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a b s t r a c t

Human gait is a complex and unique biological process that can offer valuable insights into an individual’s 
health and well-being. In this work, we leverage a machine learning-based approach to model individual 
gait signatures and identify factors contributing to inter-individual variability in gait patterns. We provide a 
comprehensive analysis of gait individuality by (1) demonstrating the uniqueness of gait signatures in a 
large-scale dataset and (2) highlighting the gait characteristics that are most distinctive to each individual. 
We utilized the data from three publicly available datasets comprising 5368 bilateral ground reaction force 
recordings during level overground walking from 671 distinct healthy individuals. Our results show that 
individuals can be identified with a prediction accuracy of 99.3% by using the bilateral signals of all three 
ground reaction force components, with only 10 out of 1342 recordings in our test data being misclassified. 
This indicates that the combination of bilateral ground reaction force signals with all three components 
provides a more comprehensive and accurate representation of an individual’s gait signature. The highest 
accuracy was achieved by (linear) Support Vector Machines (99.3%), followed by Random Forests (98.7%), 
Convolutional Neural Networks (95.8%), and Decision Trees (82.8%). The proposed approach provides a 
powerful tool to better understand biological individuality and has potential applications in personalized 
healthcare, clinical diagnosis, and therapeutic interventions.

© 2023 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and 
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative

commons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Classification and structuring the object of research is a funda
mental aspect of biology. The process of classification involves 
identifying traits or characteristics unique to specific groups of or
ganisms. Since Linne’s fundamental work on the taxonomy in 
biology in 1735, various criteria for classification have been pro
posed, and advancements in technology and research methods have 
led to increasingly sophisticated classification systems over time.

In recent years, the development of classification systems in 
computational and structural biology has been influenced by the 
utilization of data-driven approaches, particularly (deep) machine 

learning (ML) methods. These methods are based on computational 
algorithms that enable the analysis and detection of patterns in the 
provided data. Employing ML methods for biological data could fa
cilitate the exploration of novel criteria for taxonomies across dif
ferent hierarchical levels (e.g., kingdoms, classes, families, and 
species) [1,2] and opened up the possibility for distinguishing and 
analyzing individual organisms within a species in more detail. 
Taking into account the diversity within species may lead to new 
insights and a more complete understanding of the biology and 
ecology of organisms and their interactions with the environ
ment [3].

Using human gait as an example, we will demonstrate the ap
plication of ML methods to model biological individuality in bio
mechanics. The ability to recognize individual humans by their gait 
pattern, i.e., gait recognition, is a widespread phenomenon that has 
been studied in recent decades. This is indicated by studies showing 
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that individuals can identify friends and colleagues visually by their 
walking style [4], even at a distance and with limited visibility [5]. In 
recent years, biomechanical studies have corroborated these ob
servations using ML-based classification. ML methods (e.g., artificial 
neural networks and support vector machines) were used to de
monstrate that individuals can be accurately identified based on 
kinetic (e.g., 99.8% in 128 individuals [6]), kinematic (e.g., 100.0% in 
57 individuals [7]), and electromyographic (e.g., 98.9% in 79 in
dividuals [8]) data measured during walking. Further studies 
showed that biomechanical gait patterns allow for identifying in
dividuals across different days [8,9], months [6], emotional states 
[10], and fatigue [11]. These findings suggest that human gait fea
tures satisfy even stringent biometric demands, such as possessing a 
high degree of uniqueness (i.e., a feature should not be identical for 
any two persons) and permanence (i.e., a feature should remain 
identifiable over time) [12]. In analogy to the handwritten signature, 
which is often used as proof of a person’s identity in daily life, the 
notion of “gait signatures” emerged in recent years [8,13]. The gait 
signature describes the unique gait patterns of an individual person.

Beyond the classification of gait signatures, recent work has ad
dressed the question of what makes a person’s gait unique. One 
possibility to approach this question is to analyze which input fea
tures or portions of the input signal the ML models use for classifi
cation. To this end, explainability methods are used to characterize 
gait signatures by highlighting which gait features were used by the 
ML models to identify an individual person [7,14].

To date, biomechanical research on gait signatures has been 
conducted primarily on small-scale datasets. The growing number of 
publicly available ground reaction force (GRF) datasets in recent 
years [15–17] offers the possibility to investigate gait signatures on a 
larger scale. Following previous work on gait signatures, this work 
examines the individuality of GRF-based gait signatures by (1) 
proving their uniqueness in a large-scale dataset and (2) highlighting 
gait characteristics that are unique to each individual.

2. Related work

The idea that each individual has a distinct (unique) walking 
pattern (gait signature) has gained attention for various purposes, 
such as healthcare, authentication, and surveillance. To demonstrate 
the uniqueness of human gait patterns, a variety of sensor modalities 
have been utilized in the literature [18]. These include (i) vision- 
based approaches, which employ RGB, infrared, or depth cameras to 
extract gait features from images or videos, (ii) force- or pressure- 
based approaches, which use instrumented platforms or insoles to 
measure underfoot pressure distribution or GRFs during the stance 
phase, and (iii) accelerometry-based approaches, which record ac
celeration using an accelerometer or inertial measurement unit 
(IMU) in a mobile phone or wearable device.

Research on the uniqueness of gait signatures has primarily fo
cused on the gait-based identification or re-identification of in
dividuals (i.e., gait recognition) in surveillance scenarios [18]. Gait 
recognition in surveillance scenarios is often performed at a (large) 
distance without “user-interaction”, i.e., no active participation of the 
monitored individual. To allow for remote recognition and mon
itoring, vision-based approaches are predominantly used. In addi
tion to gait-related features, anthropometric characteristics (e.g., a 
person’s height, and body proportions) are commonly utilized to 
compensate for variations in clothing, camera angles, and other 
variables that can bias gait recognition. Incorporating anthropo
metric attributes can enhance accuracy and reduce false positive 
error rates [19]. The emergence of deep learning methods has greatly 
advanced the field of image classification, enabling ML models to 
achieve performance in vision-based subject re-identification tasks 
with accuracies of 89.2% and 99.9% on large-scale datasets, such as 

the OU-ISIR [20] and the OU-MVLP [21] dataset with 4007 and 
10,307 individuals, respectively [22].

In the context of healthcare scenarios, biomechanical research on 
gait signatures diverges from surveillance research by analysing in
trinsic properties of the musculoskeletal locomotor system rather 
than focusing on the task of re-identification. A goal in biomechanics 
is to model the individual’s gait by identifying subject-specific 
characteristics (e.g., for tailoring interventions to subject-specific 
needs). Biomechanical gait analysis is performed at rather small 
distance with “user-interaction”, i.e., markers and electrodes are 
placed on the person’s body, persons are familiarised to the ex
perimental protocol and follow instructions from the examiner. 
Three-dimensional gait analysis (3DGA) using high-resolution re
cording devices (e.g., infrared cameras and force platforms) in 
standardized laboratory conditions is an established standard in the 
biomechanics community. 3DGA focuses on the quantitative de
scription and biomechanical analysis of human gait from a kinematic 
(i.e., joint angles), kinetic (i.e., ground reaction forces and joint 
moments), and muscular (i.e., electromyographic activity) point of 
view [23,24]. The extensive amount of effort required to collect all 
these data modalities for each individual in 3DGA results in a con
siderably smaller pool of available datasets compared to the vision- 
based approaches in surveillance scenario. GRF data represent a 
trade-off between the time- and resource-consuming to capture but 
accurate 3DGA data and the rather easy to capture but less accurate 
vision-based data from RGB cameras. GRF data provide a high ac
curacy making it suitable for biomechanical applications. However, 
they provide less differentiated information on the gait process as 
the motion information of all joints gets superimposed in the GRF 
data. In the absence of body segment- and joint-specific motion 
information, classification of gait signatures based on GRFs can be 
considered a challenging task.

GRF measurements provide high-resolution data that are re
corded with force or pressure platforms embedded in the ground. 
For the analysis using GRFs, often either geometric features, spectral 
features, or a combination of both are employed. Geometric features 
are mostly based on key events in the GRF profile, such as local peaks 
and valleys of the characteristic M-shaped waveform [25]. Spectral 
features can be obtained by signal transformations, such as the Fast 
Fourier Transform (FFT) for power spectral densities [26]), or the 
Wavelet Packet Decomposition (WPD) [27,28]. In contrast to these 
feature-oriented approaches, studies used the entire waveform as a 
holistic description of the GRFs.

In total, we identified ten studies that used a time-continuous 
(holistic) representation of GRF data to investigate the uniqueness of 
gait signatures. Table 1 provides an overview of the current state of 
research on the classification of gait signatures using a time-con
tinuous representation of GRF data. We included only studies that 
examined GRFs during walking at self-selected walking speed 
without additional interventions (e.g., carrying loads). All identified 
studies were limited to healthy individuals.

The identified studies varied in several aspects, including the 
number of individuals studied (N), the number of gait recordings per 
individual, the footwear condition, the dimensionality and laterality 
of GRFs collected (only the vertical GRF (GRFV) component or all 
three GRF components (GRF3D); unilateral or bilateral), the features 
used to characterize the gait, and the ML method applied. Some 
studies had as few as 9 individuals, and others involved up to 200. 
Similarly, the number of gait recordings per individual ranged from 6 
to over 100. Both parameters are central for contextualizing the 
obtained results in terms of their generalizability. It is also important 
to note that most individuals wore shoes, but several studies only 
provide vague information on the type of worn shoes. The studies 
used different ML methods for classification, including hidden 
Markov models (HMMs), k-nearest neighbor (k-NN) with dynamic 
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time warping (DTW), support vector machines (SVMs), and con
volutional recurrent neural networks (ConvRNNs).

The studies show that holistic GRF analysis can be used to ac
curately identify individual gait signatures, with prediction ac
curacies over 90%. High accuracies were achieved by analyzing the 
GRF3D using SVMs. Both bilateral [6,7], as well as unilateral data 
[10,11] performed well with correct classification rates (CCR) of 
98.5% (unilateral) up to 100.0% (bilateral). Other studies using k-NN 
(DTW) [32,33] and ConvRNN [34] classifiers achieved similar levels 
of accuracy, with CCRs ranging from 96.0% to 99.0%. Using only the 
unilateral GRFV Addlesee et al. [29] achieved a slightly worse out
come of 91%. Two studies did not report the CCR but the Equal Error 
Rate (EER) - an often used metric in authentication. The EER is where 
the percentage of false acceptances and false rejections is the same. 
While Derlatka [31] achieved a low EER of ∼ 2.8%, again with bi
lateral GRF3D, Vera-Rodriguez et al. [30] got a higher EER with uni
lateral GRFV and an approach based on dimensionality reduction by 
principal component analysis (PCA).

Overall, these studies suggest that the identification of gait sig
natures using a holistic (time-continuous) representation of GRFs is 
a promising approach with high accuracy rates achieved. The studies 
suggest that using bilateral GRF3D data can improve prediction ac
curacy compared to using unilateral GRFV. Additionally, the studies 
found that using shoes during gait analysis did not significantly af
fect classification accuracy.

3. Methods

3.1. Datasets

For our classification experiments, we utilized subsets of the AIST 
Gait Database [15], the GaitRec dataset [16], and the Gutenberg Gait 
Database [17], which contain bilateral GRF recordings during level 
overground walking. The number of gait analysis sessions and the 
number of gait recordings per session varied among participants and 
datasets. Our classification experiments were standardized by in
cluding only data from participants who walked barefoot, were in
jury-free, and walked at a self-selected (preferred) speed. Moreover, 
we used data from the initial gait analysis session of participants 
who had at least eight gait recordings available. For participants who 
had more than eight gait recordings available, we randomly selected 
eight recordings. In total, we used 5368 gait recordings from 671 
distinct participants. Table 2 summarizes demographic details for 
the different datasets and provides an overview of the data used for 
our classification experiments.

3.2. Data recording

Bilateral analog force plate signals were recorded by asking 
participants to walk at their self-selected (preferred) speed on a level 
and approximately 10 m long walkway. The analog force plate sig
nals of successive stance phases of the right and left foot were re
corded by two or more force plates. For more details on the 
hardware configurations and settings used, refer to the descriptions 
of the underlying datasets (i.e., AIST Gait Database [15], GaitRec 
dataset [16], and Gutenberg Gait Database [17]).

3.3. Data processing

The three-dimensional GRF components – anterior-posterior 
(GRFAP), medio-lateral (GRFML), and vertical (GRFV) – were calculated 
in a uniform way based on the analog force plate signals. To ensure 
consistency and comparability across all datasets, we standardized 
the data processing steps. The analog force plate signals were 
downsampled to 250 Hz and the GRF signals were filtered using a 
second-order Butterworth bidirectional low-pass filter with a cut-off 
frequency of 20 Hz. The stance phase was determined based on the 
filtered GRF signals using a GRFV threshold of 25 N. Each GRF signal 
was time-normalized to 101 data points, corresponding to 100% 
stance phase, and normalized to the body weight in units of 
N∕(kg*9.81m∕s2). The GRFAP and GRFML signals were unified to en
sure consistency regardless of the walking direction. For this pur
pose, the medial and anterior forces were transformed into positive 
values, while the lateral and posterior forces were transformed into 
negative values. Overall, this standardized data processing approach 
ensured that the gait recordings were directly comparable across all 
datasets.

3.4. Data analysis

The GRF recordings were primarily classified with a linear 
Support Vector Machine (SVM), due to its runtime efficiency [35]. In 
addition, we also investigated other ML methods, such as SVMs with 
polynomial and radial basis kernel functions, Convolutional Neural 
Networks (CNNs), Random Forests (RFs), and Decision Trees (DTs). 
For the linear SVM, we utilized the L2-regularized L2-loss and a 
linear kernel function implemented in the Liblinear Toolbox (version 
1.4.1) [36]. To determine the optimal hyperparameters for each ML 
method (except for DTs), we performed a grid search using a two- 
fold cross-validation on the training data. For the SVM, we in
vestigated the regularization parameter C, performing a grid search 
within the range of C = {10−1, 10−0.5, …, 103.5, 104}. In the case of the 
CNNs, we explored different configurations including the number of 
convolutional layers and the number of filters {{32, 32}, {32, 32, 32, 
32}, {32, 32, 32, 32, 32, 32}, {32, 64}, {32, 32, 64, 64}}, and the size of 

Table 1 
A review of studies that classified gait signatures based on a time-continuous representation of GRF data from 1997 to 2023, including the number of individuals studied (N), 
recordings per individual, footwear conditions (barefoot or shod), type of GRF components used (GRFV for vertical only or GRF3D for all three GRF components), laterality used 
(bilateral or unilateral), classification method applied, and classification performance in terms of Correct Classification Rate (CCR), or Equal Error Rate (EER). The studies are 
presented in chronological order. Data not provided in the studies are marked as not available (na). For the sake of clarity, only the results of the best approach of a study are 
shown in the table. 

Reference N Recordings Footwear Dimensionality Laterality ML method Performance

Addlesee et al. [29] 15 20 na GRFV Unilateral HMM CCR: 91%
Vera-Rodriguez et al. [30] 17 ∼ 170 Shod GRFV Unilateral PCA+SVM EER: 12.5%
Janssen et al. [10] 38 9–12 Barefoot GRF3D Unilateral SVM CCR: 98.5%
Janssen et al. [11] 9 6 Barefoot GRF3D Unilateral SVM CCR: 100%
Derlatka [31] 132 14–20 Shod GRF3D Bilateral k-NN (DTW) EER: ∼ 2.8%
Derlatka and Bogdan [32] 200 14–22 Shod GRF3D Bilateral k-NN (DTW) CCR: 97.4%
Marcin [33] 81 28–40 Shod GRF3D Bilateral k-NN (DTW) CCR: 99.0%
Horst et al. [6] 128 10 Barefoot GRF3D Bilateral SVM CCR: 99.8%
Horst et al. [7] 57 20 Barefoot GRF3D Bilateral SVM CCR: 100.0%
Duncanson et al. [34] 118 8–10 Shod GRF3D Bilateral ConvRNN CCR: 96.0%
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the dense layer {256, 512}, while certain parameters remained 
constant, i.e., dropout rate of 0.25, batch size of 256, filter size of 
three and learning rate of 10−3. Due to the sensitivity of RFs to the 
number of individual trees, we conducted a grid search over this 
hyperparameter using the values {100, 200, 300}.

The GRF signals were normalized to the absolute maximum value 
determined in the training data. Specifically, each signal was divided 
by the absolute maximum value in the training data, resulting in 
signals with a value range between − 1 and + 1. Furthermore, we 
concatenated the normalized GRF signals into an input vector before 
providing it to the ML models. The size of the input vector depended 
on the lengths (and number) of the signals used, e.g., using bilateral 
data of all three GRF components resulted in a vector size of 1×606.

3.4.1. Performance evaluation
The 5368 gait recordings were divided into two parts for the 

classification experiments. The larger part, containing 4026 record
ings (75%), was used to train the ML models. The remaining 1342 
recordings (25%) served as test data for evaluating the performance 
of the ML models. To maintain a consistent distribution of each 
participant’s data, six gait recordings from each participant were 
randomly selected to serve as training data and the two remaining 
recordings were used as test data. We used the same training and 
test split in all classification experiments.

3.4.2. Explainability evaluation
The explainability results were derived from the ML model that 

demonstrated the highest performance for classifying bilateral GRF3D 

data, i.e., the linear SVM (Table 3). To analyze which input features 
are used by the SVM model, we utilized Layer-wise relevance pro
pagation (LRP) [37]. LRP is a popular explainability method designed 
to reveal how ML models work and how they ground their predic
tions. To this end, LRP decomposed the predictions of the trained 
SVM models into relevance scores for each value i in the input vector. 
The relevance scores Ri were calculated based on the product of each 
value xi of the input vector x and the weight wi of the weight vector 
w of the trained SVM models:

=R x w*i i i (1) 

Relevance scores indicate which information (and to what extent) 
was used by the SVM model for its prediction. Positive scores re
present input features supporting the classification, while negative 
scores represent input features that are against a given classification. 
For this work, the ground truth class labels (i.e., participant labels) 

were decomposed, and only positive input relevance scores were 
analyzed. Subsequently, positive relevance scores were normalized 
to their respective maximum. To obtain an indicator of the overall 
relevance of the input features for this classification task, we cal
culated the total relevance [38] for the trained models, which is the 
absolute sum of the relevance values obtained for all recordings from 
the test data. The total relevance was then aggregated at the GRF 
component and stance phase level and visualized using the code 
provided by Hoitz et al. [39]. All data processing and analysis were 
performed within the MATLAB 2021b (MathWorks, USA) framework.

4. Results

This section first presents the quantitative classification results 
for automated identification of gait signatures and subsequently 
provides explanations for the predictions. As a fixed train-test split 
was used, we report the classification performance and explain
ability results obtained on the test data.

4.1. Classification results

Table 3 presents the classification performance results of dif
ferent ML methods for classifying individuals based on the bilateral 
GRF3D signals during walking. The highest prediction accuracy, i.e., 
99.3%, was achieved by the linear SVM model. The linear SVM cor
rectly classified 1332 out of 1342 gait recordings to their respective 
individuals, with only 10 misclassifications. The RF ranked second 
with an accuracy of 98.7%, followed by the two other SVM variants 
(97.3% and 96.7%) and the CNN (95.8%). The DT performed sig
nificantly worse than the other methods, with an accuracy of 82.8%.

For the ML method with the highest performance in classifying 
bilateral GRF3D data, i.e., the linear SVM (Table 3), we conducted a 
separate post-hoc analysis of the classification results. First, we 
formed groups based on metadata information such as age, sex, and 
the originating dataset. Subsequently, we calculated and visualized 
the amount of correctly and incorrectly classified gait recordings for 
these groups. Fig. 1 shows the results of the post-hoc analysis. In 
terms of age, all but one misclassification were observed in the 
group of young individuals, while no misclassification was found 
among older individuals. With respect to sex, the misclassifications 
were evenly distributed among male and female individuals. Re
garding the datasets, GaitRec had no misclassifications, while AIST 
and Gutenberg had four and six misclassifications, respectively. Due 
to the very high overall classification accuracy of 99.3% (Table 3), the 
number of misclassifications is very low, amounting to only 10 cases. 
However, the post-hoc analysis reveals that the SVM did not struggle 
to model certain sub-groups in the data, as the classification ac
curacies in the post-hoc analysis are above 99.0% for all groups.

In a stress test, we investigated how the amount of samples (per 
individual) in the training data affects the generalization ability of 
the linear SVM. In this side experiment, the test data remained un
changed (containing the same two samples per individual as in the 
previous experiments). We examined two dimensions by using dif
ferent subsets of the training data, i.e., by varying the total number 
of individuals and by varying the number of samples per individual. 
First, we randomly divided the training data into 10 folds of equal 

Table 2 
Demographic details of the utilized dataset (including details on individual dataset level). 

Dataset N Sex (m/f) Age (yrs.)  
Mean (SD)

Body Mass (kg)  
Mean (SD)

Body Height (m)  
Mean (SD)

Recordings

AIST [15] 266 123/143 49.2 (19.2) 59.2 (10.3) 1.63 (0.08) 2128
GaitRec [16] 56 25/31 35.9 (10.9) 72.9 (15.2) 1.72 (0.08) 448
Gutenberg [17] 349 205/142 24.2 (7.0) 70.9 (12.0) 1.76 (0.09) 2792
Total 671 353/316 35.6 (18.1) 66.4 (13.1) 1.70 (0.11) 5368

The information presented in the table refers only to the data included in our classification experiments and not to the complete underlying datasets.

Table 3 
Performance evaluation on the test data across different ML methods, i.e., Support 
Vector Machines (SVMs), Convolutional Neural Networks (CNNs), Random Forests 
(RFs) and Decision Trees (DTs). The ML models were trained on bilateral GRF3D. 

ML method Accuracy Precision Recall F1 Score

SVM (linear) 99.3% 99.2% 99.3% 99.1%
SVM (polynomial) 96.7% 97.1% 96.7% 96.3%
SVM (radial basis) 97.3% 97.6% 97.3% 97.0%
Convolutional Neural Network 95.8% 96.4% 95.8% 95.3%
Random Forest 98.7% 99.1% 98.7% 98.6%
Decision Tree 82.8% 85.0% 82.8% 81.5%
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size of individuals (N = 67) and trained a linear SVM on one fold. 
Then, the number of folds used for training was gradually increased 
until all 10 folds were used. With regard to the second dimension, 
we modified the training data to contain either one, two, three, four, 
five, or six samples per individual. Table 4 presents the results of the 
stress test for the linear SVM. In the experiment, we initially trained/ 
tested an SVM model on 67 individuals. As the number of individuals 
in the training/test data increased, the performance of the SVMs 
decreased slightly and reached its worst performance with the entire 
training data (671 individuals). This drop in performance was par
ticularly evident with a smaller number of samples per individual. 

For instance, a 2.5% drop in performance was observed with 1 
sample, whereas with 6 samples, the drop was only 0.8%. As the 
number of samples per individual in the training data increases, the 
classification performance increases. Using only one sample per in
dividual yields a 10.7% difference in performance compared to using 
six samples per individual for the maximum number of individuals 
(671). A similar pattern can be observed when SVMs are trained with 
fewer folds, although in this case the difference decreases slightly 
(e.g., for 67 individuals it is 9.0%). This underlines the importance of 
a sufficient number of samples per individual in the training data to 
achieve optimal performance of the model.

Finally, we trained linear SVMs based on different combinations 
of GRF dimensionality and laterality (Table 5). The use of bilateral 
instead of unilateral signals resulted in a substantial improvement. 
For the individual GRF components, GRFAP showed an improvement 
of 9.2% (right) and 8.8% (left), GRFML showed the largest improve
ment of 13.7% (right) and 12.7% (left), and GRFV showed the smallest 
improvement of 3.9% (right) and 5.1% (left). The combination of all 
GRF components GRF3D showed an improvement of 1.4% (right) and 
1.0% (left). Considering the individual GRF components, regardless of 

Fig. 1. Post-hoc analysis of the prediction accuracy on the test data with respect to metadata information (i.e., age, sex, and underlying dataset). Participants were divided into 
three age groups: young (1–39 years), middle-aged (40–64 years), and older (65–99 years) adults. The analyzed SVM model was trained on bilateral GRF3D.

Table 4 
Evaluation of the prediction accuracy for (linear) SVMs with respect to the number of considered individuals (ranging from 67 to 671 individuals over 10 folds) and the number of 
training samples per individual (ranging from one to six samples per individual). The SVMs were trained on bilateral GRF3D. 

N 1 Sample 2 Samples 3 Samples 4 Samples 5 Samples 6 Samples

67 (1/10) 91.0% 97.8% 99.3% 100.0% 100.0% 100.0%
134 (2/10) 94.0% 98.1% 99.3% 99.3% 99.6% 99.6%
201 (3/10) 91.5% 97.8% 98.8% 99.3% 99.8% 99.8%
268 (4/10) 89.7% 96.3% 98.1% 98.7% 99.1% 99.4%
336 (5/10) 89.7% 96.3% 98.1% 98.2% 99.4% 99.4%
403 (6/10) 89.8% 96.4% 98.3% 98.9% 99.4% 99.5%
470 (7/10) 89.4% 96.8% 98.3% 98.3% 99.0% 99.5%
537 (8/10) 88.4% 96.5% 97.7% 98.5% 98.8% 99.2%
604 (9/10) 88.2% 96.5% 98.1% 98.3% 98.8% 99.3%
671 (10/10) 88.5% 96.5% 97.8% 98.3% 98.8% 99.2%

Table 5 
Evaluation of the prediction accuracy for (linear) SVMs with respect to different GRF 
dimensionalities and lateralities. 

Input GRFAP GRFML GRFV GRF3D

Unilateral (right) 82.5% 78.0% 87.7% 97.9%
Unilateral (left) 82.9% 79.0% 86.5% 98.3%
Bilateral (right+left) 91.7% 91.7% 91.6% 99.3%
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the leg, GRFV had the highest discriminative power for classifying 
gait signatures, with an advantage of 5.2% (right) and 3.6% (left) over 
the second most informative component, GRFAP. The component 
with the lowest discriminative power was GRFML with a performance 
of 78.0% (right) and 79.0% (left) in the unilateral case. However, in 
the bilateral case the performance between GRFAP, GRFML, and GRFV 

was nearly identical. Using GRF3D results in a substantial improve
ment of 10.2% (right), 11.8% (left), and 7.7% (right+left) compared to 
the strongest single GRF component.

4.2. Explainability results

The explainability results for the linear SVM trained on bilateral 
GRF3D data are presented in Fig. 2, which shows the aggregated re
levance scores for all test samples. The upper left part shows the 
overall contribution of relevance scores for each of the 101 time 
points during the (time-normalized) stance phase. In the lower left 
part, brighter colors indicate high relevance, while darker colors 
indicate low relevance for the input features. The lower right part 
highlights the summed relevance scores for each of the GRF di
mensions.

The SVM utilized regions identified as relevant by LRP from all 
bilateral GRF components. These relevant regions are mainly located 
around the peaks of each GRF component. The highest relevance 
scores are found in GRFV, which is consistent with the classification 
results of GRFV that showed the highest performance of each in
dividual GRF component (Table 5). Lower relevance scores are ob
served for GRFAP and GRFML. However, the latter has a slightly higher 
relevance compared to GRFAP, which is not consistent with the re
sults in Table 5, where GRFAP seems to have a higher discriminative 
power.

Figure 3 provides a more detailed examination of the individual 
LRP explanations at the decision level. The first subfigure shows the 
average GRF3D signals (along with the standard deviation), with the 
color coding reflecting the total relevance, also shown in Fig. 3. Each 
of the following subfigures shows two correctly classified recordings 
(from the test data) for a particular individual, with the color coding 
reflecting the relevance values for the decision. The explanations 

confirm that for each individual relevant regions are found in close 
proximity to the peaks, but not necessarily in each GRF dimension. 
Furthermore, the relevant regions for each individual are locally 
consistent across different recordings, whereas different regions are 
often relevant between different individuals.

5. Discussion

In this study, we have shown how ML methods together with 
explainability methods can enrich the assessment of biological in
dividuality. By using the example of human gait, we provide evi
dence that unique features for each moving individual can be 
identified in a large-scale and heterogeneous dataset. The identifi
cation and characterization of gait signatures may inspire the clas
sification process in computational and structural biology and is a 
crucial step towards a better understanding of human behavior in 
the context of research, but also for well-being and healthcare.

Our results demonstrate that ML models can learn gait sig
natures, providing evidence for unique characteristics of individual 
gait patterns and distinct differences between individuals on a 
previously unprecedented scale of nearly 700 individuals. The 
comparison between the obtained prediction accuracy of 99.3% 
(bilateral GRF3D) and the zero-rule baseline of 0.0015% (= 1∕671) 
illustrates the significance of the present results (Table 3). Our re
sults confirm the findings of previous studies (Section 2) and de
monstrate a high degree of uniqueness of gait signatures even in a 
large-scale dataset comprising data collected independently across 
three different gait laboratories in Japan and Central Europe. The 
outstanding performance of the linear SVM, surpassing other em
ployed ML methods with an accuracy of 99.3% (Table 3), indicates 
the linear separability of gait signatures and underscores the unique 
nature of individual gait data.

Our study achieved a comparable performance level to previous 
studies that utilized a time-continuous (holistic) data representation 
from bilateral GRF3D as input for the identification of gait signatures 
(i.e., 99.3% in 671 individuals in our classification experiments 
compared to 100.0% in 57 individuals [7] or 99.8% in 128 individuals 
[6]). However, the number of considered individuals affects the 

Fig. 2. Model explanation of the SVM trained on bilateral GRF3D data. Input relevance scores obtained by LRP. The top part on the left shows the summed contribution of the 
relevance scores for each of the 101 time points of the stance phase. In the bottom part on the left, lighter colors indicate variables of high relevance, while darker colors indicate 
variables of low relevance. The bottom right part highlights the summed contribution of relevance scores of each of the GRFs, namely medio-lateral (GRFML), anterior-posterior 
(GRFAP), and vertical (GRFV).

F. Horst, D. Slijepcevic, M. Simak et al. Computational and Structural Biotechnology Journal 21 (2023) 3414–3423

3419



classification performance in this task. This is indicated by the de
crease in prediction accuracy when the number of individuals in
creases in our stress-test experiment. As shown in Table 4, the 
increase in the number of individuals is accompanied by a slight 
decrease in the prediction accuracy, i.e., from 100.0% (67 individuals) 
to 99.2% (671 individuals), when six training samples per individual 
are used. This confirms that accurately classifying gait signatures 
becomes more difficult with a larger number of individuals. None
theless, the degree of uniqueness of GRF-based gait signatures ap
pears to be higher than previously expected [12]. Although GRFs are 
an aggregated variable that provides less differentiated information 
about body segment and joint movements compared to vision-based 
approaches, GRF-based gait signatures demonstrate a high level of 
uniqueness (by exceeding an accuracy of 99%). This indicates that a 
comparable level of uniqueness to vision-based gait signatures can 
be achieved [22].

Our results show that all bilateral GRF components (GRFAP, GRFML, 
GRFV) contain complementary information that are relevant for the 
classification and description of gait signatures. This is highlighted 
by the highest prediction accuracy for GRF3D (Table 5) and the con
siderable amount (  >  10%) of the total relevance for all GRF com
ponents (Fig. 2). However, the results also demonstrate that gait 

signatures can be accurately modeled even when some components 
of the data are not available, e.g., when only a single GRF dimension 
is used. For example, the SVM achieved an accuracy of 86.5–87.7% 
when using only unilateral GRFV, a commonly used component in 
the literature. Furthermore, the results revealed that even with only 
unilateral GRF3D data the prediction accuracy was only 1.2–1.7% 
worse than the best performing configuration with bilateral GRF3D. 
This is relevant for research and application scenarios where only 
limited or incomplete data is available. In addition, the results of our 
stress test suggest that the amount of samples per individual used 
for training the models is an influencing factor on the classification 
performance (Table 4). The results demonstrate that for a high 
prediction accuracy of over 99.0%, at least six training samples per 
individual were required for a dataset size of 671 healthy individuals. 
However, even with just a single sample per individual for training, a 
prediction accuracy of 88.5% was achieved when using an ML model 
on the dataset of 671 individuals.

The model explanation for visualizing overall relevance in Fig. 2
shows that the SVM uses relevant regions in all three GRF dimen
sions. By examining the decision explanations in Fig. 3, we can ob
serve that these regions can occur in all GRF components of an 
individual, but often only appear in a subset of them. These relevant 

Fig. 3. Decision explanations of the SVM trained on bilateral GRF3D data. Input relevance scores obtained by LRP. The first subfigure displays the mean GRF3D signals (with standard 
deviation) color-coded according to the total relevance, while each subsequent subfigure shows two recordings for an individual, with color-coded decision relevance scores. The 
explainability results confirm that gait signatures are unique across individuals and consistent for the same individual.
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regions are mainly located around the peaks of each GRF component, 
where the variability of the data is also the highest. This is reason
able because unique features are likely to be found in these regions 
due to higher variability [40]. Furthermore, the aggregated ex
planation for each GRF dimension shows that the vertical GRF 
component (GRFV) has the highest discriminatory power, followed 
by GRFAP and GRFML. At the decision level, LRP explanations confirm 
that relevant regions are located in close proximity to the peaks, but 
also in other local minima and maxima. The decision explanations 
reveal that the relevance scores for the records of an individual are 
highly spatially correlated, e.g., for individual A in Fig. 3, highly re
levant regions are identified for both records in the first peak in 
GRFV. This finding is reinforcing the concept of distinct gait sig
natures. Another result supporting the uniqueness of gait signatures 
is that significant regions tend to manifest in different locations for 
different individuals.

The discovery that individual gait signatures can be detected 
even in well-standardized experimental conditions, i.e., healthy 
participants walked barefoot at a self-selected speed, underlines the 
significance of considering individual characteristics in biological 
research. Current research strategies usually prioritize the analysis 
of average behavior or uniform responses to treatments within 
groups of individuals. This approach, which often relies on estimates 
of central tendencies like mean values, places less emphasis on 
studying individual subjects [41,42]. To date, the impact of individual 
gait signatures on the outcomes of group-based evaluations of 
treatment effects has not been well documented and merits further 
research [42]. While demographic and anthropometric character
istics are often considered as potentially confounding variables 
when researching human gait, the present results highlight the 
importance of considering individual gait signatures in future re
search more strongly. Leveraging explainability methods to discover 
which input features or sections of the input signals contribute most 
to individual gait signatures can help researchers to tailor their 
analyses. In particular, LRP enables to analyze sample/class ex
planations (Fig. 3) that provide information about the specific gait 
signature of an individual. In addition, model explanation (Fig. 2) can 
provide general information about gait signatures and inform which 
signal regions appear to be particularly vulnerable to subject-specific 
behavior.

The uniqueness of GRF-based gait signatures identified in this 
study is also of interest for authentication and surveillance sce
narios. Like other biometric features (e.g., fingerprints or voice), 
human gait seems to be a distinctive feature that can be used for 
identification purposes. The use of GRF data for gait recognition in 
authentication and surveillance scenarios is still in an early stage 
[18]. By increasing the number of individuals by a factor of ap
proximately four compared to previous studies (Section 2), our re
sults represent a significant advance in demonstrating the potential 
of GRF-based gait signatures in serving as a viable alternative or 
complement to vision-based approaches in some real-world au
thentication and surveillance scenarios.

In healthcare scenarios, our findings emphasize the importance 
to consider individual gait signatures in the interpretation of gait 
data, as advocated by previous studies [6,41]. Utilizing explainability 
methods to determine which characteristics contribute most to in
dividual gait signatures may support clinicians in finding and tai
loring their assessments and interventions to subject-specific needs. 
Determining the most suitable intervention for a given individual is 
an ongoing challenge for clinicians. However, further work is needed 
to develop methodological frameworks for personalized treatments 
[43]. In this context, caution is warranted when directly inferring 
individual adaptation processes through interventions solely based 
on the finding of individual gait signatures [44]. Thus, an interesting 
research direction would be the exploration of the extent to which 
the knowledge gained from gait signatures can significantly impact 

rehabilitation, clinical diagnostics, and personalized treatment ap
proaches.

6. Future research

This study utilized data from healthy individuals who walked 
barefoot at their self-selected speed during a single session in a well- 
standardized laboratory setting. The aim was to capture natural gait 
patterns while minimizing the influence of potentially confounding 
variables such as footwear, multiple testing sessions, and externally 
imposed speed constraints. This approach allows for a baseline as
sessment of the uniqueness of gait signatures within a typical la
boratory setting used in biomechanical research. However, it may 
not capture the complexity and variations present in different po
pulations. To enhance the applicability and generalizability of gait 
signatures, future studies should explore the uniqueness of in
dividual gait signatures in diverse populations, including individuals 
with injuries, orthopaedic and neurological disorders, who often 
exhibit higher (intra-subject) variability in their gait patterns. From 
an ML perspective, the utilization of zero- and few-shot learning 
approaches [45,46] could be promising directions for investigating 
uniqueness of gait signatures in open-set tasks.

Another important direction for future research is to explore the 
persistence of individual gait signatures. Limited studies have been 
conducted on how gait signatures are influenced by various factors 
such as time, circadian rhythms, menstrual cycle, fatigue, footwear, 
gait speed, mood, and injury [18]. Longitudinal data collections 
should be incorporated, capturing gait patterns over multiple ses
sions and under different conditions. This would provide insights 
into the temporal dynamics and contextual variations of gait sig
natures. Understanding the impact of these confounding variables is 
crucial for developing reliable applications for real-world scenarios.

Expanding the scope of the study to encompass more realistic 
settings and diverse populations will contribute to a more compre
hensive understanding of gait signatures and their practical appli
cations in various research and real-world scenarios.

7. Conclusion

The present study examined the individuality of GRF-based gait 
signatures on a large scale. The utilized dataset comprises GRF data 
from nearly 700 healthy individuals of different sex, age, physical 
constitution, and was collected in three gait laboratories located in 
Japan and Central Europe. Our work demonstrated that modelling 
the biological individuality of organisms using ML offers great po
tential for advancing research in biology. By exploring not only ex
traordinary characteristics of biological structures (e.g., fingerprint 
and face) but also identifying unique behavior of individual organ
isms (e.g., gait), researchers can gain additional insights into the 
functioning of biological systems, their interaction with the en
vironment, and their ability to adapt over time [3,47]. One way to 
study the biological individuality of organisms in more detail is 
through the use of ML driven classification approaches in combi
nation with explainability methods. The latter can identify the most 
relevant characteristics used for classification. For example, ex
plainability analysis can inform about age- [48] and sex- [49] related 
behavioral characteristics in human gait. In our study, we demon
strated how an explainability methods can be utilized to identify gait 
signatures. According to the model explanations, the trained SVM 
models used input features in all three GRF components that cor
respond to local minima and maxima in order to achieve a predic
tion accuracy of 99.3%. The intriguing aspect of this observation lies 
in the fact that, within the field of biomechanics, the primary em
phasis is placed on GRFV and GRFAP, while GRFML receives compara
tively little attention. In addition, the LRP explanations at the sample 
level showed a high degree of agreement between the regions used 
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to classify an individual. This provides further evidence for the 
concept of a unique gait signature. The proposed ML-based approach 
employed to classify individuals based on their distinctive gait pat
terns and to identify gait signatures can serve as a template for 
demonstrating how an automated classification of behavior can ef
fectively complement existing classification systems for diverse 
taxa [50,51].
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