii) hold, it is ensured that (latest) after the
-th iteration, Algorithm 3.3 will return a complete knowledge model for a determin-

istic input state-action sequence  such that 

Note that, even if the  is guaranteed to be empty at the end of Algorithm 3.3 
(as has been shown in part (ii) here), this does not necessarily mean that  will 
decrease monotonically after every iteration (depending on the inherent structure con-
tained in the data to which the algorithm is applied).18 

3.5.3 Learning HKBs from Numeric Data

All of the aforementioned approaches only work for discrete sensor data, where each 
sensor value is  represented by an element of  the respective sensor symbol set.  In 
practice, data provided by sensors (and also action data!) may of course be numeric 
as well, and can even be (nearly) continuous. For discrete numeric sensors (e. g., a 
light sensor of a robot, that is able to distinguish a certain fixed number of shades
of gray), a naive approach would be, to simply associate each numeric sensor value 
with a corresponding symbol, e. g.,  
(with   being equal to the fixed number of shades of gray, which the sensor
is able to distinguish). However, if the number of different numeric values increases 
(and especially in the case of (nearly) continuous sensor values), it is obvious that
the naive approach is not always feasible. Furthermore, too fine-grained sensor symbol 
sets may result in reduced generalization capabilities of an HKB. 

This  section  briefly  outlines  a  more  advanced  technique  for  handling  numeric 
sensor data.  The main idea is  to use a  clustering approach for creating a sensor 
symbol set from the numeric data of a sensor. Each cluster found in the sensor data 
then corresponds to one sensor symbol, resulting in a sensor symbol set. By mapping 
each value of the numeric data to the sensor symbols (according to their association 

18 Thanks to     for fruitful discussions, which helped pointing that out. ░░░░ ░░░ ░░ ░░
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with the clusters), results for each numeric value in a corresponding sensor symbol. 
The resulting symbols can then appear in the state-action sequence that serves as an 
input to one of the knowledge base extraction algorithms that were presented in the 
previous sections. 

The question is now, how to determine an eligible number of clusters (i. e., the 
number of distinct sensor symbols) for the numeric data provided by a sensor? 

To answer this question, basically two cases can be distinguished:

• If additional information is available about the sensor or its data, then it may 
be  desirable  to  determine  the  (maximum)  number  of  clusters  manually  in 
advance (e. g.,  in case the sensor’s  purpose implies  that the data should be 
represented by a specific number of sensor symbols). 

• Otherwise, if nothing is known about the sensor or the sensor data, the number 
of clusters (i. e., the number sensor symbols used to represent the data) should 
be determined automatically. 

In the following, the multi-set  denotes the raw numeric input data that was 
collected by an agent’s sensor. The set  represents the sensor symbol set that will 
be created from   and   denotes  the resulting output  multi-set  that  will  be 
created from  by replacing each numeric value of   with a symbol from  
Furthermore,  the  value   denotes  a  predefined  maximum  number  of  clusters 
(which in the second of the above cases can be assumed to be equal to  since 
this would be the maximum number of clusters, with each cluster containing exactly 
one single value). 

A compact eligible clustering for  can now be found by simply performing the 
following steps (covering both of the aforementioned cases with  for the 
second case): 

(1) Starting with a minimum number of two clusters, the current number of clusters 
 will  be  set  to   (Note  that  the  case  of  one  cluster  is  not  further 

considered here, since this would result in a single sensor symbol, rendering the 
corresponding sensor useless for distinguishing states. In the special case that 

 a single cluster can immediately be returned.)

(2) A k-means clustering (see, e. g., [61]) with  is performed on  Besides 
the number of clusters   and the multi-set   the  -means clustering also 
needs the initial  centroids as input, representing the (initial) mean values of 
each cluster. The  -th initial centroid   (where   refers to the first cen-
troid) is calculated here as 
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By this means, the initial centroids are distributed equidistantly over the range 
of values of   here (with the minimum referring to the first and the maxi-
mum referring to the last initial centroid). The values contained in   are 
then assigned to the clusters (using a nearest neighbor metric) and the centroids 
are updated afterwards. The process is iterated, until none of the clusters is 
changed anymore. The k-means clustering then results in the clusters containing 
the assigned values and also provides the final centroids. 

(3) If none of the clusters returned by the k-means clustering from the previous step 
is empty, then each cluster will now be associated with a sensor symbol. This 
results in the sensor symbol set  The mapping of each value  to the 
sensor  symbol  of   that  represents  the  cluster  to  which   belongs  then 
results in the multi-set   
Otherwise (if one of the clusters returned by the k-means clustering is empty), 
it will be immediately stopped here, returning  with the assignment from the 
previous iteration. (Note that this case cannot occur in the first iteration where 

 except  for  the  special  case  that   as  described 
already at the end of Step (1). This ensures that the returned   will always 
have a valid assignment in the end.) 

(4) If   then   will be increased by   and it is proceeded with Step (2).
Otherwise,  is returned with the current assignment of sensor symbols. 

After having performed these steps on a data set  the resulting set  contains 
for each numeric value  a corresponding symbol of  representing the cluster 
to which the value belongs. (Note that instead of k-means clustering, also other clus-
tering techniques could be imaginable here.) 

In practice, the clusters’ centroids can be attached as annotations to the respective 
symbol names of the corresponding  This results in a good intuition on what is 
represented by a symbol (while at the same time rendering the symbol names unique, 
as stipulated at the beginning of Section 2.1.1). In the same way, also the number of 
clusters and the represented cluster sizes can be helpful annotations to comprehen-
sibly represent the meaning of symbols learned from numeric data. For annotating 
these information, in the following, a naming scheme of the form 

  (3.3)

will be used for such learned symbols, where  is the name of the symbol that 
represents the cluster,   is the cluster’s (final) centroid,   is the total 
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number of clusters, and   is the cluster’s size (i. e., the percentage of values of the
set  that is covered by the cluster). Such an annotated symbol name then states 
that the symbol  represents a cluster around the centroid  covering  percent of 
the data. If the number of the represented cluster is also of importance here, then a 
numbering can simply be added as suffix to each name (as done for the shades of
gray in the light sensor example at the beginning of this section, i.  e.,   

 to additionally include this information. 

Note that the described approach can also be applied in the same way to numeric 
action data (e. g., in case of a (nearly) continuous action space). 

The following example demonstrates the learning of an HKB from both numeric 
sensor and numeric action data. 
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Example 3.7 (Fuzzy-Controlled Robot) A (simulated) robot has to follow an 
unknown road (see Figure 3.3). Its one-dimensional numeric state space is provided 
by its position on the road in the range  where  refers to the leftmost 
and   refers to the rightmost deviation from the road’s center. Its numeric action 
space is provided by the robot’s steering, which is also in the range  where 

 refers to the maximum steering to the left and  refers to the maximum steering 
to the right. To elegantly master the task using smooth steering actions, the robot 
uses a  fuzzy controller (see [36], Section 7.3 for a similar task) with five triangular 
fuzzy sets for the input state       and five for the 
output steering action      Running the ro-
bot now in this scenario results in a raw data sequence, similar to a state-action 
sequence (cf. Definition 2.6), where both states and actions consist of numeric values. 
The raw data sequence can therefore be considered a “quasi-state-action sequence”, 
where the first element of each pair refers to the robot’s state (its position) and the 
second element to the steering action: 

  

(The values are rounded to two digits here; the full length of the raw data sequence 
considered in this example is 

From   the numeric data set   for the robot’s states and   for its 
actions are obtained (where both sets are supposed to be ordered in the sense that the 
order of values as provided by  is preserved). 

Now, the described clustering approach is applied to both sets   and   
with  a  predefined  maximum number  of  clusters   The  learned  symbols 
associated with the clusters are then named according to the fuzzy sets of the robot’s 
fuzzy  controller,  resulting  in  the  sensor  symbol  set   and  the  action  symbol
set  

This leads to the sets  and  which resemble to the sets  and  
with each numeric value being replaced by a corresponding symbol of the respective 
sets  and  Since the data sets are both supposed to preserve the order of 
values as provided by   (see above), a proper state-action sequence can now 
easily be constructed from  and  where the numeric values are replaced by 
the learned symbols: 
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(Also here, except for the percentage values, the values are rounded to two digits; the 
naming of the learned symbols of  conforms to the scheme provided in (3.3).)

Finally, Algorithm  3.3 is run on   which results in the HKB provided in 
Figure 3.4. 

 

Figure 3.4 (HKB for Fuzzy-Controlled Road Following)
The HKB  learned in the context of Example 3.7 comprises five 
rules. The naming of the rules’ symbols follows the scheme in (3.3). 
The rule on the first level  states that, usually, the robot has to 
steer  straight  (which  resembles  to  a  steering  value  of   
according to the data of the example). The learned action symbol
“ ” represents one of five clusters, which covers   of the 
data. The level   provides exceptions to the rule on level   for 
cases where the robot perceives a position “ ”, “ ”, “ ” 
or “ ” on the road. These four rules resemble to the relation of 
the input/output fuzzy sets of the robot’s fuzzy controller. 

 

As can be seen in Figure  3.4, the resulting HKB well reflects the input/output 
fuzzy sets of the robot’s fuzzy controller used to navigate the robot on the road and 
can be easily read as follows: 

“Usually steer straight (about –0.77),
         except when right (about 6.08),  then steer  left (about –5.82), or,
         except when far right (about 9.53),  then hard  left (about –8.85), or,
         except when  left (about –6.06),  then right (about 4.44), or,
         except when far  left (about –10.42),  then hard right (about 8.83).”
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3.5.4 Handling Higher-Dimensional Data

Although  the  more  advanced  knowledge  base  extraction  algorithm  presented  in 
Section 3.5.1 (Algorithm 3.3) is already much faster, it can still run into performance 
issues when it  comes to  higher-dimensional data (e. g.,  agents having hundreds of 
sensors). To cope with this, a possible approach is the preselection of sensors, since 
oftentimes only a small subset of the sensors is relevant for making adequate deci-
sions. The question now is, which of an agent’s sensors can be easily omitted without 
running a too high risk of ignoring relevant information? 

To answer  this  question  (similar  as  in  Section  3.5.3),  again  two  cases  can  be 
distinguished here:

• If there is a priori information available about the sensor data and/or the task 
to be learned, it might be eligible to predetermine the number  of sensors 
to be preselected in advance.

• Otherwise (if no such a priori information is available), the algorithm should be 
able to predetermine the number of sensors on its own. 

If a preselection of the relevant sensors has to be performed, in both cases, the 
sensors will be ordered at first, according to their  potential relevance for an HKB. 
This relevance is determined from the average relation of the distinct sensor values to 
the different actions. More precisely, in the context of a state-action sequence  a 
simple  yet  efficient  measure  for  the  relevance  of  an  agent’s  sensor  with  a  corre-
sponding sensor symbol set  can be calculated as 

  (3.4)

where  and  refer to the (conditional) relative frequencies of   and  
occurring in the state-action pairs of  

The intuition here is, that sensors with symbols that often occur with the same 
actions have a strong potential for being involved in rules that are able to cover larger 
parts of a state action sequence: The first factor of the sum  results 
in higher values for sensors with symbols that frequently occur together with a cer-
tain action in the data. The second factor of the sum  strengthens 
sensors with symbols that might serve well to predict that action. 

Example  3.8 (Potential  Relevance of Sensors) An agent  is  equipped with 
three sensors with the corresponding sensor symbol sets   and  Each sensor 
can provide two sensor values, i. e.,    and  
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The  agent  is  able  to  perform  two  different  actions,  i.  e.,  its  action  symbol  set
is   The agent now performs four actions in its environment, resulting
in the state-action sequence  shown in Table 3.1. 

 

  

Table 3.1 (Data for Potential Relevance)
The table shows the state-action sequence  of an agent 
acting in its environment: For each state-action pair, the 
perceived sensor symbols of each of the three sensor are 
provided together with the corresponding actions.

 

Applying the potential relevance measure (3.4) to the three sensors in the context 
of the state-action sequence  from Table 3.1, results in the following values: 

    

  

       

Thus, the sensor’s ordering regarding the potential relevance is: 

  

According to that, the most relevant sensor is  the one with the sensor symbol
set   whose sensor symbols   each explain in average   of the data. 
Since there are only two actions equally distributed over the four state-action pairs of 
the state-action sequence  the most relevant sensor with the sensor symbol set  
would already suffice here to completely explain the agent’s actions.

The proposed measure (3.4) integrates well with Algorithm  3.3, since it mostly 
relies on (conditional) relative frequencies. These can be cached and later reused by 
Algorithm 3.3, which can further increase the performance in the context of higher-
dimensional data. (However, also other measures are imaginable here to estimate the 
relevance of an agent’s sensors in advance.) 
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In the first of the two cases mentioned at the beginning of this section (where the 
number of the potentially relevant sensors is manually determined in advance), simply 
the   sensors  with  the  highest  potential  relevance   will  be  taken  into 
account, ignoring the    remaining ones. 

In  the  second  case  (where  a  predetermined  number  of  potential  relevant  sen-
sors  is  not  provided),  an  eligible  number  of  relevant  sensors  is  found  automati-
cally by performing a  k-means clustering (see [61] for an overview). The clustering
is performed with   and with initial centroids   and 

,  where   is  the set  of  all  sensor symbol 
sets.  Except  for  the  uncommon  case  that  all  of  the  agent's   sensors  have  the
exact same potential relevance according to (3.4), this will result in a low relevance 
cluster (around the final centroid   and a high relevance cluster (around the final 
centroid  After that, the sensors from the resulting cluster around  will be taken 
into account, ignoring all    other sensors from the resulting cluster around  

3.6 Summary

HKBs are a multi-abstraction level knowledge representation approach based on the 
idea of rules with exceptions (a common concept, which is also known in a similar 
way in default logic [55] and answer set programming (ASP) [19]). HKBs seem to be 
easy to read (also for non-computer scientists without expert knowledge in logic) and 
allow for fast reasoning. 

Due to their readability, HKBs are an eligible approach for representing knowledge 
learned by agents. Exploiting the idea of rules with exceptions on multiple abstraction 
levels, agent behavior can be represented in a compact way (see Proposition 3.1). 

Different algorithms have been developed that range from a basic adaption of pre-
liminarily considered criteria (see Section  3.4.1 and Algorithm  3.2) over the incor-
poration of the well-known APRIORI algorithm (see Section 3.4.3) up to an advanced 
HKB extraction algorithm (Algorithm 3.3), which is much more efficient and shown 
to be complete (see Proposition 3.2). Moreover, in Section 3.5, efforts have been made 
to render these approaches applicable to numerical sensory data (Section  3.5.3) as 
well  as to  higher-dimensional  data,  i. e.,  agents  having a large number of  sensors 
(Section  3.5.4). (The advanced results have been implemented in the  INTEKRATOR 
toolbox [38] for practical application, see Appendix A). 

The approaches described in this chapter can be considered foundations for inter-
esting applications in the context of agents in games, ranging from explaining learned 
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knowledge up to advanced learning skills for agents, which will be presented in the 
upcoming chapters. 
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further  co-authors  besides  the  author’s  PhD supervisor  Prof.  Dr.   ░░░░░ ░░░ 
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form of HKBs by using the implementation of Algorithm 3.3 in an earlier version of 
the INTEKRATOR toolbox [38] (see also Appendix A). It has been shown in [6], that 
the learned HKBs can improve the investigated hospital process (and variants of it), 
if the agents behavior is based on the learned HKBs. The development of the algo-
rithm (Algorithm  3.3), its inclusion into the paper [6],  the completeness consider-
ations (Section  3.5.2) as well as the approaches for learning HKBs from numerical 
data (Section 3.5.3) and for handling higher-dimensional data (Section 3.5.4) were de-
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The most important techniques presented here (especially those from Section 3.5) 
are implemented in the INTEKRATOR toolbox [38]. In a joint work [10] together with 
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4. Explaining and Analyzing Agent Behavior

Agent behavior, especially that of learning agents, can quickly become a black box: 
Even if  the resulting behavior seems to be adequate, also in simple environments
it  can be  hard to understand what  an  agent  has learned  (see  Section  2.1.7 and 
Section 2.2). This, of course, does not primarily affect the operational reliability of an 
agent  and  there  are  a  lot  of  agent  success  stories  that  make  use  of  black  box 
techniques like neural networks—especially in the context of games (e. g., [49], [60]). 
However,  it  is  obvious that  there is  a  need of  understanding what  an agent  has 
learned and why it behaves in a certain way (e.  g. when thinking of the agent’s trust-
worthiness or when the agent is supposed to perform in an unknown environment 
after learning). 

Simulations and other techniques may help to visualize an agent’s current behavior 
(in case this is possible for the respective problem). But neither do these techniques 
really materialize what the agent has learned, nor do they provide any explanations 
why the agent behaves in a certain way for the provided percepts. 

HKBs, in conjunction with the corresponding extraction algorithms presented in 
Section  3.4 and Section  3.5,  are  an eligible  approach to overcome these kinds of 
issues, since they are able to materialize knowledge in a rule-based way, while at the 
same time offering a hierarchical structure. This allows for reading the knowledge 
from the general to the more specific, up to an adequate level of abstraction maxi-
mizing the comprehensibility in the context of the respective learning task. Although 
it is obvious that given a certain amount of complexity, even a hierarchical approach 
may reach its limits, it still allows for a much better interpretability than a “flat” 
collection of rules  (as it is the case for many other knowledge representation para-
digms). Furthermore, such a hierarchical representation seems to be in line with the 
generalization capabilities of the human thinking (cf. [27], pp. 210–211), while at the 
same time incorporating the basic principles of defaults rules with exceptions known 
from  default logic [55] (see also Section  2.2).  (A study on the comprehensibility of 
HKBs can be found in [41].) 

In this chapter, two aspects of explaining and analyzing learned agent behavior will 
be considered in the context of different video games: At first, the behavior of human 
agents playing different video games will be materialized as HKBs from their play-
traces and, by this means, it will be shown how HKBs can be used for explaining 
knowledge learned in the context of video games (Section 4.1). After that, based on 
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these extracted HKBs, it will be described how the complexity of a learned HKB 
relates to the subjective strategic depth of a game and a measure for estimating the 
difficulty, that was subjectively sensed by human agents while playing, will be de-
scribed (Section  4.2). Some of the results presented in this chapter (especially the 
ones from Section 4.2) emerged from a joint work [11] together with Dr.  ░░░░ ░░░ 
(formerly at TU Dortmund University, at the time of writing at Queen Mary Uni-
versity of London and modl.ai, Copenhagen). (See Section 1.4 and the bibliographic 
remarks in Section 4.4 for details.) 

4.1 Knowledge Base Extraction in Games

This section considers different games from the  general video game artificial intelli-
gence (GVGAI) framework by Perez-Liebana et al. [52], to demonstrate and evaluate 
the extraction of HKBs for explaining and analyzing knowledge learned in the context 
of games. 

The GVGAI framework is a widespread framework for general video game playing, 
where an agent has to play multiple different (a priori unknown) video games. It 
origins from the AI in games community and is also used for international research 
competitions  on  GVGAI  [53].  The  framework  offers  a  variety  of  about  hundred 
different games with five different levels each, which are easily accessible through a 
proper programming interface. Being open-source, both the framework and the games 
can be easily modified to adapt them for research and other purposes. This renders 
the GVGAI framework an eligible test environment for this chapter (and also for the 
upcoming Chapter 5). 

In the following, several games of different complexity will be selected from the 
GVGAI framework and will be briefly described (Section 4.1.1). After that, the state-
action space of the games will be modeled (Section 4.1.2). Finally, the resulting HKBs 
extracted from the  human playtraces will be presented and the results will be dis-
cussed (Section 4.1.3). 

4.1.1 Selected Games

For the extraction of  HKBs that will  be described in  the following sections,  two 
different levels of three games from the GVGAI framework will be selected (and will 
be partly slightly modified, where necessary). The games and their levels are selected 
according to an increasing complexity, which allows to study how this complexity is 

104



4.1 Knowledge Base Extraction in Games

handled by the HKB extraction algorithm and reflected in the the resulting HKBs. 
The selected levels of the games are shown in Figure 4.1 and will be briefly explained 
in the following. 

 

Figure 4.1 (GVGAI Games for HKB Extraction) (Source: [52], adapted from [11])

Three diverse  games (two levels  of  each game) have been selected from the GVGAI 
framework [52] (and partly slightly modified) for materializing the knowledge contained 
in the respective playtraces of a human player as HKBs. The games start from a very 
simple  one  (Camel  Race),  over  a  more  advanced  one  requiring  basic  planning  skills 
(Run), up to a game where another agent is directly reacting to the player and thus a 
more strategic behavior  is  required (Eighth Passenger).  The game mechanics of  each 
game are described in detail in the text. (The same games will be considered later in 
Section 4.2 as well.) 

 

Camel Race The game Camel Race is one of the simplest games of the GVGAI 
framework. The player controls the yellow camel in the middle and has to be the first 
reaching one of the goals on the right. Higher levels of the game include more com-
plex architectures of the playground with more obstacles or invert the direction of the 
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game. Although being simplistic, it can be a hard task for general video game playing 
agents, since state-of-the-art techniques like  monte carlo tree search (MCTS) [21], 
that are widely-used in GVGAI, may fail, due to the goal being located far from the 
starting point (which would require a large tree depth). 

Run In Run, the player controls a girl that must reach the door in the bottom left 
corner (see Figure 4.1 (c) and (d)), before the playground gets flooded by the steadily 
progressing water. A key must be collected to be able to open the yellow door, which 
incorporates some basic planning elements to the game. As an a priori intuition, this 
game seems to have a slightly increased complexity in comparison to Camel Race. 

Eighth Passenger In this game, the player controls the elf (see Figure 4.1 (e) on 
the bottom left and (d) on the bottom in the middle) and has to reach the goal that 
is locked by two doors (in case of Level 0) or one door (in case of Level 1). The doors 
can be opened by pushing the button that is indicated by the teal stone in the upper 
left area (in case of Level 0) or in the upper right area (in case of Level 3). While 
trying to solve the task,  the player has to avoid contact with the green orc that 
steadily moves toward the player’s position. There are two kinds of tunnels: The blue 
ones can only be used by the player to hide from the orc, which renders the orc 
invisible at the same time, as long as the player is remaining in the tunnel. The red 
ones can only be traversed by the orc. Having multiple different objects to interact 
with and due to the orc directly reacting to the player’s position, this game intui-
tively seems to be the most complex of the three games selected here. 

4.1.2 Modeling the State-Action Spaces

To be able to apply an HKB extraction algorithm on playtraces resulting from the 
described games, the sensory inputs of the player agent as well as its possible actions 
will be defined here for each game, according to [11]: 

The possible actions are identical for all of the three games and thus the corre-
sponding action symbol set can be defined as 

  
               (4.1)

where      are  de-
noting the actions according to their obvious meaning and  is denoting 
that no action is performed in the respective time unit of the game. 
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The  state  spaces  have  to  be  modeled  individually  for  each  game,  taking  into 
account that a state must reflect all information that is relevant to the player. (Note 
that the subscripts of the sensor symbol sets used here, will later refer to the prefixes 
of the respective sensor symbols—except for the sets concerning the player’s position 
whose  subscripts  have  an  additional  prefix  part  to  distinguish  them  among  the 
different games.  The additional part  will  later be omitted for  the prefixes of  the 
sensor symbols). 

State Space of the Game Camel Race 

For Camel Race, the modeling results in the four-dimensional state space

  
                   (4.2)

where   and   reflect the position of  the player’s 
camel and the remaining two dimensions reflect the positions of the pink and the 
green camel.  Note that  only  the  -position of  the pink and the green camel  are 
considered here, since these camels only move in -direction in this game. 

The sizes of  the respective sensor  symbol sets (which are needed later for cal-
culating the subjective strategic depth) are determined by the game mechanics as 
follows:   (both bounded by the sur-
rounding walls), and   Note that the sets 
of  the pink and the green camel  have a larger  size  since they move slower than
the player’s camel and therefore the game seems to create more fine-grained “inter-
mediate” states for their movement. Also note that the green camel (at the bottom of 
the scenario) moves even slower than the pink one and therefore has even more fine-
grained states—however, since both the pink and the green camel constantly move 
toward the goal, the green camel never reaches all of the theoretically possible states 
and thus, its state space has the same amount of  (more fine-grained) states. 

State Space of the Game Run 

For the game Run, the state space will also be considered four-dimensional as

  

where  and  reflect the position of the player’s avatar 
(the girl),   reflects the percentage of the water flooding the play-
ground and  is a Boolean state dimension used to indicate whether or not the 
key has been collected. 
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The sizes of the respective sensor symbol sets are determined by the game me-
chanics as follows:    (both bounded by 
the surrounding walls),   (from   to   in   steps)
and  (for having the key or not). 

State Space of the Game Eighth Passenger 

In case of the game Eighth Passenger, the state space is modeled with seven dimen-
sions as

  
          

where the   and   dimensions reflect the position of the 
player’s avatar (the elf),     and  reflect the 
position and the previous position of the orc (the latter to be able to encode the 
direction of the orc’s current movement) and  is a Boolean dimension used to 
indicate the state of the door(s) locking the goal (i. e., whether or not the door(s) 
is/are currently open). 

The sizes of the respective sensor symbol sets determined by the game mechan-
ics are:  ,  
and   (all  bounded by the  surrounding  walls).  Note 
that the state sets of the orc are smaller than those of the player, since the player is 
able to move the elf between two cells of the “grid” whereas the orc can only move 
cell-wise. 

4.1.3 Resulting HKBs

In this section, HKBs will be extracted from  human playtraces of the games that 
have been considered in Section 4.1.1 and Section 4.1.2, to provide an impression of 
how the HKBs reflect the player’s knowledge about the respective games. 

For this purpose,  playtraces will  be considered  state-action sequences (see Defi-
nition 2.6) of the states and actions resulting from the state-action spaces that were 
modeled individually for each of the three games in Section  4.1.2. Such playtraces 
were recorded from a human player learning to play the three games while playing 
the different levels multiple times in random order. The playtraces of the best itera-
tions (i. e., the iterations that took the minimal time to complete the respective level) 
were selected to extract the HKBs.20 

20 The original data of the recorded playtraces stems from the study in [11] (see also Section 4.2). 
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The following subsections now consider and discuss the resulting HKBs in detail 
(mainly) for one level of each of the three games. 

Camel Race 

Level 0 of the game Camel Race (see Figure  4.1 (a)) is rather simplistic and it is 
obvious  that  a  human player  will  quickly  understand that  using  only  the  action 

 immediately after the level has started until the goal on the 
right is reached will be the best strategy. Thus (maybe after a short initial learning 
phase), the resulting HKB will usually only contain one single abstraction level   
with the topmost rule  i. e., 

  (4.3)

with  

However, Level 2 (see Figure  4.1 (b)) will already be more interesting, since the 
resulting  HKB  additionally  reflects  the  exceptions  stemming  from  the  obstacles 
blocking the way to the goal. Figure 4.2 shows the HKB extracted from the human 
player’s playtrace using Algorithm 3.2. 

 
Figure 4.2 (Extracted HKB for Camel Race Level 2)
The HKB resulted from running Algorithm 3.2 on a playtrace by a human 
agent playing Level 2 of (a slightly modified version of) the game Camel 
Race from the GVGAI framework [52]. Besides the most general rule on 
level   (stating that the player usually used  it com-
prises several exceptions on the levels  and  that are mostly provided 
by the obstacles blocking the direct way to the goal (cf. Figure 4.1 (b)).

 

As can be seen in Figure 4.2, the player usually uses  This be-
havior changes to avoid the obstacles that are blocking the directed way to the goal, 
which is reflected by the exception rules on level   and   (cf. Figure  4.1 (b)). 
Remarkably, not all of these exceptions are based on the coordinates of the player’s 
avatar, but also on the position of the opponent camels: This is the case, since the 
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extraction algorithm learned the HKB from the playtrace data only, without having 
any background knowledge. Thus, the algorithm can only statistically estimate, which 
dimension (i. e., which sensor) most probably explains an action best. 

Furthermore, it can also be seen from the HKB shown in Figure 4.2, that in the 
beginning of the game, the player needed some response time after the game started: 
This is reflected by the rule  on level  which indi-
cates that the player did not immediately start, but remained at the starting position 
for a couple of time units. (The same can be observed for the rules with a starting 
position of one of the other camels as premise and   as conclusion—
for the reason provided in the previous paragraph.) 

Run 

The game Run seems to be slightly more complex than Camel Race, due to the more 
elaborate anatomy of the levels. Moreover, the planning aspect of getting the key to 
be able to open the door needs some more strategy to be involved. Figure 4.3 shows 
the HKB of a human playtrace for Level 2 of the game (cf. Figure 4.1 (d)). 

 

Figure 4.3 (Extracted HKB for Run Level 2)
The HKB resulting from running Algorithm 3.2 on a human playtrace of 
Level 2 of the game Run (see Figure 4.1 (d)). Some of the rules rely on the 
water progress here, since the algorithm does not involve any background 
knowledge about the meaning of sensor values and action. Thus it can only 
be determined statistically what explains an action best. 

 

In the HKB shown in Figure 4.3, the rule on the topmost level  indicates that 
the player mainly moved to the left. This makes sense in an intuitive way, since from 
the avatar’s point of view, the goal is located on the left. 
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The remainder of the knowledge (getting the key, opening the door and navigating 
to  the  goal)  is  contained  on  the  levels   and   of  the  HKB.  The  two  rules 

 and  on lev-
el  describe most of the player’s downward movement on the left and in the center 
of the scenario (while the rest of the downward movement is covered by the addi-
tional exception rules on level  

Note that, according to the remaining rules on level  (and some of the rules on 
level  the movement to the right (needed in the vertical center of the scenario) is 
mostly  based  on  the  water  progress.  Although  this  relation  may  be  considered 
questionable, it is reasonable from the extraction algorithm’s point of view: Since it 
has no information about the meaning of certain sensor values and actions, it only 
relies on the statistical search for a compact representation in the form of rules and 
exceptions. Thus,  it  uses the water progress in the same way as any other infor-
mation. This leads to several exception rules reflecting the environment’s dynamics 
that is induced by the progressing water (similar to the movement of the opponent 
camels in the game Camel Race). Later, in Chapter  5, an alternative way of repre-
senting the mechanics of a game using HKBs will be presented (Section 5.2). 

Eighth Passenger 

With multiple interactive objects like doors and buttons to open these doors, and 
with an opponent character being involved (the orc) that traces the player, this game 
intuitively seems to be much more complex than the two games that have been con-
sidered before. 

Also  unlike  the  two games  considered  before,  the  state-action  space  of  Eighth 
Passenger comprises more dimensions: For Eighth Passenger the state-action space
is eight-dimensional,  whereas the state-action spaces  of  Camel Race and Run are
both modeled with only five dimensions. 

Figure  4.4 shows a corresponding HKBs of a human playtrace of Level 3 of the 
game (cf. Figure 4.1 (f)). 

The  HKB in  Figure  4.4 shows  that  the  player  mainly  moved  to  the  left,  as 
indicated by the rule on the topmost level  Since the goal is located in the left of 
the avatar’s starting position (see Figure 4.1 (f)), this intuitively makes sense. 
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Figure 4.4 (Extracted HKB for Eighth Passenger Level 3)
The HKB resulting from running Algorithm  3.2 on a human playtrace of 
Level 3 of the game Eighth Passenger is much larger than the HKBs for the 
games Camel Race and Run. Nevertheless, also here, some details of the 
behavior can be seen immediately from the more general levels of the HKB: 
E. g., the rule on level   implies that the player overall usually used the 
action  (the goal is located in the upper left corner), or the 
first three rules on level  which describe the players movement in striking 
areas of the level. On level  not all of the rules created by Algorithm 3.2 
are listed here. 

 

The level  of the HKB contains the knowledge about some elementary behavior 
performed by the player: This comprises the navigation in the (mostly) fixed anatomy 
of the scenario (the first three rules listed on level   of the HKB) as well as some 
kind of “flight behavior” to escape the orc (e. g., rule   
which can be interpreted as “if the orc is located in the bottom area of the scenario, 
the player tends to move upward”). 
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On the more specific levels, the rules are already rather numerous and therefore, on 
level   only a part of the rules created by Algorithm 3.2 are listed in Figure 4.4. 
However, also on these abstraction levels, some interesting relations can be seen, e.  g., 
the second to last rule   on level 

 (which can be interpreted as “if the orc is in the right area of the scenario and 
moves to the left, then the player usually also moves to the left”), or the third to
the last rule  on 
level  (which provides a similar statement for the vertical movement of the orc, if it 
is additionally known that the door was already opened). 

Level   finally  covers  some specific  cases  related  to  idle  actions  that  involve 
already four of the seven sensors that were used for the modeling of the perceptions 
for the game (cf. Section 4.1.2). 

Note that this game already shows that—even if the HKB can still be interpreted 
to some degree by reading it top-down—naturally, the interpretation becomes harder 
with an increasing amount of rules. (Chapter 5 (Section 5.2) will later show an alter-
native way of using HKBs.) 

4.2 Subjective Strategic Depth

The previous section showed, how HKBs can be extracted from human playtraces
of different games and how the extracted HKBs can be interpreted. As a first intui-
tion, it could be seen that more complicated games seem to result in larger HKBs.
This section will more deeply consider the relation of an HKB and the difficulty of a 
game, especially the difficulty that is subjectively sensed by a player—the so-called 
subjective strategic depth, which was introduced in [11]. 

For this purpose, following [11], a measure will be presented, that models the sub-
jective strategic depth based on the size and the structural properties of an HKB 
(Section 4.2.1). After that, the evaluation of the presented measure will be described 
(Section 4.2.2) and, finally, the evaluation results will be provided (Section 4.2.3). 

4.2.1 Subjective Strategic Depth Measure

This section describes a measure for the strategic depth that is subjectively sensed by 
human players when playing a game. The section follows the ideas first introduced
in [11]. Such a measure does not only have to reflect the complexity of a game itself,  
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but also individual subjective factors, like the current state of the player’s learning 
process or its experience with (this kind of) games. 

The main idea of the subjective strategic depth measure described here is, that the 
more exceptions are needed to describe the player’s behavior for solving a game, the 
higher the subjective strategic depth should be. In other words: A problem that needs 
a lot of exceptions to be solved, usually appears more complicated than a problem 
that can be solved successfully with a few exceptions only (be it simply due to the 
size of the problem or due to its inherent complexity). Moreover, having less experi-
ence in solving a certain (kind of) problem, will more often lead to suboptimal solu-
tions, usually resulting in more (unnecessary) exceptions. 

Based on these assumptions, the size and the structure of an HKB (i.  e., the num-
ber of exceptions and their depth) will be considered to reflect the subjective strategic 
depth, according to the following ideas: 

• The size  of  an HKB   potentially  grows with the problem size  (i.  e.,  the 
number of sensors and actions being involved). Its maximum number of levels
is  (with  being the number of sensors). The maximum number of 
rules on each level  depends on both the combinations of sensor values 
(according to the premise length  on that level) and the number of possible 
actions  

• More specific rules on lower abstraction levels potentially reflect more complex 
relations than  more  general  rules  on  higher  abstract  levels,  since  they have 
longer premises with more sensor values being involved. Moreover, being more 
deeply  rooted  in  the  HKB,  such  rules  have  a  higher  potential  to  represent 
higher-order exceptions (i. e., exceptions of exceptions; cf. Definition 3.4). 

With these ideas  in  mind,  the subjective strategic  depth measure can now be 
defined more formally, following [11]: 

Definition 4.1 (Subjective Strategic Depth Measure) The measure for repre-
senting the subjective strategic depth sensed by a (human) player agent when playing 
a game is defined as a function 

  (4.4)

where   is an HKB representing the player’s playtrace (i. e.,  its state-action se-
quence used to win the game),   is a set of all  sensor symbol sets 
needed to describe a player’s state,  is the maximum number of levels 
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of   is a constant that determines the impact of exceptions on the overall stra-
tegic depth, and  is the -th level of 21 

The main idea of the function represented by Formula (4.4) is, to create a weighted 
sum over the ratios of the number of rules on each level  and the maximum 
number of possible rules on that level, according to the modeled state space (see the 
fraction at the end of Formula (4.4)). (Note that the maximum number of possible 
rules does not depend on the action space here—which makes sense, if only the best 
actions for the provided states are considered.) 

The ratios in the sum are weighted by the binomial coefficients   and the 

weights  reflecting the impact of the rules according to their level in the HKB: 

• The binomial coefficients balance the combinatorial growth of the possible num-
ber of rules on each level, which does not only depend on the number of sensor 
values of each sensor, but also on the number of possible  sensor combinations
of the sensors needed to describe a players state (see set   in Definition 4.1). 
(The first level  can be considered a special case here, since it always contains 
only one rule, according to Algorithm 3.2.) 

• The weights  model the impact of (higher-order) exceptions on the overall 
strategic depth, i. e., it is assumed here, that the impact of exceptions grows 
exponentially with the depth of the level on which they are located in the HKB. 
(The constant  can be used to control the amount of growth on each level of 
the HKB; in the study presented in the following section it was considered to
be  which reflected the strategic depth rather accurately there). 

Note that the presented measure has no upper bound across different games, which 
reflects the fact that a game can be arbitrarily complex. However, the measure can be 

normalized by dividing it by  (cf. [11]), in case one is interested in 

the “relative” strategic depth represented by a playtrace in relation to the maximum 
strategic depth possible, according to the game’s sensor symbol sets and actions.22 

21 Note that Formula (4.4) corrects the corresponding formula of the original definition from [11], 
where the binomial coefficients were accidentally missing a “ ” in the upper part. Also note 
that the outer sum could start counting from  to  as well (for omitting the “ ” attached to 
the   in the formula)—however, to underline the intuition of summing over all levels of the 
HKB (starting from the first level  this is provided as in the original definition from [11] in 
this case. 

22 In Section 5.1.2, this will be used to let an artificial agent estimate the potential complexity of  
a (partially) unknown environment while exploring it in the context of a learning process. 
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In the following example, the subjective strategic depth of two different levels will 
be calculated and compared. 

Example 4.1 (Calculating and Comparing Strategic Depths) This example 
calculates and compares the subjective strategic depths of Level 2 of the game Camel 
Race (see Figure 4.1 (b)) and Level 2 of the game Run (see Figure 4.1 (d)), according 
to Definition  4.1. For this purpose, the corresponding HKBs  (see 
Figure 4.2) and  (see Figure 4.3) will be considered, which were created 
from two human playtraces (of the same person), using Algorithm 3.2. The sizes of 
the respective sensor symbol sets are as described in Section 4.1.2. 

For Level 2 of Camel Race, the subjective strategic depth   is calculated using
the HKB  and the set of sensors  

 

  

After expanding the outer sum by inserting the numbers of rules for each level (with 
the last two elements of the sum being  due to the corresponding levels  and  
being empty), it is 

  

     

Now, the maximum numbers of rules for each level according to the state space will 
be inserted (where the first summand will be   due to the product in the denomi-
nator being the empty product), resulting in: 
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The subjective strategic depth of Level 2 of the game Run can be calculated in the 
same way, resulting in: 

  

With  the 
strategic depth sensed by the human player that played both levels will be estimated 
to be   higher when playing the game of Run (which involves basic planning 
capabilities—in contrast to the rather simplistic game of Camel Race, where only 
obstacles have to be avoided with a purely reactive behavior). 

Having now introduced the main ideas of measuring the strategic depth sensed by 
a human player based on rules and exceptions in the form of HKBs, the following 
sections will concern the evaluation of the measure. 

4.2.2 Evaluation

To evaluate the strategic depth measure from Definition 4.1, a survey was designed, 
where human players had to play the six levels shown in Figure 4.1 in random order. 
For each individual level, the corresponding playtraces were stored and the players 
where  asked  for  their  subjectively  sensed  strategic  depth.  The  stored  playtraces
were used later for extracting HKBs (as described in Section  4.2.1) and based on 
these extracted HKBs, the respective strategic depth was calculated, according to 
Definition 4.1. The calculated strategic depths were then evaluated against the sensed 
strategic depths provided by the players. In the following, the individual components 
of the survey will be described more detailed. 

Survey Software 

A special survey software was developed, based on the GVGAI framework [52], for 
collecting the data from players. This software allowed the players to play the six 
levels from Figure  4.1 in random order (to avoid biases due to learning effects of
the players). 

After starting, the survey software first displayed a general description text to the 
player (including legal/anonymization hints). Moreover, before each level, an addi-
tional introductory text was displayed, briefly describing the upcoming game. 

The software recorded the playtraces of a player individually for each level by only 
keeping the best playtrace of each level won by the player. Playtraces in which the 
player lost the game were not stored for reasons of comparability: Such playtraces 
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might be rather short (independently from the specific game) and the complexity of 
the game’s task(s) might not be well reflected by the playtrace, since not being per-
formed successfully. The recorded playtraces were later processed to extract HKBs, 
using Algorithm 3.2. 

At the end of each level, a slider was displayed to the player and the player was 
asked to enter the subjectively sensed strategic depth using the slider. The slider 
showed a range of   annotated in whole numbers and had a granularity of   
resulting in a near-continuous feel. 

Participants 

For running the survey, eight voluntary players were acquired as participants with an 
appropriate affinity for games (one psychologist, one industrial engineer and six com-
puter scientists, see [11]). This ensured that the players were aware of the meaning of 
the term “strategic depth” in the context of games. 

Note that the number of acquired players might appear to be rather low. However, 
since each of the players played six levels and (besides the playtraces) additionally 
provided the subjectively sensed strategic depth for each level, in the end, there were 
about  data points resulting from the survey (minus some few missing 
values, that will be considered more detailed in the next section). 

Data Processing 

The raw data that resulted from the survey can be divided for each player  into two 
sets, which will be referred to in following as  and  

The set  contains the subjectively sensed strategic depth values that were pro-
vided directly by a player  for each level (using the slider). 

The set   contains the strategic depth values that were calculated from the 
recorded playtraces for each level successfully played by a player  For this purpose, 
an HKB was extracted at first from each recorded playtrace using Algorithm  3.2. 
These HKBs were then used to calculate the strategic depth values,  according to 
Definition 4.1. 

For reasons of comparability, the raw values contained in  (directly provided by 
a player) and those contained in   (calculated from the extracted HKBs) were 
normalized to a range of  This was done by calculating for each  and 
each  the corresponding normalized values 
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and

  (4.5)

respectively (see [11]). 

A problem of this kind of normalization is related to the missing values: In rare 
cases, some of the participating players did not play each level successfully, which 
resulted in some of the raw data sets   being incomplete.  Applying the nor-
malization scheme according to Formula (4.5) in these cases could lead to a distortion 
of the resulting scales. For this reason, the missing values of a level were imputed by 
the average value of the corresponding levels of all  other players, before the nor-
malization was performed. 

The imputation was done only in the context of the normalization and the imputed 
values were not considered further in the evaluation process, to avoid any further 
influence on the results.  Moreover,  with an overall  missing value rate of  
(see [11]), the effect of the imputation on the results should be considered small here. 

4.2.3 Results

This  section  summarizes  the  evaluation  results  of  the  subjective  strategic  depth 
measure that was presented in Section 4.2.1. 

Following [11], the approach of calculating the subjective strategic depth based on 
HKBs  that  are  extracted  from  human  playtraces,  will  be  evaluated  against  the 
subjective strategic depth sensed by human players. This evaluation will be done in 
the context of the games from Figure 4.1. 

More concretely, to quantify the accuracy of the subjective strategic depth mea-
sure,  for  each level,  averaged over  all  players,  the normalized calculated strategic 
depth will be compared to the normalized strategic depth that was sensed by the 
players. The results of this comparison are visualized in a bar plot that is shown in 
Figure 4.5. 

As can be seen in Figure 4.5, the subjective strategic depth that was sensed by the 
players is well reflected by the measure from Definition 4.1: The measure is especially 
able to reflect the different proportions of the subjective strategic depth for the dif-
ferent levels. 
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Figure 4.5 (Evaluation of the Strategic Depth Measure) (Source: adapted from [11])

The intuitively estimated strategic depth (left plot), that was directly provided by 
the players after each level using a slider, is compared against the calculated stra-
tegic depth (right plot), that was determined by applying the subjective strategic 
depth measure from Definition  4.1 to the HKBs extracted from the corresponding 
playtraces. The levels correspond to those provided in Figure  4.1. The subjective 
strategic depth values have been normalized for both plots to be in a range of  
and the values for each level have been averaged over all players. It can be seen that 
the subjective  strategic  depth measure models  the  strategic depth sensed by the 
players well (with a slight tendency for underestimation). 

 

A minor issue (that was already mentioned in [11]) is, that the approach seems to 
slightly underestimate the player’s intuitions. According to [11], a possible solution to 
that might be to adapt the constant  in Formula (4.4). 

More detailed, according to the results of the survey, the average deviation of the 
measure from the strategic depth sensed by the players is   and the av-
erage relative deviation to the strategic depth sensed by the players is   
(i. e.,   Since the different proportions among the levels are well reflected, 
most of the deviation amount seems to stem from the overall underestimation of the 
measure. By introducing a proportionality factor of  (estimated from the ratios 
of the calculated strategic depth values and the strategic depth values  provided 
by the players), the deviation is reduced to   and the average relative 
deviation is reduced to  (i. e.,  

It seems that the number of exceptions and their nesting depth needed to describe 
a player’s behavior (as provided by the HKBs), can be considered an eligible ap-
proach to model the strategic depth that is subjectively sensed by a human player. 
This conforms to the intuition that situations comprising more exceptions (like routes 

120

©
 2

01
7 

IE
EE



4.2 Subjective Strategic Depth

with multiple branches) are usually considered more complicated than those that can 
be described with a small set of simple rules. In the described study, the subjective 
strategic depth measure was able to reflect the differences among the levels of diverse 
complexity similar to how humans were sensing it. (Later, in Chapter 5, it will also 
be shown how artificial agents can benefit from this approach.) 

4.3 Summary

Due to the readability properties and the compact hierarchical organization of the 
knowledge contained in an HKB, a major application of HKBs is the materialization 
of learned knowledge. 

Besides having shown application for that in the context of video games from the 
GVGAI competition [65] in Section  4.1, this chapter provided a further application 
that builds on the concept of HKBs: 

By exploiting the hierarchical organization of knowledge in the form of rules with 
exceptions, a measure for strategic depth has been presented in Section  4.2, which 
resulted from a joint work with Dr.   (see Section  ░░░░ ░░░ 1.4 and the biblio-
graphic remarks in Section 4.2 for details). This measure allows to estimate the sub-
jectively experienced strategic depth when playing video games. It provided accurate 
results for human players when being evaluated against their subjective intuition on 
the strategic depth of different games in the study performed in [11]. 

The concepts of HKBs in games in conjunction with the described measure for 
strategic depth resulted later in an exhibit, which traveled around several German 
and  Austrian  cities  in  2019  and  is  still  shown  at  the  Deutsches  Museum Bonn 
(German Museum in Bonn) [24] at time of writing in the context of an exhibition
on AI [48] (see bibliographic remarks in Section 4.4 for details). 

In the upcoming Chapter 5, the measure for strategic depth will also be used in an 
artificial agent model that allows agents to estimate the complexity of their envi-
ronment from observations and thereby allows them to decide on their own, when to 
use rougher heuristics. 
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4.4 Bibliographic Remarks

Some of the contents of this chapter (especially those from Section  4.2) have their 
origins in a joint work [11] together with the author’s former colleague Dr. ░░░░ 

 (formerly at TU Dortmund University, at time of writing at Queen Mary Uni░░░ -
versity of London and modl.ai, Copenhagen). This work was originally dedicated to 
finding  a  model  for  (subjective)  strategic  depth,  but  also  helped  later  to  further 
stimulate the research on HKBs, especially for using them in the context of video 
games (as will be shown in Chapter 5). Moreover, it opened doors to the AI in games 
research community, resulting in fruitful further works in this field. 

In [11], the author’s part mostly concerned the games selection, the modeling of 
the state-action spaces for the HKBs in the context of the games and the develop-
ment of the strategic depth measure based on HKBs. Dr.   contributed░░░░ ░░░  
her knowledge in the field of  AI in games by overtaking the part of embedding the 
work in the context of related works like [20, 46, 67] and provided some analysis and 
relevant conclusions thereof. 

Section 4.1 provided some deeper insights into the extraction of HKBs from play-
traces of the GVGAI games as it  is  the case in [11]. By shifting the focus more 
toward the modeling of HKBs in the context of games, this section also serves as a 
preliminary work for the upcoming Chapter 5. Besides the correction of the formula 
of  the strategic depth measure being provided in Section  4.2,  the analysis  of  the 
results provided in Section 4.2.3 also introduced some new aspects about the relative 
deviation of the measure and the proportionality factor. 

Some additional results from [11] were not further considered here, as they are 
more closely related to Dr.  ’s work (e.░░░░ ░░░  g., regarding automatic game bal-
ancing aspects). This concerns especially the comparison of the subjective strategic 
depth  measure  to  the  strategic  depth  calculated  from (nearly)  perfect  playtraces, 
which turned out to be much less accurate for predicting the strategic depth sensed 
by the players, according to [11]. 

Finally, parts of the work (especially from Section 4.2.1) have been used as foun-
dation for  creating an interactive  exhibit,  that  was developed for  the Z Quadrat 
GmbH in Mainz, Germany. The exhibit allows users to play different levels of a game 
(similar to the one from Figure 3.2). After each level, the knowledge used to solve the 
level is provided (in an HKB-like manner) together with an estimation based thereon 
which indicates how difficult the level was for the current user. By this means, it can 
be used to teach users how knowledge can be represented compactly in the form of 
rules with exceptions and allows the users to validate the provided strategic depth 
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estimations against their own subjective intuitions for each level. The exhibit was 
accepted for the German exhibition ship MS Wissenschaft [50] and traveled to several 
cities of Germany and Austria in 2019. It was then selected for the  ScienceStation 
traveling  exhibition  [59]  (another  project  of  the German scientific  communication 
organization Wissenschaft im Dialog, WiD) and was shown at several train stations
in Germany in 2019. Furthermore, it was selected by the  Deutsches Museum Bonn 
(German Museum in Bonn) [24] for an exhibition on AI [48].23 

23 The exhibition was originally planned for 2020 but seemed to be delayed due to the COVID-19 
pandemic; it (re)opened at May 29th, 2021 (according to [48]). 
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5. Enhancing Learning Agents

In the previous chapter, the approach of extracting exception-tolerant hierarchical 
knowledge bases (HKBs) from playtraces of different games has been used to mate-
rialize the knowledge needed by a (human) player for solving a game. Moreover, this 
knowledge was also used for determining a score that reflects the strategic depth that 
was subjectively sensed by the player agent (i. e., how “difficult” the game appeared to 
the agent). 

In this chapter,  several of these ideas are now used for enhancing the skills of 
learning agents.  This is  mainly realized by incorporating the ability of  extracting 
knowledge bases into an artificial agent model. 

More detailed, different approaches of incorporating the extraction of HKBs into 
the learning process of an agent will  be considered: In Section  5.1, a classical re-
inforcement learning process [62,  68] will be accelerated by equipping the learning 
agent with the ability of extracting HKBs and by exploiting this knowledge during 
the learning process (Section  5.1.1). This approach will  then be extended by also 
providing  the  agent  with  the  ability  of  estimating  the  difficulty  of  the  unknown 
environment in which it is located (Section  5.1.2). After that, the approach of ex-
tracting knowledge bases from a playtrace will be extended for learning the mechanics 
of an a priori unknown game (i. e., the forward model), that can later be exploited by 
state-of-the-art techniques used, e. g, for AI in games, like  monte carlo tree search 
(MCTS) [21] (Section 5.2). 

5.1 Accelerating an Agent’s Learning Process by
Knowledge Base Extraction

This section incorporates ideas from knowledge base extraction into a classical rein-
forcement learning agent, that is based on approaches as in [62,  68]. During the re-
inforcement learning process, the agent will be able to extract a knowledge base in 
the form of an HKB from the knowledge that was learned so far through the under-
lying reinforcement learning approach. The approaches that will be presented here do 
not rely on a specific underlying learning paradigm. 
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At first, it will be investigated at which point during the learning process the agent 
benefits the most from extracting an HKB and exploiting the contained knowledge 
(Section  5.1.1). After that, the approach will be completed to an agent model that
is able to decide on its own, when to rely decisions on an HKB that was extracted 
from the knowledge learned so far by the underlying reinforcement learning approach 
(Section 5.2.2). 

The latter will be based on the results from Section  4.2, with the idea in mind
that the agent should rely its decision on an extracted HKB when the strategic depth 
is underneath a certain threshold (since in this case, the unknown environment ap-
pears to be simple enough to follow the rougher heuristics of the HKB instead of the 
learned knowledge from which it was extracted). 

Finally, the HKB-based integration of a priori knowledge in the context of the 
agent model from Section 5.1.2 will be considered (Section 5.1.3). 

5.1.1 Extracting and Exploiting HKBs during Learning

This section makes first attempts to incorporate the extraction of HKBs (as presented 
in Chapter  3) into a classical reinforcement learning agent [62]—i. e., a  Q-learning 
agent [68] (see Section 2.1.7). By following [7], it will be especially investigated here 
whether such learning agents can benefit from extracting and exploiting HKBs. This 
leads to the interesting question, at which point during a learning process, the agent’s 
benefit will be maximized?

On the one hand, if the extraction will be done too early, the knowledge learned by 
the Q-learning approach could still be of poor quality and thus an HKB extracted 
from the  learning  algorithm’s  -matrix  might  result  in  bad  or  even  wrong rules
and exceptions. On the other hand, if done too late, the Q-learning algorithm might 
have solved the problem already,  rendering the extraction and exploitation of  an
HKB superfluous. 

Basic Ideas 

In psychology, implicit and explicit knowledge can be distinguished (see [27], p. 65): 
While implicit knowledge allows for performing a learned task, explicit knowledge also 
allows for materializing the knowledge about the learned task, e.  g., by having an 
explicit model in mind that explains how to come to a solution. Such knowledge can 
be easily verbalized and communicated to others. In [27], p. 65, Dörner underpins this 
with the following example (1992, Rowohlt Taschenbuch, translated from German): 
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“A good example of implicit knowledge is the knowledge of a music lover,  
which allows him to to say: «I don’t know this, but it’s Mozart», without 
being able to tell from what exactly he recognized that it is Mozart.” 

Although the music lover in the provided example learned to classify the music cor-
rectly, he is not aware of the features and their respective properties from which the 
correct classification can be inferred.24 

According to the ideas provided in [7], when a human is being confronted with a 
new unknown task to be solved (such as an a priori unknown environment in the case 
of an artificial agent), a learning process usually starts with some early attempts and 
progresses until the task is learned. At some point during the learning process, the 
human learner might not only be able to perform the task to be learned, but also 
might start to create a (simplified) explicit model of it, that comprises the knowledge 
about how the task can be solved in an explicit form. 

In the context of artificial learning agents,  sub-symbolic and  symbolic approaches 
can be distinguished in a similar way: Sub-symbolic approaches like neural networks, 
that are used, e. g.,  as function approximators in reinforcement learning (see sub-
section Neural Networks as Function Approximators of Section 2.1.7), seem to have a 
more implicit character, as they often provide good results after learning, but are not 
really able to explain what has been learned. The knowledge is implicit in the sense 
that it is hidden in the numerous learned weights of the network. In contrast, HKBs 
can serve as comprehensible explicit models of learned tasks (see [41] for a study on 
the comprehensibility of HKBs) and, at the same time, seem to be able to reflect to 
some degree how humans create models, as indicated by the results of Chapter 4 in 
the context of games (especially those from Section 4.2). 

In the following, it will be investigated, whether a reinforcement learning process 
benefits from explicit models in the form of HKBs that are extracted and exploited 
by an agent at some point during the learning process. Moreover, it will be inves-
tigated, at which point during a learning process the benefit will be maximized. This 
will be done in the context of two reinforcement learning scenarios that can be found 
similarly in reinforcement learning literature (e. g., [62]). For the latter, it will also be 
necessary to define, when a learning process can be considered completed. 

Scenarios of the Experiments 

To investigate whether (and if so when) during a learning process an agent can bene-
fit from explicit knowledge, two scenarios will be considered here. In both scenarios, 

24 Note that in [27], Dörner also considers the inverse case, where explicit knowledge is available 
to a person as “theoretical” knowledge, without the person being able to apply it. 
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an agent is located in a two-dimensional grid world environment and has to get from 
a starting point to a destination. (Similar scenarios can be found, e.  g., in [62] and 
have also been considered earlier, in Chapter 2 and Chapter 3 of this work). 

Figure 5.1 shows the two grid world scenarios that are relevant for the upcoming 
experiments. The scenario that is represented by Figure 5.1 (b) corresponds to that of 
Figure 2.5 from Section 2.1.7 and is shown here again for reasons of comparability of 
the two scenarios considered here. 

 

 

 

The state-action space of the two scenarios shown in Figure  5.1 is the same as
that of the scenario from Figure  2.5: The agent is equipped with two sensors for 
determining its  and  positions in the environment, resulting in the sensor symbol 
sets   and   the action  symbol  set  is   

 (see also Example 2.4). 

Obviously, the optimal behavior for moving from the starting point to the desti-
nation in case of Scenario (a) of Figure 5.1 is simply to move to east, resulting in the 
state-action sequence: 

  (5.1)

The optimal behavior of Scenario (b) is slightly more complex, since the agent has 
to learn to navigate around the highly negative rewarded area of water in the south of 
the scenario (as indicated by the arrows in Figure 2.5 (c)). This results in the state-
action sequence: 
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(5.2)

However, since in the experiments, the environments of both scenarios are a priori 
unknown to the agent (with no background knowledge being involved), the reinforce-
ment  learning  algorithm has  to  explore  larger  parts  of  the  environments  until  it 
converges to the optimal policies. This requires numerous runs by the agent from the 
starting point  to the destination  (see Figure 2.5 (a)–(c) for getting an intuition 
of the improvement of the policies during the learning process). The number of such 
iterations until the reinforcement learning process can be considered completed will 
be discussed in detail in the following subsection. 

Learning Process 

Following [7], a classical reinforcement learning algorithm (Q-learning [68, 62]) will be 
used for learning an agent’s multi-dimensional weight matrix   by starting from a 
zero matrix and updating their weights successively. 

For this purpose, multiple runs will be performed for every scenario of Figure 5.1. 
In every run, the agent starts from the starting state (point  and navigates through 
the environment, until it reaches the terminal state (point   During a run, after 
every action, the agent is rewarded with the reward value of the subsequent state
and the corresponding weight of the -matrix is updated according to Formula (2.2), 
as described in the foundations chapter (Chapter  2, see “Q-Learning” subsection of
Section 2.1.7). 

For the experiments, the following parameters will be used: 

• The  learning  rate (determining  how  much  of  the  new  information  will  be 
incorporated  into  the  old  knowledge  with  every  weight  update)  will  be  set
to  

• The  discount  factor (determining  the  degree  to  which  the  knowledge  about 
future states is considered) will be set to  

• An exploration rate of  will be used (determining that in  percent of 
the cases, the agent will perform a random action, even if this is not the best  
action according to what was already learned). 

Note that the choice of the parameters should not have a large impact on the 
experiments, since influencing the learning speed through these parameters would also 
influence the quality of the extracted HKBs at a certain point during the learning 
process in a similar way. The same argument holds for using alternative or more ad-
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vanced reinforcement learning algorithms (like SARSA [62] or modern approaches like 
Q-learning combined with deep convolutional neural networks, as in [49]). 

To investigate at which point during the learning process of the Q-learning algo-
rithm, the agent benefits most from extracting an HKB and relying its decisions on 
the HKB rather than on the -matrix, it must be defined at first, when a learning 
process can be considered completed. At a first glance, this might sound trivial, since 
an obvious answer could be to determine the end of a learning process by the first  
run, after which the agent found the optimal path to the terminal state. However, 
this is  problematic,  since the learning process also relies on random decisions (to 
explore the a priori unknown environment). Thus, the agent might only apparently 
behave according to the optimal  policy,  in  case random decisions are involved in
the behavior. 

According to [7], a more elaborated idea will be to consider the learning process of 
a scenario as completed, if the policy for the optimal path from the starting point
to the destination was found and is not changing anymore.25 Since exploration (i. e., 
performing  random  sub-optimal  actions  instead  of  following  the  so  far  learned 
maximum weights  of  the  -matrix)  is  an  important  prerequisite  for  changing  a 
learned policy, the learning process will be considered completed, if the probability 
that the learned policy will change is smaller than a certain threshold. This is the 
case, if the following inequation holds for a minimal  (see [7]):

  (5.3)

where   is  the  exploration  rate  (i. e.,  the  probability  for  performing  a  random
action),  is the conditional probability that a sub-optimal action is 

performed given that a random action is performed,  is the length of the state-action 
sequence from the starting point to the destination according to the optimal policy,  
is the number of (subsequent) runs and   is the threshold for the probability that 
exploration was involved in producing the optimal state-action sequence from the 
starting point to the destination. The inner term  of the inequation’s left side 
reflects the probability that the agent randomly performed the optimal path through 
the environment; the entire left side of the inequation   reflects the 
probability, that this occurs in  (subsequent) runs. 

For the upcoming experiments,   will be used, and by solving (5.3), the 
respective values of a minimal  can be determined for both scenarios of Figure 5.1. 
By having determined  for each of the scenarios, the average number of runs  that 
are needed to consider the learning process completed can now be determined by 
repeatedly running the learning process for each scenario until the agent shows the 
25 In [7], the policy is called stable in this case. 
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optimal  path  in   subsequent  runs.  The  results  will  then  be  averaged  over   
repetitions for each scenario. Table  5.1 summarizes the resulting values of the vari-
ables considered here for each of the two test scenarios from Figure 5.1. 

 

  

Table 5.1 (Parameters for Learning Agent Experiments) (Source: adapted from [7])

The number of subsequent optimal runs   that are needed to consider the learning 
process completed in the scenarios from Figure 5.1 are determined from the lengths  
of the optimal state-action sequences using inequation (5.3). The average number of 
runs is then determined by running each scenario until   subsequent optimal runs 
were performed (averaged over  runs). 

 

Results 

Having described now when the learning process of the Q-learning agent can be con-
sidered completed in either of the two scenarios from Figure 5.1, this subsection will 
present the results. Still following [7], it will be presented, whether the Q-learning 
agent benefits from relying its decisions on explicit knowledge and, if so, at which 
point during the learning process the Q-learning agent can benefit most from the 
explicit knowledge. 

For  this  purpose,  during the Q-learning process,  HKBs will  be extracted after 
completing a run, using Algorithm 3.2: 

At the beginning of the learning process, after only a couple of runs have been 
performed, many of the weights contained in the agent’s -matrix are still zero (since 
the learning process starts from a zero matrix) or the weights represent wrong or 
incomplete knowledge (e. g., in case not all actions have already been tried out in a 
state). Thus, at the beginning of the learning process, it can be expected, that the 
extracted HKBs will be of rather poor quality. As the learning process progresses, the 
agent behavior slowly converges to the optimal policy and the extracted HKBs will 
become better over time. 

At the end of the learning process (i. e., after  or  runs, respectively; see 
Table 5.1), the resulting HKBs will look as provided in Figure 5.2. 
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Figure 5.2 (Extracted HKBs after Completed Learning Process) (Source: a. f. [7])

The HKBs shown here represent the knowledge of the optimal state-action sequences 
(5.1) and (5.2) from the start to the destination in Scenario (a) and Scenario (b). The 
HKB  states that the agent should always move to east.  states that the agent 
should usually move to east, except when  is perceived, then the agent should move to 
north or, when  is perceived, then the agent should move to south (cf. Figure 5.1). 

 

If  it  will  be beneficial  to incorporate extracted knowledge in the learning pro-
cess  (by relying the agent’s  decisions on the extracted HKBs rather than on the

-matrix), there must be a point during the learning process, where the benefit is 
maximized: When extracted too early, the HKB can be of poor quality, leading to no 
benefit. When done too late, there might be also no benefit, since the optimal path is 
found by the Q-learning algorithm itself. Figure 5.3 shows the results by considering 
the reward of the agent when navigating through the scenarios. 

 

Figure 5.3 (Results for Incorporating HKBs during Learning) (Source: adapted from [7])

The plots show the average reward of the agent in Scenario (a) and Scenario (b) from 
Figure  5.1, when relying its (non-exploration) decisions on the extracted HKBs at some 
point during the learning process. It can be seen that in both scenarios, the benefit is 
maximized already very early, after approximately   to   of the learning process. 
The end of the plots denotes the performance when no HKBs are involved. 
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In Figure 5.3, the x-axis represents the number of runs, after which an HKB has 
been extracted and exploited by relying the agent’s decisions on the HKB rather then 
on the  -matrix. The y-axis represents the average reward collected by the agent 
during the simulation. The plot  for Scenario (b) shows an overall  larger negative 
reward, since this scenario has a highly negative rewarded area in the south (see 
Figure  5.1 (b)). This is also correspondingly reflected by the scale of the y-axis for 
this scenario. 

The results presented in Figure 5.3 show clearly that

(1) the agent benefits from relying its decisions on the extracted HKBs (since the 
reward is maximized when incorporating HKBs in the learning process) and

(2) the benefit is maximized, if the HKBs are extracted and exploited very early in 
the learning process (after  of the learning process). 

This is because the HKBs allow to fall back to more general rules, in case the 
currently perceived sensor values do not satisfy the more specific rules—in contrast to 
the -matrix, where such default-like fall back mechanisms do not exist: Either the 
agent already learned about the quality of a certain action performed in a specific 
state (and subsequent states) by means of exploration, or there will be no information 
available on whether or not it is beneficial to perform the action in this state. 

Furthermore, it can be seen in Figure  5.3 that the plot for Scenario (b) shows 
much more fluctuations (especially in the beginning) than the one from Scenario (a). 
This effect can be explained by Scenario (b) being more complex than Scenario (a) 
(the agent has to learn to navigate around the “river” in the south of the scenario 
here; see Figure 5.1 (b)). Thus, relying the decisions on an HKB requires the HKB to 
already contain some of the important rules that let the agent navigate around the 
“river”—otherwise this can result in large negative rewards. In an early phase of the 
learning process, this in turn depends on the agent’s exploration, i.  e., which random 
experiences have been made by the agent so far. In a more complex scenario, this can 
more  easily  lead  to  wrong  decisions  (especially  in  the  beginning  of  the  learning 
process)  than  in  a  scenario  that  follows  simpler  rules  with  less  exceptions  being 
involved. Note that the total negative reward is limited here for each of the scenarios, 
in case the agent gets stuck in a run due to wrongly learned rules (which could 
otherwise lead to infinitely high negative rewards). 

Since both scenarios have a simple and clear structure, they can be solved more 
easily by extracting and exploiting explicit knowledge in the form of HKBs, which 
may serve as a rougher heuristic. Such clear structures seem to appear quite often in 
practice—especially in those environments that are designed by (and for) humans: 
Such environments are usually also created following simple rules, such as streets, 
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that are usually build straight (where possible), or games, whose game mechanics are 
designed as simple as possible to realize the intended game play. 

In  the  following  section,  this  will  be  underpinned  by  applying  the  presented 
approach to further scenarios, including a game from the GVGAI competition [52]. 
The approach will also be further developed to an agent model that incorporates both 
implicit and explicit knowledge in the form of HKBs: This agent model will also be 
able to decide on its own, when to exploit an extracted HKB during a learning pro-
cess, depending on the estimated complexity of the (unknown) environment (based on 
the measure from Section 4.2.1). 

5.1.2 A Combined HKB/Reinforcement Learning Agent Model

This section presents an agent model according to [9], that extends a reinforcement 
learning [62] agent by the capability of extracting and exploiting HKBs during a 
continuously progressing learning process. 

While the previous experiments from Section 5.1.1 focused on finding out at which 
point during the learning process a learning agent can benefit most from extracting 
and exploiting an HKB, here, an agent model will be presented that is able to decide 
on its own, when to rely the decisions on an HKB rather than on the underlying 
learning approach. For this purpose, the agent will be equipped with the ability of 
estimating the complexity of an (unknown) environment during the learning process, 
by using a normalized version of the strategic depth measure from Section 4.2.1. 

More concretely, the agent model presented here will provide the following features:

• It will be able to extract rule-based symbolic knowledge during a reinforcement 
learning process (e. g., Q-learning [62, 68]; see also the subsection “Q-Learning” 
of Section 2.1.7). 

• An agent of that model can estimate the strategic depth of its environment in 
dependence of its learning progress and, based on that, it can decide on its own, 
when to rely its decisions on an extracted HKB. (The idea here is that the less 
complex an environment is, the earlier the agent can rely its decisions on an 
extracted HKB, since a rougher HKB will suffice to adequately lead the agent 
through the environment.) 

• The underlying learning approach can in principle be modularly exchanged by 
learning approaches other than Q-learning (e. g, SARSA [62] or a more modern 
Q-learning approach with a neural network as function approximator; see the 
corresponding subsection of Section 2.1.7). 
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Following [9],  the model will  be evaluated in the context of  different scenarios 
(including a game from the GVGAI framework [52]) to show the benefit of the hybrid 
approach over classical Q-learning and an HKB-only approach. 

Normalized Subjective Strategic Depth Measure 

As already briefly mentioned in Section  4.2.1, the measure for subjective strategic 
depth provided by Definition 4.1 has no upper bound, since games can in principle be 
arbitrarily complex. However, when equipping a learning agent with the capability of 
estimating the strategic depth of its (a priori unknown) environment, the measure 
should be normalized to be in range  since the number of agent sensors can be 
assumed to be fixed, which limits the number of levels of an HKB—which in turn 
limits the maximum subjective strategic depth possible, according to Formula (4.4). 

According to [9], such a normalized version of the subjective strategic depth mea-
sure will be extremely useful here, since it will allow an agent to estimate the sub-
jective strategic depth of an a priori unknown environment in relation to the maxi-
mum subjective strategic depth possible with the agent’s sensor symbol sets  
The  normalized  version  of  the  subjective  strategic  depth  measure  is  defined  as
follows (cf. [9]): 

Definition  5.1 (Normalized  Subjective  Strategic  Depth) The  normalized 
subjective strategic depth perceived by an agent is defined as a function 

  (5.4)

where  is an HKB representing the agent’s (so far learned) state-action sequence 
through its environment,  is a set of all sensor symbol sets needed to 
describe a state of the agent,   is the non-normalized subjective strategic 
depth measure (as provided by Definition 4.1),  is the maximum num-
ber of levels of  and  is the same constant as used in  (see (4.4)).26 

Definition 5.1 provides the possibility of estimating the subjective strategic depth 
based on a state-action sequence, that was learned so far by an agent’s underlying 
reinforcement learning approach (i. e., how difficult the problem appears to the agent 

26 Note that Formula (5.4) slightly differs from the original definition provided in [9], since it
is adapted here to be consistent with Formula (4.4). The latter corrects its original definition 
from [11], where a “ ” was accidentally missing in the upper part of the binomial coefficients 
(see also Footnote 21 on page 115). 
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according to its current learning progress). Since the measure is normalized to the 
range of  it provides a reference point for this estimation. 

At first, as a proof-of-concept, it will be evaluated now, how the subjective stra-
tegic depth evolves during an agent’s reinforcement learning process.  This will  be 
done by considering the hypothesis, that the subjective strategic depth should overall 
decrease during a learning process as the agent learns more about the environment. 
In the end, it should converge to the “real” strategic depth value of a scenario: Since 
the agent learns more and more about its environment, the agent’s behavior (based 
on which the strategic depth is calculated) becomes more and more accurate and 
thereby approaches the optimal behavior for the environment. 

For this purpose,  four grid world scenarios of  different complexity will  be con-
sidered: Three of which have been considered already earlier in this work (e. g., in 
Figure 2.5, Figure 3.1 and Figure 5.1); the fourth scenario stems from [11]. 

Also here, in each of the four scenarios, the agent is equipped with two sensors to 
perceive its   and its   position in the grid world environments. Furthermore, the 
agent can choose actions from the action symbol set  
to get from the starting point  to the destination  in the a priori unknown envi-
ronment. A classical Q-learning [62, 68] approach will be used, with the same param-
eters as described in Section 5.1.1 (in subsection “Learning Process”): 

• learning rate  

• discount factor  

• exploration rate  

To extract the HKBs, based on which the normalized subjective strategic depth 
will be calculated, Algorithm  3.2 will be used. The extraction is done at the end
of each run, after the terminal state is reached by the agent. Each scenario is run
for  runs and the results are averaged over  repetitions for each scenario. 

Figure  5.4 shows the  results  for  measuring  the  normalized  subjective  strategic 
depth of the Q-learning agent in the different scenarios, while learning about the a 
priori unknown environment. 
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Following [9], the following two effects can be observed from Figure 5.4: 

• The normalized subjective strategic depth overall decreases as the agent’s learn-
ing process progresses: During the agent’s learning process, its knowledge about 
the respective environment increases, and therefore, the corresponding scenario 
appears successively simpler to the agent. 

• The measured normalized subjective strategic depth in a scenario converges to 
the “real” normalized strategic depth of that scenario. (Note that here, “real” 
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means the strategic depth calculated from a (nearly) perfect movement of the 
agent,  assuming that  the  Q-learning  algorithm learns  the  optimal  policy  in
the end.) 

In  case  of  the  fourth  scenario  (see  Figure  5.4 (d)),  the  normalized  subjective 
strategic depth decreases less monotonically, since the scenario has straight local path 
structures that seem to quickly lead to simple rules. However, the straight local paths 
form a more complex structure from a global point of view, which has to be adopted 
by the Q-learning algorithm, and consequently by the extracted HKB (cf. [9]). 

The results of Figure 5.4 seem to confirm the hypothesis from the beginning of this 
subsection: The subjective strategic depth of the agent decreases during its learning 
process, as the agent’s knowledge about the environment increases. In the end, it con-
verges to a strategic depth that is calculated from an HKB representing the knowl-
edge of a (nearly) optimal agent behavior in the respective scenario. 

Hybrid Agent Model 

By knowing from Section 4.2 that the subjective strategic depth measure relates to 
what humans sense when playing games, and by having shown in the previous sub-
section that the measure can also be applied in the context of learning agents, this 
subsection now describes  an agent model,  that incorporates  the measure together 
with both reinforcement learning and reasoning based on extracted HKBs. This will 
be realized, by using the subjective strategic depth measure to decide when to rely 
the agent’s decisions directly on the reinforcement learning process and when to rely 
them on an extracted HKB. 

The intuition is as follows here: If at a certain point, the agent realizes (based on 
the subjective strategic depth) that its environment seems to be sufficiently simple, 
the decision-making will  be switched to extracted HKBs. By this, the rules of an 
extracted HKB can be exploited as a rougher heuristics through the environment. 
This apparently applies better to environments that are based on straight and simple 
rules, which renders the subjective strategic depth measure an eligible criterion here. 
Especially human-designed environments (like games, street networks, buildings, etc.), 
are usually created with a simple and functional design in mind where possible (as al-
ready discussed at the end of the Results subsection of Section 5.1.1). 

Note that, during a learning process, both the agent’s so far learned knowledge 
about the environment, as well as the strategic depth of the environment itself, must 
be taken into account here: In an early phase of the learning process, a simple en-
vironment may appear more complex than it is to the agent, as well as complex envi-
ronment may appear simple, in case the agent spend enough learning time in it. As 
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the subjective strategic depth measure overall decreases during the learning process 
(which reflects the agent’s knowledge gain) and converges in the end (which reflects 
the “intrinsic” strategic depth of the environment; see Figure 5.4), both aspects seem 
to be adequately reflected by the subjective strategic depth measure. 

According to [9], the agent model comprises two major parts: 

• An initialization part, that is executed every time before a new run starts.

• The agent cycle, which is executed in every time step. 

Figure 5.5 visualizes the agent model. 

 

Figure 5.5 (Hybrid Reinforcement Learning/HKB Agent Model) (Source: a. f. [9])

The agent model comprises two major parts: The upper part concerns the initialization, 
which is executed every time before a new run starts; the lower part represents the agent 
cycle, which is executed in every time step. Components belonging to the reinforcement 
learning approach are shaded gray, whereas the HKB heuristics extensions are represented 
in white. 

 

In the initialization part, at the beginning of a run, it is decided for the upcoming 
run whether the agent will rely its decisions on the weights learned so far by the used 
reinforcement learning approach (represented by the -matrix), or on the HKB  
extracted thereof.  The decision is  based on a threshold   of  the agent’s  current 
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normalized subjective strategic depth  that is calculated from the current 
extracted  Depending on the outcome of the initialization, in the agent cycle, the 
agent either performs a random action (for exploring the environment), or decides to 
choose an action based on the learned weights (represented by   or the extracted 
HKB  

Note  that  the  Q-learning  approach  (gray  components  in  Figure  5.5),  can  be 
replaced in a modular way by any other reinforcement learning approach. This will 
neither require to change the overall architecture nor to adapt the HKB extraction. In 
general,  it  can be assumed here,  that  the earlier  the used reinforcement learning 
approach converges to the optimal policy, the earlier the knowledge of the extracted 
HKB will be of sufficient quality and serve as eligible heuristics. 

Following [9], the described agent model from Figure 5.5 will now be evaluated in 
the upcoming two subsections: At first, the model will be evaluated in the context of 
four grid world scenarios. After that, an additional evaluation in two slightly modified 
levels of the game Camel Race from the GVGAI framework [52] (see Figure 4.1 (a) 
and (b)) will be provided. 

Evaluation in Grid Worlds 

This subsection evaluates the agent model described in the previous section by closely 
following [9]: An agent instance of the agent model from Figure 5.5 will be run for  
runs in each of the four grid world scenarios from Figure 5.4. This experiment will be 
repeated   times for each scenario and the percentage will be measured, in how 
many of the repetitions the optimal path was found during the  runs. The state-
action  space  of  the  agent  is  the  same  as  described  earlier  for  the  scenarios  of
Figure 5.4. As reinforcement learning approach, Q-learning [62, 68] will be used again, 
with the same parameters as described at the beginning of Section 5.1.2 in the sub-
section “Normalized Subjective Strategic Depth Measure” (i. e., learning rate  
discount factor  and exploration rate  

To determine when to exploit an extracted HKB as eligible heuristics, a threshold 
of   will  be  chosen  for  the  the  normalized  subjective  strategic  depth   
According to the results from Figure 5.4 (and still following [9]), this means that the 
agent will in average try to exploit an extracted HKB after: 

•  runs, in case of Scenario (a) 

•  runs, in case of Scenario (b) 

•  runs, in case of Scenario (c) 

(see the crossings of the  bound in Figure 5.4). 
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According to [9], for Scenario (b) and Scenario (c), this may appear confusing at
a first glance, since a total number of only   runs will  be performed: Note that 
Figure  5.4 shows the  average development of the measure   and thus,  it  can be 
expected that there will be single runs during the experiments, where  falls below 
the threshold  before the th run in these scenarios (even if in average this 
usually happens later). 

In case of Scenario (d), the agent will usually never exploit any heuristics, since the 
normalized subjective strategic depth does in average not decrease below   
(However, also here it may in principle occur that it does in single runs.) This can be 
interpreted as follows, according to [9]: Scenario (d) comprises too many exceptions, 
such that an exploitation of heuristics does not make sense from the agent’s point of 
view. The sensitivity to this “point of view” is finally what is controlled by the pa-
rameter   Higher  values  render the agent more “heuristics-affine”,  whereas lower 
values render the agent more “conservative” in the sense that it will need stronger 
evidence that it might be beneficial to exploit the extracted HKB as a heuristics. 
Note that Scenario (d) is of course a very simple environment from an absolute point 
of view. However, the agent measures the subjective strategic depth in a normalized 
way, i. e., in relation to the maximum subjective strategic depth possible with the 
agent’s  number  of  sensors  and the  resulting  state  space  (see  the  denominator  of 
Formula (5.4)). 

Table 5.2 now provides the results of the comparison of the described agent model 
against a plain Q-learning agent with the same parameters for the learning compo-
nents (gray components in Figure 5.5). 

 

  

Table 5.2 (Plain Q-Learning vs HKB Approach) (Source: a. f. [9])

A plain Q-learning [62, 68] agent is compared to the agent model from 
Figure  5.5 in  the  context  of  the  four  grid  world  scenarios  shown in 
Figure 5.4: The results are provided for a threshold of  and for 
an HKBs-only approach (see footnote on page  142), where the weights
of the  -matrix are never considered directly for action selection. The 
agent model clearly outperforms plain Q-learning in scenarios (a)–(c). 
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The results shown in Table 5.2 comprise a plain Q-learning agent, an agent using 
extracted HKBs as heuristics (see Figure  5.5) and, for reasons of comparison, an 
HKBs-only version of the latter.27 The HKBs-only version always relies its decisions 
on the HKB-heuristics and never considers the  -matrix directly for any action se-
lection (i. e., in the initialization phase in Figure 5.5, the branch for “Set HKB action 
selection” is always selected). 

The results  show that  the plain Q-learning agent  rarely manages to reach the 
target point  within  runs in Scenario (a) and Scenario (b) (only in about  
and   of  the cases,  respectively).  As for  Scenario  (c)  and Scenario  (d),  plain 
Q-learning was never able to reach the target point within  runs. This is a typical 
agent behavior in the context of reinforcement learning approaches, since the a priori 
unknown environment needs to be explored without the possibility of distinguishing 
between simpler or more complex environments. 

The heuristics approach based on HKBs clearly outperforms the results of  the 
plain Q-learning approach: Using a threshold of  the agent reaches in more 
than two-thirds of the cases the target point  within  runs in case of Scenario (a). 
This performance gain naturally decreases, as the scenarios become more complex, 
since it  will  take longer until  the extracted HKBs are of  sufficient quality to be 
exploited.  However,  even in Scenario (b) and Scenario  (c),  the agent reaches the 
target in about   and   of  the cases (whereas the plain Q-learning agent 
reaches the target only in about  and  of the cases in the respective scenarios). 
(Only in Scenario (d), none of the approaches were able to reach the target within  
runs. Note that, according to Figure 5.4 (d),  will rarely fall below the threshold  
here and thus the extracted HKBs can rarely be exploited in this scenario.) 

In case of the heuristics-only approach, the results are worse (but still better than 
the plain Q-learning approach in the considered scenarios):  According to [9],  this 
seems to be the case, since the agent starts too early to rely its action selection on 
the HKBs (which may contain a lot of wrong rules in the beginning of the learning 
process). This can counteract the adequate exploration of the environment,  which 
underpins the usefulness of applying an adaptive decision criterion when to exploit 
the extracted HKBs, as provided by the measure  

Evaluation in a GVGAI Game 

After having evaluated the proposed agent model from Figure  5.5 in different grid 
world scenarios of increasing complexity, this subsection will now additionally evalu-
ate the agent model in the context of more dynamic scenarios, following [9]. For this 

27 Thanks to an anonymous reviewer of the original paper [9] for proposing the idea of evaluating 
also against a version of the agent model that relies its decisions only on the HKB heuristics. 
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purpose, the two (slightly modified) levels of the game Camel Race from the GVGAI 
framework [52], that were shown already in Figure 4.1 (a) and (b), will be considered 
as environments here. 

As described already earlier in Chapter 4 (see Section 4.1.1), in the selected (and 
slightly modified) levels of the game Camel Race, the agent controls the yellow camel 
in the middle and has to be the first reaching the goals on the right (see Figure 4.1). 
The state-action space of the agent for the game Camel Race will be the same as 
described earlier in Section 4.1.2: The action space will be defined as in Formula (4.1) 
and state space will be the same as provided by Formula (4.2). As reward, in the 
upcoming experiments, the agent will perceive the current distance in x-direction to  
the fastest opponent camel. 

Even if the game of Camel Race seems to be quite simple, it comprises interesting 
aspects regarding its dynamics, according to [9]: Due to the time-dependent move-
ment of the opponent camels in the environment, the agent oftentimes perceives new 
and previously unseen states. Thus, larger parts of the state-action space have to be 
explored by the agent to learn the respective weights of the -matrix, although the 
game could be won quite easily, e. g., by just moving to the right, in case of the
first level. This renders the game Camel Race an eligible test environment for the 
upcoming experiments. 

Similar to the evaluation in the context of the grid world scenarios and still fol-
lowing [9],  runs will be performed for each of the two levels and it will be meas-
ured, in how many percent of the cases, the agent is able to reach the goal within  
repetitions  of  the  respective  experiment.  Also  here,  plain  Q-learning  is  compared 
against the agent model from Figure 5.5 with the extracted HKBs being exploited in 
dependence of the measure  and against the HKBs-only approach (where the agent 
always exploits the extracted HKBs as heuristics). The parameters of the agent model 
are the same as for the experiments in the context of the grid worlds (i.  e., learning 
rate  discount factor  exploration rate  and the threshold for 
the  measure is set to the value  

Table  5.3 shows the results for the two levels of the game Camel Race shown in 
Figure 4.1 (a) and (b). 
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Table 5.3 (Q-Learning vs HKB Approach in a Game) (Source: a. f. [9])

The plain Q-learning agent and the agent model from Figure  5.5 with 
the same parameters as in Table 5.2 are compared here in the context of 
two levels of the game Camel Race from the GVGAI framework [52].
The table  shows the percentage of   repetitions in which the agent
was able to reach the goal within  runs. The agent model involving
HKBs clearly outperforms plain Q-learning by reaching the goal in more
than  percent of the cases in both levels. 

 

As can be seen in Table 5.3, the agent using plain Q-learning is not able to reach 
the goal within  runs in any of the  repetitions. By using the agent model from 
Figure  5.5 with a threshold of   the agent model clearly outperforms plain 
Q-learning by reaching the goal in more than   of the cases in both levels. In 
contrast  to  the  grid  worlds,  the  HKBs-only  approach  performs even  better  here: 
According to [9],  this  seems to be the case,  since the considered levels  allow for 
rougher heuristics than most of the grid worlds: Although the game comprises—in 
contrast to the grid worlds—dynamics and can be considered more complex in this 
sense, the goal can be reached much easier than in the grid world scenarios, since it is 
not located in a single corner of the environment. Instead, the game can be won by 
just reaching the right side of the screen, which can be achieved already with a poor 
HKB as heuristics. 

The  results  presented  in  this  section  show  that  the  agent  model  clearly  out-
performs plain Q-learning in the context of the presented experiments. These results 
are accompanied by an online (video) appendix (Appendix  B), where the two ap-
proaches are compared visually. 

5.1.3 Integrating A Priori Knowledge through HKBs

This section finally provides some intuitions on how HKBs can be used to integrate a 
priori  knowledge in a reinforcement learning process.  For  this purpose,  it  will  be 
referred again to the agent model described in Section 5.1.2 (see also Figure 5.5). 
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Basic Integration Approach 

To integrate heuristics as a priori knowledge, an agent instance of the agent model 
from Figure 5.5 can simply start with a predefined HKB that represents the a priori 
known heuristics. Furthermore, it must be ensured that the agent starts with HKB 
action selection in this case, to rely its decisions on the provided a priori knowledge in 
the first run (see the right side of the initialization phase in Figure 5.5). 

When  combining  symbolic  a  priori  knowledge  with  a  reinforcement  learning 
approach,  an interesting question is,  how the a priori  knowledge can be properly 
reflected in the weights of the underlying learning approach. This is  not a trivial 
question since the reward distribution of the environment could (at least partly) be 
unknown to the knowledge engineer who is defining the a priori knowledge. As a 
consequence,  the  provided  a  priori  knowledge  can  even  contradict  the  rewards 
returned by the environment, e. g., in case it is exploited as heuristics and contributes 
well to reach a long-term goal, but leads to locally bad rewards in some situations. 
Furthermore, the used learning approach could not allow for the direct manipulation 
of the weights, e. g., in case a neural network is used as function approximator for 
approximating the -matrix (as it is usually the case in modern deep reinforcement 
learning approaches, e. g., [49]). 

The  presented  agent  model  from  Section  5.1.2 avoids  these  problems  by  not 
explicitly manipulating the weights of the  -matrix to incorporate the knowledge: 
Performing actions based on an HKB simply leads to normal updates of the weights, 
as needed by the underlying learning approach (see Figure 5.5). By this, the update 
mechanism is not influenced numerically by the provided a priori knowledge, besides 
the rewards perceived through the environment when performing actions according to 
the HKB. Thus, the rewards perceived from the environment as a consequence of 
decisions derived from the a priori knowledge are incorporated the same way by the 
learning approach as without any knowledge being involved. This basically leads to 
the following three cases: 

(1) The heuristics described by the a priori knowledge fit well to both the long-term  
goal of  the agent and  local rewards:  
For those states that are visited by the agent in the first runs, the provided a 
priori knowledge will be properly reflected in the corresponding weights of the 
underlying learning approach. 

(2) The heuristics described by the a priori knowledge are good in the sense of a  
long-term goal but contradict  local rewards:  
In this case, the agent learns about the environment according to the underlying 
learning  approach  until  a  policy  derived  from the  weights  outperforms  the 
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policy derived from the heuristics. If this is the case, the new (refined) heuristics 
are extracted from the best policy found and the heuristics and the learning 
approach are consistent again. 

(3) The provided a priori knowledge  is bad (or even wrong):  
In this case, performing actions according to this knowledge will usually lead to 
bad local  rewards in the visited states  of  the first  run(s)  (and will  not get 
significantly better over multiple iterations, in case the provided heuristics even 
contradict  the  long-term  goal).  Thus,  the  agent  will  avoid  these  states  in 
upcoming runs which will successively lead to a better overall performance and 
can finally result in finding other, better heuristics (cf. Figure 5.6). 

Advanced Integration 

As a further extension, one could also be interested in incorporating the provided a 
priori knowledge into a larger portion of the weights than only those concerned by 
one single state-action trace of the first run in which the a priori knowledge was 
exploited (as described in the previous section). 

Here, an intuitive idea is to additionally exploit the provided a priori knowledge in 
all states in which no meaningful decision could be made by the learning approach—
i. e., in all new, previously unseen states and in all those states in which the weights 
of all possible actions are equal. This triggers the update mechanism of the under-
lying reinforcement learning approach with the reward returned by the environment 
for those actions selected according to the a priori knowledge. Depending on how
well  the heuristics resulting from the a priori  knowledge comply with the reward 
distribution of the environment, these updates are then a (more or less) adequate 
initialization  of  the  corresponding  weights  of  the  learning  approach.  This  reflects
the a priori knowledge in the reinforcement learning approach as far as it is com-
patible with the reward distribution of the environment. Furthermore, as the number 
of unknown states usually decreases during the learning process, the provided a priori 
knowledge gets less influence on the overall behavior of the agent, whereas the refined 
knowledge representing the heuristics found by the agent itself gets more influence 
over time. 

Nevertheless, since this extension requires access to the information whether or not 
a state is visited for the first time, it could possibly not be combined with all sub-
symbolic learning approaches. 

Figure  5.6 shows the evolution of a priori knowledge provided as HKB during a 
learning process of an agent based on the agent model from Figure 5.5. The agent is 
run in the context of the third level of the game Camel Race (see Figure 4.1 (b)) with 
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the same state-action space and reward as in the last subsection of Section 5.1.2 (see 
also (4.1) and (4.2) in Section 4.1.2). 

 

Figure 5.6 (Knowledge Evolution during Learning Process)
An agent based on the agent model from Figure  5.5 is considered here in a 
slightly modified version of the game Camel Race from the GVGAI framework 
(see Figure  4.1 (b)): To demonstrate how the knowledge evolves, the agent is 
intentionally provided with contra-intuitive a priori knowledge consisting of the 
heuristic to move to the left. The advanced integration approach described in 
the corresponding subsection of Section 5.1.3 is used here. The figure shows the 
evolution of the HKB over the first   runs. It can be seen that the a priori 
knowledge develops quickly toward the correct heuristic to move to the right, 
which is then successively refined. 
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To demonstrate the development of the knowledge during the learning process, in 
Figure 5.6, the agent starts with an HKB as a priori knowledge that represents the 
contra-intuitive heuristic to move to the left (cf. Figure 4.1 (b)). After a few runs, the 
HKB already starts evolving toward the intuitive knowledge of moving to the right: 
At first, the top level rule changes to  and the intuitive knowledge 
of moving to the right is contained in the form of exceptions on the more specific 
levels of the HKB (see Run 5 in Figure  5.6). Several runs later, the movement to
the right is  learned as a general  rule,  which is  then successively refined with ex-
ceptions (and exceptions of exceptions) in the following (see Run 10 and Run 15 in 
Figure 5.6). 

5.2 Forward Model Learning

In the previous section (Section 5.1), it has been shown how the learning process of 
an agent based on a reinforcement learning approach can be accelerated to solve a 
single task (e. g., a level of a game). The idea there was to learn an (optimal) be-
havior or policy in the respective environment. This complies with other successful 
approaches in reinforcement learning from the recent years—especially in the context 
of games (e. g., [49]). 

However, these kinds of approaches have a drawback in generality, when it comes 
to problems like general video game playing [52, 53], where the task is not to learn to 
play a single (level of a) game, but to learn to play multiple different a priori un-
known games. The GVGAI competition [65] aims at stimulating research in this field 
and results might also be interesting for the development of more general AI ap-
proaches in other areas. 

Regarding the task of general video game playing, the GVGAI competition can
be mainly divided into two tracks: 

• a planning track, and 

• a learning track. 

In the former, an agent is provided with a  forward model of the game, i. e., the 
agent  knows  the  game  mechanics  in  advance  and  can  thereby  perform  forward 
simulations of a game to find good decisions and/or plans to win the game. Algo-
rithms like monte carlo tree search (MCTS) [21] and their derivatives are a popular 
choice here. 
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In the latter, no forward model is a priori provided to the agent. Depending on the 
rules of the competition’s current round, an agent is, e. g., trained on three levels of 
an a priori unknown game and is then evaluated on two other levels of the same 
game.  As  a  consequence,  it  is  not  sufficient  to  optimize  a  certain  level  using  a 
common learning algorithm—instead, the agent must learn how to play the game, 
i. e., both the game mechanics and the strategy how to master it. 

According to these requirements, this section follows a different approach than the 
the  approaches  presented  in  Section  5.1:  Instead  of  learning  and representing  an 
(optimal) behavior or policy of an agent, here, a forward model of the game will be 
learned and represented as an HKB. Such an HKB describes the mechanics of the 
game (i. e., “how things work”) and can be used by the agent to perform forward 
simulations of the game for estimating the best next action, by using eligible algo-
rithms known from the planning track (like MCTS [21]).28 

5.2.1 Learning Forward Models of Games

This section addresses the issue of learning forward models in the context of a priori 
unknown games from the GVGAI framework [52]. To be able to learn forward models 
of  such  games,  the  same  basic  agent  model  as  described  in  Section  2.1 will  be 
considered as a foundation. In contrast to former approaches that were presented 
earlier here, this means that the agent is equipped with  sensors, where each sensor 
provides values of one dimension from a  general state space. Since the game to be 
played  is  not  known  in  advance,  the  corresponding  sensor  symbol  sets   
comprise rather abstract symbols, such as  types of objects near the agent’s avatar 
(distinguished by numeric identifiers) as well as symbols about the avatar’s  position 
or the game’s  score. No concrete game-specific information are provided here. The 
agent’s action symbol set is defined similarly as in Section  4.1.2 (see Formula  4.1), 
with an additional generic action  which is usually used (depending on 
the game) for non-navigation actions:29 

  
             (5.5)

28 This approach was first proposed in a joint work by  Jun.-Prof.  Dr.-Ing.  ░░░░░░ ░░░░░ 
(from Leibniz University Hannover) and the author. The approach was also mentioned in the 
book on GVGAI [53]—see bibliographic remarks in Section 5.4 for details.

29 Note that, in the GVGAI framework [52],  another action   exists,  which 
allows an agent to immediately exit a level in the training phase. Since this is not directly rele-
vant for the learning problem of playing different games, it is not explicitly considered here. 
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HKBs as Forward Models 

Learning a forward model in the form of an HKB is different from learning an HKB 
that represents a behavior or a policy (as described in Section 5.1): An HKB repre-
senting a behavior or a policy maps a perceived state to an action, whereas an HKB 
representing a forward model maps a perceived state and an action (a  state-action 
conjunction) to an information describing certain changes of a resulting subsequent 
state.  For this purpose,  the definition of  a rule,  as provided in Section  3.1.2 (cf. 
Definition 3.2), has to be adapted here, following [5, 26]: 

Definition 5.2 (Forward Model Complete/Generalized Rule) Forward model  
complete rules and  forward model generalized rules are of the form   
(i. e., “if  and  are known, then  can be concluded”), where  is either a complete  
state (in case of a forward model complete rule) or a partial state (in case of a forward 
model generalized rule),  represents an action of the agent’s action symbol set  

 represents (a part of) the changes leading to the subsequent state (resulting from 
action   being performed in state   and  is the rule’s weight (indicating the 
“strength” of the rule).30

Note that the related definitions  3.3–3.5 from Section  3.1.2 can be considered com-
patible to Definition 5.2 by simply adapting the rules’ premises and conclusions ac-
cordingly there. 

To learn an HKB as forward model from observations using the extraction algo-
rithms described in Section 3.4 and Section 3.5, an additional filter step will be per-
formed at the end of the extraction algorithms for removing all rules  whose 
premises do not contain an action and therefore do not comply with Definition 5.2. 

Meta-HKB 

According to [5, 26], in the context of diverse games, several different aspects of the 
game mechanics can be of importance. To properly reflect these different aspects, one 
separate HKB for one aspect of the game mechanics will be considered here. These 
HKBs then form a  meta-HKB representing the forward model.  Following [5],  the 
selected aspects of the game mechanics that are covered by the different HKBs are: 

• Movement (  The HKB   represents  the knowledge  about  the 
possible movement of the agent’s avatar depending on the  relative position of 
surrounding other objects in a game (like obstacles, etc.).31 

30 In [5, 26], forward model rules are simply called modified rules. 
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• Scoring (  This HKB represents knowledge about relative score changes 
depending on the interaction with other objects in a game (like objects that can 
be collected for benefit). 

• Winning/Losing (   represents knowledge about winning or losing a 
game when interacting with certain objects (e. g., an exit or a checkered flag). 

Each of the three HKBs for the different aspects of a game’s mechanics will be 
created by merging several smaller HKBs, to accelerate the extraction process. This 
will be described in detail in the following subsection. 

Accelerating HKB Creation by Merging Smaller HKBs 

In the context of games—and especially in the context of the GVGAI competition—
performance plays an important role. For this purpose, instead of learning one HKB 
as a complete forward model for one aspect of a game’s mechanics, for each HKB of 
the meta-HKB described in the previous subsection, multiple smaller HKBs will be 
learned here, as proposed in [5, 26]. Each of the smaller HKBs covers only a part of 
the agent’s state-action space. This reduces the number of dimensions that need to be 
considered by the extraction algorithm, which helps increasing the extraction per-
formance. The resulting smaller HKBs are then merged to create the complete HKB 
that represents the respective aspect of a game’s mechanics. 

The merging of the smaller HKBs to create the complete HKB that represents one 
aspect of the game’s mechanics can be done efficiently by iterating over the levels of 
the smaller HKBs and merging the single levels. In case a rule with the same premise 
and conclusion exists in multiple smaller HKBs, the one with the lower weight will
be adopted. 

The following example demonstrates the creation of the HKB  which de-
scribes the knowledge about the score changes of the game to be learned (i.  e., which 
actions result in which score changes considering the orientation of the agent’s avatar 
and the types of objects currently surrounding it). The creation process is very simi-
lar for the other two HKBs of the meta-HKB (  and  as described in 
the previous subsection. (The example can be found similarly in [5] and [26].) 

31 Note that knowledge about the movement depending on the absolute position of game objects 
are not considered here, since, according to the ideas of general video game playing, the agent 
might be trained in levels that are different from the ones used for evaluation. Thus, the levels’  
anatomy (like bounding walls or obstacles) may change, even in case of static objects. 
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Example  5.1 (Merging of Smaller HKBs for Scoring) To create the HKB 
 that describes the knowledge about the game’s scoring mechanism, according 

to [5, 26], one possibility would be to apply the knowledge base extraction algorithm 
from Section 3.4.2 (Algorithm 3.2) to a seven-dimensional input matrix 

  (5.6)

with    and  The set 
 is a set of object type symbols identifying the different object types in a game, 

 is a set of symbols representing the different possible orientations of the agent’s 
avatar, set  contains the agent’s action symbols (see Formula (5.5)) and  is a 
set of symbols describing the score changes of a game. Every element of  repre-
sents the relative frequency of a score change, when performing a certain action in a 
given state (i. e., the agent avatar’s orientation and the types of objects above, below, 
to the left and to the right of the agent’s avatar). 

However, instead of creating the complete HKB  directly from the seven-
dimensional matrix  four smaller HKBs    and  
can be created. Each of these smaller HKBs will consider (besides the agent’s actions 
and the orientation of the avatar) only the type of the corresponding object above, 
below, to the left or to the right of the agent’s avatar. The smaller HKBs can be 
created more efficiently by applying Algorithm 3.2 to a corresponding reduced version 
of the input matrix, where the dimensions for all other surrounding objects are omit-
ted (resulting in four instead of seven dimensions for each matrix). In case of  
the corresponding reduced input matrix will look as follows: 

  

with    and  as in (5.6). 

After having extracted each of the four smaller HKBs from the reduced matrices 
using Algorithm 3.2 (including the optional filter step for removing all rules without 
actions in their premises), the resulting HKBs are merged to create the complete 
HKB  by iterating over the levels of the smaller HKBs and merging the single 
levels. (In case of multiple rules on the same level having the same premise and con-
clusion, the rule with the minimal weight is kept.) 

As already mentioned before, the HKBs for the knowledge about the movement 
and for the knowledge about winning/losing a game can be created in a similar way. 
By this means, the knowledge base extraction process can be accelerated extensively. 
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Demonstration in the Context of the GVGAI Framework 

To demonstrate the approach of learning a forward model of an a priori unknown 
game using HKBs, in this subsection, the game Butterflies from the GVGAI frame-
work [52] will be considered as an example. The rules that are most relevant for the 
upcoming considerations will be quickly outlined first. 

In this game, the agent controls an avatar represented by a fairy,  that has to 
collect butterflies by touching them. The butterflies emerge from hives. Trees serve as 
obstacles and to delimit the bounds of a level. Collecting a butterfly increases the 
agent’s score and the game is won if all butterflies are collected. Figure 5.7 shows one 
of the game’s levels. 

  

The game shown in Figure 5.7 comprises three different types of objects that can 
be perceived by the agent in the surrounding area of its avatar. These are: 

• butterflies (which increase the score when being collected and which lead to 
winning the game if all are collected)

• hives (which emit butterflies)

• trees (which prevent the avatar’s movement) 

The different types of objects are distinguished by numeric identifiers. 

Furthermore, besides the current position of the agent’s avatar, the agent is also 
able to perceive the game’s overall state, i. e., whether or not the game has been won. 
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Since  the  game is  a  priori  unknown to the  agent,  the agent  has  to learn the 
mentioned  game  mechanics  on  its  own.  For  this  purpose,  the  agent  starts  with 
random exploration by performing random actions, to learn relative frequencies for 
the states and the resulting subsequent states. The relative frequencies are collected 
in  corresponding  (reduced)  matrices,  as  described  in  the  previous  subsection (see 
Example 5.1). After that, Algorithm 3.2 is applied to each of the matrices (including 
the additional filter step to remove all rules without having an action in their pre-
mises)  and the resulting HKBs are merged.  This  is  done for every aspect of  the
game mechanics, as described earlier in the subsection “Meta-HKB” of this section.
Figure 5.8 shows the resulting learned HKBs for all three aspects of the meta-HKB 
after a short training phase. 

As can be seen in Figure 5.8, after a short learning phase, the agent learned HKBs 
for the three aspects of the game’s forward model that represent the game mechanics 
compactly and in a way that is easy to comprehend. 

Figure 5.8 (a) represents the game’s forward model regarding the movement of the 
agent’s avatar. The topmost rule  on level  of the HKB  was 
not learned correctly here, since it states that usually (when performing no action), 
the agent’s avatar moves to the left—which is obviously incorrect. This could be the 
case, since the agent might have experienced more examples of moving to the left 
than of no movement in the short learning phase. However, this has no further impact 
here, since on level   of  there are exceptions for each of the four relevant 
movement  actions,  which  reflect  the  game’s  movement  mechanics  correctly  and 
completely. Level  of  contains the (second order) exceptions concerning the 
obstacles in the game (trees and hives). If one of these objects (represented by object 
types 0 and 3) is in the adjoining environment above, below, to the left or to the right 
of the agent’s avatar, no movement can be performed by the corresponding actions. 

Figure  5.8 (b) represents the game’s scoring system, i. e., how the agent can in-
crease the score with the avatar. The HKB  was properly learned and reflects 
the scoring mechanics perfectly: The topmost rule   on level   states 
that usually, there is no score change (which covers most of all cases, as indicated by 
the rule’s weight of   This is because the agent usually only gets points when 
collecting butterflies by intention (i. e., by performing the corresponding action when 
a butterfly is around). Level   is empty here, since butterflies can usually not be 
collected by just moving around. Only in case a butterfly is in the direct environment 
above, below to the left or to the right of the agent’s avatar, the agent can increase 
the score by performing the action for the corresponding direction. This is stated on 
the bottommost level  of  
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Figure 5.8 (Forward Model for Butterflies) (Source: adapted from [5])

The  learned  forward  model  for  the  GVGAI  game  Butterflies from 
Figure 5.7 is shown here after a short training phase. The three HKBs 
represent the three different aspects of the game mechanics: (a) how the 
movement works (  (b) how to score (  and (c) how the 
game can be won (  In  level  reflects the coordinate 
changes depending on the agent’s actions, whereas level  contains the 
exceptions depending on different obstacles above, below, to the left or 
to the right of the agent’s avatar (object types 0 and 3).  states 
that usually the score does not change, except when an object of type 5 
(butterfly) is around and a corresponding action is performed.   
does  not  provide useful  information,  since  the agent  never won the 
game in the short training phase (  

 

In Figure 5.8 (c), the HKB  represents the knowledge about how to win or 
lose the game.   comprises only the topmost level   which contains the only 
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rule that the game is always lost. This is the case, since the agent never managed to 
win the game during the short learning phase. Thus, no further knowledge about the 
mechanics how to win or lose the game could be learned here. 

As has been presented here, the proposed approach results in a forward model 
comprising different aspects of a game. Such a model can later be used to let the 
agent forward simulate a game, even if the game mechanics are unknown in advance 
to the agent. By this means, algorithms like Monte Carlo Tree Search (MCTS) [21], 
that are well-known from the GVGAI planning track, can be used by the agent to 
forward-simulate a game for determining good actions. 

However, since the presented approach does not always provide perfect forward 
models (depending on the agent’s experiences during the learning phase, cf.  
and since the environment may change after learning, a mechanism should be pro-
vided, that allows the agent for quickly adapting a learned forward model,  when 
experiencing inconsistencies in its current environment (e. g., in a new level of the 
same game). In the context of the GVGAI competition [65], this can easily occur, 
since (depending on the rules of the competition’s current round) the agent may be 
trained in other levels than those used for evaluation. 

In knowledge representation, such kinds of problems can be tackled by  belief re-
vision approaches. This will now be considered in the context of HKB forward models 
in the following section. 

5.2.2 Revising Forward Models of Games

Belief revision is a traditional field of knowledge representation, concerning the incor-
poration of new pieces of information into existing knowledge. In this sense, belief 
revision can be considered (with some respect) a “symbolic way of machine learning”. 
Besides common challenges that are usually tackled by belief  revision approaches, 
such as avoiding potential inconsistencies or the question which parts of the knowl-
edge are affected when a piece of information has to be forgotten (see, e. g., [13] for 
an overview), a further interesting aspect in relation to learning agents lies in the 
observation that revising knowledge seems to have the potential of being much faster 
than “relearning” it on a sub-symbolic or statistical level: In the case of revision, the 
new information is usually assured to be immediately available after performing the 
revision. In contrast, sub-symbolic approaches often need many iterations until  an 
agent  gets  “convinced”  that  formerly  learned  knowledge  is  no  longer  valid,  since 
numeric weights (e. g., relative frequencies and the like) are usually adapted stepwise 
during a sub-symbolic learning process. 
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In the context of the GVGAI competition [65], where a learning agent may be 
evaluated in other levels than those being trained in during a short evaluation phase, 
a faster adaption mechanism is essential for quickly adapting to the changes of a new 
unknown level. At the same time, larger parts of the knowledge that were learned 
before about the general game mechanics should be preserved. For this purpose and 
to further extent the capabilities of HKBs as a knowledge representation paradigm for 
learning agents in games, a simple yet effective  revision approach for HKB forward 
models is presented and applied here in the context of games. (An evaluation of the 
approach against common quality criteria for revision approaches is provided in [5].) 

Due to the origins  of  the idea of  creating a revision approach for HKBs with 
respect to the requirements of the GVGAI competition (see also the bibliographic re-
marks in Section 5.4 for details), the revision algorithm was designed to be used in 
(nearly) real-time environments and therefore has to be extremely lightweight and 
efficient. The algorithm is based on the idea of  adding,  removing or  exchanging an 
exception  in  a  forward  model  HKB   in  case  the  reasoning  algorithm   (see 
Algorithm 3.1 in Section 3.2) provides a wrong result compared to what is observed 
by the agent. 

Note  that  here,   consists  of  forward  model  rules  (see  Definition  5.2)  and, 
consequently,   is  provided  with  a  state-action  conjunction   
(representing a state and and action performed in that state) as input, and returns an 
information about the resulting subsequent state  (instead of an action). Thus, the 
forward model  represented by   has to be  revised,  if  the returned information 
about the subsequent state   does not conform to the corresponding information 
about the real subsequent state of the agent’s environment after performing action  
(i. e., if  

To determine whether or not a conclusion inferred from an HKB does not conform 
to the corresponding information about the real subsequent state   the revision 
algorithm uses at most two calls to the reasoning algorithm. (For a closer study on 
the efficiency of the HKB reasoning algorithm, see Krüger et al. [41].) 

Whether an exception is  added,  removed or  exchanged in the existing knowledge 
base depends on the level  of  an HKB   on which the rule  causing the wrong 
conclusion is located (according to [26]): 

• If a rule   that causes the wrong conclusion for a given state-action con-
junction   and the subsequent state information   is not 
located on level , a new exception will be added on level  

• Otherwise, if   is located on level   a new exception is only added, if 
removing the wrong exception on level  does not cause the reasoning algo-
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rithm to provide the correct conclusion. (In other words: The rule is exchanged, 
if removing it would not lead already to the desired conclusion.) 

By this, it will be avoided that, in case of multiple revisions, the number of rules 
on the most specific level  of the HKB successively increases over time, until it 
degenerates to a trivial HKB (cf. Section 3.3). 

Algorithm 5.1 formalizes the described approach. 

 

  

Algorithm 5.1 (Revision Algorithm for HKBs) (Source: adapted from [26])

The algorithm calls the reasoning algorithm  (Algorithm 3.1) to determine whether the 
HKB leads to the wrong conclusion about the subsequent state for the given state-action 
conjunction. A new exception is added on the most specific level if the wrong conclusion is 
produced by a rule firing on a more general level. Otherwise, an exception is removed if 
the removal causes the reasoning algorithm to infer the correct conclusion, or exchanged 
(i. e., added again after removal), if the reasoning algorithm still infers the wrong conclu-
sion after the removal. 

 

To assure that Algorithm 5.1 provides HKBs that adequately represent both the 
new information and the knowledge that has already been known before, a corre-
sponding evaluation of the algorithm can be found in [5]. 

The following example will demonstrate the ideas of Algorithm 5.1 in the context 
of a fictive more difficult level of the game Butterflies from Figure 5.7): 

Example 5.2 (Revising a Forward Model: Changes) After having learned the 
forward model from Figure 5.8 in the context of several levels of the game Butterflies 
(as shown in Figure 5.7), an agent is assumed to play a (fictive) more difficult level of 
the game. There, collecting butterflies increases the score by just one (instead of two). 
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Starting from the learned forward model HKB for scoring32 

                                     
                                               

          
                 

            
                  

from Figure 5.8 (b), it is assumed that the agent is in a state with a butterfly (object 
of type 5) being above its avatar, which is represented by the sensor symbol  
For the avatar’s orientation, the neutral sensor symbol  is provided, since 
the game mechanics of the game Butterflies do not require to distinguish different 
orientations of the avatar (i. e., the avatar simply moves in the corresponding direc-
tion when performing an action). Furthermore, it is assumed that the agent decides 
to perform  for a score increase of two by collecting the butterfly (ac-
cording to  After performing the action, the agent observes the subsequent 
state and remarks that the score increased by only one (instead of the expected in-
crease of two, as stated by the corresponding rule  
of  

The forward model HKB   will  now be revised using Algorithm  5.1 with 
 the state-action conjunction   

and the observed new subsequent state information   as input:  Since
it is   (see lines 1–2 of Algorithm  5.1), and since the firing rule 

 providing the wrong conclusion is not located on 
the bottommost level of the HKB (see lines 4–5 of Algorithm  5.1), a new rule re-
flecting the change will be added on the bottommost level of the HKB (see line 6 of 
Algorithm 5.1). After that, the revised version of  returned by the algorithm 
will be 

                                               
                                                         
     

       
   

        
                  (5.7)

and  will provide the correct inference now. 

32 Note that the HKB is denoted here as ordered set of sets, similar to Formula (4.3) on page 109. 
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Note that, since the avatar’s orientation is not relevant in the game of Butterflies, 
it might appear cumbersome that an exception is created here on the bottommost 
level of the HKB, instead of exchanging the rule   
However,  in  general  video  game  playing,  it  should  not  be  assumed  that  such  a 
property will remain unused in other levels of a game: As an example, a new level 
could introduce a butterfly net as a new object, which has to be used in the direction 
of the avatar’s current orientation to be able to catch a butterfly. 

The following example will consider revision in the case of a new object: 

Example 5.3 (Revising a Forward Model 2: New Object) Continuing with 
the revised version  from Example 5.2 (see (5.7)), it is assumed here, that the 
agent plays an even more difficult (fictive) version of the game Butterflies, where a 
new type of object appears: hornets. Hornets decrease the score by one, when being 
touched by the agent’s avatar. Also here (as in Example 5.2), the agent’s orientation 
is not of relevance and thus only the neutral sensor symbol  is provided for 
the corresponding sensor. 

The agent is assumed now to be in a state with one of the new hornet objects 
(object of type 6) above its avatar and the agent performs the action  
Since  the  agent  does  not  know  anything  about  hornets,  for  the  corresponding
state-action conjunction  ,  the reasoning algorithm 

 (Algorithm 3.1) falls back to the most general rule  and thus no score 
change will be expected. After having performed the action, the agent observes the 
subsequent state and remarks that the score decreased by one (instead of no score 
change, as expected). 

Thus, the forward model HKB  will be revised again using Algorithm 5.1 
with    and the observed new 
subsequent state information  as input. This results in the HKB

                                               
                                                         
     

       
   

        
               

                   (5.8)
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for  which   provides  the correct  conclusion both for  
 as well as for  (from 

Example 5.2). 

In case the agent will now play a level again where a collected butterfly increased 
the score by two, instead of one (e. g., as in one of the levels from which the original 
forward model HKBs from Figure 5.8 were learned), and assuming the same situation 
as in Example 5.2 with a butterfly above the agent’s avatar and the agent performing 

 a revision of  from Example 5.3 (see (5.8)) using Algorithm 5.1 
would simply remove the rule  

Note that by this means, the number of rules is  reduced, which may prevent the 
forward model HKB from steadily growing on the bottommost level through multiple 
subsequent revisions. Furthermore, note that the knowledge is selectively changed by 
Algorithm 5.1, without affecting other parts of the knowledge that were previously 
learned (like the knowledge about the hornets or the original common scoring me-
chanics of the game that was learned before). 

5.2.3 An Agent Model Combining Learning and Revision

In Section  5.1.2 a hybrid HKB/reinforcement learning agent model was described, 
which supports an underlying reinforcement learning approach with the extraction 
and exploitation of found rules in the state-action space. Similarly, here an agent 
model will be described that integrates the learning of a game’s forward model, the 
exploitation of the forward model and the possibility of revising it with environment 
changes in the context of the GVGAI framework [52]. 

However, the agent model presented here differs from the one that was described in 
Section 5.1.2 (see Figure 5.5), as it aims not at accelerating a learning process with 
found rules, but at making it possible to learn to play different a priori unknown 
games by means of HKBs. Furthermore, by learning a forward model, the agent mo-
del contributes to bridge the gap between the GVGAI learning track and the GVGAI 
planning track, by offering the possibility of applying common techniques used by the 
GVGAI planning community (such as monte carlo tree search, MCTS [21]) also in the 
learning track (see the beginning of Section 5.2). 

According to [5] and following ideas from the GVGAI competition [65], the agent 
model is separated into the agent’s training phase and the agent’s evaluation phase: 
The former realizes the learning of the forward model, whereas the latter concerns the 
exploitation and revision of the learned model. Figure 5.9 shows the agent model. 
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Figure 5.9 (Learning and Revision Agent Model) (Source: a. f. [26])

According to [5], in the training phase (left side of the figure), the agent 
performs random exploration and collects data about the environment 
for learning the forward model HKBs. At the end of the training phase, 
the agent creates the forward model HKBs from the data collected so 
far. When being evaluated (right side of the figure), the agent revises 
the forward model HKBs if they are not able to explain observations 
made in the evaluation environment.

 

The process described by the agent model from Figure  5.9 usually starts in the 
training phase (cf. [5]): In this phase, the agent explores the environment through 
random actions to collect data about the game. At the end of the training phase, the 
forward model HKBs are created (see Section 5.2.1).33 

33 In the GVGAI competition, the training phase could be rather short in the past (e.  g., five 
minutes in the competition’s round of 2017). However, for the presented approach, only about 

 seconds of training time were used in the context of several different games for learning 
eligible forward model HKBs from the collected data (see [5, 26]).

162

©
 2

01
8/

20
21

 IE
EE



5.2 Forward Model Learning

The subsequent evaluation phase usually comprises new levels of the game that 
were not seen by the agent during the training phase. These new levels can involve 
changed circumstances, like new objects or a different anatomy of the level. In this 
phase, after every action, the agent observes whether the changes of the environment 
fit to the forward model HKBs that were learned and created at the end of  the 
training phase: If a state change cannot be explained by the corresponding learned 
forward  model  HKB,  then  this  HKB is  revised  with  the  observed  changes  using 
Algorithm 5.1 (as described in Example 5.2 and Example 5.3). The agent’s decision-
making is then based on the (revised) forward model HKBs using techniques like 
MCTS [21] for performing forward simulations of the game to determine the possibly 
best next action. 

The agent model presented here integrates machine learning, knowledge represen-
tation and revision. Moreover, it allows to incorporate established techniques known 
from the computational intelligence in games community (such as MCTS [21]), which 
are commonly used in the GVGAI planning track. The GVGAI framework represents 
a challenging environment here, since agent models must be very responsive (40 mil-
liseconds per decision, as described in [5]). 

The presented agent model performed well in experiments made in the context of 
the  GVGAI framework  [52]  and outperformed several  previous  agents,  that  were 
participating earlier in the GVGAI competition [65]: According to the results in [5], 
the presented agent model (with MCTS being used for decision making based on the 
learned HKB forward model) dominated four previously participating agents regard-
ing the average reached game score in five out of ten diverse games from a training 
set of the GVGAI competition. Only three of the other competing agents were able to 
dominate the presented agent model (each of which in only one of the ten games). 
This resulted in the agent model being the best among the considered competitors. It 
increased the overall performance by  according to the used scoring system in 
comparison to the second best agent (which was the one by İlhan and Etaner-Uyar, 
see the description of the learning track agents in Section 2.3.3). The evaluation de-
tails of the presented agent model can be found in [5, 26]. 

As a further result, the agent model also allows to inspect the learned forward 
model HKBs, which may help to explain what the agent learned and can contribute 
to better understand the learned agent behavior as well as the decision-making. 
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5.3 Summary

This chapter presented two HKB-based agent models that incorporate learning tech-
niques and decision making based on symbolic knowledge. Analyses and evaluations 
of the benefits of this incorporation were provided in the context of grid world sce-
narios and different games from the GVGAI competition [65]. 

It was shown in Section 5.1 that incorporating the HKB extraction algorithms into 
an agent’s learning process can speed up learning. Depending on how eligible the 
exploitation of heuristics is for the underlying problem, this can be beneficial already 
in the first –  of the learning process. Moreover, Section 5.1 showed, that these 
approaches can also help to master games that are in principle easy to solve but 
typically cause problems for common algorithms (see Table 5.3 and Appendix B). 

In  Section  5.2,  an  HKB-based  agent  model  was  described  that  incorporates 
learning, the exploitation of  learned symbolic  knowledge and the revision of  such 
knowledge in the context of  new levels of  the same game.  The agent model  was 
developed in the context of a joint work together with Jun.-Prof. Dr.-Ing. ░░░░░░ 

 (see bibliographic remarks in Section  ░░░░░ 5.4). It contributed to  general video 
game artificial intelligence (GVGAI) [53] by enabling the use of state-of-the-art meth-
ods known from the GVGAI competition’s planning track (such as monte carlo tree  
search, MCTS [21]) in the context of the competition’s learning track as well, where 
no forward model  of  the game is provided to an agent.  By this means,  the per-
formance in the learning track could be increased by about   compared to the
best agent model of one of the GVGAI competition’s previous rounds at that time
(see [5, 26] for a detailed evaluation). 

5.4 Bibliographic Remarks

Section 5.2 has its origins in the field of general video game playing [53] and resulted 
from joint works with  Jun.-Prof.  Dr.-Ing.    (from  ░░░░░░ ░░░░░ Leibniz Uni-
versity Hannover). In our joint works [5,  26], HKBs were used to enable agents to 
quickly learn forward models of different video games from the  general video game 
artificial intelligence (GVGAI) competition [65]. 

As described earlier, in this setting, agents were first trained on several levels of a 
game and were then evaluated on different levels of the same game. In the training 
phase, means of machine learning were used to statistically learn the forward model 
of  the  game,  whereas  in  the  evaluation  phase,  due  to  time constraints  from the 
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GVGAI competition, it was not possible to perform a statistical “relearning” in case 
changes of the game where noticed by the agent. For this purpose, the revision algo-
rithm provided in Section 5.2.2 of this chapter was implemented to let the agent react 
quickly to changes of the environment, while still considering the knowledge learned 
in the training phase. 

The cooperation resulted in a conference paper [26], where HKBs were first in-
troduced together with revision algorithm as an efficient knowledge representation 
paradigm for general video game playing. As an extension to this work, the journal 
article [5] has been published in the IEEE journal Transactions on Games at the end 
of 2020 (date of early access). Besides a formalization of the revision algorithm and 
further extended contents, this work also provides intuitions for the validation of the 
revision algorithm against an adapted version of the basic postulates by Alchourrón, 
Gärdenfors and Makinson [2, 35]. 

In the context of the cooperation, the author’s work focused on the representation 
of the learned forward models as HKBs and their integration to an agent model, as 
well as on the development of the revision approach and its validation. The work by 
Jun.-Prof.  Dr.-Ing.   focused on the exploitation of the learned░░░░░░ ░░░░░  
(and revised) forward models using search algorithms like  monte carlo tree search 
(MCTS) [21] and the study of the resulting agent model in the context of different 
games from the GVGAI framework by Perez-Liebana et al. 
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6. Conclusion and Future Work

After having studied the concept of hierarchical knowledge bases (HKBs) in different 
applications in the context of games (and related scenarios), this chapter summarizes 
the results of this work and provides the conclusions (Section  6.1). After that, an 
outlook on possible future work will be outlined, which also comprises some further 
hints to applications outside the scope of games (Section 6.2). 

6.1 Summary of the Results and Conclusions

This work investigated ideas for extracting knowledge bases from learning agents, to 
be able to explain their behavior in a comprehensible way. Moreover, it was investi-
gated, how the exploitation of such extracted knowledge can contribute to increase an 
agent’s learning capabilities. 

To achieve these goals, different algorithms have been described, which allow for 
learning an entire knowledge base that represents the behavior learned by an agent. 
The need for a compact representation of the resulting knowledge led to the concept 
of HKBs: These knowledge bases have been designed to represent the knowledge in 
the form of rules with exceptions on different levels of abstraction. Thereby, HKBs 
are not only a compact representation paradigm but are also easy to read and intui-
tively comprehensible to people not having a strong background in logic (the com-
prehensibility of HKBs has been studied in [41]). HKBs have been developed with 
simplicity in mind, both regarding comprehensibility, reasoning and revision efficiency. 
This renders them especially useful in the context of (near) real-time environments, 
such as games (and related domains). 

More detailed, the main results of this work can be summarized as follows: 

• HKBs as an intuitive and comprehensible knowledge representation approach:  
With HKBs (Section 3.1), an approach has been developed that is able to com-
pactly  represent  the  behavior  of  agents.  The  resulting  representations  show 
some  interesting  properties  regarding  comprehensibility  (see  also  [41])  and 
thereby are also potentially accessible to people without a strong background
in logic. 
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• Different extraction approaches to learn comprehensible representations in the  
form of HKBs from data:  
A preliminary approach and its extension based on the APRIORI algorithm by 
Agrawal et al. [1], as well as a more elaborate algorithm have been developed to 
learn HKBs from data (Section 3.4 and Section 3.5). The latter is more trans-
parent than its precursors and able to produce eligible (rougher) HKBs when 
being stopped before finishing the extraction. It has been shown that the algo-
rithm is complete for deterministic state-action sequences of an agent. Using 
these algorithms, the behavior of different agents, that learned to act mean-
ingful  in  the  context  of  games  (and  similar  scenarios)  could  be  explained 
(Section 4.1). 

• Efficient reasoning and revision algorithms for  the resulting HKBs:  
Both the reasoning algorithm (Section 3.2) for HKBs and the revision algorithm 
for  forward model  HKBs (Section  5.2.2)  are  efficient  enough to be used by 
agents in (near) real-time environments, such as games.  The efficiency of the 
reasoning algorithm has also been considered in [41]. 

• Two hybrid agent models incorporating learning and knowledge representation: 

– A hybrid machine learning/knowledge representation agent model that ac-
celerates an agent’s reinforcement  learning process:  
The concepts of HKBs and the corresponding extraction algorithms have 
been incorporated into an agent model to increase the learning speed of
a reinforcement learning agent (Section  5.1). The approach conforms to 
common modularization criteria from software engineering, since the in-
corporation of the HKBs and the extraction algorithms are independent 
from the underlying reinforcement learning approach, that is used for the 
machine learning part. Thereby, the presented HKB approaches are com-
binable with different reinforcement learning approaches. 

– An agent model incorporating learning, exploitation and revision of forward  
models  in the context of a priori unknown environments (games):  
In  the joint  works [5,  26]  with  Jun.-Prof.  Dr.-Ing.   ░░░░░░ ░░░░░ 
(from  Leibniz  University  Hannover),  the  ideas  of  HKBs  could  be  suc-
cessfully adapted to be able to learn forward models (i. e.,  “how things 
work”) of a priori unknown environments in the context of video games 
(Section 5.2). The representations of such forward models could be learned 
and exploited efficiently to be applied in the (near) real-time framework for 
general  video  game  playing (GVGAI)  by  Perez-Liebana  et  al.  By  this 
means,  it  was  possible  to  apply  state-of-the-art  algorithms  from  the 
GVGAI planning community (like monte carlo tree search, MCTS [21]) in 
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case no forward model of the game is provided to the agent, which in-
creased the performance over other agents in the learning track’s previous 
rounds of the GVGAI competition (see Section 5.3 and [5, 26]). The results 
contributed to the incorporation of  knowledge representation techniques 
and other approaches from the AI in games community and were men-
tioned in the book on general video game artificial intelligence [53]. 

• The InteKRator toolbox  for using HKBs in practice:  
Since this work is strongly geared toward practical aspects, an important result 
is the implementation of the most relevant approaches into the  INTEKRATOR 
toolbox [38]. Besides the idea of making the approaches accessible to a broader 
community,  it  can  also  be  considered  a  proof-of-concept  for  their  practical 
usefulness.  The toolbox is  implemented  in  JAVA as  an open  source  library/ 
command  line  applications.  It  allows  for  learning  HKBs from data  and for 
efficiently performing reasoning and revision on HKBs. Furthermore, it is also 
possible  to  combine  these  techniques  with  continuous  numeric  sensory  data. 
INTEKRATOR was meanwhile  also  used outside  the scope  of  games,  e.  g.,  in 
medical informatics (for hospital logistics/process optimization research) [6] or 
for educational purposes at the  Summer School in Bioinformatics and High-
Dimensional  Statistics [37]  at  the  Institute  of  Medical  Biostatistics,  Epide-
miology  and  Informatics  (IMBEI)  of  the  University  Medical  Center  of  the 
Johannes Gutenberg University Mainz in 2020. In a more recent joint work at 
IMBEI [10], the INTEKRATOR toolbox has also been proposed for automatically 
creating expert systems from data (see bibliographic remarks in Section 3.7). 

• As a side product, a model  for subjectively experienced strategic depth:  
As a further result emerging from HKBs, a model for the strategic depth that
is subjectively experienced by humans when playing games was developed in a 
joint work [11] with Dr.   (formerly at TU Dortmund University, at░░░░ ░░░  
the time of writing at Queen Mary University of London and modl.ai, Copen-
hagen). This result served as a foundation for an interactive educational exhibit 
that was created for the company Z Quadrat GmbH in Mainz, Germany. With 
this exhibit, users can play different levels of a game and evaluate the strategic 
depth estimates of the algorithm against their personal feeling. Moreover, users 
can learn about knowledge representation, by inspecting HKBs representing the 
knowledge of their playtraces. The exhibit was accepted at the German exhi-
bition ship MS Wissenschaft [50] and was shown in a large number of German 
and Austrian cities in 2019. It was later selected for the ScienceStation traveling 
exhibition (another project of the German scientific communication organization 
Wissenschaft im Dialog, WiD) [59] and, in this context, it was shown at several 
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train stations in Germany in 2019. It was furthermore selected by the Deutsches 
Museum Bonn (German Museum in Bonn) [24] for an exhibition on AI [48]. 

The concepts resulting from this work stimulated bachelor’s and master’s theses 
(e. g, [40,  12]), partly contributed to other’s PhD work [25] and resulted in further 
joint works by the author [6] as well as by others [42]. 

Besides  the opportunity  of  growing this  work in  stimulating environments  and 
thereby getting in touch with ambitious scientists and students over time (see Section 
“Acknowledgments” for details), further possible reasons for that are: 

• Reasoning for HKBs (as well as revision) is lightweight and very efficient, and 
can therefore be used in (near) real-time environments (cf. [41]). This distin-
guishes HKBs from several other knowledge representation approaches and ren-
ders HKBs an eligible approach for agents, especially in the context of games. 

• The proposed learning/extraction algorithms create  HKBs with rule  weights 
representing conditional probabilities —a concept widely-
used both in knowledge representation and other communities. Together with 
the created HKBs being  compact (in case the intrinsic structure of the input 
data allows for a compact representation) and complete (for deterministic data 
in case of the advance extraction algorithm), this renders HKB extraction a 
sound and easily interpretable way for getting insights into data (such as state-
action sequences produced by agents). 

• With the INTEKRATOR toolbox, the concepts are available in a well-documented 
and easy to use open source software, that can be used both stand-alone and as 
a programming library (also outside the scope of games; first experiences have 
been made, e. g., in medical informatics). 

• The representation of knowledge in the form of rules with exceptions appears
to  be  “natural”  and  easily  accessible,  also  to  people  outside  the  knowledge 
representation community (cf.  [41]).  This  is  underpinned by the educational 
interest in HKBs (as shown, e. g., in the context of the exhibit that was men-
tioned earlier).34 

With the aforementioned points, the work contributed to the practical usage of 
combined machine learning/knowledge representation approaches in the context of 
agents, with applications especially (but not solely) in games. This may help to fur-
ther establish the usage of such approaches in the AI in games community (see [53]), 

34 The author’s personal experiences of explaining the basic ideas of HKBs to many people in 
different contexts (e. g., to AI classes at school [4], to non-computer science researchers and 
students [37] or to diverse communities at exhibitions) also conforms to that. 
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and hopefully also to other communities. Some first attempts to that will be briefly 
outlined in the following section. 

6.2 An Outlook on Future Work

Despite the results provided in the previous section (Section  6.1), there are further 
ideas that might be interesting to be considered for future work. Some of these ideas 
will be briefly outlined here. 

An important and still open question in the context of this work is when a machine 
learning approach should be used and when an agent should preferably rely on a 
revision approach for adapting to changes in the environment. In Section 5.1, it was 
shown that the exploitation of symbolic knowledge can vastly improve the perfor-
mance of an agent (at least if the environments allows for such exploitation, which is 
assumed to be usually the case for meaningful environments) and that this usually 
helps early in the learning process. However, these sections do not state anything 
about when to revise the extracted HKBs. Moreover, in Section 5.2, it was described 
that meaningful forward models of  unknown environments can be learned quickly 
using HKBs in conjunction with a corresponding learning algorithm. Even if  this 
approach already incorporates revision, the decision when to perform revision instead 
of relying on the machine learning approach was implied by the switch between the 
training and evaluation phase of the GVGAI competition’s framework [65]. The in-
corporation of a mechanism that lets an agent decide this on its own (e.  g., from ob-
serving the environment) into an agent model as shown in Figure  5.9, could be an 
interesting next improvement here. 

From a more theoretical point of view, it could be interesting to have a closer look 
on the complexity of the presented algorithms. Although the efficiency of the algo-
rithms and the resulting performance gain in the context of learning agents has been 
shown already in several experiments in Section  5.1 and Section  5.2 (the latter re-
presenting a near real-time setting) as well as in the study [41]: Having a closer look 
on it from a complexity theoretical point of view could further underpin these results. 
Furthermore,  HKBs  in  conjunction  with  the  reasoning  algorithm (Algorithm  3.1) 
could be investigated regarding its inference properties. Although this work already 
showed the functionality and usefulness in several different contexts, it might be in-
teresting to interconnect it more tightly with logic-based approaches. In [8] and [40], 
it had already been outlined that it is in principle possible to translate HKBs into 
answer set programs, which can be considered a first step in this direction. Since it 
has been shown in [41] that reasoning for HKBs can outperform reasoning for answer 
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set programs, it could also be beneficial to consider the inverse direction (i.  e., trans-
lating answer set programs to HKBs). 

As the introductory citation in the beginning of this work states that games might 
be interesting subjects to prepare for “real-world problems”, one of the most inter-
esting future works might be the transfer of the concepts and approaches mentioned 
here to other domains outside the scope of games. First attempts to this have already 
been made in  medical informatics in the context of multi-agent simulations for op-
timizing hospital processes [6]. There, a hospital process involving patients, doctors 
and nurses has been simulated to learn behavioral rules in the form of HKBs for the 
different individuals participating in the process. The HKBs have been learned using 
an earlier version of the INTEKRATOR toolbox [38] (see also Appendix A) and have 
been further processed manually to simplify and adapt them. More recently, in [10], 
INTEKRATOR has also been proposed for the automated creation of expert systems 
from data in the medical context. This shows the potential of the work also for fur-
ther applications outside the scope of games. 
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A. Introduction to the INTEKRATOR Toolbox

This part of the appendix serves as a basic introduction to the INTEKRATOR toolbox. 
The INTEKRATOR toolbox implements the most important results of this work to be 
used in practice. It is intended as a lightweight toolbox geared toward being used in 
the context of agent applications, however, it can also be used in other areas outside 
the scope of agents. The toolbox has recently been accepted for publication in the 
context of automatically learning expert systems from medical data [10], showing that 
this work’s results can also be transferred to other applications. The content pre-
sented here represents a selection of the most important features of the INTEKRATOR 
toolbox, mainly following [38]. 

After providing some general information about the interface (Section  A.1), the 
main features of the learning module (Section A.2) will be presented. After that, the 
usage of the inference module (Section  A.3) and the revision module (Section  A.4) 
will  be  explained.  Finally,  the checking  functionality  for  analyzing  the  knowledge 
quality will be described (Section A.5). 

A.1 Basic Interface

The INTEKRATOR toolbox is written in the JAVA programming language. According 
to [38], it can be both used as a command line application (for calling it manually or 
as an external process) and as a JAVA library. The library is extensively documented 
using JAVADOC (see, e. g., [16], Chapter 7, pp. 203–208). The toolbox is lightweight, 
consisting only of a single .jar-file without any external dependencies. By this means, 
it can be easily integrated into other applications (such as web applications). The 
command line interface is geared toward usability and efficiency. It operates on simple 
text files and also allows for calling the toolbox as an external process from other 
(non-JAVA) applications. 

Following [38], the basic command structure of the INTEKRATOR toolbox is 

  (A.1)

where   is  the  input  file  to  be  processed  according  to  the   
 is an optional output file to which the results are written in addition to 
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the standard out (if provided) and  indicates that multiple   
 sequences can be used for sequential processing with a single call. 

The following sections will provide information on how the   look in 
detail  depending on the respective use case.  The parameters  and their  respective 
options are similar to the interface offered by the corresponding methods when using 
the JAVA library instead. 

A.2 Learning

Learning is implemented using the results from Section 3.5 (especially Algorithm 3.3 
and the extensions from Section 3.5.3 and Section 3.5.4).

According to [38], to learn an HKB from a state-action sequence, each line of the 
file  provided  by   from (A.1)  must  contain  state-action  pairs  of  the  form 

 (separated by space characters),  where   describe an agent’s 
state in  which action   has  been performed.  The   from (A.1) are of
the form 

  

where   represent one or more optional learning parameters, that can be 
used in arbitrary order as well as in combination (if not otherwise stated). Some of 
the most important ones will be described here, following [38] (a more complete list 
can be found in [38]): 

•  
Ensures that the resulting HKB has a top level rule (even if not needed for any 
of the state-action pairs of the input data to infer the action from the state). 

•  
Ensures that the resulting HKB includes all rules learned from data (even those 
that are not needed for any of the state-action pairs of the input data to infer 
the action from the state). 

•  
Discretizes columns containing numeric data by clustering (see Section 3.5.3).35 

– If the optional   is provided, each column  (where   denotes the 
first column) will be discretized to at most  sensor symbols, each repre-

35 The possibly unusual appearing syntax of the curly bracket after the column number can be 
considered a “funnel” that concentrates the numeric values to learned sensor symbols. 
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senting one cluster. Multiple   can be provided, one for each numeric 
column that should be discretized. 

– If the optional   is provided,   must be a comma-sepa-
rated list of names (without space characters). Each column   (where   
denotes the first  column) will  be discretized to a maximum number of 
clusters according to the number of names provided, and the names will
be used for the resulting sensor symbols representing the clusters. Mul-
tiple   can be provided, one for each numeric column that should
be discretized. 

– If the -option is provided, additional information about the number of 
clusters and the percentage covered by a specific cluster symbol will be 
provided for each column  (see (3.3) in Section 3.5.3). Multiple columns  
can be provided, one for each numeric column for which additional infor-
mation should be provided. 

In either of the three cases here, the  -keyword can be used for   to refer
to all columns. 

•  
Only the most potentially relevant sensors are considered for learning to accel-
erate the learning process in case of higher-dimensional data (see Section 3.5.4). 
If the optional   is provided, only the   most potentially relevant sensors are 
considered. Otherwise   is determined automatically from data using a clus-
tering approach (as described at the end of Section 3.5.4). 

•  
Only   state-action pairs from the input state-action sequence are randomly 
selected for learning. If   is provided,   percent of the state-action pairs are 
randomly selected instead. Sampling can drastically speed up the learning pro-
cess, but may result in incomplete HKBs (i. e., it might not be possible to infer 
the correct  action from the state of  each state-action pair  from the original 
state-action  sequence,  even  if  the  original  state-action  sequence  was  deter-
ministic; see Definition  3.1). However,   might be used subsequently to 
evaluate the quality of  the resulting HKB (see Section  A.5).  In case of  the 
original state-action sequence being deterministic, completeness of the learned 
HKB can be ensured by revising it subsequently with every state-action pair of 
the original state-action sequence (see Section A.4). However, this will probably 
result in a less compact representation with additional exceptions on the most 
specific level. 
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A.3 Reasoning

The reasoning approach of the  INTEKRATOR toolbox is based on the results from 
Section 3.2 (especially Algorithm 3.1). 

To infer one or more action(s) from a provided state and a learned (or manually 
created) HKB, according to [38], the HKB must be contained in the   from 
(A.1). The  from (A.1) must be of the form 

  

where  is an optional parameter for providing additional explanatory information 
and  represents the state from which the action(s) will be inferred. 

The parameter  must be of the form  (separated by space charac-
ters). If the optional parameter  is provided, then the rule(s), based on which the 
results are inferred, will also be provided. 

If more than one action is provided as result, still following [38], this means that 
these actions are equally good according to the HKB of the  

A.4 Revision

Revision is based on Algorithm 5.1. However, the INTEKRATOR toolbox implements 
the revision approach in a more general way, which allows to revise any HKB (not 
only those representing forward models of games; cf. Section 5.2.2). 

To revise a learned (or manually created) HKB, according to [38], the HKB must 
be contained in the  from (A.1) and the  from (A.1) must be of 
the form

  

where   is  a state-action pair  representing the new knowledge that has to be 
integrated in the HKB. 

The parameter  must be of the form  (separated by space charac-
ters) and states that it should be possible to infer action   from state   
after revision. 

Note that, in principle, INTEKRATOR also allows for performing revision on levels 
other than the most specific one (in case the state provided in  is not a complete 
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state). However, even if this is technically possible in the same way, it does neither 
conform to Algorithm 5.1 (where revision is only done on the most specific level), nor 
is the validation of the revision approach done in [5] guaranteed to hold in this case. 
For this reason, the INTEKRATOR toolbox provides a warning, if revision is not done 
on the most specific level (as far as this can be determined from the HKB to be 
revised). Also here,  might be used subsequently to evaluate the impact of the 
revision on the overall quality of the resulting HKB (see Section A.5). 

A.5 Checking

To check the quality of a learned (or manually created) HKB, it is possible to perform 
a check of the HKB against a state-action sequence. In this case, it is measured for 
how many of the state-action pairs contained in the state-action sequence the action 
is correctly inferred from the corresponding state. 

According to [38], the  from (A.1) must be the HKB to be checked and the 
 from (A.1) must be of the form

  

where  is an optional parameter resulting in more detailed results if provided 
and  is the state-action sequence against which the HKB is checked.

Every line in   must be a state-action pair of the form   If the 
 option is provided, the percentage of state-action pairs that are correctly 

covered by the HKB is in addition shown individually for every action. 
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B. Online Appendix

This part of the appendix refers to the online appendix that accompanies this work. 
There, especially videos will be provided to further underpin some of the presented 
results in a visual way. 

The online appendix can be accessed through [51] or by scanning the code pro-
vided in Figure B.1. 

 

Figure B.1 (Access to Online Appendix) (Source: created using [58])

Common software can be used to scan the code as an alternative way 
to access the online appendix. 
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